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Abstract. Following the increasing awareness of the risk from volatility fluctuations
the markets for hedging contracts written on realised volatility has surged. Companies
looking for means to secure against unexpected accumulation of market activity can find
over-the-counter products written on volatility indices. Since the Black and Scholes model
require a constant volatility the need to consider other models is obvious. We investigate
swaps written on powers of realised volatility in the stochastic volatility model proposed
by Barndorff-Nielsen and Shephard [3]. We derive a key formula for the realised variance
and are able to represent the swap price dynamics in terms of Laplace transforms, which
makes fast numerical inversion methods viable. We show an example using the fast Fourier
transform and compare with the approximation proposed by Brockhaus and Long [7]

1. Introduction

A constant volatility is not able to explain the volatility clustering observed in financial
markets, where periods of high activity and large price movements occur. An increasing
awareness of the risk associated with the fluctuations in the market activity has led to
a growing focus on stochastic volatility models. Making the volatility stochastic force
the actors to consider the impact from changes in trading intensity and measures to hedge
against unwanted effects. The risk from volatility movements can be hedged using financial
instruments where the underlying asset is realised variance. Swaps on realised variance has
been traded over the counter for several years, giving firms means to manage the perceived
risk. The interest in such products indicates that actors perceives the uncertainty in the
variance as a feature in the market, which they need to hedge themselves against. More
recently, this has spun out to a fully fledged market for hedging and speculation in financial
contracts on realised variance, like the CBOE S&P 500 Volatility Index (VIX).

The industry standard model for stock returns, the Black and Scholes model, gives no
room for uncertainty in the volatility, since it is considered as a constants entity. It is
well known that the model is unable to replicate the implied volatility smiles observed
empirically, resulting in a flat implied volatility across strike and maturity. Clearly this is
not viable when pricing contracts on realised variance and more realistic models are needed.
The interest has focused on stochastic volatility models, including models with jumps in
the volatility process, see for example Carr et.al. [8] who thoroughly investigate quadratic
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variance for infinite activity processes, more specifically the class of CGMY processes.
Stochastic volatility models are undeniably more complicated to work with compared to
the Black and Scholes model due to the much richer structure of randomness.

We consider the problem of valuing volatility and variance swaps in the framework of the
non-Gaussian Ornstein-Uhlenbeck model for stochastic volatility proposed by Barndorff-
Nielsen and Shephard [3]. Instead of the constant volatility in the Black and Scholes market
the volatility is stochastic and given as a mean-reverting process driven by a subordinator,
i.e. a Lévy process with positive jumps and no continuous part. The model is able to
replicate the skewness and fat tails seen in high-frequency stock returns and capture im-
plied volatility smiles. Option pricing under the Barndorff-Nielsen and Shephard model is
investigated by Nicolato and Venardos [12] and in an indifference pricing setting by Benth
and Meyer-Brandis [5] and Benth and Groth [4].

Transform based option pricing methods were investigated in several papers before Carr
and Madan [9] showed how to utilise the computational efficiency of the fast Fourier trans-
form. Given the analytical form of the risk-neutral density the method is one of the swiftest
numerical pricing algorithms. The drawback is that the risk-neutral density is not always
available analytically. We will show that by casting the swap pricing problems in form of
an (inverse) Laplace transform we may use the fast Fourier transform to simulate prices.
We derive a general formula and provide an example when the stationary distribution of
the Ornstein-Uhlenbeck process is Inverse Gaussian. We compare the numerical results
with the approximation by Brockhaus and Long [7]. Moreover, swaptions on realised vari-
ance is also an applicable problem for the fast Fourier transform and we present a short
description how to use the framework of Carr and Madan [9] to price them.

The rest of the paper is organised as follows: In the next section we review the Barndorff-
Nielsen and Shephard stochastic volatility model, realised variance and swaps written on
realised variance. Section 3 provides a key formula similar to the one found in Eberlein and
Raible [10], the transform-based swap price dynamics and a subsection on options written
on realised variance. Brockhaus and Long [7] suggested an approximation for the volatility
swap price dynamics which is reviewed in section 4. In section 5 we give an example and
compare the accuracy of the Brockhaus-Long approximation with numerical results using
the fast Fourier transform on our transform-based swap price dynamics.

