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Abstract

The paradigm shift from co-located development to global software engineering
exacerbates communication, coordination and trust issues among distributed
stakeholders that collaborate for the development of complex and large-scale
software systems. The participation of contractors or suppliers augments these
trust issues, as these entities can have malicious intentions. Suppliers may tamper
with software artifacts, such as clients’ requirements, in an illegitimate manner,
while clients may claim that the software did not meet their requirements and
issue bugs even if the software functions in accordance with their requirements
specifications. To avoid costly disputes, it is necessary to prove software
correctness by tracing requirements to implementation and verification artifacts.

While requirements traceability is an important quality attribute of any
software development process, in practice software engineers often assign low
priority to traceability tasks, due to the pressure to deliver quality software in
a timely fashion. Implementing requirements traceability practices is even
more challenging in interorganizational software projects, due to different
organizational backgrounds, conflicting objectives, and organizational boundaries.
Cross-organizational teams need to share software artifacts and have a holistic
view of the software development lifecycle. The traditional approach of storing
software artifacts in centralized repositories and guarding their access by means
of an access control system is not sufficient in complex and cross-organizational
software projects, as it cannot ensure the immutability, integrity, and availability
of software artifacts.

This thesis challenges traditional centralized approaches by investigating,
designing, implementing, and evaluating decentralized, yet trustworthy solutions
for requirements traceability in interorganizational software projects. This thesis
proposed blockchain technology, due to its inherent properties, to function as
the backbone of the software development lifecycle and store software artifacts
generated by a variety of tools, related artifacts, and changes, in a decentralized,
yet reliable manner. Leveraging blockchain to create tamper-proof record of
requirements, their changes, and related software artifacts can be useful to all
the stakeholders of the software lifecycle, including software engineers, project
managers, customers, and auditors. These distributed stakeholders are provided
with a trustworthy view of what/when/how and by whom software artifacts
were created and/or modified and are ensured to work on the same reality.
Ultimately, the increased visibility and transparency can enhance communication,
coordination, and trust between stakeholders.

To address the topic, this thesis adopted a design science methodology
that entailed two core phases: knowledge base and build-evaluate. In the first
phase, research foundations were built within the field of software engineering,
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Abstract

requirements traceability and blockchain technology. The PhD student carried
out a systematic literature review on 70 recent studies to identify and classify
requirements traceability challenges. In addition, a systematic mapping study
was conducted to unveil blockchain use cases in software engineering and benefits
that blockchain can bring to the software domain. This research knowledge was
used in the second phase to design the initial blockchain-enabled framework
for requirements traceability that leveraged conventional blockchain platforms
and the concept of smart contracts. The proposed framework was refined by
performing an interview-based study with blockchain experts and analysing the
interview data by means of grounded theory techniques. To address performance
efficiency and scalability limitations of conventional blockchain platforms, a
prototype based on a neural distributed ledger platform was developed and
evaluated by means of software engineering experts’ judgement.

This thesis contributes to enhancing the existing knowledge on the blockchain-
oriented software engineering field and presenting the first proposal that
leverages blockchain technology for trustworthy requirements traceability in
interorganizational software projects. The development of the prototype and
empirical evidence acquired from interviews with blockchain experts and software
engineering experts may encourage researchers and practitioners to develop more
and better prototypes and proof-of-concepts to investigate blockchain-enabled
requirements traceability use cases. Future research efforts can be devoted
to integrating the prototype with existing tools used throughout the software
development lifecycle to automate the registration of software artifacts and their
changes.
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Chapter 1

Introduction
“Ever tried. Ever failed. No matter. Try again. Fail again. Fail

better.”
(Samuel Beckett)

Human beings have, for thousands of years, developed the ability to trace and
have used it in various disciplines. Tracing was first used in animal hunting,
later escalating to other disciplines ranging from epidemiology to metrology [8].
A relatively new discipline that employs traceability is software engineering (SE).
Software engineering researchers have paid attention to requirements traceability
(RT) for years, acknowledging its importance and benefits. Traceability was first
identified as a topic of interest in SE in 1976 [9]. By the 1980s, commercial
tools with support for traceability were introduced [10], followed by an extensive
amount of published research in the late 90s. This research focused particularly
on the RT problem [11] and factors hindering its use in practice [12]. In 2011,
traceability researchers and practitioners formed the Center of Excellence for
Software Traceability (CoEST) and identified in one of their technical reports
eight challenges of traceability: purposed, cost-effective, configurable, trusted,
scalable, portable, valued, ubiquitous [13]. The last challenge represents the
grand challenge of traceability, as it requires addressing all the other challenges.
The vision for traceability in 2035 embraces the concept of ubiquitous traceability,
i.e., traceability that is everywhere, accessed by everyone without asking for it,
since it will be incorporated into the SE process.

However, achieving ubiquitous traceability is not trivial, particularly in
large-scale and complex software projects that involve distributed and cross-
organizational teams, a variety of tools and a high number of ever-changing
software artifacts generated by these tools. This thesis aims to contribute to the
traceability body of knowledge and vision by exploiting the inherent features
of novel technologies, such as blockchain technology to ensure the availability,
integrity and trustworthiness of traceability information that is embedded into
the distributed, and often global software engineering process. This chapter
motivates the topic of this thesis, formulates the main research goal, objectives,
and questions, introduces the research methodology adopted in the thesis, and
outlines the main contributions of the thesis in relation to research phases,
objectives, questions, and published papers. Finally, the chapter guides the
interested readers by presenting the overall structure of the thesis.

1.1 Motivation

Today’s software systems are not only complex, but they also encompass an
ever-increasing number of safety-critical functions [14]. The inappropriate
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1. Introduction

specification, design, development and testing of such complex systems may lead
to serious consequences, from major financial losses to life-threatening accidents
[14, 15]. The complexity of such systems is also related to their size, e.g., up
to approximately 100 million code lines, and 2000 pages of requirements have
been reported in the automotive domain [14]. Another factor that contributes to
increased complexity lies in the large number of evolving artifacts that are created
by distributed stakeholders within the organization or across organizational
boundaries, e.g., relations between original equipment manufacturer (OEM) and
suppliers [14]. In this context, keeping track of all artifacts, their relations and
versions is not a trivial activity, as it requires the establishment of standardized
methods for traceability.

A variety of regulatory agencies in different domains have acknowledged
the importance of traceability and have incorporated it into different software
process improvement (SPI) models and standards, such as Federal Aviation
Administration (FAA) DO-178C, ISO 26262, Automotive Software Process
Improvement Capability dEtermination (ASPICE), and ANSI/AAMI/IEC 62304
[14, 15, 16]. FAA DO-178C mandates developers to provide evidence on the
traceability of designs against requirements [15]. ISO 26262 is an automotive
safety standard that requires traceability between safety artifacts, artifacts’
versioning and unique identifiers [14, 15]. In addition, traceability requirements
in the automotive domain are imposed by ASPICE which mandates traceability of
all artifacts, not limited to safety-related artifacts [14]. Traceability requirements
are also imposed in medical devices software development processes by different
standards, such as ANSI/AAMI/IEC 62304 [15, 16]. Compliance to regulations
has been considered as one of the main motivators to implement traceability in
regulated domains [17].

In addition to compliance, the implementation of traceability brings benefits
to organizations, as it facilitates the development of high quality software [17].
Regan et al. [17] explored a set of case studies to understand the motivations
of organizations for implementing traceability. The findings revealed that
traceability enables artifacts’ reuse which allows software engineers to save
time, effort and be more productive, as they do not need to reproduce all the
artifacts. In addition, the findings suggested that while forward traceability
facilitates the validation of requirements, backward traceability mitigates the
so-called “gold plating” phenomenon in SE, i.e., excess functionality. Additional
benefits of traceability, such as supporting project management, facilitating cost
estimation of changes, and enhancing the understanding of the overall system
have been constantly acknowledged by the traceability community [10, 18, 19, 20].

Despite the theoretical benefits, the adoption rate of RT has been surprisingly
low [21, 22, 23, 24, 25, 26]. Previous studies have reported on the fact that
traceability is often not implemented or implemented in an ad-hoc manner
[14, 17, 24, 27]. Traceability is often considered an extra task to be carried
out by developers who do not always perceive its benefits. The high perceived
overhead/benefit ratio can be explained with the provider-user gap, as referred
to in the second paper of this PhD thesis (P2). This gap means that the creators
of trace links, e.g., developers create traces between implementation tasks and
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source code commits, are not the ones who use the trace links, e.g., project
managers use trace links to track the progress of the project. Hence, developers
become demotivated to devote effort and time into creating and maintaining
quality trace links and set a low priority to this task, resulting in incorrect and
missing trace links. A few approaches have been proposed in literature to increase
the motivation of developers to participate in traceability tasks. For instance,
Maro et al. [14] proposed including gamification features into traceability
tools, while Wohlrab et al. [28] explored collaborative traceability management
and recommended the inclusion of voting features to allow stakeholders to
agree upon related artifacts and indicate incorrect relations as a joint effort.
Managing traceability as a collaborative effort can improve the perceived
overhead/benefit ratio and encourage developers to contribute to traceability
creation and maintenance. It is worthy to outline that trace links need to be
maintained and updated once related artifacts change to prevent traceability
deterioration. Artifacts’ changes should be propagated to all affected stakeholders
to enable them to update corresponding trace links.

Today’s software is developed as a product of complex supply chains that
rely on the collaboration of diverse, distributed entities throughout all the
phases of the software development lifecycle, from requirements elicitation,
to design, development, and maintenance. Tracing ever-evolving artifacts is
difficult in co-located development, and unsurprisingly is even more challenging
in multi-site environments. Cross-organizational and distributed entities need
to share artifacts and have visibility over the software development lifecycle
when collaborating for the development of complex software. To enable artifacts’
sharing, Maro et al. [14] proposed the use of a centralized repository where
all artifacts can be stored and accessed by legitimate stakeholders. However,
centralized approaches cannot ensure that all stakeholders are working on the
same reality, as artifacts can be tampered with. In addition, previous literature,
as outlined by Yau and Patel [29], argued that in such approaches, it is not
always possible to obtain the auditable, trusted and reliable history of software
components, and consequently their corresponding trace links. Moreover, the
artifacts created by distributed entities cannot always be trusted, as these entities
may be related to competitors or groups with malicious intentions [29]. Other
concerns about centralized solutions in distributed software development have
been raised by Yau and Patel [29], for instance, the single point of failure,
centralized authority, data tampering, restricted data ownership and lack of
verification of added data.

The participation of third-party entities exacerbates these concerns, due to
differences in data and artifacts sharing policies [29]. The complexity of enabling
traceability increases in interorganizational software projects, due to differences
in tooling and processes that are used for traceability management, conflicting
organizational objectives, and organizational boundaries [30]. Conflicting
objectives concerning traceability may lead to the creation of incompatible
(e.g., with regards to type and granularity), thus unusable trace links. Finally,
organizational boundaries restrict access to artifacts that contain sensitive data,
impeding full visibility and consequently impeding the creation of complete and

5



1. Introduction

trustworthy traceability. As advocated by Rempel et al. [30], it is necessary
to ensure that traceability information is available and trustworthy across
organizational boundaries. One way to approach these concerns is by considering
a technology with inherent properties of decentralization, availability, and trust,
such as blockchain. This context is the catalyst for the research described in
this thesis, which explores the use of blockchain technology for decentralized,
yet trustworthy RT in interorganizational software projects.

1.2 Research Goal, Objectives and Questions

The main goal of this thesis is to explore the use of blockchain technology
for decentralized and trustworthy RT in interorganizational software projects.
The underlying motivations for this goal lie in the inherent properties of
blockchain technology: immutability, non-repudiation, decentralization, integrity
and auditability (See Section 2.1.2), and the limitations of current centralized
approaches for RT in interorganizational software projects (See Section 1.1). In
order to achieve this goal, a set of 6 operational research objectives (RO) and
their related research questions (RQ) were formulated, as follows:

(i) RO1. Identify and classify challenges of implementing RT. This objective
will be accomplished by reviewing and analysing relevant and recent
scientific literature focused on RT.

(ii) RO2. Identify and classify blockchain use cases in the SE domain and
explore the benefits that the application of blockchain technology can bring
to the SE landscape. This objective will be accomplished by reviewing
relevant literature and mapping the two fields of blockchain technology
and SE.

(iii) RO3. Design a blockchain-enabled framework for decentralized and trust-
worthy RT that can be leveraged by organizations in interorganizational
software projects. This objective will be accomplished by designing a
framework with components that rely on relevant literature, that can be
tailored to different organizational needs.

(iv) RO4. Refine the framework by incorporating blockchain experts’ feedback.
This objective will be accomplished by conducting semi-structured
interviews with blockchain experts from different domains and using their
feedback to refine the framework and enhance its practicality.

(v) RO5. Implement a prototype for decentralized, trusted, and scalable RT.
This objective will be achieved by developing a prototype that enables the
decentralized and secure storage of software artifacts, their related artifacts
and changes, while retaining performance efficiency and scalability.

(vi) RO6. Evaluate the proposed framework and prototype by means of
SE experts’ judgement. This objective will be achieved by conducting
semi-structured interviews with SE experts with a broad academic and/or
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professional expertise. These experts will be provided with the proposed
framework and prototype prior to the interview process, and then they
will answer questions regarding the usefulness, validity, and feasibility of
the proposal, along with recommendations for further improvements.

These operational objectives aim to answer the following three research questions:

(i) RQ1. What are the challenges of implementing requirements traceability?
This research question addresses RO1 and focuses on the identification
and categorization of RT challenges. While traceability researchers have
devoted their efforts to identifying and addressing such challenges, to date
many of the challenges remain unsolved. Our preliminary literature search
carried out at the beginning of this PhD project found out that the last
study that identified a comprehensive list of traceability challenges in
requirements engineering was published in 2010 [31]. Although the authors
elaborated on a set of natural, technical, economical, and social factors
that challenge the implementation of RT practices, it is relevant to identify
domain-agnostic RT challenges according to recent empirical studies in the
field. Addressing RQ1 provided the underlying foundation of the discussion
around the application of blockchain technology for trustworthy RT.

(ii) RQ2. How can blockchain technology be used in the software engineering
domain? This research question addresses RO2 and focuses on the
identification of blockchain use cases in the SE domain and the benefits
that this technology can bring to address SE issues. The importance of
RQ2 lies in outlining the novelty of the blockchain-enabled RT topic, and
in generating ideas inspired by previous approaches on how to address
the topic. The preliminary search on blockchain-enabled SE suggested
an increasing number of studies focused on addressing SE issues in
blockchain-based software, e.g., Vacca et al. [32] (For additional studies,
see Section 2.3.1), but a limited number of studies that use blockchain to
address issues in the software industry. While accessing a comprehensive
overview of previous blockchain-based approaches in SE was important
within the scope of this thesis, our search revealed only one related study
carried out in 2019 by Tariq and Colomo-Palacios [33]. Although this study
provided us with a better understanding of the potential applications and
benefits that blockchain can bring to the SE landscape, it is limited to
research conducted up to 2018. Given that blockchain research is rapidly
evolving and new approaches are emerging even in the SE field, a more
recent overview on the topic was considered of high value for advancing
our research work.

(iii) RQ3. Is it possible to build a blockchain-enabled framework for
decentralized and trustworthy requirements traceability that can be used
by organizations in interorganizational software projects? This research
question addresses the remaining objectives [RO3-RO6] and is answered
by designing, refining, implementing, and evaluating a blockchain-enabled
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framework for decentralized and trustworthy RT. To ensure trust among
stakeholders in interorganizational software projects, it is important to
enable them to work on the same reality and have a holistic view on
software artifacts, their relations, changes, and the entire software lifecycle.
This can be achieved by providing a reliable traceability knowledge base
that does not need to be maintained by a central authority. In this regard,
blockchain technology can be considered a suitable technology, due to its
inherent properties of decentralization, immutability and integrity, among
other properties (See Section 2.1.2). However, despite these promising
advantages, conventional blockchain platforms face performance efficiency
and scalability limitations [34, 35]. Therefore, this PhD thesis ought to
investigate other platforms that offer decentralization and security, while
being performance-efficient and scalable, should such platforms exist.

The research questions were answered in 7 papers (Pi,i=1−7) published during
the three-year timeframe of this PhD project, as shown in Table 1.1. During the
first year, three research papers were published (P1, P2, P3). The first research
paper provided independent and constructive feedback on the PhD research
project and future research directions. P1 was presented to the RE community
and provided also an opportunity to interact with established researchers and
practitioners in the software engineering community. This paper was part of
the Doctoral Symposium session of the International Requirements Engineering
conference 2020. Furthermore, P2 and P3 addressed RQ1 and RQ2 respectively,
and were published in Scopus-indexed journals. The first year was important
to acquire necessary knowledge about the topic of interest and plan on how to
use the knowledge in the next steps. The last two years of the project focused
on the core research question, i.e., RQ3 which entails different aspects: design,
refinement, implementation, and evaluation of the proposal.

The initial blockchain-enabled framework for trustworthy RT was proposed
in P4 which was published and presented in EuroSPI 2021 conference. This
framework was refined by incorporating blockchain experts’ feedback in P5
which was published in Journal of Software: Evolution and Process. As a
proof-of-concept, a prototype that relied on neural distributed ledger platforms
was developed and validated by using artifacts of an electronic health records
application, named iTrust in P6 which was published and presented in EuroSPI
2022 conference. Finally, P7 evaluated the proposed framework and prototype
by experts with a broad academic and/or professional experience in SE. The
paper was submitted to the Journal of Software: Evolution and Process. The
logical relations between research objectives, questions and published papers are
presented in Table 1.1:
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Table 1.1: Relations between papers, research phases, objectives, questions, and
contributions

Papers Research Objectives Questions Phase Contributions
RO1 RO2 RO3 RO4 RO5 RO6 RQ1 RQ2 RQ3 C1 C2 C3 C4 C5

P1* Knowledge
baseP2 X X X

P3 X X X
P4 X X

Build-
Evaluate

X
P5 X X X X
P6 X X X
P7 X X X

P1* entailed the publication and presentation of the PhD project plan at a doctoral symposium, but it did
not tackle a specific research question

1.3 Methodology

This section provides a short introduction of the research methodology adopted
throughout the PhD project. This thesis followed the design science methodology
proposed by Hevner et al. [2], as it relies on building and evaluating artifacts that
aim to achieve utility. This is in line with our core research question, i.e., RQ3
that aims to build blockchain-based artifacts for requirements traceability and
evaluate their utility for interested organizations. The methodology consisted
of two core phases that adopted different data collection methods and analysis
techniques. In what follows, these phases are explained briefly:

(i) knowledge base. In this phase, solid research foundations were built within
the areas of global software engineering, requirements traceability and
blockchain technology. The first three papers (P1, P2, P3) were written
within the scope of this phase (See Table 1.1). The first paper was a
description of the PhD project, published and presented during the doctoral
symposium session of the main conference in requirements engineering.
Furthermore, P2 adopted a systematic literature review (SLR) approach
based on Kitchenham [36]’s guidelines for systematic literature review
studies in software engineering, while P3 adopted a systematic mapping
approach based on Petersen [3]’s guidelines for systematic mapping studies
in software engineering.

(ii) build-evaluate. The knowledge acquired during the first phase was used to
build the initial blockchain-enabled framework for requirements traceability
(P4). In order to refine the framework with a more practical perspective,
semi-structured interviews were carried out with blockchain experts, and
the data was analysed using grounded theory analysis techniques (P5). The
refined framework led to the development of blockchain for requirements
traceability (BC4RT) prototype (P6) which in turn was evaluated by SE
experts (P7). The data was collected by carrying out semi-structured
interviews with SE experts and analysed using content analysis technique
(P7).
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Data collection methods and analysis techniques are explained in detail in
Chapter 3.

1.4 Contributions

1.4.1 C1: A list of RT challenges and their categories

The first contribution addressed the first research question (RQ1) by means of P2.
A list of 21 challenges of implementing RT in practice was created by carrying out
a SLR on 70 related papers published during the period 2009-2019. To facilitate
the elaboration of these challenges, they were classified into 5 main categories:
technological, human factors, organizational, communication and collaboration,
and regulatory challenges. While the analysis of the data extracted from the
studies had purely qualitative nature, the number of studies that addressed
each of the challenges was calculated to pinpoint existing research gaps that in
turn, suggested future research directions. The main findings are presented in
Chapter 4, and future research directions are recommended in Chapter 5.

1.4.2 C2: Blockchain-enabled SE use cases identification and
categorization

The second contribution addressed the second research question (RQ2) by
means of P3. A systematic mapping study was conducted to provide a holistic
overview of blockchain use cases in SE. The analysis of existing relevant literature
indicated a set of blockchain-enabled use cases grouped into 8 SE knowledge
areas: software requirements, SE process, software testing, software quality,
software maintenance, software configuration management, SE management and
professional practice. The identified applications were also analysed from a
technical perspective in terms of blockchain platforms and consensus mechanisms
used. These use cases are explained in Chapter 4 and P3. Further, the use cases
were mapped with research types and contributions to reveal existing gaps and
suggest future research directions. Finally, the thesis contributes by mapping
blockchain properties and SE challenges addressed to emphasize the benefits that
blockchain technology can bring to the SE field, for instance, decentralization,
transparency and trust, immutability and data security, anonymity, non-
repudiation and automation by means of smart contracts/chain code. This
contribution is particularly important, as it can encourage further research
efforts in the emerging blockchain-oriented SE field.

1.4.3 C3: Process to implement blockchain in organizational
settings

The third contribution addressed the third research question (RQ3) by means
of P5. Semi-structured interviews with a variety of blockchain experts were
carried out and grounded theory techniques were applied to the transcripts’
data. The iterative analysis of data unveiled the process for implementing
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blockchain technology in organizational settings. This process consisted of
the following key activities that should be performed in an iterative manner:
identify business needs, perform feasibility analysis, blockchain platform selection,
test through prototypes, shift from prototyping to production and scaling. In
addition to key activities, a set of success factors and challenges were identified
and elaborated in detail in P5. Finally, the findings of this study contributed by
revealing reasons behind the organizational resistance to change with regards
to implementing blockchain technology, such as innovation-production gap,
centralized mentality, and conservative management. In this thesis, the findings
related to the implementation process of blockchain in organizational settings
were used to refine the proposed blockchain-enabled framework for RT. Moreover,
the findings can be also useful to guide practitioners who are eager to leverage
the potential of blockchain technology.

1.4.4 C4: Blockchain-enabled framework for trustworthy RT

The fourth contribution addressed the third research question (RQ3) by means
of P4 and P5. The initial blockchain-enabled RT framework was proposed in
P4. To date, this is the first approach that uses blockchain to keep track of
software artifacts and trace links in interorganizational software projects. The
framework contributes to the RT field by providing stakeholders with a holistic
and trusted view of software artifacts and their trace links, offering an incentive
mechanism for stakeholders to create quality trace links, enabling collaborative
traceability management by proposing the use of voting mechanisms to jointly
agree upon the authenticity, accuracy and quality of trace links, facilitating the
understanding of traceability information through query services for primitive
trace links and composite traceability paths, and enhancing the understanding
of traceability information by means of interactive graphical representation of
trace links. Given that the components of the initial framework emerged from
literature relevant to the fields of RT and blockchain technology, blockchain
experts were interviewed in P5. The goal of this approach was to incorporate
blockchain experts’ feedback into the framework to refine it in a more practical
manner.

1.4.5 C5: Development and validation of BC4RT prototype based
on neural distributed ledger

The last contribution addressed the third research question (RQ3) by means
of P6 and P7. A neural blockchain prototype for reliable and collaborative
traceability management was proposed in P6. This is one of the first prototypes
that relies on the concept of neural distributed ledger (NDL) by using the NDL
ArcaNet platform (See Section 2.1.4). Differently from conventional blockchain
platforms, neural distributed ledgers enable the storage of software artifacts of
any type or size, and their changes in a decentralized, scalable, and efficient
fashion, while retaining security. The NDL ArcaNet-enabled prototype creates
tokens for each project and each requirement within the project, keeps track of
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tokens’ lifecycle and enables the certification of operations on tokens without
using inefficient consensus mechanisms (See Chapter 4 and P6). The prototype
enables stakeholders of the software development lifecycle with a trustworthy
view on what/how/when and by whom software artifacts are created and/or
updated. This can likely lead to enhanced communication, coordination, and
trust among software development lifecycle entities. In turn, the improved trust
can have a positive impact on software development efficiency and software
quality. Finally, the prototype was presented to SE experts who stated their
perceptions and recommendations on how to enhance the prototype’s practicality
and validity. These recommendations pinpointed promising future research
avenues which are discussed in Chapter 5.
Table 1.1 depicts the relations between research phases (See Section 1.3), research
objectives and questions (See Section 1.2), papers (See List of Papers), and
contributions (See Section 1.4).

1.5 Thesis Outline

The thesis is organized into 6 chapters that are described in the following section:
Chapter 1 introduces and motivates the topic of the thesis by outlining existing
challenges and the need to find innovative approaches to address such challenges.
In addition, the chapter presents the main research goal, objectives, questions,
and the methodology adopted to address the research questions and objectives.
Finally, the chapter outlines the contributions of the thesis and relates these
contributions to their respective research phases, objectives, questions, and
published papers.
Chapter 2 frames the background around key concepts used in this thesis. First,
the chapter describes blockchain data structure and provides an overview of
the core blockchain properties, generations, and platforms. Second, the chapter
defines the software engineering field, and discusses global software engineering,
requirements engineering and requirements traceability. Particular attention
is paid to defining requirements traceability, describing RT technologies, and
identifying RT challenges. This is in line with the research problems formulated
in Section 1.2. Finally, the chapter unveils the bidirectional relationship between
blockchain technology and software engineering.
Chapter 3 explains thoroughly the design science methodology adopted in
this thesis. A set of data collection and analysis techniques, such as systematic
literature review, systematic mapping, semi-structured interviews, grounded
theory, and content analysis are described based on scientific literature and the
specific implementation in this thesis. The chapter ends with reflections on
ethical issues and measures undertaken to minimize such issues.
Chapter 4 presents an overview of the 7 research papers published within the
scope of this PhD thesis. This overview consists of the purpose of the paper,
research approach, main findings, and contributions.
Chapter 5 synthesizes the main findings in relation to the research questions
formulated in Section 1.2. In addition, the chapter discusses limitations of the

12



Thesis Outline

work and recommends promising future research dimensions that deserve further
research efforts.
Chapter 6 summarizes the work carried out in this thesis and outlines future
research work.

Interested readers are recommended to read the full texts of the 7 research
papers which are included in Part II.
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Chapter 2

Background

2.1 Blockchain Technology

“The first generation of the digital revolution brought us the Internet
of Information. The second generation powered by blockchain

technology is bringing us the Internet of Value: a new, distributed
platform that can help us reshape the world of business and

transform the old order of human affairs for the better”.
(Don Tapscott and Alex Tapscott [37])

Blockchain technology can be defined as a distributed ledger technology that
enables transactions to be read, validated, and stored in a chain of blocks [1],
or as a meta-technology, meaning technology that is created as a result of the
cohesion among several technologies [38]. Although blockchain emerged with the
seminal paper on Bitcoin in 2008 [39], the majority of the underlying technologies
have been proposed many years earlier [40]. While the record keeping idea goes
back to ancient Mesopotamia, the concept of distributed databases goes back
to the 1970s [1, 40]. Furthermore, the idea of linking blocks in an immutable
manner by means of a cryptographic hash function was proposed in 1979 by
Ralph Merkle [41] who explained the concept of linking information in a hash
tree structure, later coined as “Merkle hash tree”, in his dissertation at Stanford.
Finally, despite the fact that the domain of trading has, for a long time, adopted
rules for the execution of contracts’ terms, it was only in 1994 that Szabo coined
the term “smart contracts” [42]. Smart contracts became popular with the
emergence of the Ethereum platform in 2013 [43]. In what follows, an overview
of the main blockchain concepts is provided and organized into four sections:
blockchain data structure, blockchain properties, blockchain generations, and
blockchain platforms.

