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Abstract

We use white noise calculus for Lévy processes to obtain a rep-
resentation formula for the functionals of a jump diffusion. Then we
use this to find an explicit formula for the Donsker delta function of
a jump diffusion and we suggest its application to sensitivity analysis
in mathematical finance for the computation of the Greeks.

AMS (2000) Classification: 60G51, 60H40, 91B28.

1 Introduction

A difficult, but crucial, task in the analysis of option prices is the prediction
of their variation. To this aim it is important to locate which are the factors
contributing to the fluctuation of prices and their effect. The sensitivity
analysis is carried over the parameters appearing in the models for the price
dynamics and the so-called Greeks represent a form of measure for the price
sensitivity to some factors. For example, the “delta” is related to the initial
price of the option, the “theta” is related to the time until maturity, the
“rho” to the interest rate, the “vega” is the sensitivity to the volatility, etc.
Efficient techniques for the computation of the Greeks rely on numerical finite
difference methods and simulation. See [GY], [G], for example and references
therein.

However, too often some restriction on the regularity of the price pro-
cesses has to be imposed. In the recent years high attention was dedicated to
finding more efficient and more general methods to apply numerics and sim-
ulation for the computation of the Greeks. The papers [FLLLT] and [FLLL)]
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proved that, with a preliminary application of sophisticated tools of stochas-
tic analysis, some better formulae could be derived which would ease a direct
application of Monte Carlo simulation. Their method, based on Malliavin
calculus, applies to price dynamics driven by Brownian motion only. See also
[B], [GM], [K-HM], [MT], for example, and reference therein.

Several forms of generalization or extension to include dynamics driven
by Poisson processes or combinations of independent Brownian motions and
Poisson processes have been suggested. We can refer to [BM], [DJ], [E-KP],
[PW], for example.

In this paper we present a representation formula for functionals of jump
diffusions (see Theorem 3.2) which, if applied to the sensitivity analysis con-
text, gives a computational efficient formula for the Greek “delta”. We frame
our method in the setting of white noise analysis. A short introduction to
this framework with the preliminary results is given in Section 2.

Section 3 presents the representation formula for functionals of a jump
diffusion. Moreover, we apply this result to give an explicit representation
of the Donsker delta function. Our approach is in the same line as [MOP].
This results gain importance in view of the applications of the Donsker delta
function for the computation of hedging portfolios in mathematical finance.
See [AQU] for the Brownian motion setting and [D@] for the pure jump Lévy
processes case.

Section 4 is dedicated to the sensitivity analysis.

2 Framework

Let (Q, F, P) be a complete probability space and Ly(P) the standard (com-
plex) Ly-space of the random variables ¢ with finite norm ||¢|| := (E|£]?)Y/? <
oo. On the given probability space we consider the real Lévy process n(t),
t > 0, characterized by the Kolmogorov-deFinetti law

logE[ei“"(t)] = t[iau — 1%’ + /(eiuz — 1 —iuz)v(dz)|, u€eR,
Ro

where o € R, 0% > 0 are constants and v(dz), z € Ry, is a o-finite Borel
measure on Ry := R\ {0}. Note that

/Z2Z/(d2’) < 00,

Ro

namely we assume that 7(t) € Ly(P) for all t > 0.

Throughout this paper we will always consider the cadlag modification
n(t), t > 0, of the stochastic process above. We can refer to [BK], [Be],
[S], for example, for general and detailed information about Lévy processes.



In particular we recall that, for every ¢, the random variable n(¢) admits a
representation in the form

(2.1) n(t) = at + o B(t //ZN (ds, d=)

where the standard Brownian motion B(t), ¢ > 0, and the compensated
Poisson random measure

N(dt,dz) := N(dt,dz) — v(dz)dt, t>0, z€R,

are independent — cf. [I].
Inspired by the stochastic integral representation (2.1) it is natural to
consider stochastic processes £(t) ¢ > 0, of the form

t

(22) () = £(0) + / ds+/6 VAB(s // 5. 2) N (ds, d2)

0

where a(t), (t) and y(t,2), t > 0, z € Ry, are deterministic functions satis-
fying

(2.3) 70 )|+ B*(t) /72(t, z)v(dz)|dt < co.

