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Abstract

In a market driven by Lévy processes, we consider an optimal portfolio problem for a
dealer who has access to some information in general smaller than the one generated by
the market events. In this sense we refer to this dealer as having partial information.
For this generally incomplete market and within a non-Markovian setting, we give a
characterization for a portfolio maximizing the expected utility of the final wealth.
Techniques of Malliavin calculus are used for the analysis.
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1 Introduction

During the last decade there have been many applications of Malliavin calculus to
finance in the literature. So far the applications have essentially been within one of the
following two areas:
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(i) Explicit formulae for the replicating portfolios or closest hedge of given claims
essentially based on the Clark-Ocone formula (see e.g. [KO], [BDLØP])

(ii) Numerically tractable formulae for the computation of the “Greeks” in finance,
for example the δ-hedge (see e.g. [FLLLT]).

The purpose of this paper is to present a different type of financial application of Malli-
avin calculus, namely in the problem of finding an optimal portfolio. More precisely,
we are given a utility function and we seek a portfolio (within an admissible class of
portfolios) which maximizes the utility of the corresponding terminal wealth. This is a
stochastic control problem. Traditionally there have been two approaches to this type
of problem:

(a) A dynamic programming or stochastic maximum principle approach. These ap-
proaches require that the system is Markovian. See e.g. [YZ], and references
therein, for more information about these methods.

(b) The martingale approach or duality approach. This is an efficient method if the
financial market equations have a special “multiplicative” form (see (3.1)-(3.2))
and the market is complete. An advantage of the method is that the system need
not be Markovian. However, in the incomplete market case the duality method
transforms the original problem into a dual problem usually of equal difficulty.
We refer to e.g. [KS], and references therein, for a presentation of the martingale
method.

There are, however, many situations where the problem of finding the optimal
portfolio cannot be approached by any of the two methods (a) and (b) above. For
example, if the information Et available to the agent at time t ≥ 0 is strictly less
than the information Ft that can be obtained by perfect observations of the processes
driving the market prices up to time t, then the system may be neither Markovian nor
complete. This is the case if, for example,

Et = F(t−δ)+ , t ≥ 0,

where δ > 0 is a fixed information delay.
In this paper we will show that Malliavin calculus can be used to solve optimal

portfolio problems also in such partial information cases.
We emphasize the distinction between the partial information control problem stud-

ied in this paper and the partial observation control problem, where the control is based
on noisy observations of the state. The latter problem has been studied by many au-
thors, but the methods and results of the partial observation problem do not apply to
our situation. To the best of our knowledge, our paper is the first to investigate partial
information optimal portfolio problems. Our approach uses a perturbation argument
combined with Malliavin calculus.
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Our main result (Theorem 3.1) characterizes the existence of the optimal portfolio
π as solution of an explicit equation. We remark that this equation relates π to the
coefficients in the market equations and to the Malliavin derivatives of a certain function
of the optimal terminal wealth Xπ(T ).

2 Some basic definitions and results

2.1 Lévy processes

We first recall that a Lévy process η = η(t) = η(t, ω), (t, ω) ∈ [0,∞)×Ω, on a complete
probability space (Ω,F , P ) is a stochastically continuous process with stationary and
independent increments. From now on we consider the version of η which has càdlàg
paths (i.e. right continuous paths with left sided limits) - see e.g. [S] for the existence
of such a modification. We assume that η(0) = 0. The (possible) jump of η at time t
is defined by

∆η(t) = η(t)− η(t−).

The jump measure N of η is defined by

N
(
(a, b], U

)
:=

∑
t∈(a,b]

1U (∆η(t)),

i.e. by the number of jumps of size ∆η(t) ∈ U for t ∈ (a, b]. Here 0 ≤ a < b ≤ ∞ and
U ∈ B(R0), i.e. U is a Borel set with Ū ⊂ R0 := R \ {0}. The differential form of this
random measure is denoted by N(dt, dz). The Lévy measure of η is defined by

ν(U) := E
[
N

(
(0, 1], U

)]
, U ∈ B(R0)

and the compensated jump measure (or compensated Poisson random measure) of η is
defined by

Ñ(dt, dz) = N(dt, dz)− ν(dz)dt.

In the sequel we assume that

(2.1) E
[
η2(t)

]
<∞, t ≥ 0.

The Lévy-Itô decomposition theorem states that if (2.1) holds, then there exist constants
a and b such that

η(t) = at+ bB(t) +
∫ t

0

∫
R0

zÑ(ds, dz), t ≥ 0,
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where B is a standard Brownian motion independent of N . In view of this we see that
it is natural to study processes which have the form

(2.2) X(t) = X(0) +
∫ t

0
α(s)ds+

∫ t

0
β(s)dB(s) +

∫ t

0

∫
R0

γ(s, z)Ñ(ds, dz),

or, in differential form,

(2.3) dX(t) = α(t)dt+ β(t)dB(t) +
∫

R0

γ(t, z)Ñ(dt, dz).

The processes α = α(t), β = β(t) and γ = γ(t, z), t ≥ 0, z ∈ R0, are predictable
with respect to the right continuous filtration F on (Ω,F , P ). Here F := {Ft, t ≥ 0},
is generated by B and N and F0 is augmented of all P -null events. Moreover it is
assumed that

(2.4) E

∫ t

0

{
|α(s)|+ β2(s) +

∫
R0

γ2(s, z)ν(dz)
}
ds <∞ P − a.s. for all t ≥ 0.

