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DYNAMIC COPULA MODELS FOR THE SPARK SPREAD

FRED ESPEN BENTH AND PAUL C. KETTLER

Abstract. We propose a non-symmetric copula to model the evolution of electricity and
gas prices by a bivariate non-Gaussian Ornstein-Uhlenbeck pure jump process. We identify
the marginal processes as driven by normal inverse Gaussian Lévy processes, estimating
them by the method of moments. We estimate the copula by modeling the di�erence of the
empirical copula to the independent copula. Following we simulate the joint process and
conclude with valuation of options.

1. Introduction

We propose a new copula to model the dependence relationship in the joint evolution
of electricity and gas prices. For the marginal processes we choose discrete-time Ornstein-
Uhlenbeck Lévy processes having normal inverse Gaussian (NIG) jump components. With
the model calibrated we simulate the joint price series and produce option values on the spark
spread.
The principal �ndings of the study are that the proposed theoretical copula and marginal

assumptions �t the data well, that the NIG assumption, compared to the more traditional bi-
normal concept, produces fat tails consistent with observation, and that the model's predicted
prices are nearly invariant to the choice of distribution inside those tails.
Speci�cally, the spark spread as a function of time is this.

(1.1) S(t):= E(t)− cG(t),

where E(t) and G(t), respectively, are electricity and gas prices quoted in customary units.
The constant c is a heat rate chosen to make approximate equivalence between the energy
content of the two sources, adjusted by a factor consequential to the lesser e�ciency of gas in
typical applications. See Appendix A for a discussion in detail on this point.
For inspiration and motivation we observe and comment upon a series of graphs depicting

the di�erence between our proposed theoretical copula and the independent copula. As well,
we compare the empirical copula to the independent copula. By various tests the proposed
theoretical copula provides a good �t to the data, and therefore serves as a basis for the
simulation study to follow. We estimate by the method of moments parameters of the NIG
distribution for each marginal series, and with these distributions and the copula connecting
them the simulations follow.
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For a presentation on the spark and other spreads, with stochastic analysis including mean
reversion, jump terms, and attention to seasonality see (Carmona and Durrelman 2003). For
further analysis of the economics and dynamics of spark spreads see (Benth and �altyt
e-Benth
2006). For a speci�c treatment of the Nordic power market employing one and two factor
models with deterministic and stochastic components (but without jump terms) see (Lucía
and Schwartz 2002). Providing a detailed microanalytic stochastic approach with a novel
likelihood estimator applied to jump processes is this paper (Geman and Roncoroni 2006).
Delving into a jump di�usion model of the English and Welsh spot and forward electricity
markets is this paper (Cartea and Figueroa 2005). For a comprehensive exposition on an
exponential mean reversion model with NIG marginals see (Benth and �altyt
e-Benth 2004).
We set forth our model for electricity and gas prices in several stages, reported in the subse-

quent sections. First is a discussion of the model with emphasis on the copula. Next comes a
section on theory incorporating a description of the normal inverse Gaussian distribution, with
formulation for estimating parameters by the method of moments. Within this section are
items on a property of the copula di�erence function � important to our estimation procedure
� and a de�nition for tail dependence, on which we make a later comment. We continue with
a discussion of the data and inferences. This section also delves into the NIG estimations of
the marginals, and the copula estimation using the empirical copula.
Next we o�er a section on the simulations beginning with our method to make a random

draw from the �tted copula, proceeding to the generation of the sample sequences, and con-
cluding with inferences from the terminal distributions of the paths. Graphical material here
assists in interpretation. Before conclusions comes the section on option pricing, with detail
on those methods. Included here is a table illustrating theoretical prices for 20-day options
scheduled to four seasons of the year.

2. A copula model for electricity and gas

Let (Ω,F , P ) be a standard �ltered probability space, wherein {Ft}0≤t≤T is the �ltration.
The fundamental joint model we consider is this, incorporating pure jump Lévy processes.
Thus we have

dẼ(t) = −αE

(
Ẽ(t)− µE

)
dt + dLE(t)

dG̃(t) = −αG

(
G̃(t)− µG

)
dt + dLG(t)

(2.1)

In this model Ẽ(t) and G̃(t) are the detrended and deseasonalized logarithmic electricity and

gas processes, and LE(t) and LG(t) are the corresponding pure jump Lévy processes. The
parameters αE and αG describe rates of mean reversion, with µC and µG the implied means
of those reversions.
Here is the discrete-time version of these formulas, which we employ in the rest of the

paper; it replaces the di�erentials with di�erences. In the further analysis the {ti} constitute
a natural number index set, so ti+1− ti = 1. However, here we state the formulas in generality
(with slight abuse of notation in using the same symbols as for the continuous case.)

