
Motion Planning for UGVs in Terrain Scenarios Based on
RRT, RRT* and the Fast Marching Method

University of Oslo
Faculty of Mathematics and Natural Sciences

May 2023

A Thesis Submitted for the Degree of

Master of Science in Informatics: Robotics and Intelligent Systems,
Cybernetics and Autonomous Systems

Lars Kristian Bårdevik

Main Supervisor: Marius Thoresen, MSc

Co-Supervisor: Kim Mathiassen, PhD

Abstract

This thesis presents a sampling scheme for traversability mapping and a motion planning

approach for terrain scenarios. The sampling scheme uses overlapping minimum enclosing

cylinders to analyze a point cloud and to estimate terrain inclinations over a grid map.

For motion planning, an objective cost function is defined, that allows penalization of

an interval of inclination values based on varying a parameter _. RRT and RRT* are

extended with a motion primitive scheme that ensures an implicit obstacle-clearance by

performing collision checking in a minimum enclosing radius from every node in a tree.

In the RRT-variant, accumulated costs through branches from the root node of the tree, in

a field defined by the objective function, are saved at every node. A path is constructed by

picking the node with the lowest accumulated cost from the root within a radius from the

goal. The RRT*-variant also utilizes the cost field defined by the objective function, and

employs a proposed BVP-rewiring scheme. For comparison, the motion primitive variants

are modified to use inclination cost directly.

Results show that the proposed motion primitive scheme produces more traversable paths

when higher inclinations are penalized, indicating that the collision-checking approach is

the significant contributor to higher path traversability for the sampling-based variants.

This finding is supported by the results, as no apparent trend is observed with respect to _

when the motion primitive variants are compared directly, but a clear trend is observed with

respect to the ideal benchmarks. Since no apparent trend is observed between the proposed

algorithms, this suggests the RRT* optimization scheme does not produce more traversable

paths compared to paths produced by the RRT-variants. The finding that collision-checking

is the significant contributor to higher path traversability for the sampling-based variants,

is also supported by the results from a simple non-holonomic version of FMM, which is

included to show that for vehicles without netural-turn and reverse-motion capabilities,

feasibility is not guaranteed by FMM alone.

i

Preface

Motion planning is a truly fascinating research problem that becomes increasingly chal-

lenging to solve as the complexity of a planning problem increases. This complexity

depends on what a researcher chooses to prioritize when tackling the problem. Whatever

the researcher’s choices, eventually there will be a trade-off. When one aspect is prioritized

to improve the quality of solutions, another aspect may be ignored, and this can potentially

result in a degradation of solution quality. For example, if one chooses to use a sophisticated

vehicle model, this may result in solution paths that are more feasible than those generated

using a simpler model. On the other hand, generating solution paths using an advanced ve-

hicle model may result in a difficult, non-linear optimization problem. Due to the inherent

trade-offs in motion planning, it may seem difficult to discern which contributions ensure

progress in the field. Yet, it is clear that motion planning research has led to significant

advancements in terms of enabling autonomous navigation in a variety of scenarios. With

continuing technological advancements that work to simplify and improve aspects of this

research, the future of motion planning looks bright.

ii

Acknowledgements

I am deeply grateful to my supervisors, Marius Thoresen and Kim Mathiassen, for asking

critical questions and for their invaluable advice. In particular, a more nuanced representa-

tion of the terrain was enabled by Dr. Mathiassen’s suggestion to save inclination estimates

immediately, instead of using them only to determine the separation between obstacles and

free space. Marius Thoresen proposed using the inclination map directly in planning. This

provided a more transparent evaluation of the algorithms, enabling a deeper understanding

of their effectiveness. I attempted to develop a working non-holonomic version of FMM

for vehicles without neutral-turn capabilities, but I found this to be a challenging problem.

This realization strengthened the motivation for combining FMM with a randomized ap-

proach to address motion constraints of certain types of vehicles. My supervisors suggested

the inclusion of the results from the NH-FMM method as a means of providing evidence

that FMM does not guarantee feasibility for such vehicles. The motion planning approach

presented in this thesis is inspired by their work on Traversability Hybrid A*, which pro-

duced notable results in a real-world experiment on terrain. I feel fortunate to have had the

opportunity to discuss research problems with experts in the field. My dear parents and

friends, I would not have been able to complete this thesis without your love and support.

iii

Contents

1 Introduction 1

1.1 Previous Work . 2

1.1.1 Grid-Based Methods . 2

1.1.2 Sampling-Based Methods . 5

1.1.3 Hybrid Methods . 9

1.1.4 Traversability Costs . 12

1.1.5 Problem Statement . 15

1.1.6 Thesis Outline . 15

2 Background 16

2.1 Modelling the THeMIS UGV with Differential-Drive Kinematics 16

2.2 Configuration Space . 19

2.3 Motion Planning and Autonomous Decision-Making 19

2.4 Fast Marching Method . 20

2.5 Rapidly Exploring Random Trees . 25

2.5.1 Rapidly Exploring Random Tree 26

2.5.2 Rapidly Exploring Random Tree* 27

3 Traversability Mapping 29

3.1 Minimum Enclosing Cylinder . 30

3.2 Point Cloud Dataset . 30

3.3 Sampling Scheme . 32

3.4 Triangle-Based Approach . 33

3.5 Surface Normal Approach . 35

3.6 Implementation . 37

3.7 Results . 38

3.8 Discussion . 41

4 Motion Planning 43

4.1 Motion Primitive BVP Expansion and Rewiring 43

4.2 Collision-Detection Scheme . 48

iv

4.3 Inclination-Based Objective Cost and Optimal Traversability 50

4.4 Non-Holonomic Fast Marching Method 53

4.5 Overview of Algorithms and Associated Costs 57

4.6 Implementation . 59

4.7 Chosen Planning Scenarios . 60

4.8 Randomly Sampled Scenarios . 63

5 Simulation 64

5.1 Simulation Setup . 64

5.2 Results . 64

5.2.1 Planning Scenario 1 . 65

5.2.2 Planning Scenario 2 . 69

5.2.3 Planning Scenario 3 . 72

5.2.4 Planning Scenario 4 . 75

5.2.5 Planning Scenario 5 . 78

5.2.6 Random Simulations . 81

5.2.7 Potentially Problematic Scenarios for the Sampling-Based Schemes 86

5.3 Discussion . 87

6 Conclusions and Future Work 90

Appendix A - Traversability Mapping 100

Appendix B - Simulation Results 102

v

1 Introduction

Motion planning intends to provide robots with the capability of making autonomous deci-

sions on where to move, so that they are able to perform tasks without explicit instruction.

Some applications of the field include space exploration [1], agriculture [2], self-driving

in traffic [3] and off-road scenarios [4], and military operations [5]. It is evident that self-

driving on terrain poses a number of challenges, such as those related to motion constraints,

obstacle avoidance, and traversability, and many of these challenges remain unsolved [6].

The DARPA Grand Challenge was organized with the aim of accelerating technological

development of autonomous vehicles [4]. To successfully complete the competition, self-

driving vehicles had to navigate a 142 mile course in under 10 hours through desert terrain

consisting of steep hills, mountain passes and sharp turns [4]. Stanley, a Stanford Univer-

sity vehicle, won in 2005 [7]. The Carnegie Mellon University car, Boss, won the DARPA

Urban Challenge of 2007, successfully navigating in a dynamic traffic scenario [3]. The

DARPA competitions have highlighted the difficulty of developing methods that enable

effective autonomous navigation in complex and dynamic environments.

Motion planning is often applicable in situations that require alternatives to human oper-

ation. The Perseverance Mars Rover requires a significant level of surface autonomy due

to the commmunications latency between Earth and Mars [1]. In agriculture, the adoption

of motion planning methods can increase productivity [2]. Research into autonomous

navigation is focused on increasing safety and efficiency. Therefore, motion planning is

also relevant for military applications.

At the Norwegian Defence Research Establishment (FFI), researchers are investigating self-

driving on terrain. The motion planning problem is part of this study. In such scenarios

the problem is complex due to features of the terrain, and the ability of a UGV to traverse

it [8]. In this case, path optimality may depend on characteristics such as inclination and

roughness [9]. Due to the complexity of this problem, more sophisticated methods are

needed to improve upon the traditional approaches, which rely on a simple division of a

world model into obstacles and free space [8]. Mathiassen et al. developed an autonomous

UGV platform for the purpose of enabling experiments in outdoor terrain scenarios [10].

1

1.1 Previous Work

The class of motion planning methods that has been given the most research effort can

be divided into grid-based and sampling-based methods [11]. Grid-based planners work

by overlaying a grid on the configuration space [12]. These algorithms can be used

with nonuniform cost-maps, and they are complete planning methods meaning that, in

general, they will find a solution if it exists [8]. Sampling-based methods do not rely on

an explicit construction of the configuration space, and provide probabilistically complete

solutions (i.e., the probability that an existing solution is found converges to one given

enough samples) [13]. Sampling-based motion planning schemes employ a collision-

detection module, which enables probabilistic probing of the configuration space [6].

Solutions are constructed from established connectivity, between samples drawn, in the

free configuration space. Two fundamental types of sampling-based algorithms are the

single-query and multi-query algorithms. Single-query algorithms solve an instances of

motion planning problems based on initial-goal configuration pairs, and often explore only

a subset of the configuration space relevant for the problem at hand [14]. Multi-query

algorithms can accept multiple initial-goal configuration pairs to solve several instances of

a motion planning problem [15], based on a preconstructed roadmap that richly represents

the connectivity of the free configuration space [14]. Hybrid motion planning methods

combine features from grid-based and sampling-based methods [8].

1.1.1 Grid-Based Methods

Edsger W. Dijkstra published an article in 1959 [16], presenting an algorithm capable of

finding the shortest path in a graph structure, given positive cost values. The algorithm

repeatedly visits closest unvisited nodes, starting at an initial node, until either the goal is

found or there is no connection between the starting point and the nodes remaining that are

not yet visited, while updating nodes with the least cost (resulting in the shortest path) to

the starting point. When representing the search space as a grid, center points of grid cells

correspond to nodes. Dijkstra’s algorithm was used by the Ben Franklin Racing Team in

the DARPA Urban Challenge for recomputing waypoints when their vehicle encountered

blocked intersections or lanes [17].

2

A-star (A*) extends Dijkstra’s algorithm by a heuristic function that adds an estimated cost

to the goal, to the original cost [18]. Nodes are given priorities based on approximate

costs-to-go, which results in a greedy exploration of nodes (as opposed to a repeated explo-

ration of closest, unvisited neighbors). The algorithm is mostly used to search for paths in

spaces known a priori to a vehicle [19], and forms a basis for the A* family of algorithms

which have been used for various motion planning purposes in mobile robotics. The Any-

time Dynamic A* (AD*) algorithm combines features from incremental re-planning with

anytime planning to increase efficiency in complex and dynamic environments, resulting

in bounded sub-optimal solutions [20]. In the DARPA Urban Challenge, the Carnegie

Mellon University team exploited AD*’s ability to improve the quality of an initial sub-

optimal solution to achieve the complex maneuvering that was needed for example in the

presence of partially blocked intersections [21]. In 1994, Anthony Stentz presented the

Dynamic A* (D*) algorithm, which can dynamically update the cost of directed edges

(i.e., arcs in a directed graph) to achieve optimal and efficient planning in partially known

environments [22]. D* Lite is more efficient than D*, and both are incremental versions

of A*, meaning that they recycle information for new tasks instead of solving similar tasks

completely from scratch [23]. The combination of features from heuristic search and in-

cremental search makes these algorithms more suitable than A*, for planning problems in

unknown environments, as these scenarios require efficient re-planning capabilities [23].

Stentz et al. introduced the Field D* algorithm, attempting to tackle the problem of sub-

optimal paths that arise due to the limited number of possible transitions from a given graph

vertex when graphs are used to approximate a grid-based environment representation [24].

An A* grid-search is done by first placing vertices at the center of each grid-cell which

limits movement to be between these centers, resulting in non-smooth paths [8]. In Field

D*, vertices are placed at the corners of the grid-cells and linear interpolation is used

to approximate path costs for every point on the boundary of grid cells, which results in

smoother paths [24]. The algorithm has been used for global path planning on terrain by

NASAs Spirit and Opportunity Mars Exploration rovers due to its ability to provide more

direct, low-cost paths while maintaining real-time performance [25].

The Fast Marching Method (FMM) is another grid-based method that computes solutions

to the discrete Eikonal equation, a non-linear first order partial differential equation, which

3

describes the motion of a wavefront [26]. This equation contains both the speed function

of the wavefront at a given point (or grid-cell in the discrete case) and the gradient of its

time of arrival function to a given point from the source of the wavefront. The wavefront

can be reperesented as a curve in 2D or a surface in 3D, and the mathematical model is

applicable to higher dimensions. FMM estimates the time of arrival of the wavefront to

every cell in a gridmap from the source, and a smooth path is traced by computing and

following the maximum gradient direction over cells with stored time of arrival values,

starting at the target cell. The method approximates the Euclidian distance between any

cells in the gridmap which presents an advantage over the A* grid-search, for which the true

Euclidian distance between non-neighbouring grid cells is overestimated as movement is

only allowed between the centres of the cells [8]. Even though FMM computes the shortest

path, this path may not be feasible due to (for example) the generated path’s proximity to

obstacles [26].

Researchers have provided extensions to FMM in attempts to overcome safety challenges,

increase efficiency and to improve the quality of generated paths. In the FM over Voronoi

Diagram method, a generalized Voronoi diagram is used to obtain a roadmap of a binary

obstacle gridmap with enlarged obstacles (i.e., to reduce collision risk), which decreases

the required search time when FMM is applied [26]. FM2 uses a fast marching gridmap

which is generated by expanding waves at all obstacles in the binary gridmap [26]. Scaling

the fast marching gridmap yields maximum safe speeds at all points in the environment

and a shortest-time path can be obtained by applying FMM. The saturated variation of FM2

generates paths at closer, but safe distances to obstacles [26]. There is also a variation of

FM2 that uses a heuristic estimate of the cost-to-go to limit wave expansion [26]. The use

of a heuristic estimate of the cost-to-go makes this algorithm similar to the A*. Garrido

et al. extended FMM for outdoor planning purposes, using a triangular mesh to represent

3D surfaces and incorporating the calculation of a weight matrix to limit wave propagation

speed depending on task requirements [27].

Although grid-based methods have been improved, they present limitations when planning

with UGVs in real-world scenarios. The A* family of algorithms are known to suffer

from an increase in computational complexity for configuration spaces of higher dimen-

sions [28]. Additionally, paths generated by the A* algorithms are not well suited for

4

vehicles with kinematic constraints [8]. There are extensions of FMM which support non-

holonomic constraints for binary obstacle maps (e.g., [29], [30]). Sampling-based planning

algorithms are suitable for planning in high-dimensional configuration spaces [28]. They

can also sample with motion primitives (i.e., precomputed feasible paths corresponding to

single driving maneuvers), which ensures that generated paths do not violate the kinematic

constraints of a given UGV [8].

1.1.2 Sampling-Based Methods

The multi-query Probabilistic Roadmap (PRM) algorithm, presented by Kavraki et al. in

1996, relies on a learning phase and a query phase [15]. The output of the learning phase is

a probabilistic roadmap that PRM generates from random configurations in the free config-

uration space of a robot. Random configurations are connected using a local planner, and

the resulting roadmap is stored as an undirected graph, with edges corresponding to simple,

feasible paths. In the query phase, multiple queries can be made for paths connecting free

initial configurations with free goal configurations. PRM tries, in the query phase, to find

paths from the initial and goal configurations to two vertices within the roadmap. A com-

plete path is constructed by concatenating edges found in a graph search, which connect the

vertices. In [31], Svestka et al. extended PRM for motion planning with non-holonomic

vehicles on planar surfaces by employing a simple local method which constructed paths

in absence of obstacles, and reported success if the shortest path (consisting of two ex-

treme rotations and one translation), connecting two input configurations, did not intersect

any obstacles. Through simulations and an experiment with a Segway Robotic Mobile

Platform, Kobilarov et al. demonstrated near time-optimal motion planning on outdoor

terrain surfaces (approximated by planar patches) using a control-driven PRM planner that

accounted for kinematic and dynamic constraints [32].

In their presentation of the single-query Rapidly-exploring Random Trees (RRTs) algo-

rithm, Lavalle et al. propose that PRM is impractical when planning under differential

constraints, due to the difficulty of designing a local planner [33]. RRT quickly searches

nonconvex, high-dimensional spaces, by randomly sampling the search space to incremen-

tally build a space-filling tree that is biased to grow toward large unsearched areas [34].

This algorithm can be adapted to account for non-holonomic and kinodynamic constraints,

5

using a state transition equation that is integrated in a simulator to check that constraints

are satisfied [6]. Compared to RRT, PRM constructs a roadmap a priori. Constructing this

roadmap may be computationally challenging, and in many planning problems the environ-

ment is unknown [35]. A shortcoming of both RRT and PRM is that they do not consider

path optimality. In [35], Karaman et al. presented RRT* and PRM*, which provide asymp-

totic optimality (AO; convergence toward optimal solutions as the number of samples goes

to infinity) by minimizing distance-based cost [12]. As part of the tree construction, RRT*

incrementally reroutes edges between vertices and selects parent vertices with the lowest

cost between the initial vertex and randomly chosen vertices, to achieve AO [36]. RRT*

and its extensions have been used for various motion planning problems involving UGVs

on terrain.

Furgale et al. presented a novel framework for autonomous driving on terrain that relies

on point cloud data obtained locally by a UGV [37]. In their publication, they state that

motion planning methods which rely on explicit surface reconstruction can be computa-

tionally expensive for UGVs to perform locally. The method presented by Furgale et al.

performs only local terrain assessment by approximating surfaces on-demand using robot-

sized planar patches and analyzing the local distribution of points in the point cloud map. In

their extension of PRM for autonomous terrain navigation, Kobilarov et al. approximated

surfaces locally using small planar patches [37] [32]. The novelty of the method proposed

by Furgale et al. lies in their development of a local trajectory optimization scheme that,

based on an objective function, iteratively optimizes trajectories without having to con-

sider gradient information or explicit mapping of obstacles. The objective function can be

customized to include any quality measures, for example related to distance, path length,

terrain smoothness or curvature. Local trajectory optimization is used in this method to

improve collision-free paths generated by RRT*-optimized RRT trajectories.

In the publication by Furgale et al., one can observe that the paths generated by RRT are

jerky. Although RRT* produces smoother paths in a second step, this feature remains here

as well. The jerkyness of trajectories generated by RRT and its extensions have been com-

mented on by several researchers (e.g., [38] [39]), and there are other approaches which can

be taken for path smoothing such as B-spline based post-processing [39]. The benefit of the

framework proposed by Furgale et al. is that it is developed for motion planning on terrain,

6

and the work done so far on optimization of nonplanar trajectories is limited [37]. As

shown in [40], sampling with motion primitives is another method which can help ensure

obtained paths are smoother and respect constraints. Both RRT and RRT* have support

for planning under both kinematic [33] [40] and kinodynamic [33] [41] constraints.

Takemura et al. developed a traversability-based version of RRT* for planetary rover mo-

tion planning on rough terrain [36]. This method samples vertices directly from dense point

cloud data, and includes a traversability assessment, based on a user-defined region and

travel cost between two vertices. The travel cost is based on a weighted sum of the rover’s

roll, pitch and yaw angles and the distance between the vertices. Through simulation,

Takemura et al. demonstrated that this assessment can ensure safe and feasible paths (i.e.,

not AO) on rough terrain. Similar to [37], this approach does not rely on explicit terrain

surface reconstruction.

The Particle RRT algorithm, developed by Simmons et al. for rover path planning on

terrain, extends RRT by explicitly considering environment uncertainty [42]. In the tree

expansion of RRT, the original algorithm applies random actions to currently known and

reachable tree states to reach new states. Simmons et al. argue that since the determination

of the success of applying an action is binary, there is no room for ranking of multiple

actions in tree expansion. The determination is binary because applying an action either

satisfies constraints and leads to no collision or it is not applied. Another argument given

by Simmons et al. is that actions associated with high cost may be ignored in the original

RRT algorithm, even though better solutions may not exist. To obtain paths that are some-

what robust to environment uncertainty, Particle RRT treats each extension to the tree as

a stochastic process, and tree extensions are chosen based on the expected probability of

executing a path successfully.

Jiang et al. developed R2-RRT*, an extension of RRT* that analyzes mobility reliability

to generate reliable and robust paths in face of environment uncertainty in off-road sce-

narios, by considering soil properties and slope information [43]. Prior to planning, using

this approach, the target map and terrain information must be well-characterized, which

means the approach may not be applicable when, for example, the only terrain information

available comes from sensor data obtained locally. In this case, Particle RRT may be

7

more applicable as it is developed for UGVs operating on rough terrain with unknown

coefficients of friction [42]. Particle RRT performs repeated simulation of the execution of

a chosen action using likely friction coefficients. As mentioned by Simmons et al. in their

application of Particle RRT on terrain, even when considering interactions between vehicle

and soil, vehicle slip and friction coefficients, the simulated results cannot necessarily be

replicated in a real-world scenario [44]. However, Simmons et al. also conclude that the

generated paths were more reliable and optimal than paths obtained with the basic RRT

algorithm. Lee et al. developed a chance-constrained version of RRT* (CC-RRT*) for

autonomous tracked vehicles in high slip terrain by modelling the effect of slip on the

vehicle (on different soil types) as a process noise with high uncertainty [45].

Another sampling-based method is the Fast Marching Tree (FMT*) algorithm, which builds

on RRT* and PRM* (among other methods) [46]. This algorithm performs a forward dy-

namic programming recursion on a predetermined number of samples, and concurrently

searches and builds a tree similar to RRT*. Hence, FMT* differs from PRM-like algorithms

as it does not rely on a preconstructed roadmap. FMT* is similar to the grid-based FMM

because it moves outward into cost-to-arrive space to construct the tree, and the samples

that have been visited are not visited again and therefore not considered for new connec-

tions. However, the algorithm does not explicitly solve the discrete Eikonal equation. To

increase efficiency, FMT* relies on a lazy collision checking scheme which first assumes

no obstacles. According to Janson et al., this scheme may introduce sub-optimal solutions,

but if more samples are used, this reduces the number of occurences of such solutions. The

method is AO and converges faster than PRM* and RRT*, although uses a definition of AO

that differs from the definition used by PRM* and RRT*, in that the algorithm is shown

to converge in probability toward optimal solutions as the number of samples increases (a

less strict definition). FMT* has been extended for non-holonomic constraints [47], but

little work has been done on extending the algorithm for motion planning with UGVs in

outdoor terrain scenarios, for example by including a traversability assessment.

