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Abstract

This paper focuses on variational solutions of the Cauchy problem for a non-
linear wave equation with space-time fractional Brownian noise driving force of
Hurst index H € (1/(y +1),1) and random initial data. y is the Holder expo-
nent of the differentiated nonlinearity in the stochastic term of the equation. It is
shown that this problem has a unique solution which depends continuously on the
random initial data. Moreover, stability with respect to truncation of the infinite
dimensional noise is also established.
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1 Introduction

Gaussian processes with independent increments and a certain self-similarity property
were first studied by [10] and [11] in which they were called “Wiener spirals”. They
were later renamed as fractional Brownian motion in [15] where a representation in
terms of a stochastic integral with respect to a standard Brownian motion was given.
For an encyclopedic review of the intrinsic properties of the process see the forthcom-
ing book [3]. These processes has now found applications in such diverse fields as
finance, see e.g. [1] and the references therein, climatology and hydrology [19], tem-
perature modelling [4] and traffic networks [12] to name a few.

In many applications of these processes, the mathematical model is a differential
equation in time, possibly also depending on spatial coordinates, in which case the
model is a stochastic partial differential equation perturbed by fractional Brownian
noise in some sense. An elliptic equation is treated [9] in a white noise setting but
more often parabolic equations are on the menu. Some papers are [16] and [18]. To the
best of authors knowledge, the only two papers dealing with hyperbolic equations are
[7] which considers a 1-dimensional wave equation without diffusion term, and [6], on
a classical linear wave equation, both with additive space/time noise.

In general, hyperbolic equations are known for their notorious difficulty due to the
fact that the fundamental solution is not smoothing, as in the parabolic case. Moreover,



it is not even a function in dimensions greater than two but a distribution. In case the
noise is not fractional but Brownian, some works exist, see e.g. [14] for an equation
appearing in relativistic quantum mechanics, and an effort has been made to extend
the work on martingale measures in [22] to allow for distributional fundamental solu-
tions which are then applicable to wave equations, see [5]. However, since a fractional
Brownian process is never a martingale that approach is not applicable here.

The chosen method in this paper is a variational one, using finite-dimensional Ga-
lerkin approximations to generate a sequence of functions, converging in a suitable
space to a solution of the original equation. This paves the way for a numerical treat-
ment which, however, is lacking in the present paper, in which focus is on existence,
uniqueness, and continuity with respect to input data and truncation of the infinite di-
mensional noie.

The purpose of this paper is to study stochastic wave equations with random initial
values formally written as

2M H
TRwn) = Zulsr) + Sl u(en).u (), Dus) + olulen) o (x),
ux0) = (),

du

w0 = ), (1.1)

with Neumann boundary condition
(Du(x,t), AX)N(x))pa = 0 (x,)€dU XL (1.2)

Here U C RY is open and bounded, I = (0, T] for some finite 7', and N(x) is the exterior
unit normal at x € U. The random force, B, is a vector valued fractional Brownian
process.

Existence will be proved in a variational setting to this Cauchy problem. Continu-
ous dependence on initial data will also be shown.

In Section 2 the fractional Brownian noise is described. In Section 3 the equation
is properly formulated. In Section 4 a unique solution to the Galerkin approximated
problem is shown to exist and the existence of a solution to the original equation is
the goal of Section 5. In Section 6 we prove uniqueness and continuity with respect to
initial data. The final Section 7 is on a continuity property with respect to truncation of
the noise.

2 The infinite-dimensional noise

The infinite-dimensional noise is the time derivative of the following H !(U)-valued
process

Bl = 3\ fae )

where {e;}{ is an orthonormal basis of H!(U) such that lejll 1=y <0 and {ﬁf};’:]
is a sequence of independent, zero mean fractional Brownian motions on R with co-
variance given by

(|l‘|2H + |S‘2H o |I7S‘2H)

r(t;s) = EB(1)p"(s)

| =



and Hurst index H € (1/(1+4y),1). The significance of y will be descussed in the
next section. We require the following hypothesis to hold, regarding the continuity
properties of the covariance operator:

© S\l < =
=

The noise is white in in time and correlated in space which is in agreement with the
suspicion that, in many real-world processes, the correlation in time is often of a much
smaller magnitude than the spatial correlation, see [2] and [13]. Due to the continuous
; : 1,00 1 ® 1.
imbedding H*(U) — H' (U) we have {{/A;}7 , € (*:

S\h = T lellinw < K3 hlelnew <
J= J= J=

Hence the covariance operator, C, is not only trace class but also its square root is:
TrC"? < o,

2.1 The pathwise integral with respect to

Assume o € (1 —H,1/2). The following space will be needed.

Definition 2.1. Let a < b and denote by W %! (a,b) the Banach space of measurable
functions f : (a,b) — RY such that

b b T — (0O
larar = [ 0 aws [ [ avar <

If {u; };cr is a process with trajectories in W*! (), then its pathwise integral with
respect to fractional Brownian motion, 3 H_exists (see [21]), and we have the estimate

‘/}u(l)dﬁH(I) < Gllullar, @.1)

where G is a random variable only depending on 8 and having finite moments of all
orders. The estimate is a result from [18] and we will use it frequently. Since we will
be dealing with infinitely many fractional Brownian motions, G ; will be the random
variable associated with f3 jH via (2.1). A random variable that appear often in this
context is the following

G = Y /Allejla= G;
=

which is a.s. finite because of condition (C) and since the G ;’s are independent and
identically distributed with a finite moment.

3 The equation

The operator . = £(x) is a second order differential operator in divergence form
defined by

&9 9
Lu = 2—<ak_1(x)—u) = divADu
) (7)(1

K21 9%



The matrix A = {a;} has measurable components and satisfies the conditions

pg = Ak symmetry

d
ao|§|2 < 2 ar;(x)5x&  uniform ellipticity
(A) K=

d
E ar1(x)E& < AolE|* boundedness
o=

where 0 < ap < Ag < %. Du denotes the gradient of u. The drift term f is Lipschitz
continuous in its last three variables with a Lipschitz coefficient L

(D) |f(x,t,ur,uz,u3) — f(x,t,v1,v2,v3)| < Ly (Jug —vi|+ |uz — va| + |uz —v3]).