Ẽ(ti+1)− Ẽ(ti) = −αE

(
Ẽ(ti)− µE

)
(ti+1 − ti) + εE(ti)

G̃(ti+1)− G̃(ti) = −αG

(
G̃(ti)− µG

)
(ti+1 − ti) + εG(ti),

(2.2)
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where the independent and identically distributed Lévy increments εE(ti):= LE(ti+1)−LE(ti)
and εG(ti):= LG(ti+1) − LG(ti). We join then the Lévy processes with a copula, estimated
from data.
The emphasis of the model is on using a copula, a function joining two marginal distributions

and containing all the dependency information between the random variables having those
distributions. For a good foundation of copula theory see (Nelsen 1998). We propose a
theoretical copula, which �ts the data well and provides insight into the nature of electricity
and gas price discovery. As well, we perform studies on the separate electricity and gas data
resulting in additional series of residuals, necessary in modeling the marginal distributions.

Remark. This study develops a discrete-time model in order to take advantage of the discrete-
time empirical copula provided by the source data, as reduced through the detrending and
deseasonalizing procedures. We then are able to compute a theoretical copula �tted to this
empirical copula. The plan of research herein, therefore, is to couple the marginal distributions,
estimated directly as NIG variates by the method of moments, rather than to couple marginal
Lévy measures with a Lévy copula. Marginal Lévy measures are signi�cantly more challenging
to estimate. For a good theoretical foundation on using the Lévy copulas for this and other
purposes see (Kallsen and Tankov 2004).

The model we propose, having implications for the price processes generating the observed
empirical distribution, is described by a copula di�erence function ∆(v, z) to the independent
copula C⊥(vz):= vz. This function is triangular in the electricity variable and quadratic in
the gas variable with one parameter h, the height of the copula.
For the discrete formulation of the model, let {εE(ti)} and {εG(ti)}, as above, be the data

corresponding to Ẽ(t) and G̃(t), respectively. These discrete points are the residuals of the
autoregression study to estimate the Ornstein-Uhlenbeck reversion coe�cients αE and αG of
Equations (2.1). Then let FE(·) and FG(·) be their empirical distributions and let D(·, ·) be
the copula joining them.
Speci�cally, set

∆(v, z):= (1− |2v − 1|)
(
1− (2z − 1)2

)
,(2.3)

and then look to the model residuals{
ρj := D

(
FE

(
rE
j

)
, FG

(
rG
j

) )
− h∆

(
FE

(
rE
j

)
, FG

(
rG
j

) )}n

j=1
,(2.4)

adjusting h so to minimize the sum of their squares. We then refer to

Ch(v, z):= C⊥(v, z) + h∆(v, z) = vz + h(1− |2v − 1|)
(
1− (2z − 1)2

)
(2.5)

as the copula we propose to link electricity and gas.1

3. Theoretical considerations

For background on the behavior of the NIG distribution under convolution, and on general
principles for �tting it, see these (Rydberg 1997; Barndor�-Nielsen 1998). For a comprehensive
treatment of NIG distributions as they relate to Lévy processes see this (Raible 2000).

1These model residuals are not to be confused with the basic data {rE
j } and {rG

j }
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The forward formulas for the statistics (m, v, s, k), given the parameters (α, β, µ, δ) are
given here (Rydberg 1997) and now repeated. For convenience let γ =

√
α2 − β2.

m = µ + δ
β

γ
v = δ

α2

γ3

s = 3
β

α

1

(δγ)
1
2

k = 3

[
1 + 4

(
β

α

)2
]

1
δγ

These formulas are invertible to the following backward formulas. For convenience let ζ =
3k − 4s2 and η = k − 5

3s2.

α =
√

ζ

η
√

v
β =

s

η
√

v

µ = m− 3s
√

v

ζ
δ =

3
3
2
√

ηv

ζ

The NIG density g(x;α, β, µ, δ) is known in closed form.

g(x;α, β, µ, δ) = a(α, β, µ, δ)q−1

(
x− µ

δ

)
K1

[
δαq

(
x− µ

δ

)]
eβx,

where

q(x) =
√

1 + x2, a(α, β, µ, δ) =
α

π
exp

[
δ
√

α2 − β2 − βµ
]
,

and K1(x) is the modi�ed Bessel function of the second kind of index one.
Consider next the estimated theoretical copula Ch(v, z) along with the marginal distribu-

tions F̂E(a) and F̂G(b). One may recover the estimated joint distribution F̂ (a, b), as follows.