Sampling-based methods can solve motion planning problems in high-dimensional con-

figuration spaces that grid-based planners cannot [48]. Many of the algorithms have

frameworks in place for motion planning under both kinematic and kinodynamic con-

straints. Sampling-based motion planning algorithms avoid explicit construction of the

8

configuration space, and the different sampling schemes present several advantages. Sam-

pling with motion primitives can help ensure solutions respect kinematic constraints, and by

sampling directly from point clouds one can for example avoid required computations over

high-resolution grids or explicit terrain surface reconstruction. Much work has been done

to extend sampling-based planners for UGV motion planning on terrain. However, these

approaches only provide sub-optimal solutions. Researchers have combined grid-based

and sampling-based methods to obtain cost-optimal and feasible paths [8].

1.1.3 Hybrid Methods

The Hybrid A* algorithm was created and used by the Stanford Racing Team in their entry

to the DARPA Urban Challenge [49]. The method consists of two phases. An A* grid-

search is used to guide a continuous-state tree search, and local optimization according

to an objective function and use of a gradient descent method improves the sub-optimal,

feasible paths generated by the hybrid search. The search is guided by two heuristics. One

heuristic assumes no obstacles and is based on computing the shortest paths from every

point to the final pose in a discretized neighborhood of the goal (i.e., cost-to-go), while

accounting for non-holonomic constraints. The heuristic itself is comprised of a maximum

of the computed cost and 2D Euclidian distance. The second heuristic does not account

for constraints and uses dynamic programming in 2D to compute the shortest distance to

the goal based on an obstacle map. By expanding vertices with motion primitives, the

generated paths are feasible compared to paths generated by the original A* algorithm.

The benefit of the first heuristic is a pruning of tree branches so that the vehicle does not

approach the goal with wrong heading, while the second heuristic guides the tree search

away from areas that cannot be traversed by the vehicle (in an urban setting) [49]. A

gradient descent method is needed to improve on generated paths due to a merging of states

occupying same grid-cells. The resulting paths generated by Hybrid A* are kinematically

feasible and near-optimal, but as the method was designed for urban environments, it does

not consider terrain characteristics such as elevation, inclination or roughness.

Tompkins et al. created a PRM-based A* motion planner for an experimental Mars rover

using an a priori point cloud and occupancy grid to generate paths through user-defined

waypoints by minimizing a terrain-based cost function [50]. Similar to PRM, the algorithm

9

relies on a roadmap that is generated a priori from randomly generated vertices in unoccu-

pied space. The cost function, composed of height and slope features of the terrain, is used

to verify that edges correspond to traversable paths. Another function is used to query the

occupancy grid to ensure points (or vertices) are not situated on large static obstacles. The

algorithm maintains a set of valid vertices (corresponding to unoccupied points) and an

adjacency list containing traversable edges connecting a maximum number of neighbours

to the valid vertices. Terrain characteristics of vertices are assessed by fitting planes cov-

ering local areas of points surrounding them. Most calculations are done offline, but there

is no guarantee that the roadmap contains the user-defined waypoints as vertices are ran-

domly generated over unoccupied space. An online weighted-graph A* solver, temporarily

extends the directed graph with the waypoints and finds a minimum-cost path between

them. Minimizing cost ensures that the rover avoids terrain with features corresponding to

user-defined thresholds (e.g., heights corresponding to portions of the wheel diameter of the

rover). Compared to Hybrid A*, this approach relies on a priori environment information

due to the incorporation of PRM, and therefore, may be less applicable for planning in

unknown environments. With regards to motion planning on terrain, an advantage of this

method compared to Hybrid A* is that it considers terrain traversability.

Jordan et al. introduced another hybrid method for differential-drive wheeled vehicle mo-

tion planning on terrain [51]. This method uses a detailed vehicle model, which enables

predictions on wheel-terrain interaction, the vehicle’s 3D pose and chassis collision. Jordan

et al. provide a scoring function that is used for a search similar to A*, by weighing these

predictions according to the vehicle’s required safety. In their publication, they argue that

while the use of a simplified vehicle model enables more efficient planning than what may

be acheivable with a high-fidelity model, there may exist fully executable paths that are

not considered as a result. According to Jordan et al., the incorporation of a traversability

analysis based on an advanced vehicle model enables traversal of complex obstacles, such

as ramps only consisting of a pair of narrow lanes. In the presented method, the approach

in [52] is used to estimate the orientation of the vehicle on elevation maps that are gener-

ated from environment data obtained by short-ranged on-board sensors. The pose of the

vehicle is used in a pose evaluation scheme which for example checks for chassis collision

and evaluates all wheels. Results from the evaluation scheme is used to calculate safety

10

criteria such as the angle between the previous and current orientation and tip angle. The

traversability of a path is determined by the results of the safety criteria calculation. In the

local planning method, the search space corresponds to vehicle poses (i.e., the vertices).

The vehicle model is used to expand vertices by applying velocities to the poses and veri-

fying that resulting paths do not violate the safety constraints. A safety violation will result

in no further expansion of a given vertex. All leaf vertices can be chosen as end poses

of a complete path, and complete paths are obtained by going backwards from the leaf

with highest score, to the initial pose. The method by Jordan et al. was demonstrated in a

real-world scenario, and is shown to produce short and feasible paths on rough terrain.

Thoresen et al. developed Traversability Hybrid A* to ensure sufficiently long planning

horizons and to account for optimality in the sampling search of Hybrid A* for planning on

terrain [8]. In this approach, the A* grid heuristic of Hybrid A* is substituted for an FMM

grid heuristic that explicitly considers dynamic terrain cost. FMM is chosen as a substitute

due to its improvements over A*, such as its near-elimination of the directional bias caused

by varied estimated distance accuracy due to limited possible movements between centers

of grid-cells. FMM is applied over a nonuniform traversability cost map with the goal as a

source point to find the cost of moving from the source to any other map point. Estimated

traversability values are linearly mapped to cost through a function, which contains a pa-

rameter that can be adjusted to affect how different degrees of traversability are penalized

in planning. By applying FMM over the cost map, a fast marching field is obtained and a

path is found by following the negative gradient of this field from the starting point. The

resulting path ensures that the accumulated cost is minimized. Thoresen et al. explain that

by providing an estimate of the weighted traversability cost-to-go, the FMM grid heuristic

ensures a long planning horizon. The continuous-state tree search of this approach also

samples with motion primitives, like the original Hybrid A* method, which ensures kine-

matic feasibility. The tree search is similar to the one performed in Hybrid A*, but instead

of a distance-based cost, the sampling search uses accumulated traversability cost along the

motion primitives. Traversability Hybrid A* also includes a local optimization according

to an objective function, but with an added term that maintains traversability when smooth-

ing paths. The traversability map is in this approach obtained by creating inclination maps

based on height differences in elevation maps, generated from point cloud data, and linearly

11

mapping inclination to traversability values. Traversability scores are weighted with cell

height uncertainty, resulting in lower scores for cells with high uncertainty. This approach

was tested through simulation and with a UGV in a real-world scenario on rough terrain,

and is shown to produce near-optimal paths and more traversable paths compared to the

original Hybrid A* algorithm.

By employing a grid heuristic to guide a sampling-based search, hybrid approaches can

account for optimality when planning on terrain, while also respecting vehicle constraints.

When sampling-based methods are used for terrain planning, optimality is rarely a consid-

eration due to (for example) the probabilistic nature of the algorithms, and the complexity

of the environment. The development of suitable motion planning approaches for outdoor

terrain scenarios relies on a number of factors, which may ultimately determine whether

their applications succeed in efficiently providing sufficiently safe, executable paths. These

factors include (but are not limited to) how cost functions are formulated, which metrics

are chosen, how paths are optimized, how the vehicle and the environment are modeled,

and how environment uncertainty is addressed. When planning on terrain, the optimal

path is not necessarily the shortest path, but may be the path that optimizes accumulated

traversability, as demonstrated in [8].

1.1.4 Traversability Costs

When binary obstacle maps are used for motion planning, distance is typically the only

optimization parameter [8]. Optimization on distance alone is normally not sufficient for

motion planning on terrain [5]. For a UGV travelling on terrain, the shortest-distance path

may not be optimal due to terrain characteristics. Traversability maps can store information

on features of the terrain such as inclination, elevation and roughness and enable formu-

lation of cost functions for optimization of other parameters than distance (for instance, to

find paths with least inclination) [8]. There are also approaches to traversability assessment

which do not rely on explicit maps of the planning environment.

Solveig Bruvoll presented a concept for situation dependent path planning, which enables

optimization on multiple simultaneous factors, in addition to distance [5]. The approach

was demonstrated through simulation on different terrain types using the A* algorithm,

12

and takes several aspects into account such as time, accessibility, concealment and cover.

This method can be altered and extended to account for other aspects, depending on the

requirements of a given situation. To construct a graph that is suitable for planning with

A*, the concept includes a path data generation process. This process analyzes terrain data

to generate a navigation mesh (consisting of polygons), covering only areas accessible to

a given autonomous entity. Accessibility of an area depends on factors such as type of

terrain (e.g., forest, grass, swamp ocean or lake), environment elevation data, maximum

acceptable slope and specified soil types accessible to an entity (e.g., soft soil, rock, or

sand). The navigation mesh is discretized into a graph of vertices and edges corresponding

to a subset of the accessible areas. To obtain a suitable cost function, a set of weights is first

computed for every aspect considered relevant for the current planning task. For example,

edge weights related to time are computed based on the distance between two vertices and

the terrain type at the second vertex. The final cost is obtained through a linear combination

of weights from all aspects with exponential coefficients. The exponents can be adjusted

to generate paths that are optimized based on aspect prioritization.

Tahirovic and Magnani developed a version of RRT that uses a roughness-based metric in-

stead of Euclidian distance when finding nearest neighbors from new states in constructing

the space-filling tree [53]. The roughness metric is calculated for every square patch in an

elevation map of the environment using an approach by Iagnemma and Dubowsky [54].

This approach estimates roughness by taking the standard deviation of the elevation corre-

sponding to each cell within a patch. The standard deviation is normalized by vehicle wheel

diameter to account for varying levels of mobility, depending on vehicle size. Tahirovic

and Magnani adjusted the method by adding a friction coefficient, to avoid patches that are

not traversable due to small coefficient values. In addition, the method computes a function

that provides estimates of the roughness-to-go (i.e., the cost-to-go) for every terrain patch.

To expand the space-filling tree, a linear combination between the roughness-so-far (i.e.,

the cost-so-far) to a new state and the roughness-to-go from the new state to the goal is

used as cost. The result is an efficient exploration of the terrain that leads to tree expansion

toward less rough areas.

13

In [9], Pérez-Higueras et al. presented a planning framework for RRT*, including a

traversability assessment scheme that works directly on point cloud data. This feature

makes the approach similar to [36] and [37]. The approach taken by Pérez-Higueras et al.

employs spheres large enough to circumscribe the robot in assessing the terrain surrounding

a given candidate point for tree expansion. The cost used for evaluating the terrain within

a spherical region is similar to the one used in [5], as it is a weighted linear combination

of features deemed relevant for a planning task. The costs chosen by Pérez-Higueras et al.

to evaluate the terrain surrounding a candidate vertex are the pitch angle, roll angle and

roughness of the surface, number of points in the sphere, distance between the candidate

point and the mean of the points inside the sphere, the standard deviation of the point

set inside the sphere and the distance from the candidate to the goal. Pérez-Higueras et

al. use the number of points in the sphere as an indication of reliability of the surface

representation. The standard deviation of points inside a sphere gives information about

how points are dispersed within the region. Distance between the candidate and the mean

is used as an indication of poorly represented environement regions. When these costs are

used for evaluation of the terrain surrounding candidate points, the result is that paths to the

leaves of the tree are optimized with respect to the chosen assessment criteria. To choose

between the leaves, the cost used is a weighted linear combination of the terrain assessment

cost and distance to the leaf, a frontier cost and a return cost. The frontier cost is a weighted

linear combination of the number of points in the sphere surrounding a candidate leaf with

the standard deviation of points inside the sphere. Distance between the leaf and the closest

point in the path followed by the robot so far is used as the return cost, to prevent the robot

from revisiting areas near already visited areas.

Several approaches are available for determining terrain traversability in motion planning.

A number of approaches generate maps of the environment based on the available sensor

data to perform traversability analysis, while others use only the data in locally surrounding

regions of a robot, performing this analysis on-demand, with the aim of reducing com-

putational cost during planning. The criteria used for optimization depend on the motion

planning task. When motion planning is performed on terrain, a traversability assessment

is required [55], to ensure safety with respect to the motion capabilities of a UGV, and to

enable optimization on appropriate features for terrain traversal.

14

1.1.5 Problem Statement

The problem statement in this section is motivated by the research effort that has been given

to extend the Rapidly-exploring Random Tree (RRT) and Rapidly-exploring Random Tree*

(RRT*) algorithms for Unmanned Ground Vehicle (UGV) motion planning on terrain and

the improvements and applicability of the Fast Marching Method (FMM) compared to

other grid-based methods in complex environment scenarios. The problem of establishing

suitable motion planning methods for UGVs on terrain is yet to be solved [56]. The aim of

the thesis will be to investigate this problem by addressing the following research questions:

1. How can RRT and RRT* be adapted to accommodate UGVs with limited maneuver-

ing capabilities, such as the absence of neutral-turn and reverse motion capabilities,

and how do these adaptations influence path traversability?

2. Does FMM guarantee kinematic feasibility for vehicles with limited maneuvering

capabilities, operating in terrain scenarios?

3. Can FMM be effectively utilized as a benchmark for evaluation of traversability-based

RRT and RRT* schemes in UGV motion planning on terrain?

1.1.6 Thesis Outline

There are five main parts to this thesis. Section 2 presents relevant motion planning

background, and provides the necessary foundation for subsequent sections. The first main

contribution is given in Section 3. In this section, a novel sampling approach for traversabil-

ity mapping is described. Section 4 contains the second main contribution, including a

description of motion planning schemes and algorithms, along with the development of

motion primitive schemes for RRT and RRT*, a collision-checking scheme, an objective

cost function, and a simple non-holonomic version of FMM. Section 5 presents the motion

planning simulation approach, simulation results and a discussion of these results. The

thesis is concluded in Section 6, which provides suggestions for future work.

15

2 Background

To enable UGV motion planning on terrain, a feasibility scheme is essential. Section

2.1 describes a differential-drive kinematic model, for which the autonomous platform

developed at FFI (i.e., described in Section 1) is used as an example vehicle. Establishing

solutions satisfying constraints of this vehicle is of interest to FFI, and this is the motivation

for utilizing the differential-drive model. Section 2.2 defines a central concept to motion

planning, namely, the notion of a configuration space. Section 2.3 adds context to the

research field, through a high-level overview of autonomous decision-making. The optimal,

grid-based, Fast Marching Method (FMM) is introduced in Section 2.4. This section gives

an understanding of how FMM produces optimal paths in a given cost field, and this

understanding is essential for sections 4, 5 and 6. Section 2.5 introduces the sampling-based

Rapidly-exploring Random Tree (RRT) algorithm, and its AO counterpart. Understanding

the workings of these algorithms is important, as these algorithms are used together with

the vehicle model in Section 2.1 in the development of motion planning schemes, utilized

to enable feasible solutions in terrain scenarios.

2.1 Modelling the THeMIS UGV with Differential-Drive Kinematics

The autonomous UGV platform developed by Mathiassen et al. is based on the Milrem

Tracked Hybrid Modular Infantry System (THeMIS) 4.5 from Milrem Robotics [10]. The

vehicle is shown in Figure 1.

Figure 1: Milrem THeMIS UGV (Image source: [57])

16

In this thesis, the Milrem THeMIS UGV is represented by the simple differential-drive

kinematic model [58]:

¤𝑥 = (𝑣𝑟 + 𝑣𝑙)
2

cos \ (1)

¤𝑦 = (𝑣𝑟 + 𝑣𝑙)
2

sin \ (2)

¤\ = (𝑣𝑟 − 𝑣𝑙)
𝐿

(3)

where ¤𝑥, ¤𝑦 and ¤\ are the linear velocities in the x and y directions and the angular velocity

of the vehicle respectively. 𝑣𝑟 corresponds to the linear velocity of the right track, whereas

𝑣𝑙 corresponds to the linear velocity of the left track. 𝐿 is the length of the trackbase, and

\ is the orientation of the vehicle with respect to the 𝑥-axis. This formulation allows the

vehicle to be represented as a point in planning (please refer to Section 2.2). Figure 2 is

an illustration adapted from [45], showing the length of the trackbase and the left and right

linear velocities. The red dot represents the center of mass of the vehicle.

Figure 2: Illustration of the simple differential-drive model. 𝑣𝑙
is the linear velocity of the left track, 𝑣𝑟 is the linear velocity
of the right track, 𝐿 is the segment length corresponding to the
trackbase, and the red circle represents the center of mass.

17

The non-holonomic constraint of the differential-drive model is given by [14]:

¤𝑥 sin \ − ¤𝑦 cos \ = 0 (4)

This equation implies that there is no movement in the direction parallel to the trackbase.

There are several limitations of representing the vehicle using a simple kinematic differential-

drive model in motion planning. Through their work, Jordan et al. highlight that difficult

paths such as those involving a pair of narrow lanes may be discarded when using a simple

model [51]. Pepy, Lambert and Mounier state that for kinematic car-like models, it is

assumed that the vehicle can move without skidding, and this implies that the vehicle is

following the path at low speeds [59]. This also applies for the differential-drive model, as

it assumes that vehicle has perfect traction, meaning that there are no skidding or slippage

effects. These effects are apparent for the THeMIS UGV. For this vehicle, there is little

movement without slippage.

Pepy et al. note that when the motion planning scheme is based on simple kinematics, and a

solution path is found, the control algorithm (i.e., in a path following module), must correct

significantly for the position of the vehicle so that it can follow the path. Furthermore,

the authors highlight advantages through a side-by-side comparison of kinematics and dy-

namics in RRT, suggesting that the incorporation of dynamics in motion planning enables

solution paths that are more realistic with respect to obstacles in the environment. However,

they also state that considering dynamics in motion planning can complicate the planning

problem. The authors mention that it is, for example, impossible to generate Dubin’s

curves [60] that obey non-holonomic and dynamic constraints. Canny et al. conjecture

that if contact is allowed, the complexity of a kinodynamic planning problem increases

significantly [61]. The reason for using a kinematic differential-drive model to represent

the vehicle as a point in this thesis, is that it simplifies the problem of developing a motion

planning scheme that ensures feasibility. This is sufficient for simulation purposes, but for

real-world experiments, more sophisticated approaches may be required.

18

2.2 Configuration Space

Motion planning would be difficult and computationally expensive, if planning could only

be done in a robot’s workspace. To calculate a path for a differential-drive robot in

its workspace, one must calculate the path by planning the motion of each point of the

vehicle’s shape according to its degrees of freedom, to ensure obstacles are avoided (i.e.,

the vehicle has a footprint) [62]. There is a central concept in motion planning that reduces

this problem to a simpler one. It is possible to represent a robot by a point according to

its state variables in a different space, that defines all admissible and inadmissible robot

configurations. To clarify, inadmissible robot configurations correspond to states the robot

cannot assume, due to the obstacles in a planning environment. The space used to represent

admissible and inadmissible vehicle configurations corresponding to a given workspace is

called the configuration space (or c-space).

For the differential-drive model, a state is given by [𝑥, 𝑦, \]𝑇 , and this is a point in its

c-space for a given workspace. Hence, the c-space for a given workspace corresponding to

the model presented in Section 2.1 is a subset of the Special Euclidean group SE(2) (i.e.,

the group of all 2D translations and counter-clockwise 2D rotations).

2.3 Motion Planning and Autonomous Decision-Making

Given the definition of the c-space in Section 2.2, the motion planning problem is reduced

to computing a set of admissible configurations that takes a vehicle from a source to a

destination. According to Paden et al., at a high level, autonomous decision-making is a

hierarchy that enables an autonomous vehicle to accomplish driving objectives, by enabling

an automatic selection of controlled variable values, governing a vehicle’s motion based on

sensor data and prior knowledge of a planning environment [63]. Hence, to perform motion

planning, a map of the environment is required. The output of the motion planning module

is a reference path that is used as input to a path following scheme (i.e., an algorithm

responsible for local feedback control). For example, the output of the path following

scheme can be linear velocity commands that guide a UGV along a reference path. In this

context, the focus of this thesis is on producing a map of an environment based on sensor

data and on generating reference paths that can be used as input to a control scheme.

19

2.4 Fast Marching Method

The Fast Marching Method (FMM), presented by Osher and Sethian, is an efficient nu-

merical technique for propagating a wavefront through one or more mediums. To update

the values of cells in a grid map as the wavefront propagates from a source point, FMM

iteratively solves a nonlinear partial differential equation called the Eikonal equation [64]:

1 = 𝐹 (x) |∇𝑇 (x) | (5)

This equation consists of a speed function 𝐹 (always positive), and the gradient magnitude

of a time-of-arrival field𝑇 , both with dependency on the position x. By considering a single

point x, the intuition behind this equation becomes clearer. In this case 𝐹 (x) corresponds to

the speed of the wavefront at x, and 𝑇 (x) corresponds to the time it takes for the wavefront

to reach x from the source point of the expansion. Dividing by 𝐹 on both sides, gives:

1
𝐹 (x) = |∇𝑇 (x) |

According to the Eikonal equation, the magnitude of the gradient of the time-of-arrival

field at a point is inversely proportional to the speed at the same point. For example,

the speed of a wavefront in water will be the same everywhere in the medium, provided

there are no obstacles (i.e., assuming no disturbance). Hence, if the propagation is frozen,

then at all points along the circular wavefront, the 𝑇-values are equal. As the wavefront

propagates, the𝑇-values will increase the further it moves from the source point. The effect

of propagating through oil and water will be that the wavefront has lower speed values in

the oil compared to the water, which means the time-of-arrival field will reflect that it takes

longer for the wavefront to propagate through regions characterized by lower speeds. In this

case, regions consisting of oil correspond to domains of higher cost, and regions consisting

of water correspond to domains characterized by lower cost (i.e., with respect to 𝑇). A

shortest-time path can be found by first expanding the wave from a source point to a goal

point and then performing gradient descent in 𝑇 from the goal to the source point. If the

wave expands in a single medium, the fastest path will also be the path with the shortest

distance. A benefit of the increasing 𝑇-values from the source point is that this method,

20

in contrast to (e.g.) Artificial Potential Field (APF) methods, is not susceptible to getting

stuck in local minima [8]. The time-of-arrival field will only present a global minima at

the source point.