As for the diffusion coefficient, o is differentiable with a bounded Holder continu-
ous derivative of order y: o € C'*7(R). In particular, o is Lipschitz contiuous with
Lipschitz coefficient Ly

($) lo(—o@| < Loly—x]
By (A), the matrix norm of A is bounded by

[AX)] < Ao 3.1
The initial condition will be the following: g and & are random fields on U such that

() llgllgy and |lAl[;2q are finite as.

By proceeding formally with (1.1) and (1.2) we arrive at a weak formulation
W), v = (hv)
- /Ot (Du(-,t), ADV), dt

+ /Ot<f(~,‘[,‘,u(~,‘[7),ul(~,‘L'),DM(-,‘L')),V>2d1;
+ i \/)Tj/Ot<o(u(-,r)), ve;), Bf (d). 3.2)
/A

In view of (3.2) it can be considered natural to adopt the following solution concept:

Definition 3.1. An L?(U)-valued random field u(t), t € I, is a weak solution to (1.1) if

(1) ueH'(IxU) as.

(3)  The integral relation (3.2) holds a.s. for every v € H'(U) and everyt € I.

One should check that all terms in (3.2) are well defined and finite in the chosen
function space and this is the topic of the following Lemma.

Lemma 3.2. The terms appearing in (3.2) are well defined and finite a.s.



Proof: Estimating the diffusion term gives, by (3.1)

IN

T
[ 0ut.0), apv), a6 < vl [ IDuc6)lsdo

\/_AOHVHHl ||“HH1(le)-

IN

As for the drift term we use Holder’s inequality to get

At| f("e,u('76),u/(',6),DM(',6)), V>2|d6

< c/ 1+ [u(-,0)| + |/ (-, 0) | + [Du(-,0)], |v]), d6

A
a
\
i
E

0)l>+ 11 (,0) 12+ |Du(, 0) ) ]l 46
evT (1+||u||H1(,XU>) V]2

The one-dimensional stochastic integrals are bounded by (2.1) as

IN

[ (o). ve)), B

< Gj”S*—) <O’(M(',S)), V€j>2|

and estimating the W %! (0, t) norm yields

/er ['(o(u(<"s , Ve)) / (o 0(“("”)’ vej),|

< clvilgw) lejlhe

(3.3)

(3.4)

L <1+(|< ) g, [ DNz ] s

The first term in square brackets is bounded by

Tt gllat Jo 4 (,8) 1248
c /9 G- 0) d

< -0y (arolilors [ (. 5)lkas)

and the second is bounded by

u T
LU// ” H”jd&dyds - LO/B 2 ||2//
:

IN

< CLy(t—0 1‘1/ [l (-

Adding up (3.6) and (3.7) we get

[ (o). ver), B1G)

< CGjleslhm IVl (—6)' (1+|g|2+/ (-

(3.6)

l+oc deE

) r(a—e)l-a||u'<-,§>||zds

E)l2ds 3.7

||zd§) (3.8)



Hence, for the stochastic forcing term we have, letting 6 =0 and T = ¢ in (3.8),

S [ (otutoveps 0

~ t
< CE Wl (1+ el + [ |u’<-,r>|zdr> (3.9)

which is a.s. finite by (1). t

4 The finite-dimensional solution

We will consider variational solutions and shall therefore assume given a sequence of
supposedly easily computable functions, the “elements”, {w,}_, with each w, be-
longing to H'(U) and such that

{wn}7_, is an orthonormal basis in L>(U)
together with
{wn}%_, is an orthogonal basis in H'(U).

By the former Lemmas we can now prove a simple result which will be the basis of all
further investigations

Corollary 4.1. Let u satisfy the regularity requrement (1) and initial data (2) of Defi-
nition 3.1. Then u is a weak solution to (1.1) if and only if

W Ct) wa)y = (b wa)y

— /Ot (Du(-,t), ADwy), dt

+/Ol (fC,ru(-,7),u (-,7),Dul-, ), W), dt

+ i \/;j/(:<o(u(~7t)), Wnej), la’jH(dr) 4.1
f=

holds a.s. for everyn € Zy and every t € I. In this case u is also called a variational
solution to (1.1).

Proof: Any weak solution is clearly a solution to (4.1) so we need only show the if part.
Let v € H'(U) have the orthogonal decomposition

8

vix) = VaWn(X). 4.2)
=

By using the properties (1)-(2) it is then trivial, except perhaps for the stochastic inte-
gral term, to note that the finite sums of (4.2) together with (4.1) will give us a sequence
of equations with each term converging a.s. in H'(I x U) to the corresponding one in
(3.2). To verify this for the stochastic integral, let vy (x) = EIIV vawy(x) and replace v
with v — vy in (3.9). By the general assumptions, convergence follows. 0



4.1 Galerkin approximation

Let Vi be the linear span of wy,...,wy. Since Vy is finite dimensional the norms on
L*(Vy) and H'(Vy) are equivalent. In particular, if u(x) = SN, c,w, (x),

N N
1Dul3 = E leal?[IDwallz < €y Y leal® = CRllul2- (4.3)

n=1 n=1
Let ¢y denote the orthonormal projection of ¢ € L2(U) onto Vyy.

