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A LARGE TIME-STEPPING SCHEME
FOR BALANCE EQUATIONS

K. H. KARLSEN, S. MISHRA, AND N. H. RISEBRO

ABSTRACT. We present a well-balanced, large time stepping method for con-
servation laws with source terms. The numerical method is based on a local
reformulation of the balance law as a conservation law with a discontinuous
flux function, and the approximate solution of this equation by a front tracking
method. This yields an unconditionally stable method which is particularly
well suited to calculate stationary states. We demonstrate the viability of this
approach by several numerical examples.

1. INTRODUCTION

In this paper we propose a numerical scheme for conservation laws with source
terms, often referred to as balance laws, a prototype of which is given by

ur + f(u)y = Az, u) (z,t) e Rx Ry,
U(.’E,O) = ’U.()(.’L'), T € R:

(1.1)

where u is the (scalar) unknown, f is the flux function, and A is the source term.
Frequently the source term takes the form

(1.2) A(z,u) = 2'(z)b(u),

in which case (1.1) can be seen as a model equation for the Saint-Venant (shallow
water) equations. We remark that the coefficient z in (1.2) can be discontinuous,
which would correspond to a discontinuous bottom topography.

Formally (1.1) with the source (1.2) is equivalent to

(1.3) U + AU, =0,

where U = (u, z) and the matrix A is given by

(7 ).

The eigenvalues of the above matrix (wave speeds) are f'(u) and 0, which can
coincide and thereby result in so-called “resonance”.

Independently of the smoothness of the initial data and of the flux or the source
terms, solutions to (1.1) are in general discontinuous, and must therefore be inter-
preted in the weak sense. Consequently so-called entropy conditions are used to
select a unique weak solution to the initial-value problem. This solution is referred
to as an entropy solution. Weak and entropy solutions of (1.1)-(1.2) are well defined
when z' € L°°.
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One of the key issues in designing numerical schemes for (1.1) is the resolution of
steady states. If we assume that the solution is smooth at a steady state 4 = u(z),
the flux function f and the source term A are balanced, i.e., 4 satisfies the equation

(1.4) f(uw)z = Az, u).

More detailed forms of (1.4) can be derived for (1.2). The usual strategy of devising
numerical methods for (1.1) is to use a Godunov type numerical flux in a finite
volume method coupled with a centered differencing of the source term. It is
well known, see [1], that this does not preserve discrete steady states. Another
alternative is provided by the so-called splitting or fractional steps method, which
is based on separating the updates for the flux and the source [2]. This method is
also deficient with regard to preserving discrete steady states.

Due to these difficulties, so-called well-balanced schemes have been proposed.
These schemes are designed to preserve steady states. A variety of well-balanced
schemes can be found in literature, see [1, 3, 4, 5, 6] and the references cited therein.
For a partial overview, see also the introductory part of [7].

In many applications the goal is to calculate steady states both accurately and
quickly. Accurate transient values are not needs, as these are seen merely as inter-
mediate steps in a time marching algorithm to compute the steady states. In such
cases, it is desirable to relax the CFL condition (i.e., the relation between the spa-
tial and temporal discretization parameters) to reach the steady states as quickly
as possible. One such class of problems is provided by the so-called quasi-steady
problems (perturbations of steady states).

Our aim in this paper is to devise a well-balanced finite volume scheme for (1.1)
without an intrinsic CFL condition, thereby permitting the calculation of steady
state solutions with a minimal computational effort. Our finite volume scheme is
designed to find and preserve discrete steady states, and therefore we will refer
this scheme as well-balanced. The key element of our strategy will be a “local”
transformation of the balance law (1.1) to a conservation law with a space-time
dependent discontinuous coefficient:

(15) Ug + f(k(x,t),u))w =0,

where £ is the flux modified locally by the source. Equations of this type are by now
mathematically and computationally well understood within a proper framework of
entropy solutions, and various types of numerical methods have been devised and
analyzed for these equations (see the list of references given above and for (1.5) in
particular reference [8]). Our strategy is to employ numerical schemes designed for
conservation laws with discontinuous coefficients (1.5) to approximate solutions of
(1.1). Furthermore, since we concentrate on rapidly finding the stationary solutions,
we propose a method in which the size of the time step is not limited by the spatial
discretization, i.e., no CFL condition is needed.

