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Abstract

We study a stochastic control problem where the state process is described by a
stochastic differential equation driven by a Brownian motion and a Poisson random
measure, being affine in both the state and the control. The performance functional is
quadratic in the state and the control. All the coefficients are allowed to be random
and non-Markovian. Moreover, we may allow the control to be predictable to a given
subfiltration of the filtration of the Brownian motion and the random measure (partial
information control).

1 Introduction

The problem of stochastic control is always a hard one. Only in few cases is there an
explicit solution. There are two important approaches to the general stochastic optimal
control problem. One is the Bellman dynamic programming principle, which results in the
Hamilton-Jacobi-Bellman equation. This approach is applicable when the controlled system
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is Markovian. Another important approach is the maximum principle. For detailed account
of the approaches to systems driven by Brownian motions see the books [7], [18], and the
references therein.

In this paper we will consider the stochastic optimal control problems when the controlled
system is a jump-diffusion. If the controlled system is Markovian, there are also some
developments recently. See the book [15] and the references therein. Some explicit control
problems arising from finance and their solutions are also presented in this book.

Let (W;,t > 0) be a Brownian motion and (N(ds,dz),s > 0,z € R) be a Poisson
random measure with the intensity measure given by v(dz). The compensated Poisson
random measure is denoted by N (ds,dz). We will consider only the case when the state x;
at time ¢ is described by a linear controlled jump-diffusion of the form

dr; = [Awre + Boug + o] dt + [Cyvy + Dyuy + ] dW;
+ / (B,(2)2r + Fy(2)us + (=) N(dt,dz); € [0,T] (1.1)
R
rg = x €R.

Here u; is our control process and A;, By, ay, Cy, Dy, By, Ei(2), Fi(2) and ;(z) are given
Fi-predictable processes, where F; is the filtration generated by the Brownian motion W (s),
s < t, and the Poisson random measures N (ds,dz), s < t. The control u,; is required to be
E-predictable, where & C F; is a given filtration representing the information available to
the controller at time t. For example, we could have

& = .7:(15,5)+ ;T E [O, T] ,

where 0 > 0 is a fixed delay of information.
The performance functional is assumed to have the form

J(x,u) = E {Hlm%+H2xT} (1.2)

+E { /OT Qu)2} + 2Qua(t)wius + Qua(t)uf + Ri(£)a, + 2Rs(t)u,] dt} ,

where ;;(t) and R;(t) are given bounded Fj-adapted processes and H; are given Frp-
measurable bounded random variables satisfying certain conditions (see Section 2). Even in
the absence of jumps, namely,

Ei(z) = Fi(z) = n(2) = 0
(diffusion case), the theory of classical linear quadratic control only deals with the case that
E=F (complete information case)

and
HQZO, OétZO, 5,5:0, R1<t):R2<t):O.



Namely, there are no first order terms in the utility functional and there are no constant
terms in the system. If the coefficients are random (but predictable) and/or & C F;, then
the system is no longer Markovian. The most effective method is the technique of completing
squares.

However, even if & = F; the classical technique of completing squares is not directly
applicable to the system we consider because of the appearance of the first order terms in
the utility functional and the constant terms in the controlled system. The appearance of
such terms is important when we apply the results to minimum variance portfolio selection,
for example.

In this paper we introduce an additional auxiliary backward Riccati equation to handle
the extra terms. Thus we will have two (coupled) Riccati equations. Fortunately, they are
only weakly coupled in the sense that we can solve one equation first and then substitute
the solution into the other. This introduction of an additional equation which handles the
linear and constant terms was done earlier in [17] for the constant term and in [13] for both
linear and constant terms. There is a rich literature on stochastic linear quadratic control
and associated Riccati equations. See e.g. [1], [2], [5], [10], [17].

We will apply our results to minimum variance portfolio selection problems with or with-
out partial information [3], [8]. The results extend the ones in [9] (which use the Hamilton-
Jacobi-Bellman dynamic programming principle) to the case of random coefficients.

It should be pointed out that the approach of the dynamic programming principle or
the maximum principle cannot be applied directly here, both because of the general random
coefficients in the controlled system and in the utility functional and because of partial
information. Moreover, the technique of completing the square also leads us to the solution
of the partial information problem.