2. The volatility model of Barndorff-Nielsen and Shephard

The stochastic volatility model of Barndorff-Nielsen and Shephard (from now on called
the BNS-model) appeared first in [3]. The BNS-model is a very flexible class of stochastic
volatility models, being able to model accurately heavy tailed and skewed log-returns as
well as the autocorrelation in the returns. We will present the model with some of its
analytical properties being useful for our analysis of the volatility and variance swaps
considered in this section and later.

Consider the probability space (Ω,F , P ) and assume the asset price evolves in time as

(2.1) dS(t) =
(
µ + βσ2(t)

)
S(t) dt +

√
σ2(t)S(t) dB(t),
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where B(t) is a Brownian motion, µ and β constants and σ2(t) follows a non-Gaussian
Ornstein-Uhlenbeck process. The idea of the BNS-model is to find an Ornstein-Uhlenbeck
dynamics for which the marginal distribution and the autocorrelation structure of the
log-returns are modelled separately. This is achieved by assuming

(2.2) dσ2(t) = −λσ2(t) dt + dL(λt),

where λ is a positive constant and L is the background driving Lévy process to be specified.
We suppose L to be a subordinator to ensure the positivity of the process σ2(t). We
denote {Ft}t≥0 the completion of the filtration σ(B(s), L(λs); s ≤ t) generated by the
Brownian motion and the subordinator such that (Ω,F ,Ft, P ) becomes a complete filtered
probability space. The Lévy measure is denoted �(dz), and is supported on the positive
real line since L is a subordinator. Since the log-returns now become scaled mixtures of
normal distributions, the marginal distribution of the log-returns are modelled (indirectly)
by assuming a specific stationary distribution for σ2(t). Given this specification, there will
exist a subordinator process L such that σ2(t) is the solution of the Ornstein-Uhlenbeck
equation (2.2). Moreover, the autocorrelation function for (the stationary) σ2(t) is r(u) =
exp(−λ|u|). The reason for the unusual time scaling L(λt) in the dynamics for σ2(t) is
namely the separation of the modelling of autocorrelation (i.e. the time dynamics of the
volatility) and the invariant distribution (i.e. the marginal distribution for the log-returns).
Note that from Itô’s Formula for semimartingales it follows that for s ≤ t

σ2(t) = σ2(s)e−λ(t−s) +

∫ t

s

e−λ(t−u) dL(λu).

A more general autocorrelation structure is obtained by a superposition of m different
non-Gaussian Ornstein-Uhlenbeck processes: Let wk, k = 1, 2, . . . , m, be positive weights
summing to one, and define

(2.3) σ2(t) =

m∑
k=1

wkYk(t),

where

(2.4) dYk(t) = −λkYk(t) dt + dLk(λkt),

for independent background driving Lévy processes Lk, k = 1, . . . , m. We denote the corre-
sponding Lévy measures �k(dz), k = 1, . . . , m, which all are supported on the positive real
line under the assumption that the Lk’s are subordinators. The autocorrelation function
for the stationary σ2(t) then becomes

r(u) =
m∑

k=1

w̃k exp(−λk|u|),

thus allowing for much more flexibility in modelling long-range dependency in log-returns.
The weight functions w̃k in autocorrelation function r(u) are proportional to wkVar(Lk).

As earlier literature has shown, the log-returns of financial data can be successfully mod-
elled by the normal inverse Gaussian (NIG) distribution (see e.g. Barndorff-Nielsen and
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Shephard [3] and the references therein). Following the discussion of Barndorff-Nielsen and
Shephard [3], we may derive the background driving Lévy process yielding NIG-distributed
log-returns by specifying the marginal law of σ2(t) to be generalised inverse Gaussian,
σ2(t) ∼ GIG(ν, δ, γ). The density of a the GIG(ν, δ, γ) is

(γ/δ)ν

2Kν(δγ)
xν−1 exp

(
−1

2

(
δ2x−1 + γ2x

))
,

where Kν is the Bessel function of third kind with index ν. The Lévy measure of the
subordinator L(t) becomes (see Thm. 2 in Barndorff-Nielsen and Shephard [3])

