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Abstract

Degradation rates in photovoltaic (PV) systems are generally assumed to
be linear and can be estimated from calculated performance data. The as-
sumption of linearity has been challenged by methods allowing for non-linear
degradation rates. Therefore, a closer look at how the estimated degrada-
tion rate changes depending on the performance time series for a utility-scale
PV system is of interest. In this work, a recently proposed algorithm called
Combined Degradation and Soiling (CODS) was used on performance data
from a real-utility-scale PV system. 7 years of meteorological and energy
time series data for a 60 MWp utility-scale PV power plant was analyzed
with the aim of investigating the assumption of a linear degradation rate for
a PV system, by comparing different sizes of calculated performance time
series. A selection of thresholds and filters were applied to raw data before
calculating the temperature corrected performance ratio (PR′

STC) for 4500+
stringsets with a 10-minute resolution. The PR′

STC data was aggregated to
daily stringset values PR′

str,d, and the median of all stringsets was used as
a representation of the system PR′

sys,d. CODS was used for an arbitrarily
chosen PR′

str,d and for PR′
sys,d. A data shift was identified, possibly from sen-

sor calibration or change, and corrected for. A renewed CODS analysis was
performed for the arbitrarily chosen PR′

str,d and PR′
sys,d, which estimated

a degradation rate Dd of -0.411 %/year and -0.177 %year, respectively. A
rolling CODS analysis was then performed on the same two time series, with
a 3 year time window and an increment of 1 month, on the the two different
time series by adjusting for the estimated seasonal component SCd from the
CODS results. The estimated Dd varied between -1.306 %/year and 1.300
%/year for the seasonally corrected PR′

str,d, and between -0.674 %/year and
0.773 %/year for the seasonally corrected PR′

sys,d. Finally. a selection of 10
stringsets where each was from a different inverter, was analyzed with the
rolling CODS method. The estimated Dd for the 10 selected PR′

str,d varied
between -1.309 %/year and 1.300 %/year. By comparing the results from
using CODS with the rolling CODS method, the estimated Dd was shown
to vary depending on which years were analyzed. This demonstrated that a
linear degradation rate for the entire time series could vary significantly from
non-linear estimates Therefore, assuming a linear degradation rate would be
less representative in the first few years of an operational PV system, but
will likely be more representative after this initial period. The results in this
thesis support the need for exploring non-linear changes in the degradation
of PV systems and how this can improve O&M in the future.
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Chapter 1

Introduction

1.1 Background and motivation

Since the 1950s, there has been an ever increasing amount of greenhouse
gas (GHG) emissions released into the Earth’s atmosphere which has lead to
the global average surface temperature increasing over the same period [1].
The large increase in GHG emissions has been attributed to anthropogenic
sources including power generation, transport, agriculture, construction and
retail [2]. Electrical power generation is however the largest contributor to
emissions, as oil and gas combined were 59 % of the share of fuels for global
electrical power generation in 2021 [3]. The demand for renewable power
generation is high, and increasing, as policy makers look to meet their goals
of reaching carbon emission neutrality claimed in the Paris agreement or in
their own national climate pledges. To reduce GHG emissions, processes
that traditionally used fossil fuels as an energy source can transition to using
electricity instead. Measures such as these contribute to larger demands for
renewable power generation, not to mention the spike in oil and gas spot
prices in 2022 motivating further the installment of more renewable power
generation [2].

The installed capacity of solar power systems has experienced a rapid growth
globally over the past 20 years going from 1.09 GW in 2001 to 843.09 GW in
2021 [3] [4]. A considerable driver for this change has been the substantial
decrease in cost of solar panels over the last decades [5]. This has made PV
systems increasingly competitive in a market looking for renewable alterna-
tives to fossil fuels as a power source for generation of electricity. For PV
systems to further improve its standing as an alternative for electrical power
generation, efficient tools for operation and maintenance (O&M) are needed
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to minimize losses during production. PV systems can be installed locally
on home owners’ rooftops, as well as in less populated areas where they may
cover large areas of land. For utility-scale PV systems, the requirement of
area for installation combined with a significant amount of solar irradiation
may often necessitate remote monitoring with periodic inspection by quali-
fied laborers with specialized equipment [6]. As PV systems are comprised
of many electrical components, there is a myriad of problems that may occur
when operating a PV plant. The remoteness of a plant and the skilled la-
bor required for maintenance presents challenges, from an O&M standpoint,
when evaluating the best course of action for minimizing losses of power gen-
eration. Over time, the compounded losses can ultimately lead to substantial
forfeited income for the owner of a PV plant. The irreversible losses caused
by faults in a PV system are collectively considered as degradation and can be
difficult to estimate. Diagnostic tools for accurately estimating degradation
are therefore necessary, and can be used to determine whether the equipment
is performing within the warranted range of degradation. Degradation anal-
ysis, along with monitoring equipment, can provide the information to secure
well-informed solutions that may optimize the operation of a PV plant, possi-
bly secure a longer lifetime and will likely improve the competitive standpoint
for operators in a growing market.

1.2 Scope of work

Tools for degradation analysis are currently in development and methods for
calculating degradation are often based on a year-on-year (YoY) method [7].
However, such methods would not take into account the influence of soiling,
i.e., the accumulation of dust and other particles on the solar panels. This
will call into question the validity of estimated degradation rates without
accounting for soiling. The issue is particularly challenging for newly opera-
tional PV systems which will require time to establish reliable estimates of
soiling in order to optimize maintenance costs against production losses due
to soiling. Recently, an algorithm that combines the analysis of degradation
and soiling in a PV system has been proposed [8]. The Combined Degrada-
tion and Soiling (CODS) algorithm was jointly developed by the Institute for
Energy Technology (IFE) and the National Renewable Energy Laboratory
(NREL), and is currently available for use in an open-source Python library
called Rdtools [9]. CODS shows potential for giving a more accurately esti-
mated degradation rate, but needs to be further tested with real-world data
to be able to establish itself as an industry standard [10] [11]. The YoY
method assumes a linear degradation rate which may not be accurate for PV
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power plants, especially when newly operational, as PV modules are known
to experience a higher degree of degradation in this period and towards the
end of life [12]. Additionally, climate and temperature would also have an
effect on the degradation rate [13]. Module warranties often provide a guar-
anteed performance level the first year of output, followed by a limit on yearly
degradation until the end of the warranty period. However, it may be more
accurate to assume a linear degradation over time, as the PV modules and
equipment of the power plant transition out of the infancy stage. Neverthe-
less, standard practice is to consider the degradation rate to be linear, at
least until better methods can be established. By way of accurately estimat-
ing the degradation rate using data from a PV power plant, the use of CODS
can be investigated and the analysis can be used to comment on the change
in degradation.

Therefore, the aim of this thesis will be to investigate the use of CODS on
real-world time series data gathered from a utility-scale PV power plant. The
objectives of the thesis will be to:

• Investigate meteorological and energy generation data from a large
utility-scale PV power plant

• Choose and develop a selection of filters to be applied in order to enable
CODS analysis

• Investigate the assumption of linear degradation by comparing the size
of the time series

This thesis has limited itself to work within a certain scope, in order to focus
the discussion and adhere to a time frame for completing this work. The
method will not include a section on optimizing each filter for improving
data quality before subsequent analysis using CODS. In this work, it is as-
sumed that the default parameters for the CODS algorithm will provide an
acceptable degradation analysis based on the recorded data from a PV plant.
Furthermore, it is assumed that a demonstration of which data is filtered will
suffice to prove the filter’s relevance for the method.
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Chapter 2

Theory and method

2.1 The solar power source

Figure 2.1: Different angles between the sun and a position on a plane with their symbols
including; solar zenith θz, elevation αs and azimuth γ angles. The tilt angle β is commonly
used when describing the angle of inclination for a solar panel. The figure is adopted from
Yilmaz et al. [14].

When solar radiation travels through the atmosphere, a significant portion
is attenuated and scattered by different mechanisms. Due to this, solar irra-
diance is the measure of solar energy received at Earth’s surface. The angle
between the Sun’s current position relative to it’s zenith, is called the solar
zenith angle θz. The solar altitude, or elevation angle, αs, is the comple-
mentary angle to the solar zenith angle and is more commonly used when
considering the tilt of a solar panel. The reference point, or panel in question,
is also positioned in facing a horizontal direction. The angle formed between
the direction normal to a panel and a south-facing direction is called the
azimuth angle γ, and the angle formed between the surface and the back
of the panel is called the tilt angle β. Another commonly used angle is the
angle of incidence (AOI), which is formed between the Sun’s position and
a line perpendicular to the surface of a solar panel. High AOI angles are
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generally not desired as this leads to a higher degree of reflection on the solar
panel’s surface and lowering the incoming radiation to the solar cell. The
path travelled by the sunlight can be described in the terms of the air mass
(AM) ratio and is expressed in equation 2.1:

AM =
1

cos(θZ)
(2.1)

Here, θz is the solar zenith angle. A value of AM = 0, simply written AM 0,
means that the sunlight does not cross the atmosphere. AM 1 would mean
that the sunlight travels directly from over the reference point on the Earth’s
surface and essentially travels the shortest path. An industry standard of AM
1.5 is used for testing and certification purposes, and is visualized in figure
2.2 to show the spectral distribution of AM 1.5. The figures shows that only
certain wavelengths of the solar radiation reaches the Earth’s surface.

Figure 2.2: The ASTM G-173-03 reference spectra for solar irradiance. "Etr" stands
for extraterrestrial irradiance, otherwise known as AmM0, while "Global tilt" represents
AM1.5 in this standard. The figure is adopted from Gueymard et al. [15].

The total irradiance by a horizontal surface is known as the Global Horizon-
tal Irradiance (GHI) and encompasses the two components; Direct Normal
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Irradiance (DNI) and Diffuse Horizontal Irradiance (DHI) by the relation:

GHI = DHI +DNI · cos(θz) (2.2)

The DNI signifies the irradiance arriving on a surface normal to the sun’s
current position, while the DHI signifies the irradiance scattered by the at-
mosphere. The ratio between irradiance scattered by a surface and the total
irradiance received by the same surface is called the albedo. An albedo of
1 means that all incident irradiance is reflected off the surface. The GHI
implies that the surface in question is parallel to the Earth’s surface and the
contribution of DNI and DHI can vary depending on the solar altitude and
zenith angles. However, PV systems are often positioned differently than a
horizontal surface and the irradiance is typically then measured in the plane-
of-array irradiance (POAI). The POAI consists of 3 components that can be
calculated using GHI, DNI and DHI:

POAI = Eb + Eg + Ed (2.3)
Here, Eb is the beam component, related to DNI by:

Eb = DNI · cos(AOI) (2.4)

While the ground reflected component Eg can be determined by GHI, albedo
A, and the tilt angle β:

Eg = GHI · A · (1− cos(β))

2
(2.5)

Finally, the diffuse sky component Ed is not as simple to calculate. There
are different models that estimate this component but generally assume that
the component can be split into 3 different contributing factors. The first
factor is the uniform irradiance from all directions and the second factor
is the circumsolar brightening, as the irradiance close to the DNI will be
slightly higher. The third and final factor is the horizontal brightening, as
the irradiance will increase slightly as it approaches the horizon. Examples
of models that are used to estimate the diffuse sky component Ed include
the Perez model [16] and the isotropic model [17].