Using finite difference approximations for the partial derivatives of 𝑇 , Osher and Sethian

propose the following upwind scheme as a discretization of the Eikonal equation on a 2D

grid (with Δ𝑥∨𝑦 denoting the grid map resolution, assuming quadratic cells) [64]:

max(𝐷−𝑥𝑖 𝑗 𝑇, 0)2 +min(𝐷+𝑥𝑖 𝑗 𝑇, 0)2 +max(𝐷−𝑦
𝑖 𝑗
𝑇, 0)2 +min(𝐷+𝑦

𝑖 𝑗
𝑇, 0)2 =

1
𝐹2
𝑖 𝑗

(6)

The incorporation of min and max functions ensures that only information from the direction

the wavefront has traveled from, is incorporated into the gradient magnitude of 𝑇 (i.e., the

desired time-of-arrival field reflects the fastest path through one or more mediums). A

simpler, but less accurate discretization is [64]:

max(𝐷−𝑥𝑖 𝑗 𝑇,−𝐷+𝑥𝑖 𝑗 𝑇, 0)2 +max(𝐷−𝑦
𝑖 𝑗
𝑇,−𝐷+𝑦

𝑖 𝑗
𝑇, 0)2 =

1
𝐹2
𝑖 𝑗

, (7)

where

𝐷−𝑥𝑖 𝑗 =
𝑇𝑖−1, 𝑗 − 𝑇𝑖, 𝑗
−Δ𝑥∨𝑦

,

𝐷+𝑥𝑖 𝑗 =
𝑇𝑖+1, 𝑗 − 𝑇𝑖, 𝑗

Δ𝑥∨𝑦
,

𝐷
−𝑦
𝑖 𝑗

=
𝑇𝑖, 𝑗−1 − 𝑇𝑖, 𝑗
−Δ𝑥∨𝑦

,

𝐷
+𝑦
𝑖 𝑗

=
𝑇𝑖, 𝑗+1 − 𝑇𝑖, 𝑗

Δ𝑥∨𝑦

Substituting this into Equation 7, yields:

max
(
𝑇𝑖, 𝑗 − 𝑇𝑖−1, 𝑗

Δ𝑥∨𝑦
,
𝑇𝑖, 𝑗 − 𝑇𝑖+1, 𝑗

Δ𝑥∨𝑦
, 0
)2
+max

(
𝑇𝑖, 𝑗 − 𝑇𝑖, 𝑗−1

Δ𝑥∨𝑦
,
𝑇𝑖, 𝑗 − 𝑇𝑖, 𝑗+1

Δ𝑥∨𝑦
, 0
)2

=
1
𝐹2
𝑖 𝑗

,

and by setting

𝑇 = 𝑇𝑖, 𝑗 ,

𝐹 = 𝐹𝑖, 𝑗 ,

21

𝑇1 = min(𝑇𝑖−1, 𝑗 , 𝑇𝑖+1, 𝑗),

𝑇2 = min(𝑇𝑖, 𝑗−1, 𝑇𝑖, 𝑗+1),

the equation can be simplified to

max
(
𝑇 − 𝑇1
Δ𝑥∨𝑦

, 0
)2
+max

(
𝑇 − 𝑇2
Δ𝑥∨𝑦

, 0
)2

=
1
𝐹2 (8)

Equation 8 is solved in three steps [26]:

1. If the greater 𝑇-value obtained by solving the following is larger than 𝑇1 and 𝑇2:(
𝑇 − 𝑇1
Δ𝑥∨𝑦

)2
+
(
𝑇 − 𝑇2
Δ𝑥∨𝑦

)2
=

1
𝐹2 ,

then this 𝑇-value is the correct solution.

2. If 𝑇 < 𝑇2 in Step 1, then the correct solution is obtained by solving(
𝑇 − 𝑇1
Δ𝑥∨𝑦

)2
=

1
𝐹2

3. If 𝑇 < 𝑇1 in Step 1, then the correct solution is obtained by solving(
𝑇 − 𝑇2
Δ𝑥∨𝑦

)2
=

1
𝐹2

Hence, the Eikonal equation can be solved for 𝑇 when a speed function has been specified.

For example, setting 𝐹 to a constant value implies a constant speed everywhere on the

grid, which corresponds to wavefront propagation through a single medium. Therefore,

this speed can be adjusted to ensure prioritization of paths (i.e., produced by gradient

descent through the resulting field 𝑇) adapted to a given planning scenario. In Section

4.3, an objective inclination-based cost function is presented. This cost function works a

substitution for the inverse of the speed function. The 𝑇-value obtained by following the

steps above, corresponds to the output of solveEikonal(𝑔𝑘𝑙) in the pseudocode for the FM

algorithm on the following page.

22

Algorithm 1 Fast Marching Algorithm [26]
Require: Gridmap 𝐺 of size 𝑚 × 𝑛
Require: Set of cells 𝑂𝑟𝑖 where the wave is originated
Ensure: Gridmap 𝐺 with the 𝑇 value set for all cells
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛;
for all 𝑔𝑖 𝑗 ∈ 𝑂𝑟𝑖 do
𝑔𝑖 𝑗 .𝑇 ← 0
𝑔𝑖 𝑗 .𝑠𝑡𝑎𝑡𝑒 ← 𝐹𝑅𝑂𝑍𝐸𝑁

for all 𝑔𝑘𝑙 ∈ 𝑔𝑖 𝑗 .𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 do
if 𝑔𝑘𝑙 = 𝐹𝑅𝑂𝑍𝐸𝑁 then

skip
else
𝑔𝑘𝑙 .𝑇 ← 𝑠𝑜𝑙𝑣𝑒𝐸𝑖𝑘𝑜𝑛𝑎𝑙 (𝑔𝑘𝑙)
if 𝑔𝑘𝑙 .𝑠𝑡𝑎𝑡𝑒 = 𝑁𝐴𝑅𝑅𝑂𝑊_𝐵𝐴𝑁𝐷 then
𝑛𝑎𝑟𝑟𝑜𝑤_𝑏𝑎𝑛𝑑.𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑔𝑘𝑙)

end if
if 𝑔𝑘𝑙 .𝑠𝑡𝑎𝑡𝑒 = 𝑈𝑁𝐾𝑁𝑂𝑊𝑁 then
𝑔𝑘𝑙 .𝑠𝑡𝑎𝑡𝑒 ← 𝑁𝐴𝑅𝑅𝑂𝑊_𝐵𝐴𝑁𝐷
𝑛𝑎𝑟𝑟𝑜𝑤_𝑏𝑎𝑛𝑑.𝑖𝑛𝑠𝑒𝑟𝑡_𝑖𝑛_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑔𝑘𝑙)

end if
end if

end for
end for
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠;
while 𝑛𝑎𝑟𝑟𝑜𝑤_𝑏𝑎𝑛𝑑 NOT EMPTY do
𝑔𝑖 𝑗 ← 𝑛𝑎𝑟𝑟𝑜𝑤_𝑏𝑎𝑛𝑑.𝑝𝑜𝑝 𝑓 𝑖𝑟𝑠𝑡 ()
for all 𝑔𝑘𝑙 ∈ 𝑔𝑖 𝑗 .𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 do

if 𝑔𝑘𝑙 = 𝐹𝑅𝑂𝑍𝐸𝑁 then
skip

else
𝑔𝑘𝑙 .𝑇 ← 𝑠𝑜𝑙𝑣𝑒𝐸𝑖𝑘𝑜𝑛𝑎𝑙 (𝑔𝑘𝑙)
if 𝑔𝑘𝑙 .𝑠𝑡𝑎𝑡𝑒 = 𝑁𝐴𝑅𝑅𝑂𝑊_𝐵𝐴𝑁𝐷 then
𝑛𝑎𝑟𝑟𝑜𝑤_𝑏𝑎𝑛𝑑.𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑔𝑘𝑙)

end if
if 𝑔𝑘𝑙 .𝑠𝑡𝑎𝑡𝑒 = 𝑈𝑁𝐾𝑁𝑂𝑊𝑁 then
𝑔𝑘𝑙 .𝑠𝑡𝑎𝑡𝑒 ← 𝑁𝐴𝑅𝑅𝑂𝑊_𝐵𝐴𝑁𝐷
𝑛𝑎𝑟𝑟𝑜𝑤_𝑏𝑎𝑛𝑑.𝑖𝑛𝑠𝑒𝑟𝑡_𝑖𝑛_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑔𝑘𝑙)

end if
end if

end for
end while

23

The FM algorithm starts by accepting a grid map with all cells set to infinity. An initial-

ization procedure ensures the source of the wave is set to the state FROZEN (i.e., the state

indicating that wave has already passed over a cell), and the Eikonal equation is solved for

every neighbor of the source cell(s). Upon receiving a 𝑇-value, the state of the neighbor

is checked. If the state is NARROW_BAND, then this cell is part of the wavefront, and

the position of the cell in a min heap used to maintain this front is updated to preserve

the correct structure (i.e., with the minimum 𝑇-value on top, and decreasing values from

top to bottom). The state UNKNOWN implies the cell has not yet been considered, and

should be added to the set of cells corresponding to the wavefront. After the initialization

procedure, the main loop is executed. This loop is similar to the loop in the initialization

procedure. First, the cell in the wavefront with minimum 𝑇-value is considered. Then, for

every neighbor, the Eikonal equation is solved, a 𝑇-value is received, states are checked

and corresponding updates are applied as before. This procedure is repeated until there are

no cells left in the wavefront (i.e., all cells have been updated).

Figure 3: FM algorithm applied to a binary obstacle map. The contour lines
represent the level sets of the time-of-arrival field. In this case, the wave is
expanded from a cyan source point.

24

FMM is similar to Dijkstra’s algorithm, but nearly eliminates its grid bias due to the

incorporation of a local solution of the Eikonal equation in place of Dijkstra’s graph update

[65]. The update in FMM is more consistent with the underlying continuous space, and

is therefore expected to produce more optimal paths than that of Dijkstra’s algorithm [66].

Figure 3 shows a simple wave diffraction example in a binary obstacle map, produced by

FMM. From any point in the white region of the space, an optimal path to the source can be

found by following the maximum gradient of the field. In this case, because FMM has been

expanded over a binary obstacle map, this corresponds to wavefront propagation through

a single medium (i.e., the speed function is constant everywhere in the white region, and

zero in the black regions).

Figure 3 is an example used to illustrate the workings of the FM algorithm, but for the

proposed algorithms presented in this thesis, the wave is expanded from the goal. The result

is that gradient descent is computed in the direction of travel. Thoresen et al. state that

by expanding from the goal, the FM algorithm can be used to provide a weighted estimate

of the traversability cost-to-go [8]. This is the motivation for using FMM as a benchmark

algorithm in Section 5 (please refer to Section 4.3).

2.5 Rapidly Exploring Random Trees

Steven M. Lavalle originally developed Rapidly-exploring Random Trees (RRTs) to facili-

tate efficient searches in high-dimensional spaces with algebraic and differential constraints

[67]. RRT samples points in a search-space to bias exploration toward large unsearched

regions by incrementally growing the tree toward the sampled points [33]. The algorithm

is suitable for handling differential constraints, as it enables a continuous-state search, in

contrast to a grid-based search. Pepy et al. note that a differentially constrained model can

be directly integrated in the algorithm to obtain feasible connections between two config-

urations, as the construction of the tree is incremental [59]. An example expansion with

motion primitives is shown in Section 4.1.

25

2.5.1 Rapidly Exploring Random Tree

The RRT algorithm starts by first initializing the root of the tree at a start position. A node is

randomly sampled from the search space, and an attempt is made to extend the tree toward

the random sample by a length 𝜖 . In the event that the randomly sampled node is within 𝜖

from the root, this node is added to the tree. If the algorithm is not subject to differential

constraints, an extension must be checked to ensure it is collision-free. Otherwise, the

extension must satisfy the constraints of a given vehicle in addition to obstacle avoidance.

The collision-detection module used in both RRT and RRT* is described in Section 4.2.

The algorithm proceeds to the next iteration if no extension is possible. When the new

node has been added, a new configuration is sampled, and the nearest node in the tree to

the randomly sampled node is chosen as a parent for extension towards the new random

sample. The algorithm continues until the maximum number of iterations is reached, or

the goal is found. If the goal is reached by the tree after a number of iterations, a path can

be found by backtracking over branches from the goal, through the parent nodes in the tree,

until the root is found. Algorithm 2 is the pseudocode for the RRT algorithm.

Algorithm 2 Rapidly-Exploring Random Tree (RRT) Algorithm [33]
BUILD_RRT(𝑥𝑖𝑛𝑖𝑡):
T .init(𝑥𝑖𝑛𝑖𝑡);
for k = 1 to K do
𝑥𝑟𝑎𝑛𝑑 ← RANDOM_STATE();
EXTEND(T , 𝑥𝑟𝑎𝑛𝑑);

Return T
EXTEND(T , 𝑥):
𝑥𝑛𝑒𝑎𝑟 ← NEAREST_NEIGHBOR(𝑥,T);
if NEW_STATE(𝑥, 𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤, 𝑢𝑛𝑒𝑤) then
T .add_node(𝑥𝑛𝑒𝑤);
T .add_edge(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤, 𝑢𝑛𝑒𝑤);
if 𝑥𝑛𝑒𝑤= 𝑥 then

Return Reached;
else

Return Advanced;
Return Trapped;

26

Figure 4: Application of the Rapidly Exploring Random Tree (RRT) algo-
rithm, with the root node represented in cyan. The tree is constructed in an
obstacle-free environment.

2.5.2 Rapidly Exploring Random Tree*

A limitation of the RRT algorithm is that it does not improve on intermediate solutions,

and as a result, solution paths are generally sub-optimal. To address this problem, Sertac

Karaman and Emilio Frazzoli proposed an algorithm called RRT* [35]. This algorithm

is an asymptotically optimal variant of RRT, meaning that it converges to an optimal

solution as the number of samples increases. The difference between the algorithms is that

RRT* includes optimization steps based on neighbors in a radius of a newly added node

to improve on intermediate solutions as the tree is expanded. There are two main steps

in the optimization procedure. Firstly, when a node is added to the tree, all nodes in a

radius from the new node are evaluated to determine if a better connection exists, compared

to the connection that is obtained between the nearest neighbor to a random sample and

the new node. In the default algorithm, a "better" connection corresponds to one that

results in a shorter distance between the new node and the root. Secondly, when the new

node is connected to the tree, all neighbors of the new node are evaluated to determine if

the neighbors can be connected to the new node to obtain shorter distances between the

27

neighbors and the root, compared to the current distances. RRT* incrementally rewires the

tree to obtain higher quality solutions, compared to RRT.

A result of improving on intermediate solutions during tree building is that paths computed

with RRT* are straighter than those that can be computed with RRT. This can be seen by

comparing the trees in Figure 4 (Section 2.5.1) and Figure 5. The cyan circles represent the

root nodes of the trees. The straighter branches highlight that by picking a configuration in

the search-space, a shorter path to the root is almost surely obtained by RRT*.

Figure 5: Application of the Rapidly Exploring Random Tree* (RRT*)
algorithm, with the root node represented in cyan, without obstacles.

28

3 Traversability Mapping

The autonomous UGV platform presented in Section 2.1 is equipped with a Light Detection

and Ranging (LIDAR) sensor. This sensor can be used to produce a point cloud of the

terrain surrounding the UGV. The point cloud is, in this case, a set of 3D points providing

data that gives information about the shape of the terrain surface at different elevations.

This data can be used to assess the traversability of the terrain surrounding the UGV, and

to enable motion planning, a traversability assessment is required [55].

Several approaches to conducting traversability assessment based on point clouds exist. A

common approach is to construct Digital Elevation Models (DEMs), for example, 2.5D

elevation maps. According to Stölzle et al., occlusions may be handled poorly by such

methods, as occluded areas may be classified as obstacles, or the missing values may

be filled in by traditional interpolation methods [68]. Other approaches to traversability

assessment involve local on-demand analysis of a point cloud based on robot-sized areas

during motion planning, such as the approaches taken by Pérez-Higueras et al. [9] and

Krüsi et al. [37]. Han et al. note that compared to grid-based methods, the approach by

Krüsi et al. is more flexible and therefore more suitable for unstructured environments

as complex geometries in outdoor scenarios, such as rocks or irregular bumps cannot be

modelled adequately by traditional grid map methods [69]. An advantage of performing

local on-demand analysis of a point cloud is that it may reduce the computational burden

associated with generating and maintaining larger data structures [9]. However, some

motion planning applications may rely on a complete map of the environment to ensure

certain safety requirements are met, such as those related to travel time or risk [43].

29

3.1 Minimum Enclosing Cylinder

The concept of a minimum-enclosing cylinder is central to this thesis. This cylinder is

computed based on the dimensions (i.e., length, width and height) of the THeMIS UGV,

made available by Milrem Robotics [70]. The radius of a minimum-enclosing circle is

calculated as the half-diagonal of a rectangle of dimensions corresponding to the length and

width of the THeMIS UGV. This radius is relevant for the minimum-enclosing circles used

in the motion planning schemes presented in Section 4. The minimum-enclosing cylinder

that is relevant for this section, corresponds to a cylinder with a radius equal to the minimum-

enclosing radius and a height equal to the platform height. This is a simplification as the

platform may be fitted with equipment beyond the dimensions given in the specification.

The presented scheme in this section can easily be extended to accommodate a cylinder

of different dimensions, for example if additional safety precautions are required due to

the characteristics of a given planning environment. This also applies for the minimum-

enclosing circle in Section 4.

3.2 Point Cloud Dataset

The point cloud data set used to generate the inclination maps presented in Section 3.7,

is downloaded from hoydedata.no, a web portal by the Norwegian Mapping Authority

(Kartverket) [71]. This portal provides open-access to high-resolution terrain data for

Norway. The point cloud dataset utilized in this thesis, is captured from an airborne

LIDAR system. This specific data set is chosen, as it enables motion planning in an

environment that consists of a range of different variations in obstacles and elevations. A

wide range of different planning scenarios can be extracted based on this data set. Section 4

provides a description of chosen and randomly sampled scenarios used in motion planning

simulation with respect to one of the inclination maps presented in section 3.7. Figure 6

gives a rough high-level overview of the point cloud from four different perspectives.

30

hoydedata.no

Figure 6: High-level overview of the point cloud dataset from four different angles.
The color bar is a cropped HSV color palette, ranging from red to purple. The
color red indicates points corresponding to a range of the lowest height values,
while purple indicates points corresponding to the range of the greatest height
values within the dataset.

31

3.3 Sampling Scheme

In this thesis, a grid-based traversability map is computed based on overlapping minimum-

enclosing cylinders by a fixed radius over a point cloud and by performing a simple

traversability assessment in each cylinder to save values in a grid map structure with

quadratic cells. The overlapping radius corresponds to the minimum-enclosing cylinder

radius. Based on the traversability assessment, the lowest recorded value is kept in cells

corresponding to a single cylinder. In the context of the simple assessments that are done

in sections 3.4 and 3.5, the lowest value corresponds to the lowest estimated inclination

value. Hence, the cylinder value corresponding to the highest recorded traversability, with

respect to inclination estimates, is kept. The base of a cylinder is set to be the same height

as the point with lowest height value within the cylinder, before the cylinder height is set, to

cover the entire span of the point cloud in the z-direction. This is done to enable traversal

underneath obstacles. An illustration of the sampling pattern is shown in Figure 7.

Figure 7: Illustration of the sampling pattern. Cylinders are overlapped by
the radius of the minimum-enclosing circle described in Section 3.1, to cover
the entire grid map.

An advantage of incorporating a minimum-enclosing geometric shape in conducting

traversability assessment may be increased flexibility compared to traditional grid-based

methods [69]. Incorporating additional traversability-based metrics to perform terrain as-

sessment inside a cylinder, such as those relating to roughness [53], and point distribution

[9], in addition to inclination-based metrics, may increase accuracy of traversability as-

sessment for the current scheme. A motivation for overlapping cylinders is that it enables

a reevaluation of traversability based on same and different points by considering different

32

neighborhoods of a set of points, before a final decision is made for a given cylinder.

Another is that since the final map is a standard grid map, the overlap is necessary for a

complete coverage of cells. In environments with complex features, an analyis based on

a single local neighborhood of points may not provide enough information for accurate

assessment of traversability, as indicated by Stölzle et al. [68]. On the other hand, a

limitation of reevaluating traversability based on same points is that it may result in high

computational cost, as in traditional grid map approaches [9].

3.4 Triangle-Based Approach

For the triangle-based approach, within a single cylinder, the point corresponding to the

lowest elevation value, and the point of the highest elevation are found. As is shown in

Figure 8, the points can be used to construct a right-angled triangle. Hence, an inclination,

denoted by 𝛼, can be estimated roughly based on computing the arc-tangent of the absolute

difference in elevation between the lowest and highest points (denoted by 𝑒) in the cylinder,

divided by the 2D Euclidean distance between the two points (denoted by 𝑑). This method

is repeated for all cylinders, and the lowest recorded inclination estimate for an individual

cylinder is kept. The intuition behind this choice, is that if higher estimated inclinations are

kept, then regions characterized by traversable slopes may be discarded. For less than two

points within a cylinder, the corresponding cells are classified as obstacles. Consider two

overlapping cylinders where the cells in one is classified as obstacles and the second is not,

this will result in parts of the cells, initially classified as obstacles, being overwritten. This

is related to the local variability of the terrain, and that reassessing traversability based on

different neighborhoods can result in a different assessment of the same region.