2 The Complete Information Case

Let us first consider the case with complete information, i.e. & = F;. Let the system be
described by a one dimensional stochastic differential equation, driven both by Brownian
white noise and Poissonian random measure, as follows:

dr; = d@u) = [Aw; + By + o] dt + [Cyxy + Dyuy + 3] dW,
v / B,(2)2e + Fy(2)us + ()] N(dt,dz); 0<t<T  (2.1)
R
rg = x E€R.

We assume that A, Cy, Ey(z) By, Dy, Fi(2), oy, B and 7(z) are bounded R-valued Fi-
predictable processes (they can be random). The goal is to minimize the following cost
functional.

J(x,u) = E {Hlx?p+H2xT} (2.2)

+E { /OT |Qu(0)a7 +2Qua(H)wrus + Qao(t)uf + Ru(t)z, + 2Rs (t)u, dt} ,
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where @;;(t) and R;(t), 7,7 = 1,2, are given bounded F;-adapted (real valued) stochastic
processes and H; and H, are Fpr-measurable bounded random variables.
We assume throughout this paper that

Qan(t) +O3(t) >0 foraa. t,w,

where O3(t) is defined by (2.14). This is a linear system with a quadratic utility functional.
We say that the control u; is admissible and wrlte u; € Ag if uy is Fi-predictable and
Equation (2.1) has a unique strong solution z; = 2" for 0 <t < T and

E [/OT {uz(t)—l— (xl(eu))Q}dt < 00

We define
pi(t) = Ji Bi(2)v(dz), 0 = [ 1ulz) [Ble)? + 2B,()] w(d2)
palt) = o B2 Fv(dz),  palt :AMZEMMWHQMMWM)
pslt) = [ F2P0(d) polt) = [ =) F(=)*(dz)
pr(t) = o (=) E(2)v(d2) tz/mz%zl+a@W@a
polt) = fen(DFVA=), prolt) = [ (@) Fi(2)v(d2)
pua(t) = (2w (d2) put:A%zmzuz>

pis(t) = Jo i) B (=), pualt) = [ fulz) F(z)v(d
pis(t) = f () (2)v(d2)

We introduce the following system of backward Riccati / backward linear stochastic
differential equations in the two unknown processes p; and p;:

dps + 20 A+ piCF + 2mC + pr(8)pe + pa(t) + Quu(B)] dt

— [sz( ) + peDF + ps(t)pe + pﬁ(t)} B (B + piCiDy + Dy + ps(t)pe + pa(t) + Qua(t)] dt
—ndWy — / 1(2)N(dt, dz) =0 (2.3)
pr = Huy; (2.4)

dp: + [2praw + 28:peCy + 208imy + 2pepr(t) + 2ps(t)] dt
+ [peAi + Ciity + p1s(t) + Ra(t)] dt

—2 {Qm(t) + pDf + ps(t)pe + Pﬁ(t)] B (e By + piCaDy + 1. Dy + p3(t)pe + pa(t) + Qr2(t)]
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1. 1. 1
[ptﬁtDt + pipo(t) + pro(t) + iptBt + §?7tDt + §P14(t) + Ry(t)| dt

—dW; — /R fin(2)N(dt, dz) = 0 (2.5)
pr=H,. (2.6)

Here the F;-predictable, square integrable processes &, 1y, 11¢(z) and &, i, fit(2) are (implic-
itly) determined from p, and p;, respectively, through the semimartingale representations

dp, = Edt + 1, d W, + / 1 (2)N(dt, dz) (2.7)
R

and
dfy = Edt + e dW, + / ()N (dt, dz) . (2.8)
R

We now state the first main theorem of this paper.

Theorem 2.1 Suppose the system of backward Riccati equations (2.3)-(2.6) has a solution
pe and py. Define

up = - [Qm(t) +pD} + ps(t)ps + pﬁ(t)}_l

{ (peBy + piCy Dy + Dy + ps(t)pe + palt) + Qra(t)] 24— +
PiBiDy + pipo(t) + pro(t) + ; (Pr + 7Dy + pra(t)) + R2(t)} : (2.9)

Suppose uy € Ar and

o |[[ ot + ottt + [ piewian)fa

< 0. (2.10)

Then u, 1s the unique solution of the complete information linear quadratic control prob-
lem (2.1)-(2.2). The corresponding value function is also quadratic and it is given by

E (po)z® +E (Po)x
48 [ {06(1) + Ou(t) — [@n(t) + O5(1)] ™ 1O5(1) + Ou(1) + Ro(t)*} e, (211)

where py and py are found from solving the above backward equation and ©;(t), i = 3,5,6,8,9
are defined by (2.12)-(2.20).