Ro

On the other side, in line with the approach suggested in [AQOPU], we could
consider a representation of type (2.2) embedded in a multidimensional frame-
work as follows. Let us consider the probability space (€2, F, P) as a product
of two complete probability spaces, i.e.

(2.4) V=0 xQ, F=FQF P=PoP,

In such a framework we could consider stochastic processes £(t), ¢ > 0, on
(Q, F, P) such that

t

t
E(t, wy, wo) :y+/a s ds+/ﬁ s)dB(s,w)

(2.5) // 5,2)N(ds, dz, w,)

for y € R constant and «(t), (t) and y(t,2), t > 0, z € Ry, deterministic
functions satisfying (2.3).



We equip the probability space (21, Fi, P) with the filtration F} ¢ > 0,
(FL = Fi) generated by B(t), t > 0, augmented of all P;-null sets and the
space (Qg, Fa, P») with the filtration F?, t > 0 (F2 = F,) generated by the
values of N(dt,dz), t > 0, 2z € Ry, augmented of all P-null sets. Then on
the product (Q, F, P) we fix the filtration

Fo=F®F, t>0.

In the sequel we apply white noise analysis and techniques. Thus we
choose to set (€, Fy, P1) to be a Gaussian white noise probability space and
(Qq, Fo, Py) a Poissonian white noise probability space.

General references to white noise theory for Gaussian processes are e.g.
[H], [HKPS], [HOUZ], [Ku], [O]. As for a white noise theory to non-Gaussian
analysis we can refer to e.g. [AKS], [DOP], [KDS], [KDSU], [@P], [P]. In order
to keep this presentation moderate in size we recall here only the Poisson
white noise framework in the approach and notation of [DOP] and [OP].

To ease the notation we drop the index of (Qy, Fy, P») and we write
(Q, Fo, Py) = (Q, F, P) from now up to the end of this section.

From now on we assume that for every € > 0 there exists p > 0 such that

(2.6) / e?I*ly(dz) < oo.

R\(—e.¢)

This condition implies that the polynomials are dense in Ly (1) where p(dz) =
2?v(dz). Tt also garantees that the measure v integrates all polynomials of
degree greater than or equal to 2.

Let A denote the set of all multi-indices o = (v, vy, ...) which have only
finitely many non-zero values a; € N\ {0}. In the space Ly(Q2, F,P) =
Lo (9, Fs, Py) we construct the orthogonal basis K,, o € A, as follows.

First of all we consider the orthonormal basis ¢;, i € N, in Ly()\) con-
stituted by the Laguerre functions (order 1/2). Here and in the sequel
A(dt) = dt denotes the Lebesgue measure on the real line. Moreover we
take an orthonormal basis ¢;, j € N, in Ly(v) of polynomial type. See e.g.
[OP] for further details.

Then we can consider the products

(2.7) Cr(t, 2) = i(t)ih;(2)

for k = k(i,7) as a bijective mapping k£ : N x N — N (e.g. the diagonal
counting of the Cartesian product N x N).

For any a € A with max{i: o; # 0} = j and |a| := ). o, = m, we can
define

C®a((t17 21)7 s (tma Zm)) = ig)al Y C]['X)aj ((tla 21)7 e (tma Zm))

= Cl(tla Zl) T Cl(tal7 ZOél) o Cj(ta1+...+a]‘71+17 ZO&I+~~~+06]'71+1) T Cj(tma Zm)



and (®0 = 1. Moreover, we denote the corresponding symmetrized tensor
product by (®*. We can now construct an orthogonal basis K,, o € A, in
Ly (P) as follows:

(2.8) Ko = 1a(C%Y), a€ A,

where

L(f) = n! /OOO/R---/0t2/Rf(t1,z1,...,tn,zn)ﬁ(dtl,dzl)---]V(dtn,zn)

is the Ito iterated integral with respect to the centered Poisson stochas-
tic measure. See [I]. Here f € Ly(A X v)" is symmetric in the n pairs
(t1,21), .-, (tn, 2,). Note that

and
E[L(f)*] = 2!l flI7, 0wy

for all symmetric g € Lo(A X v)™ and f € Ly(A x v)" (m,n € N).
Hence every £ € Ly(P) admits the chaos expansion

(2.9) =) Ko (o €R)
acA

and

(2.10) €117, p) = ZciHKa“%Q(P) = Zcia!
acA acA

where a! := aqlay!... for a = (aq, ay,...) € A.