2.1.1 Blockchain Data Structure

Blockchain ledger represents the history of validated transactions that are
organized into blocks; each of the blocks is linked to the previously validated
block by incorporating the hash value of the previous block header. This linked
structure enables one to trace back to the first (parentless) block of the ledger
which is referred to as the genesis block. The structure of the blocks depends on
the blockchain platforms, however the conventional block structure is depicted
in Figure 2.1, and consists of the following elements [1]:

(i) outer header specifies the blockchain platform and block size. The outer
header consists of an identifier for the specific blockchain platform, which
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is named “magic number”, and the block size field that indicates the
maximum number of block bytes.

(ii) block header consists of fields that provide information on the previously
validated block and the validation process. The main fields are:

• Block version indicates which validation rules to follow and it is
useful to keep track of updates throughout the specific blockchain
protocol.

• Previous hash is the value generated as a result of applying the hash
function to the previous block header which serves as an input. The
importance of this field lies in enabling a linked immutable structure
of blocks.

• Timestamp serves as a proof that the block was mined and
validated at a specific instance of time, therefore this field ensures the
authenticity of any block.

• Target indicates the computational power required for the mining
process; the higher the target, the higher the mining complexity.

• Nonce is a fixed-length number that should be found by miners for
the validation of the block.

• Merkle tree root is the hash value that is generated as a result of
applying a hash tree procedure on the set of transactions.
Figure 2.2 shows that transactions are hashed in pairs in an iterative
manner. In the simple case scenario presented in Figure 2.2, the
hash function is first, applied on the contents of transactions. Second,
the hash function is applied on pairs of transactions. In this case,
there is an odd number of transactions, therefore the last pair is
created between hash5 and its duplicated value. The process continues
iteratively until the Merkle tree root is generated. Duplicated hash
values are marked in blue in Figure 2.2. The Merkle tree root is
crucial in ensuring the integrity of the transactions that are included
in the block.

(iii) block body contains a list of all transactions that take part in the Merkle
tree procedure to generate the Merkle tree root which is part of the block
header. In addition, the block body consists of the transaction counter
field that counts the number of transactions in the block. It is noteworthy
that the block body is directly dependent on the outer header because the
block size influences the number of transactions that can be contained in
the block body.
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Figure 2.1: Blockchain data structure, adapted from Belotti et al. [1]
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Figure 2.2: Merkle tree procedure: Case of odd number of transactions, Adapted
from Belotti et al. [1]
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2.1.2 Blockchain Properties

The combination of different technologies that were explained in Section 2.1.1
enables a set of dependent blockchain properties, as follows [1]:

(i) Decentralization. The main utility of blockchain lies in eliminating the
need to entrust centralized authorities for maintaining the ledger. Instead
of that, data is stored and shared in a peer-to-peer (P2P) manner. In
fact, Bitcoin introduced the decentralization of controlling power from
few to all participants in a monetary system, as an important security
mechanism. Decentralization is considered a security mechanism, because
it requires the malicious attacker to compromise over half of the consensus
power to significantly harm the system [44]. Despite the importance of
decentralization from a security perspective, recent studies, e.g., [45], have
noticed increased centralization in public blockchains, such as Bitcoin and
Ethereum, which in turn impacts the security of these platforms. As stated
by Sai et al. [46], decentralization is not provided by design, instead it is
a non-deterministic guarantee, as a result of the fusion of cryptography,
distributed systems and incentive mechanisms.
Recently, Sai et al. [45] conducted a SLR with 89 papers published from
2009 to 2019 on the topic of centralization of public blockchain platforms. In
addition, the authors performed expert interviews to refine the taxonomy of
centralization. The analysis of their results indicated that the top 4 mining
pools, i.e., consortiums of participants working in groups [47], aggregate
50.36% of controlling power in Bitcoin, and 63% of controlling power in
Ethereum [45]. This mining-centralization raises security concerns, as the
dishonest behavior of only a small number of entities, for instance heads
of 4 main mining pools, can threaten blockchain platforms [45].
In what follows, additional types of centralization are briefly explained:

• governance centralization. There is a central control over governance of
blockchain platforms that may concentrate the decision-making power
to a few entities. In this regard, two main cases can be mentioned:
Bitcoin’s core developers made the decision to reduce the minimum
transaction fee in an unilateral fashion [48], and Ethereum hard fork
as a result of the Decentralized Autonomous Organization (DAO)
attack [49].

• wealth concentration which can be used to increase the cost of
successful transactions. An example to illustrate this point is the
iFish attack on Ethereum platform in which attackers produced a
high number of transactions with high fees in a short period of time.
The impact of wealth concentration is that already rich nodes tend
to increase their nodes faster than smaller nodes, referred to as the
“rich get richer” paradigm [50].

• centralized wallets. The application of wallets has been considered a
single point of failure and security threat [51], since their development
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and maintenance is often performed by centralized organizations. A
more detailed explanation of the centralization of public blockchain
platforms can be found in [45].
Indeed, a higher level of centralization is present in permissioned
blockchain platforms with the inclusion of trusted participants.
However, permissioned blockchain platforms rely on decentralizing
intermediaries, along with their roles, as opposed to cutting out third-
parties completely which is the case of permissionless platforms [1].
A more detailed description of blockchain platforms is presented in
Section 2.1.4.

(ii) Immutability. This property is ensured by the structure of blockchain as
a linked list constructed by blocks that contain the hash of the previous
block. Sagar Bharadwaj et al. [52] explained the immutability of blockchain
with a simplified scenario: Suppose an attacker attempts to tamper with
the contents of block n. This implies the need to recompute the hash of
block n. Due to the collision resistance property of hash functions, this
recalculation of the hash of block n generates a new hash, that will be
present in the following block n+1. Hence, the hash of block n+1, along
with all the following blocks would need to be recalculated. In order to
write history and create new valid blocks, the attacker would need the
majority of mining power of the network in permissionless blockchains. In
permissioned blockchains, 1/3 of the network is able to launch a successful
attack and modify blockchain data. This indicates that the structure of
blockchain complicates the successful execution of such attacks, yet it does
not eliminate the risk with absolute certainty.
Interestingly, critical researchers [53] have considered immutability as a
desired, yet non intrinsic property of blockchain. In their critical analysis,
Conte de Leon et al. [53] shed light into the misconception that blockchain
is unchangeable. One event that disproves such claims was Ethereum DAO
hard fork which moved all tokens to a “withdrawal-only” contract stored on
Ethereum blockchain [49]. This software was implemented by the majority
of miners, while the others split from the main chain of blocks. Thus, in
this case the distributed ledger was updated to erase the DAO. In the
case of blockchain systems that rely on Proof-of-Work (PoW) consensus
algorithms, significant computational work is required to modify the data,
dependent on the strength of the hash function used. Hence, the term
“Mutable-By-Hashing-Power” has been proposed in literature [53], as a
refinement of the term “immutable”.

(iii) Integrity, authenticity and non-repudiation. Blockchain guarantees
integrity, authenticity, and non-repudiation by combining hashing, asym-
metric cryptography, and digital signature schemes. Data hashing is a
mathematical operation that takes as input data of arbitrary length and
generates a fixed length output, in an irreversible manner. The crypto-
graphic hash property of irreversibility or pre-image resistance ensures that
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the data is not tampered with during its transmission, i.e., data integrity.
In addition, broadcasting the public key of the sender ascertains that the
origin of the transaction is what it claims to be, i.e., authenticity, while
the non-repudiation property is ensured by the signing procedure that
proves the sending action. In what follows, the digital signature process is
explained and depicted in Figure 2.3:
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Hashed
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Identical?

KEY
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Figure 2.3: Digital signature process (red key represents the private key, green
key represents the public key)

First, blockchain users generate a key pair that consists of a private key and
a public key. While the former is used by the sender to sign transactions,
the latter is used by the receiver to verify the integrity and authenticity of
the data. Second, the sender hashes the original data and signs the hash
output with the sender’s private key. The role of hashing lies not only
in ensuring the integrity of transmitted data, but also in generating com-
pressed data of the same format which improves the efficiency of signatures.
The signed hash along with the original, uncompressed, and unsigned data
are sent to the receiver. Third, the receiver decrypts the signed hash by
using the sender’s public key and generates the decrypted hashed output.
Moreover, the receiver hashes the original, unsigned data and produces
the recomputed hash of the original data. Finally, the decrypted hashed
output is compared with the recomputed hash of the original data. The
identification of identical values verifies the authenticity of the sender and
data integrity.

(iv) Automation. An important feature of blockchain platforms is enabling
smart contract deployment and execution to allow the automation of any
business functionalities [1]. The conventional definition of a contract entails
an agreement between parties to perform or not perform a specific action
in exchange for something. These parties must trust one another to fulfill
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the obligations specified in the contract. The innovative element that
smart contracts bring is removing the need for trust between involved
parties. Smart contracts are able to execute the terms of a contract in
a distributed and trustless environment because they are both defined
and enforced by the code in an automatic manner [54]. In a way, smart
contracts solve common problems by minimizing the human involvement,
and consequently enabling the trust in the system rather than in humans.

(v) Auditability. Transactions stored on blockchain are visible and
transparent to all blockchain participants. This enables traceability of
blockchain operations via audits. The auditability property holds true not
only in permissionless blockchains, but also in permissioned blockchain
platforms such as Hyperledger Fabric. In such platforms, auditability is
fulfilled at the channel level [1].

Given the intrinsic complexity of such a distributed system, proving the
correct implementation of the aforementioned properties is a significantly hard
endeavour, as acknowledged by the software engineering and distributed systems
communities [53]. Despite the current challenges, researchers, e.g., [53] remain
optimistic about future efforts devoted to mathematically prove that these desired
properties hold under specific conditions, at a given point in time with measured
certainty.

2.1.3 Blockchain Generations

Previous literature has identified four main generations of blockchain, based on
the applications of this technology [54, 55]. These generations are explained in
the following section.

(i) Blockchain 1.0. The first generation of blockchain entails cryptocurrency
applications, such as Bitcoin. The main utility of digital currencies lies in
enabling transactions to be sourced and completed between individuals
over the Internet removing the need for intermediaries [54]. In this way,
payment fees are reduced, along with the waiting time for transfer, due
to the fact that users are able to receive funds in their digital wallets
in near real-time [55]. Cryptocurrencies other than Bitcoin are referred
to as altcoins and they enable resources’ allocation and trading globally
in a completely decentralized manner, which goes beyond currency and
payments. The potential of cryptocurrencies as programmable money has
paved the way for the next generation of blockchain applications.

(ii) Blockchain 2.0. Previous literature considers blockchain 2.0 as
applications in other areas of finance, beyond currency and payments.
In fact, the financial domain handles sensitive data, therefore enhanced
security and data integrity must be ensured. Blockchain can be used to
register and transfer different types of assets reliably in areas, such as supply
chain finance, security trading, and anti-counterfeiting [55]. In his book
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on blockchain technology, Swan [54] explained in detail the main concepts
that constitute the second generation of blockchain technology: smart
property, smart contracts, decentralized applications (Dapps), and DAOs.
The smart property concept entails property, in terms of physical assets
(home, car, computer) or intangible assets (reservations, copyright), that is
registered on the blockchain, and the control of its ownership is performed
via smart contracts. Smart contracts are computer programs stored on
blockchain that enable automatically solving problems by minimizing the
need for trust between parties. Over time, the complexity and autonomy
of smart contracts has increased. Smart contracts with their ability to
perform programmed and self-programmed operations on a blockchain
have become self-contained entities [54]. A set of smart contracts can
encode management, operations and business rules of real-world physical
organizations, thus enabling the model of autonomous organizations that
run without human involvement. These new organizational forms are
referred to as DAOs. Blockchain 2.0 projects that incorporate these
features include, but are not limited to: Ethereum, Ripple, Mastercoin,
and NXT [54].

(iii) Blockchain 3.0. The evolution of blockchain technology enabled its
application beyond the financial domain, in other domains, such as
healthcare, government, and arts. One of the first non-currency applications
of blockchain is Namecoin, as an alternative Domain Name System (DNS)
that enables anyone to publish non-censored information on Internet [54].
Other blockchain 3.0 applications include digital identity verification
(e.g., OneName, BitID), registering intellectual property and offering
attestation services by means of hashing and timestamps (e.g., Proof-
of-Existence), providing governmental services in a decentralized, cheaper
and more efficient manner, for instance, voting, registration of will, marriage
contracts, and land deeds [54]. An essential component of blockchain 3.0 is
the incorporation of tokens. Tokens represent proofs of digital rights, such
as personal identity, stocks, coupons, academic diplomas, and receipts [55].
In the blockchain context, tokens have been recognized, due to Ethereum’s
ERC20 standard [55]. While blockchain has been considered the back-
end technology of the new era, tokens have been considered its front-end
economic facet, and their combination has the potential to bring significant
societal changes [55].

(iv) Blockchain 4.0. Scientific literature failed to provide a unanimous
definition of what constitutes the new generation of blockchain technology
[56]. Angelis and Ribeiro da Silva [57] outlined the integration of artificial
intelligence (AI) with blockchain technology as the main feature of the
new wave of blockchain technologies. At first glance, AI and blockchain
technology can be seen as two opposite sides of the technology spectrum.
While AI expresses uncertainty by means of probabilistic theory, blockchain
makes use of a deterministic hashing function to generate the same
irreversible results when inputs do not change. However, these technologies
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can be used jointly, for instance, blockchain can be used to feed data into
AI systems and to store its outputs, due to blockchain’s inherent ability
to ensure data accuracy and trustworthiness [57]. Arenas and Fernandez
[58] perceived the new generation of blockchain platforms as relying on the
concept of blockchain-as-a-service (BaaS). This was also confirmed by the
belief of professional literature [59] that fourth generation blockchains will
focus on achieving higher efficiency, improved scalability, accessibility, and
consequently mass adoption.

2.1.4 Blockchain Platforms

Since the advent of Bitcoin in 2008, a variety of blockchain platforms have
emerged. Although these platforms have been developed targeting different
application fields and use cases, they can be classified based on their network
accessibility into two core groups: permissionless and permissioned platforms.
The former allows anyone to access the network, read and write transactions,
and participate in the consensus mechanism. The latter may restrict only
rights on writing (validation), or rights on both writing (validation) and reading
(access). Permissioned blockchain can be further categorized according to the
nature of participants into: (i) private blockchains with intraorganizational
participants, and (ii) consortium blockchains which entail a joint effort among
several organizations with a common business goal or need. In what follows, the
major blockchain platforms are described.

(i) Bitcoin. Bitcoin is a permissionless and public blockchain platform, that
was designed to serve as a public payment system [1]. While digital
currencies have been around for decades, the novelty of Bitcoin lies in
the combination of a simple consensus protocol that creates an ever-
growing distributed ledger because nodes aggregate transactions into a
block every 10 minutes, with PoW mechanism that allows nodes to gain
participation rights in the system [43]. The basis of this mechanism lies in
the fact that Bitcoin adopts a CPU-bound function, which is referred to
as SHA-256 hash function. To prove that participants are real identities,
they need to carry out work. This work entails a cryptographic puzzle,
which increases computational costs artificially. Consequently, the PoW
mechanism plays an important role in preventing Sybil attacks, as the
verification ability depends upon the computational power, rather than
the number of identities that can potentially be fake [60]. The underlying
nature of miners indicates that they are profit-seekers, therefore they try
to solve the cryptographic puzzle by trying different nonces until finding a
solution. This mining process is costly in terms of mining hardware costs,
and energy costs.
From a technical viewpoint, Bitcoin can be considered a “state transition
system” which consists of state and a state transition function [43]. The
function takes as input: (i) state (S) which entails bitcoins’ ownership
status or the collection of unspent transaction outputs (UTXO), and (ii)
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a transaction, and generates a new state or generates an error. The
transaction consists of a hash value that identifies the transaction (txHash)
and a list of inputs and outputs [60]. Inputs contain the hash of the
previous transaction as identification of that transaction (prevTxHash), an
index of the transaction’s output, and the signature of the owner of the
unspent transaction output. Outputs contain the amount of coins to be
transferred and the destination’s Bitcoin address. It is noteworthy that it
is not permitted to reference the same output twice, an attempt that is
referred to as double spending. Therefore, each output of a transaction in
Bitcoin can be considered either UTXO if it has not been referenced by
another transaction, or a spent transaction output (STXO). Furthermore,
the state transition function can generate an error in three cases:

• when the referenced UTXO does not exist in S, which indicates an
attempt to spend coins that do not exist,

• when there is a mismatch between the provided signature and the
real owner of UTXO, which indicates an attempt to spend coins that
are owned by other people,

• the sum of all inputs UTXO is less than the sum of all outputs UTXO.
In other cases, the function returns a new state that adds all output
UTXO and removes all input UTXO.

A more detailed overview on Bitcoin can be found in the technical survey
of Tschorsch and Scheuermann [60].

F(S, Tx) → S’ or ERROR

(ii) Ethereum. Ethereum is a cryptocurrency-based, and permissionless
blockchain platform, which was designed to enable anyone to write smart
contracts and Dapps, by means of its built-in Turing-complete programming
language, referred to as Solidity [43]. Ethereum uses a PoW-based
consensus mechanism, named Ethash that differs from the PoW mechanism
used by Bitcoin, due to its reliance on the concept of “memory hardness”.
This concept means that the search for nonces requires significant memory
and memory access bandwidth [1], hence it aims to prevent the simultaneous
identification of nonces by using the memory in parallel [61]. Recent efforts
have been devoted to migrating towards the more secure and efficient
proof-of-stake (PoS) consensus mechanism with Casper implementation
[62].
The state in Ethereum consists of objects, referred to as accounts that
enable participants to create transactions and/or contracts, and mine the
crypto-token namely Ether. These accounts contain the following fields:
nonce or counter to ensure that transactions are processed only one time,
current ether balance, contract code, and storage [43]. Moreover, there are
two types of accounts in Ethereum [43]:
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a) externally-owned accounts that do not contain code and are controlled
by private keys, and

b) contract accounts that contain code that is activated once the account
receives a message.

Furthermore, Ethereum adopts state machine replication, following an
“order-execute” architecture (See Figure 2.4) which consists of first ordering
transactions, and then broadcasting and executing them on all nodes in a
sequential manner. A more detailed description of this blockchain platform
can be found in the Ethereum’s whitepaper published in 2013 by Buterin
[43].

EXECUTEORDER UPDATE STATE

Figure 2.4: Order-Execute Architecture

(iii) Hyperledger Fabric. Hyperledger Fabric is a permissioned and private
blockchain platform that runs distributed applications developed by means
of general-purpose programming languages, such as Go, Java, Node.js.
The execution of these applications occurs consistently across different
nodes, thus it gives the impression that it occurs on a single blockchain
computer that is distributed globally [63]. Furthermore, smart contracts
in Fabric are referred to as chaincode and are written in Golang in the
first version of Fabric, and in Javascript in Fabric v1.1 [1]. Developers use
chaincodes to define and track the lifecycle of assets, to manage business
contracts, and to create Dapps that are managed collectively [1]. It is
noteworthy that in Fabric, isolation between chaincodes is ensured by
channels which are independent instances with their specific set of rules
and policies, and do not exchange data with other channels [1]. The
concept of channels can be important when the network participants are
competitors who do not want their transactions to be known to all the
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other participants [63]. Moreover, Hyperledger Fabric is underpinned by an
extensible and modular architecture [63], which means that the platform
supports pluggable implementations of consensus and membership services
[1], thus it can be customized to a variety of use cases.
Due to its permissioned nature, members register via a Trusted Membership
Service Provider (MSP) which maintains the identities of all types of nodes,
and issues credentials for authentication and authorization [63]. Nodes in
Fabric can have one of the following roles [1, 63]:

• Clients submit proposals for execution, contribute in orchestrating the
execution stage, and broadcast transactions for the ordering stage.

• Peers maintain the ledger and the state. They can play two important
roles: execute transactions and validate transactions. The execution
of transactions is performed by a subset of peers named endorsers.

• Orderers do not participate in the stages of execution and validation,
but they establish collectively the order of all transactions in
Hyperledger Fabric. This separation of roles enables the modularity
of consensus in Fabric and facilitates the replacement of consensus
mechanisms [63].

Differently from Bitcoin and Ethereum, Hyperledger Fabric adopts an
“execute-order-validate” architecture, as depicted in Figure 2.5.

EXECUTE ORDER VALIDATE UPDATE STATE

Figure 2.5: Execute-Order-Validate Architecture

The three phases of the transaction flow are explained, as follows [60]:
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a) Execute. In this phase, clients sign and submit transaction proposals to
endorsers whose role is to execute transaction proposals. Transaction
proposals contain the following set of elements: client’s identity,
transaction payload or operation that should be executed, parameters,
chaincode identifier, nonce in the form of a counter or random value
that can be used only once by a specific client, and a transaction
identifier. Endorsers execute the transaction payload or the chaincode
operation that has been installed on the distributed ledger. It is
worthy to mention that the chaincode is executed in isolation from
the main endorser process, in a Docker container.
Each endorser executes the transaction proposal, without being
synchronized with the other peers, and yields writeset representing
the state updates in terms of modified key-value pairs, and readset
that represents the dependencies of the execution of the transaction
proposal in terms of keys read during execution and their versions. The
execution is followed by cryptographically signing the message (readset
and writeset), referred to as endorsement. Endorsements are sent to
the client who collects them until the endorsement policy is fulfilled.
The endorsement policy requires all endorsers to generate identical
outputs, i.e., readset and writeset. Once the client has accumulated
the required endorsements, the client creates the transaction and
sends it to the ordering service.

b) Order. In this phase, the client sends the transactions consisting of
transaction payload or chaincode operation, along with its parameters,
transaction metadata, and endorsements to the ordering service. The
role of the ordering service is to construct the order of submitted
transactions for each channel. The ordering service broadcasts
endorsements to all peers, achieving in this way consensus on
transactions, even in the presence of faulty orderers. In addition, the
ordering service groups transactions into blocks which is a technique
adopted in fault-tolerant broadcasts to enhance the throughput of
the broadcast protocol [63]. It is worthy to outline that the ordering
service does not maintain blockchain states and does not execute or
validate transactions. This implies an important feature of Fabric
which is the separation of consensus from execution and validation.
The ordering service supports two operations that are called by
clients: (i) broadcast (Tx) is invoked to disseminate transac-
tions consisting of transaction payload and client signature (ii)
B([tx1, tx2, . . . , txn], i, hi−1) ⇐ deliver(i) is invoked to retrieve block
B with the list of transactions [tx1, tx2, . . . , txn], sequence number
i, and the hash value of the block with sequence number i-1. The
ordering service enables delivered blocks to be ordered by ensuring
two main safety properties [63]:

• agreement property. For any two blocks B and B’ with respective
sequence numbers i and i’, delivered such that i == i’, then
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B == B’ holds true.
• hash chain integrity property. If a client has been delivered a block

B([tx1, tx2, . . . , txn], i, h), and another client has been delivered
block B’ ([ty1, ty2, . . . , tyn], i + 1, h’), then h’ == H(B) holds
true.

c) Validate. The dissemination of delivered blocks to peers can be done
directly by the ordering service or by means of a scalable built-in gossip
service. Afterwards, the blocks go through three main validation steps:

i. All transactions of a specific block are assessed in parallel against
the endorsement policy. Based on the results of this assessment,
the transactions can be marked as valid or invalid.

ii. All transactions of a specific block are checked against in a
sequential order for potential read-write conflicts. The keys’
versions in the readset field of each transaction are compared
with the existing locally stored ledger. The inconsistency of
versions indicates the invalidity of the transactions.

iii. The block is appended to the ledger that is stored locally by
writing key-value pairs in writeset fields, and the blockchain
state is updated accordingly. It is interesting enough that in
Fabric, the ledger contains the results of the first two validation
steps, including invalid transactions. This occurs due to the
design of Fabric, in which the chain of blocks is first produced
by the ordering service, and the validation is carried out by
peers afterwards. Although this feature is not available in other
blockchain platforms, such as Bitcoin and Ethereum, it may
be useful when audits of invalid transactions are needed. A
detailed and comprehensive overview on Hyperledger Fabric, its
architecture and design decisions rationale can be found in the
paper published by Androulaki et al. [63].

(iv) NDL ArcaNet. Blockchain technology has enabled the shift from the
Internet of Information towards the Internet of Value (IoV) [64]. Vadgama
et al. [64] defined IoV as “the instant transfer of assets that can be
expressed in monetary terms over the Internet between peers without the
need for intermediaries”. This instant transfer of assets that have a value
can be achieved by means of blockchain, due to its inherent capabilities.
Blockchain is able to create digital twins, i.e., digital representations of
physical objects, whose value can be expressed in financial terms. In
addition, blockchain facilitates the secure transfer of digital assets by
means of asymmetric cryptography. The generation of the public-private
key pair enables users to create certificates that prove assets’ ownership.
Once the transaction has been validated by the network and stored on
blockchain, the new owner has control over the asset. Ultimately, the IoV
concept entails empowering the final user who embodies a set of roles,
such as creator, consumer, certifier, owner and protector of information,
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instead of the limited roles of producer and consumer in the Internet of
Information. This means that the crucial part of the system should be
digital assets that are protected by their legitimate owners using their
wallets. On contrary, the center of blockchain ecosystem is the wallet,
whereas the digital asset is usually stored off-chain, due to performance
efficiency and scalability limitations of blockchain platforms.
Neural distributed ledgers (NDL) are technological platforms inspired
by blockchain promises and unique characteristics of human brains [65].
These platforms aim to address the aforementioned issues of conventional
blockchain platforms, such as interoperability, performance and scalability,
and ultimately enable the global implementation of the IoV paradigm.
The first academic paper that discussed neural distributed ledgers and
their similarities with neurons aggregation, due to interconnected subsets
of groups that work in a parallel way was published in 2020 by Velasco
et al. [65]. In fact, the authors of the NDL study [65] were inspired
by the novel idea of Swan [54] that entails developing blockchains as
“personal thinking chains”. Fundamentally, the neural blockchain is
internally organized into subsets of groups that perform work in parallel
and are interconnected similarly to how neuron groups are interconnected
in human brains. Recently, the concept of NDL has been adopted in a
few studies, for instance, Benítez-Martínez et al. [66] designed a NDL-
enabled e-Participation model that uses virtual tokens to incentivize greater
participation of citizens in public affairs, and in a later study [67], the same
authors used neural distributed technology to hold public procurement
related information in blocks in a transparent and secure manner to avoid
corruption.
Recently, ArcaNet has been proposed as a collaborative P2P platform
that enables the protection and end-to-end secure transfer of all types of
digital assets [68]. This platform relies on the concept of NDL Arca as
a distributed token repository that ensures the protection of tokenized
information against illegitimate access [68, 69]. Francisco Luis et al. [69]
referred to NDL Arca as a virtual safe box that uses two private keys to
access the content of the tokens. Tokens are created as a result of the
tokenization process that encompasses transforming a tangible or intangible
object into a unique, exclusive and valuable set of data. There are a set of
requirements that should be fulfilled for the data set to be considered a
token:

• identifiable,
• has a recognizable creator and owner who is able to modify the content

of the token,
• has a market value associated with its evolution,
• original (ensuring originality requires digital signatures from creators,

trusted and random certifiers),
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• able to enter and exit markets based on owners’ interests.

Due to their value, it is necessary to store tokens in a secure store
throughout their entire lifecycle: emission, evolution, transfer and
destruction of tokens, that prevents illegitimate access and unauthorized
modifications. NDL Arca aims to achieve this by grouping tokens into tables
and tables into databases in a hybrid format between key-value storage
and relational databases. The keys are expressed in ULID (Universally
Unique Lexicographically Sortable Identifier) format to identify contents
in any environment. The ULID format generates identifiers as a result of a
combination of timestamp (first 10 characters) and randomness (remaining
16 characters). The associated values refer to dynamic tables (variable
array []) and are always encrypted. The columns of the tables consist of
token fields’ ID and fields’ content. It is worthy to outline the dynamic
nature of these fields which allows users to change them according to
their needs. Furthermore, each token consists of a public part which is
encrypted with the database key in order to be accessed only by valid
users of NDL Arca, and a private part which is encrypted with the private
key of the token and can be read and updated exclusively by the owner
of the token. Tokens’ fields are mutable and configurable and can entail
diverse content, such as large files, complex objects, serialized Java objects,
digital signatures of other fields, checksum controls, library .jar, or bpmn
executable process.