�(dz) = z−1

{
1

2

∫ ∞

0

exp

(
−1

2
δ−2zξ

)
gν(ξ) dξ + λ max(0, ν)

}
exp

(
−1

2
γ2z

)
dz,

where

gν(x) =
2

xπ2

{
J2
|ν|(

√
x) + Y 2

|ν|(
√

x)
}−1

,

and J|ν| and Y|ν| are Bessel functions1 of the first and second kind, respectively, with index
(or order) |ν| (see e.g. Abramowitz and Stegun [1], Section 9.1). Specifying the non-
Gaussian Ornstein-Uhlenbeck process σ2(t) with this background driving Lévy process,
the log-returns will become approximately generalised hyperbolic distributed, including
the cases of NIG (with ν = −1/2) and hyperbolic (with ν = 1). Note that the parameter

α in the NIG-distribution is given as α =
√

β2 + γ2.
The realised volatility σR(T ) over a period [0, T ] is defined as

σR(T ) =

√
1

T

∫ T

0

σ2(s) ds.

The quadratic variation of the log-prices ln S(t) is connected to the realised volatility by
the following relation:

[ln S](t) := p lim
r→∞

mr∑
i=1

(ln S(tri+1) − ln S(tri ))
2 =

∫ t

0

σ2(s) ds

for any sequence of partitions tr0 = 0 < tr1 < . . . < trmr
with supi(t

r
i+1 − tri ) → 0 for r → ∞.

A volatility swap is a forward contract that pays to the holder the amount

c (σR(T ) − Σ)

where Σ is a fixed level of volatility and the contract period is [0, T ]. The constant c is a
factor converting volatility surplus or deficit into money. For simplicity, we choose c = 1
in this paper. The fixed level of volatility Σ is chosen so that the swap has a risk-neutral
price equal to zero, that is, at time 0 ≤ t ≤ T , the fixed level is given as the conditional
risk-neutral expectation (using the adaptedness of the fixed volatility level):

(2.5) Σ(t, T ) = EQ [σR(T ) | Ft]

1There is an unfortunate duplication of notation here. It is customary to denote the Bessel function Y ,
which we chose to keep in the faith that the reader will understand what is what from the context
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where Q is an equivalent martingale measure. As can be seen, this is nothing but a forward
contract written on realised volatility. As special cases, we obtain

Σ(0, T ) = EQ [σR(T )]

Σ(T, T ) = σR(T ).

In a completely similar manner, we define a variance swap to have the price

(2.6) Σ2(t, T ) = EQ

[
σ2

R(T ) | Ft

]
.

To have a more compact notation, we define for γ > −1

(2.7) Σ2γ(t, T ) = EQ

[
σ2γ

R (T ) | Ft

]
.

Below, we shall derive pricing dynamics for swaps written on all powers of the realised
volatility σR bigger than -2. Of course, our concern is the volatility and variance swap
prices, corresponding to γ = 1/2 and γ = 1, resp. However, as we shall see below, our
framework gives prices that naturally extends to any γ > −1.

3. Valuation of volatility and variance swaps using the Laplace

transform

We construct martingale measures Q using the Esscher transform, following the analysis
in Benth and Saltyte-Benth [6]. Assume θk(t), k = 1, . . . , m are real-valued measurable
and bounded functions. Consider the stochastic process

Zθ(t) = exp
( m∑

k=1

( ∫ t

0

θk(s) dLk(λks) −
∫ t

0

λkψk(θk(s)) ds
))

,

where ψk(x) are the log-moment generating functions of Lk(t), e.g. ψk(x) = ln E[exp(xLk(1))].
For many natural choices of Lk these functions are explicitly known. We refer the reader
to Section 5 for one example. Let us impose an exponential integrability condition on the
Lévy measure ensuring existence of moments.

Condition (L): There exist a constant κ > 0 such that the Lévy measure satisfies the
integrability condition ∫ ∞

1

ezκ�k(dz) < ∞.