Remark 2.2 The existence of a solution to (2.3) has been proved recently by Hu and Song.
See [11].



If all the parameters are deterministic, then we can take n;, 7, u(z) and fi,(z) to be
0. In this case the stochastic Riccati equation reduces to the usual (deterministic) Riccati
equation.

If at least one of them are stochastic and all of them depend only on Brownian white
noise W, then we may choose p;(z) and fi;(z) to be 0, but 1, and 7, cannot both be 0. If at
least one of them are stochastic and all of them depend only on Poisson noise N(-,dz), then
we may choose 7, and 7, to be 0. But p(2) and fi;(z) cannot both be 0.

Proof of Theorem 2.1.  We shall use the technique of completing squares.
Applying (2.7) and the integration by parts formula we have

dl‘? = 2.I't_dl't + [Ctxt + Dtut + ﬁt]Z dt + / [Et(Z)..'Et_ + Ft(Z)Ut + ’yt(Z)]2 ]Vv(dt7 dZ)
R

= 21),5_{ [At.ft + Btut + Olt] dt + [Ot.ft + Dtut + ﬁt] th

[ UBen + B+ 2 ¥ )|+ Con + Da + 5

+/R [Ey(2) - + Fu(2)ug + 7(2)]> N(dt, dz) + /R [Ey(2)xe + Fy(2)uy + v(2)])? v(dz)dt .

Another integration by parts yields
d(ptl’?) = Zpt_xt_{ [Atflft + Btut + Oét] dt + [Ctl’t + Dtut + Bt] th
+/R [Ey(2)z- + Fy(2)u +7(2)] N(dt, dz)}

+p; [Cyzy + Dyuy + Bt]Q dt + /Rpt_ [Ey(2)xi + Fy(2)ug + %(z)]2 N(dt,dz)

2
+x;_

&t + ndW, + /]R () N (d, dz)}
+2nx4 [Cyxy + Dyuy + G dt + /R,ut(z) [Ey(2)z— + Fu(2)us + 7(2)]” N(dt, dz)
+2 /R pe(2)xe [Ey(2)ze- + Fy(2)ug + v (2)] N(dt, dz) .

Denote

dTh (t) = .Z’?i |:T]tth -+ /R,U/t(Z)N(dt, dZ):| + 2ptl’t [Otl’t -+ Dtut -+ ﬁt] th
[ {42 B+ Fuct )

+(pi— + () [Ee(2)xi- + Fy(2)ug + ’yt(z)]2 }N(dt, dz)

+9 /R 1 (2) T [Ba(2) 7o + Fy(2)ug + 7 (2)] N(dt, d2)
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and 7;(0) = 0. Then we see from (2.10) that E 7;(¢) = 0 for all £ > 0. We can rewrite

d(ptx?) = xtzftdt + 2ppy [Avry + Byug + o] dit
+pi [Cxy + Dyuy + 575]2 dt + 2x,m; [Crxy + Dywy + (] dt

[ { e B R+ [y
+2 /R pe(2)xy [Ey(2)xy + Fr(2)ug + v:(2)] v(dz)dt + dn () .
Introduce the notations

O:1(t) = &+ 2pAs + pCF + 2n,C,
—|—/R [ptEt(z)2 + pe(2)Ey(2)* + 2ut(z)Et(z)] v(dz); (2.12)

Os(t) = pBi + piCiDy + ne Dy
+ [{PE)RE) + 1 B(FE) + ()R} vd);  (2.13)

Os(t) =D} + [ {piFi(2)* + () Fi(2)*} w(dz); (2.14)

O4(t) = 2pioy + 26:p:Cy + 26,

42 [ [0+ @M B + (=) v(d2): (2.15)
O5(t) = pADu+ [ (pe+ 1)) Fi(2)v(dz) (216)

and
Ou(t) =niE + [ (e + ) )v(dz). (2.17)

Then we have
2 2 r 2 2
E {pra}} = E {pa®} +E /0 {@1(t):ct + 205 (8)zuy + O3t
+O4(t) Ty + 205 (t)us + @6(t)}dt. (2.18)

To deal with the first order terms which appeared above (2.18) we combine (2.8) with the
integration by parts formula and get

d(pry) = x|t + G5dW, + /Rﬂt(Z)N(dta dz)}
+fjt—{ [Atxt + Btut + O{t] dt + [Ctﬂft + Dtut + ﬁt] th
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n /R [By(2)a— + Fy(2)u, + (2)] N(dt, dz)}
+1 [Ctl‘t + Dyuy + ﬁt] dt
+ [ (=) [Bu(2)an + Fu()us + ()] v(dz)at

b [ ) (B + Bz + ()] N, d).

