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Abstract

We study a stochastic control problem where the state process is described by a
stochastic differential equation driven by a Brownian motion and a Poisson random
measure, being affine in both the state and the control. The performance functional is
quadratic in the state and the control. All the coefficients are allowed to be random
and non-Markovian. Moreover, we may allow the control to be predictable to a given
subfiltration of the filtration of the Brownian motion and the random measure (partial
information control).

1 Introduction

The problem of stochastic control is always a hard one. Only in few cases is there an
explicit solution. There are two important approaches to the general stochastic optimal
control problem. One is the Bellman dynamic programming principle, which results in the
Hamilton-Jacobi-Bellman equation. This approach is applicable when the controlled system
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is Markovian. Another important approach is the maximum principle. For detailed account
of the approaches to systems driven by Brownian motions see the books [7], [18], and the
references therein.

In this paper we will consider the stochastic optimal control problems when the controlled
system is a jump-diffusion. If the controlled system is Markovian, there are also some
developments recently. See the book [15] and the references therein. Some explicit control
problems arising from finance and their solutions are also presented in this book.

Let (Wt, t ≥ 0) be a Brownian motion and (N(ds, dz) , s ≥ 0 , z ∈ R) be a Poisson
random measure with the intensity measure given by ν(dz). The compensated Poisson
random measure is denoted by Ñ(ds, dz). We will consider only the case when the state xt

at time t is described by a linear controlled jump-diffusion of the form

dxt = [Atxt + Btut + αt] dt + [Ctxt + Dtut + βt] dWt

+
∫

R
[Et(z)xt− + Ft(z)ut + γt(z)] Ñ(dt, dz) ; t ∈ [0, T ] (1.1)

x0 = x ∈ R .

Here ut is our control process and At, Bt, αt, Ct, Dt, βt, Et(z), Ft(z) and γt(z) are given
Ft-predictable processes, where Ft is the filtration generated by the Brownian motion W (s),
s ≤ t, and the Poisson random measures Ñ(ds, dz), s ≤ t. The control ut is required to be
Et-predictable, where Et ⊆ Ft is a given filtration representing the information available to
the controller at time t. For example, we could have

Et = F(t−δ)+ ; t ∈ [0, T ] ,

where δ > 0 is a fixed delay of information.
The performance functional is assumed to have the form

J(x, u) = E
{
H1x

2
T + H2xT

}
(1.2)

+E

{∫ T

0

[
Q11(t)x

2
t + 2Q12(t)xtut + Q22(t)u

2
t + R1(t)xt + 2R2(t)ut

]
dt

}
,

where Qij(t) and Ri(t) are given bounded Ft-adapted processes and Hi are given FT -
measurable bounded random variables satisfying certain conditions (see Section 2). Even in
the absence of jumps, namely,

Et(z) = Ft(z) = γt(z) = 0

(diffusion case), the theory of classical linear quadratic control only deals with the case that

Et = Ft (complete information case)

and
H2 = 0 , αt = 0 , βt = 0 , R1(t) = R2(t) = 0 .
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Namely, there are no first order terms in the utility functional and there are no constant
terms in the system. If the coefficients are random (but predictable) and/or Et ⊂ Ft, then
the system is no longer Markovian. The most effective method is the technique of completing
squares.

However, even if Et = Ft the classical technique of completing squares is not directly
applicable to the system we consider because of the appearance of the first order terms in
the utility functional and the constant terms in the controlled system. The appearance of
such terms is important when we apply the results to minimum variance portfolio selection,
for example.

In this paper we introduce an additional auxiliary backward Riccati equation to handle
the extra terms. Thus we will have two (coupled) Riccati equations. Fortunately, they are
only weakly coupled in the sense that we can solve one equation first and then substitute
the solution into the other. This introduction of an additional equation which handles the
linear and constant terms was done earlier in [17] for the constant term and in [13] for both
linear and constant terms. There is a rich literature on stochastic linear quadratic control
and associated Riccati equations. See e.g. [1], [2], [5], [10], [17].

We will apply our results to minimum variance portfolio selection problems with or with-
out partial information [3], [8]. The results extend the ones in [9] (which use the Hamilton-
Jacobi-Bellman dynamic programming principle) to the case of random coefficients.

It should be pointed out that the approach of the dynamic programming principle or
the maximum principle cannot be applied directly here, both because of the general random
coefficients in the controlled system and in the utility functional and because of partial
information. Moreover, the technique of completing the square also leads us to the solution
of the partial information problem.

2 The Complete Information Case

Let us first consider the case with complete information, i.e. Et = Ft. Let the system be
described by a one dimensional stochastic differential equation, driven both by Brownian
white noise and Poissonian random measure, as follows:

dxt = dx
(u)
t = [Atxt + Btut + αt] dt + [Ctxt + Dtut + βt] dWt

+
∫

R
[Et(z)xt− + Ft(z)ut + γt(z)] Ñ(dt, dz) ; 0 ≤ t ≤ T (2.1)

x0 = x ∈ R .

We assume that At, Ct, Et(z) Bt, Dt, Ft(z), αt, βt and γt(z) are bounded R-valued Ft-
predictable processes (they can be random). The goal is to minimize the following cost
functional.

J(x, u) = E
{
H1x

2
T + H2xT

}
(2.2)

+E

{∫ T

0

[
Q11(t)x

2
t + 2Q12(t)xtut + Q22(t)u

2
t + R1(t)xt + 2R2(t)ut

]
dt

}
,
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where Qij(t) and Ri(t), i, j = 1, 2, are given bounded Ft-adapted (real valued) stochastic
processes and H1 and H2 are FT -measurable bounded random variables.