The irradiance measured at a site will be influenced by geographical fea-
tures like vegetation, water bodies, clouds, snow, rock formations and an-
thropogenic structures. Different type of actinometers; instruments used to
measure the intensity of radiant energy, are typically used in PV plants for
measuring irradiance. For instance, pyranometers measure GHI, or DHI, and
can be placed on an array in order to measure the POAI. Pyrheliometers are
used to measure the DNI and are typically mounted on arrays that track the
Sun’s movement throughout the day [18].
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2.2 PV systems

2.2.1 Solar PV systems

Solar PV systems exist in many different parts of the world. The size and
capacity of each system can vary greatly depending on their application. For
instance, smaller systems installed on residential rooftops can cater to local
demands while larger systems spanning large swathes of the country side can
supply the power demand of an entire city. Some systems may be isolated
from the power grid as they are designed to supply power to remote ar-
eas, while others may be integrated into buildings and structures. However,
it is the utility-scale power plants that have the largest capacities and are
designed to meet a planned power generation. Every PV system contains
different components that together form a system capable of generating and
delivering power.

The working principle on how PV systems generate power comes from a
property some materials exhibit called the photovoltaic effect. This means
that they can absorb photons from sunlight and convert the energy to excite
electrons into a state where they can act as charge carriers. A photovoltaic
cell, or solar cell, is generally composed of a junction between a p-type and
an n-type semiconductor and connecting electrodes with an external circuit.
A forward bias applied to the cell will result in current flow across the cell.
The commercial standard for the PV material in solar cells today is poly-
crystalline silicon (c-Si) with a smaller portion of the market constituting of
monocrystalline silicon (m-Si) and thin film cells [19]. In regards to tempera-
ture, an increasing cell temperature is well-known to cause a reduction in the
efficiency of the solar cells [20]. In figure 2.3, the effect can be seen to have
a slight increase on the current in the solar cell as temperature increases,
but the voltage has a stronger decreasing effect. This results in an overall
decrease in power as temperature increases.
The structural design of a solar cell can vary as texturing surfaces to trap
light are often applied. Solar cell architectures with silicon based (Si) struc-
tures, can include additional layers in the cell in order to improve the cell
efficiency. This is done by passivating carrier recombination, which is the
process of losing charge carriers before they have reached an electrode. Ad-
ditionally, choosing different metals as electrodes and how they are placed
along the cell surfaces can also lead to passivating carrier recombination. For
instance, adding a back surface field (BSF) of Aluminum will reduce carrier
recombination at the back of the cell [23]. The passivated emitter and rear
contact (PERC) structure introduces localized BSF contacts surrounded by
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(a) (b)

Figure 2.3: Effect of temperature on the a) Current-Voltage and b) Power-Voltage curve
of a solar cell under different temperatures. The figures are adopted from Wang and Chen
[21].

Figure 2.4: Examples of different silicon-based bifacial solar cell designs. a) PERC b)
PERL c) PERT d) TOPCon e) Interdigitated back contact (IBC) and f) silicon hetero-
junction (SHJ). The figure is adopted from Molto et al. [22].

a passivation layer that reduces recombination and increases the reflection
of light at the back surface [24]. Different to the PERC is the passivated
emitter rear locally diffused (PERL) where the local back contacts are doped
material, while the passivated emitter rear totally diffused (PERT) structure
has a complete doped back layer [25]. By adding a thin passivating oxide
layer to the diffused back layer, the cell is known as a tunnel oxide passi-
vated contact (TOPCon) cell and further reduces the surface recombination
between the metal electrode and semiconductor[26]. Rear contact cells, like
the interdigitated back contact (IBC) cell, remove the electrode contacts
at the front of the cell and thereby eliminate shading caused by the front
contacts [27]. The heterojunction cells are different in the sense that they
are formed by two different semiconductors [23]. For example, the silicon
heterojunction (SHJ) cells are formed with crystalline silicon wrapped with
amorphous silicon on each side [28]. The solar cell designs even permit both
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surfaces to convert sunlight into electricity, which are called bifacial solar
cells [29]. Even though PERC designs have the largest market share today,
TOPCon and SHJ designs are expected to increase over the next decade [30].

Figure 2.5: Configuration and difference between the parts of a PV array from cells to
modules and strings. The figure is adopted from Zsiborács et al. [31].

By connecting multiple cells one after the other, the series can now be consid-
ered a solar module as seen in figure 2.5. If a module is placed within a frame
which provides protection and stability, it is now considered a solar panel.
Multiple strings, which are panels connected in a series, may be connected in
parallel to each other with an inverter. At the inverter, the type of electrical
current is changed from the produced direct current (DC) to an alternating
current (AC). Multiple inverters and strings can be present in what is now
considered a PV system, and further require a form of controller module that
adjusts the target power, or power set point, of the entire system. Invert-
ers can also include power tracking functionalities in order to optimize the
power production [32]. The entire fleet of panels or strings in a PV system
is called the array and can be mounted and faced in different ways. The tilt
β and azimuth γ angles determine the direction of which the array is facing,
as the PV modules can be fixed while others are built with tracking systems.
Such tracking systems, being either 1 axis or 2 axis systems, change the tilt
β and azimuth γ angles of an array in an attempt to maximize the POAI,
and thereby, the power produced. A few examples of tracking systems can
be seen in figure 2.6.

2.3 PV system performance metrics
As the PV system generates electrical power, the performance can be mon-
itored and may vary greatly throughout the day. The performance of a PV
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Figure 2.6: Different tracking configurations for 1 or 2 axis systems. The figure is adopted
from Gutierrez et al. [33].

system is expected to degrade over time as the natural wearing of the mod-
ules and electrical components in the PV system causes a loss in performance.
The influence of faults and available irradiation also influences measurements
which necessitates a selection of methods for calculating performance indi-
cators that can accurately describe the system performance.

Energy yield YA and reference yield Yref

A PV system or array that generates energy will have a rated energy that is
normally given under STC conditions and gives an indication of the expected
quantity of energy to be generated. The actual energy generated compared
to the rated energy is called the yield Y and can be expressed in various ways.
An overview of yield and associated terms is provided in the IEC standard for
Photovoltaic System Performance [34]. If considering the measured energy
produced by the array Ek over a defined time period k compared to the rated
energy of the array P0, then it is called the array energy yield YA where:

YA =
Ek

P0

(2.6)
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A different way of considering the yield is comparing the total in-plane irra-
diance Hi to the array’s rated reference in-plane irradiance Gi,ref . The latter
is set by the irradiance at which P0 is determined; 1000 W / m2 for standard
test conditions (STC). This is called the reference yield Yref where:

Yref =
Hi

Gi,ref

(2.7)

The performance ratio PR and temperature corrected performance
ratio PR′

STC

Power produced by a stringset, inverter or entire system can vary greatly
throughout the year, hour, or minute depending on the meteorological condi-
tions and available irradiation. Therefore, power production solely estimated
by a model is not always an accurate estimate of performance and could be
compared to normalized generated energy for the expected production of
the array in question. A measure of performance can be represented by a
performance index PIk for a defined time period k:

PIk =
Ek

E ′
k

(2.8)

Where E ′
k is the expected energy generated by the array, and is calculated

by using a chosen performance model. The performance ratio PR is a nor-
malized performance measurement and is the quotient of the array energy
yield YA to the reference yield Yref :

PR =
YA

Yref

(2.9)

Here, the performance of the system is displayed and includes the faults or
inefficiencies due to components and the array temperature of the system.
Further correction for the module temperature is therefore pertinent by cal-
culating the temperature corrected performance ratio PR′

STC :

PR′
STC =

PR

(1 + (γ ∗ [Tmod − Tref ]))
(2.10)

Here, γ is the relative maximum power temperature coefficient of the module,
Tmod is the measured module temperature, and Tref is the reference tempera-
ture under STC conditions which is 25 ◦C. An overview of performance ratios
and associated terms is also provided in the IEC standard for Photovoltaic
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System Performance [34]. Since the PR′
STC takes into account the effect of

module temperature, it can be used as a model of expected energy and will
thereby be considered a performance index PI.

For sun-daily measurements, the chosen performance index can vary greatly
and may be difficult to use further for analysis purposes. An aggregation
of performance indices into daily values is a more robust alternative and
less sensitive to outliers of intra-daily variation. Therefore, the intra-daily
stringset PR′

STC values can be used to calculate the median for all data
points within a day to represent the daily performance value for a stringset
PR′

str,d:

PR′
str,d = Median[PR′

STC
K
k=1] (2.11)

Here, K stands for all the data points in a day that belong to the stringset.
By the same principle, the median for all PR′

str,d within a PV system can be
calculated to represent the daily system PR′

STC , written as PR′
sys,d. For N

number of stringsets in a PV system:

PR′
sys,d = Median[PR′

str,d
N

n=1
] (2.12)

2.4 Time series analysis

Time series analysis is a discipline within data analysis that considers the
temporal development of variables, in order to run statistical analysis which
can be used to establish trends in the historical data and to forecast future
trends. A time series, as the name suggests, includes data points that are
time stamped and logged by sensors measuring values such as temperature,
voltage, or rainfall. A typical time series can be decomposed into different
components, all of which together make up a model that fits the time se-
ries. For instance a classical model of a time series can be expressed by the
following:

yt = Tt ∗ St ∗ It (2.13)

In this equation, the time series yt for a time period of t is made up of a
trend component Tt, a seasonal component St and an irregular component
It. Tt displays the overall movement of the time series while St reflects the
seasonal variation throughout a time series. Finally, It is the remaining
signal that represents small irregular variations in the data set, otherwise
called the noise, residual or random variation trend. The practice in the PV
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Figure 2.7: An example of a typical time series decomposition into a trend, seasonal and
random component. The figure is adopted from Svetunkov [35].

industry is to determine the degradation in a PV system by decomposition
of the time series as in equation 2.13. For the case of PV systems, there
is an expected seasonal variation of irradiance throughout the year while
the trend component Tt represents the decline of irreversible performance
of the system, otherwise known as the degradation of the PV system. It is
important for operators and investors to determine the degradation of a PV
system in order to estimate the expected output of a PV system over its
lifetime. The challenge arises when attempting to factor out the seasonality
St of the time series and the irregular signal It. In order to establish the
performance loss of a PV system, time series data is viewed and analyzed
to model the PV system performance over time. External influences to the
PV system like curtailment and power outages can be corrected for, in order
to examine the PV system performance influenced only by the system and
module level faults. This information would provide a more accurate estimate
of the PV system performance and can be used to determine a course of action
to improve the power production by the PV system. In addition, filters can
also be used to remove data that appear as noise and are not representative
of the system performance.
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2.4.1 Data screening and filters

There is a large variety of sensors on the market to select from when looking to
monitor factors like temperature and irradiation. A sensor would regardless
require maintenance and calibration to ensure its function and durability
over time. Therefore, sensors are likely to have some issues over their life
times and for this reason it becomes necessary to screen the data before
further investigation. Unreasonable large or small data points can be logged
by the sensor due to a various of reasons like internal malfunctions, poorly
connected wiring or a loss of power triggering a shut down. Data screening
can be initially performed by applying maximum and minimum thresholds
to remove such points and improve how representative the collected data
are in terms of the operational conditions of the PV system. Data filtration
is used prior to calculating system performance as there are many sources
of influence on the energy produced from each array. The balance between
reducing noise in the time series and keeping a significant amount of data
points is an important concern when applying filters to data sets. The balance
stems from the fact that data points representative of the performance will
likely be masked by effects occurring to real PV systems thus warranting
the use of data filtration. On the other hand, uncontrolled or overt use of
filtration will remove significant amounts of data that are representative of
the PV system’s performance. The consequence of data filtration may have
significant effects on the outcome of calculations based on filtered data sets
[36]. Therefore, an examination of filters and their effect after applying said
filters on performance data, is necessary to understand the final results.