Hence
T -
E [pror] = E |por + /0 {@& + Pe [Avwe + Byug + oy
4 [Cowe + Douy + 3] + /R F(2) [Bu(2)as + Fu(2)us + 70(2)] v(dz) Yt
= E |pox + /OT {©7(t)z: + 205 (t)us + @9(t>}dt] ) (2.19)
where
O:(t) = &+ pAs+ Cuffy + /R i(2) Bo(2)v(d2) (2.20)
Os(t) = ; {jo“tBt +aD+ [ /lt(z)Ft(z)y(dz)} (2.21)
Oult) = e+ i+ [ iu(Em(v(d). (222)
Let
pr=H, and pr=H,.
Therefore
J(x,u)

= {/OT [Qn(t)ﬁ + 2Qu2(t)zpuy + Qoo (t)uf
PR (0, + m(t)ut] dt 1 pra + ﬁTmT}

= B (o) 1B (o) +B [ {[010) +Qult)]af +2[05(0) + Qual)] r

+[Qaa(t) + O3(t)] uf + [Ou(t) + O7(t) + Ru(t)] 2
+2[O5(t) + Os(t) + Ra(t)] us + Og(t) + Oo(t) }dt

= E (por®) +E (fox)
+£ | {[ (1) + Qu(t) — [Qaa(t) + O3(1)] 7 [O2(1) + Quat)]?]

+[04(t) + Or(t) + Ru(t) — 2[Qaa(t) + O5(6)] ™ [02(t) + Qua(t)] [O5(¢) + Os(t) + Ro(0)]]
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+[Qaa(t) + Os()] {us + [Qaa(t) + O3(1)] " [Oa(t) + Qua(t)] ¢
+[Qua(t) + O5(1)] 1 O5(t) + O5(t) + Ro(1)] )

@dﬂ—%@ﬂ@—{Qm@y+@gﬂrW@4w+(%@y+Rxﬂf}ﬁ.
If
{ O1(t) + Qu(t) — [Qa(t) + O3(1)] " [Oa2(t) + Qu2(t))* = 0

O4(t) + O7(t) + Ru(t) — 2[Qaa(t) + O3(t)] " [Oa(t) + Qua(t)] [O5(t) + Os(t) + Ra(t)] =0
then

(2.23)

J(z,u) = E (ppz®) +E (Poz) +E /OT Jo(t)dt
+E /OT [Qaa(t) + O3()] {us + [Qaa(t) + Os()] " [Oa(t) + Qua(t)] 71
+ [Qa(t) + Oa(0)] " [O5(t) + Os(t) + Ro(t)] Vo, (2.24)

where

Jo(t) = O(t) + Og(t) — [Qaa(t) + O3(t)] " [O5(t) + Os(t) + Ra(t))?

is independent u; and z;. This utility functional will achieve its minimum
) T
E (poa?) +E (fozx) + E /0 Jo(t)dt

when

up = — [Qua(t) + O3(t)] " {[Oa(t) + Qua(t)] mi— + Os(t) + Og(t) + Ra(t)} . (2.25)

Thus the optimal control is also a feedback one which is linear and depends only on the state
Tt.
Using the notation of p;(t) we may rewrite

O1(t) = &+ 2p A+ pCF + 2uCy + pr(t)pe + pa(t) (2.26)
Os(t) = B+ piCe Dy + 1m: Dy + p3(t)pe + palt) (2.27)
O3(t) = D} + ps(t)pe + po(t) , (2.28)
O4(t) = 2pioy +28,pCy + 28y + 2pep7(t) + 2ps(t) (2.29)
Os5(t) = Dy + pipo(t) + pro(t) , (2.30)
O(t) = ]3155152 + pip1n(t) + pra(t), (2.31)
O7(t) = &+ plAr + Com + p1s(t), (2.32)
L . N
Os(t) = 5 {peBi + 1Dy + pra(t)} (2.33)
Oy(t) = prov + B+ prs(t). (2.34)

9



The first equation of (2.23) becomes

& + 2peAe + Gy + 20Cr+ pr(t)pe+ pa(t) + Qui()

+ [Qaa(t) + D7 + ps ()i + ps(t))] T Bi+ pCiDy + Dy + (s + pa(t) + Qua() = 0.
Multiplying by dt we get