In particular, solutions of stochastic differential equations of the form

(2.5) dX(t) = α(X(t))dt+ β(X(t))dB(t) +
∫

R0

γ(X(t−), z)Ñ(dt, dz)

are called jump diffusions. We refer to [A] and [S] for more information about Lévy
processes and [ØS2] for the stochastic control of jump diffusions.

2.2 Elements of Malliavin calculus

Since B and Ñ are independent we may assume that

(2.6) Ω := ΩB × Ω eN , F := FB ⊗F eN , P := PB ⊗ P eN
where (Ωi,Fi, Pi), i = B, Ñ , are the probability spaces generated by B and Ñ , re-
spectively. Correspondingly we may consider Fi := {Fi,t, t ≥ 0}, i = B, Ñ , as the
flow of events generated respectively be B and Ñ and augmented of the events of null
probability Pi, i = B, Ñ , correspondingly. Then we can set Ft := FB,t ⊗F eN,t

, t ≥ 0.
From now on we fix a terminal time T > 0 constant.
In this context we will use two types of Malliavin derivatives of an FT -measurable

random variable F = F (ω) = F (ω1, ω2), ω = (ω1, ω2) ∈ ΩB × Ω eN :

(i) The Malliavin derivative DtF = ∂F
∂ω1

(t), with respect to B

(ii) The Malliavin derivative Dt,zF = ∂F
∂ω2

(t, z), with respect to Ñ .

Both derivatives are defined in terms of the respective chaos expansions (see [I]) of F :
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(i) For any ω2 ∈ Ω eN fixed, let F =
∑∞

n=0 In(fn) be the chaos expansion representa-
tion of F (·, ω2) ∈ L2(PB) in terms of iterated integrals In(fn) of fn with respect
to B, fn being deterministic symmetric functions in L2(λn). If F ∈ DB

1,2, i.e.

(2.7) ‖F‖2
DB

1,2
:=

∞∑
n=1

nn!‖fn‖2
L2(λn) <∞,

we define

(2.8) DtF =
∞∑

n=1

nIn−1(fn(·, t)), t ∈ [0, T ].

Here λ denotes the Lebesgue measure on [0, T ]. It is easily seen that if F ∈ DB
1,2,

then

‖DtF‖2
L2(λ×P ) =

∞∑
n=1

nn!‖fn‖2
L2(λn) = ‖F‖2

DB
1,2
.

A random variable belonging to DB
1,2 is said to be Malliavin differentiable with

respect to B.

(ii) For any ω1 ∈ ΩB fixed, let F =
∑∞

n=0 In(fn) be the chaos expansion of F (ω1, ·) ∈
L2(P eN ) in terms of iterated integrals In(fn) of fn with respect to Ñ , fn being

deterministic symmetric functions in L2((λ× ν)n). If F ∈ D eN
1,2, i.e.

(2.9) ‖F‖2

D eN
1,2

:=
∞∑

n=1

nn!‖fn‖2
L2((λ×ν)n) <∞,

we define

(2.10) Dt,zF =
∞∑

n=1

nIn−1(fn(·, t, z)), (t, z) ∈ [0, T ]× R0.

In this case we get that if F ∈ D eN
1,2, then

‖Dt,zF‖2
L2(λ×ν×P ) =

∞∑
n=1

nn!‖fn‖2
L2((λ×ν)n) = ‖F‖2

D eN
1,2

.

A random variable belonging to D eN
1,2 is said to be Malliavin differentiable with

respect to Ñ .

By considering finite sums of iterated integrals we see that DB
1,2∩D eN

1,2 is dense in L2(P ).
In this paper we will use the following basic properties of the Malliavin derivatives:
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Theorem 2.1 Chain rule I.

(i) (Cf. [N]). Let G ∈ DB
1,2 and g ∈ C1(R) with bounded derivative. Then g(G) ∈

DB
1,2 and

(2.11) Dtg(G) = g′(G)DtG.

(ii) (Cf. [DMØP], [DØP]). Let G ∈ D eN
1,2 and g a real function on R such that

g(G+Dt,zG)− g(G) belongs to L2(λ× ν × P ). Then g(G) ∈ D eN
1,2 and

(2.12) Dt,zg(G) = g(G+Dt,zG)− g(G).

Theorem 2.2 Duality formulae.

(i) (Cf. [N]). Let F ∈ DB
1,2 and let ϕ(t), t ∈ [0, T ], be an F-predictable process

satisfying

E
[ ∫ T

0
ϕ2(t)dt

]
<∞.

Then

(2.13) E
[
F ·

∫ T

0
ϕ(t)dB(t)

]
= E

[ ∫ T

0
ϕ(t) ·DtF dt

]
.

(ii) (Cf. [BL], [DMØP]). Let F ∈ D eN
1,2 and let ψ(t, z), t ∈ [0, T ], z ∈ R0, be an

F-predictable process satisfying

E
[ ∫ T

0

∫
R0

ψ2(t, z)ν(dz)dt
]
<∞.

Then

(2.14) E
[
F ·

∫ T

0

∫
R0

ψ(t, z)dÑ(t, z)
]

= E
[ ∫ T

0

∫
R0

ψ(t, z) ·Dt,zF ν(dz)dt
]
.

We refer to e.g. [M], [N] for more information about Malliavin calculus in the
Brownian motion case, and to e.g. [BL], [DMØP] and the forthcoming monograph
[DØP] for the general Lévy process case. Different approaches to Malliavin calculus in
the case of Ñ are given in e.g. [NS] and [LSUV].