The main features of the scheme are demonstrated by numerical experiments
in Section 3. We believe that the approach of using a local discontinuous flux
formulation for designing well-balanced schemes will lead to alternative numerical
schemes for systems of conservation laws as well, and plan to address the extension
to systems in a future work.

In a recent paper [9] we analyzed the convergence of a variant of the well-balanced
scheme proposed herein. However, this scheme, being based on a Godunov-type fi-
nite volume discretization of conservation laws with discontinuous flux, is restricted
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by the usual CFL condition. The purpose of the present paper is to suggest and
demonstrate a large time-stepping extension of the scheme from [9]. In addition,
by means of numerical experiments, we want to compare the large time-stepping
scheme with other schemes from the literature. We will present a convergence
analysis of our scheme elsewhere.

In this paper we use front tracking as a basis for a finite volume type approxima-
tion to the solution of the balance law (1.1). This is in contrast with the approach
taken in [7]. In that paper we used the reformulation (1.3) to design a front tracking
algorithm to solve (1.1), with the source in the form (1.2), directly. Although this
also gives a very efficient method, the drawback of this method is that the solution
of the Riemann problem for (1.3) is quite complicated. Furthermore this approach
is limited to source terms on the form (1.2). The finite volume approach used in the
present paper also uses front tracking, but it is based on another reformulation of
(1.1). This leads to Riemann problems that are much easier to solve. See Section 2
for details.

Although we will not perform a rigorous analysis of our scheme in this paper, it
seems appropriate to make a few remarks regarding convergence analysis of well-
balanced schemes in general. First of all, if f’ # 0, it is possible to work within the
standard BV (bounded variation) framework, see, e.g., [3, 10]. If f'(u) = 0 for some
u, the situation becomes more complicated. As is the case with conservation laws
with discontinuous flux, there is generally no BV bound for the conserved variable u
itself. In order to prove the convergence of approximate solutions (and existence of
solutions) the so-called singular mapping approach has been used in the last twenty
years to achieve compactness of sequences of approximate solutions, in particular
for problems with discontinuous coefficients, cf. [11, 12, 13, 14, 15, 16, 17, 18]. More
recently, other analytical tools have been utilized for discontinuous flux problems,
including compensated compactness [8, 19] and entropy process solutions/kinetic
solutions [20]. Regarding convergence analysis for conservation laws with source
terms, there are only a few papers that deal with the resonant case where BV
estimates are not available, see [21, 6, 14, 9].

We have organized this paper as follows: In Section 2 we define the scheme. The
scheme is based on front tracking schemes for conservation laws with discontinuous
coefficients, therefore we explain how this numerical method (front tracking) works.
Front tracking in turn, depends on the solution of Riemann problems, and we devote
a subsection to explaining how the Riemann problems arising in our setting are
solved. In Section 3 we show how the scheme performs in various settings, and
compare it with other schemes found in the literature. Finally, we summarize our
findings in Section 4.

2. THE LARGE TIME STEPPING SCHEME

In this section we describe and define the large time stepping scheme. The
starting point is the following idea. Let B(z;u) be the function defined by

(2.1) B(z;u) = /z A(z,u(z,t)) dz.
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Fix At > 0, and set t® =nAt for n =0,1,2,.... Define u% = up and u™, n > 0, to
be the (entropy) weak solution of

up + (f (W) = B (z;u" ' (t"71)) =0, te (@t
u™ (_7tn71) — unfl(_,tnfl)‘

It is obvious that this semi-discrete scheme conserves steady states since these are
given by

(2.3) f(u) — B(x;u) = constant.

Note that the discrete steady state (2.3) reflects the flux-source balance that should
characterize a steady state.

In order to use this idea to calculate approximate solutions, we need to choose
a numerical method for the following conservation law with a spatially varying
(discontinuous) coefficient:

(2.4) ug + F™(z,u), =0 t€ (0,At], wu(zx,0)=u"""(z),

where F"(z,u) := f(u) — B(z;u™!). There are many methods to choose from, like
the aligned Godunov type schemes of [11, 12] and Staggered Enquist-Osher type
schemes of [17, 18, 22], but to build an unconditionally stable (large time-stepping)
method, we shall use a front tracking method to solve (2.4). We now briefly describe
the front tracking method.