&t + [2p, Ay + piCF + 20 Ch+ pr (e + palt) + Quu(t)] dt

- {Qm(t) +pe D} + ps(t)pe + Pﬁ(t)} B [0 Bs + piCi Dy + Dy + p3(D)pe + pa(t) + Qua(t)]* dt = 0.
Substituting

gt = dp, — 1, dW, — /]R 1 (2)N (dt, dz)

into the equation we have the following backward Riccati equation for p,

dps + 20 A+ piCF + 2mC + pr(8)pe + pa(t) + Quu(B)] dt

- {Q22(t) +pe D} + ps(t)pe + /)6(75)} B [p1B: + peCe Dy + me Dy + ps(t)pe + palt) + Qua(t))* dt

—ndW; — /R,ut(z)]{f(dt,dz) =0.
In a similar way we can reduce the second equation of (2.23) to

dp + 2prou + 28,p.Cy + 26, + 2pepr(t) + 2ps(t)] dt
+ [peAi + Ciie + prs(t) + Ra(t)] dt

—2 [Qm(t) +peDf + ps(t)pe + Pﬁ(t)] - [peBr + piCe Dy + 0. Dy + p3(t)pe + pa(t) + Qra2(t)]

1._ 1. 1
{ptﬁtDt + pepo(t) + pro(t) + §ptBt + 577tDt + 5,014(75) + Ry(t)| dt

=1, dWy — / [Lt(Z)N(dt, dz) =0.
R

3 The Partial Information Case

We now study the case when our control u; is required to be &-predictable , where
gt Q ft for all t e [O,T]

is a given sub-filtration representing the information available to the controller at time t.
The corresponding family of admissible controls is denoted by Ae.

Theorem 3.1 (Partial information linear quadratic control) — Suppose the system of Ric-
cati equations (2.3)-(2.6) has a solution p; and p;. Define

i = (& [{Qa)+0sn}[e])”
E [{(O2(t) + Qua(t)zi + O5(t) + Os(t) + Ra(t)}|&1] , (3.1)

10



where ©;(t) are given by (2.26)-(2.34).

Suppose u; € Ag and that (2.10) holds. Then uf is the unique solution of the partial
information linear quadratic control problem. The value function Je(z) in the partial obser-
vation case is given by

r 2 -1 2
Je(2) = Jr(z) + E /0 (LM —E [LIE]™ (B [LMIE])?) dt| (3.2)
where Jg is the value function in the complete information case and
and
Mt = Lt_l [(@Q(t) + Qu(t))]?t + @5(t> + @8<t) + Rg(t)] . (34)

Proof  We use the computation in the proof of Theorem 2.1. By (2.24) we have

J(z,u) = Jr(x) + E

/0 L+ Mt)2dt] . (3.5)

Note that L; does not depend on X; (or u;). For each ¢ define the measure Q; by
th = Ltht on *f-t . (36)
Then
T 2 r 2

We can minimize this for each t. By the well-known Kallianpur-Striebel formula ([12]) we
know that the minimum of E ¢, [(u; + M;)?] over all £-measurable u, is attained at

w=u; = —Eq [M]|&]
E [LM|E]
- E L&)
__E [{(Oa(t) + Qua(t))ri— + Os(t) + Os(t) + Ra(t)} |E1] (3.7)
E [{Qx(t) +63(t)} |&] ' '

This proves (3.1). Substituting (3.7) into (3.6) we get

Je(z) = Je(x)+E l/OTLt(u:Jth)zdt]

= Jr(z) +E l/OT{Lth—(E (L&) (B [LtMt\St]f}dt]

which proves (3.2).
Remark 3.2 We may regard the term

Je(x) — Jr(x) = E [/[)T{Lth —(E [LJ&]) " (E [LtMt|€t])2}dt]

as the reduction of performance (or cost increase) due to the reduced information flow &.