F̂ (a, b) = Ch

(
F̂E(a), F̂G(b)

)
Recall that ∆(v, z) is not arbitrarily, for it must conform to a conditions of Lemma 3.1 below.
It does for h ∈ [−0.1250,+0.1250].

Lemma 3.1. ∂∆(v, z) ≡ 0 and

1∫
0

1∫
0

∂2

∂v∂z
∆(v, z) dv dz = 0.

Proof. The �rst part follows readily as all copulas have common values on their boundaries.
For the second part consider that the mixed second partial derivative of a di�erentiable dis-
tribution function is its density. Therefore, from Equation (2.5) we have

1∫
0

1∫
0

∂2

∂v∂z
Ch(v, z) dv dz = 1 + h

1∫
0

1∫
0

∂2

∂v∂z
∆(v, z) dv dz = 1,

whence the conclusion follows. �

We turn attention now to tail dependence with a de�nition. For a treatment of this concept
see (Cherubini, Luciano, and Vecchiato 2004, Subsection 1.8.5, pp. 42�43).
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De�nition 3.2. A bivariate distribution is lower tail dependent with coe�cient λL, 0 ≤ λL ≤
1 if

lim
a→−∞

Pr
{
Y ≤ a

∣∣ X ≤ a
}

= lim
a→−∞

G(a, a)
F (a)

= lim
α→0

H(α, α)
α

= λL

A bivariate distribution is upper tail dependent with coe�cient λU , 0 ≤ λU ≤ 1 if the distri-
bution of (−X,−Y ) is lower tail dependent with coe�cient λU . A distribution is either lower
tail independent or upper tail independent, respectively, as λL = 0 or λU = 0. A distribution
is either lower tail completely dependent or upper tail completely dependent, respectively, as
λL = 1 or λU = 1.

4. The data and model fitting

The data of this study are 805 parallel observations of daily spot prices for electricity and
gas from the United Kingdom, 6 February 2001 through 26 April 2004. Of these observations
we truncate seven as extreme. This truncation changes the statistics of the residuals slightly,
but insigni�cantly, and has the e�ect of eliminating those few observations as jumps. The
intent, however, is not to eliminate jumps � as the decision has been made to combine the
residuals into a jump term � but rather to leave the sample more manageable in other ways,
as in performing a least squares �t of the di�erence copula.

4.1. Data preparation. Detrending of the logarithmic data follows this discrete model, with
these estimates. Herein the original logarithmic data are Ẽ1(ti) = log E(ti) and G̃1(ti) =
log G(ti), respectively for electricity and gas, and the detrended data are the residuals {εE,1(ti)}
and {εG,1(ti)}.

Ẽ2(ti) = a
(1)
E + a

(2)
E Ẽ1(ti) + εE,1(ti)

G̃2(ti) = a
(1)
G + a

(2)
G G̃1(ti) + εG,1(ti)

(4.1)

The estimated coe�cients are a
(1)
E = 2.7851, a

(2)
E = 0.0004, a

(1)
G = 2.8737, a

(2)
G = 0.0001. The

coe�cients a
(2)
E and a

(2)
G are determined insigni�cantly di�erent from zero.

Deseasonalizing the detrended logarithmic data follows this subsequent model, with these
estimates. The �nal data are indicated without subscript, as in Equations (2.1). D = 252 is
the assumed number of trading days in a year. Analogously, the reduced data are the residuals
{εE(ti)} and {εG(ti)}.

Ẽ3(ti) = εE,1(ti) + b
(1)
E + b

(2)
E cos

[
2π

(
t + b

(3)
E

) /
D

]
+ εE(ti)

G̃3(ti) = εG,1(ti) + b
(1)
G + b

(2)
G cos

[
2π

(
t + b

(3)
G

) /
D

]
+ εG(ti)

(4.2)

The estimated coe�cients are b
(1)
E = 0.0026, b

(2)
E = 0.1603, b

(3)
E = 49.1820, and b

(1)
G =

−0.0062, b
(2)
G = 0.2748, b

(3)
G = 21.4688. The coe�cients b

(1)
E and b

(1)
G are determined in-

signi�cantly di�erent from zero.
We perform statistical tests on these series {εE(ti)} and {εG(ti)} to satisfy ourselves that

they are well behaved and essentially stationary. Among such tests is Fisher's variance ratio
test for absence of heteroskedasticity. The F statistic performed on the �rst and last thirds of
the data (points 1�266 and 533�798) in each series results in the acceptance of null hypotheses
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of homoskedasticy. Speci�cally, F ratios of 0.3468 and 0.7020 are observed in the electricity
and gas series, with corresponding con�dence intervals of [0.2725, 0.4415] and [0.5515, 0.8936].
Now make the identi�cations

Ẽ(ti):= εE(ti)

G̃(ti):= εG(ti)

These are the variables of the Ornstein-Uhlenbeck Equations (2.2).
To review, this is the sequence transformations and generated variables to arrive at the

basic residual series data for the study.