(2.2)

2.1. Front tracking. Front tracking is a numerical method for (2.4) that have no
fixed time step, and is related to the method of characteristics.
To be concrete, consider the equation (2.4) where we suppress the index n, i.e.,

Ut+F($7u)w:07 F($7u)=f(u)_B(m)7

for some piecewise smooth function B(z). The conservation law is assumed to hold
for ¢ > 0, while we initially at ¢ = 0 prescribe u(z,0) = ug(z).
To define a numerical method we choose (for simplicity) a uniform grid in the =
direction:
r;=jAr, T =(+1/2)Az, j€ELZ,
where the spatial discretization parameter Az > 0 is a given (small) number. Let
I; denote the interval (z;_1/2,%;41/2], and set

1
B;=— [ B(z)dz.
: ASU/I]- (z) dx

Next, fix a small parameter § > 0, let u; = 96 for i € Z, and define the piecewise
linear interpolation

©@5) () = f () + (w— up) L) = F (i)

for u € [u;, uit1].
Uit1 — Us

Then define the approximate flux function Fgw by

(2.6) Fgw(m,u) = fo(u) + ZleIj (z),

nwhere 1 denotes the characteristic function of a set Q, i.e., 1g(z) = 1if z € Q
and zero otherwise.
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Next, let uaz,0 be an approximation to the initial function ug defined by

1
(2.7) UAg0(T) = Az /1]- wo(z)dz, =z €I,

if |j] < 1/Az, while we set uaz 0(z) = 0 otherwise.
Now we claim that we can construct the ezact (entropy) solution u®4® to the
initial value problem

udbt® 4 FY, (x,u‘s’A“”)z =0, t>0,

2.8)
U&Ax(': 0) = UAz,0,

by a finite number of operations. How this is done is explained hereunder.
We observe that initially at each location z = x;_; /o we have a Riemann problem
of the type

{Ut + (fOu) — Bj—l)z =0, z<zj_1/9,
ug + (f(u) — B;) . =0, T>Ti 19,
(2.9) t ( () J)m j=1/2

u(z,0) = Uj-1, T<ZTj_i/2,
,0) =
Uj, T >.'L'j_1/2.

The solution of this Riemann problem (see Section 2.2 for details) is a piecewise
constant function of the form

Uj—1, T — .Z']'_l/g < O'(]t,
(210) u(:c,t) =< dy, kaltgm'—.’ll'j_l/g <opt, k=1,...,m,

uj, omt < t,

where {0} },- , is an increasing sequence of numbers. This formula is valid for small
t and for |a: —Tjq /2| small. We can piece together the solutions of the (finitely
many) Riemann problems to obtain an entropy solution for ¢ < ¢, where ¢1 > 0 is
defined to be the first time two discontinuities collide. The resulting function we
call ud2%_ For a fixed t, u®®7 is a piecewise constant function. We also see that the
discontinuities in u%“* move at constant speeds, and we call these discontinuities
fronts.

Assume that the two (or more) fronts collide at ¢ = ¢; at a point Z. Since u
piecewise constant, the collision defines a new Riemann problem of the type (2.9).
Of course, the left and right initial values are no longer u;_1 and uj, and it may
happen that the B’s to the left and right are equal. Nevertheless, we can solve this
Riemann problem and the solution is defined by a fan of fronts moving with finite
speeds. This means that we can define u%2% until the next time two fronts collide.
In this way we propagate the solution in time.

Since we initially have only a finite number of fronts, for a large class of f’s! it
turns out that there will only be a finite number of collisions between fronts for all
positive times ¢. In other words, for ¢ larger than a collision time t5;, u®% will
have fronts that are moving apart, or are stationary. Thus the exact solution to
(2.8) can be computed by a finite number of operations. For a proof of this, see
[15], while for a thorough discussion of front tracking in general, see [23].

§,Azx is

1t is sufficient that for large |ul, |f(u)| > Clog(|u| + 1).
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2.2. The solution of the Riemann problems. To complete our description of
the front tracking algorithm, we now detail how the Riemann problems are solved.
We start with the simpler case where B; = B;_;. In this case we have the Riemann
problem

u, x<0,
Upr, x>0.