Here below we present some extension of the Malliavin derivative with respect to
the Brownian motion which will be used to obtain a more general chain rule. To this
aim we use ΩB = S ′(R) as the space of tempered distributions on R.

Definition 2.3 Let F (·, ω2) ∈ L2(PB) be FT -measurable and let γ ∈ L2(R) (determin-
istic).
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(a) For any fixed ω2 ∈ Ω eN , we say that F has a directional derivative in the direction
γ if

DγF (ω1, ω2) := lim
ε→0

F (ω1 + εγ, ω2)− F (ω1, ω2)
ε

exists with convergence in probability. Then DγF is called the directional deriva-
tive of F in the direction γ.

(b) For any fixed ω2 ∈ Ω eN , we say that F is Malliavin differentiable in probability
if there exists a process Ψ(t), t ≥ 0, such that∫

R
Ψ2(t, ω1, ω2)dt <∞ P − a.s.

and
DγF (ω1, ω2) =

∫
R

Ψ(t, ω1, ω2)γ(t)dt for all γ ∈ L2(R).

If this is the case, we put Ψ(t) = DtF and call this the Malliavin derivative in
probability of F with respect to B.

Lemma 2.4 Chain rule II. Suppose DγF exists for some γ ∈ L2(R) and that g ∈
C1(R). Then g(F ) has a directional derivative in the direction γ and

Dγg(F ) = g′(F )DγF.

Proof. Consider the equations

lim
ε→0

g(F (ω1 + εγ, ω2))− g(F (ω1, ω2))
ε

= lim
ε→0

g(F (ω1, ω2) + εDγF (ω1, ω2))− g(F (ω1, ω2))
ε

= lim
ε→0

g′(F (ω1, ω2))εDγF (ω1, ω2)
ε

= g′(F (ω1, ω2))DγF (ω1, ω2),

with convergence in probability.

Theorem 2.5 Chain rule III. Suppose F is Malliavin differentiable in probability.
Let g ∈ C1(R). Then g(F ) is Malliavin differentiable in probability and

Dtg(F ) = g′(F )DtF (t, ω)− a.e.

Proof. By Lemma 2.4 we have

Dγg(F ) = g′(F )DγF

= g′(F )
∫

R
γ(t)DtFdt

=
∫

R
γ(t)g′(F )DtFdt for all γ ∈ L2(R),

and the result follows.
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We now proceed to prove that DF is an extension of DF .

Theorem 2.6 Let ω2 ∈ Ω eN be fixed. Suppose F ∈ DB
1,2, then F is Malliavin differen-

tiable in probability and
DtF = DtF.

Proof. Let e ∈ L2(R) with
∫

R e
2(t)dt = 1. Consider the iterated Itô integral

In(e⊗n) := n!
∫

R

∫ tn

−∞
· · ·

∫ t2

−∞
e(t1) · · · e(tn)dB(t1) · · · dB(tn).

By a result of Itô (cf. [I]), we have that

In(e⊗n) = hn

( ∫
R
e(t)dB(t)

)
,

where hn is the Hermite polynomial of order n. Hence, by the chain rule and a basic
property of Hermite polynomials, we have

Dt(In(e⊗n)) = h′n
( ∫

R
e(t)dB(t)

)
e(t)

= nhn−1

( ∫
R
e(t)dB(t)

)
e(t)

= nIn−1(e⊗(n−1)))e(t)
= Dt(In(e⊗n)).

It follows that Dt coincides with Dt on the finite sums of iterated integrals and, hence,
also that DtF exists for all F ∈ DB

1,2 and

DtF = DtF for all F ∈ DB
1,2.

And the result follows.

Corollary 2.7 If F is Malliavin differentiable in probability and

(2.15) EPB

[ ∫
R

(
DtF (·, ω2)

)2
dt

]
<∞,

then F ∈ DB
1,2.

Proof. Let F =
∑∞

n=0 In(fn) be the chaos expansion of F (·, ω2) ∈ L2(PB). By
Theorem 2.6 we have

Dt(In(fn)) = Dt(In(fn)) for all n.
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Hence we have

‖F‖DB
1,2

= lim
N→∞

N∑
n=1

EPB

[ ∫ T

0

(
Dt(In(fn))

)2
dt

]
= EPB

[ ∫
R

(
DtF

)2
dt

]
<∞.

Thus F ∈ DB
1,2.

In view of this last results, in the forthcoming applications we will denote the
Malliavin derivative and the Malliavin derivative in probability by the same notation
Dt.

3 An optimal portfolio problem under partial

information

We consider a market model on the complete probability space (Ω,F , P ) (see (2.6))
with finite time horizon T > 0 where two investments possibilities are available:

• a risk free asset with price dynamics

(3.1)

{
dS0(t) = ρ(t)S0(t)dt, t ∈ (0, T ],
S0(0) = 1

• a risky asset with price dynamics

(3.2)

{
dS1(t) = S1(t−)

[
µ(t)dt+ σ(t)dB(t) +

∫
R0
θ(t, z)Ñ(dt, dz)

]
, t ∈ (0, T ],

S1(0) > 0.