Thanks to these chaos expansions we can characterize the following spaces
and chain of embeddings.

By (S), (0 < p < 1) we denote the space of all random variables f =
Y aca Cala € Ly(P) such that

1/

,2),19 = Z(a!)lﬂ’ci@N)ka <oo forall keN
acA

where (2N)F@ := (2-1)ka1(2.2)ke2... (2. j)*e if j = max{i: a; # 0}. And by
(S)_, we denote the space of all random variables F' =", ca Ky € Ly(P)
such that

[ —— Z(a!)l’pci(QN)’ko‘ < oo forsome keN.
acA

The subspaces (S), and (S)_, are respectively equipped with the projective
topology and the inductive topology induced by the above seminorms. Note
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that for any F' = Y _ aaK, € (S)—p, and f = Y 0K, € (S), the

action
(F, f):= Z aabo !
acA

is well-defined and thus the space (S), is the dual of (5),, i.e. (§)-, = (S);.
We remark that, for p = 0, the spaces (S) := (S)y and (S)* = (S)§ = (S)—-o
appear respectively as a Lévy version for the Hida test function space and
Hida distribution space for pure jump Lévy processes. See e.g. [HKPS],
[HOUZ]|, [Ku], [O]. For p = 1, the spaces (S); and (S)_; are the Lévy
version of the Kondratiev test function space and the Kondratiev distribution
space respectively. See [K| and also [HOUZ], for example.

The following relationships hold true

(8)1 € (8), C(S) C La(P) C(8)" C(85)p C(S)-1-

The relevance of these spaces will be clarified in the sequel. For instance (S)*
is rich enough to contain the white noise of the centered Poisson stochastic
measure and of the pure jump Lévy process as its elements. In fact, let
us consider the random variable £ = N(t,B) € Ly(P), for any Borel set
B € B(R\ {0}), then the following chaos expansion can be written:

Ve =Y [ [ e Ko

b,§>1

via the application of the orthogonal basis in Ly(\) and Ly(v) and the di-
agonal counting — cf. (2.7). Moreover, for any k£ € N, the multi-index
e = (ek, ek ...) is defined by

k 1, i=k
€ = )
0, otherwise.

Here we refer to [OP] for all the details. Then we can define the white noise
for the centered Poisson stochastic measure as the element

(2.11) ]:\7(25, Z) = Z gOi(t)T/)j(Z) . ka(i,j)

i,j>1
in (8)*, for almost all ¢ > 0, z € R. Naturally it appears as the Radon-
Nikodym derivative

° N(dt,dz) .
N(t,z) = —————~% S)*.
(t,2) dt x v(dz) in (S)
The Lévy-Wick product F o G of two elements F' = ZaeA a,K, and G =

> seabsKp in (8) 1 is defined by

(2.12) FoG= Y ausKais.
a,BeA
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It can be shown that the spaces (S)1,(S),(S)* and (S)_; are closed under
Wick products.

One of the useful features of the Wick product is the following relationship
within Ito stochastic integration and Bochner integration:

(2.13) /Ot/RY(s,z)N(ds,dz) = /Ot/RY(s,z) o]%f(s,z)z/(dz)ds.

We also mention that for all F' € (S)_; one can define the Wick exponential
exp® F' € (S)_ by

|
(2.14) exp’ F := E — P
n!
n=0

and the following property
(2.15) E(exp® F') = exp{ EF'}

holds true.