11



4 Some Particular Cases

4.1 Absence of Poissonian Noise

Let us first consider the case that the system is under the influence of Brownian white noise.
In the controlled system (2.1) we let

Ei(2)=F(z)=%=0;

and let all the coefficients be adapted with respect to the filtration FV = o(W,, s < t) and
Hy, H, be F}V measurable. Then

pi)=0 ¥V 1<i<]15.
We may assume u; = fiy = 0 and write (2.3)-(2.6) as
dpt + [2ptAt + piCF + 20 Cy + Qn(t)] dt

2] 7! 2
— [sz(t) + ptDt} [pe By + pCy Dy + Dy + Qua(t)]” dt — ndWy = 0 (4.1)
pr = H;

dpr + [2praw + 20:p:Cy + 208im] dt + [pr A + Cone + Ry (t)] dt
—1
—2 [Q22(t) + ptDﬂ [peBt + piCy Dy + Dy + Q12(1)]
1. 1. -
{ptﬁtDt + §ptBt + intDt + R2(t)] dt — n,dWy =0 (4.3)
pr=H,. (4.4)

Theorem 4.1 Suppose the system of backward Riccati equations (4.1)-(4.4) has a solution
pe and p;. Define

511
U = = {Qm(t) +ptDt} [pe Bt + piCi Dy + n Dy + Qua(t)] -

—pe 3Dy + ; (pr + Dy — Ry(t)) } . (4.5)

Suppose u; € Ax and that (2.10) holds. Then wu; is the unique solution of the complete
information linear quadratic control problem (2.1)-(2.2). The corresponding value function
18 also quadratic and it is given by

T
E (po)z? + E (fo)z + E /0 {©6(t) + O9(t) — [Qaa(t) + O3(t)] " [O5(t) + Os(t) + Ra(t)]*} dit,
where p; and p; are found from solving the above backward equations and

O3(t) = ptD152> Os(t) = piBiDy,  Oglt) = ptﬂtz

1, _ .
@8<t> = 5 (pt + 77tDt> ,@g(t) = Py + Ny -
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4.2 Absence of Brownian White Noise

If in the controlled system (2.1), C; = D; = ; = 0 and all the coefficients are adapted to the
filtration F/ = o(N(ds,dz),s < t) and H;, Hy are FF measurable, then we may consider
the system

dpt -+ [2ptAt + P1 (t)pt + P2 (t) -+ Qll(t)] dt (46)
— [Q22(t) + ps(t)pe + po(t)] " [eBe + p3(t)p: + pa(t)]” dt — / ()N (dt,dz) =0
pr = H, (4.7)

dpy + [2proy + 20m; + 2pepr(t) + 2ps(t)] dt + [Pe Ay + pus(t) + Ru(t)] dt
~2[Qa2(t) + ps(t)pe + ps(t)] ™ [piBr + ps(t)pe + palt) + Qua(t)]

Pepo(t) + pro(t) + ;ptBt + ;,014( t) + Ro(t } dt —/ut N(dt,dz) =0 (4.8)

pr = Hs. (4.9)

Theorem 4.2 Suppose the system of backward Riccati equations (2.3)-(2.6) has a solution
pe and p;. Define

u = —[Qaa(t) + psp: + Pﬁ(t)]il { (D¢ By + p3(t)pr + pa(t) + Qua2(t)] 2= — pepo(t) + pro(t)
+; (P + p1a(t)) — Rg(t)} : (4.10)

Suppose u; € Ax and that (2.10) holds. Then wu; is the unique solution of the complete
information linear quadratic control problem (2.1)-(2.2). The corresponding value function
1s also quadratic and it is given by

E (po)z® +E (Po)x +E / ' {©6(t) + Oo(t) — [Qua(t) + O3(t)] ' [O5(t) + Os(t) + Ra(t))*} dt,

0

where p; and p; are found from solving the above backward equations and ©; are given by
corresponding formulas of (2.26)-(2.34).

4.3 Classical Riccati Equations

To obtain the classical Riccati equation, we may assume that in the controlled system (2.1)
a=0, =0, %=0, Hy=0, Qt)=Ri(t)=Ry(t)=0.
In this case we have
pr(t) = po(t) = pro(t) = p11(t) = pr12(t) = 0.
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The backward stochastic Riccati equation for p; becomes
dpe + [PeAr + Cije + p13(t)] dt — 2 {QzQ(t) +peD} + ps(t)pe + Pﬁ(t)] B
e Bt + peCy Dy + 1 Dy + p3(t)pe + pa(t)]
BﬁtBt + ;tht + ;pm(t)] dt — i, dW, — /R fu(2) N (dt, dz) = 0
pr =0.
Apparently, this equation has a solution 0. Moreover, (2.3) becomes
dps + 20 A+ piCF + 2mC + pr(8)pe + pa(t) + Quu(B)] dt
- [Q22(t) +pe D} + ps(t)pe + /76(75)} B [p1B: + peCeDr + me Dy + ps(t)pe + palt) + Qua(t))* dt
W, — /R 1(2)N(dt, dz) = 0 (4.11)
pr = Hi. (4.12)