We assume throughout this paper that

Q22(t) + Θ3(t) ≥ 0 for a.a. t , ω ,

where Θ3(t) is defined by (2.14). This is a linear system with a quadratic utility functional.
We say that the control ut is admissible and write ut ∈ AF if ut is Ft-predictable and
Equation (2.1) has a unique strong solution xt = x

(u)
t for 0 ≤ t ≤ T and

E

[∫ T

0

{
u2(t) +

(
x

(u)
t

)2
}

dt

]
< ∞ .

We define

ρ1(t) =
∫

R Et(z)2ν(dz) , ρ2(t) =
∫

R
µt(z)

[
Et(z)2 + 2Et(z)

]
ν(dz)

ρ3(t) =
∫

R Et(z)Ft(z)ν(dz) , ρ4(t) =
∫

R
µt(z) [Et(z)Ft(z) + 2Ft(z)] ν(dz)

ρ5(t) =
∫

R Ft(z)2ν(dz) , ρ6(t) =
∫

R
µt(z)Ft(z)2ν(dz)

ρ7(t) =
∫

R γt(z)Et(z)ν(dz) , ρ8(t) =
∫

R
µt(z)γt(z) [1 + Et(z)] ν(dz)

ρ9(t) =
∫

R γt(z)Ft(z)ν(dz) , ρ10(t) =
∫

R
γt(z)µt(z)Ft(z)ν(dz)

ρ11(t) =
∫

R γt(z)2ν(dz) , ρ12(t) =
∫

R
γt(z)2µt(z)ν(dz)

ρ13(t) =
∫

R µ̃t(z)Et(z)ν(dz) , ρ14(t) =
∫

R
µ̃t(z)Ft(z)ν(dz)

ρ15(t) =
∫

R µ̃t(z)γt(z)ν(dz) .

We introduce the following system of backward Riccati / backward linear stochastic
differential equations in the two unknown processes pt and p̃t:

dpt +
[
2ptAt + ptC

2
t + 2ηtCt + ρ1(t)pt + ρ2(t) + Q11(t)

]
dt

−
[
Q22(t) + ptD

2
t + ρ5(t)pt + ρ6(t)

]−1
[ptBt + ptCtDt + ηtDt + ρ3(t)pt + ρ4(t) + Q12(t)]

2 dt

−ηtdWt −
∫

R
µt(z)Ñ(dt, dz) = 0 (2.3)

pT = H1 ; (2.4)

dp̃t + [2ptαt + 2βtptCt + 2βtηt + 2ptρ7(t) + 2ρ8(t)] dt

+ [p̃tAt + Ctη̃t + ρ13(t) + R1(t)] dt

−2
[
Q22(t) + ptD

2
t + ρ5(t)pt + ρ6(t)

]−1
[ptBt + ptCdDt + ηtDt + ρ3(t)pt + ρ4(t) + Q12(t)]
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[
ptβtDt + ptρ9(t) + ρ10(t) +

1

2
p̃tBt +

1

2
η̃tDt +

1

2
ρ14(t) + R2(t)

]
dt

−η̃tdWt −
∫

R
µ̃t(z)Ñ(dt, dz) = 0 (2.5)

p̃T = H2 . (2.6)

Here the Ft-predictable, square integrable processes ξt, ηt, µt(z) and ξ̃t, η̃t, µ̃t(z) are (implic-
itly) determined from pt and p̃t, respectively, through the semimartingale representations

dpt = ξtdt + ηtdWt +
∫

R
µt(z)Ñ(dt, dz) (2.7)

and
dp̃t = ξ̃tdt + η̃tdWt +

∫
R
µ̃t(z)Ñ(dt, dz) . (2.8)

We now state the first main theorem of this paper.

Theorem 2.1 Suppose the system of backward Riccati equations (2.3)-(2.6) has a solution
pt and p̃t. Define

ut = −
[
Q22(t) + ptD

2
t + ρ5(t)pt + ρ6(t)

]−1

{
[ptBt + ptCtDt + ηtDt + ρ3(t)pt + ρ4(t) + Q12(t)] xt− +

ptβtDt + ptρ9(t) + ρ10(t) +
1

2
(p̃t + η̃tDt + ρ14(t)) + R2(t)

}
. (2.9)

Suppose ut ∈ AF and

E

[∫ T

0

{
x4

t η
2
t + (x4

t + u4
t )(p

2
t +

∫
R
µ2

t (z)ν(dz)
}

dt

]
< ∞ . (2.10)

Then ut is the unique solution of the complete information linear quadratic control prob-
lem (2.1)-(2.2). The corresponding value function is also quadratic and it is given by

E (p0)x
2 + E (p̃0)x

+E
∫ T

0

{
Θ6(t) + Θ9(t)− [Q22(t) + Θ3(t)]

−1 [Θ5(t) + Θ8(t) + R2(t)]
2
}

dt , (2.11)

where pt and p̃t are found from solving the above backward equation and Θi(t), i = 3, 5, 6, 8, 9
are defined by (2.12)-(2.20).

Remark 2.2 The existence of a solution to (2.3) has been proved recently by Hu and Song.
See [11].
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If all the parameters are deterministic, then we can take ηt, η̃t, µt(z) and µ̃t(z) to be
0. In this case the stochastic Riccati equation reduces to the usual (deterministic) Riccati
equation.

If at least one of them are stochastic and all of them depend only on Brownian white
noise W , then we may choose µt(z) and µ̃t(z) to be 0, but ηt and η̃t cannot both be 0. If at
least one of them are stochastic and all of them depend only on Poisson noise N(·, dz), then
we may choose ηt and η̃t to be 0. But µt(z) and µ̃t(z) cannot both be 0.