Definition 4.2. A random field uy is an N’th order Galerkin approximation to (4.1) if
(1) uyeH'(IxU)as
(2) un(0) =gy a.s.
(3)  The following equation holds a.s. for everyn € {1,...,N} and everyt € I:
(un'(-51), wa), = (hw, wa),

/I<DuN( 1), ADwy), dt
+/ 2y (7, (7). Duy (7)), wy), de

n 21 \/;,/O (o(u(,T)), wae;), BY (dT). (4.4)
~

Integrating the equation (4.4) gives
(un(51), wa)a = t{hn, wa)a + (8N, Wn)2

/ / (Dun(-,0), ADwy), dOdt
+ / / 0,un(-,0),un'(-,T),Dun(-,0)), w,)2d0 dt

+ ]E]\/;J/O /O (o(un(-,0)), Wn€j>2ﬁjl'_l(d6)d‘l7 4.5)

and because of the assumption (1) this equation can be differentiated (termwise) to
yield (4.4). Hence we may as well consider (4.5).
Introduce the Vy-valued mapping

(I)N E (I)N Wn>2wn( )

by specifying the fourier coefficients a.s. as the right hand side of (4.5) with u y replaced



by u:
(P () (-57), w2

= t(hn, wa)2 + (&N, Wa)2

/ / (Du(-,6), ADwy), d6 dt
Jr// <f("B’M(.’9)’1/("9)’1)("9))’ Wn>2d9dr

+ E \/>/ / ), wae )2 B (d0) d

= <hN7 Wi)2 + (gn, wa)2 — En(u)(t) + Fu(u)(t) + Su(u)()

forevery n € {1,...,N} and every ¢ € I. To solve the N’th order Galerkin approxima-
tion problem we will show existence of a fixpoint

(I)N(I/LN) = Un (46)

in the space shortly written as H'! (L,z\,) and defined by the set of functions

{us o Vi s (o [ )+ D)) < =
te
Because of (4.3) and the fact that
1
el = e+ [we0aE| < el [ I 0lads
2

H'(L%) can be more economically written as

H'(Ly) = {u:1—Vy|d Jandu' € L*(LL*(V))}.
We endow it with the following set of eqiuvalent norms:

lullg = supe P![lu’(-,0)]l2.
rel

Equip also the space H'**(I) with the equivalent norms
julg = supe Plu/(z)].
tel
To establish the fixpoint we need some results concerning Lipschitz continuity with

respect to u in H' (sz\,) . That is, we need to consider the differentiated version of (4.6).
Introduce the notation AE,(¢) = E,(u)(t) — E,,(u*)(¢) and similarly for F,(¢) and S,(¢).

Lemma 4.3. Letu € H'(L%). Then E,(u), F,(u) € L*(I;R). In particular,
Ewly < B uly. @7
and similarly for F,,. Moreover, for every f € [1,), the mappings
Ey, Fy: HY(IxU) — L”(I;R)
are Lipschitz continuous, i.e., if B > 1 then there is some C = C(N) such that
|En(u) = Ea(v)lg < CB™|u—vllg 4.8)

and similarly for F,(t).



Proof: Starting with the diffusion term E, we get, by (3.1),

|En(w)/ () = En(v)'(1)]

/’ (Du(-,7), ADwa), dr—/ot (Dv(-,7), ADwy), dv

0

t
< Iwallip Ao [ IDuC7) = Dv(-7) dx
t
< o ol Ao / (1) = v(-,) fode
< o [ [we E)2dEdv

Using this estimate in the f-norm gives

Enw) = Ea(v)lp = supe™P|E, (u)(1) — E,(»)(1)]
t T
< Cyvsup [ [T P (L) V(. E)pdge PO ar
tel 4O JO
t
< Cy Hufvnﬁsup/ e P gy
tel JO
< CNHM—VHIgﬁi]. (4.9)

Coming to the drift term F),, note that, by Holder’s inequality, (D), and since Vy is finite
dimensional

|<f(-,r,u,u',Du), Wn>2 - <f(',T,V,V,,DV), Wn>|
< Cv (JluC, T)*V(wf)HerHM/('?T)*V/('?T)Hz)-

< o (W60 Voo un) VD)

Hence, again by Hélder’s inequality,

RAIAOI )*FJ(V)(I)I

< [ (/ e 026 + /(- 7) v'(-,r>|2>dr
< oy ||ufvuﬁ/
< C Ju—v]sp!

By chosing u* =0 in (4.9) we obtain the special case
Ea)lg < Cn B ullg

by linearity which proves (4.7) for this term. Because of the nonlinearity, that argument
does not work for F,. Instead we estimate the f-norm of F,,(u)(t) atu =u' = Du=0
as follows:

3
e PE(0)(1)| < Ce P! / dt < Cp~!
0
By the triangle inequality we now obtain
Fa(u)lg < |Fa(u) —Fa(0)|g + |Fa(0)]g < CBHL + Jlullg) < = O

We will now prove an analogue of (4.7) and (4.8) for S ,,.



Lemma 4.4. Let u € H'(L3,). Then S,(u) € L*(I;R) and the following estimate holds

forall p >1
Sa()pg < CGBP(1+Ilgll2+lullp)-

Proof: By (3.4), (3.5) and parts of (3.6) and (3.7), taking v = w ,, and using Holder’s

inequality
e PS5, (u) (1)]

/t e P14+ Hg|\2)e—ﬁ<z—s>ds+/t Joe PE|u' (- €)|l» dE o—B=5) 4

0 0

s s

< CcG

[/ Bt o]
0

< CGBYPt gl flullg)
for some p > 1 depending on a. (|
In order to prove existence of a fixpoint to @y, we need the following invariance
result.
Lemma 4.5. Letu € H'(L%). Then
Dy(u) € Hy a.s.

and there exists a large enough random variable B taking values in [1,%), and a
constant Cy, such that the closed (random) ball

By = {MEHN : ||MHI50§ 1—|—2C||gN||2}
is invariant a.s. with respect to @y, i.e., ©y(By) C By a.s.

Proof: We have

[Pn(@)(@)]2 < ZII@N(M)(-J%Wn)zI

By a trivial maximization procedure the linear term has the 3-norm
t{hns wadalg = Cl{an, wady IB™" < Cliwll2B™".

Using this estimate together with Lemmas 4.3 and 4.4 we obtain, since § > 1,
[ (u)llp

C (Innll2lB™" + g2+ |En(u) g + [Fau) g + Su(u)| )

< Clgnlla +C1+G)B7 (w2 + llgnll2+ llullp) -

Hence, a.s., @y (u) € Hy. Chosing the random variable B to take values in the interval

(max(L,[(1+ G)(1+ w2 + llgn]2)2C17), =)

AN

ensures Cﬁo_l/p(l +Go)(1+ ||hwll2 + llgnll2) < 1 and we obtain

1
[Pv(llp, = Cllgwlla+ 51+ [lullg,)-

If u € By, then ®y(u) € By since

|
1P (u)llgy < Cllgnllz+ 75 (1+14+2C]gnll2) = 1+2C]lgw]l2- O

10



Lemma 4.6. Ifu,v € H'(L},) then
1Su(t) = Su(V)[pg < CGb|lu—v|pp>* " (4.10)

Proof:

S i [ {otute) =600, waey) B 0
< 1) ()
< €3 lele || R0

+a/01: ||O(u(.7‘c))—O(v(-,&?)_Hc);l(fs-,e))—i—o‘(v(-’@))2dy:| .