Theorem 4.3 Suppose the system of backward Riccati equations (4.11)-(4.12) has a solution
p:. Define

1
U = — {Qm(t) + pe D} + pspe + PG(t)}

{ [pBr + piCiDy 4+ 1Dy + po(D)pr + palt) + Qua(8)] o

=B Dy + pepo(t) + pro(t) — R2(t)} : (4.13)

Suppose u; € Ax and that (2.10) holds. Then wu; is the unique solution of the complete
information linear quadratic control problem (2.1)-(2.2). The corresponding value function
1s also quadratic and it is given as before.

If in Theorem 4.3 we further assume
Ey(2)=F(2) =% =0, Q)= Ri(t) = Ry(t) =0,
then we have

Corollary 4.4 Suppose the backward Riccati equation
dp, + [2ptAt + p,C? + 20,C, + Qn(t)} dt

-1
- [Q22(t) + PtDtﬂ 0B + pCy Dy + 77tDt]2 dt — ndW,; =0
pr = Hy

has a solution p,. Define

~1
U = — {Qn(t) +ptDﬂ { (DBt + piCyDy + n: Dy 24— — piBi Dy + pepo(t) + pro(t) — RQ(t)} )
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Suppose u; € Ax and that (2.10) holds. Then wu; is the unique solution of the complete
information linear quadratic control problem (2.1)-(2.2). The corresponding value function
1s also quadratic and it is given as before.

Remark 4.5 This equation coincides with the equation in [13] for example.

4.4 Deterministic Linear Quadratic Problem

If all the data are deterministic, then we may assume p; and p; to be deterministic too.
Hence
M= p(z) =1 = fu(z) =0

and we have the following

Theorem 4.6 Consider the following system of backward Riccati / backward linear stochas-
tic differential equations

dp; + [QPtAt + piCF + pr(t)pe + palt) + Qu(t)] dt (4.14)

- {Qm(t) + D} + ps(t)pe + P6(t)] - ¢ Bi + peCi Dy 4 ps(t)ps + pa(t) + Qra(t)] dt = 0

dp: + [2praw + 2060 Cy + 2pep7(t) + ps(t)] dt
+ [P Ay + p1s3(t) + Ri(t)] dt

—2 [Qm(t) +piDF + ps(t)pe + PG(t)] - [p: By 4+ peCy Dy + p3(t)pe + pa(t) + Qua(t)]

1_ 1
{ptﬁtDt + pepo(t) + pro(t) + §ptBt + 5014(75) + Ry(t)| dt =0. (4.15)

The terminal conditions are
pT:Hl and ﬁT:HQ.

If the Riccati system (4.14)-(4.15) has a solution p, and p;, then the linear quadratic control
problem (2.1)-(2.2) has a solution with the optimal control given by

-1
w = —|Qu(t) + D + pspe + po(t)]

{ [pe By + piCrDy + p3(t)pe + pa(t) + Qua(t)] zi— — [peBe Dy + pepo(t) + pro(t)
by G+ D+ pu(0)] - R0} (4.16)

provided that u; € Ax and that (2.10) holds. The corresponding value function is given by
(2.11) with

Qut) = B [ pri(z)v(d2)
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Qo(t) = Proy
Qut) = wD}+p} | Fi(a)v(d2)

Qs(t) = ptﬁtDt“‘/Rpt’Vt(Z)E(z)V(dz)

1

Qs(t) = iﬁtBt-

5 Partial Information Mean-Variance Portfolio Prob-
lem

We now apply our results to a partial information mean-variance portfolio problem in finance.
Suppose we have a market with the following two investment possibilities:

i)  arisk free asset, whose unit price Sy(t) at time ¢ is given by

dSo(t) = peSo(t)dt, Sp(0)=1; 0<t<T (5.1)
ii) a risky asset, whose unit price S;(t) at time ¢ is given by

dSi(t) = Si(t—) [atdt+btth+ /R ct(z)]\Nf(dt,dz)] L 0<t<T. (52)
51(0) > 0

Here p;, ay, by, and ¢i(z) are given Fi-predictable processes. We assume that

T
E /0 {|pt| + |ag| + b2 + / ct(z)21/(dz)} dt| < oo (5.3)
R
There exists € > 0 such that ¢, (z) >—-1+¢  as. foraa. ¢z (5.4)
pib? + /(pt + pe(2))e(2)*v(dz) >0 for a.a. tw (5.5)
R

where p; is the solution of the following (5.14)-(5.15).
Conditions (5.3)-(5.4) ensure that the solution to (5.2) is given by