Proof of Theorem 2.1. We shall use the technique of completing squares.
Applying (2.7) and the integration by parts formula we have

dx2
t = 2xt−dxt + [Ctxt + Dtut + βt]

2 dt +
∫

R
[Et(z)xt− + Ft(z)ut + γt(z)]2 N(dt, dz)

= 2xt−

{
[Atxt + Btut + αt] dt + [Ctxt + Dtut + βt] dWt

+
∫

R
[Et(z)xt− + Ft(z)ut + γt(z)] Ñ(dt, dz)

}
+ [Ctxt + Dtut + βt]

2 dt

+
∫

R
[Et(z)xt− + Ft(z)ut + γt(z)]2 Ñ(dt, dz) +

∫
R
[Et(z)xt + Ft(z)ut + γt(z)]2 ν(dz)dt .

Another integration by parts yields

d(ptx
2
t ) = 2pt−xt−

{
[Atxt + Btut + αt] dt + [Ctxt + Dtut + βt] dWt

+
∫

R
[Et(z)xt− + Ft(z)ut + γt(z)] Ñ(dt, dz)

}

+pt [Ctxt + Dtut + βt]
2 dt +

∫
R
pt− [Et(z)xt− + Ft(z)ut + γt(z)]2 N(dt, dz)

+x2
t−

[
ξtdt + ηtdWt +

∫
R
µt(z)Ñ(dt, dz)

]
+2ηtxt [Ctxt + Dtut + βt] dt +

∫
R
µt(z) [Et(z)xt− + Ft(z)ut + γt(z)]2 N(dt, dz)

+2
∫

R
µt(z)xt− [Et(z)xt− + Ft(z)ut + γt(z)] N(dt, dz) .

Denote

dη1(t) = x2
t−

[
ηtdWt +

∫
R
µt(z)Ñ(dt, dz)

]
+ 2ptxt [Ctxt + Dtut + βt] dWt

+
∫

R

{
µt(z)x2

t− + 2pt−xt− [Et(z)xt− + Ft(z)ut + γt(z)]

+(pt− + µt(z)) [Et(z)xt− + Ft(z)ut + γt(z)]2
}

Ñ(dt, dz)

+2
∫

R
µt(z)xt− [Et(z)xt− + Ft(z)ut + γt(z)] Ñ(dt, dz)
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and η1(0) = 0. Then we see from (2.10) that E η1(t) = 0 for all t ≥ 0. We can rewrite

d(ptx
2
t ) = x2

t ξtdt + 2ptxt [Atxt + Btut + αt] dt

+pt [Ctxt + Dtut + βt]
2 dt + 2xtηt [Ctxt + Dtut + βt] dt

+
∫

R

{
[pt + µt(z)] [Et(z)xt + Ft(z)ut + γt(z)]2

}
ν(dz)dt

+2
∫

R
µt(z)xt [Et(z)xt + Ft(z)ut + γt(z)] ν(dz)dt + dη1(t) .

Introduce the notations

Θ1(t) = ξt + 2ptAt + ptC
2
t + 2ηtCt

+
∫

R

[
ptEt(z)2 + µt(z)Et(z)2 + 2µt(z)Et(z)

]
ν(dz) ; (2.12)

Θ2(t) = ptBt + ptCtDt + ηtDt

+
∫

R
{ptEt(z)Ft(z) + µt(z)Et(z)Ft(z) + µt(z)Ft(z)} ν(dz) ; (2.13)

Θ3(t) = ptD
2
t +

∫
R

{
ptFt(z)2 + µt(z)Ft(z)2

}
ν(dz) ; (2.14)

Θ4(t) = 2ptαt + 2βtptCt + 2βtηt

+2
∫

R
[(pt + µt(z))γt(z)Et(z) + µt(z)γt(z)] ν(dz) ; (2.15)

Θ5(t) = ptβtDt +
∫

R
(pt + µt(z))γt(z)Ft(z)ν(dz) ; (2.16)

and
Θ6(t) = ptβ

2
t +

∫
R
(pt + µt(z))γ2

t (z)ν(dz) . (2.17)

Then we have

E
{
pT x2

T

}
= E

{
p0x

2
}

+ E
∫ T

0

{
Θ1(t)x

2
t + 2Θ2(t)xtut + Θ3(t)u

2
t

+Θ4(t)xt + 2Θ5(t)ut + Θ6(t)

}
dt . (2.18)

To deal with the first order terms which appeared above (2.18) we combine (2.8) with the
integration by parts formula and get

d(p̃txt) = xt−

[
ξ̃tdt + η̃tdWt +

∫
R
µ̃t(z)Ñ(dt, dz)

]
+p̃t−{ [Atxt + Btut + αt] dt + [Ctxt + Dtut + βt] dWt
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+
∫

R
[Et(z)xt− + Ft(z)ut + γt(z)] Ñ(dt, dz)}

+η̃t [Ctxt + Dtut + βt] dt

+
∫

R
µ̃t(z) [Et(z)xt + Ft(z)ut + γt(z)] ν(dz)dt

+
∫

R
µ̃t(z) [Et(z)xt− + Ft(z)ut + γt(z)] Ñ(dt, dz) .

Hence

E [p̃T xT ] = E

[
p̃0x +

∫ T

0
{xtξ̃t + p̃t [Atxt + Btut + αt]

+η̃t [Ctxt + Dtut + βt] +
∫

R
µ̃t(z) [Et(z)xt + Ft(z)ut + γt(z)] ν(dz)}dt

]

= E

[
p̃0x +

∫ T

0
{Θ7(t)xt + 2Θ8(t)ut + Θ9(t)}dt

]
, (2.19)

where

Θ7(t) = ξ̃t + p̃tAt + Ctη̃t +
∫

R
µ̃t(z)Et(z)ν(dz) (2.20)

Θ8(t) =
1

2

{
p̃tBt + η̃tDt +

∫
R
µ̃t(z)Ft(z)ν(dz)

}
(2.21)

Θ9(t) = p̃tαt + η̃tβt +
∫

R
µ̃t(z)γt(z)ν(dz) . (2.22)

Let
pT = H1 and p̃T = H2 .