A limit is enforced to ensure that 𝛼-values over a certain threshold are characterized as

obstacles. The limit can be adjusted to allow for a wider range of admissible inclinations,

or conversely, to limit the range of admissible inclinations. The height of the cylinder and

the longest length of the the vehicle is used to compute the limit, in an attempt to avoid

excessive conservatism. In this thesis, the threshold is chosen to ensure that the maximum

attainable admissible 𝑒-value is approximately 50 cm, given that the THeMIS UGV has a

ground clearance of 40 to 60 cm [70].

33

Figure 8: Illustration of the triangle approach used to estimate inclination values from
point cloud data within a single cylinder. An angle (𝛼) is computed based on the
arc-tangent of the absolute difference in elevation between the lowest and highest point
(𝑒) within a cylinder divided by the 2D Euclidean distance between the two points (𝑑).
ℎ denotes the cylinder height, and 𝑟 denotes the radius of the cylinder.

Simply using a ground clearance to determine a threshold for obstacles, may induce col-

lision, as obstacles in terrain scenarios can be highly non-linear. This can be seen by

inspecting the point cloud in Figure 6, Section 3.2. Although the overlap between cylinders

may capture some local variations, other variations may not be considered due to the limited

number of points used to estimate inclination.

For real-world scenarios, more sophisticated approaches may be required for traversability

assessment. The benefit of the sampling-based scheme is that the flexibility that is enabled

by utilizing minimum-enclosing cylinders, allows for incorporation of a combination of

metrics (e.g., a weighted linear combination of roughness, point distribution, variances of

angles or other relevant quantities, similar to [9]) to estimate traversability within cylinders.

The triangle-based estimation approach is chosen for simplicity, to shift the focus on motion

planning, which is the main topic of this thesis. Another reason for this choice is that the

approach in Section 3.5 does not appear to yield more accurate estimates of inclinations

compared to the triangle-based approach (please refer to Section 3.8). However, a com-

prehensive comparison to existing methods is necessary. The triangle and surface normal

methods are only compared to each other based on a rough visual inspection of the terrain

data in Figure 6.

34

By saving inclination values in quadratic cells within and intersected by the borders of

cylinder bases, a simple traversability map is obtained that gives a more nuanced represen-

tation of the planning environment compared to a traditional binary obstacle map, which

is insufficient for motion planning on terrain.

3.5 Surface Normal Approach

Figure 9: Example illustration of the intuition behind the surface normal approach.
The black cube represents an obstacle, and the blue arrows pointing out of the box
represent the pair of estimated surface normals with the largest 3D angle between them.
In this example, the ground is flat within the cylinder. The resulting angle is used as
an inclination estimate (denoted by 𝛼). ℎ denotes the cylinder height, 𝑟 denotes the
cylinder radius. It can be seen that the obstacle is situated on the border of the base of
the cylinder. Hence, some points on the surface of the obstacle are not considered for
the assessment within this cylinder.

The approach in this section depends on built-in functions from the Point Cloud Library

(PCL) (described in Section 3.6. The surface normal approach, compares maximum 3D

angles between estimated surface normals for all points inside a cylinder. More details on

the surface normal estimation can be found in [72].

The surface normal estimation approach, given by PCL, is based on computing the co-

variance matrix for all points in a local neighborhood given by a radius from a point of

interest (i.e., an approximate sphere surrounding the point). Since the covariance matrix

is symmetric, its eigenvectors form a basis in 3D (i.e., they are orthogonal). Hence, an

estimation for a given point, based on the local neighborhood can be achieved by computing

the eigenvalues and corresponding eigenvectors for the covariance matrix and picking the

eigenvector corresponding to the lowest eigenvalue as an estimate of the surface normal for

the point of interest (i.e., the direction of least spread in directionality between the points in

the neighborhood). In other words, the method uses Principal Component Analysis (PCA)

35

to solve a plane-fitting problem based on the neighborhood of points. The number of points

within a cylinder vary significantly between cylinders for the given point cloud. In order

to produce results that appear sensible, the surface normal approach uses a search radius

𝑟𝑠𝑒𝑎𝑟𝑐ℎ = 1.0 m and a threshold corresponding to the value 𝛼𝑙𝑖𝑚 = 30 (i.e., the 𝛼-value used

to determine the separation between admissible inclination estimates and obstacles).

The surface normal estimation assumes that the points in the local neighborhood form a 2D

plane, otherwise the estimation may be less accurate. Maximum 3D angles are compared

for each pair of the estimated surface normals, and the maximum angle of these angles is

chosen as an inclination estimate (a method from PCL enables computation of the max-

imum 3D angle between a pair of surface normals). Similarly to the triangle approach,

the lowest estimated inclination value is kept for an individual cylinder. Intuitively, this

approach may produce estimations of terrain inclinations that are less accurate compared

to the triangle approach. Consider a scenario where the cube-shaped obstacle in Figure 9 is

situated in the middle of the cylinder as opposed to on the edge of the border of the cylinder

base, and the estimation approach produces an estimate corresponding to 𝜋 radians. In

practice, an angle that is more relevant for a vehicle navigating through this cylinder is

𝜋/2 radians, considering that the ground surrounding the cube-shaped obstacle is flat in

this example. A potential over-generalization based on the triangle approach may in this

case produce an estimation that is more relevant for navigation through the region with flat

ground and a small cube-shaped obstacle, provided that the elevation of the obstacle does

not induce collision (i.e., an appropriate threshold value is used).

Intuitively, the surface normal approach may be highly sensitive to local variations, and

this can potentially lead to an overly-conservative estimation of inclinations (please refer

to Section 3.8). However, due to the search radius that is used, local variations can also

potentially be missed by this approach. Additionally, if a cylinder region corresponds to

a perfect incline, leading to ground characterized by higher elevation (i.e., an unrealistic

scenario), the maximum angle that is computed is zero, although there is a distinct slope

within the cylinder. This is another example of a case where the triangle approach may

produce a more accurate assessment of traversability in terms of inclinations, compared to

the surface normal approach.

36

3.6 Implementation

Péter Fankhauser et al., developed the universal ANYbotics grid map library [73]. This

library is designed for mobile robotic mapping, and includes a ROS interface, which makes it

highly applicable for traversability mapping and motion planning simulation. In particular,

there is a module in the grid map library that provides functionality for conversion of point

clouds to grid maps [74]. The grid map library also includes methods for iterating over cells

within a circle of a specified radius. This functionality was instrumental in developing the

proposed traversability mapping scheme. Extensive modification to the grid map library

was required, to obtain the functionality that is described in sections 3.3, 3.4 and 3.5. Some

of the functionality in the ANYbotics grid map library depends on the Point Cloud Library

(PCL), which is a standalone, open project for 2D/3D image and point cloud processing

(for more information, please refer to [75]).

37

3.7 Results

Figure 10: Triangle approach with 𝛼𝑙𝑖𝑚 = 11.8.

Figure 11: Surface normal approach with 𝑟𝑠𝑒𝑎𝑟𝑐ℎ = 1.0 and 𝛼𝑙𝑖𝑚 = 30.0.

Figure 10 shows the inclination map that is used for motion planning. The map is normalized

between 0.0 and 1.0, and a standard color palette is shown. The order of colors between

0.0 and 1.0 correspond to increasing values. This also applies for Figure 11. It can be seen

that regions corresponding to admissible inclinations for Figure 10, in the upper part of the

map, correspond to large white regions in Figure 11.

38

Figure 12: Mean inclination map (triangle approach with 𝛼𝑙𝑖𝑚 = 11.8).

Figure 13: Mean inclination map (surface normal approach with search radius
𝑟𝑠𝑒𝑎𝑟𝑐ℎ = 1.0 and 𝛼𝑙𝑖𝑚 = 30.0).

Figures 12 and 13 corresponds to mean inclination maps for the triangle-based and surface

normal approaches, respectively. These maps are generated by applying a simple 3x3 filter

over all cells in the grid maps, and for each cell, computing the average of normalized

inclination estimates over the values in the filter, and saving the corresponding average in

the center cell (i.e., the cell currently being iterated over). This results in more prominent

separations between obstacles and admissible inclination estimates.

39

Figure 14: Standard deviations (triangle approach with 𝛼𝑙𝑖𝑚 = 11.8).

Figure 15: Standard deviations (surface normal approach with search radius
𝑟𝑠𝑒𝑎𝑟𝑐ℎ = 1.0 and 𝛼𝑙𝑖𝑚 = 30.0).

Figures 14 and 15 correspond to standard deviation maps for the triangle-based and surface

normal approaches, respectively. The maps are generated by applying a 3x3 filter over all

cells in the map of normalized inclination values, and for each cell, computing the standard

deviation for normalized inclination estimates over the values in the filter, and saving the

corresponding standard deviation in the center cell. It can be seen for both methods that the

variation in inclination values is higher close to obstacles. The highest standard deviation

represented in the maps is 0.5 (brown regions), while the lowest is 0.0 (dark blue regions).

40

Figure 16: View of point cloud highlighting red and green regions. The red regions correspond
to points within the range of the lowest elevations in the map, while green points are situated at a
range of higher elevations. The green region that is closer to the green arrow, corresponds to the
white region in the upper part of Figure 11.

3.8 Discussion

By inspecting figures 16, 10, and 11, it appears that there is no indication that the green

region in Figure 16 consists almost purely of obstacles. It can be seen that the terrain

elevation appears to increase more dramatically, closer to the white regions for the green

scenario in Figure 10. It can also be seen from Figure 16, that there are red regions that

appear to consist of points closer in elevation values compared to the other parts of the

map. The same applies for the green region. Hence, this is an indication that the surface

normal method is highly sensitive to local variations, so much that entire potential planning

regions are evaluated as obstacles. The observation that the surface normal approach is

sensitive, can also be seen by looking at the standard deviation map in Figure 15. Compared

to Figure 14, there are higher standard deviations for the surface normal approach in small

regions in between obstacles, although it is difficult to observe that these variations are

present when inspecting the point cloud in Figure 6. This observation is not surprising, as

a slight disturbance may cause large angles for the surface normal approach, as described

in Section 3.5. It appears that the triangle approach produces more accurate estimates of

41

inclinations compared to the surface normal approach. By inspecting Figure 6, and 10,

it can also be seen that there are some regions (e.g., narrow regions) in the inclination

map for the triangle-based approach, that appear to overestimate the inclination, leading

to inappropriately narrow passages compared to the passages in the point cloud. This

may be an indication that over-generalization in the triangle-based approach can lead to an

overestimation of inclination values. However, the narrow passages may also result from a

𝛼𝑙𝑖𝑚 that is set too low for the given point cloud.

The choice of a search-radius in the surface normal approach equal to 1.0 m, may also

result in over-generalization with respect to inclination estimates, since a larger search

radius implies that more points are used to approximate a single surface normal. This

may not accurately reflect the surface normal for a given point, due to the presence of

non-linearities in terrain slope. Simply using the largest angle between a pair of surface

normals, implies an overestimation of inclinations. Therefore, performing traversability

assessment based on a variance measure between angles may be more appropriate in this

case. Since the triangle-approach appears to provide a more accurate representation of the

inclinations in the given point cloud, this approach is used for motion planning. Despite

the limitations of the triangle-based approach, it seen from the figures in Section 3.7

that variations in inclinations are captured to some extent. This is sufficient to enable

motion planning simulation. This discussion is purely based on visual interpretations, and

a comprehensive analysis based on comparisons with standard approaches for inclination

assessment is required to determine whether the approaches can produce accurate models

of terrain data (e.g., when different metrics are incorporated into the assessments).

42

4 Motion Planning

This section aims to address the first research question in Section 1.1.5, by adapting RRT

and RRT* to accommodate UGVs without neutral-turn and reverse motion capabilities. In

section 4.1, the development of motion primitive schemes for RRT and RRT* is achieved by

utilizing the differential-drive model in Section 2.1 to construct a distinct motion primitive

set that is used throughout tree construction. The incorporation of kinematics in these

sampling-based algoirithms is motivated by the demonstration by Pepy et al. [59], which

clearly shows that RRT is suitable for a direct incorporation of a feasibility scheme to

expand branches between configurations, while satisfying kinematic constraints. Sections

4.3 and 4.4 aim to address the second and third research questions in Section 1.1.5. Section

4.4, describes potential limitations of using FMM directly in motion planning on terrain

for UGVs with limited maneuvering capabilities. This section effectively strengthens the

motivation for conducting an investigation into the application of novel feasibility schemes

for RRT and RRT*, for UGV motion planning in terrain scenarios. Section 4.3 presents

an inclination-based objective cost function. This cost function is used to define a cost

field that is used to evaluate performance of all algorithms presented in 4.5. This section is

focused on the third research question in Section 1.1.5. Section 4 also gives a description

of planning scenarios used for simulation in Section 5.

4.1 Motion Primitive BVP Expansion and Rewiring

In this thesis, the proposed algorithms employ a distinct set of motion primitives (i.e.,

simple, short and feasible precomputed paths) in an iterative fashion to construct solutions.

The use of motion primitives in motion planning algorithms is a popular and simple method

for ensuring that the solutions adhere to the kinematic constraints of a vehicle [76]. This

primitive set is designed to only allow forward motion, which ensures that the motion

planning scheme is suitable for vehicles without neutral-turn or reverse-manuevering capa-

bilities (please refer to Section 4.4). Motion primitives have been successfully applied to

RRT and RRT*. Vonásek et al. successfully switch between the primitives in a fixed set

of motion primitives to obtain global solutions for RRT [77]. This approach is similar to

the one presented in this section, due to the use of a fixed set of primitives in constructing

43

a path. The work in [78], extends RRT* with a scheme for dynamic and partially known

environments that uses a database of precomputed primitives.

The motion primitive set is constructed by integrating the differential-drive model (pre-

sented in Section 2.1), to compute successive vehicle states using positive belt-speeds only.

By applying the distinct set in an iterative fashion, the problem of developing a collision-

checking scheme is simplified (please refer to Section 4.2). A symmetrical motion primitive

set, characterized by positive forward speeds for all primitives to ensure feasibility, is used

in Traversability Hybrid A* to produce near-optimal paths in terrain based on minimizing

on the accumulated cost along the primitives [8].

Figure 17 shows an example RRT expansion using the distinct primitive set. All primitives

are included to illustrate how the set is iteratively expanded to construct a tree. A random

node in the search space is initially sampled from a uniform distribution. From the start

configuration, the initial primitive set is expanded, and the closest node (i.e., corresponding

to an end point in the set) to the randomly sampled node is chosen for tree expansion. This

process is repeated to ensure the tree contains a given number of nodes. To construct a so-

lution, the nodes within a 5 m radius from the goal are evaluated based on the accumulated

cost from the root node, to select a solution that corresponds to the lowest accumulated

cost. The red path in Figure 17 is a potential solution path between the root node of the

tree (i.e., the initial configuration) and a potential goal node. In this case, all end points of

the motion primitive sets initially correspond to potential nodes for expansion.

Figure 17: Motion primitive RRT expansion and solution path

44

Given that RRT does not include optimization steps, the exploration is random, which

means that solutions can potentially be improved by increasing the number of nodes used

to construct a tree. Using a larger number of nodes leads to an increased exploration of the

search-space. The distinct motion primitive set used to perform RRT expansion and tree-

building ensures kinematic feasibility, but a limitation of the scheme is that it constrains

exploration. In the default RRT algorithm, the straight-line expansions are not restricted to

fixed lengths, meaning that if a random configuration is sampled below a given threshold

from the nearest node in the tree, the tree is expanded to the random configuration. On the

other hand, the expansion used in this thesis is different from the straight-line expansions

in RRT as the primitive sets are based on integrating a vehicle model. Only one of the

primitives in a set correspond to a fixed length expansion along a straight line. The motiva-

tion for extending the motion primitive scheme to RRT* is to investigate whether solution

quality is improved compared to the RRT-variant, by applying the same primitive sets in a

BVP-optimization procedure.

The optimization scheme used for RRT* iteratively solves two-point boundary value prob-

lems (TBVPs), to connect primitives, but the choice to improve a solution based on neigh-

boring nodes follows the same underlying principles as in the default RRT* algorithm.

In the first step of the procedure, when a new primitive set is expanded, the node that is

closest to the randomly sampled node is first chosen for expansion. This corresponds to the

step that is repeated throughout tree-building in the motion primitive RRT-variant. For the

RRT*-variant, all neighbors in a radius from the newly expanded node are used to expand

new primitive sets. If any of the end points of these primitive sets satisfy the TBVP (i.e.,

connections to the newly expanded node exist), the accumulated costs from the newly ex-

panded node to the root is evaluated based on comparing the different connections possible

(i.e., based on TBVP solutions). The connection corresponding to the lowest accumulated

cost is chosen. Hence, the newly expanded node is given a new parent and connection to

the tree if that connection results in a lower accumulated cost to the root node.

45

Figure 18: Potential nodes for solution improvement

In the second step of the optimization procedure, the motion primitive set is expanded from

the newly added node to find connections to its neighboring nodes. If these connections

exist, the accumulated cost from the neighboring nodes to the root are evaluated based on

connections from the tree to those nodes, through the newly expanded node. A connection

that yields a lower accumulated cost from the root to a neighboring node is chosen. When

this happens, the connection between the neighboring node and its parent is severed, and

the newly added node is assigned as the neighbor’s new parent. Figure 18 is an example

illustration of potential neighboring nodes surrounding a newly added node. The potential

neighbor nodes correspond to the end points of the primitive sets within the red circle.

A clear limitation of this scheme compared to the optimization procedure in the default

RRT* algorithm, is that connections between nodes are likely to be improved to a lesser

extent. Similar to the motion primitive RRT-variant, tree-building is constrained. Due to

the constrained construction of the tree, there may be a lesser number of nodes available

for potential solution improvement in a neighborhood surrounding a node. In addition,

the choice to only allow forward positive speeds may result in failure to optimize in a

given circle as nodes may not be reachable [79]. Webb et al. state that the optimization

procedure in RRT* is suitable when any pair of states in the search-space can be connected

in an optimal trajectory [40]. Therefore, the TBVP solution presented in this section is not

expected to maintain AO and convergence properties of RRT*. Figure 18 is an unrealistic

46

example based on a small number of nodes. All expanded primitives are shown. This

example is used to illustrate the principle of the scheme, but in practice a large number

of nodes must be enforced to ensure that connections are replaced in the optimization

procedure.

Results indicate that the motion primitive expansion results in a greedy exploration that

does not lead to higher-quality solutions for the proposed schemes. The schemes are used to

construct solutions based on different costs, and the proposed algorithms are evaluated based

on the same cost field (please refer to Section 5). Solutions can potentially be improved

by increasing the number of nodes in the trees, or by using a richer set of primitives that

enables connections between more states in the search-space. However, solving a larger

number of two-point boundary value problems (TBVP) can be computationally expensive

[79], and the state reachability-issue would still be present. Palmieri et al. propose an

extend function for RRT and RRT* that is shown to outperform certain motion primitive

sets characterized by primitives of varied lengths [79]. The approach by Sakcak et al. may

serve as a better alternative for use of motion primitives in RRT*, as this approach considers

a discrete set of state pairs in a grid, and the optimal cost between states in pre-computing

primitives that are stored in a database for planning [78].

47

4.2 Collision-Detection Scheme

In motion planning on terrain, safety should be a priority [8]. Zhang et al. state that a

common approach to ensure obstacle avoidance is to expand obstacles to ensure a hindrance-

distance is maintained [80]. On the other hand, the authors argue that safety is not guar-

anteed by purely ensuring obstacles are expanded by a given distance, because safety also

depends on the speed of a robot (i.e., higher speeds dictate a larger distance requirement). In

addition, they note that in complex environments, obstacle expansion might block passable

regions, resulting in failure to obtain solutions.

Figure 19: Proposed collision-detection scheme

The collision-checking scheme, illustrated in Figure 19, checks for obstacles in all cells

within and intersected by the border of a minimum-enclosing circle surrounding each node

in the tree. A fixed radius is used to enforce a clearance from obstacles, but the approach

implicitly accounts for robot speeds and motion capabilities, because feasible paths are

effectively encoded into the tree, due to the distinct motion primitive set that is used

throughout construction. The combination of clearance checks with ensured feasibility

can potentially help strike a balance between effective navigation and safety in a given

environment.

Figure 19 shows how collision-checking is done for two nodes in the tree when the expanded

node corresponds to the end point of the straight primitive in the set. Based on the current

primitive set, a minimum-enclosing radius is used, but the following principle can be used

48

to choose an appropriate collision checking radius:

𝑟𝑐𝑜𝑙 = 𝑘
𝐿𝑚𝑎𝑥

2.0
(9)

where 𝐿𝑚𝑎𝑥 corresponds to the length of the longest primitive in a distinct motion primitive

set. In the scheme used in this thesis, the set is characterized by equal lengths for all

primitives, meaning that 𝐿𝑚𝑎𝑥 corresponds to the length of any primitive in the set. For

example, the choice 𝑘 ≥ 1.0 ensures that the circle borders will at least intersect, for two

connected nodes. Choosing a higher value of 𝑘 results in a more conservative approach,

which increases overall safety. However, if 𝑘 is increased too much, this may result in

a high computational load and increase in unnecessary processing of cells due to over-

lapping regions between circles. In some specific scenarios, depending on the shape and

placement of obstacles, the choice 𝑘 = 1.0 may not be sufficient to detect all obstacles.

Hence, depending on the scenario and safety requirements, choosing a larger value of 𝑘

may be necessary. In the event that the required value of 𝑘 results in an 𝑟𝑐𝑜𝑙 greater than the

minimum-enclosing radius of the vehicle, solutions through narrow passages may not be

considered. The scheme may be less applicable for distinct primitive sets featuring longer

primitives, where a larger value of 𝑟𝑐𝑜𝑙 is required.

Figure 19 shows that, for the expansion corresponding to the straight primitive in the set,

the minimum-enclosing radius ensures that the circles always overlap to some extent (i.e.,

𝑘 ≈ 1.46). However, as seen in the figure, some regions are not covered by the clearance

check. A comprehensive analysis, preferably based on real-world experiements, is required

to determine whether a minimum-enclosing radius is sufficient for the given scheme.