(2.11) u+ fO(u), =0, u(z,0)= {

Recall that f9 is piecewise linear. The algorithm for solving this problem depends
on whether u; < u, or not. If u; < u, we let f‘5 denote the lower convex envelope of
f? between u; and w,, while if u; > u, we let f" denote the upper concave envelope
of f9 between u, and u;. Then f& will be a piecewise linear function. We call the
discontinuity points of df®(u)/du breakpoints, and we have {@Z}f\sl of these inside
the interval with endpoints u; and u,. If u; < u, we set 49 = uw; and 4y = u,,
otherwise we set 49 = u, and 4nx = u;, and arrange the breakpoints so that i — 4;
is monotone. Define

FO (i) = f° (1)

U; — Uj—1

, i=1,...,N.

g; =

Then the solution of (2.11) is given by

g, x < o1t,
(212) u(:v,t) =, oit<zr<ogt, i=1,...,N—1,
uy, ont<uz.

Next, we turn to the more complicated situation where also B has a discontinuity
at £ = 0. Since the solution only depends on the difference in B to the left and
right, there is no loss of generality in considering the initial value problem

{ut+ (f‘;(u)+B)w =0, u(z,0) =y, =x<0,

2.13
(2.13) wit P u)e =0, W(,0) = up, 7> 0,

for some (constant) B # 0. Let

up = wl_i)r(r)l_ u(z,t), and wul = wl_i>r(r)1+u(w,t).

The Rankine-Hugoniot condition implies that

(2.14) FO(up) + B = [ (uy).

The solution to (2.13) consists in finding ; . and then solving the Riemann problem
(2.11) with u, = u; using only waves with non-positive speeds, and finally solving
the Riemann problem (2.11) with «; = u.. using only wave with non-negative speeds.

How this can be done depends on f°. The simplest case is when f, and conse-
quently f° is monotone. For definiteness we assume that u ~ f(u) is increasing.
In this case the solution of (2.11) will never contain fronts with negative speeds.
Thus uj = u;, and u!, solves (2.14) with u) = u,;. Since f° is monotone, there exists
a unique solution.

The case where f is not monotone is more complicated. For simplicity, we detail
the solution in the case where f is an even convex function. In this case also f?
will be even and convex.

In order to find a solution, we first find possible candidates for u; and ). It is
clear that u; must be sought among those values there the Riemann problem (2.11)
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with u, = u; has waves of non-positive speed only, label this set H;(u;). We have
that H; is given by

(—00,0], if u; <0,
{u} U (=00, —1y], if u; > 0.

(2.15) H, (ul) = {

Similarly, we let H, be the set of left states such that the Riemann problem (2.11)
with u; = u.. is solved by waves with non-negative speed. In our case we have that

if u, >0,
(2.16) Hy (uy) = 4 %) Hup 2
{ur} U[—up, 00), if u, <O0.
Let now
f(u) + B, if u € Hy(uy),
fl(u) = . § .
ming, {f°(u)} + B, otherwise,
and

O (u if u r(Ur),
fr(u):{f(), fue H(ur)

ming, {f°(u)}, otherwise.

Now the Rankine-Hugoniot condition says that u; and «] must solve the equation

(2.17) fi(w) = fr (ug).

Since f; will be a convex non-increasing function and f, will be a convex non-
decreasing function, (2.17) will always have an infinite number of solutions. Indeed,
for any value ¢ > max { f;(u), fr(ur)} we can find a unique pair (u;,u;) satisfying
(2.14) with f(u;) = ¢. We use the so-called minimal jump entropy condition which
states that among all possible solutions, we choose the pair minimizing |u) — u..|.
In our case this is the same as choosing the minimal possible flux across z = 0.
Once u; and u). are determined, we can solve the Riemann problems to the left and
right of x = 0 and piece together the solutions to form u(z,t) as in (2.10).

The procedure for finding ug,r in the general case is similar, but the formulae are
more complicated, see [24].