Therefore

J(x, u)

=

{ ∫ T

0

[
Q11(t)x

2
t + 2Q12(t)xtut + Q22(t)u

2
t

+R1(t)xt + 2R2(t)ut

]
dt + pT x2

T + p̃T xT

}

= E (p0x
2) + E (p̃0x) + E

∫ T

0

{
[Θ1(t) + Q11(t)] x

2
t + 2 [Θ2(t) + Q12(t)] xtut

+ [Q22(t) + Θ3(t)] u
2
t + [Θ4(t) + Θ7(t) + R1(t)] xt

+2 [Θ5(t) + Θ8(t) + R2(t)] ut + Θ6(t) + Θ9(t)
}
dt

= E (p0x
2) + E (p̃0x)

+E
∫ T

0

{ [
Θ1(t) + Q11(t)− [Q22(t) + Θ3(t)]

−1 [Θ2(t) + Q12(t)]
2
]
x2

t

+
[
Θ4(t) + Θ7(t) + R1(t)− 2 [Q22(t) + Θ3(t)]

−1 [Θ2(t) + Q12(t)] [Θ5(t) + Θ8(t) + R2(t)]
]
xt
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+ [Q22(t) + Θ3(t)]
{
ut + [Q22(t) + Θ3(t)]

−1 [Θ2(t) + Q12(t)] xt

+ [Q22(t) + Θ3(t)]
−1 [Θ5(t) + Θ8(t) + R2(t)]

}2

Θ6(t) + Θ9(t)− [Q22(t) + Θ3(t)]
−1 [Θ5(t) + Θ8(t) + R2(t)]

2

}
dt .

If
Θ1(t) + Q11(t)− [Q22(t) + Θ3(t)]

−1 [Θ2(t) + Q12(t)]
2 = 0

Θ4(t) + Θ7(t) + R1(t)− 2 [Q22(t) + Θ3(t)]
−1 [Θ2(t) + Q12(t)] [Θ5(t) + Θ8(t) + R2(t)] = 0

,(2.23)

then

J(x, u) = E (p0x
2) + E (p̃0x) + E

∫ T

0
J0(t)dt

+E
∫ T

0
[Q22(t) + Θ3(t)]

{
ut + [Q22(t) + Θ3(t)]

−1 [Θ2(t) + Q12(t)] xt−

+ [Q22(t) + Θ3(t)]
−1 [Θ5(t) + Θ8(t) + R2(t)]

}2
dt , (2.24)

where
J0(t) = Θ6(t) + Θ9(t)− [Q22(t) + Θ3(t)]

−1 [Θ5(t) + Θ8(t) + R2(t)]
2

is independent ut and xt. This utility functional will achieve its minimum

E (p0x
2) + E (p̃0x) + E

∫ T

0
J0(t)dt

when

ut = − [Q22(t) + Θ3(t)]
−1 {[Θ2(t) + Q12(t)] xt− + Θ5(t) + Θ8(t) + R2(t)} . (2.25)

Thus the optimal control is also a feedback one which is linear and depends only on the state
xt.

Using the notation of ρi(t) we may rewrite

Θ1(t) = ξt + 2ptAt + ptC
2
t + 2ηtCt + ρ1(t)pt + ρ2(t) , (2.26)

Θ2(t) = ptBt + ptCtDt + ηtDt + ρ3(t)pt + ρ4(t) , (2.27)

Θ3(t) = ptD
2
t + ρ5(t)pt + ρ6(t) , (2.28)

Θ4(t) = 2ptαt + 2βtptCt + 2βtηt + 2ptρ7(t) + 2ρ8(t) , (2.29)

Θ5(t) = ptβtDt + ptρ9(t) + ρ10(t) , (2.30)

Θ6(t) = ptβ
2
t + ptρ11(t) + ρ12(t) , (2.31)

Θ7(t) = ξ̃t + p̃tAt + Ctη̃t + ρ13(t) , (2.32)

Θ8(t) =
1

2
{p̃tBt + η̃tDt + ρ14(t)} , (2.33)

Θ9(t) = p̃tαt + η̃tβt + ρ15(t) . (2.34)
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The first equation of (2.23) becomes

ξt + 2ptAt + ptC
2
t + 2ηtCt + ρ1(t)pt + ρ2(t) + Q11(t)

+
[
Q22(t) + ptD

2
t + ρ5(t)pt + ρ6(t)

]−1
[ptBt + ptCtDt + ηtDt + ρ3(t)pt + ρ4(t) + Q12(t)]

2 = 0 .

Multiplying by dt we get

ξtdt +
[
2ptAt + ptC

2
t + 2ηtCt + ρ1(t)pt + ρ2(t) + Q11(t)

]
dt

−
[
Q22(t) + ptD

2
t + ρ5(t)pt + ρ6(t)

]−1
[ptBt + ptCtDt + ηtDt + ρ3(t)pt + ρ4(t) + Q12(t)]

2 dt = 0 .

Substituting

ξtdt = dpt − ηtdWt −
∫

R
µt(z)Ñ(dt, dz)

into the equation we have the following backward Riccati equation for pt

dpt +
[
2ptAt + ptC

2
t + 2ηtCt + ρ1(t)pt + ρ2(t) + Q11(t)

]
dt

−
[
Q22(t) + ptD

2
t + ρ5(t)pt + ρ6(t)

]−1
[ptBt + ptCtDt + ηtDt + ρ3(t)pt + ρ4(t) + Q12(t)]

2 dt

−ηtdWt −
∫

R
µt(z)Ñ(dt, dz) = 0 .