NDL Arca adopts a set of techniques to ensure its security, such as double-
key encryption, as the data is encrypted with a database key and token
key, AES 256 (Advanced Encryption Standard), RSA (Rivest-Shamir-
Adleman), hashing functions and zero trust [7]. While NDL Arca can work
in standalone mode to create a centralized dedicated server or database
system in the cloud, its primary use is in blockchain networks, due to its
inherent ability to replicate, perform hashing of contents and distribute
them across the P2P network. NDL ArcaNet refers to the use of Arca in a
multi-domain network. In NDL ArcaNet, users act as the protectors of their
own tokens hosting them in their own wallets and set their own exchange
rules for assets. The transfer of assets is done directly between parties
without any type of mediation. Actions applied on tokens will be checked
by a pseudo-random set of network users. The users that certify actions
on tokens by signing digitally receive a commission as service payment.
It is worthy to mention that the certifiers sign the actions performed on
tokens without having access to the content of the assets. Each token
generates internally its own private signed blockchain ledger to certify
its provenance, content integrity, evolution and history. As mentioned
previously, the fields of these tokens can be editable and store any type
of value ranging from simple to large files or executable processes. This
platform can be used for certification of innovative entities, professional
capabilities, industrial processes (IoT), industrial secrets (patents), NDA
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(non-disclosure agreement) for trading industrial secrets, encrypted P2P
mail communications, and e-commerce.
NDL ArcaNet has a set of advantages that are relevant in the software
engineering context, as follows:

• real decentralization. In NDL ArcaNet, each wallet safeguards its
assets and applies its own governance rules. Assets certify their own
state and history using an internal signed blockchain. Therefore, each
asset can be considered a portable blockchain data structure that
has its contents signed by a set of at least 3 trusted and 5 random
validator wallets. Certifier or validator nodes receive a fixed payment
for each signature provided by their wallets.

• performance efficiency. Transactions are verified and applied by
each wallet independently, enabling real-time and parallel work and
consequently maximizing the number of transactions per second (tx/s).
In fact, each wallet can process over 300’000 tx/s. Since in NDL
ArcaNet, the digital asset is unique and is hosted and managed by a
single wallet at a time, the system does not need a global consensus
to synchronize a global data set in order to function properly. Instead
of that, the platform enables a pure P2P data storage platform where
each wallet is an independent actor with full control and governance
over its own hosted dataset, hence it decides what data to expose to
other wallets in a certified fashion. If different entities perform write
operations on the same content, an internal semaphore is used to solve
synchronicity issues. Moreover, the lack of consensus means that each
wallet functions as a local database but with higher latency because
of signature mechanisms. This implies that limitations related to
real-time operations in NDL ArcaNet are comparable to centralized
databases limitations.

• scalability. NDL ArcaNet is designed to integrate millions of nodes or
wallets because they work independently and in parallel. Although
NDL ArcaNet transfers signed data packets, it is able to scale similarly
to the Internet [7].

• sustainability. The platform is based on collaboration, rather than
competitive-based and resource-wasteful consensus algorithms, such
as PoW or PoS, and does not require gas to carry out transactions.

Finally, NDL ArcaNet ensures immutability by creating a map <ULID,
keypair> that stores all valid signatures for each wallet, and deleting the
private key of the keypair after the first use by default. Private keys are
deleted to prevent the wallets from using the same signature twice. Each
block is signed by wallets that use the keypair associated to the ULID
specified by the previous block randomly. Interestingly, each block in NDL
ArcaNet protects the previous block by including the signed hash of the
previous block (the past) and assigns <validator, ULID> tuples to protect
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the next block (the future). By doing so, blocks cannot be modified and
re-signed in an illegitimate way.

2.2 Software Engineering

“Software engineering is the part of computer science that is too
difficult for the computer scientist”.

(Friedrich Bauer)

During the last 5 decades, software has evolved from a technological tool used to
address specific problems, into an industry that has become ubiquitous in every
corner of todays’ society [70]. The development of high-quality software requires
following a software process tailored to specific business needs. The software
process, along with technical methods and tools used has been referred to as
software engineering. One of the earliest definitions of software engineering (SE)
was presented in the first NATO conference in 1968 [71]: “software engineering
is the establishment and use of sound engineering principles in order to obtain
economically software that is reliable and works efficiently on real machines”. A
more comprehensive definition of SE was provided by IEEE Standard 610.12
[72]: “the application of a systematic, disciplined, quantifiable approach to the
development, operation and maintenance of software; that is, the application
of engineering to software”. The software engineering field has been guided
by the Software Engineering Body of Knowledge (SWEBOK) that defined the
following knowledge areas [73, 74]: software requirements, software process,
software testing, software quality, software maintenance, software configuration
management and engineering management, just to mention a few. In what
follows, the global software engineering paradigm and requirements engineering
field are introduced. Furthermore, the main focus of the section lies in defining
RT, and presenting RT technologies and challenges.

2.2.1 Global Software Engineering

Today’ software products are designed, developed, produced, and maintained as
a result of complex, global supply chains that consists of a variety of distributed
partners in each of the phases of the software lifecycle [75]. This new paradigm
has been referred to as global software engineering (GSE) [75]. The increasing
interest, particularly in developed countries regarding GSE is not surprising,
due to tangible economic benefits [76]. Client organizations leverage the lower
costs of vendors in developing countries, compared with in-house development,
and in addition they leverage the 24-hour development model [76]. However,
the complex nature of GSE projects gives rise to both client and vendor related
challenges. Niazi et al. [76] conducted a systematic literature review that aimed
to identify client and vendor challenges from a research perspective, followed by
performing questionnaires that targeted both client and vendor organizations.
The analysis did not reveal significant discrepancies between neither academia-
industry, nor client-vendor organizations. However, the authors identified 19
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challenges, such as lack of communication, lack of cultural understanding, lack
of knowledge transfer among teams, lack of a uniform process among teams,
lack of trust, risk management and requirements engineering challenges, among
others. It is not surprising that geographical distance is likely to lead to the lack
of project visibility, delays and requirements elicitation problems [77].

The aforementioned GSE challenges have been mitigated to some extent
by adopting agile practices, such as sprint planning and stand-up meetings,
customer collaboration and retrospectives [78, 79]. While it is true that these
practices enhance communication, collaboration, transparency, visibility, and
consequently trust among teams, it is also true that agile practices were not
designed with GSE in mind [80]. In fact, it has been reported that scaling up
agile practices introduces coordination challenges among teams, due to their
enhanced autonomy [81]. The enhanced autonomy may in turn cause technical
discrepancies, e.g., in coding style and consequently, it can deteriorate trust
among teams [81]. A deeper focus on coordination challenges in large-scale agile
development and how to address them is outside the scope of this PhD project,
but the interested reader is referred to a recent case study on the topic performed
by Berntzen et al. [82].

2.2.2 Requirements Engineering

Requirements engineering (RE) is an important activity of the broader SE field,
as it impacts in a significant manner the effectiveness of all the subsequent phases
of the software development lifecycle [83, 84]. RE covers a set of intertwined
activities entailing the elicitation, analysis and specification of requirements that
reflect the intended goal of a software system by taking into consideration and
aligning the perspectives of all relevant stakeholders [85]. The significance of RE
has been acknowledged over the last three decades by the SE community. In
1983, Boehm, as cited in [83], estimated that fixing errors in system requirements
can be 100 times more costly compared with errors introduced during the later
phase of system implementation. In 1993, Lutz [86] investigated software errors
in NASA’s Voyager and Galileo spacecraft programs and found out that the
majority of safety faults were caused by functional and interface requirements
errors.

Likewise, in 2002 Hall et al. [87] performed a case study and their findings
revealed that almost half of the development problems were requirements-related
problems. A more recent initiative was started by RE researchers to explore the
status quo and challenges in practical RE and it has been referred to as NaPiRE
(Naming the Pain in Requirements Engineering) [85, 88, 89]. NaPiRE consisted of
a set of globally distributed surveys targeted at different companies in a variety of
domains. The top 3 RE-related challenges identified and elaborated in the paper
published in 2017 [85] entailed incomplete or hidden requirements, communication
flaws between the customer and the team, and moving targets. These challenges
are not surprising, given the inherent complexity of the RE discipline which
makes the standardization of the field challenging [85]. This complexity is caused
by the interdisciplinary nature of the field, dependency on customers and a
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variety of other stakeholders, and uncertainty [85]. Uncertainties trigger changes
in requirements, and managing such changes is not trivial, particularly in global
software engineering [90].

While RE is already challenging in co-located development environments,
it is even more challenging when requirements are specified and often changed
by cross-organizational stakeholders across cultural, geographical, language and
time-zone boundaries [91, 92]. The complexities, that such a global environment
brings, may explain why theoretically important RE activities, such as RT
are not implemented in practice or are implemented in an ad-hoc fashion
[14, 17, 27, 31, 93]. The following sections aim to shed light into RT as a
process and associated challenges.

2.2.3 Requirements Traceability: Definition and Technologies

RT is not a new concept in RE, in fact it has been introduced over 30 years ago
[94]. The accurate and reliable creation of trace links is important to support
a variety of software development lifecycle (SDLC) activities, such as change
management [18, 95], software maintenance [96, 97], and project management [18].
Traceability is particularly important in safety-critical systems, such as finance,
automotive, aerospace, and healthcare, as the inadequate use of traceability
may lead to major financial loss or life-threatening accidents [14]. Hence, in
such domains, traceability is mandated by several software process improvement
and capability models and standards, such as CMMI (Capability Maturity
Model Integration), ISO (International Organization for Standardization) 26262,
and ASPICE (Automotive Software Performance Improvement and Capability
dEtermination). Although the RT definition provided by Gotel and Finkelstein
[11] has been commonly accepted as the standard definition of RT, other
definitions that vary in purpose and scope have been proposed [31]. This
PhD dissertation adopted the following two definitions:
“ability to describe and follow the life of a requirement, in both a forwards
and backwards direction (i.e., from its origins, through its development and
specification, to its subsequent deployment and use, and through all periods of on-
going refinement and iteration in any of these phases)” by Gotel and Finkelstein
[11].
“the ability to relate artifacts created during the development of a software system
to describe the system from different perspectives and levels of abstraction with
each other, the stakeholders that have contributed to the creation of the artefacts,
and the rationale that explains the form of the artifacts” by Spanoudakis and
Zisman [98].

While the first definition focuses on the lifecycle of requirements, the
second definition is broader and encompasses all software artifacts. Other
definitions relevant to the topic are those of vertical and horizontal traceability.
While vertical traceability refers to tracing artifacts at different levels of
abstraction, e.g. requirements and code, horizontal traceability refers to tracing
artifacts at the same abstraction level, e.g. traces between all requirements
specified by a specific stakeholder [10]. A more logical categorization is that
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of pre-requirements traceability (requirement‘s life before being included in
the requirements specification document) and post-requirements traceability
(requirement‘s life from the inclusion in the requirements specification document)
[11]. Particular attention needs to be paid to pre-requirements traceability, given
that it has been identified as the main contributor to the requirements traceability
problem [11]. Moreover, the requirements traceability process consists of three
main phases at the individual trace level: creation, maintenance and usage [10],
which will be referred to throughout this paper. These activities can be done
manually, semi-automatically or full-automatically [99]. Trace links have been
traditionally created as a result of a time-consuming and tedious manual process
which often leads to inconsistencies, in particular in large and complex projects
with a variety of stakeholders, tools and artifacts. On the other side, due to the
fact that full-automation is not reliable and accepted by practitioners [100], a
semi-automatic tracing process is employed in most cases. Candidate traceability
links (so called because they have to go through a vetting process in order to be
considered final) are generated from the tools and then, they are examined by a
human analyst who decides whether to accept or reject the candidate link.

A vast number of technologies and tools have been proposed by the RE and
traceability community. Wang et al. [20] provided a comprehensive overview of
the main technologies which were categorized into the following groups:

• RT generation technology. Generating trace links reliably is a trivial task
due to the diversity of evolving artifacts that need to be traced to and from
requirements, at different granularity levels. Therefore, it is not surprising
that proposing new automated generation methods and improving existing
generation methods has been the main research focus of the traceability
community. Wang et al. [20] presented a set of generation methods,
however in this thesis only two of them are explained, as automated
generation methods are outside the scope. These generation methods are
described, as follows:

– Information retrieval (IR)-based tracing methods. IR-based methods
are the most popular generation methods, due to the textual nature of
requirements documents and their associated artifacts [20]. According
to Wang et al. [20], the most commonly used IR tracing methods
are Vector Space Model (VSM), Latent Semantic Indexing (LSI), and
Probability Model (PM). The main idea of such methods lies in the
textual similarity comparison between source and target artifacts.
These artifacts are more likely to be related in case of higher textual
similarity. However, the terminology can be missing, duplicated or
inconsistent which may affect the performance of IR methods in terms
of precision and recall.
To address such issues, a set of strategies have been proposed, e.g.,
the use of thesaurus, project glossary and refactoring.

– Data mining and machine learning methods. These methods rely on
the reuse of information, knowledge or patterns that are extracted
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from pre-existing trace links, thus it is not surprising that they often
outperform IR-based methods. Data mining algorithms extract trace
links patterns from pre-existing artifact pairs, for instance affinity
mining provides information, e.g., domain glossaries, and associations
between patterns based on term-occurrence and trace links, from
pre-existing requirements links. This information is then used to
generate new trace links. Moreover, machine-learning methods extract
information from pre-existing trace links, build a linking patterns
model based on the extracted information and use the model to suggest
candidate trace links. The quality of the output in such methods
depends significantly on the quality of the training set. Other tracing
generation methods can be found in the systematic literature review
carried out by Wang et al. [20].

• RT refinement technology. Trace links generated by automatic tracing
methods are often not accurate. Hence, three main refinement techniques
have been proposed: (i) manual methods, such as relevance feedback and
tagging. Relevance feedback methods rely on an analyst to annotate (a
tagging interface can be used) candidate trace links as true or false, and
then use the annotation to refine the generation model and improve the
accuracy of trace links. (ii) methods based on structural information. These
methods use information about artifacts’ structure and features to refine
candidate links. For instance, trace links between requirements and source
codes written in object-oriented programming language can be refined by
clustering classes on the basis on inheritance. This means that classes
can be assigned to the same cluster as parent classes. These methods can
enhance the recall rate of candidate trace links, assuming that classes in the
same cluster have similar probability to generate trace links from source
codes to requirements. (iii) hybrid methods are methods to refine trace
links generated from different generation methods or information sources.
For instance, four information sources, i.e., class names, comments, method
names and variables can be used to generate trace links from source codes
to requirements. Candidate trace links generated by more than two sources
are considered final trace links, as determined by the voting algorithm.

• RT maintenance technology. The quality and accuracy of trace links
tend to deteriorate, as the system evolves. Thus, trace links must be
maintained in an automatic fashion, and this can be achieved by means of:
(i) rule-based methods that rely on analysing change patterns in source and
target artifacts, creating mapping rules between the two types of change
patterns, and updating trace links automatically by using predefined rules,
when changes occur. (ii) scenario-based formalization method. Formalized
scenarios can be used as intermediary artifacts between requirements
and test cases. These intermediary artifacts reduce the human effort of
maintaining trace links between requirements and test cases. The reason
lies in the fact that test cases can be derived from formalized scenarios
in an automatic fashion, and consequently fewer trace links have to be
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maintained between requirements and formalized scenarios compared to
requirements and test cases. (iii) general-purpose ontology. Defining a
traceability ontology facilitates semantic annotation and reasoning in both
source and destination artifacts.

• NFR-tracing technology. Cleland-Huang [101] outlined that tracing non-
functional requirements (NFRs) is significantly more difficult compared
with functional requirements due to their multi-dimensional impacts
across the software system, interdependencies and tradeoffs between NFRs
and software architecture. Hence, conventional traceability methods are
insufficient to trace NFRs [101]. Three main methods have been proposed
in this regard: (i) aspect weaving method that models and implements
NFRs as aspects and traces them to codes and tests, (ii) design patterns
methods that rely on the use of pattern detection algorithms to trace
NFRs to system design, and (iii) IR-enabled methods that are based on
the underlying assumption of text similarity between source and target
artifacts. Thus, Text Semantic Similarity (TSS) can be used to generate
relations between NFRs and code classes.

• RT representation technology. These technologies enhance the understand-
ing of trace links, and consequently encourage the application of such links.
The most common representation method is the Requirements Traceability
Matrix (RTM), however other methods have been proposed to enhance the
representation content. In particular, these methods focus on extending
tracing objects, e.g., extending the RTM to include tracing relations from
source artifacts to developers, and enriching trace links types. Instead
of just saying if there is a relation between artifacts, other methods can
be used to illustrate the confidence degree of each trace link, for instance
marks, colors and numbers. In addition to the confidence degree, the
relation type can be defined by means of a RTM ontology. In addition, the
methods focus on incorporating trace link states. The continuous changes
of requirements trigger changes of trace links states. These changes of
trace links states can be recorded by importing UML state diagrams. Fur-
thermore, the representation form can be enhanced with the use of ordered
relevance links that sort trace links based on their confidence degree, and
trace graphs. Trace graphs use nodes that differ in terms of color, size,
and shape to represent entities of different significance and type, and edges
that differ in thickness to represent traces and their confidence levels.

2.2.4 Requirements Traceability Challenges

Despite the theoretical benefits of traceability, in practice traceability is not
implemented at all or implemented in an ad-hoc manner [14, 95]. This has
motivated the traceability community to investigate challenges of implementing
RT in practice. In this regard, the foundational work was carried out in 1994
by Gotel and Finkelstein [11]. The results of their study suggested that the
lack of a unanimous definition and the expectation that traceability can address
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multidimensional issues in a variety of projects, users and tasks, often conflicting,
contributes to poor RT practices. In 1998, Ramesh [12] carried out surveys in
26 organizations that differed in terms of motivation to implement traceability.
Thus, the organizations were categorized into two main groups: (i) low-end users
of traceability implement traceability because of regulatory requirements, and
(ii) high-end users of traceability implement traceability to enhance the quality
of their software systems. This was one of the first studies that explored factors
influencing traceability practice from different perspectives: environmental,
organizational and system development.

Blaauboer et al. [21] performed a case study in a large IT consultancy
company to identify the dominant factors that impact the decision on whether
to adopt traceability in information systems development projects. First, they
considered 8 project managers in the company since their initial verification
revealed that project managers are responsible for making RT-related decisions
in the company. Interestingly, only 3 out of 8 managers were familiar with
the term “traceability”. Finally, the authors selected 6 managers who were
aware of traceability and conducted in-depth interviews with them. The
results suggested that the most relevant factors for making a decision about RT
are development organization and customer awareness, return on investment,
stakeholders’ preferences and process flow. In addition, the results indicated that
the prominent reasons for not adopting traceability are the lack of awareness
and limited incentives to adopt traceability.

Winkler and Pilgrim [31] conducted a survey to enhance the theoretical and
practical knowledge on traceability in both RE and model-driven development
areas. The authors shed light on factors limiting the application of traceability
in industry. These factors were categorized and summarized, as follows:
(i) natural. The lack of a commonly accepted complete traceability scheme limits
its application in industry. In fact, the complete capture of traces is not trivial,
due to the imprecise nature of human work methods and the incorporation of
social and implicit knowledge. (ii) technical. Technical limitations exist even
if a well-defined traceability scheme is used. The intervention of humans is
necessary to identify semantics of information and record only relevant traces
that are meaningful in a specific context. Technical limitations, such as lack
of tool integration and poor tool support for maintenance were also outlined.
(iii) economical. According to the authors, project managers tend to neglect
traceability because of the lack of convincing evidence of traceability benefits
at a project or company level. (iv) social. While management support for
traceability is necessary, its proper implementation depends on the staff and
their personal motivation. Their low motivation is likely to affect the quality of
traces negatively.

Nair et al. [102] carried out a systematic literature review on 70 primary
studies published within 1993-2012 in the proceedings of the International
RE conference. The analysis of these studies revealed that the most dominant
challenges addressed were the lack of knowledge and understanding of traceability
and traceability maintenance when requirements evolve. In addition, the
authors of the study recommended further research efforts into the following
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topics: traceability visualization, consideration of software artifacts other than
requirements, trace semantics for impact analysis and advanced empirical
evaluation. Two more recent studies on the topic are those of Wang et al.
[20] and Maro et al. [14]. The systematic literature review conducted by Wang
et al. [20] pointed out trustworthiness and automation as the most frequent
challenges addressed by RT technologies. This is not surprising, given the
importance of the RT generation activity, but also its complexity and fallibility
for both (semi-)automated methods and analysts.

Maro et al. [14] carried out a tertiary literature review to identify general
domain-agnostic challenges of traceability, and specific traceability-related
challenges in the automotive domain. Differently from Wang et al. [20] that
focused on challenges addressed by RT technologies, e.g., generation technologies,
maintenance technologies, and representation technologies, Maro et al. [14]
expanded the scope by encompassing RT activities, such as preparation and
planning, establishment, outcome, and exchange of traceability information. A
set of 22 challenges were identified by the tertiary review of Maro et al. [14], and
the majority of them were confirmed by the case study in the automotive company.
An interesting finding of the tertiary study is that employees responsible for
creating trace links fear the misuse of this data against them as a means to
judge their performance. Moreover, the findings indicated that traceability is
perceived as overhead by developers who are often not the users of the trace
links they create. This demotivates developers to create trace links, resulting in
missing or even wrong links.

Other relevant studies on the topic can be found in a previous paper written
and published within the scope of this PhD project [103].

2.3 Blockchain and Software Engineering

2.3.1 Software Engineering for Blockchain Technology

Recently, researchers such as Porru et al. [104] explored SE aspects in
blockchain-based software implementations and coined the field blockchain-
oriented software engineering (BOSE). Porru et al. [104] reported that software
engineers perceive blockchain-based software projects as being developed in an
unruled and hurried manner, without taking into consideration SE concepts.
Therefore, software quality is not ensured in such projects. Due to the safety-
critical nature of blockchain applications, it is necessary to use reliability and
security methodologies, such as Cleanroom SE, software reviews, smart contracts
testing, and blockchain transaction testing. Furthermore, the distributed nature
of blockchain calls for the modification of existing UML (Unified Modeling
Language) diagrams or the creation of new ones, and the introduction of
new metrics to measure resource consumption, complexity, and performance of
blockchain-enabled systems [104]. Finally, to enhance the quality of blockchain-
oriented software projects, Porru et al. [104] outlined the need for professionals
with skills in different dimensions beyond technology expertise, for instance skills
in finance and law.
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The need for BOSE discipline was also advocated by Destefanis et al. [105].
The authors analysed the Parity Wallet hack on Ethereum in 2017 that resulted in
the freezing of approximately 500K Ethers with a single library code deletion. The
analysis of the source code of the library where the bug was discovered suggested
that the library vulnerability was mainly a result of negligent programming,
instead of problems in the Solidity language. In fact, the exploitation of the
vulnerability was easy and performed in only two steps: (i) The smart contract
(SC) library was left uninitialized, allowing the attacker to become its owner
by calling the initialization function initWallet(). (ii) The owner of the library
contract is now able to call privileged functions, e.g., kill() which in turn calls
suicide(). The latter sends the remaining part of funds to the owner and
then, clears the storage and code of the contract. In this case, the library
contract was killed and this inevitably affected all the SCs that relied on calling
the library to execute functionality. According to the authors, the effects of
this (involuntary) attack could have been mitigated, should the following best
practices had been adopted: (i) defining design patterns, i.e., anti-patterns
and patterns. An example of an anti-pattern can be creating SC library and
leaving it uninitialized, (ii) proper testing techniques. The immutable nature of
SCs once they are deployed on blockchain does not allow for testing, therefore
robust testing techniques must be adopted on testnets, before deploying SCs.
The authors suggested a combination of manual and automation testing, e.g.,
state-based MBT (model-based testing) techniques.

Recently, Vacca et al. [32] analysed 96 studies published from 2016 to 2020
that focused on SE issues of smart contracts and blockchain development, e.g.,
SC code analysis, security and testing. The results revealed that the existing
literature has paid significant attention to SC testing in terms of finding bugs
and vulnerabilities, but other types of tests, such as integration and regression
have been overlooked. Although SC vulnerabilities have been identified, further
efforts can be devoted to creating a reference taxonomy that uses a set of criteria,
e.g., scope, impact, cost and effect, to organize vulnerabilities. In addition, the
authors suggested the creation of a catalog of attack detection patterns related
to SCs, and a systematic methodology (including practices, tools and procedures)
for SC security testing.

2.3.2 Blockchain Technology for Software Engineering

While blockchain technology has been implemented and adopted in different
industries [106, 107], its application in the SE domain has not received enough
attention. Although, the cross-fertilization between blockchain technology and
SE was advocated recently by SE researchers, such as Marchesi [108] and
Colomo-Palacios [109], limited efforts have been devoted to the development
and implementation of blockchain solutions to address SE issues [110]. In what
follows, the main research efforts are presented.

Tariq and Colomo-Palacios [33] published the first systematic mapping on
the topic in 2019. Despite the relatively low number of studies reviewed, the
authors provided interesting results that can trigger further exploration and
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investigation of the topic. According to the authors, a blockchain system based
on smart contracts can be valuable in establishing a trustworthy relationship
between parties that do not always trust each other, e.g., developer and employer
in outsourced software development. In addition, a blockchain-based system
can be used to track developers when adding third-party components to the
end product, and automatically check the adherence of these components to
license compliance policies. Adding third-party components without reporting
to the other team parties can have a negative impact on the quality of the
software and the reputation of the organization. This can be mitigated with
enhanced visibility and auditability, as inherent properties of blockchain systems.
Moreover, smart contracts can be applied in cyclometric complexity to predict
the complexity of code, prior to the development phase. Finally, the authors
outlined the need for professionals with skills in both blockchain technologies and
SE, to further advance the blockchain-oriented SE knowledge and competence.

In 2019, Beller and Hejderup [111] advocated the use of blockchain to
address SE issues, and coined the term blockchain-based software engineering.
The authors proposed the following two blockchain systems: (i) a blockchain-
continuous integration (CI) system which intends to prevent single point of
failures that occur in traditional CI systems. In addition, the system establishes
an equal market for computing power which in turn regulates build prices
according to the demand-supply market rules. (ii) a blockchain-enabled package
repository that enables anyone to propose new packages and assess the work of
others. This approach empowers library users, as it enables a wider part of the
community to contribute to the proper release of packages. According to the
authors, blockchain can contribute to the SE landscape in three dimensions: (i)
professionalization by rewarding those who participate in proposing or verifying
builds or packages, instead of relying in the work of volunteers as it occurs
in open-source software. (ii) enhances software artifacts quality, due to the
verification of builds and releases. (iii) trust and availability, as opposed to
centralized systems, e.g., GitHub or Travis CI.

Other authors proposed blockchain-based solutions to address issues in
distributed and cross-organizational software development environments. Krol
et al. [112] presented a blockchain-based platform for outsourcing software
development, namely ChainSoft. This platform enables software requestors to
publish tasks, along with tests to verify the compliance of code with requirements.
In addition, the platform enables developers to create and submit code which is
verified automatically by means of smart contracts, and consequently payment
is delivered to the developer. An important component of the proposed platform
is Oracle that entails a smart contract that communicates with GitHub/Travis
CI. The reliance on GitHub/Travis CI may introduce two main risks: (i) their
dishonest behavior can lead to running tests incorrectly, (ii) unavailability of
their services can cause the resubmission of the task or solution by the requestor
or developer, respectively, with an additional transaction fee. Yau and Patel [29]
addressed communication and coordination issues among development teams
which are often distributed and are required to collaborate for the development
of complex and large-scale software systems. Their proposed approach enables
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software teams to generate software specifications for each of the software
development lifecycle phases in the form of smart contracts. These smart
contracts contain information about allowed teams, information useful to carry
out software activity and acceptance criteria in key, value format, and terms for
the acceptance or rejection of the software output.