The driving noises in the model are the standard Brownian motion B(t), t ∈ [0, T ],
and the compensated Poisson random measure Ñ(dt, dz), (t, z) ∈ [0, T ] × R0, where
R0 := R \ {0}. Recall that E

[
Ñ(dt, dz)2

]
= ν(dz)dt, where ν(dz), z ∈ R0, is a σ-finite

Borel measure which we assume to satisfy∫
R0

z2ν(dz) <∞

- cf. (2.1). The parameters ρ(t), µ(t), σ(t) and θ(t, z), t ∈ [0, T ], z ∈ R0, are measurable,
càglàd (i.e. left continuous paths with right sided limits) stochastic processes, adapted
to the filtration F := {Ft ⊆ F , t ∈ [0, T ]}, see (2.6). We also assume that |σ(t)| ≤ Kσ

and −1 + εθ ≤ θ(t, z) ≤ Kθ, ν(dz)dt-a.e., for some εθ ∈ (0, 1) and Kσ,Kθ <∞, and

E

∫ T

0

{
|ρ(t)|+ |µ(t)|+ σ2(t) +

∫
R0

θ2(t, z)ν(dz)
}
dt <∞.
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In this section we consider a dealer who has access only to some partial information
of the market events. At any time t the σ-algebra Et ⊆ Ft represents the information
at his disposal. We consider the collection of σ-algebras E := {Et, t ∈ [0, T ]} to be a
filtration.

We would like to note that dealers who are subjected to delays in receiving the
information can also be regarded as having partial information. For example, in case
δ > 0 is a fixed time delay, at any time t ≥ δ the actual information available would be
Et = Ft−δ, while it would be Et = E0 for t < δ.

In view of this lack of information, the portfolio π(t) resulted from the dealer’s
decisions taken at time t is an Et-measurable random variable. Here the process π
represents the fraction of wealth invested in the risky asset.

Taking the point of view of such a dealer we are interested in studying the opti-
mization problem

(3.3) u(x) := sup
π∈A

E [U(Xπ(T ))|Xπ(0) = x] = E [U(Xπ∗(T ))|Xπ(0) = x] ,

for a given utility function
U : [0,∞) −→ [−∞,∞)

that is an increasing, concave and lower semi-continuous function and which we assume
to be continuously differentiable on (0,∞). The process Xπ(t), t ∈ [0, T ], given by

dXπ(t) = Xπ(t−)
{[
ρ(t) +

(
µ(t)− ρ(t)

)
π(t)

]
dt

+ π(t)σ(t)dB(t) +
∫

R0

π(t)θ(t, z)Ñ(dt, dz)
}
,

(3.4)

represents the value process of the admissible portfolio π. The initial capital Xπ(0) =
x > 0 is fixed. By the Itô formula, the unique solution of the equation above is

Xπ(t) = x exp
{∫ t

0

[
ρ(s) +

(
µ(s)− ρ(s)

)
π(s)− 1

2
σ2(s)π2(s)

]
ds

+
∫ t

0

∫
R0

[
log

(
1 + π(s)θ(s, z)

)
− π(s)θ(s, z)

]
ν(dz)ds

+
∫ t

0
π(s)σ(s)dB(s) +

∫ t

0

∫
R0

log
(
1 + π(s)θ(s, z)

)
Ñ(ds, dz)

}
,

(3.5)

with π ∈ A. The set of admissible controls A is defined as follows.

Definition 3.1 The set A of admissible portfolios consists of all processes π = π(t),
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t ∈ [0, T ], such that

π is càglàd and adapted to the filtration E;(3.6)

π(t)θ(t, z) > −1 + επ for a.a. (t, z) with respect to dt× ν(dz),
for some επ ∈ (0, 1) depending on π;

(3.7)

E

∫ T

0

{
|µ(s)− r(s)||π(s)|+ σ2(s)π2(s) +

∫
R
π2(s)θ2(s, z)ν(dz)

}
ds <∞.(3.8)

Our forthcoming discussion aims at giving a characterization of the locally optimal
portfolios in (3.3). For given π ∈ A we define the stochastic process Yπ(t), t ∈ [0, T ], as

Yπ(t) :=
∫ t

0

{
µ(s)− ρ(s)− σ2(s)π(s)−

∫
R0

π(s)θ2(s, z)
1 + π(s)θ(s, z)

ν(dz)
}
ds

+
∫ t

0
σ(s)dB(s) +

∫ t

0

∫
R0

θ(s, z)
1 + π(s)θ(s, z)

Ñ(ds, dz), t ∈ [0, T ].
(3.9)

Then our result can be stated as follows:

Theorem 3.2 Let π ∈ A be such that

the random variable Fπ(T ) := U ′(Xπ(T ))Xπ(T ) (here U ′(x) =
d

dx
U(x));(3.10)

belongs to DB
1,2 ∩ D eN

1,2,

for all β ∈ A, with β bounded, there exists a δ > 0 such that the family(3.11) {
U ′(Xπ+yβ(T ))Xπ+yβ(T )Yπ+yβ(T )

}
y∈(−δ,δ)

is uniformly integrable. Suppose π is a local maximum point for the problem (3.3), then
π satisfies the equation

E
[(
µ(s)− ρ(s)− σ2(s)π(s)

)
Fπ(T ) + σ(s)Ds

(
Fπ(T )

)∣∣∣Es

]
+ E

[ ∫
R0

θ(s, z)Ds,z

(
Fπ(T )

)
− π(s)θ2(s, z)Fπ(T )

1 + π(s)θ(s, z)
ν(dz)

∣∣∣Es

]
= 0, s ∈ [0, T ].

(3.12)

Conversely, suppose that (3.12) holds and that

(3.13) xU ′′(x) + U ′(x) ≤ 0, x > 0,

then π is a local maximum for the problem (3.3).
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Remark 3.3 (i) Note that the buy-hold-sell portfolios β, i.e.