In a similar way we can reduce the second equation of (2.23) to

dp̃t + [2ptαt + 2βtptCt + 2βtηt + 2ptρ7(t) + 2ρ8(t)] dt

+ [p̃tAt + Ctη̃t + ρ13(t) + R1(t)] dt

−2
[
Q22(t) + ptD

2
t + ρ5(t)pt + ρ6(t)

]−1
[ptBt + ptCtDt + ηtDt + ρ3(t)pt + ρ4(t) + Q12(t)][

ptβtDt + ptρ9(t) + ρ10(t) +
1

2
p̃tBt +

1

2
η̃tDt +

1

2
ρ14(t) + R2(t)

]
dt

−η̃tdWt −
∫

R
µ̃t(z)Ñ(dt, dz) = 0 .

3 The Partial Information Case

We now study the case when our control ut is required to be Et-predictable , where

Et ⊆ Ft for all t ∈ [0, T ]

is a given sub-filtration representing the information available to the controller at time t.
The corresponding family of admissible controls is denoted by AE .

Theorem 3.1 (Partial information linear quadratic control) Suppose the system of Ric-
cati equations (2.3)-(2.6) has a solution pt and p̃t. Define

u∗t = −
(
E

[
{Q22(t) + Θ3(t)}

∣∣∣Et

])−1

E
[
{(Θ2(t) + Q12(t))xt− + Θ5(t) + Θ8(t) + R2(t)}

∣∣∣Et

]
, (3.1)
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where Θi(t) are given by (2.26)-(2.34).
Suppose u∗t ∈ AE and that (2.10) holds. Then u∗t is the unique solution of the partial

information linear quadratic control problem. The value function JE(x) in the partial obser-
vation case is given by

JE(x) = JF(x) + E

[∫ T

0

{
LtM

2
t − E [Lt|Et]

−1 (E [LtMt|Et])
2
}

dt

]
, (3.2)

where JF is the value function in the complete information case and

Lt = Q22(t) + Θ3(t) (3.3)

and
Mt = L−1

t [(Θ2(t) + Q12(t))xt + Θ5(t) + Θ8(t) + R2(t)] . (3.4)

Proof We use the computation in the proof of Theorem 2.1. By (2.24) we have

J(x, u) = JF(x) + E

[∫ T

0
Lt(ut + Mt)

2dt

]
. (3.5)

Note that Lt does not depend on Xt (or ut). For each t define the measure Qt by

dQt = LtdPt on Ft . (3.6)

Then

E

[∫ T

0
Lt(ut + Mt)

2dt

]
=

∫ T

0
E Qt

[
(ut + Mt)

2
]
dt .

We can minimize this for each t. By the well-known Kallianpur-Striebel formula ([12]) we
know that the minimum of E Qt [(ut + Mt)

2] over all Et-measurable ut is attained at

ut = u∗t = −E Qt [Mt|Et]

= −E [LtMt|Et]

E [Lt|Et]

= −E [{(Θ2(t) + Q12(t))xt− + Θ5(t) + Θ8(t) + R2(t)} |Et]

E [{Q22(t) + Θ3(t)} |Et]
. (3.7)

This proves (3.1). Substituting (3.7) into (3.6) we get

JE(x) = JF(x) + E

[∫ T

0
Lt(u

∗
t + Mt)

2dt

]

= JF(x) + E

[∫ T

0

{
LtM

2
t − (E [Lt|Et])

−1 (E [LtMt|Et])
2
}

dt

]
which proves (3.2).

Remark 3.2 We may regard the term

JE(x)− JF(x) = E

[∫ T

0

{
LtM

2
t − (E [Lt|Et])

−1 (E [LtMt|Et])
2
}

dt

]
as the reduction of performance (or cost increase) due to the reduced information flow Et.
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4 Some Particular Cases

4.1 Absence of Poissonian Noise

Let us first consider the case that the system is under the influence of Brownian white noise.
In the controlled system (2.1) we let

Et(z) = Ft(z) = γt = 0 ;

and let all the coefficients be adapted with respect to the filtration FW
t = σ(Ws, s ≤ t) and

H1, H2 be FW
T measurable. Then

ρi(t) = 0 ∀ 1 ≤ i ≤ 15 .

We may assume µt = µ̃t = 0 and write (2.3)-(2.6) as

dpt +
[
2ptAt + ptC

2
t + 2ηtCt + Q11(t)

]
dt

−
[
Q22(t) + ptD

2
t

]−1
[ptBt + ptCtDt + ηtDt + Q12(t)]

2 dt− ηtdWt = 0 (4.1)

pT = H1 (4.2)

dp̃t + [2ptαt + 2βtptCt + 2βtηt] dt + [p̃tAt + Ctη̃t + R1(t)] dt

−2
[
Q22(t) + ptD

2
t

]−1
[ptBt + ptCtDt + ηtDt + Q12(t)][

ptβtDt +
1

2
p̃tBt +

1

2
η̃tDt + R2(t)

]
dt− η̃tdWt = 0 (4.3)

p̃T = H2 . (4.4)

Theorem 4.1 Suppose the system of backward Riccati equations (4.1)-(4.4) has a solution
pt and p̃t. Define

ut = −
[
Q22(t) + ptD

2
t

]−1
{

[ptBt + ptCtDt + ηtDt + Q12(t)] xt−

−ptβtDt +
1

2
(p̃t + η̃tDt −R2(t))

}
. (4.5)

Suppose ut ∈ AF and that (2.10) holds. Then ut is the unique solution of the complete
information linear quadratic control problem (2.1)-(2.2). The corresponding value function
is also quadratic and it is given by

E (p0)x
2 + E (p̃0)x + E

∫ T

0

{
Θ6(t) + Θ9(t)− [Q22(t) + Θ3(t)]