Yilmaz [113] integrated blockchain with large-scale software development to
foster trust and integrity. The authors proposed a conceptual model enabled
by blockchain technology that aims to decentralize the test-driven software
production line by using the consensus concepts of “Proof-of-Work” and “Proof-
of-Stake”. According to this model, the leader publishes new works to the
network consisting of the description of work, description of test cases, and
rewards. Developers act as miners, fulfil the work, and publish their code,
whereas testers act as validators, assess developers’ works, and publish candidate
blocks which are validated by a Proof-of-Stake consensus algorithm, and then
merged to generate consequent blocks. The authors reported on the loss of
trust between parties that pushes software practitioners to find solutions on
the working software process or call for third-party mediation. A software
development process based on blockchain can offer guidance to solve such trust
issues.

Lenarduzzi et al. [114] used blockchain and smart contracts to manage
Agile projects that are based on Scrum or Lean-Kanban methodologies. Their
proposed model starts with the customer who creates a SC for a specific project,
specifies the product owner (PO) address, and the amount of Ethers for payment.
The PO registers user stories, acceptance tests, the hash of the expected result,
state, and developer’s address. Developers submit to the SC the hash digest
of the acceptance tests’ result which is then checked against the hash of the
expected result. Once the result is verified, Ethers are sent automatically
to the developer’s address. This model aimed to facilitate the duties of the
PO, due to the contribution of SCs in certifying the correctness of the results
automatically. A similar approach has been followed by Farooq et al. [115]
with their AgilePlus framework that aimed to address trust, communication
and coordination issues between parties in distributed agile development. While
this framework executed smart contracts for reliable payments and acceptance
testing verification, similarly to Lenarduzzi et al. [114]’s approach, it takes a
more inclusive view of the overall agile development process. AgilePlus consists
of six abstraction layers that are aligned with the agile development process
and each layer is only activated when the previous process is terminated by
either the customer or developer. These layers are agreement, requirements
elicitation, prioritization, design and development, testing, and payment. Due
to the performance evaluation of their framework, the authors strongly believe
that blockchain has the potential to disrupt distributed agile development.

A group of authors from Accenture published a series of papers that use
blockchain as the backbone of the software development process [116, 117, 118,
119, 120]. The authors presented three main blockchain-enabled frameworks:

(i) Blinker framework for trusted software provenance [118]. This framework
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uses data ingestion tools/plugins to capture provenance data from the
multitude of tools adopted throughout the software lifecycle. These data
are then transformed according to PROV-specifications, and their validity
is approved by participants selected in accordance to voting policies. To
enhance the understanding of provenance data, the framework allows
agent-, artifact-, and process-centred queries to be performed, and enables
interactive hierarchical representation of provenance data.

(ii) a software identity framework, namely ShIFt that derives sub-identities
from software components, such as code or third-party components [119].
The combination of these sub-identities forms the software composite
identity which is stored on blockchain ledger. This ensures software
integrity, as it is possible to identify integrity discrepancies between two
software instances, and their causes.

(iii) a tokenized incentive framework that uses smart contracts to analyse event
data against incentive policies [120]. In addition, smart contracts deliver
incentives to software engineers for the performed tasks, in the form of
wallet tokens, accordingly. This approach ensures the transparent delivery
of outcome-based and eternal incentives to participants that contribute
to the development of complex software systems in a globally distributed
fashion.

Although these studies contribute to the emerging blockchain-based software
engineering field, they do not address the requirements engineering and
traceability processes in interorganizational software projects. In fact, ensuring
trustworthy requirements traceability is a complex topic, due to a variety of
tools used throughout the software development lifecycle, a variety of distributed
stakeholders, and a high number of ever-changing software artifacts. To the best
of our knowledge, this thesis is the first research effort devoted to exploring the
use of blockchain technology for trustworthy requirements traceability, to date.
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Chapter 3

Research Methodology

“Research is an organized method for keeping you reasonably
dissatisfied with what you have”.

(Charles Kettering)

3.1 Design Science Methodology

The research methodology adopted in this dissertation is presented in Figure 3.1.
This methodology was adapted from the design science research methodology
proposed in the seminal paper of Hevner et al. [2]. According to these authors,
design science relies on building and evaluating artifacts with the goal of achieving
utility. The evaluation of artifacts can lead to the identification of weaknesses
and consequently, the need to refine the artifacts. The build-evaluation phase
makes use of the raw materials provided by the knowledge base component
that is composed of frameworks, theories, models, and methodologies. The
appropriate application of research foundations and methodologies ensures rigor
[2]. It is worthy to outline that design science differs from routine design in that
it proposes innovative solutions to address existing relevant problems, hence
contributing significantly to the existing knowledge base.

The papers published within the scope of this PhD dissertation follow
different building blocks of the research methodology presented in Figure 3.1.
The first building block of research foundations was executed during the first
year of the PhD project. During the first year, the PhD student acquired
relevant foundational knowledge related to the following topics: (i) blockchain
technology concepts (e.g., inherent features, blockchain platforms, and blockchain
applications), (ii) distributed and global SE, (iii) RT challenges and technologies
proposed to address the challenges, and (iv) bidirectional relationship between
blockchain technology and SE, with a particular emphasis on the application
of blockchain to address relevant SE issues. In addition to technical knowledge,
the PhD student acquired knowledge regarding research methodologies, e.g.,
how to conduct systematic literature reviews and systematic mapping studies,
how to collect data by means of semi-structured interviews and how to analyse
data through grounded theory and content analysis techniques. To acquire this
knowledge, the PhD student participated in blockchain, SE, and qualitative
research methodology related courses at UiO, read relevant scientific literature
and participated in conferences. As a result of this process, three scientific papers
were published during this first phase (P1, P2, P3).

The acquired knowledge was applied to build the initial blockchain-enabled
framework for RT. The related paper was published in EuroSPI 2021 conference
(P4). The initial framework was then refined in a more practical way by carrying
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out semi-structured interviews with blockchain experts. The related paper was
published in the Journal of Software: Evolution and Process (P5). Based on the
updated framework, a prototype named BC4RT (Blockchain for Requirements
Traceability) was developed and explained in another paper which was presented
at EuroSPI 2022 conference (P6). Finally, the proposed framework and BC4RT
prototype were evaluated by means of SE experts who provided the researcher
with interesting insights on how to further enhance the quality of the proposals,
that led to promising future research directions (See Chapter 5). The last paper
(P7) has been submitted to the Journal of Software: Evolution and Process.

Knowledge base Build-Evaluate

Build

blockchain-enabled
framework for requirements
traceability
BC4RT prototype

Evaluate

semi-structured interviews
with blockchain experts
semi-structured interviews
with software engineering
experts

Research Foundations

Blockchain technology
concepts (inherent features,
platforms, implementation
challenges, use cases)
Distributed software
engineering
Requirements traceability
challenges, and solutions
Software engineering
applications enabled by
blockchain technologies

Research Methodologies

systematic literature review
systematic mapping
semi-structured interviews
grounded theory analysis
techniques
content analysis

ValidateRefine

Applicable knowledge

Contributions to knowledge base

Figure 3.1: Research methodology, adapted from Hevner et al. [2]

3.2 Research Design: A Multi-Method Approach

The underlying philosophical paradigm of this thesis is pragmatism, because
it encourages researchers to carry out empirical inquiries in order to address
real-world practical issues, while acknowledging the existence of singular or
multiple realities [121]. Hence, it is common for pragmatist researchers to adopt
a pluralist research design strategy which in this thesis refers to the use of multiple
qualitative data collection and analysis methods. The justification for applying
a qualitative multi-methods strategy was motivated by the underlying paradigm,
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the exploratory nature of this thesis and the research questions formulated in
Section 1.2. In what follows, the methods are presented in relation to the research
questions.

RQ1 aims to explore the challenges of implementing RT, as reported by recent
literature. Thus, a systematic literature review was considered the most suitable
approach to address this research question. RQ2 aims to explore blockchain
use cases in the SE field, hence a systematic mapping approach was adopted
to map blockchain properties with SE challenges. Finally, RQ3 is addressed by
designing, refining, implementing, and evaluating a blockchain-enabled framework
that can be used by organizations to enable decentralized and trustworthy RT
in interorganizational software projects. Since the framework should be used
by organizations, its refinement aimed to enhance the practicality. Therefore,
blockchain experts’ judgment was incorporated by means of semi-structured
interviews and grounded theory analysis techniques. While the interview-based
qualitative approach was adopted to collect rich and in-depth data from experts
in the field, grounded theory analysis techniques were adopted, due to their
soundness and the novelty of the blockchain-enabled RT topic. Finally, an
interview-based qualitative approach was followed to evaluate the strengths and
limitations of the proposed framework and prototype with SE experts. In this
case, the data was analysed by means of content analysis technique, due to its
ability to emphasize the content of words. These methods are explained in detail
in the following sections.

3.3 Data Collection

3.3.1 Systematic Literature Review

A systematic literature review was carried out in the initial phase of this PhD
project. This SLR relied on the well-known and sound guidelines/procedures
for conducting literature reviews in SE proposed by Kitchenham [36, 122, 123].
The process consisted of three main phases that are presented in the following
section. For a more detailed explanation, the interested reader is referred to the
second thesis paper (P2). The three phases are described, as follows:

(i) Planning the review.
In this phase, the review protocol was developed as a result of brainstorming
sessions with two other researchers. Each brainstorming session provided
feedback that contributed to enhancing the initial protocol. The protocol
consisted of three sections:

• Development of a research question (RQ) that adheres to the structure
(population, intervention, outcome) suggested by Kitchenham [36].

• Selection of a search strategy. Database search was the main
search strategy adopted in this dissertation because it has been
the recommended search approach in SE [124]. However, given
the noise generated by database searches, backward snowballing
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technique which entails scanning reference lists of selected studies,
was adopted as complementary to databases search. In addition, a
search string that incorporated the relevant terms according to the
RQ was formulated and executed in 5 major databases: IEEE Xplore,
ACM Digital Library, Springer Link, Science Direct and Wiley Online,
as recommended by Kuhrmann et al. [125].

• Given that database searches generate a vast amount of studies, it
is necessary to analyze the retrieved studies against inclusion and
exclusion criteria.

(ii) Conducting the review. This phase consisted of selecting studies and
assessing their quality. Figure 3.2 depicts the selection process. Initially,
4530 studies were retrieved from the selected online databases. Then, the
duplicates were removed and a few sections of the studies: title, abstract,
introduction and conclusion (if necessary to make a decision) were assessed
against the inclusion/exclusion criteria. Only 92 out of 4530 initial studies
were selected and their full-texts and metadata were recorded in a reference
manager named Zotero. Finally, 92 full-texts were read and assessed
against quality criteria. Only 60 studies passed the quality threshold and
they were selected as final studies. Their references were analyzed and as
a result, 10 additional relevant studies were identified. In total, 70 primary
studies were reviewed and analyzed in the first part of this PhD project.

(iii) Data extraction and synthesis. An extraction form was created to guide
the data extraction process. The extraction form consisted of the following
attributes whose data was extracted automatically from Zotero: study
title, author(s) name(s), publication date, publication source (journal,
conference, workshop, symposium). Additional attributes, such as research
methods (survey, experiments, field experiment, case study, solution
proposal, or a combination of methods), quality scores, and RT challenges
identified and/or addressed were inserted manually by the PhD student.
The extraction form and the data can be accessed online in Figshare
[126]. According to Kitchenham [122], there are two main data synthesis
approaches: descriptive/narrative and quantitative. In this part of the
thesis, a descriptive data synthesis approach was followed, meaning that
themes were identified and their frequencies were measured. The latter
should not be confused with quantitative approaches, since the frequencies
of themes facilitate the identification of research gaps and future research
directions, rather than suggest their relevance.

3.3.2 Systematic Mapping

The third paper of this PhD thesis (P3) adopted a systematic mapping
methodology that relied on Petersen et al. [3]’s guidelines for systematic mappings
in SE. Figure 3.3 depicts the systematic mapping methodology which is explained
in the following section.
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Figure 3.3: Systematic mapping methodology, adapted from [3]
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As shown in Figure 3.3, the first step of the process was formulating RQs.
In the third paper (P3), four research questions were defined within the main
scope of this review study: the uses of blockchain in SE. These questions aimed
to provide a comprehensive overview on the trend of studies that use blockchain
concepts in SE (RQ1), reported applications (RQ2), blockchain platforms used to
develop SE applications (RQ3) and contributions that blockchain brings to the SE
discipline (RQ4). The first phase of the search process is the construction of the
search string which incorporated relevant terms related to the main concepts of
blockchain technology and software engineering, connected via Boolean operators.
The search string was executed in 4 databases that are often used in the SE
field: IEEE Xplore, ACM Digital Library, Science Direct, and Springer Link,
as suggested by [3, 122]. Consequently, 999 studies published up to 2020 were
retrieved. The title and abstract of these studies were assessed against a set
of inclusion/exclusion criteria and the assessment was passed by 31 studies. In
the last selection phase, the full-texts of the studies were assessed against the
inclusion/exclusion criteria and a final set of 18 studies passed the assessment.
In addition, 4 other studies were selected by means of backward snowballing
technique. The final set of 22 studies, the excluded studies and reasons of
exclusion can be found in Figshare [127].

The final phase of the systematic mapping process entailed developing the
classification scheme and extracting keywords from the selected studies related
to three main dimensions: research topic, research type and contribution type,
as recommended by Petersen et al. [3]. Clustering these keywords enabled the
creation of map categories. In what follows, only the categorization of the three
dimensions is presented, but a more detailed explanation of them can be found
in the published paper (P3):

• Research topic (software requirements, software engineering process, soft-
ware testing, software quality, software maintenance, software configuration
management, software engineering management, software engineering pro-
fessional practice)

• Research type (validation research, evaluation research, solution proposal,
philosophical study, opinion study, and experience study)

• Contribution type (model, framework, interviews, platform)

The keywords extracted from the studies in each of the aforementioned dimensions
can be found in an online repository [127].

3.3.3 Interviews

The method used to improve and validate the proposed framework is experts’
judgement by means of semi-structured interviews. Semi-structured interviews
were chosen due to their flexible nature and their ability to unveil rich contextual
information [128]. Moreover, interviews enable two-way communication between
the interviewer (researcher) and interviewee (informant) which leads to a more
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personal dialogue and uncovering relevant information [129]. A total of 20
semi-structured interviews were carried out in this PhD thesis with blockchain
experts (10; P5) and software engineering experts (10; P7). These interviews
were conducted by the PhD student during 2021-2022 through Zoom, recorded
and transcribed upon interviewees’ consent. The interviews lasted from 40 to 95
minutes. Two different interview guide documents were designed with a set of
pre-defined open-ended questions that can be accessed online [130, 131].

In P5, the interviews aimed to uncover blockchain experts’ opinions and
experience related to the implementation process of blockchain technology in
organizational settings. First, the experts were asked about relevant experience
with blockchain implementations and the relevant projects they participated.
Second, the experts were asked about the process of implementing blockchain
technology in organizations, when to implement blockchain technology, how
to select the best-fitting platform, challenges and success factors. Although
pre-defined questions were formulated to guide the interview process, additional
questions were formulated as a result of data analysis. In P7, the interviews
aimed to elicit SE experts’ opinions on the proposed framework and prototype.
Prior to the interview process, the experts were provided with a short description
of the framework and with a video in which the PhD student showcased the
prototype. Experts were asked about their academic and professional background
on software engineering, the usefulness, validity, strengths, and limitations of the
proposed framework, along with recommendations on how to further enhance
the framework.

3.3.4 Selection of Participants

A total of 20 blockchain or SE experts were selected in this PhD thesis by using
purposive sampling technique (P5, P7). In fact, purposive sampling has been
considered the most common sampling methodology in SE research [132, 133],
and the technique enables researchers to perform expert judgement [134]. In both
studies (P5, P7), experts were mainly selected according to their professional
and academic experience in blockchain or SE. In the fifth study (P5), Fehring
[135]’s experts selection criteria were adapted. It is worthy to note that while
it is true that Fehring’s criteria were used to select nurses in nursing diagnosis
validation studies, these criteria have been also used in the SE field, for instance
Herranz et al. [136] adopted the criteria to select SPI experts to validate a
gamification-enabled framework for SPI initiatives. The following criteria were
used to select blockchain experts:

• Over 2 years of experience (Score=4)

• Academic experience, e.g., teaching and/or supervision of students, related
to blockchain (Score=4)

• PhD in blockchain technology (Score=3)

• Blockchain-related articles published in journals (Score=3)
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• Blockchain-related book chapters, reports or conference/workshop/sympo-
sium papers (Score=2)

• Master’s degree or master’s thesis in blockchain technologies (Score=1)

The candidates were considered experts if they were assessed with a minimum
total score of 5. The first part of Table 3.1 shows the main characteristics of the
selected blockchain experts (EXi for i1,10) in terms of gender, educational level,
years of experience, job position, domains in which they are currently working,
and country. It is interesting to outline that all the blockchain experts had more
than 2 years of academic or professional experience in blockchain technologies and
held different job roles in diverse domains and countries. This diversity provides
broader perspectives and brings more information to the analysis. Additional
detailed information, including experts’ individual scores is presented in the fifth
paper (P5).

A similar strategy was followed in the last validation study (P7) to select SE
experts. The second part of Table 3.1 shows the demographics of the selected
SE experts (EXi for i11,20). Although the researchers tried to invite a gender-
balanced set of SE experts to participate in the validation study, only 3 out of 10
(30%) women agreed to participate. In fact, this reflects the gender-imbalance
that still exists in the SE field. Furthermore, the majority of SE experts (90%)
had over 10 years of academic and/or professional SE experience, and held a
PhD in the SE field. Finally, SE experts held a diverse set of job positions,
ranging from SE researcher and professor to software architect, developer and
tester in different countries.

Table 3.1: Demographics of blockchain experts and SE experts
ID Gender Level

of ed-
uca-
tion

Years
of ex-
peri-
ence

Job position Work domain Country

EX1 Male Master 6 Business devel-
opment director

e-health, energy,
supply chain

Norway

EX2 Male Master 5 Solutions archi-
tect

supply chain US

EX3 Male Master 4 Blockchain soft-
ware engineer

all domains Portugal

EX4 Male Master 7 Chief executive
officer

all domains Norway

EX5 Male Master 3 Researcher marketing indus-
try , education

Sweden

EX6 Male PhD 6 Associate profes-
sor

public sector Sweden

EX7 Male Master 8 Chief technology
officer

all domains Spain
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EX8 Male Master 7 Head of
blockchain and
data strategy

banking Norway

EX9 Male PhD 3 Researcher e-health Norway
EX10 Male Master 6 Chief executive

officer
all domains Spain

EX11 Male PhD 10+ Head of qual-
ity and software
process improve-
ment

all domains Austria

EX12 Male PhD 10+ Software devel-
oper, project
manager, profes-
sor

all domains Ireland

EX13 Male PhD 10+ researcher, pro-
fessor

all domains Spain

EX14 Female PhD 10+ researcher, pro-
fessor

all domains Mexico

EX15 Male PhD 10+ Software archi-
tect, developer,
researcher

all domains Turkey

EX16 Male Master 10+ Software engi-
neer

automotive Egypt

EX17 Male PhD 10+ Researcher all domains Finland
EX18 Female PhD 10+ Tester, Software

Engineer, Prod-
uct Manager,
Professor

all domains Chile

EX19 Female PhD 10+ Tester, Professor all domains Ecuador
EX20 Male PhD 5 RE researcher all domains Germany

3.4 Data Analysis

3.4.1 Grounded Theory

The roots of grounded theory (GT) can be found in the 1960s in the field of
sociology with Glaser and Strauss’s seminal paper “The discovery of grounded
theory: Strategies for qualitative research” [137]. Despite its origins in social
studies, grounded theory has been increasingly employed in Information Systems
[138] and SE research [139]. While it is true that software engineering is a
technical field, it is also true that human aspects play an important role in
designing and developing software, thus the SE community has paid growing
attention to such aspects [4, 140, 141]. In this regard, SE researchers have
organized the International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE) collocated with the International Conference
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on Software Engineering (ICSE) conference since 2011 1. It reveals a growing
interest in sound qualitative research methods in SE research, such as grounded
theory. A quick search in Google Scholar returned several SE studies that
adopted grounded theory to (only a subset of studies is mentioned):

• Explore humans aspects of SE [139]

• Explore practices of self-organizing Agile teams [142]

• Investigate how much upfront architecture design effort is enough according
to agile software teams [143]

• Develop an Agile transition and adoption framework [144].

Grounded theory is fundamentally a method of generating theory from
inductive analysis of empirical data [137]. Despite the existence of different GT
variants (the three main variants are explained in the following section), there
are a set of core components that all the variants share, albeit implement them
differently:

• Delay the scrutinity of extant literature. Often, the GT researcher is
expected to start the data collection process without first conducting a
literature review. This has been referred to as “the blank slate” of the GT
researcher [138]. However, according to Urquhart and Fernández [138], this
is a misconception or misinterpretation of the GT principle of “setting aside
the extant theory”. While this principle does not imply that the literature
should be ignored, it does emphasize the importance of detachment to
avoid possible biases and preconceptions that might influence the emergent
categories and theory. In fact, the literature review has been recommended
to be used in two phases [138]:

(i) non-committal phase. This phase consists of a pre-study review to
define the problem area and understand the methodology. This helps
the researcher to develop theoretical sensitivity.

(ii) integrative phase. The researcher is recommended to return to relevant
literature and integrate it with emergent findings in two stages [138].
The first stage is once theoretical concepts emerge in order to compare
them with converging and diverging patterns in literature. These
comparisons can stimulate new ideas and lead to further theoretical
sampling to reach saturation. The second stage is once the core
category and theory emerge, because it allows positioning the emergent
theory within the wider literature to enhance its robustness and value.

• Simultaneous data collection and analysis. Differently from other
qualitative methods, the GT researcher does not have to wait until the data
collection process finishes in order to start analysing the data. Instead,

1CHASE was considered a workshop from 2011 to 2020 and a conference from 2021 to
2023. For more information, refer to https://www.chaseresearch.org/workshops.
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collected data is analysed prior to subsequent data collection. The analysis
helps to identify gaps and unsaturated concepts which guide subsequent
data collection phases.

• Theoretical sampling. The identified gaps and the need for additional
saturation of concepts lead to the identification of additional data sources.

• Theoretical sensitivity. Theoretical sensitivity is the ability of GT
researchers to develop concepts and identify relationships between concepts.
While creativity is important in this process [145], the integration with
relevant literature can be of value [138].

• Theoretical saturation. The theoretical saturation point is the point at
which there is no need to collect and analyse additional data because the
theory is already well-grounded in empirical data and new data does not
trigger any updates of the emergent theory.

• Memoing. The GT researcher writes memos in the form of notes or
diagrams to describe in detail categories, their properties and relationships
between categories.

• Constant comparison. Grounded theory relies on continuously comparing
data, codes, categories and memos. For instance, codes identified in an
interview transcript are compared with other codes in that transcript
and previous transcripts, meaning that codes and categories are always
evolving.

• Theoretical sorting. Theoretical sorting is a continuous process of moving
back and forth between memos and the theory to position properly the
categories that were created as a result of the coding process.

It is worthy to note that the list of components is not exhaustive. For information
regarding additional components, the interested reader is referred to Glaser,
Strauss and Corbin’s books [137, 145].

There are three main GT genres that evolved from the original GT discovered
by Glasser and Strauss in 1967 [137]:

(i) classic or traditional GT associated with Glasser [146]. Traditional GT is
rooted in the philosophical paradigm of objectivism meaning that there is
a single, accurate description of reality, therefore concepts and theory can
be discovered from empirical data.

(ii) evolved GT associated with Strauss and Corbin [146]. Evolved GT is rooted
in symbolic interactionism which goes beyond objectivism and takes a more
interpretivist approach [139]. According to Chun Tie et al. [147], symbolic
interactionism focuses on subjective meaning people give to events, objects
and behaviours. In such a case, reality is created through interactions
which in turn are based on language and communication [139].
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(iii) constructivist GT associated with Charmaz [148]. Constructivist GT
is rooted in constructivism in which the constructivist (researcher) and
participants co-construct meanings and experience. This collective action
forms the social reality in which the researcher is not neutral.

Despite the philosophical foundational differences between GT genres, there are
other differences related to the formulation of RQ, the role of literature and
coding techniques. The reader is referred to Stol et al. [139]’s comprehensive
comparison of the three GT genres.

Traditional GT was adopted in the fifth study of this PhD project (P5)
to explore the implementation of blockchain technology in organizations. The
underlying motivations behind this choice are presented, as follows:

• Blockchain technology has been conceptualized as a socio-technical
assemblage [149]. Hence, explorative research on blockchain technology can
leverage GT, given that GT is rooted in social sciences and it is suitable
to explore phenomena with social implications.

• GT is used to explore novel, multi-dimensional phenomena [150]. While
blockchain has been increasingly used in several domains, blockchain
research is not yet mature from a theoretical, empirical and methodological
point of view [151].

• GT is suitable for inductive studies, rather than deductive studies that aim
to test upfront hypothesis. The study (P5) adopted the GT methodology to
generate categories grounded in empirical data which were used to enhance
the blockchain-enabled RT framework proposed in the fourth study (P4).

Figure 3.4 depicts the GT process followed in the study (P5), adapted from
Hoda et al. [4].

Interviews generate rich qualitative data that if managed manually, may lead
to inaccurate data analysis. To minimize the errors and facilitate the process,
Nvivo software was used. This software has been previously used in SE studies
that use GT, e.g., [144]. The data analysis process in the fifth paper (P5) adopted
the following traditional GT techniques, as recommended by Glaser [152]:

(i) open coding. First, the PhD student read the transcripts to have an
understanding of the context under study. Second, each transcript was
reread with the goal to identify key points. Third, labels referred to as codes
were assigned to each key point. Finally, the codes were compared with
other codes in the same transcript and previous transcripts. This constant
comparison process is important in GT, as it facilitates the discovery of
concepts and categories.

(ii) core category. The discovery of the core category terminates the open
coding process. The core category must encompass the main concerns
raised by interviews. Moreover, the GT researcher should consider three
main criteria when choosing the core category: (i) Is the core category
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Figure 3.4: Grounded Theory phases, adapted from Hoda et al. [4]

central? (ii) Is the core category related to the other categories in a
meaningful manner? (iii) Does the core category account for the majority
of data variations?

The process of identifying the core category is not trivial, but it can be
facilitated with the use of the constant comparison technique on categories
and the identification of relationships between categories. In this PhD study
(P5), the first 5 interviews pointed out feasibility analysis as a candidate core
category, because it was related to the rest of the categories meaningfully.
However, a further comparison process indicated that this category was not
central and revealed blockchain implementation in organizations, as the
most central category. The identification of the core category is followed
by selective coding which focuses on coding only the core category and
associated categories.

(iii) theoretical memoing. This process consists of writing memos in Nvivo
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regarding perceptions, thoughts or reflections on emergent categories.
These memos are useful in identifying relationships between codes.

(iv) sorting. The sorting process starts after the data collection process and
focuses on explaining categories and their relationships. Given the limited
generalizability due to the relatively low number of interviews, a minimal
literature review was incorporated to the findings in this phase of the
process (P5).

(v) theoretical coding. Theoretical coding focuses on core categories-associated
categories relationships, contributing in this way to the formulation of the
emergent theory. Theoretical coding families proposed by Glaser [152]
can be useful to explain relationships and the emergent theory. The fifth
study (P5) is based on the temporal/process coding family to represent the
category key activities in terms of timeliness, stages and temporal work
ordering [144], as depicted in Figure 3.5.

Finally, Figure 3.6 represents a sample of the coding process that demonstrates
the emergence of the category challenges from a set of identified codes and
concepts.

Figure 3.5: Representation of key activities category by means of Glaser’s
temporal/process family

3.4.2 Content Analysis

While the roots of content analysis can be traced back to the beginning of
the use and analysis of symbols and texts in ancient fields, such as philosophy,
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Figure 3.6: Mind map to depict the emergence of the category "Challenges" from
underlying concepts and codes

today’s content analysis is a method with exploratory nature that is grounded
in empirical data [153]. During the last two decades, content analysis has
been adopted in SE studies, for instance to identify communication issues in
requirements elicitation through stakeholders’ lenses [154], to explore the main
dimensions of SE success [155], and to explore the rationale of users in software
reviews [156]. Hsiech and Shannon [157] presented the three following content
analysis approaches and the differences among them:

(i) conventional content analysis. In conventional content analysis, the
researcher generates coding categories from data.