Bialkowski, Karaman, Otte and Frazzoli state that collision checking is the main computa-

tional bottleneck in sampling-based algorithms [81]. In their work, they propose a highly

efficient collision-detection scheme that stores a lower bound on distance to the nearest

obstacle for each collision checked point. The similarity to the scheme presented in this

section is that it is based on distances between samples in the tree and obstacles. The

approach by Bialkowski et al. allows samples to be immediately determined collision-free

without calls to the collision-checking module based on comparing the distances between

unchecked samples to samples that have been checked, to lower bound distances between

49

checked samples and obstacles. Incorporating this approach may improve the efficiency of

the current motion planning scheme. Since simulation results indicate that the collision-

detection scheme is the significant contributor to higher path traversability, obtaining higher

quality solutions with the given motion planning scheme may be difficult as the clearance

checks may also limit exploration of the search-space.

4.3 Inclination-Based Objective Cost and Optimal Traversability

In this thesis, the inclination-based cost function that is used by the sampling-based RRT

and RRT* variants (i.e., algorithms prefixed by ObjCost in Section 4.5) is given by the

following equation:

1
𝐹𝑖, 𝑗

= _𝑒
−
(𝛼∧
𝑖, 𝑗
− 𝛼∧max)2

[+ (1 − _)𝑒
−
(𝛼∧
𝑖, 𝑗
)2

[(10)

The left-hand side of the equation is denoted by the inverse of the speed function used in

the Eikonal update in FMM. This section will go into further detail about the reasoning

behind this choice. In the proposed cost function, 𝛼∧𝑚𝑎𝑥 represents the maximum admissible

inclination value in a normalized inclination map (i.e., 𝛼∧𝑚𝑎𝑥 = 1.0). 𝛼∧
𝑖, 𝑗

represents the

inclination value of the current neighbor cell 𝑖, 𝑗 , for which the Eikonal equation is solved.

The first term ensures a shift of the Gaussian peak to 𝛼∧𝑚𝑎𝑥 . This term is responsible for

penalization of terrain with higher admissible inclination values. The purpose of the second

term is to penalize terrain with lower admissible inclination values. Penalization can be

controlled by varying _ alone. Therefore, [is fixed in simulation ([= 0.18).

Figure 20 shows the effect of decreasing _ from 1.0. When _ = 1.0, only the first term is

prioritized, and the red curve (i.e., the contribution from the first term) overlaps with the

blue curve which represents the resulting cost. In this case the green curve corresponding

to the contribution from the second term is zero. Figure 20 shows that decreasing _ leads to

a higher degree of prioritization of the second term, which counteracts the effect of the first

term on the resulting cost. Hence, an interval of admissible inclinations can be assigned a

lower cost, given the current formulation.

50

Figure 20: The effect of decreasing _ from 1.0 to 0.8 on the resulting cost.

It is important to acknowledge that assigning a lower cost to higher admissible inclinations

may require additional a priori information relating to the underlying characteristics of

the terrain to produce costs that more accurately reflect the traversability for a given envi-

ronment. However, there may be scenarios where lower inclination values correspond to

less traversable regions. For example, lower inclinations are associated with water flowing

at slower rates [82]. Intuitively, enclosed regions characterized by low inclinations, sur-

rounded by elevated terrain, may harbor still water-bodies resulting from an accumulation

of water over time. Furthermore, when the available point cloud data is sparse, the presence

of dense vegetation, potentially at lower inclinations may be impossible to uncover based

on analyzing the given data. In this case, when traversability is solely based on inclination

data and other terrain characteristics are unknown, prioritizing slightly higher admissible

inclination values than the lowest admissible value may increase the likelihood of avoiding

obstacles that cannot be discerned by excluding inclination values over a threshold.

In this thesis, given the characteristics of the traversability map that is used for simulation,

results indicate prioritizing higher admissible inclinations leads to prioritization of regions

closer to obstacles (please refer to Section 5), which implies that the cost assigned based

on admissible inclinations when the second term is prioritized, may not accurately reflect

the true traversability of the terrain with respect to inclination estimates. Therefore, the

cost formulation may be improved by accounting for additional features of the terrain to

determine a suitable interval of inclination values based on a given scenario.

51

For the sake of comparison and evaluation, the optimal path in terms of traversability

between a start and goal point is in this thesis defined as the one that minimizes the

accumulated cost in the cost field given by the cost formulation presented in this section.

Therefore, the optimal path is implicitly determined by the value of _, and given by gradient

descent through the FM field (i.e., gradient descent is expected to optimize according to

the objective, given by the cost formulation in this section). The accumulated cost along a

path is given by [8]:

𝐴𝑐 =

∫
S
𝑐 𝑑𝑠 (11)

where 𝑐 is given by the cost formulation and S is the path along which the cost 𝑐 is

integrated to find 𝐴𝑐. In Section 5, this is used as a metric for evaluation. Another metric

is average cost, which is defined by the following expression [8]:

`𝐴𝑐 =
𝐴𝑐

𝐿
(12)

According to Jaillet et al., average costs can be misleading as they can potentially reward

paths with unnecessary detours, as the accumulated cost is distributed evenly across a path

[83]. The authors explain that through a low-cost region, a path with detours obtains a lower

average cost than a straight path through the same region. Yet, the straight path may be

more optimal in terms of traversability. For this reason, average costs should be interpreted

with caution. Jaillet et al. argue that 𝐴𝑐 is potentially more reliable as a criterion for

evaluating performance in this context. Intuitively, the path integral will penalize detours,

because it simply accumulates costs over a path.

The optimal path is the one that minimizes the accumulated cost, and gradient descent

through the FM cost field is expected to always produce the optimal path with respect to

the other algorithms presented in this section (i.e., when accumulated costs are evaluated

over the field defined by the cost formulation that is given in this section). For this reason,

results from FMM are used as ideal benchmarks for accumulated costs in Section 5. These

benchmarks are "ideal" as, unlike the motion planning algorithms presented in this section,

FMM does not account for vehicle orientation. Furthermore, the NH-FMM algorithm that

52

is presented in this section gives rise to results (please refer to Section 5) which show that

paths generated by FMM do not guarantee feasibility for vehicles that are limited by the

maneuverability constraints considered in this thesis.

4.4 Non-Holonomic Fast Marching Method

Due to the presence of obstacles and potentially high curvatures of an FMM path, this

path does not guarantee feasibility for vehicles without neutral-turn and reverse-motion

capabilities (as shown in the results discussed in Section 5). Figure 21 serves as an

illustration of an example scenario, where the FMM path follows the obstacles closely. The

purple arrow going from the start position represents the initial vehicle orientation. In this

scenario, if the FMM path is used as input to a path following scheme, a vehicle without

neutral-turn or reverse-motion capabilities (or both) may be unable to reach the goal. The

example scenario in Figure 21 is used to highlight that potential limitations of FMM paths

may also concern other types of vehicles that are not limited by the motion constraints

considered in this thesis.

Figure 21: Illustration of FMM path scenario with simple, circular obstacles.

In Figure 21, due to the initial orientation, a vehicle without neutral-turn and reverse-motion

capabilities would have to initially drive in a direction corresponding to the direction of

the arrow to align with the red path. Due to the presence of the smaller obstacle, initial

alignment to the path may be difficult, because of the vehicle’s required clearance from

obstacles. The part of the red path going through the narrow passage between the two larger

obstacles may also fail to satisfy the vehicle’s clearance requirements. This means that, if

53

a vehicle has neutral-turn and reverse-motion capabilities, it may still be unable to follow

an FMM path. Furthermore, since FMM does not consider vehicle orientation, parts of an

FMM path may have curvatures exceeding the curvature of the maximum curve a vehicle

can navigate due to its constraints.

For a vehicle with neutral-turn or reverse-motion capabilities, or both, the problem of

initial alignment to the FMM path can potentially be addressed, given that the FMM path

is known. Assuming that a vehicle has neutral-turn capability, but does not have reverse-

motion capabilities, the FMM path can be used to estimate an orientation that may enable

initial alignment to the path in the presence of obstacles close to the starting position.

Figure 22: Illustration of a scheme that can be used to
estimate an orientation for initial alignment to FMM path.

Figure 22 is a simple illustration of a scheme that may be used to estimate the orientation

needed for a vehicle with neutral-turn capability to initially align to the FMM path. The

black circle surrounding the start position has strictly positive and fixed line segments going

from the vehicle’s start position to the circle’s boundary (i.e., the length is given by the radius

of the black circle). The fixed segments are chosen to intersect the boundary of the black

circle at fixed intervals. The set of segments can be used to extract potential orientations

that may improve vehicle alignment with respect to the FMM path. By calculating the sum

of the distances between the end point of a single segment and equidistant points along the

path, the following expression is obtained for the green dashed lines in Figure 22 (note that

54

only a few of the dashed lines are illustrated):

𝐷𝑔𝑟𝑒𝑒𝑛 =

𝑛∑︁
𝑖=1

Δ𝑖 (13)

where 𝐷𝑔𝑟𝑒𝑒𝑛 is the accumulated distance corresponding to the sum of the lengths of the

green dashed lines, and 𝑛 is the number of green dashed lines, corresponding to the number

of equidistant points along the path. For the blue dashed lines (𝑛 is unchanged):

𝐷𝑏𝑙𝑢𝑒 =

𝑛∑︁
𝑗=1

Δ 𝑗 (14)

Due to the location of the end point of the line segment corresponding to the blue dashed

lines compared to the location of the end point of the segment corresponding to the green

dashed lines (as seen in Figure 22), the following inequality holds:

𝐷𝑏𝑙𝑢𝑒 > 𝐷𝑔𝑟𝑒𝑒𝑛 (15)

Hence, the orientation that can be extracted from the line segment corresponding to the

green dashed lines is a better candidate compared to the orientation that can be extracted

from the line segment corresponding to the blue dashed lines. This is to show how accu-

mulated distances corresponding to end points of a set of line segments distributed inside

a circle, surrounding the start position, can be compared to estimate an orientation that is

more aligned to the FMM path. For example, based on the distinct motion primitive set

described in Section 4.1, the length of an arbitrary primitive in the set can be used as a

radius for the black circle. The estimation may be improved by increasing the number of

line segments inside the black circle, and by performing a fine-grained re-sampling of the

FMM path to obtain a larger number of equidistant points.

By allowing for a single in-place rotation at the start position to the estimated orientation,

a vehicle with neutral-turn capability may be able to initially follow the path in the sce-

nario that is illustrated in Figure 21. In this scenario, for a vehicle with reverse-motion

capabilities, initial alignment to the FMM path may be possible, for example, by allowing

for reverse maneuvers in a region surrounding the start position. This assumes that due to

55

the vehicle’s initial orientation and the presence of the obstacle close to the start position,

initial alignment is impossible if the vehicle does not have neutral-turn or reverse-motion

capabilities.

Given the estimated initial orientation, the distinct motion primitive set can be used to

connect along the FMM path, assuming that the narrow passage in Figure 21 satisifies the

vehicle’s required obstacle clearance, and that the maximum curvature of the FMM path

allows for such connections. Since the FMM path is dependent on the underlying cost field,

it may follow narrow corridors and exhibit high curvatures. Therefore, such connections

may result in failure to produce solutions for a given planning problem. This highlights

some of the limitations of using FMM directly for planning in complex environments, when

solutions must adhere to the constraints of a vehicle.

The NH-FMM algorithm used to generate the results presented in Section 5, does not allow

for neutral-turns or reverse maneuvers, and employs the distinct primitive set to connect

along the FMM path. If this algorithms fails to produce a solution, either the curvature of

the FMM path is too large, or the clearance requirement is not satisfied. NH-FMM uses

the same collision-checking scheme presented in Section 4.2, by checking for clearance at

motion primitive endpoints, for the sake of maintaining consistency between the algorithms

that are used in evaluation (please refer to Section 5).

Results show that the NH-FMM algorithm significantly outperforms other algorithms em-

ploying the motion primitive scheme with respect to accumulated cost when a solution

is found. Therefore, when motion primitives are successfully connected along the FMM

path, this solution is preferred. Hence, a potential improvement to the current scheme may

be to combine NH-FMM with a sampling-based approach. For example, by resorting to

a sampling-based exploration when further connections to the FMM path are no longer

possible, it may be possible to reestablish connection to the optimal cost path. Plaku,

Kavraki and Vardi propose a multi-layered synergistic approach to planning under dynamic

constraints that combines properties of deterministic and sampling-based methods to ob-

tain solutions [84]. In the approach, a tree search establishes feasible connections between

a sequence of decomposition regions, and the progress from the tree search is fed to a

high-level deterministic planner.

56

4.5 Overview of Algorithms and Associated Costs

The motivation for including a larger set of algorithms based on the motion primitive

scheme presented in Section 4.1, is that when a new scheme is attempted, a deeper insight

into its effectiveness can potentially be gained by applying the scheme to different costs

and evaluating the algorithms based on the same cost field. An algorithm that successfully

optimizes on a given cost field will reflect higher performances compared to an algorithm

that produces sub-optimal paths in the same field. Therefore, by evaluating all algorithms

based on the same cost field, and associating variations of the scheme with different costs,

this approach can potentially make it easier to determine if an algorithm successfully

optimizes on traversability according to the definition given in Section 4.3. However,

simply comparing performance based on a variation of a scheme employing different costs

may not be sufficient. Although a comparison based on cost variations in a new scheme

may result in observable trends in performance, the existence of such trends is unknown in

advance. This is the main reason for incorporating standard algorithms to produce idealistic

benchmarks. Section 4.6 provides a description of the implementation of the algorithms

outlined in this section.

The following is an overview of all algorithms used to generate results.

• FMM - Fast Marching Method. Gradient descent through the FM cost field. FMM is

expected to produce the optimal path according to the definition of optimal traversability,

given in Section 4.3. Hence, the accumulated cost of an FMM path is expected to be

lower compared to other algorithms for any given planning scenario. This algorithm

produces idealistic benchmarks for accumulated costs.

• Default RRT* - Rapidly-exploring Random Tree*. Distance-optimization and collision-

checking along branches only. This algorithm is expected to generally produce the

optimal-distance path (i.e., RRT* is AO, please refer to Section 2.5.2). The algorithm is

expected to produce idealistic benchmarks for path lengths.

• NH-FMM - Non-holonomic Fast Marching Method. Paths are generated by attempting to

connect motion primitives to the resulting FMM path with a bias toward the goal. When

this algorithm fails, either there is not sufficient clearance along the FMM path, or the

curvature of the FMM path is too aggressive. The collision-checking scheme presented

57

in Section 4.2 is used to evaluate clearance (please refer to Section 4.4).

• MP-RRT - Motion Primitive Rapidly-exploring Random Tree. Motion primitive scheme

with clearance checks (given by the collision-checking scheme presented in Section 4.2)

for every node, applied to the basic RRT algorithm. This algorithm saves the accumulated

distance from the root to every node in a tree, and chooses a solution node with lowest

accumulated distance from the root node.

• ObjCost-RRT - Objective Cost Rapidly-exploring Random Tree. Motion primitive

scheme with clearance checks for every node applied to RRT. This algorithm saves

the accumulated cost (please refer to the formulation of the objective inclination-based

cost in Section 4.3) from the root node to every node in the tree, and picks the path with

the lowest accumulated cost from the root.

• Inc-RRT - Inclination-Based Rapidly-exploring Random Tree. Similar to ObjCost-RRT,

but picks the path with the lowest accumulated inclination cost (uses the inclination map

directly).

• Dist-RRT* - Distance-based Rapidly-exploring Random Tree-star. Motion primitive

RRT* with clearance checks for every node and BVP-rewiring, attempts to optimize on

distance.

• ObjCost-RRT* - Objective Cost Rapidly-exploring Random Tree-star. Similar to Dist-

RRT*, but attempts to optimize on accumulated cost (please refer to the formulation of

the objective inclination-based cost in Section 4.3) along the motion primitives.

• Inc-RRT* - Inclination-based Rapidly-exploring Random Tree-star. Similar to ObjCost-

RRT*, but attempts to optimize on accumulated inclination cost along the motion prim-

itives (uses the inclination map directly).

58

4.6 Implementation

The implementation of FMM, presented in Section 2.4 is based on code from an open-

source framework made available by Javier V. Gomez [85]. Although the code used to

generate motion planning simulation results in Section 5 is a substantially modified version

of the C++ FMM implementation by Gomez, the open-source code was instrumental to

understanding the fine-grained details of the motion planning method. Gomez is known for

his collaboration with Alberto Valero-Gomez, Santiago Garrido and Luis Moreno on the

saturated FM square (FM2) and the heuristic FM2 star (FM2∗) methods. The presentation

of the extended methods is found in [26]. The FMM implementation was adapted to ROS

1 Noetic, and to the Anybotics grid map library that was extended to enable generation

of inclination maps in Section 3 (please refer to Section 3.6 for details on the grid map

library and the implementation related to traversability mapping). For RRT and RRT* the

free-use Python code [86] made available by Md Mahdbubur Rahman was translated to

C++ and extensively modified for use with ROS 1 and the Anybotics library to incorporate

the motion primitive schemes presented in Section 4.1, and the collision-scheme presented

in Section 4.2. In [87], Rahman et al. propose a sampling-based extension to RRT* to

support multiple objectives, non-additive costs and cooperative conditions.

59

4.7 Chosen Planning Scenarios

Figure 23: Rough high-level overview of chosen planning scenarios. The black arrows point to
start and goal positions for the 5 chosen scenarios, and red arrows represent sampled orientations
at the start positions.

To enable a comparison between algorithms (outlined in Section 4.5), that is less biased

by the specific variations of the terrain in a planning region, governed by a distinct pair of

initial and goal configurations, a set of initial and goal configurations is chosen based on

the terrain data to capture different planning scenarios. From 5 chosen scenarios, the first

is used as an example in this section. A high-level overview of approximate start and goal

positions, including sampled orientations is given in Figure 23.

The first planning scenario consists of an open planning environment with alternative paths

to the goal. The alternative paths for this planning scenario consist of different types of

variations in inclination values, and for a given value of _, one path is preferred by FMM

over others. As the default RRT* algorithm uses distance-optimization, this path is not

expected to vary significantly from one _-value to another (i.e., Default RRT* is generally

expected to produce the shortest path, and is not influenced by _). For example, if the

60

accumulated cost for Default RRT* is only slightly higher compared to FMM for a pair of

given paths in the same planning scenario, this means the Default RRT* path is traversable

according to the definition given in Section 4.3. However, since FMM and default RRT*

do not enforce a clearance like the other algorithms, such a result may indicate that the

path chosen by FMM is one that prioritizes high inclination values, or one that is close to

obstacles. Hence, an advantage of using more than one benchmark algorithm is that such

scenarios can be uncovered more easily. This can increase transparency of the data, which is

especially useful when the cost function used to evaluate the algorithms has not been tested

before (e.g., the cost function may not necessarily reflect terrain traversability accurately

for all _-values - please refer to Section 5). On the other hand, the main reason for using

more than one algorithm to benchmark against is that they are only ideal. For example,

since FMM is expected to always produce the optimal path in terms of traversability, other

algorithms cannot be expected to produce accumulated costs that can compete with the

results by FMM. Figure 25 shows paths generated by all algorithms for the first scenario

(with _ = 1.0). This picture is included to provide rationale for incorporating a set of

chosen planning scenarios. The figure also shows the color scheme that is used to represent

the different algorithms presented in Section 4.5.

When _ = 1.0, the yellow path in the picture is chosen by FMM, whereas a shorter, blue

path is chosen by the default RRT* algorithm. In this specific scenario, when _ is decreased,

FMM will eventually find a path that is close to the default RRT* path. The terrain followed

by the blue path is characterized by higher inclinations, while the terrain followed by the

yellow path is characterized by lower inclinations. As seen in the figure, the paths chosen

by the other algorithms are varied. A relatively open region, characterized by alternative

paths with varied terrain may provide insight into the performance of algorithms when the

generated paths are prone to vary from one _-value to another, due to the characteristics

of the terrain in the planning region. However, variations in paths may also occur due

to the intrinsic properties of the algorithms. For this reason, other planning scenarios

are included. Scenario 2 (Figure 23) features a partially constrained environment with an

obvious path to the goal. In Scenario 3, there are longer, alternative paths to the goal in an

unconstrained environment. Scenario 4 (Figure 23) consists of an open starting environment

and a partially constrained environment surrounding the goal, with a distinct, prominent

61

path to the goal. For Scenario 5, the starting environment is constrained, and there are two

constrained alternative paths leading to the goal. The variation in length between the start

and goal positions is done to enable evaluation of performance of the algorithms when they

are forced to choose longer paths. To reflect that the initial orientation of an autonomous

vehicle may be unknown, for each planning scenario, an initial orientation is sampled from

a uniform distribution. The red arrows in Figure 23 represent the sampled orientations used

to generate the simulation results in Appendix B.

Figure 24: A set of paths generated by all algorithms for the first planning scenario. The background
is part of the point cloud used to generate inclination maps for planning. Paths are made more
visible by this choice of background. Please refer to Figure 23 for a rough overview of inclination
values relevant for these paths.

62

4.8 Randomly Sampled Scenarios

Although the 5 chosen scenarios in Section 4.7 are different, simply using these scenarios

to generate results has the potential to produce unnecessary intentional or unintentional

biases (e.g., favoring paths generated by one algorithm over others) in the resulting data. To

reduce the effect of such biases, a randomized approach is included. This approach samples

10 different initial and goal configurations from uniform distributions, ensuring that there

is sufficient clearance for initial expansion, a path to the goal and that the minimum distance

between the initial and goal coordinate is 10 meters. The reason for incorporating these

requirements in sampling is that the algorithms sensitive to initial orientation return failure,

depending on the initial orientation, if the sampled coordinates are too close to obstacles,

or too close to the edges of the map. They also fail to generate paths if the distance between

the initial and goal configurations is too short. A single expansion from the root of a tree,

results in a path that corresponds to a single motion primitive, with a minimum length

corresponding to the minimum possible length of a primitive in the set. Allowing implicit

failures to be represented in the resulting data may result in a less meaningful comparison

of performance in terms of path lengths, accumulated and average costs. To clarify the

meaning of "implicit failures" in this case, consider a scenario where the initial coordinate

is at the edge of the traversability map. If the sampled initial orientation results in an

initial expansion in a direction toward the outside of the map, then the algorithms will fail

because a distinct motion primitive set is used throughout tree-building and this set does

not allow for reverse motion or neutral turns. This highlights another limitation of using a

restricted motion primitive set to ensure feasibility for vehicles without reverse motion and

neutral-turn capabilities, in addition to the limitations discussed in Section 4.4.