−1 [Θ5(t) + Θ8(t) + R2(t)]
2
}

dt ,

where pt and p̃t are found from solving the above backward equations and

Θ3(t) = ptD
2
t , Θ5(t) = ptβtDt , Θ6(t) = ptβ

2
t

Θ8(t) =
1

2
(p̃t + η̃tDt) , Θ9(t) = p̃tαt + η̃tβt .
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4.2 Absence of Brownian White Noise

If in the controlled system (2.1), Ct = Dt = βt = 0 and all the coefficients are adapted to the
filtration FP

t = σ(N(ds, dz), s ≤ t) and H1, H2 are FP
T measurable, then we may consider

the system

dpt + [2ptAt + ρ1(t)pt + ρ2(t) + Q11(t)] dt (4.6)

− [Q22(t) + ρ5(t)pt + ρ6(t)]
−1 [ptBt + ρ3(t)pt + ρ4(t)]

2 dt−
∫

R
µt(z)Ñ(dt, dz) = 0

pT = H1 (4.7)

dp̃t + [2ptαt + 2βtηt + 2ptρ7(t) + 2ρ8(t)] dt + [p̃tAt + ρ13(t) + R1(t)] dt

−2 [Q22(t) + ρ5(t)pt + ρ6(t)]
−1 [ptBt + ρ3(t)pt + ρ4(t) + Q12(t)][

ptρ9(t) + ρ10(t) +
1

2
p̃tBt +

1

2
ρ14(t) + R2(t)

]
dt−

∫
R
µ̃t(z)Ñ(dt, dz) = 0 (4.8)

p̃T = H2 . (4.9)

Theorem 4.2 Suppose the system of backward Riccati equations (2.3)-(2.6) has a solution
pt and p̃t. Define

ut = − [Q22(t) + ρ5pt + ρ6(t)]
−1

{
[ptBt + ρ3(t)pt + ρ4(t) + Q12(t)] xt− − ptρ9(t) + ρ10(t)

+
1

2
(p̃t + ρ14(t))−R2(t)

}
. (4.10)

Suppose ut ∈ AF and that (2.10) holds. Then ut is the unique solution of the complete
information linear quadratic control problem (2.1)-(2.2). The corresponding value function
is also quadratic and it is given by

E (p0)x
2 + E (p̃0)x + E

∫ T

0

{
Θ6(t) + Θ9(t)− [Q22(t) + Θ3(t)]

−1 [Θ5(t) + Θ8(t) + R2(t)]
2
}

dt ,

where pt and p̃t are found from solving the above backward equations and Θi are given by
corresponding formulas of (2.26)-(2.34).

4.3 Classical Riccati Equations

To obtain the classical Riccati equation, we may assume that in the controlled system (2.1)

αt = 0 , βt = 0 , γt = 0 , H2 = 0 , Q12(t) = R1(t) = R2(t) = 0 .

In this case we have

ρ7(t) = ρ9(t) = ρ10(t) = ρ11(t) = ρ12(t) = 0 .

13



The backward stochastic Riccati equation for p̃t becomes

dp̃t + [p̃tAt + Ctη̃t + ρ13(t)] dt− 2
[
Q22(t) + ptD

2
t + ρ5(t)pt + ρ6(t)

]−1

[ptBt + ptCtDt + ηtDt + ρ3(t)pt + ρ4(t)][
1

2
p̃tBt +

1

2
η̃tDt +

1

2
ρ14(t)

]
dt− η̃tdWt −

∫
R
µ̃t(z)Ñ(dt, dz) = 0

p̃T = 0 .

Apparently, this equation has a solution 0. Moreover, (2.3) becomes

dpt +
[
2ptAt + ptC

2
t + 2ηtCt + ρ1(t)pt + ρ2(t) + Q11(t)

]
dt

−
[
Q22(t) + ptD

2
t + ρ5(t)pt + ρ6(t)

]−1
[ptBt + ptCtDt + ηtDt + ρ3(t)pt + ρ4(t) + Q12(t)]

2 dt

−ηtdWt −
∫

R
µt(z)Ñ(dt, dz) = 0 (4.11)

pT = H1 . (4.12)

Theorem 4.3 Suppose the system of backward Riccati equations (4.11)-(4.12) has a solution
pt. Define

ut = −
[
Q22(t) + ptD

2
t + ρ5pt + ρ6(t)

]−1

{
[ptBt + ptCtDt + ηtDt + ρ3(t)pt + ρ4(t) + Q12(t)] xt−

−ptβtDt + ptρ9(t) + ρ10(t)−R2(t)

}
. (4.13)

Suppose ut ∈ AF and that (2.10) holds. Then ut is the unique solution of the complete
information linear quadratic control problem (2.1)-(2.2). The corresponding value function
is also quadratic and it is given as before.

If in Theorem 4.3 we further assume

Et(z) = Ft(z) = γt = 0 , Q12(t) = R1(t) = R2(t) = 0 ,

then we have

Corollary 4.4 Suppose the backward Riccati equation

dpt +
[
2ptAt + ptC

2
t + 2ηtCt + Q11(t)

]
dt

−
[
Q22(t) + ptD

2
t

]−1
[ptBt + ptCtDt + ηtDt]

2 dt− ηtdWt = 0

pT = H1

has a solution pt. Define

ut = −
[
Q22(t) + ptD

2
t

]−1
{

[ptBt + ptCtDt + ηtDt] xt− − ptβtDt + ptρ9(t) + ρ10(t)−R2(t)

}
.
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Suppose ut ∈ AF and that (2.10) holds. Then ut is the unique solution of the complete
information linear quadratic control problem (2.1)-(2.2). The corresponding value function
is also quadratic and it is given as before.

Remark 4.5 This equation coincides with the equation in [13] for example.