The processes Zθ(t) are well-defined under natural exponential integrability conditions on
the Lévy measures �k which we assume to hold. That is, they are well defined for t ∈ [0, T ]
if condition (L) holds for κ = supk=1,..,m,s∈[0,T ] |θk(s)|. Introduce the probability measure

Qθ(A) = E[1AZθ(τmax)],

where 1A is the indicator function and τmax is a fixed time horizon including all the trading
times. We denote the expectation under the probability Qθ by Eθ[.]. By using the time
varying θ’s we have a flexible class of martingale measures Qθ of which we shall call θ the
”market price of risk”.

The following key formula for σ2
R(T ) is useful when deriving explicit pricing formulas for

the swaps in terms of Fourier transforms:
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Lemma 3.1. Let z ∈ C and θk : R+ −→ R, k = 1, . . . , m be real-valued measurable

functions. Suppose condition (L) is satisfied and well defined for |Re(z)| < [
λ−1

k

T
(1 −

e−λk(T−s))]−1κ for all k, where κ = supk=1,..,m,s∈[0,T ] |θk(s)|. Then

Eθ

[
ezσ2

R(T ) | Ft

]
= exp

(
m∑

k=1

λk

(∫ T

t

ψk

(
zωk

λkT
(1 − e−λk(T−s)) + θk(s)

)
− ψk(θk(s)) ds

))

× exp

(
z

T

(
tσ2

R(t) +

m∑
k=1

1

λk
(1 − e−λk(T−t))ωkYk(t)

))
.

Proof. From Bayes’ Formula it follows

Eθ

[
exp

(
zσ2

R(T )
) | Ft

]
= E

[
exp

(
m∑

k=1

zωk

T

∫ T

0

Yk(s) ds

)
Zθ(T )

Zθ(t)

∣∣∣Ft

]

= E

[
exp

(
m∑

k=1

(
zωk

T

∫ T

0

Yk(s) ds +

∫ T

t

θk(s) dLk(λks)

)) ∣∣∣Ft

]

× exp

(
m∑

k=1

−λk

∫ T

t

ψk(θk(s)) ds

)
.

Since σ2(s) is Fs -adapted, we have

Eθ

[
exp

(
zσ2

R(T )
) | Ft

]
= E

[
exp

(
m∑

k=1

(
zωk

T

∫ T

t

Yk(s) ds +

∫ T

t

θk(s) dLk(λks)

)) ∣∣∣Ft

]

× exp

(
m∑

k=1

(
zωk

T

∫ t

0

Yk(s) ds − λk

∫ T

t

ψk(θk(s)) ds

))
.

To this end, recall from the dynamics of Yk that

λk

∫ T

t

Yk(s) ds = −Yk(T ) + Yk(t) +

∫ T

t

dLk(λks) ,

and invoking the explicit expression for Yk(T ) yields∫ T

t

Yk(s) ds =
1

λk
Yk(t)

(
1 − e−λk(T−t)

)
+

1

λk

∫ T

t

(
1 − e−λk(T−s)

)
dLk(λks) .

Thus,

Eθ

[
e(zσ2

R(T ))
∣∣∣Ft

]
= E

[
exp

(
m∑

k=1

(∫ T

t

zωk

λkT

(
1 − e−λk(T−s)

)
+ θk(s) dLk(λks)

)) ∣∣∣Ft

]

× exp

(
z

T
tσ2

R(t) +
m∑

k=1

(
zωk

Tλk

(
1 − e−λk(T−t)

)− λk

∫ T

t

ψk(θk(s)) ds

))
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= exp

(
m∑

k=1

λk

(∫ T

t

ψk

(
zωk

λkT
(1 − e−λk(T−s)) + θk(s)

)
− ψk(θk(s)) ds

))

× exp

(
z

T

(
tσ2

R(t) +
m∑

k=1

1

λk

(1 − e−λk(T−t))ωkYk(t)

))
,

where we have used the independent increment property of the subordinator. Hence, the
proof is complete. �

We remark that a related formula can be found in Eberlein and Raible [10], with a
further generalization in Nicolato and Venardos [12].