2.3. The large time-stepping scheme. Now we are in a position to define a
fully discrete scheme based of the semi-discrete scheme (2.2). To this end fix three
independent (small) parameters ¢, Az, and At. Use 0 to define the piecewise linear
approximation f0 from f by (2.5). The approximate initial data is defined as in
(2.7). For an integrable function g, let Pg be defined as mapping to the piecewise
constant functions by taking cell averages over I;, i.e.,

P = 5= ([ o0t )11,

J J

Next, define the sequence {u},,} _ by solving

n>0
atuaAw,n + az (f6 (U6Aw,n) + anl(x)) = Oa

2.18
219 Udp (@, 1"71) = (Pudy 1 (51"71)(2),
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while uaz,0 is defined by (2.7). The “coefficient” B™ is found by defining

Az —n =N
(2.19) B} = Bj_ + - (4 (25 1ot ) + A (05—, 5

+ A (JL‘j"‘,ﬂ?) +A ($j+1/2_7a?))5

where we have set 4} = P(u‘SA%n(-,t”))hj. Note that since A(x,0) = 0 and that by
finite speed of propagation, B} = 0 for sufficiently negative j. Finally, define

(2.20) B™(z) =Y Bl ().

This is an approximation of the function B(w7u6Aw,n—1) defined in (2.1). Other
approximations are also possible, and these would result in slightly different discrete
steady states.

Note that the discrete steady state preserved by the fully-discrete scheme satisfy

(2.21) f(u}) — B} = constant,

which is the fully discrete version of (2.3). The solution to (2.18) is computed using
front tracking. We plan to return to the issue of theoretical convergence (as the
three parameters d, Az, and At vanish) of this scheme in a forthcoming paper.
We remark that this scheme can be interpreted as a finite volume scheme. To do
this we observe that @ is the cell average over I; of the solution of (2.18). Thus

1
—1
3= as (B = Flap),

where the numerical flux function is given by

m
Fjrfll_l/Q = /t"—l f(s (uéAz,n ($j+1/27t)) dt + AtB;l_l'

Of course, we do not need to compute these integrals, but they can be interpreted
as numerical fluxes.

3. NUMERICAL EXPERIMENTS

In this section we present two numerical experiments where we have used the
large time step method. In order to have fewer parameters, we have set § = Az/2,
and used the CFL number and Az to parametrize the method. In this context, the
CFL number ) is defined as

At
(3.1) A= A—xm3x|f’(u)|.
We remark that by taking a CFL number of 0.5, the scheme proposed here is
equivalent to the Godunov-type scheme proposed in our recent paper [9]

3.1. Numerical Experiment 1. In this experiment, we consider the following
initial value problem:

1 V4 — 22, <2
wt (), = (e, @)= VT <2
2 0, otherwise,
(3.2)
1, x<-3

u(@,0) = {0 z> -3
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We consider (3.2) in the domain z € [-3.5,3.5], ¢ € [0, 8], and impose characteristic
boundary conditions at x = £3.5.

The exact solution in this case is a right moving shock which starts interacting
with the bottom topography z and creates a smooth wave. The steady state is
reached after the shock has moved out of the domain and is given by the function

u(z) =1 — z(x).

In order to test the method for various CFL numbers, we exhibit the results of
computations for the CFL numbers 20, 10, 5, and 2.5. These are shown in Figure 1.
The errors at the time ¢t = 8 are shown in Table 1. We show both the L' and L*®
errors by comparing the computated solutions with the exact steady state. Based
on these, it seems that the computations with A = 5 and A = 2.5 are acceptable,
while for larger CFL numbers the results are inaccurate near x = 2. In all of these
computations we used Az = 7/100.

A=20 A=10

FIGURE 1. Approximations to the solution of (3.2) with different
CFL numbers; A = 20 (top left), A = 10 (top right), A = 5 (bottom
left) and A = 2.5 (bottom right).

We also check how the approximate solutions vary when At is fixed and the
spatial discretization Az varies. We show the results of these computations in
Figure 2, while the errors are displayed in Table 1. Here the CFL numbers vary
from 2.5 in the case where Az = 7/50 to 20 in the case where Az = 7/400. We
see that the approximations are very similar despite the larger difference in CFL
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Mn | 50 100 200 A\n| 50 100 200
20 54.8247 143.7400 13.8333 20 | 25.2185 13.4698 1.6539
10 | 128.5679 24.4285 0.3032 10 | 13.2428 2.3777 0.0062
5 11.2544  0.1918 0.0003 5 1.1438  0.0201 0.0001
2.5 0.0917  0.0001 0.0002 2.5 | 0.00464 0.00003 0.0005
TABLE 1. 100 x L™ error (left) and 100 x L! error (right), where
A denotes the CFL number and Az = 7/n.

numbers. Hence the quality of the results are largely independent of Az and the
CFL number.