The primary takeaway from sections 4.5, 4.7 and 4.8 is that evaluation of new schemes

may be improved in terms of transparency with respect to the effectiveness of a proposed

scheme, by incorporating a set of algorithms associated with different costs based on the

same scheme and scenarios with different terrain variations, to compare performances.

The results presented in Section 5, highlight advantages of enabling a more transparent

comparison when evaluating a new scheme.

63

5 Simulation

In this section, a set of planning scenarios and sampled configurations used to generate

results are outlined, and the simulation approach is described. The resulting data is used

to compare performance of the presented algorithms based on path length, accumulated

costs and average costs of the generated paths for chosen and randomly sampled scenar-

ios. The aim of this section is to evaluate performances of NH-FMM and the proposed

sampling-based schemes for RRT and RRT* (described in Section 4.1), by comparing to

the idealistic benchmark algorithms (i.e., FMM and Default RRT*) based on the chosen and

randomly sampled planning scenarios described in sections 4.7 and 4.8. This evaluation

is necessary to determine whether the algorithms employing the schemes can effectively

produce traversable paths according to the cost formulation given in Section 4.3 when this

cost field is used by the algorithms in planning.

5.1 Simulation Setup

The five chosen scenarios, described in Section 4.7, are used to generate the resulting data

by running the algorithms 10 times for three values of _ (i.e., _ ∈ {1.0, 0.8, 0.6}). For

each _-value, an average is computed based on the ten runs, making up a total of 150

runs for the chosen scenarios. For the random scnenarios described in Section 4.8, one

sampled scenario is run once for each _-value, and an average is computed over the 10

sampled scenarios for each value. The randomized approach makes up a total of 30 runs,

and standard deviations for the accumulated and average costs are included. Hence, results

from a total of 190 runs are represented in the data.

5.2 Results

This section presents the results from the motion planning simulation procedure described

in Section 5.1. The provided figures and tables are used as examples for the discussion

in Section 5.3. Descriptions of the chosen and randomly sampled scenarios are found in

sections 4.7 and 4.8. The data corresponding to _-values equal to 1.0 and 0.6 is shown for

the chosen scenarios 2-5. For clarity, the table indexing in this section, corresponds to that

of Appendix B (please refer to this appendix for a complete set of results).

64

5.2.1 Planning Scenario 1

Figure 25: Example paths generated by all algorithms for the first planning scenario with _ = 1.0.
The path generated by NH-FMM (white) is close to the FMM path (yellow) and is therefore barely
visible in this picture. Please refer to Section 4.7 for a description of planning scenarios.

Figure 26: Averages of accumulated costs over 10 runs per algorithm for Scenario 1 with _ = 1.0.
Please refer to Section 4.5 for an overview of algorithms and associated costs.

65

Table 1 displays averages of path lengths, accumulated costs and average costs computed

over 10 runs for Scenario 1 with _ = 1.0. The accumulated costs from this table are

represented in Figure 26. It can be seen from this table that, on average, Default RRT*

produces the shortest path, and NH-FMM and FMM produces paths with lowest average

costs. The lowest accumulated cost is given by FMM.

_ = 1.0 Length (m) Acc. cost Avg. cost
FMM 87.6 1.2 0.014
NH-FMM 90.0 1.3 0.014
Default RRT* 72.9 3.2 0.043
MP-RRT 100.7 2.4 0.024
ObjCost-RRT 101.5 2.9 0.029
Inc-RRT 111.8 3.9 0.036
Dist-RRT* 104.1 3.2 0.030
ObjCost-RRT* 106.7 2.7 0.025
Inc-RRT* 101.5 2.7 0.027

Table 1

Figure 27: Example paths generated by all algorithms for the first planning scenario with _ = 0.8.
As seen in the picture, when _ = 0.8, FMM picks a path (yellow) closer to the Default RRT* path
(blue), as described in Section 4.7.

66

Figure 28: Averages of accumulated costs over 10 runs per algorithm for Scenario 1 with _ = 0.8.

Table 2 displays averages of path lengths, accumulated costs and average costs computed

over 10 runs for Scenario 1 with _ = 0.8. The accumulated costs from this table are

represented in Figure 28. On average, Default RRT* produces the shortest path, and

NH-FMM and FMM produces paths with lowest average costs. FMM obtains the lowest

accumulated cost. The accumulated cost for Default RRT* with _ = 0.8 is closer to the

accumulated cost for FMM, compared to that of the other algorithms.

_ = 0.8 Length (m) Acc. cost Avg. cost
FMM 72.6 13.1 0.181
NH-FMM 77.1 14.0 0.181
Default RRT* 72.4 13.8 0.190
MP-RRT 102.0 19.2 0.188
ObjCost-RRT 123.2 24.0 0.194
Inc-RRT 102.0 19.3 0.189
Dist-RRT* 100.5 19.0 0.189
ObjCost-RRT* 102.4 19.3 0.188
Inc-RRT* 99.4 18.9 0.190

Table 2

67

Figure 29: Example paths generated by all algorithms for the first planning scenario with _ = 0.6.
For Scenario 1 with _ = 0.6, NH-FMM consistently fails to produce a solution. It can be seen
from this figure that FMM chooses a path that is closer to the RRT* path compared to Figure 25,
similar to the FMM and RRT* example paths represented in Figure 27.

Figure 30: Averages of accumulated costs over 10 runs per algorithm for Scenario 1 with _ = 0.6.

68

Table 3 displays averages of path lengths, accumulated costs and average costs computed

over 10 runs for Scenario 1 with _ = 0.6. The accumulated costs from this table are

represented in Figure 30. On average, Default RRT* produces the shortest path, and

Default RRT* and FMM produces paths with lowest average costs. It can be seen that

FMM also obtains the lowest accumulated cost. The table shows that the accumulated cost

for Default RRT* with _ = 0.6 is closer to the accumulated cost for FMM with respect to

accumulated costs of the sampling-based variants.

_ = 0.6 Length (m) Acc. cost Avg. cost
FMM 75.6 22.0 0.291
NH-FMM - - -
Default RRT* 72.5 24.2 0.334
MP-RRT 105.0 36.6 0.349
ObjCost-RRT 107.7 37.3 0.345
Inc-RRT 100.7 35.3 0.351
Dist-RRT* 105.4 36.9 0.350
ObjCost-RRT* 99.0 34.5 0.348
Inc-RRT* 100.5 35.3 0.352

Table 3

5.2.2 Planning Scenario 2

Figure 31: Example paths generated by all algorithms for the second planning scenario with
_ = 1.0. It can be seen that compared to Figure 25, Section 5.2.1, the FMM (yellow) and Default
RRT* (blue) paths are closer for _ = 1.0 in this scenario.

69

Figure 32: Averages of accumulated costs over 10 runs per algorithm for Scenario 2 with _ = 1.0.

Table 4 displays averages of path lengths, accumulated costs and average costs computed

over 10 runs for Scenario 2 with _ = 1.0. The accumulated costs from this table are

represented in Figure 32. It can be seen from this table that, on average, Default RRT*

produces the shortest path, and NH-FMM and FMM produces paths with lowest average

costs. The lowest accumulated cost is given by FMM. This table shows that similar to

Scenario 1 (Section 5.2.1) for _ = 0.8, and _ = 0.6, the accumulated cost for Default RRT*

is closer to that of FMM compared to accumulated costs for the sampling-based variants.

_ = 1.0 Length (m) Acc. cost Avg. cost
FMM 48.2 1.1 0.022
NH-FMM 53.6 2.2 0.040
Default RRT* 46.6 2.0 0.043
MP-RRT 59.8 9.3 0.155
ObjCost-RRT 63.0 10.8 0.168
Inc-RRT 61.0 9.2 0.150
Dist-RRT* 60.0 10.4 0.170
ObjCost-RRT* 61.3 11.0 0.179
Inc-RRT* 60.8 11.1 0.183

Table 4

70

Figure 33: Example paths generated by all algorithms for the second planning scenario with
_ = 0.6. For Scenario 2 with _ = 0.6, NH-FMM consistently fails to produce a solution.
Compared to Figure 31, the FMM (yellow) and Default RRT* (blue) paths are closer for _ = 0.6.

Figure 34: Averages of accumulated costs over 10 runs per algorithm for Scenario 2 with _ = 0.6.

71

Table 6 displays averages of path lengths, accumulated costs and average costs computed

over 10 runs for Scenario 2 with _ = 0.6. The accumulated costs from this table are

represented in Figure 34. It can be seen from this table that, on average, Default RRT*

produces the shortest path, and ObjCost-RRT and FMM produces paths with lowest average

costs. The lowest accumulated cost is given by FMM. The accumulated cost for Default

RRT* is closer to that of FMM, compared to that of the sampling-based variants.

_ = 0.6 Length (m) Acc. cost Avg. cost
FMM 47.2 13.7 0.290
NH-FMM - - -
Default RRT* 46.5 14.9 0.321
MP-RRT 59.5 19.7 0.331
ObjCost-RRT 64.3 20.4 0.317
Inc-RRT 60.4 19.6 0.325
Dist-RRT* 61.0 19.8 0.325
ObjCost-RRT* 58.9 19.0 0.323
Inc-RRT* 58.3 18.9 0.325

Table 6

5.2.3 Planning Scenario 3

Figure 35: Example paths generated by all algorithms for the third planning scenario with _ = 1.0.
The NH-FMM path (white) is close to the FMM path (yellow), and therefore barely visible.

72

Figure 36: Averages of accumulated costs over 10 runs per algorithm for Scenario 3 with _ = 1.0.

Table 7 displays averages of path lengths, accumulated costs and average costs computed

over 10 runs for Scenario 3 with _ = 1.0. The accumulated costs from this table are

represented in Figure 36. On average, Default RRT* produces the shortest path, and NH-

FMM and FMM produces paths with lowest average costs. The lowest accumulated cost is

given by FMM. It can be seen from this table that the accumulated costs for the sampling-

based variants and NH-FMM are closer to the accumulated cost for FMM, compared to

that of Default RRT*.

_ = 1.0 Length (m) Acc. cost Avg. cost
FMM 141.7 2.1 0.015
NH-FMM 154.2 2.8 0.018
Default RRT* 128.5 11.9 0.093
MP-RRT 175.4 7.1 0.040
ObjCost-RRT 166.4 5.4 0.033
Inc-RRT 172.9 6.4 0.037
Dist-RRT* 174.1 7.0 0.041
ObjCost-RRT* 175.4 6.9 0.040
Inc-RRT* 175.6 6.9 0.039

Table 7

73

Figure 37: Example paths generated by all algorithms for the third planning scenario with _ = 0.6.
In this case, FMM chooses a path (yellow) through a narrow passage to a constrained region of
higher elevation. From the constrained region, the FMM path follows another narrow passage
to an open region of lower elevation to reach the goal. For Scenario 3 with _ = 0.6, NH-FMM
consistently finds a path.

Figure 38: Averages of accumulated costs over 10 runs per algorithm for Scenario 3 with _ = 0.6.

74

Table 9 displays averages of path lengths, accumulated costs and average costs computed

over 10 runs for Scenario 3 with _ = 0.6. The accumulated costs from this table are

represented in Figure 38. On average, Default RRT* produces the shortest path, and NH-

FMM and FMM produces paths with lowest average costs. The lowest accumulated cost is

given by FMM. It can be seen from this table that the accumulated cost for Default RRT*

is closer to the accumulated cost for FMM, compared to that of the other algorithms.

_ = 0.6 Length (m) Acc. cost Avg. cost
FMM 135.9 39.2 0.288
NH-FMM 156.4 47.0 0.300
Default RRT* 128.6 43.3 0.336
MP-RRT 172.9 59.0 0.341
ObjCost-RRT 178.9 60.9 0.341
Inc-RRT 167.7 57.1 0.341
Dist-RRT* 174.6 60.0 0.344
ObjCost-RRT* 177.4 61.3 0.345
Inc-RRT* 179.7 61.6 0.343

Table 9

5.2.4 Planning Scenario 4

Figure 39: Example paths generated by all algorithms for the fourth planning scenario with_ = 1.0.
For this scenario, NH-FMM consistently fails to produce solution paths.

75

Figure 40: Averages of accumulated costs over 10 runs per algorithm for Scenario 4 with _ = 1.0.

Table 10 displays averages of path lengths, accumulated costs and average costs computed

over 10 runs for Scenario 4 with _ = 1.0. The accumulated costs from this table are

represented in Figure 40. On average, Default RRT* produces the shortest path, and

ObjCost-RRT and FMM produces paths with lowest average costs. The lowest accumulated

cost is given by FMM. It can be seen from this table that the accumulated cost for Default

RRT* is higher, compared to that of the sampling-based variants.

_ = 1.0 Length (m) Acc. cost Avg. cost
FMM 219.1 4.4 0.020
NH-FMM - - -
Default RRT* 194.2 11.6 0.060
MP-RRT 246.3 11.4 0.046
ObjCost-RRT 231.3 9.0 0.039
Inc-RRT 247.6 10.8 0.043
Dist-RRT* 241.4 10.7 0.044
ObjCost-RRT* 245.9 10.5 0.043
Inc-RRT* 249.8 10.2 0.041

Table 10

76

Figure 41: Example paths generated by all algorithms for the fourth planning scenario with_ = 0.6.
For this scenario, NH-FMM consistently fails to produce solution paths. Compared to Figure 39,
the FMM path (yellow) and Default RRT* (blue) path are closer.

Figure 42: Averages of accumulated costs over 10 runs per algorithm for Scenario 4 with _ = 0.6.

77

Table 12 displays averages of path lengths, accumulated costs and average costs computed

over 10 runs for Scenario 4 with _ = 0.6. The accumulated costs from this table are

represented in Figure 42. On average, Default RRT* produces the shortest path, and Default

RRT* and FMM produces paths with lowest average costs. The lowest accumulated cost is

given by FMM. It can be seen from this table that the accumulated cost for Default RRT*

is lower, compared to the sampling-based variants.

_ = 0.6 Length (m) Acc. cost Avg. cost
FMM 196.6 60.1 0.306
NH-FMM - - -
Default RRT* 193.8 64.7 0.334
MP-RRT 259.6 88.1 0.339
ObjCost-RRT 242.5 82.8 0.341
Inc-RRT 239.5 81.9 0.342
Dist-RRT* 237.8 81.0 0.341
ObjCost-RRT* 242.3 83.0 0.343
Inc-RRT* 241.2 82.5 0.342

Table 12

5.2.5 Planning Scenario 5

Figure 43: Example paths generated by all algorithms for the fifth planning scenario with _ = 1.0.
For this scenario, NH-FMM consistently fails to produce solution paths.

78

Figure 44: Averages of accumulated costs over 10 runs per algorithm for Scenario 5 with _ = 1.0.

Table 13 displays averages of path lengths, accumulated costs and average costs computed

over 10 runs for Scenario 5 with _ = 1.0. The accumulated costs from this table are

represented in Figure 44. On average, Default RRT* produces the shortest path, and MP-

RRT and FMM produces paths with lowest average costs. The lowest accumulated cost is

given by FMM. It can be seen from this table that the accumulated cost for Default RRT*

is higher, compared to that of the sampling-based variants.

_ = 1.0 Length (m) Acc. cost Avg. cost
FMM 94.1 3.7 0.039
NH-FMM - - -
Default RRT* 72.8 10.6 0.146
MP-RRT 105.2 6.8 0.066
ObjCost-RRT 103.5 7.3 0.070
Inc-RRT 106.7 7.0 0.068
Dist-RRT* 106.9 7.3 0.069
ObjCost-RRT* 102.8 8.0 0.078
Inc-RRT* 117.4 8.3 0.074

Table 13

79

Figure 45: Example paths generated by all algorithms for the fifth planning scenario with _ = 0.6.
For this scenario, NH-FMM consistently fails to produce solution paths. Compared to Figure 43,
FMM chooses a path (yellow) through a different passage to the goal.

Figure 46: Averages of accumulated costs over 10 runs per algorithm for Scenario 5 with _ = 0.6.

80

Table 15 displays averages of path lengths, accumulated costs and average costs computed

over 10 runs for Scenario 5 with _ = 0.6. The accumulated costs from this table are

represented in Figure 46. On average, Default RRT* produces the shortest path, and Inc-

RRT* and FMM produces paths with lowest average costs. The lowest accumulated cost is

given by FMM. It can be seen from this table that the accumulated cost for Default RRT*

is lower, compared to the sampling-based variants.

_ = 0.6 Length (m) Acc. cost Avg. cost
FMM 73.6 22.5 0.306
NH-FMM - - -
Default RRT* 72.8 24.0 0.330
MP-RRT 96.6 31.2 0.322
ObjCost-RRT 113.7 37.0 0.323
Inc-RRT 96.8 31.2 0.322
Dist-RRT* 105.6 34.3 0.324
ObjCost-RRT* 110.1 35.7 0.323
Inc-RRT* 99.6 32.0 0.321

Table 15

5.2.6 Random Simulations

Figure 47: Averages of accumulated costs over 10 sampled scenarios for _ = 1.0, with error bars
showing standard deviations of accumulated costs.

81

Figure 48: Averages of average costs over 10 sampled scenarios for _ = 1.0, with error bars
showing standard deviations of average costs.

Table 16 displays averages of path lengths, accumulated costs and average costs computed

over 10 randomly sampled scenarios with _ = 1.0. On average, Default RRT* produces

the shortest path, and NH-FMM and FMM produces paths with lowest average costs. For

the 10 randomly sampled scenarios with _ = 1.0, NH-FMM consistently finds solution

paths. The lowest accumulated cost is given by FMM. It can be seen from this table that the

accumulated cost, average cost and corresponding standard deviations for Default RRT*

are higher, compared to the other algorithms. The accumulated costs, average costs and

corresponding standard deviations of this table are shown in figures 47 and 48.

_ = 1.0 Length (m) Acc. cost Avg. cost Acc. cost (𝜎𝑠) Avg. cost (𝜎𝑠)
FMM 74.4 1.4 0.019 0.8 0.002
NH-FMM 87.0 2.0 0.023 1.0 0.004
Default RRT* 65.3 5.8 0.077 4.6 0.043
MP-RRT 97.7 4.3 0.044 2.7 0.018
ObjCost-RRT 97.7 3.3 0.033 2.0 0.006
Inc-RRT 95.7 3.6 0.038 2.0 0.019
Dist-RRT* 95.7 3.1 0.032 1.9 0.008
ObjCost-RRT* 93.0 3.4 0.035 2.5 0.012
Inc-RRT* 100.2 3.5 0.035 1.9 0.009

Table 16

82

Figure 49: Averages of accumulated costs over 10 sampled scenarios for _ = 0.8, with error bars
showing standard deviations of accumulated costs.

Figure 50: Averages of average costs over 10 sampled scenarios for _ = 0.8, with error bars
showing standard deviations of average costs.

83

Table 17 displays averages of path lengths, accumulated costs and average costs computed

over 10 randomly sampled scenarios with _ = 0.8. On average, Default RRT* produces

the shortest path, and Dist-RRT* and FMM produces paths with lowest average costs. NH-

FMM finds paths in 6 out 10 scenarios. The lowest accumulated cost is given by FMM.

It can be seen from this table that the accumulated cost and the corresponding standard

deviation for Default RRT* is lower, compared to the sampling-based variants. The average

cost and corresponding standard deviation is higher for Default RRT*, compared to FMM

and the sampling-based variants. The accumulated costs, average costs and corresponding

standard deviations of this table are shown in figures 49 and 50.

_ = 0.8 Length (m) Acc. cost Avg. cost Acc. cost (𝜎𝑠) Avg. cost (𝜎𝑠)
FMM 65.5 12.0 0.182 5.7 0.005
NH-FMM 6 out of 10 passed
Default RRT* 65.2 14.1 0.208 7.5 0.026
MP-RRT 92.3 17.4 0.185 9.1 0.010
ObjCost-RRT 103.5 19.6 0.189 8.3 0.009
Inc-RRT 89.1 16.9 0.189 7.9 0.012
Dist-RRT* 97.9 18.2 0.184 10.8 0.005
ObjCost-RRT* 96.0 18.0 0.185 9.6 0.006
Inc-RRT* 91.5 17.3 0.187 8.6 0.008

Table 17

Figure 51: Averages of accumulated costs over 10 sampled scenarios for _ = 0.6, with error bars
showing standard deviations of accumulated costs.

84

Figure 52: Averages of average costs over 10 sampled scenarios for _ = 0.6, with error bars
showing standard deviations of average costs.

Table 18 displays averages of path lengths, accumulated costs and average costs computed

over 10 randomly sampled scenarios with _ = 0.6. On average, Default RRT* produces

the shortest path, and Inc-RRT and FMM produces paths with lowest average costs. NH-

FMM finds paths in 2 out 10 scenarios. The lowest accumulated cost is given by FMM.

It can be seen from this table that the accumulated cost and the corresponding standard

deviation for Default RRT* is lower, compared to that of the sampling-based variants. The

average cost is higher and the corresponding standard deviation is lower for Default RRT*,

compared to FMM and the sampling-based variants. The accumulated costs, average costs

and corresponding standard deviations of this table are shown in figures 51 and 52.

_ = 0.6 Length (m) Acc. cost Avg. cost Acc. cost (𝜎𝑠) Avg. cost (𝜎𝑠)
FMM 65.6 20.7 0.315 9.4 0.007
NH-FMM 2 out of 10 passed
Default RRT* 65.0 21.9 0.338 9.9 0.004
MP-RRT 103.7 35.6 0.337 19.0 0.021
ObjCost-RRT 94.0 32.0 0.337 16.0 0.010
Inc-RRT 95.7 32.3 0.333 17.9 0.015
Dist-RRT* 99.6 33.9 0.337 18.6 0.011
ObjCost-RRT* 90.8 30.9 0.337 15.0 0.011
Inc-RRT* 103.5 35.0 0.336 19.1 0.012

Table 18

85

5.2.7 Potentially Problematic Scenarios for the Sampling-Based Schemes

For the chosen and randomly sampled scenarios, no failures were observed for the motion

primitive schemes. However, testing beyond these scenarios revealed that the motion

primitive variants of RRT and RRT* can produce failure in certain scenarios, for example

in planning scenarios featuring larger regions between the start and goal positions and

goal regions situated in constrained environments. Figure 53 provides examples of such

scenarios, where failures can occur for the proposed schemes. The red circles indicate

approximate goal regions for these scenarios.