Applying the key formula in Lemma 3.1, we are now in the position to derive represen-
tations of the swap price dynamics in terms of Laplace transforms. The details are given
in the next Proposition:

Proposition 3.2. For every γ > −1 and any c > 0 satisfying c < [
λ−1

k

T
(1 − e−λk(T−s))]−1κ

for all k, where κ = supk=1,..,m,s∈[0,T ] |θk(s)|, it holds

Σ2γ(t, T ) =
Γ(γ + 1)

2πi

∫ c+i∞

c−i∞
z−(γ+1)Ψθ(t, T, z)

× exp

(
z

T

(
tσ2

R(t) +

m∑
k=1

ωkYk(t)

λk
(1 − e−λk(T−t))

))
dz ,

where

Ψθ(t, T, z) = exp

(
m∑

k=1

λk

(∫ T

t

ψk

(
zωk

λkT

(
1 − e−λk(T−s)

)
+ θk(s)

)
− ψk(θk(s)) ds

))
.

Proof. We know from the theory of Laplace transforms that

xγ =
Γ(γ + 1)

2πi

∫ c+i∞

c−i∞
z−(γ+1)ezx dz ,

for any c > 0 and γ > −1. Thus, under the conditions of the Proposition making the
moment generating function well-defined, we have

Σ2γ(t, T ) =
Γ(γ + 1)

2πi

∫ c+i∞

c−i∞
z−(γ+1)

Eθ

[
exp

(
zσ2

R(T )
) | Ft

]
dz .

Applying the Key Formula in Lemma 3.1 gives the desired result. �

We remark that the expression for the swap prices in the Proposition above is suitable for
numerical calculations based on the fast Fourier transform (FFT) or other fast numerical
inversion techniques for the Laplace transform. This will be the topic in Section 5.

The variance swap price has an explicit expression, which is stated in the Proposition
below.
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Proposition 3.3. The variance swap has a price given by the following expression:

Σ2(t, T ) =
t

T
σ2

R(t) +

m∑
k=1

ωk

Tλk

(
1 − e−λk(T−t)

)
Yk(t)+

+

m∑
k=1

[ωk

T

∫ T

t

ψ′
k(θk(s))(1 − e−λk(T−s)) ds

]
.(3.1)

Proof. We can prove this directly by using z ∈ R, differentiating with respect to z in the
Key Formula in Lemma 3.1 and then let z = 0. �

Observe that the swap prices Σ2γ at time t are dependent both on the current level of
the variance σ2(t) and the realised variance σ2

R(t). Based on this, we can go further and
price options written on the swaps.

3.1. Options. Let f be a real-valued measurable function with at most linear growth.
Then the fair price C(t) at time t of an option price paying f(Σ2γ(τ, T )) at exercise time
τ > t is given by

C(t) = e−r(τ−t)
Eθ[f(Σ2γ(τ, T )) | Ft],

where Σ2γ(τ, T ) is given in Proposition 3.2, with T > τ .
For the variance swap the explicit solution in Proposition 3.3 leads to a formulation of

the option pricing problem where the fast Fourier transform is applicable. We focus our
discussion on call options. Using the approach by Carr and Madan [9] we can formulate the

price of a call option as an inverse Fourier transform in the strike price K. Let K̃ = ln(K)
be the log of the strike price. After introducing an exponential damping to get a square
integrable function we can represent the price of the option as

(3.2) C(t) =
exp(−αK̃)

π

∫ ∞

0

e−iv eKΦ(v) dv

where

Φ(v) =

∫ ∞

−∞
eiv eK

Eθ

[
e−r(τ−t)eα eK

(
eΣ2(τ,T ) − e

eK
)+

| Ft

]
dK̃.

Using the explicit expression for the variance swap (3.3), the explicit solution for the non-
Gaussian Ornstein-Uhlenbeck processes Yk(t) and the independent increments property of
the subordinators we get that

Φ(v) =
e−r(τ−t)

(α + 1)(α + 1 + iv)

× exp

(
(1 + α + iv)

m∑
k=1

ωkYk(t)

λkT

(
τ + (1 − τ)e−λk(τ−t) − e−λk(T−t)

))

× exp

(
(1 + α + iv)

(
τ

T
σ2

R(t) +
m∑

k=1

ωk

T

∫ T

τ

ψ′
k(θk(s))(1 − e−λk(T−s)) ds

))
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× exp

(
m∑

k=1

λk

∫ τ

t

ψk

(
ωk

λkT
(1 + α + iv)

(
τ + (1 − τ)e−λk(τ−s) − e−λk(T−s)

))
ds

)
,

where we recall ψk(·) to be the log-moment generating functions of the subordinators Lk.
The option price is then possible to calculate using fast Fourier transform of the integral
in (3.2) following the outline in Carr and Madan [9].