(ii) directed content analysis. In directed content analysis, existing theories or
previous research findings are used to guide initial codes which are then
used to analyse empirical data.

(iii) summative content analysis. In summative content analysis, the researcher
counts and compares keywords or content, and interprets the underlying
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context. These keywords can be defined before starting the data analysis
process using a literature review.

Content analysis was chosen as the main analysis method in the last paper
of this PhD project (P7), because of its flexible design nature [158], and the fact
that it puts emphasis on the content of words [153]. The last study (P7) used
the content analysis process introduced by Elo and Kyngäs [5], due to the high
number of citations (2960 citations related to SE out of 22389 total citations,
Google Scholar, accessed on 03.12.2022). The process is depicted in Figure 3.7,
and consisted of three main phases:

(i) Preparing. The first phase starts with identifying the unit of analysis which
can be a word, theme, one or more sentences, entire interviews or the
number of subjects. If the unit of analysis is too broad, the analysis process
becomes challenging, but if the unit analysis is too narrow (e.g., one word),
fragmentation can occur [5]. In P7, entire interviews are chosen as the unit
of analysis, in line with Graneheim and Lundman [159]’s recommendation
that considered interviews as large enough to obtain a sense of the whole,
and small enough to contextualize meaning units during the data analysis
process. Then, the interviews’ transcripts were uploaded in Nvivo and
were read by the authors of the study to acquire a sense of the whole.

(ii) Organizing. After understanding the data, the analysis was carried out
using an inductive approach. Following the inductive approach, the PhD
student organized the qualitative data by means of open coding, content-
based grouping, categorization and abstraction. The transcripts were
broken down into one or more sentences that represented meaning units
which were transformed into condensed meaning units by reducing and
simplifying the wording. Then, codes were assigned to meaning units in
an iterative fashion, were collected in coding sheets and were grouped
based on their content into categories. To enable a higher abstraction level,
categories can be further categorized until a logical and understandable
explanation has been reached.

(iii) Reporting. Finally, contents of the categories were described in detail. This
phase is necessary to demonstrate links between the results and empirical
data, thus ensure reliability and transparency of the study [160, 161].
Samples of the coding process can be found in Table 3.2 and in an online
repository [131].

3.5 Reflections on Methodological Quality

In this section, the credibility of the methodological decisions made in this thesis
is discussed in terms of validity, generalizability, and ethical considerations.
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Table 3.2: Sample of the coding analysis process

Meaning unit Condensed
meaning
unit

Code Sub-
category

Category

“It could be too
much details like
most of the time
as you’re working
in the same field,
this kind of high
complex documen-
tation is one of
the things you need
to avoid at some
stage. So, you are
creating enormous
amounts of docu-
mentation or just
processing work. . . ”

Complex and
enormous
documenta-
tion is being
created.
High amount
of processing
work (over-
head)

Documentation
perceived as
overhead

Business Blockchain-
based
software
process
improve-
ment

“In my experience,
there are software
engineers. . . , who
are used to use tech-
nologies which they
are familiar with,
and they are quite
reluctant to embark
on new technolo-
gies. That’s a
little bit contradic-
tory to their capac-
ity to change, be-
cause they would un-
derstand the tech-
nology.”

Software
engineers are
reluctant to
embark on
new tech-
nologies

Software
engineers’
resistance to
change

Change Blockchain-
based
software
process
improve-
ment

“One thing that is
missing is how to
evaluate the return
on investment of
this technology. I
think it is missing
a sixth step «Eval-
uate», because you
have the prototype,
but it is important
to know how much
it is going to cost”

Missing final
step: Evalu-
ate return on
investment

Add a final
phase ’Evalu-
ate’

Experts’
recom-
menda-
tions

Experts’
recom-
menda-
tions
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Figure 3.7: Content analysis process, adapted from Elo and Kyngäs [5]

3.5.1 Validity

According to Cook and Campbell [162], validity refers to “the best available
approximation to the truth or falsity of propositions”. An interpretation of
this definition can be that research per se is not subject to validity, rather the
conclusions drawn from the results of the empirical study may be subject to
validity [163]. Indeed, studies’ design choices and their execution influence the
validity of the results and conclusions. Validity can be discussed in terms of
internal and external validity. This section focuses on the former, while the
latter is explained in Section 3.5.2. Internal validity can be defined as the extent
to which the researcher is confident in conclusions drawn from a cause-effect
relationship [162]. The validity of results and conclusions can be threatened by
researchers’ biases. The presence of researchers’ biases is acknowledged in this
thesis, particularly in the following stages of review studies (P2, P3): in the
selection of databases, in the formulation of search strings, inclusion/exclusion
criteria, design of extraction forms and interpretation of findings. To minimize
these biases and to ensure accurate description of findings that lead to conclusions
grounded in data, these processes were first performed by the PhD student
based on a protocol and then reviewed by other researchers with experience in
conducting SE secondary studies.

In addition to systematic reviews, threats to internal validity are present in
qualitative research, for instance possible biases in the selection of blockchain
and SE experts (P5, P7). To address this threat, a strategy was defined and
used to select experts with relevant academic and professional experience in
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blockchain and SE, in a systematic manner (See Section 3.3.4). Following such
a systematic approach is very important, as the selection of experts affects the
validity of results and conclusions. Another threat to internal validity worthy to
be mentioned is the abundance of data generated in qualitative research which
leads to a time-consuming, tiring and error-prone coding process, in particular
for novice researchers [164]. To address this limitation, the PhD student was
supported in her inquiry journey by two experienced researchers in the SE field,
as recommended by Annells [165] and Chun Tie et al. [147].

It is also worthy to outline that this thesis follows a multi-methods approach,
as explained in Section 3.2. This approach enables methods triangulation which
is one of the main strategies used to enhance internal validity of qualitative
approaches [166]. Finally, publication bias can be a potential threat to validity,
due to the nascent phase of the blockchain-enabled SE field, in particular the
lack of studies in the blockchain-enabled RT topic. However, this is perceived as
supporting the novelty of the thesis, hence facilitating the publication of studies,
rather than hindering the publication process.

3.5.2 Generalizability

Although the findings of this thesis are limited to the scope of the research
project, further research can contribute to transferring the findings across a
variety of domains and contexts. For instance, the thesis focused mainly on
tracing requirements, source code artifacts, test cases and test results in general-
purpose domains, but further research can extend the proposal by tracing
other artifacts in safety-critical systems, e.g., in the automotive domain. The
framework can also be adapted to specific software development practices, such
as agile practices, and include other stakeholders’ roles and artifacts. In fact,
the findings of all the studies in this thesis were intended to be domain-agnostic,
for instance challenges of RT were identified independently from the domain
(P2). In addition, blockchain experts from different domains, countries and
blockchain-related roles were interviewed to unveil the implementation process
of blockchain in organizational settings (P5). This was done on purpose to
gain a broad perspective on the topic of interest. It is also worthy to mention
that achieving generalizability in qualitative research is complex, due to the
focus on the contextualized understanding of human opinions and experience
[167]. Achieving generalizability is particularly challenging, when the number of
interviews is low [168]. Given the lack of unanimously agreed guidelines about
sample size in qualitative research [154], Morse [169]’s factors were adopted in
P7 to determine the number of SE experts:

(i) focused scope of study. The scope of P7 was to validate blockchain-enabled
RT framework and prototype.

(ii) clear nature of the topic. The topic investigated in P7 was trustworthy
traceability management by means of blockchain technology.
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(iii) data quality. Rich empirical data was collected in over 100 pages of
interview transcripts in the last paper (P7) and a set of 84 codes emerged.

While these factors cannot ensure conclusiveness of findings, they suggest that
the number of experts satisfies the purpose. Moreover, it is worthy to note that
the goals of P5 and P7 lie in refining the proposed framework and validating
the proposal respectively, rather than achieving generalizability of findings. The
GT approach adopted in P5, like any other qualitative inquiry method, is
inevitably prone to external validity threats [167], although the 4 criteria: fit,
workability, relevance and modifiability proposed by Glaser [152] were used to
validate the categories that emerged in P5. After the first 8 interviews conducted
with blockchain experts, it was observed that new categories did not emerge,
suggesting the theoretical saturation point. Although two more interviews were
conducted to confirm the theoretical saturation point, it is worthy to highlight
that the theoretical saturation point does not ensure generalizability.

Finally, qualitative research should ensure reproducibility which refers to
the ability to yield the same results, by adopting similar raw materials [170].
To enable reproducibility and transparency, the analysis processes followed
in this thesis (P2, P3, P5, P7) are documented in Figshare, as transparent
reproducibility packages [126, 127, 130, 131].

3.5.3 Ethical Considerations

This PhD dissertation contains two studies that carried out interviews with 20
blockchain and software engineering experts. Although the studies did not handle
sensitive data, they were submitted for approval to the Norwegian Center for
Research Data (NSD), prior to their execution. It is worthy to note that informed
consent forms were created for each of the studies and they are available online in
Figshare [130, 131]. These forms consisted of detailed information regarding the
rights of participants, such as voluntariness and anonymity, possible implications
of participation in these studies, the purpose of the studies, motivations behind
the selection of experts, information regarding data recording, storage and
deletion, along with benefits and risks of the studies. The informed consent
forms were evaluated to ensure adherence to General Data Protection Regulation
(GDPR) and were approved by the Data Protection Officer at Østfold University
College.
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Chapter 4

Research Findings

“If we knew what we were doing, it would not be called research,
would it?”

(Albert Einstein)

This section provides an overview of 7 papers that comprise the underlying basis
of the thesis. The papers have been published in international conferences or
Scopus-indexed journals that are ranked in Journal Citation Report. The papers
were designed based on the initial PhD research project that received feedback
in the RE Doctoral Symposium. Diverse data collection and analysis approaches
were adopted in the papers to address the research questions (See Section 3.2).
Reflections regarding the purpose, research approach, findings and contributions
of the papers are presented briefly in this section, in the order in which the
papers were written during the PhD program.

4.1 Paper I: Blockchain-oriented Requirements Engineering:
A Framework

S. Demi "Blockchain-oriented Requirements Engineering: A Frame-
work," in 2020 IEEE 28th International Requirements Engineering
Conference (RE), pp. 428–433, IEEE, 2020.

Overview: The first paper [171] provides an overview of the initial PhD research
plan. The paper emphasized the motivation for starting the PhD project, related
work in the fields of requirements traceability process, technologies and tools,
requirements traceability challenges, and the bi-directional relationship between
blockchain technology and software engineering. In addition, the paper outlines
the purpose of the PhD research project, the planned research process and
activities, data collection methods and analyss techniques. The paper was
submitted at a Doctoral Symposium which was part of the well-recognized
International Requirements Engineering Conference 2020. Potential benefits
and risks of the proposed approach were discussed with RE experts. A mentor
was assigned to each PhD student to provide feedback on the PhD plan. This
process contributed significantly to improving the initial plan and guiding the
work of the PhD student in a systematic manner.
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4.2 Paper II: What have we learnt from the challenges of
(semi-) structured requirements traceability?

S. Demi, M. Sanchez-Gordon, and R. Colomo-Palacios, "What have
we learnt from the challenges of (semi-) automated requirements
traceability? A discussion on blockchain applicability," IET Software,
vol. 15, no. 6, pp. 391–411, 2021.

Purpose: The RT community has investigated RT challenges for over three
decades. The core work in the field has been conducted by Gotel and Finkelstein
[11], followed by CoEST [13] that identified eight RT challenges: purposed, cost-
effective, configurable, portable, trusted, scalable, valued and ubiquitous. The
second study of this PhD project [103] aimed to contribute to the existing
knowledge in the field by identifying and categorizing challenges of (semi-
)automated RT, as reported by empirical studies published during the period
2009-2019. The need for a holistic and updated view on the challenges was
identified as a result of a preliminary literature review that suggested the lack of
such studies in recent literature. In fact, the last similar study has been carried
out in 2009 by Winkler and Pilgrim [31].
Research approach: This study followed a SLR approach based on Kitchenham
and Charters’s guidelines for performing systematic reviews in software
engineering [123]. The research approach consisted of the following phases:

(i) Planning the review. First, the main research question was formulated
relying on PICO (population, intervention, comparison, outcome) strategy,
then the search strategy was defined in terms of search string and online
databases. It is not surprising that database searches produce a high
number of studies that often are irrelevant to the research topic. Therefore,
the retrieved studies should go through a rigorous selection process. This
process started with defining inclusion and exclusion criteria.

(ii) Conducting the review. The selection of studies went through three different
phases. First, the search string was executed in four major databases and a
set of 4530 studies was retrieved. Second, the title, abstract, introduction
and conclusion of the studies were evaluated using the inclusion and
exclusion criteria. The second phase produced 92 studies and their full-
texts were recorded in Zotero. Finally, the authors of the study read the
full-texts and selected the final set of studies based on pre-determined
quality criteria. As a result of this phase, 60 studies were selected and 32
studies were excluded. Snowballing was performed on the final studies to
identify additional primary studies that might had been missed throughout
the process. Consequently, 20 studies were discovered, and only 10 of
them passed the assessment. In total, the review encompassed a set of 70
relevant studies.

(iii) Data extraction and synthesis. An excel extraction form was used to collect
data for each study. The following data were collected: title, author(s)
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name(s), publication date, publication source, research methods and themes
with respect to RT challenges. Descriptive data synthesis was followed by
identifying and measuring themes from the extracted data.

Findings: The main findings of this SLR are presented in the following section:

• The majority of RT primary studies were published in conference
proceedings. In fact, 32% of the studies were published in the proceedings
of the International Requirements Engineering conference which is the
most important venue in the field. This means that a significant part of
the traceability research has been performed by the RE community, in line
with the findings of previous studies [31].

• Over 50% of the primary studies adopted experiments as the main research
method, and a lack of exploratory studies, such as case studies and surveys,
was observed. This finding suggested the need for more exploratory studies
to enhance the understanding of traceability practices in organizational
settings.

• The analysis of the primary studies revealed two main directions of
traceability research with respect to challenges: (i) approaches focused
on solving (semi-)automated traceability generation and maintenance
challenges, (ii) approaches focused on challenges related to the human facet
of traceability. In addition, the review indicated the low accuracy of RT
recovery methods, as the most frequently addressed challenge.

• The study identified a set of 21 challenges which were then grouped
into 5 main categories, as follows: (i) technological challenges (low
accuracy of traceability recovery methods, inadequate integration or
interoperability among heterogeneous tools, traceability decay, lack of
change notification and propagation, poor presentation and visualization
of trace links), (ii) human factors (lack of trust in human’s judgement,
lack of system experience, lack of training, invisible benefits, provider-
user gap, perceived as overhead), (iii) organizational challenges (lack
of organizational strategies and guidelines for traceability, undefined
roles and responsibilities for traceability, project dimensions related
challenges, challenges enabled by the software development approach),
(iv) communication and collaboration challenges (intraorganizational
communication challenges, communication challenges in distributed
software development, interorganizational collaboration challenges), and
(v) regulatory challenges (implicit traceability requirements in regulations,
granularity in requirements for traceability, legal and intellectual property
constraints).

• Recent studies advocated for new technologies to solve RT issues [20].
In the same line, this study discussed and elaborated on the potential
of blockchain to enable trustworthy, reliable and available RT across
organizational boundaries.
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Contributions: The contributions of this paper can be categorized into three
main dimensions: (i) providing a holistic and domain-agnostic view of RT
challenges by identifying 21 challenges and grouping them into 5 categories, (ii)
discussing the novel application of blockchain technology for ensuring trustworthy
and available traceability in interorganizational software projects, and (iii)
unveiling research gaps that require future research efforts, such as distributed
traceability, traceability approaches in agile and DevOps, investigation of human
factors in RT, and the need for more exploratory studies to increase the
understanding of traceability practices in organizational environments.

4.3 Paper III: Software Engineering Applications Enabled by
Blockchain Technology: A Systematic Mapping Study

S. Demi, R. Colomo-Palacios, and M. Sanchez-Gordon, "Software
Engineering Applications Enabled by Blockchain Technology: A
Systematic Mapping Study," Applied sciences, vol. 11, no. 7, p.
2960, 2021.

Purpose: The potential benefits of blockchain technology have been investigated
in a variety of domains [106, 107, 172]. Recently, SE researchers have explored
the bi-directional relationship between blockchain technology and SE [108, 109].
The third study of this thesis [110] aimed to present a holistic, quantitative and
qualitative overview of applications of blockchain technology in SE. The main
aim was decomposed into the following four deliverables:

• an overview of the trend of studies that use blockchain in SE and their
research methods,

• identification of blockchain use cases and their classification into SE
knowledge areas. This classification was important to outline overlooked
areas.

• an overview of implementation aspects of blockchain-enabled SE applica-
tions, particularly blockchain platforms and consensus mechanisms.

• identification of the contribution of blockchain in the SE domain, by
mapping blockchain properties with respective SE challenges.

Research approach: This study adopted a systematic mapping approach that
followed Petersen et al. [3]’s guidelines for systematic mappings in SE. The
following search string was developed considering the main scope of the review
which is “blockchain in SE”: (blockchain OR “smart contracts” OR “distributed
ledger”) AND (“software development” OR “software engineering”). This search
string was executed in 4 major databases: IEEE Digital Library, ACM digital
library, Science Direct, and Springer Link. This process returned 999 initial
studies which were then assessed against inclusion/exclusion criteria. A set of
18 studies were evaluated as relevant. Then, the references of these studies were
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scanned and 4 additional studies were discovered. A total of 22 studies composed
the final list of relevant studies.

The last phase of the process entailed the development of the classification
scheme by using the keywording technique. Keywords were extracted from the
abstracts of the selected studies and then, they were grouped to create map
categories. Map categories were created in three facets:

• research topic. This facet aimed to structure the topics related to blockchain
use cases in SE knowledge areas.

• research type. According to Petersen et al. [173], the main research types
are evaluation research, validation research, solution proposal, philosophical,
opinion and experience study.

• contribution type. The main contribution types of this study: model,
framework, interviews and platform were adapted from Petersen et al.
[173].

Findings: The main findings of this study are summarized, as follows:

• The first study was published in 2015 and 91% of the studies were published
during 2018-2020 which suggests slightly growing efforts in the field. All
the studies were published in workshops and conference proceedings,
consequently a lack of journal studies was discovered.

• 95% of the studies proposed solutions or validated their proposals in
experimental settings. In addition, 77% of the studies contributed with
models or frameworks. The identification of only one evaluation study
indicates scarce empirical evidence regarding the impact of blockchain
technology in SE.

• The study depicted findings in a scatter plot that presented the intersection
of the research type and contribution type dimensions with the research
topic dimension (See Figure 4.1). The identified use cases were grouped
into 8 SE knowledge areas, adapted from SWEBOK: software requirements,
SE process, software testing, software quality, software maintenance,
software configuration management, software engineering management,
and professional practice. A more detailed description of the use cases can
be found in P3.

• The most used blockchain platforms are Ethereum and Hyperledger
Fabric, due to their inherent ability to execute code. Only two consensus
mechanisms were proposed in the selected studies:

– a consensus mechanism that is based on a probability distribution
function which takes as input developers’ activity in terms of their
contribution and waiting time, and number of votes of testers for each
developers’ work, i.e., code.
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– proof-of-skill which relies on maintaining skill rating for testers based
on their previous performance. Testers are grouped based on their
votes and the average skill rating is computed for each group. The
group with the highest skill rating wins the dispute.

• Blockchain properties, e.g., decentralization, transparency and trust,
immutability and data security, anonymity, non-repudiation, smart
contracts, have been mapped with SE challenges. To summarize, blockchain
can contribute to the SE domain in 4 main directions:

– Use decentralized systems based on blockchain to ensure availability
and eliminate single point of failure and compromise. These systems
can replace existing centralized systems, such as GitHub, Travis CI,
and cloud-based package managers.

– Blockchain can function as backbone of the SDLC ecosystem where all
software artifacts and their properties can be stored and shared among
stakeholders in distributed locations. By doing so, blockchain can
enhance trust among stakeholders and enable auditability, compliance
to standards and regulations analysis, and identity assessment
analysis.

– Reliable software artifacts sharing by detecting illegitimate accesses
or modifications of software artifacts.

– Smart contracts can automate a set of SE activities that rely currently
on humans, for instance, verification of acceptance criteria, verification
of quality criteria, compliance to standards and regulations, and
automatic payments to developers.

Contributions: The blockchain-oriented SE field is not yet mature from a
research perspective, as this secondary study is one of the first attempts to
organize and advance the existing knowledge in the field. The findings of this
study can be valuable to both academia and industry, particularly the findings
may benefit the following stakeholders: (i) researchers interested in exploring
the potential of blockchain technology in the SE landscape, and (ii) practitioners
willing to comprehend how this novel technology can disrupt the software
development industry. Researchers can take inspiration from the use cases
presented in this review and contribute with prototypes and proof-of-concepts to
enhance the understanding of blockchain technology applications in SE. Strong
empirical evidence on the benefits of using blockchain to address SE issues
can motivate SE practitioners to implement the proposed blockchain-enabled
applications in their organizational settings.
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Figure 4.1: Systematic map visualization using bubble plot

4.4 Paper IV: A Blockchain-enabled Framework for
Requirements Traceability

S. Demi, M. Sánchez-Gordón, and R. Colomo-Palacios, "A
Blockchain-Enabled Framework for Requirements Traceability," in
Systems, Software and Services Process Improvement: 28th European
Conference, EuroSPI 2021, Krems, Austria, September 1–3, 2021,
Proceedings, pp. 3–13, Springer, 2021.

Purpose: Enabling traceability is particularly challenging in projects with
distributed teams. Existing centralized artifacts repository can be subject to
internal and/or external attacks performed by entities with malicious intentions.
In addition, many projects require the participation of third-party vendors, and
organizational boundaries in such a case inevitably exacerbate trust issues. The
fourth study of this PhD project [6] proposed a blockchain-based framework
for trustworthy RT with the ultimate goal of enabling a reliable traceability
knowledge base that keeps track of source and destination artifacts throughout
the software development lifecycle. The objectives of the framework are as
follows:

• Provide stakeholders with a holistic and reliable view of the software
development lifecycle.

• Incentivize software engineers to participate in traceability tasks.
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• Use voting mechanisms to validate the authenticity and quality of trace
links.

• Use query services to enhance the understanding of traceability information.

• Trace links should be visualized in a hierarchical and interactive manner.

Solution Proposal: The initial proposed framework is depicted in Figure 4.2.
In what follows, the main components of the framework are explained:
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Figure 4.2: Initial blockchain-oriented RT framework, published in [6]

(i) Strategic Layer. This layer encompasses the strategical decisions that
need to be made by software organizations interested in implementing
blockchain technology. The paramount decision is whether blockchain
technology is needed and feasible in the specific organizational environment.
To facilitate the decision-making process, organizations should conduct
feasibility analysis that consists of alignment analysis between blockchain
properties and RT strategies, and technological comparison analysis
between blockchain and existing tools and technologies used for storing
traceability information, e.g., traceability matrices in Excel, relational
databases, graph traceability repositories, and cost-benefit analysis. Then,
the organization should define a traceability information model (TIM)
which can be composed of the following elements: artifacts to be traced
and their metadata, relations between source and destination artifacts, and
trace type rules that refer to trace links’ semantics. These elements can be
encoded into smart contracts to allow only the registration of the artifacts
that are specified in TIM and identify trace links’ naming automatically.
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The organization should also define incentive policies that consider the
eligibility to register trace links, validation of quality trace links and the
amount of incentives that should be assigned for the creation of each trace
link type, according to its priority.

(ii) Blockchain Proposal. The architecture of the proposal entails four main
components, as follows:

• Data Collection. Artifacts specified in TIM should be captured
automatically by means of data ingestion tools/plugins and then
recorded on blockchain. SDLC entities create trace links manually or
by means of (semi-)automated RT tools and invoke respective smart
contracts to register trace links.

• Storage Layer and Smart Contracts. A set of functions are enabled
by smart contracts: register artifacts, register trace links, validate
trace links authenticity and quality, and reward creators of quality
trace links. Artifacts’ contents can be stored off-chain in IPFS
(Interplanetary File System) to address storage limitations.

• Query Layer. Traceability queries can be composed for primitive
links, i.e., between adjacent artifacts, and composite trace links, i.e.,
between non-adjacent artifacts.

• Presentation Layer. The framework suggested hierarchical and
interactive representation of trace links.

(iii) Implementation. A system based on the framework should be developed by
establishing close collaboration between software engineers and blockchain
experts or startups. Other important aspects that should be considered
in the implementation phase is defining metrics for the selection of the
best-fitting blockchain platform and communicating the value of using
blockchain for RT clearly to all SDLC entities.

(iv) Assessment. The contributions of blockchain in the software development
lifecycle should be assessed. Potential contributions can be:

• Motivate SDLC entities to create quality trace links.
• The holistic view of trace links and their visualization may encourage

the use of traceability in supporting other SDLC activities.
• The increased use of traceability can enhance the performance of

software engineers in addressing SDLC tasks.
• Enhanced performance leads to software quality, which in turn results

in less need for software maintenance and consequently, cost savings.

Contributions: The findings of the literature reviews conducted in the initial
phase of the PhD project (P2, P3) suggested that this is the first framework that
uses blockchain for reliable requirements traceability. This initial framework
provided the basis for the next studies of this thesis, which aimed to improve it,
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particularly from a feasibility perspective. The framework was first improved
according to the judgement of blockchain experts and then evaluated by SE
experts. This initial framework can also encourage other researchers to build
prototypes based on blockchain platforms, such as Ethereum or Hyperledger
Fabric to validate the concept.

4.5 Paper V: Blockchain for Requirements Traceability: A
Qualitative Approach

S. Demi, M. Sánchez-Gordón, and M. Kristiansen, "Blockchain
for Requirements Traceability: A Qualitative Approach," Journal of
Software: Evolution and Process, p. e2493, 2022.

Purpose: Blockchain has received significant attention in industry and academia.
The preliminary research conducted by the PhD student indicated that most
of the research takes a technical, rather than an organizational perspective.
Therefore, it is important to provide evidence on how blockchain technology
is implemented in organizational settings. The fifth study of this thesis [174]
aims to shed light on the implementation process of blockchain technology from
the lens of blockchain experts. The findings are used to improve a previously
proposed blockchain framework [6]. The ultimate goal of this improvement is to
facilitate the implementation of the proposed framework in software-oriented
organizations based on practical recommendations.
Research approach: This study followed the traditional GT approach which
aims to generate theories or frameworks based on inductive data analysis
[137, 147]. The motivations behind the choice of this research method are
explained in Chapter 3. The GT approach is characterized by an ongoing and
iterative relationship between data collection and data analysis. This means
that the concepts derived from the analysis of the initial interviews’ data are
used to formulate focused questions in the next interviews. The data collection
method used in this study is semi-structured interviews with blockchain experts.
Semi-structured interviews were chosen, because they enable flexible discussions
between the interviewer and interviewee [128]. A more detailed description of
the experts’ selection process and interviews is presented in Chapter 3.
Findings: Data analysis suggested the emergence of the core category:
“Blockchain implementation in organizations” and three related categories: key
activities, challenges, and success factors (See Figure 4.3). The main findings
are summarized in the following section:

• Business needs and requirements should drive the choice for blockchain
technology and not vice versa. Blockchain is not suitable for every use
case.

• According to our experts, the identification of the right environment takes
60% of the entire process of implementing blockchain technology. In fact,
the importance of a critical and thorough investigation about the need
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Figure 4.3: Emergence of core category, related categories and concepts by means
of GT techniques

for blockchain technology in a specific environment has been outlined in
literature [175]. Schulz et al. [175] highlighted that blockchain technology
should not be seen as a silver bullet to address all problems.

• Two main dimensions were identified as significantly influencing the
decision for blockchain technology: the legal dimension and blockchain-as-
a-platform.

• The blockchain platform selection should be guided by foundational
values of the organization, and a set of factors, e.g., network accessibility,
transaction fees, consensus mechanisms, programmability, and community
of developers.