E(ti)
log−−−−−−→

transform
Ẽ1(ti)

trend−−−−−−→
regression

εE,1(ti)
season−−−−−−→

regression
εE(ti) = :Ẽ(ti)

G(ti)
log−−−−−−→

transform
G̃1(ti)

trend−−−−−−→
regression

εG,1(ti)
season−−−−−−→

regression
εG(ti) = :G̃(ti)

Consistent with the process descriptions of these equations we estimate by one period
autoregression the coe�cients αE = 0.7278, µE = −0.0002, αG = 0.8849, µG = −0.0004,
concluding that µE and µG are insigni�cantly di�erent from zero.2 The prior detrending and
deseasonalizing of the original logarithmic data follow linear and cyclic models presented here.
These results we use in reverse order for the �nal recovery of the electricity and gas price
sequences, and the consequent computation of the spread series on which we estimate spark
spread option prices.

4.2. Marginal and copular relationships. We model the spark spread residuals as NIG
variates on the separate electricity and gas series. This methodology makes possible the
speci�c estimation of the joint distribution by copula methods, inspiring simulation of the
joint process and subsequent pricing of derivative securities on it. The series are separately
estimated, not jointly estimated.
The selection and �tting of a theoretical one-parameter copula to the joint process is central

to the model. This copula joins LE(1) to LG(1), the value t = 1 signifying the passage of one
trading day, or one observation in the data.
We also looked at the Q-Q and P-P functions of the variables and can report our inferences.

Begin with the Q-Q functions. See Figures 8, 9, and 10. A qualitative interpretation of
the electricity function reveals leptokurtosis insofar as the median frequency of the electricity
variate is greater than the median frequency of the normal variate, i.e., the slope in the center
is greater than one. The same phenomenon obtains in the tails, giving a fat tail interpretation
to the electricity data. In contrast, the Q-Q gas function, while also exhibiting leptokurtosis,
shows distinctly thin tails.
This comparative distinction appears directly in the cross reference electricity-gas Q-Q

function, which in the center reveals the electricity variate as slightly more leptokurtic than
the gas variate. As well, the dramatic slopes in the tails display the combined e�ect of fat
electricity tails and thin gas tails.
In each of the three P-P functions � electricity, gas, and cross reference � the increase in

ordinate for each successive point is the same, namely 1/n. Thus a projection of these points
on the vertical axis is an instance of the uniform distribution. See Figures 11, 12, and 13.
A qualitative interpretation of the P-P electricity function reveals two evident features. First

is an early and steep traverse of the equivariate line approaching the center of the plot from

2These estimates were provided by J	urat
e �altyt
e-Benth.
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the left. In consequence, the median of the electricity residuals corresponds to a signi�cantly
higher fractile in the comparing normal distribution. This sighting is consistent with right
skewness in the electricity variate, along with excess kurtosis corresponding to the steep slope.
Second is the late traverse in the opposite direction at the right edge of the plot. This pattern
shows that the fat right tail, to accompany the excess kurtosis, diminishes to a very thin tail
in the extreme; it is as if there were some institutional proscription militating against large
upward jumps in the process. The bidding system possibly plays a role here, as could explicit
or implicit intraday price move limits.
In contrast, the P-P gas function is much more regular, though decidedly non-Gaussian.

The medians of the variables are insigni�cantly di�erent and skewness is not apparent, though
kurtosis and fat tails clearly obtain.
With the cross reference P-P electricity-gas function we see distributions which are not as

far from each other as either is to the normal distribution; however, the early traverse of the
equivariate line still shows the comparative right skewness of the electricity variate, whereas
the relatively thin right electricity tail is revealed to an even greater extent when compared
to the relatively fat tail in the gas variate.
When the data of this study are examined for tail dependence an interesting pattern

emerges. First, bear in mind that with a �nite data set it is impossible to examine limit
behavior in any rigorous context. This is especially so with the relatively small bivariate
sample of 798 points as herein. Nonetheless, it is possible to say something.
As an ad hoc test we look to the �rst and last deciles in each variable, and speci�cally

seek the points which are in both lower or in both upper deciles. We test then on the null
hypothesis that the distributions from which these data emerge are independent. With 798
points we would expect 7.98 in both lower and both upper deciles. In fact, the lower joint
tail has 23 points, and the upper joint tail has 15 points, both signi�cantly higher at the 1%
level of con�dence to reject the null hypothesis on a binomial test with continuity correction.
In fact, the lower joint tail shows signi�cant departure from the independent assumption at a
much smaller fraction than 1%.
We should note here that the copula we employ has zero tail dependence by De�nition 3.2.