4.4 Deterministic Linear Quadratic Problem

If all the data are deterministic, then we may assume pt and p̃t to be deterministic too.
Hence

ηt = µt(z) = η̃t = µ̃t(z) = 0

and we have the following

Theorem 4.6 Consider the following system of backward Riccati / backward linear stochas-
tic differential equations

dpt +
[
2ptAt + ptC

2
t + ρ1(t)pt + ρ2(t) + Q11(t)

]
dt (4.14)

−
[
Q22(t) + ptD

2
t + ρ5(t)pt + ρ6(t)

]−1
[ptBt + ptCtDt + ρ3(t)pt + ρ4(t) + Q12(t)]

2 dt = 0

dp̃t + [2ptαt + 2βtptCt + 2ptρ7(t) + ρ8(t)] dt

+ [p̃tAt + ρ13(t) + R1(t)] dt

−2
[
Q22(t) + ptD

2
t + ρ5(t)pt + ρ6(t)

]−1
[ptBt + ptCtDt + ρ3(t)pt + ρ4(t) + Q12(t)][

ptβtDt + ptρ9(t) + ρ10(t) +
1

2
p̃tBt +

1

2
ρ14(t) + R2(t)

]
dt = 0 . (4.15)

The terminal conditions are
pT = H1 and p̃T = H2 .

If the Riccati system (4.14)-(4.15) has a solution pt and p̃t, then the linear quadratic control
problem (2.1)-(2.2) has a solution with the optimal control given by

ut = −
[
Q22(t) + ptD

2
t + ρ5pt + ρ6(t)

]−1

{
[ptBt + ptCtDt + ρ3(t)pt + ρ4(t) + Q12(t)] xt− − [ptβtDt + ptρ9(t) + ρ10(t)

+
1

2
(p̃t + η̃tDt + ρ14(t)) ]−R2(t)

}
, (4.16)

provided that ut ∈ AF and that (2.10) holds. The corresponding value function is given by
(2.11) with

Q6(t) = ptβ
2
t

∫
R
ptγ

2
t (z)ν(dz)
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Q9(t) = p̃tαt

Q3(t) = ptD
2
t + p2

t

∫
R
F 2

t (z)ν(dz)

Q5(t) = ptβtDt +
∫

R
ptγt(z)Ft(z)ν(dz)

Q8(t) =
1

2
p̃tBt .

5 Partial Information Mean-Variance Portfolio Prob-

lem

We now apply our results to a partial information mean-variance portfolio problem in finance.
Suppose we have a market with the following two investment possibilities:

i) a risk free asset, whose unit price S0(t) at time t is given by

dS0(t) = ρtS0(t)dt , S0(0) = 1 ; 0 ≤ t ≤ T (5.1)

ii) a risky asset, whose unit price S1(t) at time t is given by

dS1(t) = S1(t−)
[
atdt + btdWt +

∫
R
ct(z)Ñ(dt, dz)

]
, 0 ≤ t ≤ T . (5.2)

S1(0) > 0 ;

Here ρt, at, bt, and ct(z) are given Ft-predictable processes. We assume that

E

[∫ T

0

{
|ρt|+ |at|+ b2

t +
∫

R
ct(z)2ν(dz)

}
dt

]
< ∞ (5.3)

There exists ε > 0 such that ct(z) > −1 + ε a.s. for a.a. t, z (5.4)

ptb
2
t +

∫
R
(pt + µt(z))ct(z)2ν(dz) > 0 for a.a. t, ω (5.5)

where pt is the solution of the following (5.14)-(5.15).
Conditions (5.3)-(5.4) ensure that the solution to (5.2) is given by

S1(t) = S1(0) exp

{ ∫ t

0
(as −

1

2
b2
s)ds +

∫ t

0
bsdWs (5.6)

+
∫ t

0

∫
R
{log(1 + cs(z))− cs(z)} ν(dz)ds +

∫ t

0

∫
R
log(1 + cs(z))Ñ(ds, dz)

}
.

A portfolio in this market is a predictable process φ(t) = (φ0(t), φ1(t)) ∈ R2 giving the number
of units of the risk free and the risky asset, respectively, held at time t. The corresponding
wealth process x(t) = xφ(t) is defined by

xφ(t) = φ0(t)S0(t) + φ1(t)S1(t) . (5.7)
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We say that φ(t) is self-financing if

dxφ(t) = φ0(t)dS0(t) + φ1(t)dS1(t) . (5.8)

Suppose we are given a subfiltration

Et ⊆ Ft , t ∈ [0, T ] .

Let
ut = φ1(t)S1(t)

be the amount (instead of number of shares) invested in the risky asset at time t. We say

that ut is admissible and write ut ∈ AE if ut is Et-predictable , φ1(t) =
ut

S1(t)
is self-financing

and x(u)(t) := x(φ)(t) is lower bounded. Combining the above we see that if φ ∈ AE then

dx(u)(t) =
{
ρtx

(u)(t) + (at − ρt)ut

}
dt + btutdW (t) + ut

∫
R
ct(z)Ñ(dt, dz) (5.9)

x(u)(0) = x > 0 .

We now consider the partial information mean-variance portfolio problem, which is to find
the portfolio û ∈ AE which minimizes the variance

E
[
xφ(T )− E xφ(T )

]2
(5.10)

under the constraint
E

[
xφ(T )

]
= K , (5.11)

where K is a given constant.
Using the Lagrange multiplier method we see that the problem is equivalent to minimizing

E
[
xφ(T )− λ

]2
(5.12)

for a given constant λ ∈ R, without constraints. We refer to [18] and [8] for more information
about the mean-variance portfolio problem.

If Et = Ft and the coefficients are all deterministic, then this problem was solved in [8]
by using the maximum principle for jump diffusions.

Subsequently this was extended to the partial information case Et ⊆ Ft (but still with
deterministic coefficients) by [3].

We now show how Theorem 3.1 gives us a solution also in the case of stochastic coeffi-
cients.