AOI filter

An angle of incidence filter can be used to filter out time stamps where the
incident direct solar radiation has an AOI that is too high. The spectral
response of the module at varying AOI is also dependent on the degree of
soiling [37]. For sub-daily measurements, a typical AOI filter will remove
data points from late in the evening, at night, and during the early morning.
Data points during these hours are associated with low power generation and
are not indicative of the current performance.

Solar elevation filter

Similar to the AOI filter, a solar elevation filter will remove data points
until the sun has reached a given solar elevation αs. Therefore, for sub-daily
measurements, a typical solar elevation filter will remove data points during
late in the evening, at night, and during the early morning.
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Clear sky filter

A clear sky filter calculates first times associated with clear sky conditions,
where there is little to no shading, e.g. from cloud coverage, and uses this
to filter out time stamps that do not experience clear sky conditions. For
sub-daily measurements, a clear sky filter will contribute to reduce unrepre-
sentative performance data that appear as noise compared to performance
data during clear sky conditions. This can be seen in figure 2.8 where the
start of the day is experiencing clear sky conditions visible by the smooth in-
crease in GHI. However, in the afternoon, the GHI measurements are jagged
and vary often from one hour to the next, thereby indicated as non-clear sky
conditions.

Figure 2.8: Example of a clear sky filter detecting non-clear sky conditions, in Boulder,
Colorado on June 1st, 2006. The black crosses represent time stamps that were determined
to be experiencing non-clear sky conditions. The figure is adopted from Marion [38].

Curtailment filter

Curtailment occurs when the TSO imposes a reduction in power production
and the reason is primarily due to a lack of available capacity on the trans-
mission grid at certain times, but can also be due to issues with voltage or
interconnections [39]. A curtailment filter would take into account when the
system purposely reduces its’ output and filters out these data points, as
the power produced during these time stamps are not representative of the
actual system performance. This can be seen in practice in figure 2.9 where
the power output of the system is leveled due to curtailment, and can also
be seen by a drop in voltage.
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(a) (b)

Figure 2.9: Effect of curtailment a) on the power generated and b) on the voltage of a PV
system. The figures are adapted from Luthander et al. [40].

Clipping filter

Clipping occurs when the DC to AC capacity of an inverter is met or is about
to be exceeded. To prevent overload and faults to the electrical components,
the inverter reduces the voltage and thereby containing the AC power output
of the inverter. An example of this can be seen in figure 2.10 where a system
with a high enough DC to AC ratio will experience clipping if the power
generation reaches the striped line. Like curtailment, during clipping the
power generation at inverter level will remain leveled until the production
reaches the determined DC to AC ratio.

Figure 2.10: Effect of inverter clipping on the system power output. The dashed line
shows the capacity of the inverter and the clipping losses during peak production hours,
highlighted in yellow during a high DC to AC ratio. The figure is adopted from Hazim et
al. [41].
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2.4.2 Time series modelling

Working with large data sets can be done in a variety of ways including
database programs and libraries developed specifically for data analysis.
There are many different types of libraries created for this in mind, but
Python is a popular alternative for time series analysis in the PV industry.
From data visualization to data manipulation, Python has become a well
supported and popularly used open-source programming language for data
analysis. The following are available resources for modelling and analyzing
time series data.

NumPy NumPy is a package that contains different mathematical func-
tions and routines that are commonly used in other libraries developed for
data analysis. This means that functionalities in such libraries are often
reliant on using NumPy and its functions. Although NumPy may not be
the literal library being called in the code, it certainly often works in the
background for Python to work as the intended tool [42].

Pandas The Pandas library contains tools to read, analyze and manipulate
large data structures into tabular objects called data frames or series. Devel-
oping filters and applying them on the data frames is a use-case in working
with times series data from PV systems. In particular to working with time
series data, date-time indexation streamlines the use of builtin functions ap-
plied to the data. Other python packages often take use of Pandas in their
modules in conjunction with NumPy [43].

Pvlib The Pvlib package developed and maintained by Sandia National
Laboratories is an open source library for simulating the performance of PV
systems. Tools provided by the package include functionality for time series
analysis, modelling and filters used for this purpose. Additional functionali-
ties include forecasting and diode modelling [44].

Rdtools Rdtools is an open source library also for time series analysis in
PV systems developed by researchers at NREL to produce better estimates
of degradation for a PV system. The library itself relies on using Pandas and
Pvlib, as well as the contributions of different researchers that continue to
improve upon the library [9].
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2.5 Soiling, faults and degradation

2.5.1 Soiling

The importance of soiling in PV systems

According to a recent report by the International Energy Agency (IEA), soil-
ing is the most influential factor on the loss of energy yield from PV systems
after irradiance [45]. Especially in dry climates or areas that experience snow-
fall, a buildup of soiling necessitates measures to counter the impact it has
on the energy yield. However, measures like applying anti-soiling coatings
or increasing the frequency of cleaning by maintenance crews or automated
systems will result in higher maintenance costs for the PV system. In a
study by Ilse et al. [46], it was estimated that in 2018, soiling caused a loss
of annual PV energy generation of at least 3-4 %, even when optimized by
weighing cleaning costs and revenue losses from lowered production. This
number was also expected to grow in 2023 as it was reported that installa-
tion of PV modules is increasing in high-insolation areas which are generally
more exposed to soiling. Furthermore, the reduction of electricity prices from
governmental policies like feed-in tariffs lowers the incentive for cleaning, as
the revenues from energy yield recovery would be lower. Also, modules with
higher efficiencies are consequently prone to higher losses due to soiling com-
pared to modules with lower efficiencies.

A metric of describing the loses due to soiling is the soiling ratio SR. The soil-
ing ratio SR is a dimensionless value generally defined as the ratio between
the performance of a system under soiling conditions Performancedirty to the
performance output of a system without soiling conditions Performanceclean:

SR =
Performancedirty
Performanceclean

∈ [0, 1] (2.14)

Soiling mechanisms

Airborne dust particles are the primary source of soiling and relative humid-
ity, wind speed, wind direction, precipitation have all been shown to influence
the degree of soiling [45]. Other sources of soiling include bird droppings, al-
gae, mosses, pollen and snow [47][48]. The accumulated soiling of dust is the
net result of deposition, rebound and resuspension of particles on the panel
surface over time [49]. Deposited particles are those that come in contact
with the panel surface, and the particles that rebound are those that do not
adhere to the surface. The resuspension of particles occurs when wind gusts
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cause the particles to become airborne again. Whether particles are washed
or resuspended, the effects of soiling are reversible and the transmission losses
of light due to soiling can be consequently be recovered. A separate natural
cleaning mechanism is rainfall, but dew formation by increased humidity is
reported to increase the degree of soiling as it causes increased particle ad-
hesion to the panel surfaces [46]. The degree of soiling within the same PV
system can be non-uniform [50], typically concentrated on the first rows fac-
ing the wind direction transporting dust particles and generally towards the
lower end of the panels as seen in figure 2.11. Non-uniform distribution of
soiling presents a challenge in accurately measuring the degree of soiling for
the PV system. It is therefore beneficial to have multiple measurement points
throughout the PV system to account for non-uniform distribution of soiling.

Figure 2.11: Soiling concentrated on lower end of solar panels. The figure is adopted from
Kagan et al. [51]

The cleaning of panel surfaces can be done manually or automatically, and
generally requires water for washing but efforts to establish methods without
the need for water have been reported [52]. This is of interest as the supply
and use of water for cleaning soiled modules in a PV array can be signifi-
cantly more difficult and costly to supply in remote areas. Methods are also
generally separated into manual cleaning, performed by maintenance crews,
semi-manual, by using machinery to clean multiple panels at the same time,
or fully automated systems. The latter of the three generally requires higher
capital costs and is therefore less frequently seen, but might be a viable option
in highly remote areas [47].
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Soiling measurements

Soiling can be measured through soiling stations, and by optical methods like
optical soiling measurements (OSM) or soiling image analysis (SIA). Soiling
stations are described in standard IEC 61724-1 [34] and involve using a pair
of reference PV devices, like cells or modules, where one is cleaned regularly
while the other is permitted to soil naturally. OSM uses photosensors that
measure the degree of soiling on small glass surfaces which are allowed to soil
naturally. These sensors have no moving parts and generally do not require
cleaning to function [53]. However, OSM sensors are relatively new and are
still being field tested, but show promise in being used for PV systems [54].
The SIA sensors leverage imaging and post-processing of aerial photographs.
The images can be taken using drones [55] or satellite imagery [56] and are
the youngest type of soiling measurement sensors to have been tested.

Figure 2.12: A soiling station showing an automated periodical cleaning functionality for
the lower cell. The figure was adapted from Barnes [57].

2.5.2 Faults in a PV system

From when modules leave the assembly line until a PV system is built, there
can be be faults occurring on a system level and others occurring at the
module level. Over the lifetime of a PV system, there will also likely be
faults occurring that affect the power production of the system. Faults can
be categorized by system or module level faults, as the causes and measures
for handling faults will vary accordingly. Faults on a system level include
faulty connection and junction box wiring, inverter faults, and sensor faults
like drift, bias or complete failure [32]. Faults on a module level include soil-
ing, corrosion, cracking, delamination, discoloration, hot spots, light induced
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degradation (LID) and power induced degradation (PID) [58].

Figure 2.13: Typical fault scenarios for PV modules and systems over the lifetime of the
system. The figure is adopted from Köntges et al. [58].