~ [ 1 T
< CG/ [_/ 4/ (-,0) =V (-,0)]d6
o L T%Jo

*lo(u(, 7)) —o(v(, 7)) —o(u(,0)) +o(v(-,0))|l2
+/O (1:—6)]*0‘

dy] dt

Multiplying by e P! and taking the sup over all 7 € I gives the following bound on the
first term

~ te*ﬁ(f*'f) T
G b sup / e PO u(-,8) — v(-,6) |0 dT
tel JO T¢ 0
~ t
< Gblu—vlg sup/ ! 7% BT gg
tel JO
< CGblu—v|gp". 4.11)

As for the second term we need Lemma 4, 5, and parts of Proposition 2 of [18] to
conclude that it is bounded by

CGB** Mu—vl|p. (4.12)
Adding (4.11) and (4.12) gives the result. (Il

The next Lemma is on a contraction property of @y, crucial in the fixpoint argu-
ment which will provide the N’th order Galerkin approximation to (4.1).

Lemma 4.7. There exists a random variable 31 € [1,%) such that the map @y is a
contraction on ®y(By) with respect to the norm || - || g, : if u,v € By then

1
[P () =), = 5 llu—vllg, (4.13)

Proof:Letu,v € H (L%,) Then, by the Lipschitz continuity of the terms E,, F, and S,
(Lemmas 4.3 and 4.10) we find that

N
[@n(u) —dy(V)lg < [(@n () (5-); Wa)yWn — (PN (V) (+5-), Wa)awallg
n=1
N
< (|AEu|g + |AF,|g + |ASul)
n=1
< CN(1+G)|u—v||pp>*! (4.14)

11



Letu,v € By. Then, chosing the random variable 3 120" I'to take any value in the interval

(max (1, 20x(1+G)), )

ensures the conclusion (4.13). O

Proposition 4.8. The map ®y has a fix point uy € H' (L,z\,) for every positive integer
N. Moreover, uy € By.

Proof: The argument is identical to the existence part of Proposition 2 in [18]. O
This far we have shown that the Galerkin approximation has a unique solution.

Note how all arguments are done pathwisely, for a fixed, but arbitrary path w.
We have the following apriori smoothness of the Galerkin approximation u y.

Proposition 4.9. uy € C'*1/2(1; H-'(U)) a.s. and
llun' (. 7) = un (- 0) | -1 0
< C(1+G)(x—0)" 1+||g||2+HMN/HLZ(B,I;LZ(U))—’—HDMNHLZ(B,T;LZ(U))}'
Proof: Write
re(t) = uy'(-t)—un'(-,0).

Then, by (4.4), for every n € {1,...,N},
(r(T), W) = —/(:(DuN(-,s), ADw,), ds
+ BT<f(-,s,uN(-,s),uN/(-,s),DuN(-,s)), wn>2ds
+ 3\ ] Cotantc . e, B )
By linearity, this extends to all Vy-valued v € H'(U):
(1), V) = —/(:(DuN(-,s), ADV), ds
+ HT<f(-,s,uN(-,s),uN/(-,s),DuN(-,s)), v>2ds

# 3 ] Cotunte). ver) ).

By Holder’s inequality and the calculations leading to (3.9),

(Gols0) )| < 4ol DV [ 1Dun(-,5)] ds
+Clvla (o= 0)+ [ (I C.ola o)) ]

+CGlvlae-0) (1+ el [ v’ 5)lkas )

C(1+G) |Vl (v—0)"?

IN

X {1 + llgll2+ lun'll 26 w20 + |\D“N|\L2(e,r;L2(u))] -

12



Dividing by ||v|| ;1 and taking the supremum over v € H' NVy yields
lro (Dl < C(14+G)(x—0)"?
x [ 1+ llglla+ N 2o 2oy + 1Dun | 20.ca2 |
= CnG (t—0)'? (4.15)

for some random constant Cy G. [l

5 Existence of solutions

Proposition 5.1. Introduce the measurable mappings p : I — H ' (U) such that p' : I —
L*(U)and q' : I+ L*(U). Assume also e € H"*(U). Define py = p(0). Then

[ o). d 6 apo)] < CGlel= |1+ Il + [ 10)Bay

+/’M+/nop<y>u%dy
L ([ ) o

Proof': Note first that

o6l = ‘pw /Osp'@)dgHz < lpolla+ /Osnp'(anzds
and
/Ot<q’(S),e>d/3(s) < G/[ +a/|q/ )= 1+a >|dy} ds
< Gllellm/ [Ilq sz Hq 2 l+aIIH 1dy] s

By the condition (S)
IDa(p(y)| < [0"l=[Dp()I-
By (2.1) we have the following bound on a stochastic integral

[ (oo, q'<s>e> ap(s)
< G/ { +a/ (o ) o(p()d' ), e>|dy] ds

y)1+a

The simple integral can be estimated as

JECORICEIN
0 s

< ||e||w/0t (1+Hp(s1l2)|W(s)H2ds

1] s 2 i )
< C||ew[t1—a(1+|Po||%)+/o s_o‘</o ||p’(§)||2d§) dH/o Iqs(*dsl
<

t t || o 2
C lell [ttt i)+ [ 1@ 1Baz+ [ 12 ).

13



In the estimate of the double integral it is really essential, due to Proposition 4.9, that
e € H'* and not just L*(U). It also displays the difficulty in letting o depend on
derivatives of p (that is u).