β(s, ω) := α(ω)1(t,t+h](s), s ∈ [0, T ], ω ∈ Ω,

belong to A provided that α is Et-measurable and such that |α| ≤ Kα for some suffi-
ciently small Kα > 0.
(ii) If π, β ∈ A with β bounded, then there exists δ > 0 such that π + yβ ∈ A for all
y ∈ (−δ, δ).
(iii) Condition (3.13) holds if, for example, U(x) = log x or U(x) = 1

γx
γ (γ < 0).

Proof. Let us suppose that π gives a local maximum for the problem (3.3), in the sense
that

E
[
U(Xπ+yβ(T ))

]
≤ E

[
U(Xπ(T ))

]
for all bounded β ∈ A and all y ∈ (−δ, δ) where δ > 0 is such that π + yβ ∈ A (see
Remark 3.3 (ii)) and (3.11) holds. For convenience let us define

g(y) := E
[
U

(
Xπ+yβ(T )

)]
, y ∈ (−δ, δ).

Since the function g is locally maximal at y = 0, we have that

0 =
d

dy
g(y)|y=0

= E
[
U ′(Xπ(T ))Xπ(T )

{∫ T

0
β(s)

[
µ(s)− ρ(s)− σ2(s)π(s)

−
∫

R0

{
θ(s, z)− θ(s, z)

1 + π(s)θ(s, z)
}
ν(dz)

]
ds

+
∫ T

0
β(s)σ(s)dB(s) +

∫ T

0

∫
R0

β(s)θ(s, z)
1 + π(s)θ(s, z)

Ñ(ds, dz)
}]
.

Let us choose the portfolio β ∈ A to be of the form buy-hold-sell, i.e.

β(s) = α1(t,t+h](s), 0 ≤ s ≤ T,

for t ∈ [0, T ) and h > 0 such that t + h ≤ T - see Remark 3.3 (i). Then from the
equations above we have

0 =E
[
U ′(Xπ(T ))Xπ(T ) · α ·

{∫ t+h

t

[
µ(s)− ρ(s)− σ2(s)π(s)−

∫
R0

π(s)θ2(s, z)
1 + π(s)θ(s, z)

ν(dz)
]
ds

+
∫ t+h

t
σ(s)dB(s) +

∫ t+h

t

∫
R0

θ(s, z)
1 + π(s)θ(s, z)

Ñ(ds, dz)
}]

which holds for all choices of α in the buy-hold-sell portfolios. Define

Fπ(T ) = U ′(Xπ(T ))Xπ(T ), for π ∈ A,

12



where U ′(x) = d
dxU(x). Then we have that

(3.14) E
[
Fπ(T )

(
Yπ(t+ h)− Yπ(t)

)
· α

]
= 0

for the process Yπ(t), t ∈ [0, T ], given in (3.9). By our assumption (3.10) and the
duality formula, see Theorem 2.2, we have:

(3.15) E
[
Fπ(T )

∫ t+h

t
ασ(s)dB(s)

]
= E

[ ∫ t+h

t
ασ(s)Ds

(
Fπ(T )

)
ds

]
and

E
[
Fπ(T )

∫ t+h

t

∫
R0

αθ(s, z)
1 + π(s)θ(s, z)

Ñ(ds, dz)
]

= E
[ ∫ t+h

t

∫
R0

αθ(s, z)Ds,z

(
Fπ(T )

)
1 + π(s)θ(s, z)

ν(dz)ds
]
.

(3.16)

Thus, substituting these two equations into (3.14) and noting that the σ-algebra gen-
erated by all the α’s in the buy-hold-sell portfolios coincedes with Et, we obtain

E
[ ∫ t+h

t

{(
µ(s)− ρ(s)− σ2(s)π(s)

)
Fπ(T )−

∫
R0

π(s)θ2(s, z)Fπ(T )
1 + π(s)θ(s, z)

ν(dz)+

σ(s)Ds

(
Fπ(T )

)
+

∫
R0

θ(s, z)Ds,z

(
Fπ(T )

)
1 + π(s)θ(s, z)

ν(dz)
}
ds

∣∣∣Et

]
= 0.

Since this holds for all t, h such that 0 ≤ t < t+ h ≤ T , we conclude that

E
[(
µ(s)− ρ(s)− σ2(s)π(s)

)
Fπ(T ) + σ(s)Ds

(
Fπ(T )

)∣∣∣Es

]
+ E

[ ∫
R0

θ(s, z)Ds,z

(
Fπ(T )

)
− π(s)θ2(s, z)Fπ(T )

1 + π(s)θ(s, z)
ν(dz)

∣∣∣Es

]
= 0, s ∈ [0, T ]

(3.17)

- see (3.12)

On the other side the argument can be reversed as follows. If we assume that (3.12)
holds, then

E
[
Fπ(T )

(
Yπ(t+ h)− Yπ(t)

)
|Et

]
= 0

which is equivalent to

E
[
Fπ(T )·

∫ T

0
β(s)

[
µ(s)− ρ(s)− σ2(s)π(s)−

∫
R0

{ π(s)θ2(s, z)
1 + π(s)θ(s, z)

}
ν(dz)

]
ds

+
∫ T

0
β(s)σ(s)dB(s) +

∫ T

0

∫
R0

β(s)θ(s, z)
1 + π(s)θ(s, z)

Ñ(ds, dz)
]