The individual parts of a PV system are tested and rated under standard
testing conditions (STC) to establish expected performance when used in
operation. The system nominal power is thereby a known quantity along
with the inverter nominal power and the stringset nominal power. However,
in operation the PV system will rarely produce at the STC rated power as
these conditions are rarely seen in the field. Primarily, the availability of
direct solar radiation is limited to a certain amount of hours in a day. This
implies that the number of peak power production hours, where the PV sys-
tem produces power close to or at the nominal system power, is limited. The
ambient temperature of the site will also have an impact on the PV system,
as Light- and elevated Temperature Induced lifetime Degradation (LeTID)
is known to occur over the lifetime of a silicon-based PV modules [59][60].
Furthermore, clouds as well as shading can occur during daylight hours which
will further reduce the power produced by the PV system. Depending on the
local climate, a site will also experience a degree of soiling, where the PV
modules become gradually covered by dust particles and thereby reduce the
portion of incoming solar radiation on the PV array.

Considering performance, irreversible faults will compound the production
losses over time which gives rise to the term degradation rate. Performance
losses can be a product of any number of faults, but some may be reversible,
like soiling. The degradation of PV systems is known to depend on climate,
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as hotter and more humid climates are reported to have high degradation
of PV modules [61] [62]. In terms of the climate and irradiation classify-
ing Kõppen Geiger PV (KGPV) zones [63], PV systems in AH (A - Tropical
climate, H - High irradiance) zones are modelled to have the highest degrada-
tion rates, even higher than AK (K - Very high irradiance), as the increased
humidity contributes to increased degradation [64]. Therefore, considering
climate and its’ impact on the faults that may occur in a PV system is key
to better understand the degradation of a PV system over time.

2.5.3 Degradation rates

Figure 2.14: An illustration of the effect of simulated degradation rates Rd on the perfor-
mance ratio over time. The figure is adopted from Romero-Fiances et al. [65].

Degradation is commonly assumed to be linear, where time series data is
used to determine a single degradation rate for the entire time series. This
assumption might prove to be problematic as PV systems experience both
reversible performance loss, like soiling, and irreversible performance loss,
like module degradation. The impact of degradation can be severe over time
and is demonstrated by figure 2.14. Degradation rates have been estimated
by linear regression methods like ordinary least squares (OLS) which includes
multiple predictors [66], and robust linear regression (R-LR) which which is
less affected by outliers while being more demanding computationally [7].
Classical signal decomposition (CSD) and auto-regressive integrated moving
averages (ARIMA) [66] [67] [68] have also seen its use and are both based
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on moving averages to estimate a degradation trend. A sort of continuation
of CSD is the seasonal trend decomposition with LOESS (STL) [69]. Here,
LOESS stands for locally estimated scatterplot smoothening and handles sea-
sonality in a time series better as it is more robust [70]. Attempts at reducing
the underlying data structure in order to retain variables that show the most
substantial effect on degradation have also been made through robust prin-
cipal component analysis [65] [71]. Year-on-year (YoY) methods have shown
to outperform regressions based methods in the presence of outliers, strong
soiling and pronounced seasonality [72][73]. However, it is difficult for the
YoY-method to detect non-linearities in the degradation rates, as the method
relies on at least two years worth of data, and compares the change for a data
points between consecutive years. Adler et al. [74] reported having used a
YoY-method on daily PR′

STC data in an AH KGPV zone, estimating a me-
dian degradation rate of -1.45 %/year for the nominal system degradation
measured on the DC power of the inverters. The authors referenced the first
year of the performance time series experiencing a more rapid degradation
than the subsequent years, and that the chosen YoY-method would likely not
be representative of this section. They also compared the degradation rates
to a PV system in a BK/CK (B - Desert climate, C - Steppe climate) KGPV
zone, where the PV system in the AH KGPV zone appeared to degradation
faster. However, the article reported to assume negligible soiling, as the nei-
ther park was reported to be located in an area with much soiling and that
both practiced regular cleaning, which was determined using soiling sensors.

There has also been published work investigating methods for estimating
non-linear degradation. The principal motivation for investigating non-linear
behavior is the financial impact it may have in regards to deviations from
expected production and increased costs for operations and maintenance.
Non-linearities have been reported for modules, especially in the beginning
of life and during the wear-out phase, and will have an effect on the finances
of the PV system [12]. Theristis et al. [75] applied the Facebook Prophet
(FBP) algorithm to detect change points in the time series. Change points
can be found automatically or for a specific amount given to the the FBP
algorithm and it assumes a trend, seasonal, holiday (not used) and error com-
ponent to decompose the time series. The trend component is then divided
into sections using the identified change points and OLS is used to estimate
the degradation rate for each section. The change point method was then
used, restricted to 1 and 2 change-points, on monthly PR values for different
PV systems over an 8-year period. The results showed that the PV systems
with c-Si modules displayed a linear degradation, while the m-Si and thin
film modules displayed non-linearities. It is worth mentioning that all of the
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tested PV systems were of around 1000 kWp and situated in a CH KGPV
zone. It can be assumed that for larger PV systems situated in areas with
more humidity will experience a higher degree of degradation, thus increasing
the chance of non-linearities in the modules. More recently, different change-
points methods were compared using synthetic data sets and for different
climates [76]. The methods included were FBP, piece-wise linear regression
(PW-L), the Bayesian estimation of abrupt change, seasonality and trend
(RBeast) and the Sequential and Batch Change Detection Using Paramet-
ric and Nonparametric methods (CPM). Here, the FBP and PW-L methods
performed the best in terms of mean absolute errors (MAE) of change-point
location and degradation rate in each segment. However, it was mentioned
in the study that the synthetic data sets do not include any influence from
soiling, temperature, sensor drift and other factors that have an impact on
real PV systems. FBP was also pointed at as a computationally demanding
method for estimating non-linear degradation rates. This may not be a fa-
vorable approach for degradation analysis using many years of data, not to
mention if soiling is to be accounted for as well.

Testing non-linear methods for estimating degradation on real data has also
been investigated by by Lindig et al. [77]. Here, a multi step performance
loss (MS-PL) algorithm was used, which estimates the optimal amount of
change points for dividing the time series into separate linear degradation
segments. The MS-PL algorithm was used on PR and PR′

STC data for PV
systems with various solar cell technologies in a DM (D-Temperate climate,
M-Medium irradiation), and without accounting for soiling. For the c-Si PV
systems, the estimated linear degradation rates by using STL varied between
-1.56 %/year and -0.76%/year, while the non-linear degradation rates using
MS-PL varied between -4.55 %/year and 1.06 %/year. It was reported that
all c-Si PV systems exhibited an increase in performance during the first 3
years, before exhibiting a rapid degradation for about 4 years, before settling
at a smaller degradation rate. The study also pointed out that change points
were sensitive to maintenance events, which would be beneficial for servicing
concerns, but do not increase the understanding of degradation and system
characteristics. It was therefore concluded that the MS-PL would be a good
choice for analysts who are not familiar with the PV system to get a quick
status analysis.

Livera et al. [78] reported the use of methods for finding non-linear degra-
dation rates on 7 years of performance ratio PR data, for 11 PV systems in
a CH KGPV zone. For the c-Si PV system displaying a non-linear degrada-
tion trend, results from using the FBP method showed that the degradation
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rates varied between -1.21 %/year and -0.90 %year, without accounting for
soiling. Here, an interesting point from the results was that the number
and location of identified change-points, and thus the estimated degradation
rates, depended on the choice of algorithm. The study showed how identified
change-points could be detecting faults, soiling or maintenance events. This
would warrant accounting for soiling and maintenance in performance data
if representative degradation rates are to be estimated.

2.5.4 Combined degradation and soiling (CODS)

Figure 2.15: A flowchart explained the steps in the iterative signal decomposition in the
CODS algorithm. The figure is adopted from Skomedal and Deceglie [8].

In an effort to combine the effects of soiling and degradation on performance,
CODS is a recently developed an algorithm that estimates a degradation
rate of a PV system [8] and has been tested on data from utility-scale PV
systems [10][11][79]. The algorithm assumes that the performance index can
be divided into separate components, that each have a multiplicative effect
on the performance index. The time series components for an amount of
days d are as follows:

PId = SRd ∗ SCd ∗Dd ∗ nd (2.15)

Here SRd is the daily soiling ratio, SCd is the daily seasonal component, Dd

is the daily degradation and nd is the daily noise that is left after accounting
for the other components. The work flow of the algorithm is summarized
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Figure 2.16: Illustrating the working principle of the YoY-method. Performance indices
separated by subsequent years are compared to calculate the rate of change. If missing
data is present, the YoY-method will use the data from the remaining years. The figure
is adopted from Sveen et al. [81].

in figure 2.15 In order to divide the performance index into these separate
components, the algorithm applies a series of steps to establish initial esti-
mates for each time series component. First, it attempts to detect cleaning
events by considering them as outliers based on a rolling 9-day rolling me-
dian. Then, the algorithm estimates missing data points that need to be
filled in. Next, a Kalman filter is used for estimating SRd. In essence, the
Kalman filter takes a series of noisy data and estimates the variables that
give rise to the data, and in the case of the CODS algorithm this would be
the estimated soiling ratio SRd and its rate of change [8]. STL is then used
to find the seasonal variation in a times series. Finally, for finding Dd, a YoY
method is applied. In YoY, data points for the same time stamp separated
by subsequent years are compared to see if there is a significant change from
one year to another, as seen in figure 2.16. Therefore, The YoY-method re-
quires at least 2 years worth of data and creates a minimum amount of data
required for applying CODS [80].

The algorithm in CODS will iteratively use previously estimated components
in an attempt to estimate more accurate values for each component. The al-
gorithm will then converge on a fitted model that does not change above a
threshold root mean square error (RMSE of 0.5 % compared to the previ-
ous model. The remaining noise nd not accounted for in the SRd, SCd and
Dd is also tested for stationarity, meaning if the probability distribution of
the noise changes over time. After the model fitting, the algorithm proceeds
to calculate uncertainty of each model by bootstrapping, where randomly
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selected samples with replacement from a data set are taken to create new
variations of the original data set. This is done to calculate 95 % confi-
dence intervals for the fitted models. The results include estimated model
fit, degradation rate, soiling rate, seasonal component and remaining noise
for each time stamp, in addition to 95 % confidence intervals, along with
other estimates like soiling rates and cleaning events. A final degradation
rate Dd is calculated for the best fit model along with a 95 % confidence
interval.

CODS has been reported to estimate the soiling well compared to measure-
ments from soiling stations when applied to performance indices from in-
verters in a 150+ MWp PV system situated in a hot and humid climate [10].
Here, the median degradation rate among all inverters was -0.12 %/year, and
ranged between -0.66 %/year and 0.61 %/year. Further more, CODS has
been used on inverter level PR′

STC in a high-soiling environment in the Mid-
dle East. The degradation rates were reported to be between -0.86 %/year
and -0.15 %/year with a mean degradation rate of -0.48 %/year. It was noted
that CODS estimated a more consistent degradation rate and with a smaller
confidence interval compared to only using a YoY-method. CODS has also
been applied to performance data in a high-soiling environment in California,
and found that CODS estimated less negative degradation rates compared
to the YoY-method [11].