Figure 53: This figure provides some examples of potentially problematic goal regions for the sampling-based
variants. The red circles indicate approximate goal regions, for which failures may occur for these algorithms.

86

5.3 Discussion

For the chosen and random scenarios, two main trends are observed in the data. The

first trend concerns the scenarios when _ = 1.0. Compared to averages of accumulated

costs for Default RRT*, in scenarios 3, 4, 5 and the randomly sampled scenarios (for

_ = 1.0), the sampling-based variants obtain lower averages of accumulated costs. In

Scenario 1, a majority of the sampling-based algorithms obtain lower accumulated costs

compared to Default RRT*, whereas in Scenario 2, the sampling-based variants obtain

higher accumulated costs on average, compared to Default RRT*. The second trend

concerns _ = 0.8 and _ = 0.6. For these _-values, Default RRT* consistently obtains

lower accumulated costs on average, compared to the sampling-based variants (please refer

to Appendix B). There are no obvious trends between the sampling-based variants with

respect to averages of accumulated costs and average costs.

The first planning scenario consists of an open planning environment with three prominent

regions between the start and goal positions. The first is partially constrained and is

characterized by a region of higher inclinations and more variations in inclination values.

In the second region, the terrain is characterized by less variations in inclination values, and

lower inclination values compared to the first region. The third region consists of terrain

characterized by less variations in inclination and lower inclination values compared to the

first and second regions. Figure 54 gives a rough overview of these regions.

Figure 54: Rough overview of prominent alternative regions between the start and goal positions
for Scenario 1. The arrows are used to represent rough intermediate directions to the goal. For
example, the yellow and black arrows show that there is some overlap between the first and second
regions. The map to the left is the mean of the inclination map, and the map to the right shows
standard deviations. Please refer to Section 3.7 for the full maps and color scheme used to represent
ranges of values in these maps. The colors range from dark blue to light blue, to green, to yellow,
to brown (and to white for the mean map), respectively. The values increase in this order.

87

In Scenario 1, although a majority of the sampling based variants obtain lower accumulated

cost compared to Default RRT* for _ = 1.0), it can be seen that Inc-RRT and Dist-RRT*

obtain higher accumulated costs with respect to that of Default RRT*. Since there is no

apparent trend in averages of accumulated costs between the sampling-based variants, a

possible explanation for this observation is that the use of a limited, distinct set of motion

primitives combined with clearance checks at every node, leads to a prioritization of safe

distances from obstacles over path traversability in some scenarios. This is likely related to

the constrained expansion and its effect on coverage of states in the search space, as it can

be seen that NH-FMM produces lower accumulated costs on average compared to Default

RRT* in this case. NH-FMM, which incorporates clearance checks as opposed to Default

RRT* and FMM, consistently finds solutions for _ = 1.0), in this scenario. This shows

that more optimal paths which satisfy the curvature and clearance requirements exist for

Scenario 1, when _ = 1.0.

Scenario 2 is characterized by a partially constrained environment with a clear-cut path

to the goal. In Section 5.2.2, it is seen that for _ = 1.0, the path chosen by FMM is

close to the Default RRT* path. It is also seen that averages of accumulated costs for

the sampling-based variants and NH-FMM are higher compared to that of Default RRT*.

Therefore a straighter path is more traversable in this case. This indicates that unnatural

swerves caused by use of a distinct motion primitive set, negatively affects traversability

in scenarios characterized by a clear-cut path to the goal. Intuitively, a clear-cut path to

the goal through a low-cost region is more traversable than a path with detours through

the same region. This highlights a limitation of using a distinct motion primitive set to

construct solution paths.

As there is no obvious trend in averages of accumulated costs for the sampling-based

variants, the result that these algorithms obtain lower accumulated costs compared to

Default RRT* for scenarios 3, 4 and 5, and for the randomly sampled scenarios, indicates

that the collision-checking scheme (i.e., the clearance checks) is the significant contributor

to more traversable paths for the sampling-based variants. Default RRT* simply finds the

shortest paths and does not incorporate clearance checks. Hence, this algorithm is prone to

choose paths closer to obstacles, when navigation around obstacles is required for a given

planning scenario. Since Default RRT* obtains lower accumulated costs compared to the

88

sampling-based variants for _-values equal to 0.8 and 0.6, this indicates that decreasing _

to 0.8 may result in an over-prioritization of higher admissible inclination values that forces

FMM to choose paths that are closer to obstacles for the given inclination map. This map

is characterized by higher inclinations and more variations in inclination values close to

obstacles.

The results in sections 5.2.1, 5.2.2 and 5.2.4 show that when _ is decreased from 1.0 to 0.6,

FMM chooses paths that are closer to the Default RRT* paths. In section 5.2.3 it is shown

that when _ = 0.6, FMM is forced to choose a path through two narrow passages to a region

of higher elevation in order to reach the goal. In this case, the sampling-based variants

tend to avoid traversing the narrow passages, although the passages satisfy the clearance

requirement (i.e., NH-FMM finds solutions paths in Scenario 3, for _ = 0.6). The finding

that there is tendency among the sampling-based variants to avoid exploration of narrow

passages is supported by the examples in Section 5.2.7. The results from scenarios 3, 4,

5 and the randomly sampled scenarios indicate that the tree expansions in the sampling-

based variants are constrained by the motion primitive set and clearance checks, but that the

clearance checks can contribute to more traversable paths when _ = 1.0, by ensuring that

regions close to obstacles are avoided, given the characteristics of the inclination map. The

results from the random simulations show that when _ is decreased, the absolute difference

in standard deviations of accumulated costs and average costs between Default RRT* and

FMM decreases (please refer to Section 5.2.6). Results from the random simulations also

show that NH-FMM fails to produce solutions more frequently as _ is decreased.

The lack of an apparent trend in averages of accumulated costs and average costs between

the sampling-based variants is also an indication that the proposed optimization scheme for

Dist-RRT*, ObjCost-RRT* and Inc-RRT* does not lead to more traversable paths for the

sampling-based motion primitive scheme. It is also seen that Dist-RRT* does not generally

produce shorter paths on average, compared to the other sampling-based variants. With

respect to the average costs, these values do not consistently follow the trend in accumulated

costs, which appears to support the arguments made by Jaillet et al. [83] (please refer to

Section 4.4). Since the motion primitive optimization scheme appears to be ineffective,

the RRT variants are preferred among the sampling-based variants, because these produce

solutions more efficiently (i.e., the RRT variants do not incorporate optimization steps).

89

6 Conclusions and Future Work

In this thesis, a sampling scheme for traversability mapping and a motion planning approach

for terrain are presented. The sampling scheme takes inspiration from existing approaches,

and provides a basis for constructing traversability maps. Inclination maps presented in this

thesis, use a simple method to analyze point clouds to compute inclination estimates within

indiviual cylinders, and this approach can be extended with other, more sophisticated

approaches. For example, the incorporation of other metrics corresponding to surface

roughness, the number of points in a cylinder and a variance measure of a set of angles or

points, similar to the approach in [9], may enable a more accurate assessment of the terrain.

The proposed motion planning approach extends RRT and RRT* by employing a fixed set

of motion primitives throughout tree-building that features a collision-checking scheme that

is responsible for performing clearance-checks in minimum-enclosing circles surrounding

the nodes in a tree. This approach is extended to account for an inclination-based cost

field. Results indicate that the collision-checking scheme is responsible for producing

more traversable paths among the sampling-based variants. Since no apparent trend is

observed between the proposed algorithms, the RRT-variants are preferred as these offer

less computation. This indicates that a more rigorous scheme for ensuring feasibility is

required to produce more traversable paths. Using local optimization to improve on the

solutions generated by algorithms employing the motion primitive scheme may have a

positive effect on traversability, as such techniques can assist in reducing the unnatural

swerves caused by expanding with a fixed set of primitives [8].

The conclusion that RRT-variants are preferred, highlights the decrease in efficiency that

results from attempting to apply RRT* using a simple motion primitive scheme. A more

rigiorous feasibility scheme based on Informed-RRT* may be a better alternative compared

to using the default algorithm, as Informed-RRT* is shown to be more efficient and retains

the same AO and convergence guarantees as the default RRT* algorithm by sampling a

subset of states described by a prolate hyperspheroid to improve a solution [88]. As a means

of potentially attaining higher efficiency for the overall scheme, the presented collision-

checking approach may be exploited to analyze traversability on-demand by iteratively

overlapping cylinders between nodes. This may reduce the amount of processing involved

90

in generating a complete grid map that is used for planning. However, global information

may still provide useful information when evaluating traversability of terrain.

Results from the NH-FMM algorithm show that FMM does not guarantee feasibility for

UGVs without neutral-turn and reverse motion capabilities, operating in terrain scenarios.

This motivates the use of a sampling-based approach in UGV motion planning on terrain.

On the other hand, when NH-FMM finds solution paths, the FMM solutions for the

corresponding scenarios are preferred, because FMM finds the optimal path in terms of

traversability. Therefore, a sampling-based approach may be used in combination with

NH-FMM, when NH-FMM fails to establish further connections to the FMM path, as

suggested in Section 4.4. In Section 5.2, Default RRT* is used as an ideal benchmark

algorithm, alongside FMM, to describe the results, indicating that the incorporation of

an algorithm purely optimizing on distance is useful for evaluation of a new scheme in

this context. However, FMM can also be used to produce optimal distance paths. This

can be achieved by setting the inverse speed function in the Eikonal update to a constant

value. Hence, although FMM paths are only idealistic, the algorithm can provide useful

benchmarks for comparison in the evaluation of a new scheme.

The performance-based comparison used for evaluation may be improved by adding the

remaining accumulated cost and path length along a straight line to the goal from the final

point of the path to the accumulated cost and path length, given the limitations of the motion

primitive scheme involving the acceptance of a solution within 5 m from the goal. On the

other hand, a limitation of this approach is that there may not be a clear path in a straight

line from the final point on the path, and the cost along a straight line may not accurately

reflect the cost that would be achieved if a path connected directly to the goal, given the

intrinsic properties of the algorithms and the potential variations in cost within the radius

from the goal. Furthermore, attempting to connect a primitive to the goal when it is close

to a tree may not prove as successful in finding a path as reaching the goal within a given

radius. To enable a fairer comparison when evaluating algorithms in terms of performance,

the adoption of a more sophisticated feasibility scheme may include disallowing path end

points that do not directly connect to goal points. A bi-directional approach may be useful

for this purpose [89].

91

References
[1] N. Abcouwer, S. Daftry, T. del Sesto, O. Toupet, and M. Ono, “Machine Learning

Based Path Planning for Improved Rover Navigation,” IEEE Aerospace Conference,
Mar. 2021.

[2] L. C. Santos, F. N. Santos, E. J. S. Pires, A. Valente, P. Costa, and S. Magalhaes, “Path
Planning for ground robots in agriculture: a short review,” 2020 IEEE International
Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE, Apr
2020, doi: 10.1109/icarsc49921.2020.9096177.

[3] C. U. et al., “Autonomous Driving in Urban Environments: Boss and the Urban
Challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 425–466, Aug. 2008.

[4] DARPA, “Grand challenge 2004 final report,” Defense Advanced Re-
search Projects Agency, Tech. Rep., Jul. 2004. [Online]. Avail-
able: https://www.esd.whs.mil/Portals/54/Documents/FOID/Reading%20Room/
DARPA/15-F-0059_GC_2004_FINAL_RPT_7-30-2004.pdf

[5] S. Bruvoll, “Situation dependent path planning for computer generated forces,”
2014, Norwegian Defence Research Establishment (FFI). [Online]. Available:
https://publications.ffi.no/nb/item/asset/dspace:2439/14-01222.pdf

[6] S. M. Lavalle, Planning Algorithms, J. O’Kane, Ed. Cambridge University Press,
2006.

[7] S. T. et al., “Stanley: The robot that won the DARPA Grand Challenge,” Journal of
Field Robotics, vol. 23, no. 9, pp. 661–692, Sep. 2006.

[8] M. Thoresen, N. H. Nielsen, K. Mathiassen, and K. Y. Pettersen, “Path Planning for
UGVs Based on Traversability Hybrid A*,” IEEE Robotics and Automation Letters,
vol. 6, no. 2. Institute of Electrical and Electronics Engineers (IEEE), p. 1216–1223,
Apr 2021, doi: 10.1109/lra.2021.3056028.

[9] N. Perez-Higueras, A. Jardon, A. Rodriguez, and C. Balaguer, “3d exploration and
navigation with optimal-rrt planners for ground robots in indoor incidents,” Sensors,
vol. 20, no. 1, p. 220, December 2019.

[10] K. Mathiassen, M. Baksaas, S. A. Græe, E. A. Mentzoni, and N. H. Nielsen, “Making
the milrem themis ugv ready for autonomous operations,” in Unmanned Systems
Technology XXIII, vol. 11758, 2021, p. 117580S.

[11] J. V. G. González, “Fast marching methods in path and motion planning: improve-
ments and high-level applications,” Ph.D. dissertation, Universidad Carlos III de
Madrid, 2015.

92

https://www.esd.whs.mil/Portals/54/Documents/FOID/Reading%20Room/DARPA/15-F-0059_GC_2004_FINAL_RPT_7-30-2004.pdf
https://www.esd.whs.mil/Portals/54/Documents/FOID/Reading%20Room/DARPA/15-F-0059_GC_2004_FINAL_RPT_7-30-2004.pdf
https://publications.ffi.no/nb/item/asset/dspace:2439/14-01222.pdf

[12] S. Luu, “Comparing the motion planning methods Hybrid A* and RRT for au-
tonomous off-road driving of bicycle vehicles,” Master’s thesis, 2021.

[13] S. R. Lindemann and S. M. LaValle, “Current issues in sampling-based motion
planning,” in Robotics research. The eleventh international symposium. Springer,
2005, pp. 36–54.

[14] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics - Modelling, Planning
and Control, M. J. Grimble and M. A. Johnson, Eds. Springer, 2009.

[15] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE Transac-
tions on Robotics and Automation, vol. 12, no. 4. Institute of Electrical and Electronics
Engineers (IEEE), p. 566–580, Aug. 1996, doi: 10.1109/70.508439.

[16] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[17] J. Bohren, T. Foote, J. Keller, A. Kushleyev, D. Lee, A. Stewart, P. Vernaza,
J. Derenick, J. Spletzer, and B. Satterfield, “Little ben: The ben franklin racing
team’s entry in the 2007 darpa urban challenge,” Journal of Field Robotics, vol. 25,
no. 9, pp. 598–614, 2008.

[18] A. Patel, “Introduction to A*,” Apr. 2022. [Online]. Available: http:
//theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

[19] M. Likhachev and D. Ferguson, “Planning long dynamically feasible maneuvers for
autonomous vehicles,” The International Journal of Robotics Research, vol. 28, no. 8,
pp. 933–945, 2009.

[20] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun, “Anytime
Dynamic A*: An Anytime, Replanning Algorithm,” in ICAPS, vol. 5, 2005, pp.
262–271.

[21] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Duggins,
T. Galatali, C. Geyer et al., “Autonomous driving in urban environments: Boss and
the urban challenge,” Journal of field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[22] A. Stentz, “Optimal and efficient path planning for partially known environments,” in
Intelligent unmanned ground vehicles. Springer, 1997, pp. 203–220.

[23] A. Muhammad, M. A. Ali, and I. H. Shanono, “Path planning methods for mobile
robots: A systematic and bibliometric review,” ELEKTRIKA-Journal of Electrical
Engineering, vol. 19, no. 3, pp. 14–34, 2020.

93

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

[24] D. Ferguson and A. Stentz, “Field D*: An interpolation-based path planner and
replanner,” in Robotics research. Springer, 2007, pp. 239–253.

[25] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz, “Global planning on the mars ex-
ploration rovers: Software integration and surface testing,” Journal of Field Robotics,
vol. 26, no. 4, pp. 337–357, 2009.

[26] A. Valero-Gomez, J. V. Gomez, S. Garrido, and L. Moreno, “The path to effi-
ciency: Fast marching method for safer, more efficient mobile robot trajectories,”
IEEE Robotics & Automation Magazine, vol. 20, no. 4, pp. 111–120, 2013.

[27] S. Garrido, M. Malfaz, and D. Blanco, “Application of the fast marching method for
outdoor motion planning in robotics,” Robotics and Autonomous Systems, vol. 61,
no. 2, pp. 106–114, 2013.

[28] Z. He, J. Wang, and C. Song, “A review of mobile robot motion planning methods:
from classical motion planning workflows to reinforcement learning-based architec-
tures,” arXiv preprint arXiv:2108.13619, 2021.

[29] C. Arismendi, D. Álvarez, S. Garrido, and L. Moreno, “Nonholonomic motion plan-
ning using the fast marching square method,” International Journal of Advanced
Robotic Systems, vol. 12, no. 5, p. 56, 2015.

[30] V. González, C. A. Monje, L. Moreno, and C. Balaguer, “Fast marching square
method for uavs mission planning with consideration of dubins model constraints,”
IFAC-PapersOnLine, vol. 49, no. 17, pp. 164–169, 2016.

[31] P. Švestka and M. H. Overmars, “Motion planning for car-like robots using a proba-
bilistic learning approach,” The International Journal of Robotics Research, vol. 16,
no. 2, pp. 119–143, 1997.

[32] M. B. Kobilarov and G. S. Sukhatme, “Near time-optimal constrained trajectory plan-
ning on outdoor terrain,” in Proceedings of the 2005 IEEE International Conference
on Robotics and Automation. IEEE, 2005, pp. 1821–1828.

[33] S. M. LaValle, J. J. Kuffner, B. Donald et al., “Rapidly-exploring random trees:
Progress and prospects,” Algorithmic and computational robotics: new directions,
vol. 5, pp. 293–308, 2001.

[34] S. Bak, S. Bogomolov, T. A. Henzinger, and A. Kumar, “Challenges and tool imple-
mentation of hybrid rapidly-exploring random trees,” in International Workshop on
Numerical Software Verification. Springer, 2017, pp. 83–89.

[35] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-
ning,” The international journal of robotics research, vol. 30, no. 7, pp. 846–894,
2011.

94

[36] R. Takemura and G. Ishigami, “Traversability-based RRT* for planetary rover path
planning in rough terrain with LIDAR point cloud data,” Journal of Robotics and
Mechatronics, vol. 29, no. 5, pp. 838–846, 2017.

[37] P. Krüsi, P. Furgale, M. Bosse, and R. Siegwart, “Driving on point clouds: Motion
planning, trajectory optimization, and terrain assessment in generic nonplanar envi-
ronments,” Journal of Field Robotics, vol. 34, no. 5, pp. 940–984, 2017.

[38] M. Du, J. Chen, P. Zhao, H. Liang, Y. Xin, and T. Mei, “An improved RRT-based
motion planner for autonomous vehicle in cluttered environments,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2014, pp.
4674–4679.

[39] M. Du, T. Mei, H. Liang, J. Chen, R. Huang, and P. Zhao, “Drivers’ visual behavior-
guided RRT motion planner for autonomous on-road driving,” Sensors, vol. 16, no. 1,
p. 102, 2016.

[40] D. J. Webb and J. v. d. Berg, “Kinodynamic rrt*: Optimal motion planning for systems
with linear differential constraints,” arXiv preprint arXiv:1205.5088, 2012.

[41] B. Sakcak, L. Bascetta, G. Ferretti, and M. Prandini, “Sampling-based optimal kin-
odynamic planning with motion primitives,” Autonomous Robots, vol. 43, no. 7, pp.
1715–1732, 2019.

[42] N. A. Melchior, R. G. Simmons et al., “Particle rrt for path planning with uncertainty.”
in ICRA. Citeseer, 2007, pp. 1617–1624.

[43] C. Jiang, Z. Hu, Z. P. Mourelatos, D. Gorsich, P. Jayakumar, Y. Fu, and M. Majcher,
“R2-rrt*: reliability-based robust mission planning of off-road autonomous ground
vehicle under uncertain terrain environment,” IEEE Transactions on Automation Sci-
ence and Engineering, 2021.

[44] N. A. Melchior, J.-y. Kwak, and R. Simmons, “Particle RRT for Path Planning in
very rough terrain,” in NASA Science Technology Conference 2007 (NSTC 2007).
Citeseer, 2007.

[45] S. U. Lee, R. Gonzalez, and K. Iagnemma, “Robust sampling-based motion planning
for autonomous tracked vehicles in deformable high slip terrain,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2016, pp.
2569–2574.

[46] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree: A fast
marching sampling-based method for optimal motion planning in many dimensions,”
The International journal of robotics research, vol. 34, no. 7, pp. 883–921, 2015.

95

[47] E. Schmerling, L. Janson, and M. Pavone, “Optimal sampling-based motion planning
under differential constraints: the drift case with linear affine dynamics,” in 2015 54th
IEEE Conference on Decision and Control (CDC). IEEE, 2015, pp. 2574–2581.

[48] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of motion planning
techniques for automated vehicles,” IEEE Transactions on intelligent transportation
systems, vol. 17, no. 4, pp. 1135–1145, 2015.

[49] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search techniques in
path planning for autonomous driving,” Ann Arbor, vol. 1001, no. 48105, pp. 18–80,
2008.

[50] S. Potiris, A. Tompkins, and A. Goktogan, “Terrain-based path planning and fol-
lowing for an experimental mars rover,” in Australasian Conference on Robotics and
Automation, Melbourne, 2014, pp. 1–10.

[51] J. Jordan and A. Zell, “Real-time model based path planning for wheeled vehicles,”
in 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019,
pp. 5787–5792.

[52] S. B. Goldberg, M. W. Maimone, and L. Matthies, “Stereo vision and rover navigation
software for planetary exploration,” in Proceedings, IEEE aerospace conference,
vol. 5. IEEE, 2002.

[53] A. Tahirovic and G. Magnani, “A roughness-based rrt for mobile robot navigation
planning,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 5944–5949, Jan 2011.