Sit) = Si(0) exp{ / “(as - ;bz)ds—ir / b, (5.6)

# [ ost+ e e wtasids + [ [ osa + eV s

A portfolio in this market is a predictable process ¢(t) = (¢o(t), ¢1(t)) € R? giving the number
of units of the risk free and the risky asset, respectively, held at time t. The corresponding
wealth process x(t) = 2%(t) is defined by

z2(t) = ¢o(t)So(t) + ¢1(1)S1(1). (5.7)
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We say that ¢(t) is self-financing if
dz?(t) = ¢o(t)dSo(t) + ¢1(t)dSi (1) . (5-8)
Suppose we are given a subfiltration
ECF, telo,T].

Let
U = @1 (t)S1 <t>

be the amount (instead of number of shares) invested in the risky asset at time t. We say
Uy

S1(t)

and 2™ (t) := 2(?)(t) is lower bounded. Combining the above we see that if ¢ € Ag then

that u, is admissible and write u, € Ag if u, is E-predictable | ¢1(t) = is self-financing

dz(t) = {pt:c(“) (t) + (ar — pt)ut} dt + byu dW (t) + wy /]R c(z)N(dt,dz)  (5.9)
W) = z>0.

We now consider the partial information mean-variance portfolio problem, which is to find
the portfolio & € Ag which minimizes the variance

E [2%(T) —E 2(T)]" (5.10)

under the constraint
E [29(T)| = K, (5.11)

where K is a given constant.
Using the Lagrange multiplier method we see that the problem is equivalent to minimizing

E [o9(T) ~ A" (5.12)

for a given constant A € R, without constraints. We refer to [18] and [8] for more information
about the mean-variance portfolio problem.

If & = F; and the coefficients are all deterministic, then this problem was solved in [§]
by using the maximum principle for jump diffusions.

Subsequently this was extended to the partial information case & C F; (but still with
deterministic coefficients) by [3].

We now show how Theorem 3.1 gives us a solution also in the case of stochastic coeffi-
cients.

Here

At:pta Bi=ar—p, ov=0, C,=0, D,=b, (=0
E(2) =0, Fi(z)=ca(2), wz)=0, Qi()=Rit)=0,
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and
Hy=1, Hy;=-2\.
Then (3.1) gives the following candidate for the optimal partial information portfolio:
uy = — (B [O3()|&) ' E [{€2(t)2™) (1) + O5(t) + Os(t) } &) (5.13)
where ©,(t), i = 2, 3,5, 8 are defined by (2.26)-(2.34). Hence

i = = (5 [{t s ot menacrvaie]) s |{ oo ) +ab) e )
+;(ﬁt+ﬁtbt) +/ [Lt(z)ct(z)y(dz)}\&] .

Here p;, m, pe(z), and py, 7, fie(2) are the solutions of the backward Riccati equations
(2.3)-(2.6), i.e

an = {2ptpt+ b2+ [+ m@)E )] [l — 0+ i

+/Rut(z)ct(z)1/ )} }dt+ntth+/ut N(dt,dz); t<T (5.14)
pr = 1 (5.15)

and

-1

dpe = —{Ptﬁt + ; {ptbf + /ﬂ{(pt + Mt(z»C?(Z)V(dZ)} [pt(at — pi) + by

pr = (5.17)
Summarizing the above we get

Theorem 5.1 Suppose the system of backward Riccati equations (5.14)-(5.17) has a unique
solution p; and p;. Define

u,d = — (E [{ptbf + /R(pt - ,ut(z))ct(z)Zu(dz)} |8t]>_1]E

F3 00 + [ e e (5.18)

{ (pt(at - Pt) + TItbt) x(u)(t_)

2

Suppose u; € Ag and that (2.10) holds. Then u} is the unique solution to the minimum
variance problem (5.12).

18



Remark 5.2 Suppose the conditions of Theorem 5.1 hold for each choice of X € R. Let x5(T)
be the optimal terminal wealth determined by the optimal control uy = uj, corresponding to
A. Then, in order to solve the original mean-variance portfolio problem (5.10), it remains
to determine \ such that

E [23(T)] =K.

We omit the discussion of this equation.

Acknowledgments: We are grateful to Xunyu Zhou for useful comments
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