2.6 Operations and maintenance (O&M)

The operations and maintenance (O&M) of a PV system consists of contin-
uous as well as retrospective monitoring of performance. Performance can
be monitored on the level of a string, array, inverter or for the entire system.
It is then evaluated by comparing measured energy generation to a model
that takes into account various data inputs from sensors that are placed in
and around the site. Power output on system level can be monitored on
a continuous basis for the interest of power production, but also for grid
operation. A grid operator must maintain balance and control of feeding
enough power to a grid in order to meet demand, but not too much as to
overload the capacity of the local transmission grid. Curtailment may occur
if the transmission grid system operator (TSO) imposes a reduction in power
production by the plant operator. Therefore, any deviance from expected
power input from producers to the transmission grid must be reported to
the grid operator. The power producers will likely have a Power Purchasing
Agreement (PPA) in place, where a supplier commits to producing a certain
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amount of electricity, and a buyer commits to buying the electricity at an
agreed upon price. Optimizing operation of a PV system to meet the ex-
pected production values in a PPA will likely be the primary interest of the
plant operator.

In addition to power production, parameters that further influence perfor-
mance of a PV system are monitored to establish relative system perfor-
mance, meaning how well the system performs given the current conditions.
Irradiance can be measured by satellite measurements or locally at the site
typically in terms of GHI or POAI. Temperature can be measured as the
ambient temperature around the PV system, or on the back of modules in
the PV system. Cleaning events can be logged to establish when and how
often the modules are cleaned by maintenance crews. The power set point
tells the targeted production of the plant and is set by a central controller.
Additionally, there are many other signals that are measured and monitored
including precipitation and humidity, wind speeds, and power outages. These
signals and events can be logged for monitoring purposes and may influence
design choices for future PV systems to be built in similar conditions.

2.7 Method

2.7.1 Data collection

Data sets were collected from a PV power plant situated in a AH KGPV
zone, meaning A - Tropical and H - high irradiation area [63]. The area was
situated in a lower grass land or steppe, and experienced dry winters as well
as a rain season during the summer. The yearly average temperature was
around 29 ◦C and the area experienced around 2900 sunshine hours each year.
The power plant consisted of a total of ∼50 inverters and 4500+ stringsets
in addition to pyranometers, soiling stations and thermocouples. The PV
plant had been in operation since 2015 and had an overall installed capacity
of 60 MWp. The solar cell technology and supplier was not known for the
modules in the PV system, but could be assumed to be Al-BSF considering
the time of installation [82]. The data sets were made available by the plant
operator for research purposes and the time range of the data sets was from
August 2015 up until October 2022.

The data sets were comprised of 10 minute averages for the following; DC
power for stringsets, DC voltages of inverters, GHI measurements by 7 pyra-
nometers, POAI measurements by 7 pyranometers, module temperature by

31



7 thermocouples, 7 soiling stations measurements, active power and power
set point measured by the plant controller.

2.7.2 Performance metrics

The PR′
STC was chosen as the performance index since it takes into account

the influence of irradiance and temperature. After thresholds and filters were
applied, the 10-minute PR′

STC time series from equation 2.10 was calculated
for each stringset in the entire PV system. This was done by first aggregating
module temperature data and POAI data. The median across all sensors was
calculated to represent the data point for module temperature and POAI.
Next, the 10-minute PR′

STC time series was used to calculate PR′
str,d for

all stringsets by using equation 2.11. All PR′
str,d time series were then sub-

ject to removal of outliers. This was done by considering Zn = PIn − p̃7,n
for n days, where ˜p7,n was the rolling 7-day median of the PIn time series.
Data points were removed if zn > Q3 ∗ 3IQR or if zn < Q1 ∗ 3IQR where
Q1, Q3 were the first and third quartile, and IQR was the interquartile range.

After the PR′
str,d was calculated for each stringset, and then the PR′

sys,d was
calculated by equation 2.12. An arbitrarily selected PR′

str,d and the PR′
sys,d

was then used as input for CODS analysis. The soiling ratios SR for soiling
stations were calculated to determine the degree of soiling present in the
plant. For each soiling station, the median for all data points constituting
a day was calculated to represent the daily value. Then, for each day the
median for all soiling stations was calculated and used to represent the soiling
ratio measured by soiling stations SR′.

2.7.3 CODS analysis

CODS was not a part of the official latest release of Rdtools (version 2.2.0-
beta.1), but could be accessed from a development branch of the git repos-
itory [9]. The CODS signal decomposition and subsequent bootstrapping
for estimating confidence intervals was performed using default parameters
through the run_bootstrap() method. For all CODS results, the default 512
repetitions of bootstrapping was used. CODS analysis for the entire time
series was run for the arbitrarily selected stringset’s PR′

str,d and the PR′
sys,d.
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2.7.4 Rolling CODS analysis

Followed by this, the seasonal component SCd estimated by the CODS al-
gorithm was used to find the seasonally adjusted PR′

str,d, or PR′
sys,d, by

employing equation 2.15 and calculating PId
SCd

. This was done principally be-
cause the seasonality was assumed to remain the same for every year and
would improve the computation time when running the rolling CODS analy-
sis on performance data. Therefore, CODS analysis for only soiling rate SRd

and degradation rate Dd was then run for the seasonally adjusted PR′
str,d,

the seasonally adjusted PR′
sys,d, and an arbitrary selection of 10 seasonally

adjusted PR′
str,d, each from a different inverter, with a 3 year window that

moves one month forward for each run. Estimated degradation rates Dd for
each run were then compared to the estimated degradation rate Dd for the
CODS analysis using the entire time series.

2.7.5 Scale factor correction

In order to correct for sudden changes in POAI sensor data due to a calibra-
tion or replaced sensor, a correction factor yα was found to account for such
a sudden changes. This was done based on a method proposed by Øgaard
et al. [83] where the measured POAI data was compared to modelled POAI
during times that were clear sky conditions. To demonstrate the relative
difference ∆I in irradiance the following was calculated:

∆I =
Imeas − ICS

Imeas

(2.16)

Here, Imeas was the measured POAI, and ICS was the modelled POAI, both
during clear sky times. Additionally, for each year, a scale factor α for fitting
the modelled POAI to the measured POAI was calculated by minimizing the
RMSE between the two during clear sky times by:

RMSE(α) =

√∑n
i=1(α ∗ Imeas − ICS)2

n
(2.17)

A significant shift in sensor data was corrected for by first calculating the
scale factors α for each year using equaiton 2.17. The time period with a
significant change in scale factor αt was identified by looking at the change
in scale factors ∆α. In order to correct the data from the point with a
significant shift, it was necessary to find a correction factor yα that could be
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applied to the data set. The correction factor yα was found through:

yα =
αy

αt

(2.18)

Here, αy represented the estimated corrected value for αt. The former was
found by first calculating the average rate of change ˙∆αi for the years prior
to the significant data shift. For a set of years i = 1, 2, ..., n before the shift
in data t:

˙∆αi =
∆αt−1 −∆αt−n

n
(2.19)

This was then added to the change in scale factor right before the shift in
data ∆αt−1, in order to find the new and corrected scale factor αy .

αy = αt−1 + (∆αt−1 + ˙∆αi) (2.20)
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Chapter 3

Results and discussion

3.1 Data preparation

3.1.1 Data quality inspection

Figure 3.1: 10-minute averages of module temperature measured by 7 different thermo-
couples. Each color represents a separate thermocouple.

Data sets collected from the site were visually investigated to identify periods
with irregularly recorded data. The first 3 years of data for module temper-
ature and POAI can be seen in figure 3.1 and 3.2, respectively. The first
month of raw sensor data, August 2015, appeared to be anomalous in most
cases by either missing recorded data or seemingly erroneous measurements.
Therefore, the first month of raw data was discarded from all data sets.
Measured active power and power set point raw data sets were also checked
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Figure 3.2: 10-minutes averages of POAI measured by 7 different pyranometers, Each
color represents a separate pyranometer.Each color represents a separate pyranometer.

and displayed a need for thresholds as well. By looking at the first 3 years,
there were some outliers in the raw data sets in 2015 for instance, as seen in
figure 3.3.

(a) Measured active power (b) Power set point

Figure 3.3: Initial quality check of the a) measured active power of the PV plant and b)
power set point of the PV plant.

Initial data quality was improved by using a maximum and minimum limit
based on recommended thresholds for initial data quality checks [84]. The
data thresholds were summarized in table 3.1. Thresholds removed data
that were outside the range of -20 and 100 ◦C for measurements of module
temperature and outside the range of 670 to 1300 W/m2 for measurements
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of POAI. For the stringset DC power, the limits were based on the nom-
inal capacity of the stringset Cstr,STC and varied depending on the size of
the stringset. The lower limit was set to 0.04*Cstr,STC and the upper limit
was set to 1.2*CS,STC . Thresholds were also used on the measured active
power and power set points data sets by using the system nominal capacity
Csys,STC as a maximum and 0 as a minimum. 4 out of 7 soiling stations were
discarded as the data was too scattered for acceptable quality. The median
of the remaining 3 soiling stations was calculated to represent the estimated
soiling measured by soiling stations SR′. To be able to be compared to daily
soiling estimates, the median of measurements throughout a day was taken
as a representation of the daily SR′.

Sensor data type Minimum Maximum

Module temperature (◦C) -25 100
POAI (W/m2) 10 1300

DC stringset power (W) 0.04*Cstr,STC 1.2*Cstr,STC

GHI (W/m2) 0 1300
Measured active power (W) 0 Csys,STC

Power set point (W) 0 Csys,STC

Table 3.1: Overview of data thresholds applied to time series data

After the thresholds were applied, the data sets were reexamined. Sensor
data for module temperature and POAI after applying thresholds from 3.1
can be seen in figure 3.4a and 3.4b, respectively. Unreasonably high or low
data points were not present in the raw data sets any more.

(a) Module temperature (b) POAI

Figure 3.4: Sensor data after applied thresholds in table 3.1 for a) 7 different thermo-
couples. Each color represented a separate thermocouple, and b) POAI measured by 7
different pyranometers. Each color represented a separate pyranometer.
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3.1.2 Data filtration

Different filters were used to reduce noise in the data set and to improve the
quality of the time series before the use of CODS. A suitable suite of data
filters was established by examining the effect of each filter on the data sets.
The following data filters were examined for use; AOI filter, solar elevation
filter, clear sky filter, curtailment filter, and clipping filter.

By using the irradiance.aoi() method from Pvlib (version 0.9.5), the solar
path throughout the year was calculated for the site. For the AOI filter, a
maximum AOI of 55◦ was used, and any data points associated with a higher
AOI would be filtered out. For the solar elevation filter, a minimum solar
elevation angle αs of 22◦ was used, and any data points with a lower solar
elevation would be filtered out. Addtionally, a recommended threshold in
the IEC standard [84] for POAI data of 670 W/m2 was investigated.

Figure 3.5: Demonstrating the effect of the solar elevation filter, AOI filter, and IEC
threshold on the POAI throughout a day in June 2016.