= 0

13



for all buy-hold-sell portfolios β(s) = α1(t,t+h](s), 0 ≤ s ≤ T . By (3.11) the function
g(y) = E[U(Xπ+yβ(T ))], y ∈ (−δ, δ), satisfies

g′(0) =
d

dy
g(y)|y=0 = E

[
U ′(Xπ(T ))

d

dy
Xπ+yβ(T )|y=0

]
= 0

for all bounded β ∈ A. We want to conclude that y = 0 gives a local maximum for g
and hence that π ∈ A is locally optimal for the problem (3.3). To this end, fix

h(y) := logXπ+yβ(T )

=
∫ T

0

{
ρ(s) + (µ(s)− ρ(s))(π(s) + yβ(s))− 1

2
σ2(s)(π(s) + yβ(s))2

}
ds

−
∫ T

0

∫
R0

{
(π(s) + yβ(s))θ(s, z)− log(1 + (π(s) + yβ)θ(s, z))

}
ν(dz)ds

+
∫ T

0
(π(s) + yβ(s))σ(s)dB(s) +

∫ T

0

∫
R0

log(1 + (π(s) + yβ)θ(s, z))Ñ(ds, dz).

Then
g′(y) = E

[
U ′(Xπ+yβ(T ))

d

dy
Xπ+yβ(T )

]
and

g′′(y) = E
[
U ′′(Xπ+yβ(T ))

( d

dy
Xπ+yβ(T )

)2
+ U ′(Xπ+yβ(T ))

d2

dy2
Xπ+yβ(T )

]
,

where

d2

dy2
Xπ+yβ(T ) =

d

dy

(
Xπ+yβ(T )h′(y)

)
= Xπ+yβ(T )h′′(y) +Xπ+yβ(T )

(
h′(y)

)2
.

Note that

h′′(0) = −
∫ T

0
σ2(s)β2(s)ds−

∫ T

0

∫
R0

β2(s)θ2(s, z)(
1 + π(s)θ(s, z)

)2N(ds, dz) ≤ 0.

Therefore, we have

g′′(0) = E
[
U ′′(Xπ(T ))X2

π(T )
(
h′(0)

)2 + U ′(Xπ(T ))Xπ(T )
(
h′′(0) +

(
h′(0)

)2)]
and we see that g′′(0) ≤ 0 for all bounded β ∈ A if

U ′′(x)x+ U ′(x) ≤ 0, x ≥ 0.

By this the proof is complete.
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Remark 3.4 Condition (3.10) depends on the choice of utility function. Here we give
some examples:

(i) By the chain rule (see Theorem 2.1), condition (3.10) holds if Xπ(T ) ∈ DB
1,2∩D eN

1,2

(for the optimal π) and, if σ 6= 0,

d

dx
U ′(x)x, x ∈ (0,∞),

is bounded - cf. (2.11). In particular, this is the case for

U(x) = log x, x > 0,

and
U(x) = − exp{−λx}, x > 0 (λ > 0).

(ii) Suppose

U(x) =
1
γ
xγ , x > 0 (γ ∈ (−∞, 1) \ {0}).

Then by Theorem 2.5 we have

DtFπ(T ) = Dt(Xγ
π (T )) = γXγ

π (T )Dt(logXπ(T )),

and, by Theorem 2.1 (ii), we have

Dt,zFπ(T ) =
(
Xπ(T ) +Dt,zXπ(T )

)γ −Xγ
π (T )

= Xγ
π (T )

[
exp

{
γDt,z logXπ(T )

}
− 1

]
,

provided that logXπ(T ) is Malliavin differentiable in probability with respect to
B and belongs to D eN

1,2. For this it suffices that ρ(s), µ(s), σ(s), θ(s, z) and π(s)
are Malliavin differentiable for each s and (s, z). Note that by Corollary 2.7 we
then get that F ∈ DB

1,2 if

E
[
X2γ

π (T )
∫ T

0

(
Dt(logXπ(T ))

)2
dt

]
<∞.

Remark 3.5 Using the white noise framework, condition (3.10) on Fπ(T ) could be
relaxed and replaced by

E[(Fπ(T ))2] <∞.

The result still holds in the same form. A proof of this is given in the forthcoming book
[DØP].
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Remark 3.6 Condition (3.11) depends on the choice of utility function and may be
difficult to verify. Here we give some examples under which it holds.

(i) First consider the case in which U ′(x)x is uniformly bounded for x ∈ (0,∞).
In particular it holds for U(x) = log x and U(x) = − exp{−λx} (λ > 0). The
condition (3.11) holds if Y (y) := Yπ+yβ(T ), y ∈ (−δ, δ) is uniformly integrable.
The uniform integrability of {Y (y)}y∈(−δ,δ) is assured by

sup
y∈(−δ,δ)

E
[
|Y (y)|p

]
<∞ for some p > 1.

Since π, β ∈ A (see (3.7)), we have that 1 +
(
π(s) + yβ(s)

)
θ(s, z) ≥ επ − δ

dt× ν(dz)-a.e. for some δ small enough. Thus

E
[( ∫ T

0

∫
R0

θ(s, z)
1 + (π(s) + yβ(s))θ(s, z)

Ñ(ds, dz)
)2]

≤ 1
(επ − δ)2

E
[ ∫ T

0

∫
R0

θ2(s, z)ν(dz)ds
]
<∞.

Therefore we have that E
[
Y 2(y)

]
is uniformly bounded in y ∈ (−δ, δ).

(ii) In the case of power utility function

U(x) =
1
γ
xγ , x > 0 for some γ ∈ (0, 1),

we can see that U ′(Xπ+yβ(T ))Xπ+yβ(T )|Y (y)| = Xγ
π+yβ(T )|Y (y)| and condition

(3.11) would be satisfied if

sup
y∈(−δ,δ)

E
[
(Xγ

π+yβ(T )|Y (y)|)p
]
<∞ for some p > 1.