• The majority of blockchain projects stop at the prototype/pilot stage.
The core reason for this is that the decision to implement blockchain is
pushed by the innovation team that tests out prototypes, instead of top
management.

• The experts emphasized the organizational resistance to change, regarding
the implementation of blockchain technology and elaborated on three
main factors that may influence the resistance: innovation-production gap,
conservative management, and centralized mentality.

• The following set of challenges were identified: costs (transaction fees,
legal costs, cost of shifting into another BC platform, development, and
infrastructure costs), fear of regulation and confusion regarding regulations,
and technical issues (interoperability, scalability, and security).

• The following success factors were uncovered: being agile in order to
be able to identify problems in a timely fashion and prioritize them,
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involving customers in the early stages of the blockchain implementation
process throughout all the meetings with blockchain experts/startups,
establishing innovation ecosystems, as the result of collaboration between
different parties to create new value streams. Moreover, it was found out
that the blockchain ecosystem is characterized by decoupled collaboration
that take the form of alliance structures, or public-private partnerships,
and the experts outlined the organizational need to train personnel to
get blockchain knowledge in-house and to enhance education throughout
the organization in terms of how to identify blockchain use cases, the
business value that blockchain can bring, and technical education to develop
blockchain solutions.

• Additional success factors mentioned by the experts were to approach
blockchain with an open mindset, to think big, and digitize larger chunks
of the process that include different parties.

These findings were useful to improve the initial blockchain-enabled framework
for RT, as depicted in Figure 4.4. Each component of the framework is explained
in detail in P5.
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Figure 4.4: Framework to implement blockchain for RT in organizational settings

Contributions: This study contributes to the existing knowledge and practice
regarding blockchain technology in two directions:

(i) outlines the activities involved in implementing blockchain in organizations,
along with associated challenges and success factors. The findings of
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this exploratory study can be useful for researchers and practitioners
interested in blockchain technology, increase the understanding of this
technology by providing a holistic organizational approach and encourage
the implementation of blockchain-based solutions, particularly in software-
oriented organizations.

(ii) enhances the quality and practicality of the initial framework by incorpo-
rating relevant categories grounded in empirical findings.

4.6 Paper VI: A Neural Blockchain for Requirements
Traceability: BC4RT Prototype

S. Demi, R. Colomo-Palacios, M. Sánchez-Gordón, C. Velasco,
and R. Cano, "A Neural Blockchain for Requirements Traceability:
BC4RT Prototype," ,” in Systems, Software and Services Process
Improvement: 29th European Conference, EuroSPI 2022, Salzburg,
Austria, August 31–September 2, 2022, Proceedings, pp. 45–59,
Springer, 2022.

Purpose: As discussed in the Background section (See Chapter 2), there is a
vast number of traceability studies that propose different tools and technologies
to solve specific RT challenges. However, despite the substantial knowledge
in this topic, the traceability community has highlighted that achieving full
traceability in complex, large-scale and interorganizational software projects
remains an open challenge [10, 28]. The goal of the sixth study of this thesis [7]
is to propose and implement a blockchain-enabled prototype for the trustworthy
management and traceability of software artifacts in interorganizational software
projects based on the proposed framework in the previous study (P5). This
prototype provides SDLC stakeholders with a holistic and reliable view of software
artifacts, their changes and trace links. The enhanced visibility on the SDLC may
potentially improve communication, coordination and trust among stakeholders,
and consequently enhance software development efficiency and quality.
Prototype proposal and implementation: The prototype represents the
implementation of the conceptual framework proposed in P5. The prototype
was tested by means of a use case that considered four job roles: requirements
manager, developer, tester, and customer. It is worthy to note that the prototype
assumed a lack of trust among SDLC participants located in distributed settings.
In this context, blockchain can serve as a secure software artifacts repository
that ensures reliability, transparency, trust, traceability, and auditability. Each
of the users (stakeholders) can carry out different operations. For instance,
requirement managers can create new projects and requirements for each project.
The projects, requirements, the timestamp of when requirements were created,
contributor name, and current status “created” is also stored on blockchain. In
addition, requirements managers can change requirements by updating their
version, description or short name. This event changes the current status from
“created” to “changed”.
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For each requirement, developers can register related source code artifacts,
and consequently the current status changes into “implemented”. Testers can
register test cases and test results for each related requirement and the current
status changes from “implemented” to “tested”. Finally, the customer can view all
the changes of software artifacts and can track the lifecycle of each requirement.
This prototype was the result of the implementation of the framework proposed
in P5 that required the selection of a P2P platform that ensures efficiency,
scalability, and security (See Section 2.1.4). Therefore, NDL ArcaNet was chosen
as a collaborative P2P network that fulfils all the requirements of the use case
and developed by the company that contributed to this PhD project, named
ByEvolution Factory. A detailed description of this platform can be found in
Chapter 2.

The blocks’ structure in Figure 4.5 depicts the creation of the project token
with the following attributes: project token code, project domain, project name,
token password, and additional information about the specific project. Each
project token consists of a set of requirement tokens with the following attributes:
ULID code of the requirement token, ULID code of the project that points to the
parent project token, password of the requirement token, domain, requirement
version, current status of requirements (i.e., created, changed, implemented, and
tested), description and short name of the requirement, timestamps of when the
requirement was created and updated, the contributor who carried out a specific
operation on the token, flags (i.e., implemented or tested), related source code
and test cases files.

The emission of the requirement token creates Block #1 which contains
metadata, signatures of the previous block, content of the requirement token,
signers of the next block as a combination of trusted and random nodes. The
structure of consequent blocks is similar to the first block with the only difference
that they store token changes, instead of the whole token content. The genesis
block is provided randomly by the other network nodes. Finally, the user interface
of the prototype is explained thoroughly in [68]. The feasibility of the prototype
is validated by using the dataset of an electronic health records application,
named iTrust in P6, and evaluated by SE experts in P7.
Contributions: This study contributes to the existing knowledge about
blockchain and requirements traceability by proposing and implementing a
blockchain-based prototype. This is the first prototype that enables SDLC
stakeholders to keep track of who/how/when and by whom requirements were
created, updated, implemented and/or tested in a trustworthy manner. In
addition, the study explained a novel P2P collaborative platform that relies
on the concept of neural distributed ledgers, named ArcaNet. This is one of
the first published studies that leveraged the benefits of this platform: security,
decentralization, scalability and performance efficiency. Although the uses of the
NDL ArcaNet platform are currently unexplored, these benefits can be exploited
in other domains, such as e-commerce and Internet-of-Things.
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Figure 4.5: Underlying blocks’ structure, published in [7]

4.7 Paper VII: Trustworthy and Collaborative Requirements
Traceability: Validation of a Blockchain-enabled
Framework

S. Demi, M. Sánchez-Gordón, and R. Colomo-Palacios, "Trust-
worthy and Collaborative Requirements Traceability: Validation of a
blockchain-enabled framework,", Submitted to Journal of Software:
Evolution and Process.

Purpose: This study built on top of the previous studies of this PhD project.
The paper focused on validating the proposed framework and prototype by using
SE experts’ judgement.
Research approach: This study adopted a qualitative data collection approach
based on semi-structured interviews with SE experts. The interviews lasted for
45 minutes at maximum and were carried out through Zoom upon interviewees’
consent. A set of predefined questions can be accessed online [131]. Experts were
selected by using purposive sampling strategy, as the main sampling strategy used
in the SE field [133, 134]. The experts were selected with a broad experience in
different SE subdomains, with a combined academic and professional experience.
The majority of experts had over 10 years of experience and all of them had high-
level education (10% master’s degree, 90% PhD). The transcripts of interviews
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were analysed by using the content analysis approach proposed by Elo and
Kyngäs [5]. The three main phases of the content analysis process: preparation,
organizing and reporting were explained in Chapter 3.
Findings: The data analysis process revealed three categories: experts’
perceptions, blockchain-based software process improvement, and experts’
recommendations. The main findings are presented in the following section:

• Experts’ perceptions. The perceptions of the experts regarding the proposed
framework and prototype were positive. The framework was evaluated as
easy to use, innovative and useful for requirements traceability and change
management.

• Blockchain-based software process improvement. The following SPI values
emerged from the analysis of data:

– Business. The experts outlined traceability as the main benefit of the
proposed blockchain-enabled system. Other benefits mentioned by
the experts are reliability, availability of information, transparency,
enhanced communication between stakeholders, and code reusability.
The experts highlighted that these benefits can potentially lead to
time-saving and improved project quality. Furthermore, the main
concern raised by the experts was the highly complex documentation
of requirements and related software artifacts that the proposed
system requires. While it is true that this may affect the efficiency
of the project and be perceived as anti-agile software development,
it is also true that documentation is necessary even in agile software
development. In addition, the experts contributed to defining the
following 4 archetypes of organizations that may be interested in the
proposed framework: globally distributed organizations, organizations
with contract-based projects, organizations in safety-critical domains,
and regulators.

– People. The experts revealed the difficulty in finding software
engineers with deep knowledge in blockchain technology, therefore
they advocated for training and upskilling employees in this topic.

– Change. The experts pointed out the resistance to change of software
engineers regarding the implementation of the proposed framework,
due to their tendency to not document software artifacts, performance
limitations of blockchain technology, and the underlying conservative
nature of software engineers.

• Experts’ recommendations. The main recommendation of the experts
was the integration of the proposed framework with the variety of tools
used throughout the software lifecycle. Details about other promising
recommendations, such as the inclusion of smart contracts, final phase
“evaluate”, and different presentation formats tailored to stakeholders can
be found in the last paper of this thesis (P7).
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Paper VII: Trustworthy and Collaborative Requirements Traceability: Validation
of a Blockchain-enabled Framework

Contributions: The paper contributed to the final stage of the PhD project
that entailed the evaluation of the proposed framework and prototype. In
addition, the paper provided interesting insights into how the proposal can
be improved by outlining promising future directions. These future directions
proposed by experts with a broad experience in SE may pave the way for further
improvements of existing approaches or proposals of new approaches that take
advantage of inherent benefits of blockchain technology to address existing issues
in global software engineering.
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Chapter 5

Discussion
“Research is seeing what everybody else has seen and thinking what

nobody else has thought”.
(Albert Szent-Györgyi)

In this section, the answers to the research questions formulated in Section 1.2
are discussed in relation to relevant previous literature. Moreover, the main
contributions to theory and practice, and limitations of the thesis are discussed.
Finally, the chapter presents promising research directions that may encourage
further research efforts in advancing the blockchain-oriented SE field, with a
particular emphasis on RT.

5.1 Synthesis of Findings

5.1.1 RQ1: What are the Challenges of Implementing
Requirements Traceability?

Over the last three decades, the RE community has paid increasing attention to
the RT topic. Nair et al. [102] analysed the trend of RT studies published in
the Proceedings of the International RE conference. Unsurprisingly, the findings
revealed an increasing interest of researchers in automated RT, and less interest
on proposing new approaches for traceability maintenance. Overall, the authors
concluded that traceability research is achieving maturity in terms of increased
use of empirical methods, such as experiments.

However, automated traceability introduces new challenges. Our systematic
literature review performed on 70 recent primary studies within the RT field
revealed two core directions of traceability challenges research (P2): (i) identifying
and/or addressing technical challenges related to traceability creation and
maintenance, and (ii) identifying and/or addressing challenges attributed to
the human factor in the tracing process. According to the findings of P2, the
most frequently identified and/or addressed challenge was the low accuracy
of traceability recovery methods (40%, 28 out of 70). This finding is in line
with other literature reviews in the field, for instance Wang et al. [20] found
out that the majority of research efforts were aimed at enhancing automation
and trustworthiness of trace links. In addition, the findings of P2 indicated
that human related challenges were addressed by only 25% of the studies. This
finding suggested that human factors have been overlooked by the traceability
community. This is not surprising, as human factors have often been overlooked
in the SE domain [176].

Furthermore, the analysis of the primary studies in P2 revealed that the
majority of traceability studies were published in conference proceedings. This

83



5. Discussion

can be explained by the increasing presence of traceability research in the
International RE conference, as demonstrated by Nair et al. [102]’s literature
review. In fact, 32% of the conference studies in P2 were published in the
International RE conference. This finding may imply that a significant number
of traceability studies have been performed by the RE community which is also
confirmed by Winkler and Pilgrim [31]. Finally, the analysis of the primary
studies indicated that most of the studies adopted experiments as their main
empirical method, whereas case studies and surveys were the least used methods.
This finding is in line with the results of the literature review on RT carried out
by Nair et al. [101].

5.1.2 RQ2: How can Blockchain Technology be used in the
Software Engineering Domain?

The preliminary search on blockchain-enabled SE suggested an increasing number
of studies focused on addressing SE issues in blockchain-based software, e.g.,
Vacca et al. [32] (For additional studies, see Section 2.3.1), but a limited number
of studies that use blockchain to address issues in the software industry. While
accessing a comprehensive overview of previous blockchain-based approaches
in SE was important within the scope of this thesis, our search revealed only
one related study carried out in 2019 by Tariq and Colomo-Palacios [33]. The
findings of this systematic mapping study indicated that blockchain can be used
to ensure trust among different parties in outsourced software development. For
instance, a blockchain-based platform can enable software requestors to upload
tasks and respective rewards and enable interested developers to upload code
and get rewards once all tests pass in a decentralized and reliable manner.

In addition, Tariq and Colomo-Palacios [33]’s study emphasized the potential
of smart contracts in verifying SE tasks automatically without the need for
human intervention. The authors also outlined that blockchain can be used to
trace third-party components added by developers and verify the compliance to
license policies, as often team leaders are not aware of such components that
can impact software quality and at a larger scale can affect the reputation of
the company. While this study provided us with a better understanding of the
potential applications and benefits that blockchain can bring to the software
engineering landscape, it is limited to research conducted up to 2018. Given
that blockchain research is rapidly evolving and new approaches are emerging
even in the SE field, a more recent overview on the topic was considered of high
value for advancing this PhD work.

The findings of the systematic mapping study conducted in P3 suggested
that blockchain technology, given its inherent properties of decentralization,
immutability, integrity, and non-repudiation (See Section 2.1.2) can be used to
address SE issues in the following 4 directions:

1. Decentralization. Centralized systems that are commonly used today,
such as GitHub, Travis CI, cloud-based package managers are prone to
single point of failure and compromise issues [111]. To address such
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issues, blockchain-based systems that offer decentralization, availability
and resilience can be used.

2. Ensure trust, visibility, and facilitate analysis. Blockchain can be used as
the backbone of the software lifecycle ecosystem that stores all relevant
events, software artifacts, and their metadata in a trusted manner. This
can be beneficial in enhancing visibility of the entire software lifecycle
which can in turn enhance trust and collaboration among stakeholders in
distributed settings. The full and holistic access on software-related events
and artifacts facilitates different types of analysis, such as provenance and
identity assessment, auditability, and compliance assessment.

3. Secure sharing. Blockchain can be used to enable collaborating parties to
share software artifacts in a secure and trusted manner, as unauthorized
attempts to access, update or transfer software artifacts can be detected.
The immutability and integrity of software artifacts is ensured, once they
are stored on blockchain.

4. Automation. Smart contracts can be used to automate a set of SE activities
that usually require human rationale. For instance, smart contracts can be
used to automatically verify if the implementation of requirements passed
acceptance criteria, verify the compliance to regulations, policies, and
best practices, and offer payments to software engineers in an automatic
fashion. Automation by means of smart contracts was also unveiled in the
systematic mapping study carried out by Tariq and Colomo-Palacios [33].

The findings in P3 revealed a limited number of prototypes and proof-of-
concepts in the field, and the absence of blockchain-enabled SE applications
implemented in organizational settings. In fact, this is not surprising, given the
novelty of the topic (the first paper that used blockchain in SE was published in
2015 [110]), the nascent stage of blockchain technology, along with its unresolved
challenges [107]. Furthermore, software engineers may argue that the concept of
trust enabled by blockchain technology goes against the concept of trust enabled
by agile software development. On one hand, one of the main principles of agile
software development is the lack of control of the work performed and reliance
on trust, transparency, communication and collective responsibility [79]. On
the other hand, blockchain has been considered “trustless” [177], as it does not
necessitate trusting participants, rather trusting the system which is secure,
due to the combination of technologies explained in Chapter 2. Werbach [178]
referred to the trust notion enabled by blockchain as “trustless trust”, meaning
achieving collective trust on the underlying foundation of mutual distrust. While
more research is needed in this regard, in this thesis the concepts of trust enabled
by blockchain and agile software development are not perceived as contradicting,
rather as complementary.

Furthermore, the findings indicated that the most used blockchain platforms
in SE studies were Ethereum and Hyperledger Fabric. This is not surprising,
given their capability to run code in the form of smart contracts or chain code.
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The main difference between these platforms lies in network accessibility [179],
therefore they can be used in different SE use cases discussed in P3. For instance,
Ethereum can be used in the open-source ecosystem to manage packages and
their dependencies on a public, transparent ledger which can facilitate code
reuse [180], or in crowdsourcing projects where software development and testing
tasks are delegated to the general public. On the other hand, Hyperledger
Fabric, as a platform with permissioned accessibility, can be more suitable than
Ethereum in intraorganizational and interorganizational software projects in
which collaborating entities, often distributed, are known and they need to
share software artifacts and related information securely [181]. More empirical
evidence on the benefits of using blockchain in SE, alignment of blockchain
principles with principles of software development practices, e.g., agile software
development, and discussion on relevant blockchain platforms for SE use cases
can encourage practitioners to invest in implementing blockchain technology.

5.1.3 RQ3: Is it possible to build a blockchain-enabled framework
for decentralized and trustworthy requirements traceability
that can be used by organizations in interorganizational
software projects?

The initial framework for RT enabled by blockchain technology is described in
P4 and leverages conventional blockchain platforms to store software artifacts
metadata and trace links reliably. These platforms have been used by other SE
researchers, for instance Bose et al. [118] used Ethereum to test their blockchain-
enabled framework for software provenance, named Blinker. However, as stated
by Bose et al. [118], developing blockchain applications for data-intensive use
cases is challenging, due to the cost of storing data on Ethereum. This issue can
be addressed by storing only software artifacts metadata and the cryptographic
hashes of the data on blockchain, while the full data can be stored on off-chain
databases that are immutable and distributed, such as IPFS. Although a similar
approach was followed in P4, the off-chain storage of artifacts limits the ability
to keep track of these artifacts and their changes in a trustworthy manner which
is the ultimate goal of this PhD thesis.

The framework proposed in P4 was based on literature relevant to the topic,
thus in order for the framework to be adopted by organizations, it is necessary to
refine it by incorporating blockchain experts’ judgement (P5). Since blockchain
technology has been considered a disruptive and cutting-edge technology [182], it
is not surprising that research leveraging its transformative potential is on the rise
[183]. However, despite the hype on the topic, our research revealed that most
of the studies take a technical perspective on issues, such as scalability, security
and performance efficiency of blockchain systems, rather than an organizational
process perspective. This could be a plausible explanation about why most of
blockchain use cases fail and do not surpass the prototype stage. Given that this
PhD thesis aims to provide software organizations with guidelines for building
useful and usable blockchain-based systems, it is important to understand how
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blockchain-enabled systems are implemented in organizational settings. To
date, there are only a few studies that provide an organizational perspective of
engagement with blockchain technology. Beck and Müller-Bloch [184] carried
out a case study in an international bank that engages with blockchain in the
different phases of discovery, incubation, and acceleration. The findings of this
study suggested competencies needed to enable the transition from discovery to
incubation and acceleration. In addition, the authors outlined the importance of
collaboration on both intraorganizational and interorganizational level to fully
leverage the potential of blockchain initiatives.

Dozier and Montgomery [185] unveiled the innovation evaluation process
adopted by organizations to evaluate blockchain technology by using a grounded
theory approach on a set of 19 interviews carried out in 12 U.S. financial
organizations. Findings suggested the emergence of the proof-of-value model
which consists of three phases: understanding the value that blockchain can
bring, organize internally and externally to find value and test use cases to
prove value. Ostern et al. [186] discovered four different types of blockchain
approaches: the strategist, experimenter, implementer and observer, and their
respective innovation phases: assimilation, implementation, adoption, and
comprehension. While these approaches are focused on pre-adoption phase
of blockchain technology, for instance Ostern et al. [186] focuses on how
organizations make sense of blockchain technology, the implementation process
of this technology remains vague and unexplored.

The findings in P5 indicated a set of activities that compose the implemen-
tation process of blockchain in organizational settings. The first activity is the
identification of business needs and requirements. The main takeaway in this
activity is that requirements should drive the choice of the technology and not
vice versa. Therefore, blockchain should be implemented only if it addresses
a problem that the organization faces. This is not trivial, as recent literature
reported that blockchain is often perceived as a solution looking for a problem
[185]. The identification of business needs should be followed by a feasibility
analysis process on whether blockchain is the most appropriate solution com-
pared with alternative solutions. In this regard, the results indicated two main
dimensions: the legal dimension and blockchain as a platform that are explained
in P5. In addition, the experts mentioned and elaborated on the selection process
of blockchain platforms. This process was considered challenging by blockchain
experts, due to the ever-increasing number of blockchain platforms which has
been also mentioned in literature [187].

Despite the difficulty, the experts elaborated on a set of factors that should
be considered when selecting blockchain platforms, such as the alignment
with foundational values of the organization, network accessibility, transaction
fees, consensus mechanisms, programmability, and community of developers.
Interestingly, the findings suggested that in most cases, the implementation of
blockchain technology in organizations is not pushed by top management, but it
emerges from the innovation team that tests out prototypes. In line with that
approach, Dozier and Montgomery [185] discovered that blockchain is tested in
organizations through prototypes and proof of concepts in order to identify the
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business value of implementing such technology, maximize the understanding
and reduce possible risks.

Furthermore, the findings in P5 revealed that shifting blockchain prototypes
into production occurs in rare cases. The limited number of implementations
of blockchain in organizational settings has been confirmed by previous studies,
e.g., [183]. In this regard, Flovik et al. [183] outlined the lack of empirical
studies that investigate the reasons of limited implementations of blockchain
technology. The blockchain experts in P5 suggested that one of the main reasons
can be the innovation-production gap, meaning that those working with real
products are often not included in the initial stages of the project, thus they
show resistance when taking over the project from the innovation team. In fact,
the implementation of blockchain is often not pushed into the organization by
the top management, but by the innovation team. Other categories and concepts,
and their detailed descriptions can be found in P5.

The findings in P5 contributed to refining the framework and enhancing its
adoption. Although the framework was refined, the limitations of conventional
blockchains mentioned in the first paragraph of this section and in P4 need to
be addressed. These limitations were addressed in P6 with the implementation
of a prototype that used NDL platforms to enable the secure storage of software
artifacts of any type and size in a decentralized manner, while retaining scalability
and performance efficiency (See Chapter 2). Researchers are recommended to
leverage the potential of such platforms to process massive data, e.g., Internet-of-
Things use cases can benefit from the security and efficiency of neural distributed
ledgers.

Finally, the proposed framework and prototype were assessed by SE experts
with a long experience in academia and/or industry in P7. While the use
of blockchain technology for RT is an unexplored topic, software engineers’
perception of the proposal was positive, particularly regarding the impact that
blockchain can have on enhancing traceability, visibility and transparency of the
software lifecycle. As outlined by experts in P7, blockchain technology can be
beneficial, especially in regulated domains and projects based on contractual
agreements between project partners. This finding is in line with previous studies
that highlighted the importance of RT in safety-critical systems [14], and the
value of traceability to prove the correctness of solutions, thus avoid costly
disputes in projects based on contracts [30].

However, the experts highlighted a few concerns regarding the use of the
prototype. The main concern lies in the high effort required by software lifecycle
stakeholders to document requirements, related artifacts, and their changes.
This high effort can lead to reluctance of stakeholders in using the proposed
system. In fact, the high effort leading to reluctance has been acknowledged by
the traceability community. Previous studies outlined that developers consider
traceability an effort-intensive task to be performed in addition to their main
work tasks [14, 28, 31], and managers consider traceability costly and its benefits
invisible [14]. Furthermore, the heavyweight documentation of requirements and
related artifacts may contradict to some extent the Agile principle of working
software over comprehensive documentation [188]. While traceability can be
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perceived as unnecessary in agile projects, traceability researchers, such as
Cleland-Huang [189] pointed out that agile practices are increasingly leveraged
in distributed, large-scale, and commonly in safety-critical projects. As confirmed
by the experts in P7, traceability is of utmost importance in such projects, despite
the high costs and efforts required to create and maintain trace links.

5.2 Contributions

Section 1.4 presented the main contributions of the thesis in relation to associated
papers and research questions addressed. The contributions of the thesis to both
theory and practice are discussed in the following sections.

5.2.1 Contributions to Theory

The thesis contributes to theory related to blockchain technology, SE with a
particular emphasis on RT, and their interrelation. With regards to blockchain
technology, the thesis uncovered the implementation process of blockchain in
organizational settings, in terms of iterative key activities, success factors
and challenges (P5). The findings in P5 contributed to explaining the
organizational resistance to change when implementing blockchain technology
through the following factors: innovation-production gap, centralized mentality,
and conservative management. These findings can enhance the understanding
of the implementation process of blockchain technology in organizational
settings which is a research area with limited empirical evidence, to date
[174, 190]. Moreover, the thesis contributed to the RT literature by providing a
comprehensive and holistic overview of challenges that hinder the implementation
of requirements traceability in practice (P2). With regards to the interrelation
between blockchain and SE, the thesis contributed to existing knowledge by
publishing the first systematic mapping journal study that unveiled blockchain
use cases in SE and the benefits that blockchain technology can bring to the SE
domain. This review may trigger novel use cases that leverage the potential of
blockchain platforms to address SE issues.

From the research methods perspective, the thesis contributed to emphasizing
the importance of qualitative research methods in SE. One may argue that
qualitative methods, such as GT and content analysis are not suitable for
technical fields, as they tend to focus on humans’ experience, opinions and
feelings. However, technology is created by and for humans, therefore their
perspective is essential in designing usable and useful technological solutions.
While qualitative methods, such as GT are becoming increasingly popular in SE,
SE researchers may not be aware of its historical development and use [139]. This
thesis consists of a GT study (P5) which was reported in detail for transparency
and replicability purposes. As advocated by Stol et al. [139], well-conducted GT
studies can lead to significant contributions to the SE field.

Finally, to the best of our knowledge, the papers that comprise this
thesis are the first published studies that proposed, designed, developed, and
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evaluated a blockchain-enabled framework and prototype for trustworthy RT
in interorganizational software projects. Although the topic was first proposed
in the studies published within the scope of this PhD thesis, it has encouraged
the work of other researchers in the field. For instance, in 2022, Farooq
et al. [191] proposed a software requirements engineering model enabled
by blockchain technology. According to the authors, this model addressed
requirements ambiguities issues, communication gap between stakeholders, along
with traceability and transparency issues. During the same year, Marjanović et
al. [192] proposed a blockchain-enabled model that keeps track of compliance
with security requirements by providing reliable visibility of secure software
development lifecycle metrics to authorized auditors. These studies indicate
promising dimensions of the blockchain-enabled RT topic that are worthy to be
explored.

5.2.2 Contributions to Practice

The thesis contributes to practice by designing two main approaches (P4, P6)
that enable decentralized, yet trustworthy RT by using conventional blockchain
platforms and neural distributed ledger platforms. The framework, proposed
in P4 and improved in P5, was designed in such a way that it can be
adopted by organizations and tailored to their specific business needs and
requirements. As mentioned in P4, P5 and in the BOSE literature [104],
the implementation of BOSE approaches requires expertise in both fields of
blockchain and SE. Therefore, the incorporation of blockchain experts and SE
experts’ judgment led to useful insights into how to improve the prototype, and
potential benefits and challenges that can drive or hinder its implementation,
respectively. The empirical evidence provided by experts can serve as best-
practice and guide the implementation of blockchain technology for trustworthy
RT in interorganizational software projects. It is worthy to note, that the
categories grounded in empirical data in P5 are of general and domain-agnostic
nature, hence they can guide the implementation of blockchain-based systems in
different domains. Finally, a blockchain-enabled RT prototype was developed
and its feasibility was validated by using the dataset of an open-source electronic
health records application, named iTrust, and SE experts’ judgement. The
development of such prototype can encourage innovation teams of interested
organizations to build similar prototypes and evaluate their feasibility.