In figure 3.5, the effect of different filters can be seen on the POAI data on
a chosen day. The colored data points show which data each filter removes
from the time series. Firstly, the solar elevation filter appeared to remove the
least amount of data points, while the IEC screening threshold of 670 W/m2

removed the most data points. Not only did the IEC threshold remove the
most data points towards the beginning and end of the day, but also data
points where the POAI dropped during in the middle of the day. This made
it difficult to gauge the effect of applying filters including the IEC screening
threshold. It was determined that the IEC threshold was set too high for the
effects of the other filters to be determined. Therefore, the IEC threshold
was substituted by a cutoff threshold of 10 W/m2 as a measure to remove
background noise from the data sets. Furthermore, the AOI filter appeared
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to filter out more data points throughout the day compared to the solar el-
evation filter. It seemed therefore unnecessary to apply both the AOI and
solar elevation filter, when the AOI filter would suffice.

Clear sky times were found by using location.get_clearsky() method from
Pvlib (version 0.9.5), as described by Reno and Hansen [85], using a clear
sky period of 30 minutes. The median across all GHI sensors was calculated
and used to represent the GHI in the PV system. The method then used the
measured GHI data and compared it to modelled GHI data for the location
to calculate clear sky times and could then be used as a filter. In figure 3.6,
the effect of the clear sky filter on the measured POAI was displayed. The
clear sky filter appeared to remove data points that were not a part of a
smooth GHI curve, which is expected throughout a day. However, it also ap-
peared to remove some data points that did were not certain to be non-clear
sky times. This was indicative of the notion that the clear sky filter would
remove many data points compared to the other filters.

Figure 3.6: Demonstrating the effect of the clear sky filter. The top window shows the
measured POAI data for a week in February 2016 and the bottom window shows which
data points, colored in green, are removed by the clear sky filter.

Curtailment was detected using the method proposed by Nygård et al. [10]
using two conditions to identify curtailment. The conditions were firstly if
the set point was below 5 % of the AC system nominal capacity Csys,STC ,
and secondly if the measured active power was below the Csys,STC , but higher
than 95 % of the set point. If either condition was fulfilled, then the data was
associated with curtailment and subsequently filtered out. In figure 3.7, the
effect of the curtailment filter was shown on the stringset DC power genera-
tion, by using the aforementioned conditions on the PV system’s measured
active power and power set point. The filter appeared to identify data points
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Figure 3.7: Demonstrating the effect of the curtailment filter. The top window shows the
power set point and the measured active power of the plant. The middle window shows
the stringset DC power without the curtailment filter and the lower window shows which
data points, colored in red, were removed by the curtailment filter.

related to curtailment as seen by the flattened section in the measure active
power, and compared to the DC power generation of a stringset. Even though
the power set point was kept at the lowered level for a while after 16:00 in
the afternoon, the filter managed to avoid removing these data points as the
measured active power was dropping below the power set point and and no
longer showed signs of curtailment.

Inverter voltages were investigate for signs of clipping, but were not found to
display signs of clipping. Therefore, it was determined that the use of a clip-
ping filter was not necessary as it would not result in a significant reduction
in noise and was no longer considered for the final selection of filters. It was
also a concern at this point that a further reduction in data would reduce
the quality of the time series before the use of CODS.

The final selection of methods for reducing noise before calculating the per-
formance metrics were; the thresholds found in table 3.1, an AOI filter, a
clear sky filter and a curtailment filter. In the final selection of filters, the
clear sky filter removed the most data points indicating that the PV system
experienced a significant amount of cloud coverage, or other non-clear sky
conditions like shadowing. Following the clear sky filter, was the AOI filter in
terms of amount of raw data points removed, and expectedly removed more
data points than the solar elevation filter considering figure 3.5. To clarify,
the amount of data points listed next to each method for data removal in
table 3.2 was after only applying the individual method. That meant that
in the final selection of methods, the same data point could for instance be
filtered by both the AOI filter and the clear sky filter. The curtailment filter
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Table 3.2: The effect of filters and thresholds on the amount of removed raw data sum-
marized for the different methods investigated and the final selection of methods selected
for raw data removal.

Method for raw data removal Amount of data points remaining

Without data removal 1,658,666,704
Data thresholds from table 3.1 765,882,421

AOI filter 425,702,624
Solar elevation filter 548,181,032

Clear sky filter 198,152,804
Curtailment filter 638,869,144

Final selection of methods 71,981,112

showed that the PV system also experienced some curtailment which cor-
roborated the need for using a curtailment filter. As seen in table 3.2, the
final selection of filters removed close to 90.6 % of data points after having
applied the thresholds from table 3.1. Therefore, there were likely numerous
days that would not contain any data points.

Prior to the calculation of the 10-minute stringset PR′
STC , the use of filters

and data thresholds were used in an effort to remove unreasonable and noisy
data points from sensor data. However, a numeric indication of whether the
individual filter or threshold improved the quality of the data set was not
specifically calculated. Rather, the visual effect on the 10-minute stringset
PR′

STC for the whole PV system was the deciding factor by considering
the change in apparent noisy data points. This would affect the 10-minute
stringset PR′

STC before aggregation to PR′
str,d, but the effect was considered

minimal. This was due to the fact that taking the median of each 10-minute
stringset PR′

STC throughout a day to represent the PR′
str,d, was a robust

practice that was less sensitive to outliers. Expecting the complete removal
of outliers in data sets when using real data was not considered reasonable
as data measured from real PV systems, and with real sensors, would likely
experience artefacts that could not always be expected to be accounted or
corrected for. Efforts to establish a standard methodology for filtration exist,
but have yet to be finalized [7]. Therefore, the effect of data filtration comes
down to the individual analyst who must determine the critical values by
which each filter relies on and whether or not this improves the quality of
the data set before analysis. Alternatively, an optimization process could be
performed where a calculation of a signal-to-noise ratio is done and itera-
tively finding the optimized critical values for each filter.
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Through filtering and applying thresholds, the noise in the data sets was
reduced and consequentially the performance was estimated based on some-
what ideal conditions, like a clear sky and without curtailment. The fact
remains that real PV systems will experience variable conditions, which can
lead to a discussion on whether an estimated degradation rate based on ideal
conditions can be used to estimate power generation from a real PV system.
Such a degradation rate would be better used to described the condition
of the PV system rather than a method for predicting long-term production
values. The variability of factors like soiling or downtime due to maintenance
can change drastically from one year to the next, which would complicate
estimating future production values significantly.

A study by Jordan and Kurtz [36] investigated the effect of data thresholds
and performance metrics on the estimated degradation rate for a PV system.
The study showed the dependence on the different critical values chosen in
each threshold can have a significant effect on the estimated degradation rate.
They also demonstrated how the uncertainty rises when reducing too many
or too few data points from the raw data set. This indicated that the final
selection of filters and thresholds could be on the lower side of a preferred
amount of data points for degradation analysis. However, the 10-minute
stringset PR′

STC was deemed sufficient for analysis as the effect of each filter
had been investigated and the CODS algorithm was capable on running the
different filtered time series used in the following chapters.

3.2 Soiling and performance

The soiling station estimates SR′ calculated from soiling stations were shown
in figure 3.8a. There was a significant increase in the SR′ at around March
every year followed by a gradual further increase until peaking at around
June, The first rapid increase likely due to a regularly scheduled cleaning
campaign after the dry winter season, while the gradual increase could be
explained by the gradual reduction of dust particles in the air as time ap-
proached the rainy summer season. Nevertheless, it was warranted to account
for soiling in the PV system when investigating the performance and ulti-
mately the degradation of the PV system. An arbitrarily chosen PR′

str,d was
also calculated and displayed in 3.8b. The PR′

str,d appeared to have a sea-
sonal yearly behavior with increases in performance coinciding with the SR′

during the first years until mid 2020. In 2021 and 2022, the PR′
str,d appeared

more scattered and the seasonality was not as evident. Looking at the 1-
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Figure 3.8: Soiling station estimates SR′ and an arbitrarily chosen PR′
str,d with a 1-year

rolling median shown by the orange line.

year moving median, there was also an apparent increase in the PR′
str,d from

around 2019 through 2020. Concerning increased performance, Theristis et
al. [86] reported that underrated modules are present in the market and exist
among multiple producers. Underrating modules would allow the modules to
degrade for a longer period of time before a possible warranty claim can be
made by the plant operator or installer. They observed that the degradation
rate would stabilize after 3-4 years. This means that positive degradation
rates were possible, but would likely only be seen in the first couple of years
before degrading normally. A change in performance could also occur due to
significant changes in the PV system, like a module replacement campaign
or a change in the sensor data used to calculate the performance metric, like
replacement or a calibration. It was also unlikely that the data shift was
a result of the aggregating method in equation 2.11, as the robust practice
made it less sensitive to outliers and a such a shift would have to affect the
majority of data before aggregation. Considering equation 2.10, there were
various sources that may have caused an increase in the PR′

str,d from the
sensor data used in the equation. Either one or all of module temperature,
POAI or DC power measurements could have contributed to such an appar-
ent change in the PR′

str,d.
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Figure 3.9: The PR′
sys,d with a 1-year rolling median in orange.

In figure 3.9, the PR′
sys,d was calculated and displayed a stronger increase

in the 1-year rolling median during 2019 compared to the PR′
str,d in figure

3.8. This indicated that there were likely other stringsets with an increased
PR′

str,d during 2019 than the arbitrarily selected stringset in figure 3.8. The
increased PR′

sys,d in 2019 could also have been a result of reduced soiling, but
this notion was not supported by the SR′ in figure 3.8, which peaked mid-
2019 before falling until the end of the year. It was difficult to discern the role
in which soiling played merely by analyzing the performance trends in figures
3.8 and 3.9. Even though a significant shift in the performance appeared
to be present in the data sets, both PR′

str,d and PR′
sys,d were investigated

using CODS to see if the role of soiling could be better understood in the
performance data.

3.3 CODS analysis

In figure 3.10, CODS analysis results for the arbitrarily chosen PR′
str,d in fig-

ure 3.8 were shown, resulting in an estimated degradation rate Dd of -0.059
%/year. The run time for CODS in the PR′

str,d was 4.5 min. The seasonal
component SCd appeared to follow the PR′

str,d more closely during 2019
through 2022 than compared to the beginning of the time series until 2019.
The fitted model PId followed the SCd closely during the peak performance
periods in 2015, 2019, 2020 and 2021. This behavior appeared to suggest
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Figure 3.10: CODS results for a PR′
str,d displayed for the a) daily seasonal component

SCd, degradation component Dd and total fitted model PId in orange, green and black
lines, respectively. b) The daily soiling component SRd was shown by the red line with a
95 % confidence interval indicated by the red shaded area, along with daily soiling station
estimates SR′ asa reference. The estimated degradation rate Dd was calculated to be
-0.059 %/year, with a 95 % confidence interval between -0.170 %/year and 0.053%/year.

that the SCd restricted the PId during the peak performance periods, as
seen my the smoothed PId in the shape of the SCd. The PId also appeared
to follow the PR′

str,d well until 2019, 2020 and 2021 where it estimated a
lower the performance, especially seen during the peak performance periods
in the middle of each year. The estimated soiling component SRd appeared
to have a periodic drop during or close to the end of each year and start of
the next, which correlated with the periodic drops in the soiling station esti-
mates SR′. Otherwise, the SRd appeared to follow the general trend of the
SR′, but seemed to estimate a higher degree of soiling during peak PR′

str,d

periods. A different point of interest is that the SR′ had more scattered data
points during 2021 and 2022, and coincided with the PId and the SRd which
displayed a sawtooth-trend without any significant drops during these years.
An exception to this behavior was seen in the start of 2022 when a significant
drop in SR′ and SRd also correlated with a drop in the PR′

str,d and PId. In
fact, it appeared that the CODS algorithm managed to pick up on such a
drop in SR′ at the beginning of each year, again, likely due to a regularly
scheduled cleaning campaign of the PV system after the dry winter season.
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Figure 3.11: CODS results for PR′
sys,d displayed for the a) daily seasonal component SCd,

degradation component Dd and total fitted model PId in orange, green and black lines,
respectively. b) The daily soiling component SRd was shown by the red line with a 95
% confidence interval indicated by the red shaded area, along with daily soiling station
estimates SR′ as a reference. The estimated degradation rate Dd was estimated to be
0.181 %/year, with a 95 % confidence interval between 0.064 %/year and 0.298 %/year.