4. An approximation of the volatility swap price dynamics

We have seen above how we can apply techniques based on the Laplace transform to
derive formulas for the swap price dynamics. An alternative approach for volatility swaps is
to derive an approximation from a second-order Taylor expansion of the function

√
x. This

was suggested by Brockhaus and Long [7], and we now elaborate on this approximation
for the BNS-model. Below we derive the approximate volatility swap price dynamics, and
analyse the error made with this method in section 5.

The following Proposition holds true:

Proposition 4.1. The volatility swap price dynamics can be expressed by

Σ(t, T ) =
1

2

√
Σ2(0, T ) +

Σ2(t, T )

2
√

Σ2(0, T )
− Σ4(t, T ) − 2Σ2(0, T )Σ2(t, T ) + Σ2

2(0, T )

8Σ
3/2
2 (0, T )

+ R(t, T ) ,

where

R(t, T ) =
1

32
Eθ

[
(σ2

R(T ) − Σ2(0, T ))
3

(Σ2(0, T ) + Θ (σ2
R(T ) − Σ2(0, T )))

5/2
| Ft

]
,

and Θ is a random variable such that 0 < Θ < 1.

Proof. For a positive random variable X, a second-order Taylor approximation of
√

X
around Eθ[X] with remainder term gives

√
X =

√
Eθ [X] +

1

2
√

Eθ[X]
(X − Eθ[X]) − 1

8

1

Eθ[X]3/2
(X − Eθ[X])2 + RX

=
1

2

√
Eθ[X] +

1

2

X√
Eθ[X]

− 1

8

(X − Eθ[X])2

Eθ[X]3/2
+ RX ,

where the remainder term is

RX =
1

32

(X − Eθ[X])3

(Eθ[X] + Θ(X − Eθ[X]))5/2
.

Thus, letting X = σ2
R(T ), and taking conditional expectation together with the definition

of Σ2γ , yields the result. �
With the dynamics of Σ4(t, T ) given by Proposition 3.2, we can derive an approximative

dynamics of the volatility swap price Σ(t, T ) based on the expression in Proposition 4.1 by
ignoring the R(t, T )-term. How good this approximation is depends of course on the size
of the remainder. We analyse the remainder term numerically in the next section.
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5. Numerical studies of volatility and variance swaps

In the previous sections we have seen how the price of swaps written on all powers of
realised volatility can be expressed as an inverse Laplace transform. This representation
opens up for numerical solution using some inversion technique, such as the fast Fourier
transform (FFT). In this section we show how to utilise the computational power of the
FFT to evaluate swap prices and give a few numerical examples.

The fast Fourier method is a computationally efficient way to do the discrete Fourier
transform

(5.1) ω(k) =
N∑

j=1

e−i 2π
N

(j−1)(k−1)x(j), for k = 1, . . . , N,

when N is a power of 2, reducing the number of multiplications from order N2 to N ln2(N).
The use of the fast Fourier transform for option pricing was investigated by Carr and
Madan [9]. The possibility to use pre-implemented and optimised versions of the algorithm
from software packages, together with its speed and simplicity, makes it a competitive
method. The only requirement is that we know the characteristic function of the density
analytically.

Proposition 3.2 gives the price of a swap as the inverse Laplace transform of a function
on a form suitable for the (inverse) fast Fourier transform. To begin with we need to
discretise both z and σR and approximate the integral with a finite sum. As we see from
the formula we actually need to discretise σ̃2 := σ2

R×t/T , hence we get a time scaling of the
output variable. Since FFT are restricted by sampling constraints this have the undesirable
consequence that if t is small compared to T we get few data points in the domain of
interest. To make the best use of the computational efficiency we let N be a power of 2
and choose ∆σ̃2 sufficiently small. The discretised variable is then σ̃2(j) = ∆σ̃2 ∗ (j − 1).
To rewrite the sum in the standard form of the fast Fourier transform it requires that

∆z =
2π

N∆σ̃2

and z(k) = c + i∆z(k − 1). Applying this discretisations gives us a summation of the form
(5.1).