We can write
Xπ+yβ(T ) = Xπ(T )Z(y),

where

Z(y) := exp
{∫ T

0

[
(µ(s)− ρ(s))yβ(s)− σ2(s)yβ(s)π(s)− 1

2
σ2(s)y2β2(s)

]
ds

+
∫ T

0
yσ(s)β(s)dB(s)

+
∫ T

0

∫
R

[
log(1 + (π(s) + yβ(s))θ(s, z))− log(1 + π(s)θ(s, z))− yβ(s)θ(s, z)

]
ν(dz)ds

+
∫ T

0

∫
R

[
log(1 + (π(s) + yβ(s))θ(s, z))− log(1 + π(s)θ(s, z))

]
Ñ(ds, dz)

}
.
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From the iterated application of the Hölder inequality we have

E
[
(Xγ

π+yβ(T )|Y (y)|)p
]

≤
(
E

[(
Xπ(T )

)γpa1b1]) 1
a1b1

(
E

[(
Z(y)

)γpa1b2]) 1
a1b2

(
E

[(
|Y (y)|

)pa2
]) 1

a2 ,

where a1, a2: 1
a1

+ 1
a2

= 1 and b1, b2: 1
b1

+ 1
b2

= 1. Then we can choose a1 = 2
2−p ,

a2 = 2
p and also b1 = 2−p

γp , b2 = 2−p
2−p−γp for some p ∈ (1, 2

γ+1). Hence

E
[
(Xγ

π+yβ(T )|Y (y)|)p
]

≤
(
E

[(
Xπ(T )

)2]) γp
2

(
E

[(
Z(y)

) 2γp
2−p−γp

]) 2−p−γp
2

(
E

[(
|Y (y)|

)2]) p
2 .

If the value Xπ(T ) in (3.5) satisfies

(3.18) E
[(
Xπ(T )

)2]
<∞,

then the condition (3.11) holds if

(3.19) sup
y∈(−δ,δ)

E
[
(Z(y)

) 2γp
2−p−γp }

]
<∞.

Condition (3.19) holds if, e.g.,

E
[
exp

{
K

( ∫ T

0

[
|µ(s)− ρ(s)|+ |π(s)|ds

)}]
<∞ for all K > 0.

Note that condition (3.18) is verified, for example, if for all K > 0

E
[
exp

{
K

( ∫ T

0

[
|µ(s)− ρ(s)|+ |π(s)|

]
ds+

∣∣ ∫ T

0
π(s)σ(s)dB(s)

∣∣
+

∣∣ ∫ T

0

∫
R

log(1 + π(s)θ(s, z))Ñ(ds, dz)
∣∣)}]

<∞.

By similar arguments we can also treat the case of a utility function with U ′(x)
uniformly bounded for x ∈ (0,∞). We omit the details.

4 Examples

Example 4.1 Let us consider problem (3.3) with logarithmic utility, i.e.

U(x) = log x, x > 0.
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In this case we have
Fπ(T ) = U ′(Xπ(T ))Xπ(T ) = 1

and (3.12) simplifies to

(4.1) µ̄(s)− ρ̄(s)− σ̄2(s)π(s)− π(s)E
[ ∫

R0

θ2(s, z)
1 + π(s)θ(s, z)

ν(dz)
∣∣∣Es

]
= 0, s ∈ [0, T ],

where, for convenience in notation we have put µ̄(s) := E[µ(s)|Es], ρ̄(s) := E[ρ(s)|Es],
σ̄2(s) := E[σ2(s)|Es], s ∈ [0, T ]. This result is a synthesis of Corollary 2.13 and Theorem
3.12 in [ØS], where the logarithmic utility case is studied in the framework of an
anticipative environment. In particular,

(i) if θ ≡ 0 and σ > 0 in the price dynamics, then the process

π∗(s) =
µ̄(s)− ρ̄(s)
σ̄2(s)

, s ∈ [0, T ],

belongs to A and is an optimal portfolio;

(ii) if the price dynamics (3.2) are driven by a Brownian motion and a centered
Poisson process, i.e. σ > 0, ν(dz) = δ1(dz) and θ(t, z) = z, then equation (4.1)
can be written as

µ̄− ρ̄− σ̄2π − π

1 + π
≡ 0.

Thus the processes

π∗ ≡ 1
2σ̄2

{(
µ̄− ρ̄

)
− σ̄2 − 1±

√[(
µ̄− ρ̄

)
− σ̄2 − 1

]2 + 4σ̄2(µ̄− ρ̄)
}
,

are optimal for the problem (3.3) if π ≥ −1 + επ for some επ > 0 (this depends
on the choices of the coefficients in the price dynamics). If, in this setting, the
price dynamics of the risky asset is driven by the centered Poisson process only,
i.e. σ ≡ 0, then (4.1) leads to

µ̄− ρ̄− π

1 + π
≡ 0.

Hence
π∗ ≡ µ̄− ρ̄

1−
(
µ̄− ρ̄

) (µ− ρ < 1− ε, for some ε ∈ (0, 1)),

belongs to A and is optimal for (3.3).
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Example 4.2 Next let us consider the case with power utility, i.e.