In figure 3.11, CODS analysis results for the PR′
sys,d were shown, resulting

in an estimated degradation rate Dd of 0.181 %/year. Much like the CODS
analysis for the PR′

str,d in figure 3.10, the estimated seasonal component
SCd appeared to favor the PR′

sys,d during the later years of the time series.
However, this time it was more clearly shown that the fitted model PId did
not follow the PR′

sys,d during the peak performance periods in 2019, 2020
and 2021 compared to the fitted model PId in 3.10. This did not agree with
the possibility of reduced soiling as the trend in the soiling station estimates
SR′ appeared more or less unchanged until 2021. The estimated soiling
component SRd also appeared to estimate a higher degree of soiling during
peak performance periods of 2016, 2017 and 2018. An important point to
emphasize was that the SR′ was calculated from soiling stations which were
point estimates from the entire PV system. This meant that they were
not likely to represent the soiling experienced by every single stringset, but
functioned as a point of reference to which the SRd could be compared to. A
positive Dd for the PR′

sys,d seemed unlikely as the performance was expected
to fall gradually over time, and considering that the PV system lied in a hot
and humid climate. A significant shift in data points during 2019 seen in
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figure 3.9 could have caused the different estimated time series components
in CODS to skew the results towards a section before or after the shift, thus
not being able to fit the entire time series. Further investigation of what may
have been the cause of the shift in PR′

sys,d was necessary to better explain
the Dd of the system.

3.4 Calculation of correction factor yα

Figure 3.12: The difference ∆I between measured POAI Imeas and modelled POAI ICS

during clear sky times. Vertical red lines are included to distinctly show where each year
ends and the next begins.

Module temperature, POAI and DC power data sets used to calculate the 10-
minute PR′

STC were investigated for any noticeable shifts. It was determined
that the variation in module temperature did not change significantly, while
the DC power appeared to have a negative trend over times as expected,
possibly due to degradation of the modules. The data set for POAI did not
show any clear evidence of a trend. Therefore, POAI data sets were further
investigated for determining any data shifts based on the method proposed
by Øgaard et al. [83], described in section 2.7.5.

In figure 3.12, ∆I was calculated for the measured POAI data Imeas and the
modelled POAI data ICS during clear sky times. The red lines show where
the data was segmented by each year’s end. There were no evident changes
to the ∆I, which was expected as the POAI data was not found to display
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any change in trend. Each section was used to find the scale factor α for
each year using equation 2.17. The α found for each year and change in scale
factor ∆α for each year were shown in table 3.3, with omission of 2015 and
2022 as the POAI time series did not include the entirety of these years.

Table 3.3: Yearly scale factors α and change in scale factors ∆α compared to the previous
year, all rounded to closest third decimal.

Year Scale factor α Change in scale factor ∆α

2016 1.029 -
2017 1.034 0.005
2018 1.044 0.010
2019 1.035 -0.009
2020 1.024 -0.011
2021 1.029 0.005

In table 3.3, the calculation of each scale factor showed that there was a
significant shift in the scale factor α during 2019. Prior to that, the α was
increasing for each year, which could indicate a sensor drift. In 2019 it
dropped instead of increasing and continued to do so in 2020 as well. Ac-
cording to equation 2.9 and 2.10, a lower POAI would explain the increased
performance during this period. However, it was difficult to say what the
source of the change in POAI came from without verification from the plant
operator, but a correction was warranted for giving an accurate estimation
of the estimated degradation rates Dd using CODS.

By using equations 2.18, 2.19 and 2.20, a αy of 1.058 was estimated and a
correction factor yα of 1.022 was applied to all 10-minute stringset PR′

STC

from January 1st 2019 and throughout the time series. To reiterate; all of
the results in the following sections included a correction factor yα.

In figure 3.13, the PR′
str,d with applied correction factor yα was shown. The

change in 2019 was no longer as clear, but the irregularity in 2020 and 2021
was stilled present. The former was expected as the yα would simply change
all data points by the same magnitude. The 1-year rolling median now
showed a steady decrease until around March 2019, where it started to in-
crease slightly until around June 2020. From here on, the 1-year rolling
median appeared to continue stably. The yα appeared to have caused a form
of correction for the increasing trend in 2019 through 2020 for the PR′

str,d,
and results from CODS analysis were expected to be more representative
with the applied yα.
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Figure 3.13: PR′
str,d after having applied a yα from 2019 and onward, in addition to a

1-year rolling median shown by the orange line.

Sensor drift, calibration or replacement could all occur during the lifetime of
a PV system and could affect performance metrics unless corrected for [72].
This information was not available, and a form of correction was deemed
necessary for further analysis. Correcting the PR′

STC time series further
could have been done, as a decreased change in scale factor ∆α was seen for
2020 as well. The procedure using equations 2.16 and 2.17, could have been
performed after the first correction and subsequently used to find a second
correction factor to be applied from 2020 and on. However, it became neces-
sary to consider the fact that the scaling factors α were calculated by fitting
the modelled POAI ICS to the measured POAI Imeas during clear sky times.
If the significant shift in data actually occurred in the middle of the year,
then an applied correction from the start of year would change a large por-
tion of data that did not need to be corrected. It was therefore questionable
at this point how many corrections were necessary to account for in the data
sets. From an O&M standpoint, sensor calibrations and changes would need
to be kept track of and used to correct performance data. An alternative
method to correct for the POAI data, would have been to utilize satellite
data and estimate the GHI for the site, and then transpose the irradiance to
the plane-of-array. This way, the POAI data would not be affected by local
sensor drift and calibrations, However, one would be reliant on the choice
of model and accuracy of the data, as satellite data estimates the irradiance
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for an area [87] [88]. The method used for finding and applying a correction
factor yα did not specify how large of a shift in α would warrant a correction.
An alternative way of implmenting this method could have been to apply
an individual yα for each year in an effort to correct for any data shift, in-
cluding sensor drift or calibrations. The question would then remain whether
all years were to be corrected according to the first year’s α or some other way.

The fact remains that a real PV system will see calibrations to sensor data
throughout the system’s lifetime, and should be considered important for
any degradation analysis thereof. In the IEC standard for PV system per-
formance [34], it is specified that the highest standard of irradiance sensor
maintenance requires a calibration each year, and every other year for the
second highest standard. Consequently, any degradation analysis performed
over multiple years would likely need to include corrections for data shifts
due to irradiance sensor maintenance. A clearer guideline or methods for
performing sensor corrections is of importance to ensure higher quality es-
timates of degradation rates. Due to consideration and the time constraint
of the thesis, any further corrections were not performed on the 10-minute
PR′

STC time series. The PR′
str,d and the PR′

sys,d with applied yα were subject
to CODS analysis in order to investigate whether the correction had caused
a better fit in the different estimated time series components.

3.5 CODS analysis with applied correction fac-
tor yα

In figure 3.14, CODS results for the PR′
str,d with the applied correction fac-

tor yα were shown with an estimated degradation rate Dd of -0.411%/year.
Compared to the CODS results for the PR′

str,d prior to applying the yα in
figure 3.10, the Dd was now expectedly lower. Similar to figure 3.10, the
fitted model PId followed the SCd closely during the peak performance pe-
riods in 2015, 2020 and 2021, but not in 2019 any more. Therefore, the SCd

appeared to govern the trend of the PId during peak performance periods in
2020, and 2021, reminiscent of peak shaving even after the applied yα. The
SRd still seemed to estimate a higher degree of soiling compared to the daily
soiling station estimates SR′. Keeping in mind that the SR′ was based on
soiling stations placed throughout the PV system, it was possible that the
chosen stringset in figures 3.10 and 3.14 was experiencing a higher degree of
soiling than the soiling stations. If the stringset was among the first rows
facing a particular wind direction, it was reasonable to expect that a higher
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Figure 3.14: CODS results for an arbitrarily chosen PR′
str,d after applied correction factor

yα. a) The daily estimated seasonal component SCd, degradation component Dd and total
fitted model PId in orange, green and black lines, respectively. b) The daily estimated
soiling component SRd was shown by the red line with a 95 % confidence interval indicated
by the red shaded area, along with daily soiling station estimates SR′ as a reference. The
estimated degradation rate was estimated to be -0.411 %/year, with a 95 % confidence
interval between -0.524 %/year and -0.302%/year.

degree of soiling would occur for modules in this area. Both the PId and the
SRd showed a noisy sawtooth-trend in 2021 and 2022 with exception of the
drop during the beginning of 2022. This was likely due to the PR′

str,d data
being too scattered for the CODS algorithm to discern a soiling trend in the
data set, which impacted the SRd and thus the PId.

CODS attempts to account for soiling when estimating the degradation rate
Dd in a time series of performance data. However, the influence of mainte-
nance on the data that was used to calculate the PR′

STC was a significant
factor and was demonstrated by the results. Sensor drift, replacement and
calibration are all known to happen in real world PV systems, and have
been discussed by Jordan et al.[72]. Here, a data shift in performance data
was demonstrated and different methods for correction were evaluated. The
study found, among other conclusions, that the YoY-method applied to dif-
ferent types of performance ratios PRs was less sensitive to bias from data
shifts than OLS. On the other hand, figures 3.10 and especially 3.11 would
indicate that the YoY-method can still be significantly biased by data shifts
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even when applying robust data aggregation practices. The study by Jordan
et al. also suggested that a performance ratio based on modelled POAI and
modelled cell temperature would be independent of sensor drift and data
shifts. This metric could however only be used during clear sky times, thus
being an inadequate choice for a PV system experiencing many hours of non-
clear sky conditions.