We made a conscious decision not to include tail dependence in the theory, for as noted the
number of points modeled is small and the �t overall to our choice of copula is excellent.

4.3. Normal inverse Gaussian estimation of the marginal distributions. We estimate
the marginal distributions for electricity and gas residuals from the empirical distributions FE

and FG by the method of moments using the NIG distribution, as articulated in Section 3.
Implementing these estimates provides �ts of theoretical densities f̂E(x) and f̂G(y) on

histograms exhibited in Figures 14 and 15, with parameters (α, β, µ, δ) = (6.9342, +2.8003,
-0.0694, 0.1514) for electricity, and (α, β, µ, δ) = (7.7740, -0.9982, +0.0122, 0.0831) for gas.
Associated are distributions F̂E(a) and F̂G(b).

4.4. Estimation of the copula. The estimated value by least squares on the empirical
copula of h is 0.0848, well within the Fréchet-Hoe�ding interval [-0.1250, +0.1250], implying
a coe�cient of determination r2 = 0.8949. Figure 1 exhibits ∆(v, z), a function on the unit
square. Figure 2 shows the level curves of ∆(v, z). In these charts h = 1.
Look next to Figures 3 and 4. These �gures show an estimated theoretical copula di�erence

function as in Equation (2.3), evaluated on the domain of our sample. The views are �rst
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from the electricity axis into the domain, and then toward the gas axis out of the domain.3

Look further to Figures 5 and 6. These �gures show the empirical copula di�erence function,
also from the electricity axis into the domain, and toward the gas axis out of the domain.
What you see is an asymmetrical function in keeping with the model choice. The views are
qualitatively di�erent, owing to the di�erent character of the separate markets for gas and
electricity. Gas is storable, whereas electricity is not. The development of our model captures
this distinction. Figure 7 shows the density of this empirical copula, a �top view,� of which
Figures 5 and 6 are the �side views.�

5. Simulation of the joint electricity and gas processes

Simulation begins by taking random draws from the theoretical copula Ch(v, z) of Equa-
tion (2.5). To gain insight into how a plot of such draws may look, we compute the copular
density as the second mixed partial derivative of the copula, thus.

cθ(v, z):=
∂2

∂v∂z
Ch(v, z) = 1 + sgn(2v − 1) · 8h(2z − 1)

This density cθ(v, z) is constant on v and linear on z in the subsets of the unit square v ≤ 1/2
and v > 1/2. Also, cθ(v, z) is symmetric about [1/2, 1/2] in that cθ(v, z) = cθ(1 − v, 1 −
z). Accordingly, cθ(v, z) is discontinuous for v = 1/2, except for v = z = 1/2. Further,
cθ(v, 1/2) = 1.
Drawing samples from this copula is a straightforward process. One may select either

variable randomly by the uniform distribution, and then select the alternative variable by
inverting on the conditional distribution for it.
The two conditional distributions C

(v̄)
h (z̄) and C

(z̄)
h (v̄) are as follows.

C
(v̄)
h (z̄) = Pr

{
z ≤ z̄

∣∣ v = v̄
}

=
∂

∂v
Ch(v, z)

∣∣
(v̄, z̄) = z̄ − sgn(2v̄ − 1) · 2h[1− (2z̄ − 1)2]

(5.1)

C
(z̄)
h (v̄) = Pr

{
v ≤ v̄

∣∣ z = z̄
}

=
∂

∂z
Ch(v, z)

∣∣
(v̄, z̄) = v̄ − 4h(1− |2v̄ − 1|)(2z̄ − 1)

(5.2)

The way is clear now to select a pair (v̄, z̄) by the distribution Ch(v, z). Start with two
independent draws, U1 and U2, from the uniform distribution on the unit interval. One may
begin with either argument of Ch(v, z). We choose the second (to avoid a quadratic equation.)
Therefore, let

z̄ = U2(5.3)

To continue, invert Equation (5.2) above. To that end let

C
(z̄)
h (v̄) = U1

3We take these views to keep the origin on the left in each case.
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and solve for v̄. For convenience let ĥ = 8h(2z̄−1) and then let v̂ = U1/(1− ĥ). The inversion
splits neatly into two cases, as follows.