3 A representation theorem for functionals of
a class of jump diffusions

Let &£(t) = &Y(t), t € [0,T7], be a stochastic process on (Q, F, P) — cf. (2.4),
of the form

. {dg(t) = a(t)dt + B(1)dB(t) + [ y(t, 2)N(dt,dz), te€[0,T],
| €0)=yeR

where «(t), 5(t) and ~(t,2); ¢t € [0,T], z € R, are deterministic functions
satisfying (2.3) — cf. (2.5). For A € R define

(3.2) Y (t) = exp(A(1)), t € 10,77
Then by the It6 formula (see e.g. [@S, Chapter 1]) we have
dY (t) = Y (t7) [(Ae(t) + SN2 B2(8))dt + AB(t)dB(t)

+ /{exp()«y(t, 2)) — 1= My(t, 2) }v(dz)dt

(3.3) + /{exp()«y(t, 2)) — 1}N(dt, dz)].



Using white noise notation and Wick calculus this can be written

%t(t) =Y (t7) o {Aa(t) + IN*B2(t) + AB() B(t)
+ [lexpl(t. 2} = 1= M(t, 2)v(az)
(3.4) + /{exp{)«y(t, z)} — 1}];7(15, z)v(dz)}; Y (0) = M.

The solution of (3.4) is, using Wick calculus in (S)*,

t

Y (1) = Y(0) exp® | / {Xa(s) +4X2°(s)

+ [{&0 — 1= (s, 2) uld) s

t t

(3.5) + / N3(s)dB(s) + / / (N6 1Y N (ds, d2)}.

0 0

Comparing (3.5) with (3.2) we get the following formula for the Wick expo-
nential.

Lemma 3.1 With £(t) as in (3.1) and A € R we have

t

PO — M axpo { / [Aa(s) + 2N (s)
0
t

_|_/ [e’\"’(s’z) — 1= y(s, z)]l/(dz)]ds + /AB(S)dB(S)

0

(3.6) + /t / [eM(2) I]N(ds,dz)}.

Using this we obtain the following result:

Theorem 3.2 (Representation theorem for functionals of a jump
diffusion)

Let g : R — R be a function with Fourier transform

g\ = %/e‘i/\xg(x)dx, A ER,
R



and satisfying the Fourier inversion property

g(u) = /e““g()\)d)\, weR

Then
B o€ = [aWew (B} te0.1]
where
XY(t) =iy +/i)\6(s)dB(s)
+//[ei)‘7(s’z) — 1N (ds, dz) + / {i)\a(s) — INB(s)
(3.8) + /[e’M(s’Z) — 1 —di\y(s, z)]l/(dz)}ds, te[0,T].

R

PROOF. Applying (3.6) with ¢\ instead of A we get

o€ (0) =& [ *Og00an= & [ 90 exp (2 (0)x

R R
UJ

Corollary 3.3 Let g be a real function as in Theorem 3.2. Then we have

(3.9) Elg(er(t)] = / §0\) - exp(idy + Ga())dA,

R

where

t

(3.10) GA(t) = / {i)\a(s) — 1)26%(5)+ / (€M) 1 (s, z))u(dz)}ds.

0
PRrROOF. This follows from Theorem 3.2 plus the fact that (see (2.15))

Elexp® XJ(#)] = exp(E[XJ(1)]).
[

In the last part of this section we obtain an explicit formula for the
Donsker delta function of £(t) = £¥(t), ¢t > 0. This is derived as an application
of Theorem 3.2.



The Donsker delta function is a generalized white noise functional, we
can refer e.g. [H]|, [HKPS], [Ku], for general information. Here we give its
definition within the white noise framework we have introduced, in the line
of [AOP] and [MOP]. Note that the Donsker delta function has been used
for giving explicit representation formulae for the hedging portfolio in some

market models driven by Brownian motion or pure jump Lévy processes, see
[AOP] and [DO].