Here

At = ρt , Bt = at − ρt , αt = 0 , Ct = 0 , Dt = bt , βt = 0

Et(z) = 0 , Ft(z) = ct(z) , γt(z) = 0 , Qij(t) = Ri(t) = 0 ,
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and

H1 = 1 , H2 = −2λ .

Then (3.1) gives the following candidate for the optimal partial information portfolio:

u∗t = − (E [Θ3(t)|Et])
−1 E

[{
Θ2(t)x

(u)(t−) + Θ5(t) + Θ8(t)
}
|Et

]
, (5.13)

where Θi(t), i = 2, 3, 5, 8 are defined by (2.26)-(2.34). Hence

u∗t = −
(

E
[{

ptb
2
t +

∫
R
(pt + µt(z))ct(z)2ν(dz)

}
|Et

])−1

E

[{
(pt(at − ρt) + ηtbt) x(u)(t−)

+
1

2
(p̃t + η̃tbt) +

∫
R
µ̃t(z)ct(z)ν(dz)

}
|Et

]
.

Here pt, ηt, µt(z), and p̃t, η̃t, µ̃t(z) are the solutions of the backward Riccati equations
(2.3)-(2.6), i.e.

dpt = −
{

2ρtpt +
[
ptb

2
t +

∫
R
(pt + µt(z))c2

t (z)ν(dz)
]−1 [

pt(at − ρt) + ηtbt

+
∫

R
µt(z)ct(z)ν(dz)

]2
}

dt + ηtdWt +
∫

R
µt(z)Ñ(dt, dz) ; t < T (5.14)

pT = 1 (5.15)

and

dp̃t = −
{

ρtp̃t +
1

2

[
ptb

2
t +

∫
R
(pt + µt(z))c2

t (z)ν(dz)
]−1 [

pt(at − ρt) + η̃tbt

+
∫

R
µt(z)ct(z)ν(dz)

]}
dt + η̃tdWt +

∫
R
µ̃t(z)Ñ(dt, dz) ; t < T (5.16)

p̃T = −2λ . (5.17)

Summarizing the above we get

Theorem 5.1 Suppose the system of backward Riccati equations (5.14)-(5.17) has a unique
solution pt and p̃t. Define

u∗t = −
(

E
[{

ptb
2
t +

∫
R
(pt + µt(z))ct(z)2ν(dz)

}
|Et

])−1

E

[{
(pt(at − ρt) + ηtbt) x(u)(t−)

+
1

2
(p̃t + η̃tbt) +

∫
R
µ̃t(z)ct(z)ν(dz)

}
|Et

]
(5.18)

Suppose u∗t ∈ AE and that (2.10) holds. Then u∗t is the unique solution to the minimum
variance problem (5.12).
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Remark 5.2 Suppose the conditions of Theorem 5.1 hold for each choice of λ ∈ R. Let x∗λ(T )
be the optimal terminal wealth determined by the optimal control u∗t = u∗λ,t corresponding to
λ. Then, in order to solve the original mean-variance portfolio problem (5.10), it remains
to determine λ such that

E [x∗λ(T )] = K .

We omit the discussion of this equation.
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13 (2003), no. 1, 55–72.

[5] Chen, S.; Li, X. and Zhou, X. Stochastic linear quadratic regulators with indefinite
control weight costs, SIAM Journal on Control and Optimization, Vol. 36 (1998), pp.
1685-1702.

[6] Chen, X. and Zhou, X. Stochastic linear quadratic regulators with indefinite control
weight costs. II, SIAM Journal on Control and Optimization, Vol. 39 (2000), pp. 1065-
1081.

[7] Fleming, W. H.; Soner, H. M. Controlled Markov Processes and Viscosity Solutions.
Second edition. Stochastic Modelling and Applied Probability, 25. Springer, 2006.

[8] Framstad, N. C.; Øksendal, B.; Sulem, A. Sufficient stochastic maximum principle for
the optimal control of jump diffusions and applications to finance. J. Optim. Theory
Appl. 121 (2004), no. 1, 77–98.

Errata, J. Optim. Theory Appl. 124 (2005), no. 2, 511–512.

19



[9] Guo, W. and Xu, C. Optimal portfolio selection when stock prices follow a jump-
diffusion process. Math. Methods Oper. Res. 60 (2004), no. 3, 485–496.

[10] Hu, Y. and Zhou, X. Indefinite stochastic Riccati equations, SIAM Journal on Control
and Optimization, Vol. 42 (2003), pp. 123-137.

[11] Hu, Y. and Song, X.M. Global solution of backward stochastic differential equation with
jumps and application to stochastic LQ control. Preprint, 2007.

[12] Kallianpur, G. Stochastic Filtering Theory. Springer, 1980.

[13] Kohlmann, M. and Tang, S. Global adapted solution of one-dimensional backward
stochastic Riccati equations, with application to the mean-variance hedging. Stochastic
Process. Appl. 97 (2002), no. 2, 255–288.

[14] Lim, A. Mean-variance hedging when there are jumps. SIAM J. Control Optim. 44
(2005), 1893-1922.

[15] Øksendal, B. and Sulem, A. Applied Stochastic Control of Jump Diffusions. Universi-
text. Springer, Second Edition 2007.

[16] Tang, S. General linear quadratic optimal stochastic control problems with random coef-
ficients: linear stochastic Hamilton systems and backward stochastic Riccati equations.
SIAM J. Control Optim. 42 (2003), no. 1, 53–75.

[17] Yao, D.; Zhang, S. and Zhou, X. Stochastic LQ control via semidefinite programming,
SIAM Journal on Control and Optimization, Vol. 40 (2001), pp. 801-823.

[18] Yong, J.; Zhou, X. Stochastic Controls. Hamiltonian Systems and HJB Equations. Ap-
plications of Mathematics 43. Springer, 1999.

20