(5.4) v̄ =


v̂ if v̂ ≤ 1

2

U1 + ĥ

1 + ĥ
if v̂ > 1

2

Taking v̄ from Equation (5.4) and z̄ from Equation (5.3), the pair (v̄, z̄) is a draw from Ch(v, z).
Figure 16 shows 2000 of these draws.
We proceed to construct a series of random paths based on draws from the theoretical

copula to the estimated NIG marginal distributions. For control we generate paths with the
binormal distribution assumption for the residuals, �rst by a method of moments using the
respective means and covariance of the samples, and then assuming zero covariance.
The parallel studies employ coordinated draws from two independent uniform distributions,

using those variates to choose respectively a copula pair and bivariate normal pairs. From the
copula pair we invert the NIG marginal distributions to establish points in the time series, as
we do directly with the bivariate normal pairs.
In order to avoid Monte Carlo error we use the same pair of independent uniform variates

in the NIG study as in the control binormal study. This requirement necessitates separate
scripting of the binormal draws, as the available software takes four uniform draws, not two,
to create each binormal point when presented with a 2x2 covariance matrix.
The �rst step of the simulation is to make 40, 000 draws from the uniform distribution to

construct 1000 sequences of pairs of points for the NIG and binormal studies. These data
are necessary and su�cient to produce independent pairs for p:= 20-day periods of trading
days, the experimental design interval. The next step is to generate the sequences using the
iterative formula implied by the autoregression study, and thereafter to correct the paths for
seasonal and trend in�uence, �nally exponentiating to arrive at prices.
Following the generation of these paths we correct the sets of endpoints for seasonal in�u-

ences according to Equations (4.2), choosing four separate periods equally spaced around the
yearly cycle. Speci�cally, we correct the distributions for the ending days of periods beginning
on days 0, 63, 126, and 189. As we choose p = 20 for the cycle length, those ending days are
numbers 20, 83, 146, and 209. Then we correct the adjusted endpoint distributions further for
trend according to Equations (4.1). The resulting values we exponentiate to produce prices.
Finally, we compute spread distributions according to Equation (1.1).
With the paths so generated we examine several data sets along the way with tests, charts,

and �ndings. First, we test the series of detrended, deseasonalized logarithms of prices for
normality. By the Anderson-Darling (A-D) test both series for electricity and gas have the null
hypotheses of normality rejected at the 1% level. Respectively, the A values are 25.356 and
12.519, with P values less than 10−15 in each case. We then �t NIG distributions, hypothesized
as better descriptions of the data. Refer to Figures 14 and 15.
Figures 17 and 18 show 1000 pairs of draws, respectively, from the theoretical copula with

inversions on the parametrized NIG marginal distributions, and analogous pairs drawn from
the binormal distribution with means and covariance estimated from the samples.
Figures 19 through 22 show histograms of the terminal distributions in the NIG and binor-

mal study for each of the electricity and gas series, as captioned. A-D normality tests cause
rejection of the null hypothesis in the NIG examples, and acceptance of the hypothesis in the
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binormal example. In the order of the charts, A-D values of the A statistic, with corresponding
P values parenthesized are 9.246(< 10−15), 8.185(< 10−15), 0.3136(0.5465), 0.1945(0.8920).
We examined similar histograms, now for prices, under the NIG and binormal electricity and

gas assumptions for four equally spaced 20-day periods around the year. The two sets of four
means of these distributions, one set for the NIG and binormal �t, are these, in chronological
order. NIG: −1.2860, 2.4434, 4.5018, and 1.3603; binormal: −1.2352, 2.4869, 4.5546, and
1.4243.
As well, we examined the price spread distributions, NIG and binormal, under the same

assumptions as above. These spread prices appear as ¿/MWh, the unit for electricity. (See
Appendix A.) By the A-D test each of these is rejected for normality at the 1% level. Re-
spective A(P ) values are 15.985(< 10−15) and 1.1241(0.006068).
To conclude the study we show charts depicting various aspects of the terminal distributions.

Figures 23, 24, and 25, respectively, compare the terminal distributions for the electricity and
gas prices, and the spread between them. The spread distribution in this context refers to the
terminal distribution of the �rst of the four simulated quarters.
The insight to gain is that these three plots are roughly serpentine shaped, informing us that

the pattern is for the extreme copula-driven NIG-based paths to terminate farther from the
mean than the corresponding binormal-based paths, whereas the central NIG paths terminate
more closely to the mean than their normal counterparts. This is the pattern of the leptokurtic
NIG distribution compared with the normal. Observe that the gas data, being more regular
than the electricity data, produce a clearer pattern, whereas the spread data show regularity
between that of the electricity and gas.