[54] K. Iagnemma and S. Dubowsky, “Mobile robots in rough terrain: Estima-
tion, motion planning and control with application to planetary rovers,” Springer
Berlin/Heidelberg, 2004.

[55] P. Papadakis, “Terrain traversability analysis methods for unmanned ground vehicles:
A survey,” Engineering Applications of Artificial Intelligence, vol. 26, no. 4, pp.
1373–1385, April 2013.

[56] Y. Ji, Y. Tanaka, Y. Tamura, M. Kimura, A. Umemura, Y. Kaneshima, H. Murakami,
A. Yamashita, and H. Asama, “Adaptive motion planning based on vehicle character-
istics and regulations for off-road ugvs,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 1, pp. 599–611, 2018.

[57] “Milrem robotics transport,” https://milremrobotics.com/wp-content/uploads/2019/
05/Milrem_Robotics_Transport_green-650x471.png, accessed: 2023-05-07.

[58] P. Morin and C. Samson, “Motion control of wheeled mobile robots.” Springer
handbook of robotics, vol. 1, pp. 799–826, 2008.

96

https://milremrobotics.com/wp-content/uploads/2019/05/Milrem_Robotics_Transport_green-650x471.png
https://milremrobotics.com/wp-content/uploads/2019/05/Milrem_Robotics_Transport_green-650x471.png

[59] R. Pepy, A. Lambert, and H. Mounier, “Path planning using a dynamic vehicle
model,” in 2006 2nd International Conference on Information & Communication
Technologies, vol. 1. IEEE, 2006, pp. 781–786.

[60] L. E. Dubins, “On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents,” American Journal of
mathematics, vol. 79, no. 3, pp. 497–516, 1957.

[61] J. F. Canny, B. R. Donald, J. H. Reif, and P. G. Xavier, “On the complexity of
kinodynamic planning,” [Proceedings 1988] 29th Annual Symposium on Foundations
of Computer Science, pp. 306–316, 1988.

[62] T. University, “Comp150-07: Intelligent robotics notes on configuration space,”
2023, accessed: 2023-05-08. [Online]. Available: https://www.cs.tufts.edu/comp/
150IR/hw/cspace.html

[63] B. Paden, M. Cáp, S. Z. Yong, D. S. Yershov, and E. Frazzoli, “A survey of motion
planning and control techniques for self-driving urban vehicles,” IEEE Transactions
on Intelligent Vehicles, vol. 1, pp. 33–55, 2016.

[64] J. Sethian, “Level set methods and fast marching methods: Evolving interfaces in
computational geometry, fluid mechanics, computer vision, and materials science,”
no. 3, 1999.

[65] G. Peyre, “Dijkstra and Fast Marching Algorithms,” Apr. 2010. [Online]. Available:
https://www.numerical-tours.com/matlab/fastmarching_0_implementing/

[66] Y. Li, “Real-time motion planning of multiple agents and formations in virtual envi-
ronments,” Ph.D. dissertation, The Royal Institute of Technology (KTH), 2001.

[67] S. M. LaValle, “Rapidly-exploring random trees : a new tool for path planning,” The
annual research report, 1998.

[68] M. Stölzle, T. Miki, L. Gerdes, M. Azkarate, and M. Hutter, “Reconstructing occluded
elevation information in terrain maps with self-supervised learning,” IEEE Robotics
and Automation Letters, vol. 7, no. 2, pp. 1697–1704, 2022.

[69] Y. Han, H. Lin, J. Banfi, K. Bala, and M. Campbell, “Deepsemantichppc: Hypothesis-
based planning over uncertain semantic point clouds,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 4252–4258.

[70] “Defence - milrem robotics,” https://milremrobotics.com/defence/, accessed: 2023-
05-07.

[71] “Høydedata og dybdedata,” Norwegian Mapping Authority, 2023, accessed: May
15, 2023. [Online]. Available: https://kartverket.no/api-og-data/terrengdata

97

https://www.cs.tufts.edu/comp/150IR/hw/cspace.html
https://www.cs.tufts.edu/comp/150IR/hw/cspace.html
https://www.numerical-tours.com/matlab/fastmarching_0_implementing/
https://milremrobotics.com/defence/
https://kartverket.no/api-og-data/terrengdata

[72] “Estimating surface normals in a pointcloud,” Point Cloud Library, 2023, accessed:
May 1, 2023. [Online]. Available: https://pcl.readthedocs.io/en/latest/normal_
estimation.html

[73] P. Fankhauser, “Grid map,” ANYbotics, 2023, accessed: May 1, 2023. [Online].
Available: https://github.com/ANYbotics/grid_map

[74] E. Jelavic, D. Jud, P. Egli, and M. Hutter, “Towards autonomous robotic precision
harvesting: Mapping, localization, planning and control for a legged tree harvester,”
Field Robotics, 2021.

[75] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China,
May 9-13 2011.

[76] Y. Yang, J. Pan, and W. Wan, “Survey of optimal motion planning,” IET Cyber-
Systems and Robotics, vol. 1, no. 1, pp. 13–19, 2019.

[77] V. Vonásek, M. Saska, K. Košnar, and L. Přeučil, “Global motion planning for
modular robots with local motion primitives,” in 2013 IEEE International Conference
on Robotics and Automation. IEEE, 2013, pp. 2465–2470.

[78] B. Sakcak, L. Bascetta, G. Ferretti, and M. Prandini, “Sampling-based optimal kinody-
namic planning with motion primitives,” Autonomous Robots, vol. 43, pp. 1715–1732,
2019.

[79] L. Palmieri and K. O. Arras, “A novel rrt extend function for efficient and smooth
mobile robot motion planning,” in 2014 IEEE/RSJ International Conference on In-
telligent Robots and Systems. IEEE, 2014, pp. 205–211.

[80] H.-M. Zhang, M.-L. Li, and L. Yang, “Safe path planning of mobile robot based on
improved a* algorithm in complex terrains,” Algorithms, vol. 11, no. 4, p. 44, 2018.

[81] J. Bialkowski, S. Karaman, M. Otte, and E. Frazzoli, “Efficient collision checking
in sampling-based motion planning,” in Algorithmic Foundations of Robotics X:
Proceedings of the Tenth Workshop on the Algorithmic Foundations of Robotics.
Springer, 2013, pp. 365–380.

[82] D. of Environment and Science, “Terrain slope,” Queensland Gov-
ernment, 2023, accessed: May 12, 2023. [Online]. Available:
https://wetlandinfo.des.qld.gov.au/wetlands/ecology/aquatic-ecosystems-natural/
estuarine-marine/itst/terrain-slope/#:~:text=Slope%20is%20frequently%20used%
20in,their%20structural%20macrobiota%5B11%5D.

[83] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning on configuration-
space costmaps,” IEEE Transactions on Robotics, vol. 26, pp. 635–646, 2010.

98

https://pcl.readthedocs.io/en/latest/normal_estimation.html
https://pcl.readthedocs.io/en/latest/normal_estimation.html
https://github.com/ANYbotics/grid_map
https://wetlandinfo.des.qld.gov.au/wetlands/ecology/aquatic-ecosystems-natural/estuarine-marine/itst/terrain-slope/#:~:text=Slope%20is%20frequently%20used%20in,their%20structural%20macrobiota%5B11%5D.
https://wetlandinfo.des.qld.gov.au/wetlands/ecology/aquatic-ecosystems-natural/estuarine-marine/itst/terrain-slope/#:~:text=Slope%20is%20frequently%20used%20in,their%20structural%20macrobiota%5B11%5D.
https://wetlandinfo.des.qld.gov.au/wetlands/ecology/aquatic-ecosystems-natural/estuarine-marine/itst/terrain-slope/#:~:text=Slope%20is%20frequently%20used%20in,their%20structural%20macrobiota%5B11%5D.

[84] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Motion planning with dynamics by
a synergistic combination of layers of planning,” IEEE Transactions on Robotics,
vol. 26, no. 3, pp. 469–482, 2010.

[85] J. Gomez, “Fast marching method and fast marching square implementation,” 2023,
accessed: May 11, 2023. [Online]. Available: https://jvgomez.github.io/pages/
fast-marching-method-and-fast-marching-square.html#source-code

[86] M. M. Rahman, “Motion planning algorithm: Rrt star python code,” 2016,
accessed: May 11, 2023. [Online]. Available: https://www.linkedin.com/pulse/
motion-planning-algorithm-rrt-star-python-code-md-mahbubur-rahman

[87] M. M. Rahman, L. Bobadilla, and B. Rapp, “Sampling-based planning algorithms
for multi-objective missions,” in 2016 IEEE International Conference on Automation
Science and Engineering (CASE). IEEE, 2016, pp. 709–714.

[88] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*: Optimal
sampling-based path planning focused via direct sampling of an admissible ellipsoidal
heuristic,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2014, pp. 2997–3004.

[89] F. Lamiraux, E. Ferré, and E. Vallée, “Kinodynamic motion planning: Connect-
ing exploration trees using trajectory optimization methods,” in IEEE International
Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 4.
IEEE, 2004, pp. 3987–3992.

99

https://jvgomez.github.io/pages/fast-marching-method-and-fast-marching-square.html#source-code
https://jvgomez.github.io/pages/fast-marching-method-and-fast-marching-square.html#source-code
https://www.linkedin.com/pulse/motion-planning-algorithm-rrt-star-python-code-md-mahbubur-rahman
https://www.linkedin.com/pulse/motion-planning-algorithm-rrt-star-python-code-md-mahbubur-rahman

Appendix A - Traversability Mapping

Four Different Perspectives of the Point Cloud Dataset

The color bar in the picture is a cropped HSV color palette, ranging from red to purple. The color
red indicates points corresponding to a range of the lowest height values, while purple indicates
points corresponding to the range of the greatest height values within the dataset. The purpose of
including this picture is to give a rough high-level overview of the terrain data that was used to
generate the traversability map for motion planning.

100

Inclination Map

Figure 55: Triangle approach with 𝛼𝑙𝑖𝑚 = 11.8.

101

Appendix B - Simulation Results
Overview of planning scenarios:

• Scenario 1 - Alternative paths to the goal, open environment.
• Scenario 2 - Obvious path to the goal, partially constrained environment.
• Scenario 3 - Longer, alternative paths to the goal, open environment.
• Scenario 4 - Longer, distinct, prominent path to partially constrained goal environment.
• Scenario 5 - Alternative paths to the goal, constrained starting environment.

Figure 56: Rough high-level overview of chosen planning scenarios. The black arrows point to start and goal
positions for the 5 chosen scenarios, and red arrows represent sampled orientations at the start positions.

102

Scenario 1: Path Lengths, Accumulated Costs and Average Costs
(Averages over 10 runs per table)

_ = 1.0 Length (m) Acc. cost Avg. cost
FMM 87.6 1.2 0.014
NH-FMM 90.0 1.3 0.014
Default RRT* 72.9 3.2 0.043
MP-RRT 100.7 2.4 0.024
ObjCost-RRT 101.5 2.9 0.029
Inc-RRT 111.8 3.9 0.036
Dist-RRT* 104.1 3.2 0.030
ObjCost-RRT* 106.7 2.7 0.025
Inc-RRT* 101.5 2.7 0.027

Table 1

_ = 0.8 Length (m) Acc. cost Avg. cost
FMM 72.6 13.1 0.181
NH-FMM 77.1 14.0 0.181
Default RRT* 72.4 13.8 0.190
MP-RRT 102.0 19.2 0.188
ObjCost-RRT 123.2 24.0 0.194
Inc-RRT 102.0 19.3 0.189
Dist-RRT* 100.5 19.0 0.189
ObjCost-RRT* 102.4 19.3 0.188
Inc-RRT* 99.4 18.9 0.190

Table 2

_ = 0.6 Length (m) Acc. cost Avg. cost
FMM 75.6 22.0 0.291
NH-FMM - - -
Default RRT* 72.5 24.2 0.334
MP-RRT 105.0 36.6 0.349
ObjCost-RRT 107.7 37.3 0.345
Inc-RRT 100.7 35.3 0.351
Dist-RRT* 105.4 36.9 0.350
ObjCost-RRT* 99.0 34.5 0.348
Inc-RRT* 100.5 35.3 0.352

Table 3

103

Scenario 2: Path Lengths, Accumulated Costs and Average Costs
(Averages over 10 runs per table)

_ = 1.0 Length (m) Acc. cost Avg. cost
FMM 48.2 1.1 0.022
NH-FMM 53.6 2.2 0.040
Default RRT* 46.6 2.0 0.043
MP-RRT 59.8 9.3 0.155
ObjCost-RRT 63.0 10.8 0.168
Inc-RRT 61.0 9.2 0.150
Dist-RRT* 60.0 10.4 0.170
ObjCost-RRT* 61.3 11.0 0.179
Inc-RRT* 60.8 11.1 0.183

Table 4

_ = 0.8 Length (m) Acc. cost Avg. cost
FMM 46.6 8.2 0.175
NH-FMM - - -
Default RRT* 46.5 8.3 0.179
MP-RRT 61.0 14.7 0.240
ObjCost-RRT 70.0 16.4 0.233
Inc-RRT 58.3 15.2 0.261
Dist-RRT* 60.8 14.2 0.233
ObjCost-RRT* 62.5 15.1 0.241
Inc-RRT* 63.4 15.6 0.245

Table 5

_ = 0.6 Length (m) Acc. cost Avg. cost
FMM 47.2 13.7 0.290
NH-FMM - - -
Default RRT* 46.5 14.9 0.321
MP-RRT 59.5 19.7 0.331
ObjCost-RRT 64.3 20.4 0.317
Inc-RRT 60.4 19.6 0.325
Dist-RRT* 61.0 19.8 0.325
ObjCost-RRT* 58.9 19.0 0.323
Inc-RRT* 58.3 18.9 0.325

Table 6

104

Scenario 3: Path Lengths, Accumulated Costs and Average Costs
(Averages over 10 runs per table)

_ = 1.0 Length (m) Acc. cost Avg. cost
FMM 141.7 2.1 0.015
NH-FMM 154.2 2.8 0.018
Default RRT* 128.5 11.9 0.093
MP-RRT 175.4 7.1 0.040
ObjCost-RRT 166.4 5.4 0.033
Inc-RRT 172.9 6.4 0.037
Dist-RRT* 174.1 7.0 0.041
ObjCost-RRT* 175.4 6.9 0.040
Inc-RRT* 175.6 6.9 0.039

Table 7

_ = 0.8 Length (m) Acc. cost Avg. cost
FMM 131.1 23.8 0.182
NH-FMM - - -
Default RRT* 128.6 27.9 0.217
MP-RRT 173.1 32.8 0.190
ObjCost-RRT 183.4 35.2 0.192
Inc-RRT 177.6 34.4 0.193
Dist-RRT* 173.9 33.3 0.191
ObjCost-RRT* 172.4 33.3 0.193
Inc-RRT* 183.1 35.5 0.194

Table 8

_ = 0.6 Length (m) Acc. cost Avg. cost
FMM 135.9 39.2 0.288
NH-FMM 156.4 47.0 0.300
Default RRT* 128.6 43.3 0.336
MP-RRT 172.9 59.0 0.341
ObjCost-RRT 178.9 60.9 0.341
Inc-RRT 167.7 57.1 0.341
Dist-RRT* 174.6 60.0 0.344
ObjCost-RRT* 177.4 61.3 0.345
Inc-RRT* 179.7 61.6 0.343

Table 9

105

Scenario 4: Path Lengths, Accumulated Costs and Average Costs
(Averages over 10 runs per table)

_ = 1.0 Length (m) Acc. cost Avg. cost
FMM 219.1 4.4 0.020
NH-FMM - - -
Default RRT* 194.2 11.6 0.060
MP-RRT 246.3 11.4 0.046
ObjCost-RRT 231.3 9.0 0.039
Inc-RRT 247.6 10.8 0.043
Dist-RRT* 241.4 10.7 0.044
ObjCost-RRT* 245.9 10.5 0.043
Inc-RRT* 249.8 10.2 0.041

Table 10

_ = 0.8 Length (m) Acc. cost Avg. cost
FMM 194.7 35.7 0.183
NH-FMM - - -
Default RRT* 194.0 38.1 0.197
MP-RRT 237.5 45.3 0.191
ObjCost-RRT 249.8 47.6 0.191
Inc-RRT 249.3 47.1 0.189
Dist-RRT* 245.3 46.8 0.191
ObjCost-RRT* 255.1 48.8 0.191
Inc-RRT* 268.2 51.9 0.193

Table 11

_ = 0.6 Length (m) Acc. cost Avg. cost
FMM 196.6 60.1 0.306
NH-FMM - - -
Default RRT* 193.8 64.7 0.334
MP-RRT 259.6 88.1 0.339
ObjCost-RRT 242.5 82.8 0.341
Inc-RRT 239.5 81.9 0.342
Dist-RRT* 237.8 81.0 0.341
ObjCost-RRT* 242.3 83.0 0.343
Inc-RRT* 241.2 82.5 0.342

Table 12

106

Scenario 5: Path Lengths, Accumulated Costs and Average Costs
(Averages over 10 runs per table)

_ = 1.0 Length (m) Acc. cost Avg. cost
FMM 94.1 3.7 0.039
NH-FMM - - -
Default RRT* 72.8 10.6 0.146
MP-RRT 105.2 6.8 0.066
ObjCost-RRT 103.5 7.3 0.070
Inc-RRT 106.7 7.0 0.068
Dist-RRT* 106.9 7.3 0.069
ObjCost-RRT* 102.8 8.0 0.078
Inc-RRT* 117.4 8.3 0.074

Table 13

_ = 0.8 Length (m) Acc. cost Avg. cost
FMM 75.5 14.5 0.192
NH-FMM - - -
Default RRT* 73.1 17.4 0.238
MP-RRT 109.9 21.5 0.197
ObjCost-RRT 106.5 20.7 0.195
Inc-RRT 111.4 21.9 0.196
Dist-RRT* 103.7 20.6 0.199
ObjCost-RRT* 104.3 20.5 0.197
Inc-RRT* 94.0 18.8 0.199

Table 14

_ = 0.6 Length (m) Acc. cost Avg. cost
FMM 73.6 22.5 0.306
NH-FMM - - -
Default RRT* 72.8 24.0 0.330
MP-RRT 96.6 31.2 0.322
ObjCost-RRT 113.7 37.0 0.323
Inc-RRT 96.8 31.2 0.322
Dist-RRT* 105.6 34.3 0.324
ObjCost-RRT* 110.1 35.7 0.323
Inc-RRT* 99.6 32.0 0.321

Table 15

107

Results from 10 Random Simulations: Path Lengths, Accumulated
Costs, Average Costs and Standard Deviations

(Averages over 10 sampled scenarios)

_ = 1.0 Length (m) Acc. cost Avg. cost Acc. cost (𝜎𝑠) Avg. cost (𝜎𝑠)
FMM 74.4 1.4 0.019 0.8 0.002
NH-FMM 87.0 2.0 0.023 1.0 0.004
Default RRT* 65.3 5.8 0.077 4.6 0.043
MP-RRT 97.7 4.3 0.044 2.7 0.018
ObjCost-RRT 97.7 3.3 0.033 2.0 0.006
Inc-RRT 95.7 3.6 0.038 2.0 0.019
Dist-RRT* 95.7 3.1 0.032 1.9 0.008
ObjCost-RRT* 93.0 3.4 0.035 2.5 0.012
Inc-RRT* 100.2 3.5 0.035 1.9 0.009

Table 16

_ = 0.8 Length (m) Acc. cost Avg. cost Acc. cost (𝜎𝑠) Avg. cost (𝜎𝑠)
FMM 65.5 12.0 0.182 5.7 0.005
NH-FMM 6 out of 10 passed
Default RRT* 65.2 14.1 0.208 7.5 0.026
MP-RRT 92.3 17.4 0.185 9.1 0.010
ObjCost-RRT 103.5 19.6 0.189 8.3 0.009
Inc-RRT 89.1 16.9 0.189 7.9 0.012
Dist-RRT* 97.9 18.2 0.184 10.8 0.005
ObjCost-RRT* 96.0 18.0 0.185 9.6 0.006
Inc-RRT* 91.5 17.3 0.187 8.6 0.008

Table 17

_ = 0.6 Length (m) Acc. cost Avg. cost Acc. cost (𝜎𝑠) Avg. cost (𝜎𝑠)
FMM 65.6 20.7 0.315 9.4 0.007
NH-FMM 2 out of 10 passed
Default RRT* 65.0 21.9 0.338 9.9 0.004
MP-RRT 103.7 35.6 0.337 19.0 0.021
ObjCost-RRT 94.0 32.0 0.337 16.0 0.010
Inc-RRT 95.7 32.3 0.333 17.9 0.015
Dist-RRT* 99.6 33.9 0.337 18.6 0.011
ObjCost-RRT* 90.8 30.9 0.337 15.0 0.011
Inc-RRT* 103.5 35.0 0.336 19.1 0.012

Table 18

108

	Introduction
	Previous Work
	Grid-Based Methods
	Sampling-Based Methods
	Hybrid Methods
	Traversability Costs
	Problem Statement
	Thesis Outline

	Background
	Modelling the THeMIS UGV with Differential-Drive Kinematics
	Configuration Space
	Motion Planning and Autonomous Decision-Making
	Fast Marching Method
	Rapidly Exploring Random Trees
	Rapidly Exploring Random Tree
	Rapidly Exploring Random Tree*

	Traversability Mapping
	Minimum Enclosing Cylinder
	Point Cloud Dataset
	Sampling Scheme
	Triangle-Based Approach
	Surface Normal Approach
	Implementation
	Results
	Discussion

	Motion Planning
	Motion Primitive BVP Expansion and Rewiring
	Collision-Detection Scheme
	Inclination-Based Objective Cost and Optimal Traversability
	Non-Holonomic Fast Marching Method
	Overview of Algorithms and Associated Costs
	Implementation
	Chosen Planning Scenarios
	Randomly Sampled Scenarios

	Simulation
	Simulation Setup
	Results
	Planning Scenario 1
	Planning Scenario 2
	Planning Scenario 3
	Planning Scenario 4
	Planning Scenario 5
	Random Simulations
	Potentially Problematic Scenarios for the Sampling-Based Schemes

	Discussion

	Conclusions and Future Work
	Appendix A - Traversability Mapping
	Appendix B - Simulation Results