G// (o —o(p(»)d' ), e>|dyds

y)1+0t
_ //I —o(p)d'(s)+o(pM)[d'(s) —d )], )|

(s—y)'“’

Lollps) - P02 /)2
cle Hlm//[ P
o0l i (5) gt >||H1] i

(s—y)tre

et o [ / [ Il e,

o [ [ lotptl 19 (() y)gganﬁ i
el / [ (L P OR) i,
+/0’|\op i [ 152 ml'ﬂldd]

Clelln= | [ (1 6+ 15/5)5) ds

A ‘ds)zdy]

C el [(1+|po||§)t+/ (lg' Gz + 1P )1z + 1P ()13) dy

lg'() =d' Wl ,
(g

dyds

IN

+

IN

IN

IN

IN

Substituting p for uy, ¢’ for u)y, and using (4.15) gives

o0

E \/}Tj/ot <O(MN('57))v ejuN/('aT» dﬁj(r)

J=1

_ ||u1v ||2

< CGi+gld)+ ds+ [ 1Dt 5)[Bds
+(1+G?) [1 + Hgl\z+ [Jun’ Ile(e,r;sz)) + I\DMNHLz(e,r;wu»] }

~ lun' (9) 13 + [|Dun () 113

if < 1/2.
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The next step is to let N — oo in the Galerkin sequence u and we will discover that
{un}y_, is suitably bounded and has a subsequence that converges a.s. to a solution
of equation (4.1).

Proposition 5.2. Assume a € (1 —H,1/2). Then
{MN}}?;:]; {MN/}Nzl and {DMN}IO\;:I
are a.s. bounded sequences in L* (I, L*(U)).

Proof: Square the equation using Proposition A.1 of [18] to get

(un/ (1), wa)
= <th Wn>§

[ (AP, () )y D

+ 2/ Ty (7)), Dity (7)), (' (), W)y wi), dT

’ 2121\/);/0 (o(un(-7)), ej(un'(-,T), Wa), wa) dp;(T).
Summing over n € {1,...,N} gives
HuM(yt)H% + Z/t <ADuN(~,‘L'), DuN'(~,r)>2 dt
— |hwlB+ 2/ Ty (), (), Duy (7)), ' (-,7)), de
+2JZI\/;,-/O (o(un(7)), equn' (7)) dB;(x). (52)
The second term on the left is bounded from below as
2/ ADuy(-,7), Duy'(-,7)), dv

= [ 1A Dun ) e
o dt
<ADMN('at)7 DuN('at» - <ADMN('7O)7 DuN('aO»
ao || Dun(-,1)|13 — Ao Dun(-,0) |13 (5.3)

v

by the ellipticity condition (A). For the second term on the right we use (3.3), Cauchy’s
inequality and Jensen’s inequality to get

‘2/0’ (£ un (-0 (), Dun (7)), un (7)) dvd

= C/ L+ [lun (7 [l2 + lun' G o) 2+ [1Dun (- 7) 12) [l (-, 7) 2 d e

IN

c {H [ 2B + o DI + |, 0)3) dr]

IN

¢ (14 el + [ (' 0l + 1Dun(-0)B) o 64

15



The stochastic forcing term is bounded by

N t (. 2 D . 2

TO!

Using the estimates (5.3), (5.4), and (5.5) together with Holder’s inequality, in (5.2) we
get

lun' ()13 + aol| Dun (-,1) 13

)3+ 1Dun (-, 7|3
r dt

< CO+E) [1 + gl + 3 + [ 1L
Gronwall’s inequality gives then
e’ G5+ [Dun ()3 < € (1+53)<1 + lgllz ) + thlg) o€ (14621
(1 + llglznw) + ||h\|§> o€ (14E)(1417)

Note that the right hand side is finite and independent of the dimension N. The propo-
sition is proved. ]

IN

Proposition 5.3. There is an element ii € L*>(IH'(U)) with i’ € L*(I;L*(U)) (i.e.,
ii € H'(I xU)) and a subsequence of {un}%_, such that, a.s.,

(1) /I/UMN(x,t)w(x,t)dde/]/Uﬁ(x,t)zp(x,t)dxdt
2) /] /U un' () (x, 1) dxdi — /] /U & (x, 1)y (x,1) dxds
3) /1 /U Duy (x,1)0(x, 1) dxdt — /1 /U Dii(x,1)0(x, 1) dxdt

as N — o, for every ¢ € L*(I;L*(U)) and © € L*(I;(L*(U))®9).

Proof: Since, by Lemma 5.2, {uy} is, a.s., a bounded sequence in L?(I;L?(U)), which
is the dual of L?(I;L?*(U)), there is a subsequence, also denoted by {uy}, and an el-
ement i € L*>(I;L*(U)) such that uy — i, a.s., in the weak topology of L?(I;L*(U)).
This means that, with probability one,

(un, ) — (i, ), vy € L (I,L*(U)), (5.6)

where (f1, f>) is short for the integral of the product f1 f> over U x I. Hence (1) holds.
Similarly, by passing to still another subsequence we have, for some v € L2(I; (L>(U))®9),

(Duy, ©) — (v, ©), V@ eL'(L(L*(U))*).

We will now identify v. Let ¢ : U x I — R € (CZ(U xI))®?. By the Gauss’ divergence
theorem (assuming div acts on the x variable only) and (5.6)

(v, p) = Al,im (Dun, @) = —Al,im (uy, divp), = —(i, divy).

This means i € L*(I;H'(U)), Dii = v, and (3) holds. A similar calculation shows
i € L*(I;L*(U)) and that (2) holds. O
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A similar reasoning using the fact that the sequence {uy} is really in L*(I;L*(U))
gives an element ¥ € L*(I;H' (U)) with v/ € L*(I;L*(U)) such that the limits (1), (2),
and (3) are valid when v € L' (I; L*(U)) and © € L' (I; (L*>(U))®%). If y € L*(I; L*(U))
then

vw), = ,\1,1330 (i, v), = (@ v),
so that we can identify v with #. Hence, we have

icH"™(IxU).

It is natural to hope i qualifies as a solution to (4.1). We will send N to « in each
term of (4.1) separately and discover this very fact.

Theorem 5.4. There exists a solution to (4.1).