6. Pricing of spark spread options

The arbitrage-free price of a spark spread call and options with maturity T and strike K
are

C = e−rT EQ

[
max

(
S(T )−K, 0

)]
P = e−rT EQ

[
max

(
K − S(T ), 0

)]
where Q is a risk-neutral probability.
We choose to disregard any price of risk incurred by the agent, and let Q = P . Thus, after

generating the simulated paths pricing of derivative securities is straightforward. We utilize
the simulations of Section 5, relying �rst on the proposed theoretical copula with NIG margins,
and then for control on the binormal copula with normal margins. We choose �ve strike prices
[−10,−5, 0, 5, 10] for pricing the European calls and puts by the NIG and binormal processes,
for the four time periods � those 20-day periods equally spaced around the year. The results
appear in Table 1. As for spread quotations all numbers in this table are in units of ¿/MWh.
The assumed discount rate of interest r for illustration is 0%. All data conform to the parity
relationship, where C and P are call and put prices in any context, S(T ) is the spread price
at terminal time T , S is the mean of the spread distribution, and K is the strike price,

C − P = E
[
max

(
S(T )−K, 0

)]
− E

[
max

(
K − S(T ), 0

)]
= E [S(T )−K] = S(T )−K

The price di�erences, call to call and put to put, comparing the NIG and binormal processes
are small. Observe that out-of-the-money options under the binormal assumption are nearly
worthless, whereas the same options under the NIG assumption have some value. These results
are consistent with the relatively fat tails of the NIG distribution. It is di�cult to see any
in�uence of the copula in the option prices.
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Strike Period 1 Period 2 Period 3 Period 4 Type Process
-10 8.7248 12.4448 14.5029 11.3708 Call NIG
-10 0.0107 0.0013 0.0011 0.0105 Put NIG
-10 8.7681 12.4869 14.5545 11.4260 Call binormal
-10 0.0033 0.0000 0.0000 0.0017 Put binormal
-5 3.7967 7.4499 9.5079 6.3978 Call NIG
-5 0.0827 0.0065 0.0061 0.0376 Put NIG
-5 3.8981 7.4880 9.5546 6.4728 Call binormal
-5 0.1333 0.0011 0.0001 0.0484 Put binormal
0 0.6360 2.5609 4.5424 2.0509 Call NIG
0 1.9220 0.1175 0.0406 0.6906 Put NIG
0 0.7152 2.6820 4.6235 2.3058 Call binormal
0 1.9504 0.1950 0.0690 0.8815 Put binormal
5 0.1013 0.3004 0.9295 0.4443 Call NIG
5 6.3873 2.8569 1.4277 4.0840 Put NIG
5 0.0429 0.2720 1.0604 0.4170 Call binormal
5 6.2781 2.7851 1.5058 3.9927 Put binormal
10 0.0233 0.0442 0.1746 0.1134 Call NIG
10 11.3092 7.6008 5.6728 8.7531 Put NIG
10 0.0008 0.0075 0.0921 0.0384 Call binormal
10 11.2359 7.5206 5.5376 8.6140 Put binormal

mean -1.2860 2.4434 4.5018 1.3603 � NIG
dev. 3.0141 2.5945 3.1629 3.8034 � NIG
mean -1.2352 2.4869 4.5546 1.4243 � binormal
dev. 3.0728 2.6160 3.1761 3.8535 � binormal

Table 1. Simulated option prices for various periods and strikes, with NIG
and binormal process assumptions, and means and standard deviations of the
terminal spread distributions

7. Conclusions

Joint electricity and gas price discovery is better modeled by NIG marginal processes with
a specialized copula joining them than by a binormal model. The latter, more commonly
used to model joint price processes, falls short on both the proper description of the marginal
distributions, and on their dependence relationship. With this work we free ourselves of the
Gaussian constraint to face more realistically the dynamics of the marketplace.
For option valuation the most signi�cant �nding is that out-of-the-money puts and calls

are valued higher under the NIG than the binormal assumption, re�ecting the fatter tails
of the more realistic NIG. Otherwise option evaluation is robust across the distributional
assumptions.
Continuation of this study would look to other markets beyond the United Kingdom, per-

haps to the Nordic Power Exchange, for evidence of similarity in parametric estimation � or
for explanation why the markets may di�er.
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Beyond such empirical studies could lie a comprehensive theory of joint price determina-
tion in markets demonstrating dependence, and the further development of continuous time
modeling of these processes.
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Appendix A. The heat rate

Customarily, the unit of electrical energy is the Mega Watt-hour (MWh), whereas the unit
of gas energy is the Giga joule (GJ). The heat rate c is the dimensionless conversion rate of
3.6 GJ/MWh divided by the relative e�ciency of gas compared to electricity, here assumed
to be 40%. Thus, c = 9.0 in our model. This conversion presumes that both kinds of energy
are quoted in the same monetary units, e.g., pence.
Prior to 1999, the United Kingdom measured gas energy in therms, which is not an SI unit

as the others are, a therm being 105.5 MJ. In such period the quotations were in pence/therm
and ¿/MWh. The conversion for equal amounts of energy, not including a correction for
relative e�ciency, goes as follows.