Figure 3.15: CODS results for PR′
sys,d after applied correction factor yα. a) The daily

seasonal component SCd, degradation component Dd and total fitted model PId in orange,
green and black lines, respectively. b) The daily soiling component SRd was shown by
the red line with a 95 % confidence interval indicated by the red shaded area, along with
daily soiling station estimates SR′ as a reference. The estimate degradation rate was
calculated to be -0.177 %/year, with a 95 % confidence interval between -0.278 %/year
and -0.071%/year

In figure 3.15, CODS results for the PR′
sys,d with the applied correction fac-

tor yα were shown with an estimated degradation rate Dd of -0.177 %/year.
Although the Dd was no longer positive like in figure 3.11, it was still not as
negative as in figure 3.14. This further supported the notion that there was
a variation in daily stringset Dd for the stringsets in the PV system. The
estimated soiling component SRd appeared to follow the general trend of the
soiling stations estimates SR′, but estimated slightly higher soiling during
peak performance periods shown by the PR′

STC . The fitted model PId in
3.14 appears to follow the performance better than the PId in figure 3.15,
likely due to the SCd influencing the PId as previously seen.
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3.5.1 Rolling CODS analysis

Figure 3.16: Degradation rates Dd estimated by the rolling CODS method for a) seasonally
adjusted PR′

str,d and b) seasonally adjusted PR′
sys,d, shown by the red lines, compared

to the linear estimated degradation rate Dd based on the entire time series, shown by
the blue line. Both data sets had an applied correction factor yα and included a 95 %
confidence interval shown by the shaded areas. The degradation rates Dd were plotted
using the center of the time window.

In figure 3.16a, estimated degradation rates Dd by the rolling CODS method
for the seasonally adjusted PR′

str,d was shown. and was the same stringset
seen in figure 3.14. The Dd based on the entire PR′

str,d time series from figure
3.14 was also shown and clearly showing the differences over time. The run
time for rolling CODS on the seasonally adjusted PR′

str,d was around 2.5 h
and the Dd varied between -1.311 %/year and 1.285 %/year. The largest dif-
ference in Dd appeared to be when the center of the time window was around
mid 2020. The figure showed that a steady increase in Dd was estimated from
when the center of the window was around early 2018 and peaking around
May 2020. Afterwards, the Dd decreased steadily back towards a degrada-
tion rate of 0 %/year. Comparing to the PR′

str,d in figure 3.13, the start of
2020 appeared to be about halfway of the increasing trend starting in 2019
and going into 2020. After this period, the 1-year rolling median appeared to
level off somewhat, but the Dd in 3.16a would indicate that the performance
was declining again. The difference in these results could be explained by
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soiling of the system, but remained uncertain. This was due to both the
soiling estimates from soiling stations SR′ and estimated soiling components
SRd from the CODS analysis in figure 3.14 appeared to be scattered in 2021
and 2022. The correction factor yα applied to the time series did not account
for sensor drift of the POAI, which was indicated in table 3.3. The combined
effect of sensor drift could explain the increasing estimated degradation rate
in 3.16a, but could also be an artefact of other, more subtle, calibrations or
changes to the sensor equipment.

In figure 3.16b, estimated degradation rates Dd by the rolling CODS method
for the seasonally adjusted PR′

sys,d was shown as well as the Dd based on the
entire PR′

sys,d time series from 3.15. The Dd varied between -0.674 %/year
and 0.773 %/year for the time series and the general trend for the Dd was
reminiscent to the trend shown in figure 3.16a, but peaked at two different
times instead. The peaks observed in 3.16b appeared when the center of the
time window was around the end of 2018 and end of 2019. The latter was
observed as a shoulder to the global peak in figure 3.16a, but the former only
barely appeared as a local peak in a otherwise increasing trend. This further
indicated that there was a distribution of degradation rates for the stringsets
in the PV system.

Figure 3.17: Boxplots of 10 arbitrarily selected PR′
str,d degradation rates Dd estimated

by the rolling CODS method, and each from a different inverter in the PV system.

A selection of 10 stringsets’ seasonally adjusted PR′
str,d, each selected arbi-

trarily from different inverters, was further investigated to better understand
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Figure 3.18: Boxplots of the monthly distribution of degradation rates Dd from 10 arbi-
trarily selected PR′

str,d estimated by the rolling CODS method, and each from a different
inverter in the PV system.

the distribution of degradation rates Dd for the stringsets and how this related
to the Dd in figure 3.16b. Figure 3.17 showed boxplots demonstrating the
distribution of Dd using the rolling CODS method for each selected stringset.
Here, stringset nr. 1 was the same stringset shown in figures 3.8, 3.10, 3.13
and 3.14. The Dd varied from -1.311 %/year and 1.285 %/year. The dis-
tribution in figure 3.17 showed that Dd varied depending on the stringset in
question. This was expected considering the differences between CODS re-
sults for the PR′

str,d and for the PR′
sys,d in figures 3.14 and 3.15, respectively.

In figure 3.18, the same stringsets’ estimated degradation rates Dd in figure
3.17 were shown distributed by month. Here, the distribution throughout the
year did not appear to be significantly different for any month. The Dd IQR
for each month was within the range of -0.741 %/year and 0.532 %/year, but
none appeared to be significantly different to each other. Rather, compared
to figure 3.17, the temporal variation in in the Dd was smaller than the total
variation on Dd for each stringset.

Literature values of degradation rates for crystalline silicon technologies in
hot and humid areas have been reported to range between -2.10 to 0.27
%/year [73]. Notably, this range was reported for a variety of crystalline sili-
con technologies installed from 1980s until the 2010s. The study also showed
that longer field exposure for modules resulted in decreased estimated degra-
dation. The estimated degradation rates Dd for the corrected PR′

str,d and
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PR′
sys,d were found to be -0.411 %/year and -0.177 %/year, respectively, and

are both within literature values, but on the less negative end. This could
possibly be due to longer field exposure in the range of mentioned literature
values compared to the analyzed PV system in this thesis and the influence
of the filters used on the raw data sets, particularly the clear sky filter which
was the filtered that removed the most data points by itself. The two Dd

were compared to a study using CODS for estimating degradation rates in
a PV system situated in a hot and humid climate [10]. In the study, the
median Dd for all inverters was -0.12 %/year, which was less negative than
the Dd for the PR′

sys,d in this thesis, being the median for all stringsets in
the analyzed PV system. For the rolling CODS method, the estimated Dd

varied between -1.311 %/year and 1.285 %/year for the seasonally adjusted
PR′

str,d, and between -0.674 %/year and 0.773 %/year for the seasonally ad-
justed PR′

sys,d, respectively. Therefore, the linear estimations were within
literature values, but this was not entirely the case for the range of degra-
dation rates from the rolling CODS. It was expected that the PV system
exhibited non-linear behavior in terms of degradation partly due to the in-
fluence of soiling of climatic conditions. The results were generally small in
terms of degradation, and many were positive. This can possibly be due to
the influence of sensor measurements, like drift, calibrations or replacements,
or underrated modules.

Highlighted in figure 3.16, the rolling CODS method shows that if assuming
the degradation to be linear, then the first few years will likely exhibit devi-
ating results from this estimate. For both cases in figure 3.16, the estimated
degradation rates Dd end close to the linear degradation rate. Therefore,
the results indicate that assuming a linear degradation rate would be less
representative in the first few years of an operational PV system, but will
likely be more representative after this initial period. This supports the need
for understanding non-linear changes in a PV system’s degradation using
methods that do not simply force a linear estimate, but also elucidate the
possible change in degradation over time.
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Chapter 4

Conclusion

7 years of meteorological and energy time series data for a 60 MWp utility-
scale PV power plant has been analyzed with the aim of investigating the
assumption of a linear degradation rate for a PV system by comparing differ-
ent sizes of analyzed performance time series. A selection of thresholds were
applied to remove unreasonable or noisy raw data and a selection of filters has
been investigated. The final selection included an AOI filter, a curtailment
filter and a clear sky filter. The clear sky filter removed the most data points
suggesting a lot of non-clear sky conditions, and a significant portion of raw
data points was removed by the final selection of filters and data thresholds.
The 10-minute stringset PR′

STC was then calculated for all 4500+ stringsets
in the PV system and aggregated to PR′

str,d, The median of all PR′
str,d was

used to represent the PR′
sys,d. An arbitrarily chosen PR′

str,d and the PR′
sys,d

time series were used to run CODS, a combined degradation and soiling al-
gorithm. From this CODS analysis, the estimated degradation rates Dd for
the arbitrarily selected PR′

str,d and PR′
sys,d were found to be higher than

expected, with the latter estimated to be positive. A shift in the POAI data
was found based on a method by Øgaard et al. [83], and subsequently, a cor-
rection factor yα was calculated and applied to the 10-minute PR′

STC time
series. The method for finding a correction factor also suggested that a sec-
ondary correction could be warranted. However, as maintenance logs were
not available for analysis, any further corrections would risk questioning the
validity of the results thereof. Considering this, and due to time constraints,
no further corrections were performed on the data sets.

A renewed CODS analysis was performed for the arbitrarily chosen PR′
str,d

and PR′
sys,d which estimated a Dd of -0.411 %/year and -0.177 %year. The

estimated degradation rates were found to be within literature values, but
were less negative possibly due to the relative short exposure time compared
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to the literature values, as well as the influence of sensor maintenance. A
rolling CODS analysis was then performed on the seasonally adjusted PR′

str,d

and PR′
sys,d, with a 3 year time window and an increment of 1 month. The

estimated Dd varied between -1.311 %/year and 1.285 %/year for the sea-
sonally adjusted PR′

str,d, and between -0.674 %/year and 0.773 %/year for
the seasonally adjusted PR′

sys,d. The difference in estimated Dd was further
investigated by taking an arbitrary selection of 10 stringsets, each from a
different inverter, and used in the rolling CODS method. The temporal vari-
ation of Dd for the stringsets was not found to be significant. By use of the
rolling CODS method, the estimated Dd was shown to vary depending on
the size of the time series. This demonstrated that a linear degradation rate
for the entire time series could vary significantly from non-linear estimates.
Consequently, the risk of deviating from budgeted O&M costs could be sig-
nificant in the initial, and arguably most critical, phase of the a PV system’s
lifetime. The results in this thesis support the need for exploring non-linear
changes in the degradation of PV systems and how this can improve O&M in
the future. PV system planners and operators would benefit from considering
these results when determining O&M procedures for future projects.

4.1 Future work
An interesting approach to the rolling CODS method would be to investi-
gate increasing the analyzed time series window, instead of moving it, by an
increment at a time. This could further elucidate how the estimated degra-
dation rate can vary depending on the size of the analyzed time series, taking
into account a weighting of measurements to arrive at a more representative
linear degradation rate.
For the PV system investigated, a closer inspection on inverter performance
and how this compares to aggregated stringset performance within the same
inverter would be of particular interest. Provided information on data shifts,
corrections or changes, the influence of maintenance could be corrected for
and more representative estimates for degradation could be found as a result.
Additionally, an attempt at using satellite data to model POAI would be an
alternative worth exploring in a effort to work around the issue of data shifts.
A comprehensive direct comparison of non-linear methods for estimating
degradation rates included a soiling estimation would also be of interest.
This could include change point analysis using FBP or the MS-PL method,
and can be compared to the rolling CODS method.
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