Proof: With the help of Proposition 5.3 we will now show that each term in (4.4) con-
verges a.s. on R to the corresponding term in (4.1) from which the theorem follows.
Since the test functions are invariant with respect to multiplication by a characteristic
function ijp ;) we need only check this for the full time interval /. It is immediate that the
terms involving initial data converge to the same ones with u y replaced by #. Coming
next to the diffusion term we have similarly

/] /U (Dun(x,7), A(x)Dwy(x))gs dxdt
- / / (Dii(x,7), A(x)DWa(x))gs dxdz
1Ju
because I' = ADw,, € L' (I;L*>(U))®?. As for the drift term we have, by (D),
“/1.<f('71:7uN('7T)>uN,('aT)’DuN(VT)) —f(',‘[,ll(',T),ﬂ,(',T),Dﬁ(~,T)), Wn>2 dt
< b /1<|uN(-,r)—zZ(~,r)|+|uN'(-,r)—zZ'(-,r)\+\DuN(-,r)—DzZ(-,r)L (Wal), dT

— 0,

since 1 = |wy,| € L*(I x U). Finally, we discuss the noise term. By Lemma 13, 14, 15
in [18] and copying parts of their lemma 16 and Proposition 4 we obtain immediately
the required convergence of the stochastic integral. ]

6 Uniqueness and stability

We will now prove a general inequality from which both global existence, uniqueness
and continuity with respect to initial data and will follow. We start with a variant of
Proposition 4.9. In this section it is assumed throughout that o is an affine function:

o(r) = a+br

17



Proposition 6.1. Let u satisfying (1) and (2) be a solution to (1.1) and similarly for u*
but with initial data g* and h*. Then

/f Jun' (1) =y (1) —un' (-, 8) + ' (,8) || -1 ds
0 (t—s)“’o‘
- oo [y’ (1) =y (7))
< C f*tlathl"‘/ ’ N d
< ¢ (lav-gila e+ (4 G e [l g,
i /’ | Dun(-,7) D“X/(',T)szr)
0 (t—1)*

Proof: Note that, by linearity, (4.4) is satisfied if w,, is replaced by any v € Vy. For
such v’s define

rs(t) = (uy' (1) —uy (1) —un' (- 5) +uy (- 8), v).
Then, by (4.4),
) = —/I<DuN(-,r)—Du*(-,6)d0,ADv>2d§

t

+ | (fCrun(7),un' (), Duy (7))
—fCTuy (- 7),uy (7). Dy (-, 7)), v)ade
53 \//T,/t (o(un (7)) — o(uy (7)), vej), B (dT).
s
By Hélder’s inequality and the calculations in (3.9)

[rs(1)]
!
< Al ||V||H1/S 1Dun (-, 7) = Duy (-, 7)l, d=

t
+ Ly (vl /S (v (-, 2) = un G 0)ll2 + un' (5 7) =1/ (-, 0)2) dT

® 1
+ bjzl \/)TjGj ‘/S

n At /S‘T <MN(~,T)7M7\]('7T)7”N('ay)+u7\1('ay)a V€j> dy

(T—y)'t+e
Dividing the first term with (# — s) !+ and integrating s from O to ¢ gives the bound

t||Duy(-,T) — Duy, (-, T
Jal el | 12BN 62

<MN('5T) _u;FV('aT)’ Vej>

dt

dr] 6.1)

The integral on the second line is bounded by
t
len = gillate =)+ =) [ llan' . 8) =i (,8) |2

! !
+/ lun' (7) — 6 (- 7)o d 6.3)

18



Dividing (6.3) with (t — s) '+ and integrating s from O to ¢ gives the bound
t
(1l ghllar =+ [ ' (.8) - Dadt2
lu' (1) —uy' (o)l
d 6.4
+ [ : (64)
The term on the third line is bounded by

- ! llgn — gnll2
b3\ [ Il e (PN
J=1

+ ri(,/;IuN’(u&)u*N’(~,;:)||2d§) dt

~ y "dt
< CoGIvIa (v -sila | 5
N

a

t 1 T ,
b [ [~ s 65

Dividing (6.5) by (t —s)'*% and integrating in s from O to ¢ gives

~ ! 1 rdt
CbG — g —— | —d
vl (e gils || Gyrea | S

t 1 r]1 [T , iy
[ [ [ - lkazaras), 66)

where the first integral is

/’ 1 /’ drd /’ 1 /r ds Jr
- [ 24 = = _“
o (t—s)lte Jg 1@ o T Jo (t—s)lt@

4 dt

< 7
- C/or"‘(t—r)“
VAN 1
S (A
1% Jo \t* (t—71)%
< Cci'e (6.7

The second integral in (6.6) is
! 1 ! 1 T , Y
/0 m/ r—a/o ' (-, &) —uyy (-, )2 dE dds
‘1 ’ 1 ’ / %/
- /0 ‘L'_a/o m/o lun'(-,&) —uy (-,&)|l2dE dsdr
' 1 ' / */
C J, iy Jy )=l Dt ae
Ct1_2a/l||uNI(',§)7u;KV/(',§)”2d§
0

IN

IN

by the calculations in (6.7). Hence, (6.6) is bounded by

~ 1
CoG vl (lov—gile+ [/l (.8) -/ (.Dlag). 9
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Summing up the terms on the last line gives the bound

~ t 1T . —ut(. — . * (. _
bG”V”H] /;/Y ||MN(’T) MN(7T) MN( 5y)+uN( 5y)||H ldyd‘L'

(T—y)lre

and dividing by (r — s)'™* and integrating in s from 0 to  gives a factor b G ||v/|| ol
multiplied by
/ / / ||MN _MN( ) MN( 7y)+u1*\/(')y)||l‘l’1 dydeS
o (f—s)te (t—y)lte

= /om / / / ||“N/('v§)_“7v,(v§)||1rldgﬁdydrds

reo, dt
[l ool [ [ [ e avaz 69
where

/og/oya—i;w/gl<r—dyr>l+a"y : / y>a >

Hence, (6.9) is bounded by

b(’;\ ”VHH] tl—a At ”uN ('752[ Mg)g'vg)”Hl dE. (6.10)

Dividing (6.1) by ||v|| ;1 and taking the supremum over v € H ', using (6.2), (6.4), (6.8)
and (6.10) yields