U(x) =
1
γ
xγ , x > 0,

where γ ∈ (0, 1) is a constant. In this case we get Fπ(T ) = Xγ
π (T ), thus, by the chain

rules (see Theorem 2.1 and Theorem 2.5),

DtFπ(T ) = γXγ
π (T )Dt logXπ(T )

and

Dt,zFπ(T ) =
(
Xπ(T ) +Dt,zXπ(T )

)γ −Xγ
π (T )

= Xγ
π (T )

[
exp

{
γDt,z logXπ(T )

}
− 1

]
,

if logXπ(T ) ∈ DB
1,2 ∩ D eN

1,2 - see Remark 3.4. Then (3.12) becomes

E
[
Xγ

π (T )
(
µ(t)− ρ(t)− σ2(t)π(t)

+
∫

R0

θ(t, z)
1 + π(t)θ(t, z)

(
exp

{
γDt,z logXπ(T )

}
− π(t)θ(t, z)− 1

)
ν(dz)

+ γσ(t)Dt logXπ(T )
)∣∣∣Et

]
= 0.

(4.2)

In particular, if the coefficients µ(t), ρ(t), σ(t) and θ(t, z), t ∈ [0, T ], z ∈ R0, are all
deterministic and we would like to have a π(t), t ∈ [0, T ], deterministic also, then π
must satisfy the equation

(4.3) µ(t)− ρ(t) + (γ − 1)σ2(t)π(t) +
∫

R0

θ(t, z)
[
(1 + π(t)θ(t, z))γ−1 − 1

]
ν(dz) = 0.

Conversely, any solution π of the equation above is an optimal deterministic portfolio.

Remark 4.3 The main feature of equation (3.12) is that it gives an explicit rela-
tion between the optimal portfolio π and the corresponding optimal terminal wealth
X̂π(T ) = Xπ(T ). The following examples illustrate this.

Example 4.4 In the price dynamics, let us assume that θ = 0, σ(t) 6= 0, t ∈ [0, T ] and

E
[
exp

{1
2

∫ T

0

(µ(s)− ρ(s)
σ(s)

)2
ds

}]
<∞.
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Moreover we set Et = Ft, for all t. In this context the market model is complete. It is
known that the optimal terminal wealth X̂π(T ) is given by

(4.4) X̂π(T ) = I(Y(x)H0(T )),

where I := (U ′)−1 is the inverse of U ′(u) = d
duU(u), and Y(x) = X−1(x) is the inverse

of the function X defined by

(4.5) X (y) = E
[
H0(T )I(yH0(T ))

]
,

with

(4.6) H0(T ) = exp
{
−

∫ T

0

µ(s)− ρ(s)
σ(s)

dB(s)−
∫ T

0

[
ρ(s) +

1
2
(µ(s)− ρ(s)

σ(s)
)2]

ds
}

- see e.g. [KS], Chapter 3. Hence

Fπ(T ) = U ′(Xπ(T ))Xπ(T ) = Y(x)H0(T )I(Y(x)H0(T ))

(cf. (3.10)) is known in this case and, since H0(T ) ∈ DB
1,2 (see assumptions on the

coefficients in the price dynamics), we can solve (3.12) for π as follows:

(4.7) π(s) =
µ(s)− ρ(s)
σ2(s)

+
E

[
DsFπ(T )|Fs

]
σ(s)E

[
Fπ(T )|Fs

] , s ∈ [0, T ].

Thus, any solution π of (4.7) is optimal for the problem (3.3). Note that if the utility
function is logarithmic, then Fπ(T ) = 1 and hence we find directly the classical solution
to the optimization problem under full information. Cf. also Example 4.1.

Example 4.5 Here we consider an extension of Example 4.4 to the general case (3.1)-
(3.2) where σ(t) 6= 0, θ(t, z) 6= 0, t ∈ [0, T ], z ∈ R0, and hence the market is possibly
incomplete. As in the previous case we assume Et = Ft, for all t.

Let u(x) be as in (3.3) and consider the associated dual problem

(4.8) v(y) := inf
Q∈Ma

E
[
V

(
y
dQ

dP

)]
, y > 0,

where

(4.9) V (λ) := sup
ξ∈R

{
U(ξ)− λξ

}
, λ > 0,

is the Legendre transform of U and Ma is the set of measures Q absolutely continuous
with respect to P .
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Then - under certain conditions - the optimal terminal wealth X̂π(T ) is given by

(4.10) X̂π(T ) = I
(
y(x)

dQ̂(y(x))
dP

)
where I := (U ′)−1 (as in Example 4.4). Here x > 0 is related to y = y(x) > 0 via
u′(x) = y or, equivalently, x = −v′(y), and the measure Q̂ = Q̂(y) ∈Ma is the optimal
measure for the dual problem (4.8). We refer to e.g. [KSch] and the survey [Sch] and
the references therein for more details. Therefore, in terms of Q̂ we get

Fπ(T ) = U ′(X̂π(T ))X̂π(T ) = y(x)
dQ̂(y(x))

dP
I
(
y(x)

dQ̂(y(x))
dP

)
- cf. (3.10). With this expression for Fπ(T ) in hands, we can see that if Fπ(T ) ∈
DB

1,2∩D eN
1,2, then a portfolio π is optimal if and only if it satisfies the following equation:

(
µ(s)− ρ(s)− σ2(s)π(s)

)
E

[
Fπ(T )

∣∣Fs

]
+ σ(s)E

[
Ds

(
Fπ(T )

)∣∣Fs

]
+

∫
R0

θ(s, z)E[Ds,z

(
Fπ(T )

)
|Fs]− π(s)θ2(s, z)E[Fπ(T )|Fs]

1 + π(s)θ(s, z)
ν(dz) = 0, s ∈ [0, T ].

(4.11)
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