5.3 Limitations

In this section, the main limitations of the thesis are summarized. First, the
novelty of the blockchain-enabled RT topic can be considered a limitation, as it
was not possible to build on top of previous approaches. This means that the
PhD student had to find alternative ways to acquire knowledge and trigger ideas
on the topic. To address this limitation, the student dedicated the first year
of the PhD study to review systematically RT challenges, and blockchain use
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cases in SE. Even though, the blockchain-enabled SE field is not yet mature, the
reviews (P2, P3) provided the student with a good understanding of the topics
of interest, which in turn enabled the design, development and evaluation of the
proposed framework and prototype.

Second, the thesis incorporates judgement of 20 blockchain and SE experts
to refine and evaluate the proposals. It is worthy to outline the sampling size
limitation, particularly when applying GT analysis techniques in P5. While it
is true that GT aims to generate a theory grounded in empirical data which
usually requires a higher number of respondents, it is also true that our goal in
P5 was not to generate a theory, rather to define categories that can be used to
enhance the practicality of our proposed framework. Similarly, the goal of the
interview study in P7 was not to achieve generalizability, rather to evaluate the
strengths and limitations of the prototype.

Third, the main limitations of the proposed prototype were outlined by SE
experts in P7. The main limitations of the prototype are high efforts required to
document requirements, related software artifacts, their metadata and changes,
and the lack of integration with existing tools used throughout the software
lifecycle. These limitations should be addressed to encourage the adoption of
the prototype by organizations interested in achieving trustworthy RT in their
interorganizational software projects. Finally, it is worthy to mention evaluation
limitations of the prototype in organizational settings. Although, the prototype
was assessed by SE experts in P7, and its utility has been demonstrated by using
software artifacts of an electronic health records application in P6, the prototype
has not been evaluated with real-world interorganizational software projects,
due to time constraints of this PhD project. Such evaluation would also require
the development of plugins to integrate the blockchain-enabled proposal with
existing tools used throughout the software development lifecycle, which was
not feasible, due to limited resources. This limitation paves the way for future
research work.

5.4 Future Work

This section discusses promising future research avenues in three dimensions
that are consistent with the research questions formulated in Section 1.2:

(i) RT field. The systematic literature review in P2 revealed the following
underexplored areas that can be addressed in future research:

• Distributed traceability. The shift towards the distributed devel-
opment paradigm and the increased need for collaboration across
organizational boundaries call for approaches that enable distributed
traceability management. As mentioned in Chapter 1, interorgani-
zational collaboration introduces confidentiality constraints which
make artifacts with sensitive information inaccessible, for instance
artifacts that include intellectual property are not shared by OEMs in
the automotive domain [14]. Since the collaborating entities cannot
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access the entire set of artifacts, they have to rely on the traceability
information provided by the project partner. In such a context, it is
important to ensure that the traceability information can be trusted
even across organizational boundaries [30] which is not trivial, given
the issue of mistrust in interorganizational software projects [193].
New disruptive technologies, such as blockchain technology can con-
tribute to address these trust issues in interorganizational software
projects [103].

• Human factors. As mentioned in Chapter 5, human factors have been
overlooked in the traceability research. With regards to human factors,
two promising directions for future research can be suggested: identify
factors that affect the performance of analysts during the traceability
vetting process and how to assist analysts in terms of tool support,
e.g., incorporating tagging or contextual information into tracing
tools, and propose approaches to incentivize practitioners to create
and maintain quality trace links, e.g., incorporation of gamification
features into tracing tools.

• Traceability in agile and continuous SE. Conventional RT techniques
are not appropriate in the context of agile and continuous SE, due
to the characteristics of such environments, such as the absence
of requirements documentation, continuous integration, testing and
delivery. While Wang et al. [20] discovered only one study, the SLR
in P2 identified 6 additional studies on the topic of agile-oriented
traceability. In this regard, more studies that propose lightweight RT
approaches are needed to support the increasing popularity of agile
and DevOps practices.

• More exploratory studies. The low number of exploratory studies on
traceability practices pinpoints the need for more empirical evidence on
how traceability is performed in organizational settings, and what are
the needs and challenges of implementing traceability. This evidence
can increase the understanding of traceability as a quality attribute of
the software development lifecycle, and consequently it can motivate
low-end users of traceability to adopt traceability practices.

(ii) Blockchain-oriented SE field. The systematic mapping in P3 suggested the
following future research directions regarding the blockchain-oriented SE
field:

• Propose approaches that use smart contracts for the automatic
validation of software requirements and design against pre-defined
criteria. A lack of such approaches was observed in the systematic
mapping performed in P3.

• While benefits that blockchain can bring to the SE domain have been
mentioned in literature [110], there is a need to investigate holistically
the effects of blockchain technology on software development efficiency
and software quality.
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• As mentioned in Chapter 5, agile principles may contradict blockchain
principles at first glance. Hence, interested researchers can contribute
to enhancing the understanding of this complex relation by mapping,
comparing, and aligning blockchain principles with agile principles.

• Another interesting future direction can be to map blockchain
platforms and their features with SE use cases, to guide software
engineers when choosing the most suitable blockchain platform for
their specific use case.

• In order to leverage the benefits of blockchain in the context of
SE, professionals with deep knowledge in both fields are necessary.
Thus, future efforts should be devoted to addressing the need for
professionals competent in both blockchain technology and SE.

• Finally, researchers are recommended to explore and investigate
emerging blockchain 4.0 platforms with regards to their applications
in SE, as these platforms incorporate AI features which are expected
to expand the benefits of blockchain technology on SE practices [109].

(iii) Improvements of the proposed blockchain-enabled framework and prototype
for RT.
Time and resources limitations led to limitations of the proposed framework
and prototype, as mentioned by SE experts (See Section 5.3). However,
these limitations pave the way for promising future work directions. The
main future work direction lies in the evaluation of the prototype in
organizational settings. To do so, it is necessary to enable lightweight
integration of the blockchain proposal with existing tools used throughout
the software lifecycle, ranging from Rational DOORS to Jira and GitHub.
This lightweight integration may encourage the adoption of blockchain
technology by software engineers and may enable researchers to perform
case studies on safety-critical systems to investigate the feasibility and
benefits of the blockchain-enabled RT prototype. In addition, the experts in
P7 provided recommendations that can be useful to enhance the prototype
in future work, as follows:

• inclusion of change rationale. While the prototype keeps track of
software artifacts’ changes, it does not provide information of the
rationale behind changes.

• incorporation of smart contracts. Smart contracts can be incorporated
into the prototype, to automatically assess the implementation of
requirements or to assess compliance with regulations, policies, and
service-learning agreements.

• tailored representation of traceability information. The visualization
of traceability information should be tailored to different stakeholders,
for instance, limit technical information (e.g., ULID) presented to the
customer who may not have a technical background. Moreover, the use
of highlighting techniques was suggested to differentiate successfully
tested requirements from requirements with failed test cases.

93



5. Discussion

• incentivization of software engineers to use the proposed system. The
SE experts suggested the incorporation of gamification features and
financial or social benefits for each trace link created by stakeholders.

In order to address sampling size limitations mentioned in Section 5.3, future
efforts may be devoted to enhancing the prototype by means of questionnaires
with a larger number of software engineers with experience in the development of
safety-critical systems, relying on Pfleeger and Kitchenham [194]’s guidelines for
surveys in SE. In addition, the practicality of the framework can be enhanced by
replicating the grounded theory study in P5 with a larger number of blockchain
experts and triangulation of data collection methods, e.g., observation and
document analysis, in addition to interviews. New data may evolve and enhance
the concepts and categories related to the implementation of blockchain in
organizational settings.

Finally, future efforts can be devoted to addressing the gap in understanding
the representation of traceability information stored on blockchain, despite
studies that demonstrated significant advantages of graph-based traceability
models [195, 196]. Although the uses of graph technologies in blockchain are
still evolving, some organizations (e.g. BitExTract, Bitquery, BlockchainVis)
already offer graph technologies and related visualization tools for blockchains.
Gartner predicts that by 2023, graph technologies will facilitate decision-making
in 30% of organizations around the world [197]. By 2025, Gartner predicts that
graph technologies will enable 80% of analytics innovations, resulting in faster
decision-making [198].
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Chapter 6

Concluding Remarks

“The important is to never stop questioning [or learning]”.
(Albert Einstein)

This PhD thesis explored the use of blockchain technology to keep track of
software requirements, their related software artifacts, and their changes, in
a trustworthy manner. The thesis challenges the traditional centralized way
of storing and sharing software artifacts, by proposing a blockchain-oriented
framework that enables a decentralized, yet reliable traceability knowledge base.
Ensuring this reliable traceability knowledge base is important, particularly
in complex and large-scale software projects that often operate in safety-
critical domains and rely on the collaboration of multiple stakeholders in
distributed locations. In addition, these stakeholders may be third-party entities
with malicious intentions, thus the authenticity of the software artifacts and
traceability information provided by these parties cannot be trusted by default. In
this regard, blockchain technology can be considered the most suitable technology
to address such trust issues and to ensure that stakeholders work on the same
reality. It is worthy to highlight that, to the best of our knowledge, this thesis
consists of the first published studies that explored the application of blockchain
technology for trustworthy RT.

A total of 7 scientific papers have been published within the three-year
timeframe of this PhD project in international conferences and peer-reviewed
journals. During the first year of the PhD program, the PhD student focused on
reviewing the relevant literature in the following two fields of interest: blockchain
technology and requirements traceability. Three papers were published during
this period. The first paper (P1) presented the initial research plan and was
presented in the Doctoral Symposium section of the 28th IEEE International
Requirements Engineering Conference. The participation in this conference
contributed significantly to the next research stages, as critical and relevant
feedback was received from the top experts in the field. In addition to presenting
the research plan, the PhD student was part of the organizing team of the
conference, an experience that enabled the student to be part of the RE
community and participate actively in relevant RE-related discussions. The
second study (P2) focused on identifying and categorizing RT challenges, as
reported by recent scientific studies in the field, and the third study (P3) aimed
to unveil blockchain-enabled applications that address SE issues, along with the
benefits that blockchain technology can bring to the SE field. These studies were
deliberately conducted in the initial phases of the PhD program, to guide the
next stages by triggering ideas about “why” and “how” blockchain technology
can be used for RT.
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6. Concluding Remarks

The findings of the review studies (P2, P3) were used to design the initial
blockchain-enabled RT framework (P4) that relied on conventional blockchain
platforms and the concept of smart contracts to register software artifacts’
metadata retrieved by SDLC tools and trace links created by distributed
stakeholders. The proposal was presented and discussed in the Emerging and
Multidisciplinary Approaches to Software Engineering workshop, part of EuroSPI
2021 conference. The proposed framework was improved in the fifth paper (P5) by
means of blockchain experts’ judgement and it was published during the second
year of the PhD program. The development and validation of the blockchain
prototype for requirements traceability, named BC4RT were conducted during
the third year of the PhD project. The prototype was implemented by using a
neural distributed ledger platform, named ArcaNet, that enables a decentralized,
secure, efficient, and scalable approach to store requirements and related software
artifacts of any type and size, along with their changes. This approach provides
stakeholders of the software lifecycle with a holistic, auditable, and tamper-proof
view on what/how/when software artifacts were created and/or updated, which
in turn enhances communication, and coordination and trust among stakeholders.
Ultimately, these benefits may lead to enhanced software development efficiency
and software quality. Finally, the prototype was evaluated by SE experts who
provided interesting insights into strengths and limitations of the approach.
Moreover, these experts recommended improvements of different components of
the prototype that paved the way for promising future research avenues.

Future work efforts could be devoted to improving the prototype based on
the SE experts’ recommendations (See Chapter 5 and P7) and operationalizing
the proposed approach in organizational settings. In order to operationalize the
proposal, it could be interesting to integrate it with existing tools used throughout
the software development lifecycle, e.g., Rational Doors, GitHub, and Jira, in a
lightweight manner. The development of plugins to retrieve software artifacts’
metadata, content and their changes from existing tools can automate their
registration and consequently, relieve software engineers’ work and allow them to
allocate time for more profitable tasks. Finally, the prototype can be validated
by experts with experience in the development of safety-critical systems and
based on their feedback, it can be potentially implemented in real-life software
projects.
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Abstract
Over the last 3 decades, researchers have attempted to shed light into the requirements
traceability problem by introducing tracing tools, techniques, and methods with the vision
of achieving ubiquitous traceability. Despite the technological advances, requirements
traceability remains problematic for researchers and practitioners. This study aims to
identify and investigate the main challenges in implementing (semi‐)automated re-
quirements traceability, as reported in the recent literature. A systematic literature review
was carried out based on the guidelines for systematic literature reviews in software
engineering, proposed by Kitchenham. We retrieved 4530 studies by searching five major
bibliographic databases and selected 70 primary studies. These studies were analysed and
classified according to the challenges they present and/or address. Twenty‐one challenges
were identified and were classified into five categories. Findings reveal that the most
frequent challenges are technological challenges, in particular, low accuracy of traceability
recovery methods. Findings also suggest that future research efforts should be devoted to
the human facet of tracing, to explore traceability practices in organisational settings, and
to develop traceability approaches that support agile and DevOps practices. Finally, it is
recommended that researchers leverage blockchain technology as a suitable technical
solution to ensure the trustworthiness of traceability information in interorganisational
software projects.

1 | INTRODUCTION

The concept of requirements traceability (RT) was introduced
more than 30 years ago by researchers and practitioners [1].
Traceability has evolved from just tracing requirements to
implementation and test artefacts [2], to playing a significant role
in various software and systems' engineering activities, such as
change and defect management [2, 3], project management [3],
validation and verification [4], software maintenance [5], and
impact analysis [6]. Traceability is particularly important in
safety‐critical systems [7–9] as it ensures safety, which is crucial
for systems whose failure may result in the loss of life, loss or
misuse of sensitive information, and major financial loss.

According to Gotel and Finkelstein [10], RT refers to ‘the
ability to describe and follow the life of a requirement, in both a

forwards and backwards direction (i.e., from its origins, through
its development and specification, to its subsequent deployment
and use, and through all periods of on‐going refinement and
iteration in any of these phases)’. The typical traceability process
model is described by Gotel et al. [11] and entails the creation,
maintenance and use of trace links within the scope of a defined
traceability strategy. The manual creation of trace links poses the
risk of inconsistencies, particularly in complex software projects
with a variety of artefacts and relations among them. To reduce
the burden of manual tracing tasks, which are time consuming
and tedious, automation is of major importance [12]. In fact,
enhancing the automatic degree of tracing activities was identi-
fied as the second most important research topic in a recent
systematic literature review (SLR) on RT technologies [13]. In
this regard, information retrieval techniques have been widely
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shown to support the (semi‐)automated creation of trace links
[14]. However, these textual‐based techniques tend to generate
traceability matrices with high recall and low precision [15]. Due
to the high amount of false positives generated by these tech-
niques, human analysts are required to vet candidate trace links
and make the final decision on whether to accept or reject these
trace links [16].

Despite the vast body of knowledge that exists on trace-
ability, traceability practices are far from being mature [17].
Over the years, RT in general and (semi‐)automated RT in
particular have been widely identified as problematic by the
industry [18–23]. According to the NaPIRE (Naming the Pain
in Requirements Engineering) survey, 32.4% (158 out of 488)
of the respondents positioned ‘missing traceability’ in the top
15 requirements engineering (RE) challenges [24]. This is a
concerning value, given the consequences that can reverberate
throughout the software development process and product due
to the lack of traceability, such as less maintainable software or
defects due to inconsistencies [17].

Traceability researchers strived to explore requirements
traceability challenges, which led to a lack of implementation or
an implementation of RT in a haphazard manner [21, 25–27].
The foundational work in this dimension is laid by Gotel and
Finkelstein [10]. These authors attribute the poor requirements
traceability practices to the lack of a common definition and
the perception that traceability is expected to address con-
flicting problems in the context of different users, projects and
tasks. Further, the Centre of Excellence for Software Trace-
ability (CoEST) published a technical report in 2011 [28], in
which traceability researchers and practitioners within the
CoEST presented their vision for traceability and identified
eight challenges that need to be addressed to achieve the
vision. The last challenge entails making traceability ubiquitous,
that is, traceability that is built into the system or software
engineering process. This challenge has been named the grand
challenge of traceability, as it requires progress with the seven
remaining challenges: purposed, cost‐effective, configurable,
trusted, scalable, portable, and valued [28].

Our study aims to contribute to this body of knowledge by
identifying and classifying challenges of (semi‐)automated RT,
as reported in the recent literature. To achieve this aim, we
carried out a systematic literature review and reviewed 70
primary studies. To the best of our knowledge, the last similar
literature review was conducted in 2009 by Winkler and Pilgrim
[17]. Therefore, there is a need for an updated and compre-
hensive study that intends to provide a holistic view of (semi‐)
automated RT challenges (for related works, see Section 2).

The contributions of this study are as follows: (i) the
identification of 21 domain‐agnostic challenges and their
classification into five categories, (ii) the proposal of block-
chain as a suitable solution to ensure reliability and availability
of traceability across organisational boundaries, (iii) the iden-
tification of research gaps and the call for further research
efforts in the following dimensions: distributed traceability,
human factors, traceability approaches in agile and contin-
uous software engineering, and more exploratory studies in
order to enhance the comprehension of traceability practices.

The remainder of the study is organised as follows: We
present the related works in Section 2 and the research
methodology in Section 3. In Section 4, we introduce the
results in terms of the primary studies' overview and the
identification of the challenges. These results are discussed in
relation to the related work in Section 5, along with directions
for future research and validity threats. Finally, we conclude the
study in Section 6.

2 | RELATED WORK

A summary of the related works is provided in Table 1 and it
indicates that the last comprehensive literature review focussed
on RT challenges was conducted in 2009 and published in
2010. In what follows, we present the related works:

Ramesh [29] conducted surveys with participants in 26
organisations and classified them into low‐end and high‐end
users of traceability, according to their underlying motivation
to implement traceability. While low‐end users perceive trace-
ability as a mandate, high‐end users perceive traceability as an
important quality attribute of system and software engineering.
This study also presents factors influencing the practice of
requirements traceability and categorises them into environ-
mental, organisational and system development contexts.
However, the emergence of distributed development and agile
paradigms introduces the need for a new study in this dimension.

Blaauboer et al. [18] conducted a case study in order to
identify factors influencing the decision to use requirements
traceability. Given the management perspective of this study,
the following factors were identified: organisation awareness,
customer awareness, return on investment, stakeholder pref-
erences, and process flow. The authors emphasised the lack of
awareness among software project leaders regarding trace-
ability. Conversely, the scope of our study is not limited to the
management perspective.

Kannenberg and Saiedian [30] identified the following
challenges of implementing RT: cost, change management,
different stakeholders' viewpoints, organisational problems,
and poor tool support. They observed that many organisations
struggle to comprehend the importance and benefits of
traceability and suggested organisational changes and better
tool support in order to reap these benefits. Winkler and Pil-
grim [17] carried out an extensive literature review that was
conducted in 2009 and published in 2010. The goal of this
study was to explore traceability in requirements engineering
and model‐driven development. These authors pointed out
natural, technical, economical, and social factors that hinder
the implementation of traceability practices in the industry.
Additionally, they recommended further research on
improving the human factor in traceability, enabling distributed
traceability and providing support for practical problems in the
industry. Our study follows a similar approach but provides an
updated view of (semi‐)automated RT challenges, as reported
by the recent primary studies.

Torkar et al. [26] identified requirements traceability tools,
techniques and challenges by reviewing studies published
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within the period 1997–2007. According to these authors, cost
is the main factor that hinders the implementation of adequate
traceability practices. Regan et al. [2] reported 11 traceability
challenges that were categorised into management, social, and
technical issues. Some of the reported challenges are cost, lack
of guidance, political issues, and tool issues. Although these
authors advocate the relevance of the challenges in both gen-
eral and safety‐critical domains, they acknowledge that the
need to ensure accountability in safety‐critical domains poses
further complexities to the implementation of automated
traceability.

Nair et al. [31] explored the evolution of requirements
traceability research by reviewing studies published in the re-
quirements engineering conference (RE) within the period
1993–2012. This review addressed various aspects of re-
quirements traceability, including their challenges. The authors
report an increasing interest in automated traceability and
suggest traceability visualisation as an area for further research.
On the contrary, our systematic literature review (SLR) covers
recently published studies, which are not constrained to a
specific conference or journal.

Mustafa and Labiche [4] reviewed studies that focussed on
traceability in heterogeneous systems. The authors report a
minimal research effort on modelling traceability among het-
erogeneous artefacts and call for more research in this
dimension. Our study takes into account requirements trace-
ability among heterogeneous artefacts, albeit in a more general

approach. Furthermore, Wang et al. [13] carried out a sys-
tematic literature review to identify RT technologies and their
respective challenges. Their findings indicated the following
challenges: automated, trustworthy, lightweight, scalable,
dynamic, tracing non‐functional requirements, value‐
perceptible, cost‐effective, coordinated, and expressible. Our
study, however, takes a different approach by explicitly iden-
tifying challenges throughout the tracing process, independent
of specific technologies. For instance, our study takes into
account the human factor in traceability, which is outside the
scope of Wang et al.’s review [13].

Recently, Maro et al. [27] conducted a tertiary literature
review, a multi‐vocal literature review and a case study in the
automotive domain. They identified 22 traceability challenges
and categorised them into 7 groups: human factors, uses of
traceability, knowledge of traceability, tool support, organisa-
tion and processes, measurement of traceability and exchange
within and across organisations. Instead of that, we carry out a
systematic literature review that intends to identify and classify
domain‐independent challenges of (semi‐)automated RT.

Table 1 summarises the aforementioned related works and
points out the main differences in terms of the publication
year, research focus, research method, number of studies/or-
ganisations and the period of the SLR. We notice a limited
number of studies that focus on investigating the challenges of
RT practices, which are referred to as evaluation research ac-
cording to the requirements engineering paper classification

TABLE 1 Related works

Study
reference Author(s)

Publication
year Focus Research method # Studies/Organisations

Period of
SLR

[29] Ramesh 1998 Influencing factors on the
use and adoption of RT

Evaluation research 26 organisations ‐

[18] Blaauboer et al. 2007 Influencing factors on the
decision to use RT

Evaluation research 1 organisation ‐

[30] Kannenberg
and Saiedian

2009 Challenges of RT Review ‐ ‐

[17] Winkler and
Pilgrim

2010 Traceability in RE and
model‐driven development
and their challenges

Review ‐ ‐

[26] Torkar et al. 2012 Factors hindering the
implementation of RT

SLR and evaluation
research

52 primary studies + 2
organisations

1997–2007

[2] Regan et al. 2012 Barriers faced when
implementing RT

Review 8 primary studies 2005–2011

[31] Nair et al. 2013 The evolution of the RT
research in the RE conference

SLR 70 primary studies 1993–2012

[4] Mustafa and
Labiche

2017 Modelling traceability among
heterogeneous artefacts

SLR 330 primary studies 2000–2016

[13] Wang et al. 2018 RT technologies SLR 114 primary studies 2000–2016

[27] Maro et al. 2018 Traceability challenges on
the automotive domain

Tertiary study + multi‐
vocal
literature
review + evaluation
research

24 secondary studies + 245
sources + 1 organisation

2007–2017

Abbreviations: RE, requirements engineering; RT, requirements technology; SLR, systematic literature review.
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proposed by Wieringa et al. [32]. Additionally, the number of
organisations considered by these four studies is low, except
from Ramesh’s [29] study. The other set of studies are litera-
ture reviews (tertiary, systematic literature reviews or multi‐
vocal reviews) that explore RT challenges as reported by the
previous literature. The number of studies included in these
reviews range from eight [2] to 330 primary studies [4].
Although there are few literature reviews related to this topic,
the last one that aims to explore domain‐agnostic challenges of
implementing (semi‐)automated requirements traceability was
carried out by Winkler and Pilgrim [17] in 2009. Therefore, as
mentioned before, there is a need for an updated compre-
hensive study in this area.

3 | RESEARCH METHOD

We carried out a systematic literature review that relies on the
guidelines for performing systematic reviews in software en-
gineering proposed by Kitchenham [33]. In what follows, the
review process is thoroughly explained [33].

3.1 | Planning the review

The review protocol consists of relevant research question(s),
search strategy and inclusion/exclusion criteria. We developed
the protocol via brainstorming sessions and performed
searches separately in two rounds. The feedback from these
rounds was used to uncover problems in the initial version of
the protocol and to improve its effectiveness.

3.1.1 | Research question

This study is aimed at identifying and classifying the challenges
in implementing (semi‐)automated RT, as reported by the
recent literature. Therefore, we raise the following research
question:

RQ: What are the challenges in implementing (semi-)
automated RT that have been reported in literature?

The research question was designed according to the
question structure proposed by Kitchenham [33]. In this re-
gard, we define requirements traceability as the population or
the subject of the study, (semi‐)automation as the intervention
and challenges as the outcomes.

3.1.2 | Search strategy

After setting the scope of this study, we defined the search
strategy, search string and online databases, based on our
experience with SLRs in software engineering [34–36]. This
process was done prudently to ensure the precision of search
strings and, consequently, minimise threats, such as inappro-
priate results, missing relevant studies or an increased overhead
[37]. Regarding search strategies, Jalali and Wohlin [38]

compared two main search strategies for systematic literature
reviews—database search and backward snowballing—and
concluded that there are no significant differences between
the conclusions and patterns derived from these approaches. In
this regard, we employed database search as the first‐step
search strategy, since it is the recommended approach in
software engineering [38]. Nonetheless, Jalali and Wohlin [38]
also pointed out that database searches lead to a lot of noise,
meaning a higher number of irrelevant studies than included
studies. Therefore, to mitigate the potential risk of overlooking
relevant studies, we also applied the backward snowballing
technique, complementary to the database search [33]. The
reference lists of the studies selected were scanned and went
through a three‐stage selection process (see Figure 1).

The formulated query aims to identify the wide spectrum
of available literature focussed on (semi‐)automated re-
quirements traceability. We identified three main terms and
their respective forms. The first two terms are related to the
subject of the study, which is requirements traceability. We also
used the term ‘software’, since we noticed that researchers tend
to overlook the term ‘requirements traceability’ and use ‘soft-
ware traceability’ instead. Moreover, we incorporated the term
‘tracing’, as an alternative form of ‘traceability’. The last group
of terms consists of automated and (semi‐)automated, which
have been used interchangeably in the RT literature. It is
noteworthy that we conducted trial searches with other terms,
for example, ‘semi‐automatic’, ‘semi‐automation’, and ‘assis-
ted’; however, we did not identify further relevant studies. We
concatenated these three groups of terms using the Boolean
operator ‘AND’, and their forms using the Boolean operator
‘OR’. The final search string was (automated OR semi-auto-
mated) AND (requirements OR software) AND (traceability
OR tracing).

Given that different search engines have different re-
quirements, for instance, some search engines do not allow
nesting, we tailored our search string to these requirements.
The search string was issued in five major online databases, as
suggested by Kuhrmann et al. [37].

The search string was executed in each of the databases in
two rounds: first, in February 2020 and finally in June 2020. We
delimited the time period to 2009–2019 because the last
literature review similar to our approach was conducted in
2009 (see Section 2). We also employed the filter ‘Computer
Science’, when available. Finally, a set of 4530 studies was
retrieved, as shown Table 2.

3.1.3 | Inclusion and exclusion criteria

Given the high amount of studies retrieved from the database
search, we followed a rigorous and reproducible selection
process by defining the inclusion and exclusion criteria [37] as
follows:

A) Inclusion criteria
� The study must be published within the period
2009–2019.

394 - DEMI ET AL.

 17518814, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12035 by N
orw

egian Institute O
f Public H

ealth, W
iley O

nline L
ibrary on [12/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense130



� The study must be available as a full‐text article.
� The study is included if it identifies or addresses at least
one challenge of (semi‐)automated requirements
traceability.

B) Exclusion criteria
� The study is excluded if it is not written in English.
� The study that focusses on traceability in domains other
than software engineering is excluded.