) = )= 5) 1 .9l
t
< ¢ (low— bl +e [/ '8~/ .2

~ t o) —ut/(- Dun(-.7) — Du* (-
b (4Gt [ LD =/ (o)l D) uN<7r>|sz)
0

(t—7)*
- Avtea [M ' (1) —uy' (o)l
< C f*tlathlo‘/ ’ N2 d
S R R e et
D -D
+/ [ Dun Uy )|2dr). (6.11)
t—r)
which proves the Proposition. (]

Theorem 6.2. Let u and u* be solutions corresponding to initial data (g,h) and (g*,h*)
respectively. Then there is a (random) constant, depending on G, such that

le—u ey < C(lg=&lmwy+Ih=H12),  as.
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Proof: Consider the difference of the equations (4.4) for two different sequences u ,, and
uy and denote this difference Z = Zy(x,). As in the proof of Proposition 5.2 we now
square, using Proposition A.1 in [18], and sum over n € {1,...,N} to get

t
||le\](at)H§+2/0 <DZN('71:)7 ADZIIV(71:)> dt
= 2<hN_h;7) ZIIV('7I)>2

+2 [ (G0 7), Dy ()
7f('7Ta”;FV('vr)vurvl('vr)vD”;FV('vr))sz/V('vr»QdT
+203 /2 [ (2 (7). €24 (7)), B () 6.12)
=

Hence, integrating the second term to the left making use of the ellipticity condition
and boundedness of the elliptic operator,

1Zy (-.1)|[> + ao [|DZn (1) 13
< Ao IDZy (- 0)|3 + 21w — hill, |Zw (1),

2 [ (10l + 24+ D2 ) 240

. 2, )

+2b; \/)TjGj{/o N T’a N 2| gt

o | e

of BB )

By Cauchy’s inequality with € the second term to the right is bounded by

1 %12 2
C <E|hNhN|2+£||ZI'V(~,t)H2). (6.14)
The first integral term is, by Cauchy’s inequality, bounded by

t
¢ [ (1zvC 0B+ 12,0+ D2, 7)) de (6.15)

where the integral of the first integrand is bounded by
! * (12 v ! g
o ([ |ov-siti+ ([ N.0lpaz) | ar
* 112 ! / 2
C (lev-shlBr+ [ ezl o

1
 (lav—sili+ [ 17400 ).

Hence, (6.15) is bounded by

IN

IN

!
¢ (lew-gil+ [ (12t + 020 0IB) ) (6.16)
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The second integral term on the right, i.e., the first one appearing in the sum, is bounded
by, using Holder’s and Cauchy’s inequalities and changing the order of integration

" Zn(- T Zy(T
ol [ MR 12Dl
0 ¢

< leile | (ewv—silt [ 123021 ag ) D 0
< Clef (o -yl [LBALDE
[ 18 e o )
< Ce,~|z(||gN ity [AGDE
i [ 1238k s )
< Ce,|z(||gN sulr -+ [ 100 ). 6.17)

The fifth integral to the right is bounded by, using Holder’s inequality, changing the
order of integration, and Cauchy’s inequality,

12(7) = Zu(,0)]
lefls 10l LSO gg e

ARSIE
< el [Nzl [ [ A dsdoar
||z’ Ol
< Clesla [ 1ol [ HALE R d ar
ZI
< Clls | [ 1colBar+ [ < AL i) dr]
f HZ’ B3
< Clley Zy(-,7)l3d / - 2dEdt
< Cllell | [ 124 ol3ar+ LR
< Clele | [ Wit olar+2 / LASIE
< Clejle [ 17, Dlar (6.18)

The last integral in (6.13) is, by changing the order of integration and using Cauchy’s
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and Holder’s inequalities, bounded by

t Z/
el [ 12000 ) | DI g

, ) 124 0) = Zy (. 0) |\
§ C H€J||H1,oc‘/0 [||ZN(,9)||H1(U) + (/; (1:_ 0)1+Ot dt do

< Cleslne | [/ 1200, 0) a0

' o [ 12 T) = Z4 (01
+/0(t*9)1 /6 = (r_gl)vzﬂx - drd@]

< Clielhp= |I2v-0)3 + / 170130 + [ D2 (. 0)|Bdo
123 (- 7) = Zy (- O)lI7
o e
5 12y (. 0)113
< Cllejllpa(1+G?) {||ZN(.,0)||§+/O g do
" |DZ (-, 0)I13
————=d0 6.19

Chosing € = 1/(2C) in (6.14), and putting the estimates (6.14), (6.16), (6.17), (6.18),
and (6.19) back into (6.13) gives

2 2
k(03 + a0 IDZ (1)}
< c<1+63>(||thh;||§+|\ngg;Hzl

Zy( DZ(
L ”2 / 1DZx( H2 d@) (6.20)
0

An application of Gronwall’s lemma gives now
1z 03+ IDZu (03 < € (1463 (Il —hill3 + llgw — k2 o))
Now, let y € H'(I x U). Then we have
(v —uns )| < luw = uyllg ey 1% o)
< € (llew =gl ) + Iy =l ) [l 1o -
Hence, in the limit N — o we get, by previous results,
—ut, ) < € (g=g oy + I =12) 19l

Dividing by ||| 1 ;) and taking the supremum over all functions y gives the final
estimate. (]

The following are immediate consequences.
Corollary 6.3. Any solution to (4.1) is unique.

Corollary 6.4. The solution to (4.1) depends continuously on the initial data.
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7 Stability with respect to truncation

When trying to implement a numerical scheme for (4.4) it would be a natural first step
to truncate the infinite sum of (one dimensional) stochastic integrals. One then hopes
that the solution corresponding to the truncated sum is, in some sense, close to the
original one. To discuss these matters in more detail, let u be the solution to (4.4) and
u” a solution of the same equation but with A ; =0, j > IT+ 1, for some positive integer
I1. With this notation the following result holds.

Theorem 7.1. Assume o(x) = a+ bx. Then there is a random variable C = C(w),
which is finite a.s., such that the following estimate holds:

llu’ — Mn/”L""(I;Lz(U)) + | Du *D””||L°°(1;L2(U)) < C(w) (G-G7).