Definition 3.4 For a given random variable X € (S)_; the Donsker delta
function of X is a continuous function d¢(X) : R — (8)_1 such that

for all Borel real functions h on R for which the integral is well-defined in
(8)_1. Following [MOP] we consider a measure Py in P = P,Q P, (see (2.4))
which satisfies the condition: there exists € € (0,1) such that

(3.11) lim |u| 1Jre)Re{ /(eiuz —-1- ZUZ)I/(dZ)} = 0.

|u|—o00
Ro

Using Theorem 3.2 we can obtain an explicit formula for the Donsker
delta function of £(%):

Theorem 3.5 Assume that (3.11) holds. Then the Donsker delta function
0, (EY(t)), u € R, of €¥(t), t € [0,T], exists in (S)* and is given by

t

5.(E(0) = & / exp® / / ) 1) N ds,dz) + [ INS(5)dB(

//ZM” 1 —iXy(s, 2))v(dz)

+idals) — §A252(s)}d5 Fidy — i)\u] d).

(3.12)

PROOF (SKETCH). Formally this follows from (3.7) by using the Fubini
theorem in (S)*, as follows. By (3.7) we have

o€0) = [ a0 exp (20)x = 3 [ ([ e Mgtudn) exvr (X0}

R R R
= 5 9(“)/eXp°(—i)\u+X§’(t))d/\du.
R R

For justification and more details we refer to the proof in [MOP, Theorem
3.1.4). 0
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4 Application to sensitivity with respect to
the starting point

Let X (t) = X*(t), t € [0,T], be a jump diffusion of the form

m dX(t) = X (t) [u(t)dt + o(t)dB(t) + [ 0(t, z) N (dt, dz)]
' X(0) =z >0
where u(t),o(t) and (¢, 2), t € [0,T], 2 € R, are deterministic, (¢, z) > —1
for a.a. ¢, z and
/{|u(t)|+02(t)+/92(t, u(d2) Jdt < oo

—cf. (2.3). By the It6 formula for Lévy processes (see e.g. [DS, Theorem
1.14], the solution of this equation is

t

X®(f) =2 exp [/{u(s) . %02(8)+/(1n(1+9(5,z))—ﬁ(s,z))u(dz)}ds

(4.2) +/0(s)dB(s)—i—//ln(l—i—@(s,z))N(ds,dz) = exp(&¥(1))
where d¢¥(t) = a(t)dt + B(t)dB(t) + [ (t, ) N(dt,dz), with
at) = u(t) — 10%(t) + /(ln(l +0(t,2)) —0(t, 2))v(dz),

(4.3) B(t) =o(t), ~(t,z) =In(1+0(t,z)) and y=Inz

- cf. (3.1). Therefore, if h: R — R then
E[R(X*(T))] = E[h(exp(£¥(T)))] = Elg(£*(T))],

where
g(u) := h(exp(u)), ueR

If this g satisfies the conditions of Theorem 3.2 then

LEICE (D) = ABE ()] = & [ 90 expiXuz + Go(T))dx

= /g}()\)% exp(iXInz + G\ (T))dA,
R

where G\(T) is given by (3.10). We have proved
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Theorem 4.1 Suppose h : R — R is such that g(u) := h(exp(u)), u € R,
satisfies the conditions of Theorem 3.2 and that

/ |§(M)A exp{Re GA(T)}|dA < o0,

Then

(4.4) L Bh(X™(T))] = / GV 2 exp(idInz + Gy (T))dA.

Example 4.2 Choose h(u) = xu,k)(v), v € R (H, K > 0). Then h(X*(T))
may be regarded as the payoff of a digital option on a stock with price X* (7).
In this case

g(u) = xu,x1(e"), u € R,

and
i K H—i)\ K—i/\
omi) = [ Pgldu= [P entu= [ =T
R R In H
Therefore

(45)  AE[\um(X*(T))] = / #exp(i)\lnx—i—G,\(T))d)\,

provided that the integral converges.
A sufficient condition for this is that, for some 6 > 0,

A / {52(5) + /(1 — Cos()\fy(s,z)))l/(dz)}ds >0\ forall \€R

which is a weak form of non-degeneracy of the equation (4.1). Thus, in spite
of the fact that A is not even continuous, (4.4) is a computationally efficient
formula for L E*[h(X*(T))].
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