1
penny
therm

·
[

1 therm
105.5 MJ

· 1000 MJ
GJ

· 3.6 GJ
MWh

· £1
100 pence

]
= 0.34123223

£
MWh

In this system of quotation the heat rate, now allowing for relative e�ciency of 40%, is
0.85308057. For practical calculations these coe�cients have at most two signi�cant digits.
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Copula Difference, Residuals
by Electricity Fractile
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Figure 3. Copula Di�erence Electricity, Estimate
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Figure 4. Copula Di�erence Gas, Estimate
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Copula Difference, Residuals
by Electricity Fractile

Empirical Data
r^2 = 0.8949 (bivariate)
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Figure 5. Copula Di�erence Electricity

Copula Difference, Residuals
by Gas Fractile
Empirical Data

r^2 = 0.8949 (bivariate)
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Figure 6. Copula Di�erence Gas
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Empirical Copula Density, Electricity vs. Gas
Spearman's rank correlation 0.3378

Kendall's tau 0.2357
Blomqvist's beta 0.2932

Point count: LL&HH--258, LH&HL--141
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Figure 7. Empirical Copula Density
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Figure 8. Q-Q Electricity Normal
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Figure 9. Q-Q Gas Normal
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Q-Q Electricity Gas
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Figure 10. Q-Q Electricity Gas
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Figure 11. P-P Electricity Normal
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P-P Gas Normal
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Figure 12. P-P Gas Normal
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Figure 13. P-P Electricity Gas
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Figure 14. Electricity residuals, NIG �t, (α, β, µ, δ) =(6.9342,+2.8003, -0.0694, 0.1514)
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Figure 15. Gas residuals, NIG �t, (α, β, µ, δ) =(7.7740, -0.9982,+0.0122, 0.0831)
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Theoretical Copula Density, Electricity vs. Gas
Spearman's rank correlation 0.0000

Kendall's tau 0.0000
Blomqvist's beta 0.0000

Point count: 2000 random
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Figure 16. Theoretical Copula Density
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Figure 17. Pair estimates, 1000 points, NIG �t

●

●
●

●
●

●

●
●●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

● ●

●
●

●

●●
●

●
●

●

●

●

●
●
● ●

● ●
●

●

●
●●

●
● ●

●
●

●

●

●
●

●
●

●

●●
●

●

●

●
● ●

●

●

●

● ●
●

●

●

●

●● ●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●● ●

●
●

●

●

●

●

●●
●

●
●

●

●

●
●

●
●●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
● ●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●●

●

●●
●

●
●

●

●

● ●

●

●●
●

●
●

● ●

●

●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●●
●

● ●●
●

●

●

●

●

●
● ●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●● ●

●

●

●●
●

●

●

●

●●

●

●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●
● ●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●
● ●●

●

●
●

●

●
●

●
●

●
●

●
●

●

● ●

●

●

●● ●

●

●
●

●

●
●

●
●

●

●

●
●

●

●●
● ●

●

●●

●

● ●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●
●

●

●●●
●●

●

●
●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

● ●
● ●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●● ●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

● ●
●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●
●

● ●

●●●
●●● ●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

● ● ●

●

●●

●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ●●

●

●

●● ●
●

●

●

●

●

●

●

●

●● ● ●●●
●

●

● ● ●●
●

●

●
●

●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

● ●
●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●
●●

● ●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

● ●●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

● ●

●●
●

●

● ●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●● ● ●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

● ●

●●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

● ●
●●

●

●

●

●
● ●

● ●
● ●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Bivariate Normal (Mean, Covariance Estimates)

Electricity

G
as

Figure 18. Pair estimates, 1000 points, Binormal �t



26 BENTH AND KETTLER

Histogram NIG 1000 Path Terminations

Electricity Bins

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
50

10
0

15
0

20
0

25
0

30
0

Figure 19. Terminal distribution NIG, Electricity
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Figure 23. NIG minus binormal terminal distributions, compared to binor-
mal, electricity axis
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Figure 24. NIG minus binormal terminal distributions, compared to binor-
mal, gas axis
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Figure 25. NIG minus binormal terminal spreads, compared to binormal
spread, Q1
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