Before proving this we will derive a variant of Proposition 4.9 for the process Z 5’ =
uy' —uy’. Let us use the notation Ry (-,) = Zy'(-,t) — Zy'(-,0). Similarly as for uy’
we get

T
[(Ro (), v)| < [|Aoll [[DVIl2 /9 IDZ (-, 5) 2 ds
T
Clula [ (12 Co5) o + 120/ () 1) ds
~ T
+ 67 0)" b [ 2 ()2 ds
0
~ -~ T
46 GIvIar— )" (at bliela+o [ lun'(5)lads ).
Dividing by ||v|| 1) gives the following upper bound on [[R (-, T)|| -1 (1)
T
¢ [ (1Zv5) ) + 125/ C.9)l2) ds
R T
+G7(w=0)'"% [ |2y (,9)2ds
0
~ ~ T
+e (66700 (1 el [/ C-5)laas) a.n
Proof: Let u™ be the solution to the noise truncated equation
<u,('at)7 Wn>2 = <ha Wn>2

- /l (Du(-,t), ADwy), dt
0

+/Ol (f(,t,u(-,7),u' (-, 7),Du(-, 7)), w,,>2 dt
+ i \/}Tj/t<o(u(~7t)), wnej), BY (d).
= 0
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Since Zy(0) = 0 we have
t
(2N (1), wa), = /()(DZN(-,I),ADW,,>2dr

+/I<f(',r,u(-,‘r),u'(-,r),Du(~,r))
— f(, 7, u"™ (-, 1), (-,7),Du" (-, 7)), wp)2dT

+§[ / W(-,7)), wae), B (dT)
+ E \/7/ ), Wnej) ﬁjH(dr).

Jj=a+1
Squaring and summing gives
Iz (03 = _2/ DZy(-,7), ADZy'(-,7)), dt
+2 / 1), Du(-,7))

_f(a T,u (,T)’un ('77)7Dun('717))7ZI/V('aT»dT
123 /2 [ ot 1)~ o (. 0). 2/ (o)), Bl o)

J=1

o

22 3 oy [ (ot 0), 2 Cer), Y @),

Jj=n+1

As in (5.3) and (5.4) we get an upper bound of ||Zy'(-,1) |13 + ao||DZy(-,1)||3 as

¢ [ (Wt 0l3+ 112 (. 0I3-+ 102, 13) de

t ZN' (-, .
+2 21\/7\-jGj /O Ve,
p2

TO!

+/'5 <ZN(',T), Zn (;Tzij>y)§flo\:(7y)a ZN (7y)61> dy dt
\/7G 1+un(-,7), ZV'(-,7)e >z
Jj= fr+l T
a-+bun(-,7), ZN'(-,7)e;j a+bun(:,y), Zn'(-,y)e;
+/0 (a+buy N (T>y)l<+a N N Y f>dy dv(12)

For the first finite sum we have

< (2 (7)
2y ./A,-Gj/O

~

N Zn o3+ 1128 ()13
23 /16 lell- [ 21a 2 4t
26 [ 1T,

ZN’(-,r)ej>2

-L-(X

dt

IN

IN
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For the first infinite sum
1+MN ), ZN'(~,’L‘)€J’>2

S Ve [ -
< > /4G |e]|w> /Md +/ Mdt

j=n+1

dt

j= :r+1

IN

o 2w (ol3
< GG (14 g+ vl ) + [ 2 an

so these two terms sum up to

Z
c(1+6) [CDE 4o 0667 [1-+ (1l + vl ]

For the second finite sum we have, as in (5.1), and using (7.1),

2;] \/)TjGj/Of /OT <ZN(-,‘L’), Z]\/’(~,T)€j> — <ZN(',y), ZN'(~,y)ej>

(‘L’ 7y)1+a
R t
< Ccé [|g||%t+ | (12 o)+ 102w (- D)I3) de

+/ (/ 12y < Wlla- lds)zdy]

c & (Il [ (a0l + 1020 13) o

+(G- G [1+||g||%+H”N/Hioc(];Lz(U))D

For the second infinite sum

dt

dy

IN

b Zn' (- 0)e)) — (a+ bun(-,y), Z
\/7GJ/ / a+ un(-,T), N(7T)€J> l<i1a+ un(-,y), Zn'(-,y)e j>dy dt
Jj= n+1 (t_y)
= 2 G/
j;+l\/7
v <a(ZN/('aT) _ZN/(VY))+b(uN('7T)ZN/('aT) _MN('7Y)ZN/('7Y))a ej> d
_ v)l+a Y dt
0 (t—y)
128" (- T) = ZN' (- 9) |l g1
GG”//[ ry)Ha
flun (-, ) —un ()2 |Z8' (-, 7) |12
+b (‘L’—y)]*a
1Zn' (-, 0) = ZN' (- 9) | g1 lun (- 9) 1|2
+b Ty dydt
o Z (-,
< €669 |+ Il [ [ IAED=ELEI gy
ol [, |zN'<-,r>||zdr}
< C(G-G")? [H'HgH%Jr||MNHioc(1;Lz(U))+||MN/||im(1Lz /||ZN 7)|3dT
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Putting al these estimates back into (7.2) yields
1Za' (1) 113 + aol|DZw (-, 1) |13
< ¢ [ (It 0B+ 12y ol + 1Dz DlB)
L (14G) /()MdJrC (G— G2 [1+ g3+ vl 2w |
(GG 14+ 8B+ 2= ey |
+C(G-G")? [1 + vl 7 g2 oy + 13+ HMN'Hiw(I;H(U))]
+ [z o) lBar

< cusd [ (LAE 10BCOR) ,

T¢ T¢
+C 6= G2 [1+ (Igl+ ' I 20) ]
An application of Gronwall’s inequality gives then
|25/ OB+ IDZV B < € (6=6M2 [1+ (lglB+ B raze ) | €
Taking the square root, the sup over /, and sending N to © now yields
([ — unl||L°°(1;L2(U)) + 1D — Du™ || = (.12 (1))
< €G- [atb(llglh+1mlun - 20) ]
< C(w) (G-G)

for some random constant C(w). O
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