The background driving Lévy processes Lk have to be specified to get the log-moment
generating functions explicitly. The standard approach is to specify a stationary dis-
tribution of the Ornstein-Uhlenbeck process and then derive the log-moment generating
function for the Lévy process from the distribution. Two popular distributions are the
inverse Gaussian and variance-gamma, see Barndorff-Nielsen and Shephard [2], Carr and
Madan [9], Nicolato and Venardos [12]. Here we only consider the inverse Gaussian dis-
tribution, and in this case the log-moment generating function is given by Nicolato and
Venardos [12] as

ψ(θ) = θδ(γ2 − 2θ)1/2.

After rewriting the integrand to simplify the simulations we implement it using Matlab’s
predefined command for applying FFT.
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α β µ δ
233.0 5.612 −5.331 × 10−4 0.0370

Table 1. Estimated parameters for the NIG-distribution

λ ω
OU1 0.9127 0.9224
OU2 0.0262 0.0776

Table 2. Estimated parameters for the decay rates and weights of the OU-processes
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Figure 1. Absolute error between the explicit and FFT-solution of the
variance swap price as a function of σR.

When specifying the stationary distribution of the Ornstein-Uhlenbeck process to be
inverse Gaussian the log-returns of the stock will be approximately normal inverse Gaussian
distributed. We use parameters for the normal inverse Gaussian distribution estimated by
Lindberg [11] for the Swedish company AstraZeneca. The parameters are estimated based
on daily log-returns over the period August 1, 2003 to June 1, 2004, see Table 1. Following
the analysis of Lindberg [11] we assume that we have the superposition of two Ornstein-
Uhlenbeck processes, both with inverse Gaussian law. The rates of decay and weights were
also estimated at the same time, see Table 2. Left unknown are estimates of the current
level of variance for both processes. For the purpose of illustration we choose these in
such a way that multiplied with the weights and added they equal the variance of the
NIG distribution. With the parameters in Table 1 we get that the variance of the NIG
distribution is 1.59× 10−4 and for the numerical tests we then let Y1(t) = 1.66× 10−4 and
Y2(t) = 7.5 × 10−5.
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Figure 2. Comparison between the Brockhaus and Long approximation
and the FFT-solution for the volatility swap price as a function of yearly
volatility. Left:t = 1, T = 31 , Right: t = 31, T = 61

The variance swap has the explicit solution given in Proposition 3.3 which we use as a
benchmark for the FFT-method. We use 215 points which gives a good tradeoff between
speed and accuracy, and we can choose the step size to be ∆σ̃2 = 0.0005. We let t = 31
and T = 61 and plot the difference between the explicit solution and the result from the
FFT-method. Figure 1 shows that we have a absolute error in the order of 10−5 or below for
the simulation. We account the error in the prices to the precision of the FFT-algorithm.
Using another set of times, t = 1, T = 31, gives similar results but with less data points in
the domain of interest because of the unfortunate time scaling of the output variable.

Turning to the volatility swap we now want to compare the FFT method with the ap-
proximation of Brockhaus and Long discussed in previous section. The approximation
requires values for the variance swap prices, both for time zero and t. We use the explicit
solution (3.1) for the variance swap prices, including the case t = 0, as calculated above.
We simulate for the same two sets of times, first t = 1, T = 31 and second t = 31, T = 61
and plot the resulting price lines for the two methods. As seen in figure 2 the Brock-
haus and Long approximation is reasonable for values close to the expected value of the
realised variance at time zero, which is approximately 0.1. When the realised variance
σ2

R approaches higher values the approximation is increasingly poor. We notice that the
Brockhaus and Long method performs better when the fraction t/T is small. This is re-
lated to the values of the variance swap being smaller which makes the Taylor expansion
less sensible.
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