A x=7/50 A x=7/100

FIGURE 2. Approximations to the solution of (3.2) with At con-
stant, A = 2.5 (top left), A = 5 (top right), A = 10 (bottom left)
and A = 20 (bottom right).

We also compare the small time step version of this method by taking the CFL
number to be 0.5. As remarked earlier, this scheme is equivalent to the Godunov-
type scheme proposed in [9]. Finally, we compare the above results with the solu-
tions computed by the well-balanced scheme of [6], which is based on a projection to
the local steady states. The numerical results are shown in Figure 3. As expected,
the scheme resolves the solution very well at this low CFL number and the steady
state is approximated to machine precision. On the other hand, the well-known
well-balanced scheme of [6] leads to unphysical transients although it also resolves
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T
100°

FIGURE 3. Approximations to the solution of (3.2) with Az =
A = 0.5 (left) and the well-balanced scheme of [6] (right).

the steady state to machine precision. From the above data, the large step method
gives very good results at reasonable CFL numbers even with coarse discretizations
in space. The results for both transients as well as steady states are very good at a
CFL number of 5, thus leading to a order of magnitude speed-up compared to the
standard time-step (CFL = 0.5) version of the scheme. For higher CFL numbers,
the transients seem to be poorly resolved for coarse mesh discretizations. This is
expected as interesting wave phenomena are averaged over longer periods of time.
By going to finer meshes in space, the quality of the results improves significantly
at even higher CFL numbers.

3.2. Numerical Experiment 2. In this experiment we consider the equation

(3.3) up + (%UQ)E = —Z'(z)u, 2(z) = —cos(rz),

with the initial data .

u(z,0) = cos(wzx) + 0 sin(4wx).
We consider the above problem in the domain [—1,1] with periodic boundary con-
ditions. The exact steady state is given by

u(x) = cos(mz).

Thus the initial data is a periodic perturbation of the steady state and we expect
the solution to converge to the steady state. This problem is a prototype for quasi-
steady problems. The exact solution consists of small amplitudes waves which
decay quickly to the steady state. We have computed the solution to this problem
with both the small (CFL = 0.5) time-step version of our method and the well-
balanced scheme of [6] and show the solutions in Figure 4. Both schemes perform
equally well and resolve the steady state to machine precision. But our interest in
such quasi-steady problems is to compute the steady state accurately and quickly.
Hence, we increase the CFL number in an attempt to take large time steps. We are
not interested in an accurate resolution of the transients in this case. We show the
results with a really large time-step (A = 80) version of our method in Figure 5.
From the figure, it is clear that the steady state is resolved accurately even at such
high CFL numbers. As expected, there are some oscillations in the transient as the
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FIGURE 4. Approximations to the solution of (3.3) with Az =
0.02, A = 0.5 (left) and the well-balanced scheme of [6] (right).

Convergence to stationary solution

FIGURE 5. The numerical solution to (3.3), Az =1/200, A = 80.

averaging is over really large time steps. But we are interested in the resolution of
the steady state and see that we can increase the size of time step to more than
two orders of magnitude to obtain accurate resolutions of the steady state.

The above examples illustrate the effectiveness of this numerical method. It
resolves steady states quite accurately. The method is fast as large time steps can
be taken due to high CFL numbers. Taking large time steps can lead to incorrect
transients but the solutions improves considerably by refining the space mesh.

4. CONCLUSION

We present a new numerical method for conservation laws with source terms.
The main numerical issue is the accurate resolution of steady states. In order to
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preserve discrete steady states, the numerical method has to reflect the balance
between the flux and the source at the steady state.

We propose a numerical scheme based on local reformulation the balance law as a
conservation law with discontinuous coefficients. The resulting equations are solved
by a front tracking method based on solutions of Riemann problems. The method
preserves discrete steady states exactly, and is therefore well-balanced. Since we
use front tracking, the method is unconditionally stable and we can take arbitrarily
large time steps without blowup.

Numerical examples are presented and they illustrate the effectiveness of the
method. In particular, the method resolves discrete steady states to a high degree
of accuracy. The method is also fast since we can take very large time steps. We
have also compared the method with other existing well-balanced schemes. The
method is very effective for quasi steady problems i.e perturbations from steady
states.
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