� The study is excluded if it focusses on manual
traceability.

� If the same article is available in more than one
database, the versions available in databases other
than the one that provides the article for download
are excluded [37].

� If a conference article is followed by a journal article,
the conference article is excluded (given that a journal
article is a higher‐value publication and extends the
conference publication) [37].

3.2 | Conducting the review

3.2.1 | Selection of studies

The selection process consisted of three stages, as depicted in
Figure 1. First, we retrieved studies from online databases
using the search strategy defined in Section 3.1.2. This first
stage generated a total of 4530 studies. After removing dupli-
cates, we assessed the title, abstract, and introduction/
conclusion (when necessary) of the studies, against the inclu-
sion/exclusion criteria. In this stage, we selected 92 studies and
collected their full texts using the reference manager, Zotero.
Further, we independently read the full texts and made indi-
vidual decisions regarding the final selected studies, based on
their quality criteria.

TABLE 2 Overview of studies

Database Initial search First exclusion Final exclusion

IEEE Xplore 267 52 36

ACM Digital Library 246 13 8

Springer Link 1470 17 8

Science Direct 1123 7 5

Wiley Online 1424 3 3

Selected studies 4530 92 60

Backward snowballing 10

Primary studies 70

F I GURE 1 Three‐stage selection process
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Despite some differences in our evaluations, concordance
between quality scores was achieved. Disagreements
were resolved through discussions. For instance, studies such
as [26, 27], which use both the literature review and empirical
research methods, were included after discussions because they
were evaluated to provide relevant findings. After achieving
consensus, we selected 60 final primary studies and excluded
the remaining 32 studies (for the list of excluded studies, see
[39]). Studies were excluded if they focused on benefits of RT,
for example, [5, 25]; if they were short versions of other studies
(in such a case we selected the extended version), for example,
[40, 41]; if they were secondary studies, for example, [4, 13, 30].
Further, we scanned the reference lists of the selected primary
studies and retrieved 20 studies. These studies went through
the second stage of the selection process and 10 of them were
selected. Finally, a total of 70 studies composed the final set of
primary studies (see Appendix).

3.2.2 | Study quality assessment

According to Kitchenham [33], an agreed‐upon definition of
‘quality of studies’ does not exist. Bearing this in mind, we
formulated quality questions based on our experience with
SLRs in software engineering [34–36] and assessed the selected
studies accordingly (see Table 3). We evaluated the studies with
the following scores: 0 (does not fulfil the criteria), 0.5 (partially
fulfils the criteria), and 1 (fulfils the criteria). A threshold of at
least 60% of the maximum score (>3 out of 5) was chosen, to
ensure the quality and relevance of the selected studies. Each
of the authors computed the quality score of the studies
independently. In order to ensure the consistency of the study
quality assessment, we computed Krippendorff's alpha (α).
The value of this parameter was 78%, which dictates a simi-
larity in the interpretation of data among the co‐authors.
However, few discrepancies were identified, discussed and
resolved through consensus.

3.3 | Data extraction and synthesis

We used the reference manager Zotero to automatically extract
data for each study regarding the following attributes: the title
of the study, author(s) name(s), date of publication, and the
source of publication (journal, conference, symposium, and

workshop). The automatic extraction of this data prevents
inconsistencies, which may lead to erroneous analysis and
interpretation of the findings. Two of the authors of the study
extracted the data independently, by means of an extraction
form. The extraction form and the data are available online as
archived open data [39]. Other attributes of the data extraction
form were inserted manually. For instance, research methods
were classified into experiments, surveys and case studies, us-
ing the definitions of empirical research methods in software
engineering [42]. According to Wohlin et al. [42], these research
methods are non‐competing; on the contrary, they can be used
together in order to enable more informed decisions in soft-
ware engineering. Therefore, we also investigated combinations
of these research methods. In addition, the data extraction
form contains the quality scores and challenges addressed by
the primary studies. The authors identified themes regarding
the challenges that the studies identify and/or address inde-
pendently. These themes were compared and discussed among
the authors. In the case of conflicting themes, disagreements
were resolved with the assistance of the third co‐author.
Finally, the themes were grouped according to their underlying
nature into five categories: technological, human factors,
organisational, communication and collaboration, and regula-
tory challenges.

Regarding data synthesis, the previous literature has pro-
posed the following two approaches: descriptive/narrative data
synthesis and quantitative data synthesis [43]. We followed the
descriptive data synthesis approach by identifying themes
based on the data extracted from the selected studies. Addi-
tionally, we measured the frequencies of these themes, in order
to outline dimensions for future research. It is noteworthy that
these frequencies do not indicate the importance of the chal-
lenges but provide insights into research gaps.

4 | RESULTS

In the following sections, we provide an overview of the pri-
mary studies and findings related to our research question.

4.1 | Overview of primary studies

In this section, we present contextual information about the
primary studies. In particular, we outline the distribution of

TABLE 3 Quality questions
ID Quality question

1 Does the study clearly define the aim?

2 Is the chosen research method appropriate to the research questions?

3 Is the research methodology explained in detail ensuring reliability, internal/external validity, and
replicability?

4 Does the study discuss/identify/address any challenges of (semi‐)automated requirements
traceability by using empirically measured data?

5 Do the conclusions answer the research question(s)?
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primary studies based on publication year and research
methods used, publication type, and quality scores using
descriptive representations, such as a simple bar chart, multiple
bar chart and a pie chart.

Figure 2 shows the number of primary studies, distributed
based on the research method and the year of publication. It is
easy to notice the dominance of experiments throughout the
majority of the years. For instance, 9 out of 16 studies pub-
lished in 2013 used experiments as the main research method.
Overall, 29 out of 70 studies (41%) adopted only experiments
as their research method and 7 out of 70 studies (10%)
adopted both surveys and experiments, indicating controlled
experiments as the most used research method (36 out of 70
studies). This is not surprising as experiments reduce
complexity through the control of all variables other than the
ones under investigation, given their reductionist nature [44].
For instance, in [16], the authors aimed to investigate the effect
of contextual information in the precision and recall of the
final set of trace links and the number of links generated during
a specific time period. To reduce complexity, they controlled
confounding factors, such as initial precision and recall of trace
links. However, controlling such variables may be a limiting
factor when it comes to the generalisability of their results and

their applicability in the industry [44]. Therefore, more
exploratory studies are needed in realistic environments with
practitioners as subjects, in order to explore their feelings,
behaviours and attitude regarding traceability practices.

The second observation is related to the number of primary
studies distributed over the years. Although a clear trend cannot
be identified, we observe a peak of studies in 2013 (16 studies)
and a sharp decrease in the number of studies published in 2014.
A plausible explanation could be related to the International
Workshop on Traceability in Emerging Forms of Software
Engineering organised in 2013, as part of the International
Conference on Software Engineering (ICSE). This workshop
aimed to bring together researchers and practitioners in order to
explore the challenges of recovering and maintaining software
traceability. The workshop was not organised in 2014, which
may explain the low number of studies. In fact, this trend can be
also observed in the Requirements Engineering conference. In
this regard, we observed the tracks of this conference in 2013
and 2014 with respect to traceability. Our observation revealed
three sections dedicated to traceability in 2013: automated
traceability, traceability in practice (research track) and trace-
ability in practice (industrial tracks), and only one section in
2014, named traceability.

F I GURE 2 Distribution of primary studies based on publication year and research methods
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The pie chart in Figure 3 shows the relative distribution of
primary studies based on publication type. Our findings reveal
that the majority of the studies were published in conference
proceedings, in total 37 out of 70 (53%). This is not surprising
given the conference‐driven nature of the software engineering
field. Moreover, there were 20 journal studies (29%), 9 work-
shop studies (13%), and 4 symposium studies (6%). Over 81%
of the studies (57 out of 70) were published in journals or
conferences, which ensures the quality of the studies. As ex-
pected, 32% of the conference studies were published in the
Requirements Engineering conference and 44% of the work-
shop studies in the ICSE International Workshop on Trace-
ability in Emerging Forms of Software Engineering.

The bar chart in Figure 4 depicts the relative frequencies of
studies for each of the quality scores. We assigned total scores to
the selected studies, by summing up scores of the five quality
questions. The results indicate that the selected primary studies
scored at least 60% (≥3) of the maximum score (5), which is a
reasonable threshold. Only 7.14% of the studies scored 3. This
low score can be explained by the fact that these studies propose
solutions to address challenges of (semi‐) automated RT which
are neither validated in experimental settings nor evaluated in
organisational settings. On the other side, only 10 out of 70
studies reached quality scores of 4.5 and 5. This result can be
explained with the fact thatmost of the studies used experiments
as the main research method with students as subjects, which
could undermine the validity of the study. Another reason is the
lack of discussion regarding threats to validity and reliability that
was observed in some of the studies, for instance [7, 45].

F I GURE 3 Distribution of primary studies based on publication type

F I GURE 4 Percentage of primary studies for quality score
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4.2 | Challenges of (semi‐)automated
requirements traceability

In this section, we report the challenges of (semi‐)automated
RT. We identified 21 challenges and organised them into five
categories (see Table 4). Due to the relatively large time span,
2009–2019, we decided to split it into two periods—2009–
2014 and 2015–2019. We also calculated the number of studies
that identify and/or address each of the challenges in order to
pinpoint gaps for future research. It is noteworthy that more
than one challenge can be identified and/or addressed by a
specific study.

4.2.1 | Technological challenges

Our findings indicate that the traceability community has paid
more attention towards improving the accuracy of traceability
recovery methods than other technological challenges (see
Table 4). In the following section, we present the technological
challenges identified:

Low accuracy of traceability recovery methods
The most popular methods for generating traceability links are
IR methods [13]. These methods have demonstrated low
precision (20%–50%), based on experiments conducted in a
variety of domains and artefacts [53]. This occurs because IR‐
based techniques link pairs of artefacts based on their textual
similarity, representing only a probability of the relation.
We found out a variety of strategies that intend to enhance
IR‐based techniques. One of the main strategies is relevance
feedback, which consists of incorporating incorporation of
human judgement to modify initial representations of queries.
Shin and Cleland‐Huang [57] enable the analyst to directly
manipulate individual trace queries by inserting or filtering out
the terms. Building on this approach, Dietrich et al. [53] pro-
posed Trace Query Modification (TQM) to expand the bene-
fits of user judgement across multiple queries. TQM uses a set
of initial and modified queries to learn transformation rules
which are then applied to future trace queries. Panichella et al.
[71] introduced the concept of adaptive relevance feedback,
which consists of considering information about the software
artefacts and already‐classified trace links before applying

TABLE 4 Classification of challenges identified from this SLR

Category Challenges

Literature

# Studies2009–2014 2015–2019

Technological challenges 46 (66%) Low accuracy of traceability recovery methods [14, 46–60] [61–72] 28 (40%)

Inadequate integration or interoperability among
heterogeneous tools

[19, 21, 47, 73–75] [12, 27, 76–78] 11 (16%)

Traceability decay [45, 51, 73, 79] [69, 76, 80, 81] 8 (11%)

Lack of change notification and propagation [82, 83] [27, 69, 76] 5 (7%)

Poor presentation and visualisation of trace links [52, 75, 79, 84] [27, 85] 6 (9%)

Human factors 18 (26%) Lack of trust in humans' judgement [15, 86–91] [16, 92, 93] 10 (14%)

Lack of system experience ‐ [16] 1 (1%)

Lack of training [15, 88, 90] ‐ 3 (4%)

Invisible benefits [84] [27, 76] 3 (4%)

Provider‐user gap [79] [22, 76] 3 (4%)

Perceived as an overhead [21, 26, 75] [27, 76] 5 (7%)

Organisational challenges 18 (26%) Lack of organisational strategies and guidelines
for traceability

[7, 74, 75, 84, 94] [27, 95, 96] 8 (11%)

Undefined roles and responsibilities for traceability [75] [27, 76] 3 (4%)

Project dimensions related challenges [19, 74] [65, 97] 4 (6%)

Challenges enabled by the software development approach [98] [23, 97, 99–102] 7 (10%)

Communication and collaboration
challenges 8 (11%)

Intraorganisational communication challenges ‐ [76] 1 (1%)

Communication challenges in distributed software development [82] [27, 69, 76] 4 (6%)

Interorganisational collaboration challenges [75, 103] [12, 76] 4 (6%)

Regulatory challenges 6 (9%) Implicit traceability requirements in regulations [7] ‐ 1 (1%)

Granularity in requirements for traceability [7] ‐ 1 (1%)

Legal and intellectual property constraints [75, 103] [12, 27, 76] 5 (7%)
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relevance feedback. While this approach performs relevance
feedback for a subset of the links, Wang et al. [68] suggested
performing relevance feedback for a subset of terms within
each trace link.

Furthermore, it has been reported that IR‐based tech-
niques are not able to relate terms with similar meaning, for
example, ‘error’ and ‘failure’ [54]. In such a case, the use of a
dynamic thesaurus was proposed to deal with synonyms [54].
Another problem that we identified is polysemy, which refers
to the same term appearing in different requirements with
different meanings. For instance, the term ‘task’ can mean
‘workflow task’ or ‘development task’. To address the polysemy
problem, Wang et al. [62] proposed training an artificial neural
network to determine whether a term has the same meaning in
different requirements. Other enhancing strategies consist of a
combination of regular expressions, key phrases and clustering
[60], a smoothing filter to filter out recurring terms that bring
irrelevant information [58], query expansion by means of web
mining [59] and filtering after recovering trace links by means
of part‐of‐speech tagging [72].

However, these approaches fail to leverage the underlying
semantic information. In this regard, Li and Cleland‐Huang
[56] applied a domain‐specific ontology combined with
generalised ontology to trace artefacts based on their semantics
and proved the effectiveness of such a combination. However,
building this ontology is time consuming and an inappropriate
ontology can actually worsen the quality of trace links by
missing relevant relationships or retrieving unrelated artefacts.
In this regard, Guo et al. [70] used deep learning to automat-
ically capture the domain knowledge and semantics of arte-
facts. The proposed approach adopts unsupervised learning
techniques to learn word embeddings with respect to the
domain and a recurrent neural network to learn the semantic
representation of the artefacts.

Inadequate integration or interoperability among
heterogeneous tools
The software development lifecycle (SDLC) consists of a va-
riety of tools that generate many artefacts of different formats
and specified in different languages. Maro et al. [12] conducted
24 interviews with software development stakeholders and
revealed that 14 out of 24 interviewees attributed the difficulty
in implementing traceability maintenance to the heterogeneous
nature of the tools. Likewise, in a later tertiary study, Maro et al.
[27] considered tool integration as technically challenging.

The previous literature has identified three choices
regarding traceability among heterogenous tools [12]. The first
and most trivial solution is a holistic tool platform in which
everything, including traceability, is fully integrated in the same
tool. This solution ensures consistency because the stakeholder
who wants to make a change has to first delete or update
affected trace links. However, this holistic solution might work
in small companies, but it is infeasible in the context of
interorganisational collaboration (see Section 4.2.5). A second
solution could be a separate traceability management tool. In
such a case, elements in the traceability tool need to connect
with external models, by means of tool adapters. In this regard,

Asuncion and Taylor [47] explored the integration of tools into
an open hypermedia system by using tool‐specific adapters that
enable an effective means for traceability across heterogeneous
tools' boundaries. Finally, a hybrid solution has been reported,
which consists of combining requirements management and
traceability management in the same tool. In such a case, there
is a need to import models into the traceability management
tool. These models can still be changed externally, amplifying,
in this way, the inconsistency problem. Therefore, previous
research recommends avoiding the hybrid solution [12].

Traceability decay
If trace links are not updated when changes occur, traceability
relations deteriorate, that is, some trace links get lost and others
represent false relations, leading to the so‐called traceability
decay [73]. This phenomenon is particularly frequent in the
case of links between requirements and source code because in
most of the cases, developers change the code frequently
without updating the links [80]. To address the traceability
decay challenge, Mäder and Gotel [73] proposed Trace-
Maintainer, a tool that adopts a rule‐based approach for the
(semi‐)automated maintenance of trace links. This tool
captures change events while developers perform software
development activities using UML (unified modelling
language) diagrams. It recognises the software development
activity and, consequently, maintains the impacted trace links.
A similar recent approach that aims to automate the mainte-
nance of trace links between requirements and source code is
the Trace Link Evolver (TLE) [80]. The TLE is based on a set
of heuristics coupled with refactoring detection tools and IR
algorithms in order to identify pre‐defined change cases.
However, this approach, in contrast with Mäder and Gotel’s
approach [73], does not need a monitored environment.

Lack of change notification and propagation
A change of an artefact causes changes in the connected
artefacts and trace links. In the worst‐case scenario, the change
of an artefact, for example, requirements, affects a chain of
artefacts, for example, design, source code, test cases and
different departments, for example, mechatronics and software
engineering [76]. This indicates the need to notify the affected
stakeholders in order to update the related artefacts and trace
links. For this purpose, some requirements management tools
have a ‘suspect links’ feature, where links are propagated to
developers' local workplace in case of a change and then
developers have the responsibility to decide how to update
artefacts and traceability relations [27]. However, it is still the
user who resolves the change manually and this may lead to
inconsistencies.

The distributed development paradigm exacerbates this
challenge, as the communication among distributed stake-
holders is difficult. To enhance remote teams' awareness
regarding requirements changes, a multi‐agent approach was
proposed in [69]. When a requirement is updated or deleted,
the recommender agent uses the traceability data to determine
the impact of the change on artefacts and to identify the
creators of these artefacts. Then, the agent sends a message to
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the creators of the affected artefacts. When an element is
added, the recommender agent identifies interdependencies
and the impact of the change. This approach ensures auton-
omy of agents, as they can operate without direct intervention
from users.

Poor presentation and visualisation of trace links
Large‐scale projects are characterised by a high number of
artefacts and, consequently, a high number of trace links. These
trace links are represented by means of lists or mega tables that
hinder the comprehension of traceability data and the detec-
tion of inconsistencies by interested stakeholders [27, 84].
Recently, Aung et al. [85] proposed a hierarchical trace map
visualisation in order to represent relationships among arte-
facts in an interactive manner. Nodes represent artefacts and
are clickable for a filtered view, whereas edges represent the
relationship between artefacts. This trace map view supports
analysts in system comprehension and change impact analysis.

4.2.2 | Human factors

Due to the aforementioned technological limitations, existing
traceability tools yield results that cannot be trusted to certify
the process, especially in safety‐critical systems. Therefore,
humans play a valuable role in the process by validating
candidate links generated by tracing tools. Several researchers
investigated the performance of human analysts during tracing
tasks, while others identified factors that influence such per-
formance and as a result, the accuracy of the tracing process. It
is noteworthy that some of the tools stop at the generation
phase, and only few of them offer the functionality to validate
tracing links [16]. In what follows, we present the challenges
related to the human facet of the tracing process. The first
three challenges are focussed on humans in the vetting process,
while the remaining challenges concern stakeholders interested
in creating, maintaining, and using traceability.

Lack of trust in humans' judgement
Cuddeback et al. [86] investigated the performance of human
analysts while vetting candidate traceability links, through ex-
periments that involved 26 participants from two universities.
The results of this study revealed that 50% of the participants
did not improve the accuracy of the links. Instead, most of
them decreased the overall accuracy of the candidate links. In
line with the results of this study, only a year later, Dekhtyar
et al. [87] confirmed that participants failed to recover true
traceability links. Their multivariate statistical analysis revealed
that high accuracy of candidate traceability links results in low
accuracy of final links, due to the fact that humans tend to add
bad links or remove good links [90].

We identified few studies that focus on supporting humans
in the tracing process. Maro et al. [16] explored the content
and context information that could be useful to support hu-
man analysts. Their findings suggest that analysts need (i) in-
formation from the connected artefacts, for example, who
created the artefacts, who modified the artefacts, location

of the artefacts in the system, and other connected artefacts,
(ii) information from the traceability information model, and
(iii) information from the tracing algorithm. Moreover, Wang
et al. [93] investigated whether the use of user‐defined key-
words, named tagging, supports the analysts effectively. Their
results confirmed that tagging significantly improved preci-
sion, as analysts can decide whether or not to accept plausible
links by looking for keywords. To further improve analysts'
performance, these tags can be exchanged among analysts.

Lack of system experience
One may expect a positive correlation between the level of
experience in software development and tracing performance.
Surprisingly, studies demonstrated a non‐significant correlation
between experience and performance [87]. Nonetheless, there
is evidence that the familiarity or experience with the system is
more important than software development experience or
tracing experience [16]. In this regard, it has been suggested
that the role of vetting tracing links should be allocated based
on system experience. For instance, developers should vet links
between requirements and code.

Lack of training
It has been reported that analysts spend a significant amount of
time on the so‐called grey links, that is, neither obvious true
links nor obvious false links. This occurs due to the lack of
training and direction; in particular, in the way the final
traceability matrix (TM) is to be used [15]. Analysts can be
trained to use TM characteristics, such as an estimate of the
TM size and when they select links to be added into the final
TM [15]. The concept of ‘educating the user’ on how to decide
on difficult trace links in an efficient fashion was introduced in
2011 by Cuddeback et al. [90]. The authors elaborated this
concept in a later study and proposed adding a training session
with a validation task that needs to be passed by the analyst in
order to proceed to real traces [88].

Invisible benefits
Although traceability is valuable in many aspects of the software
development lifecycle (see Section 1), it has been reported that
stakeholders do not perceive traceability benefits [27, 76, 84]. In
order to create and maintain quality trace links, interested
stakeholders need to be aware of the benefits of traceability [76].
Maro et al. [27] outlined the importance of providing measure-
ments of the direct benefits of traceability; however, they stated
that currently there are no such measurements. They proposed
quantifying the benefits of traceability by collecting data on the
usefulness of traceability links. These data can be collected by
monitoring activities affected by traceability and by carrying out
surveys with traceability users.

Provider–user gap
Traceability is perceived as an elusive quality attribute of
software development because practitioners who create trace
links are not the same as practitioners who use these links
[22, 76] or depend upon them [79], that is, the so‐called
provider–user gap. For instance, developers create trace links
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from requirements to source code at different granularity levels
but another group of stakeholders will eventually use these
links, for example, project managers to track progress. In this
regard, Wohlrab et al. [76] suggested balancing the effort and
benefit for traceability per role.

Perceived as an overhead
Recent studies reported the reluctance of stakeholders to invest
in traceability [76] because they perceive traceability as an extra
task that disrupts their workflow. The perceived overhead and
invisible benefits demotivate stakeholders from prioritising
traceability tasks, leading to the creation of wrong or missing
trace links. Maro et al. [27] attribute this perception to two
main factors: organisational and technical. The organisational
factor is related to the provider–user gap and the technical
factor is related to poor presentation and visualisation of trace
links.

4.2.3 | Organisational challenges

Lack of organisational strategies and guidance for
traceability
Regan et al. [7] conducted a traceability assessment in two
medical companies and outlined the lack of detailed guidance
for implementing traceability as one of the main factors that
shapes the perception of traceability as complex and difficult.
Practitioners need guidance in taking the decisions about trace
paths and traceability usage goals [74], about trace granularity
which can lead to either excessively coarse‐grained or exces-
sively fine‐grained links [75], and in systematically assessing the
trace link quality [95]. Rempel et al. [74] revealed that without
explicitly defined strategies, practitioners are far away from
implementing effective traceability, that is, traceability that
supports the development project. The lack of organisational
strategies and guidelines for traceability leads to traceability
approaches from individual teams in a bottom‐up fashion. The
creation of links in an ad hoc manner can cause inconsistencies
and, consequently, deteriorate the traceability link quality.
Mäder et al. [84] recommended defining traceability strategies
in the early stages of the project, while Rempel et al. [74]
suggested defining a traceability strategy by considering all
traceability usage scenarios and goals for each software process
task that requires traceability. To provide guidance for sys-
tematically assessing trace links' quality, Rempel and Mäder [95]
proposed a traceability assessment model (TAM) that identifies
for each traceability element an acceptable state and unac-
ceptable deviations from the state.

Undefined roles and responsibilities for traceability
Mäder et al. [75] carried out surveys with 10 practitioners to
explore traceability practices. They reported undefined roles
for the creation, maintenance, and use of traceability in all the
cases under study. Recent studies revealed that the roles and
responsibilities for traceability may be defined within an
organisational team or discipline but not on a higher organ-
isational level [76]. The interdisciplinary and interorganisational

nature of traceability adds complexity to the coordination of
these roles and responsibilities in practice [76]. In inter-
organisational software projects, the root of this complexity
lies in the divergences between organisations in the following
dimensions: different vocabularies, objectives, and develop-
ment processes [27].

Project dimensions related challenges
The challenges of implementing requirements traceability in-
crease with project size and project complexity. A large project
entails a high number of engineers, a high number of artefacts
that need to linked, and more communication overhead [97]. A
complex project consists of a variety of components and in-
terconnections which are difficult to understand, manage or
change. The variations of traceability information in terms of
format and content complicate the representation of trace links
and the understanding of these links by users [65]. Further-
more, Rempel et al. [74] identified project type as a factor
influencing traceability. They observed that projects in
product‐oriented companies are characterised by a more ho-
mogeneous tool landscape, that is, a holistic tool platform or a
highly integrated toolchain, than in service‐oriented com-
panies. Thereby, projects in product‐oriented companies tend
to have less volatile trace paths.

Challenges enabled by software development approach
Espinoza and Garbajosa [98] advocated that existing trace-
ability approaches depend significantly on the characteristics of
traditional software development processes. They pointed out
two elements to underline why conventional traceability ap-
proaches cannot be applied to agile projects: the lack of a
specification documentation of the formal requirements in
agile approaches and the differences in links semantics. For
instance, given the multi‐facet nature of user story tests (that
act as requirements), links from requirements to user story
tests do not have the same meaning as links from re-
quirements to acceptance tests in traditional methodologies.
Therefore, the authors outlined the need for customisable
traceability models, where trace links' types can be defined
according to project needs. In this regard, they proposed a
traceability metamodel that supports three features: (i) user‐
definable traceability, (ii) roles, and (iii) linkage rules.

Furtado and Zisman [102] proposed the Trace++
approach to support the transition from traditional to agile
methodologies. This approach tackles four problems of agile
projects: (i) absence of metrics to measure the rework per
sprint, (ii) lack of understanding of the scope of the project,
(iii) lack of documentation about non‐functional re-
quirements (NFR), and (iv) absence of management control.
Trace++ extends traditional traceability relationships. For
instance, to address the lack of documentation about NFR,
they add traceability relations between user stories, test
scenarios and story acceptance criteria, such as performance
and security.

We identified only one study that addresses traceability in
DevOps (Development‐Operations) environments [99].
DevOps practices foster frequent updates of artefacts with
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continuous integration, testing and deployment. Recently,
Rubasinghe et al. [99] proposed the SAT Analyser tool with a
DevOps extension, to establish traceability between software
artefacts in the development and operational level. This
approach was evaluated in a case study by means of statistical
and network analysis and achieved an accuracy of 71%.

4.2.4 | Communication and collaboration
challenges

Intraorganisational communication challenges
Organisations are composed of separate departments and
disciplines that often need to communicate and collaborate, for
instance electrical, mechanical and software engineers in the
automotive domain. However, it has been reported that
different disciplines employ different traceability practices [76].
Without effective communication, the links created by one
discipline might not be understood by the rest of the practi-
tioners, leading to inconsistent traceability practices throughout
the organisation.

Communication challenges in distributed software
development
Software development companies are moving towards
distributed development teams across multiple remote sites. In
this context, communication and coordination challenges arise
due to language and cultural differences among distributed
stakeholders [69]. In turn, these challenges affect traceability as
distributed teams may employ ad hoc and inconsistent trace-
ability practices. A collaborative traceability tool that enables
the maintenance of information in a shared space may support
communication regarding trace links [76].

Interorganisational collaboration challenges
At a larger scope, challenges are observed even across organ-
isational borders. Rempel et al. [103] attributed the difficulties
in implementing traceability across organisational boundaries
to the following problem areas: different organisational back-
ground of clients and suppliers lead to different technologies
and methodologies used, restricted access to artefacts due to
organisational boundaries, and conflicting objectives. These
authors recommend that practitioners ensure the availability
and reliability of traceability, identify and mitigate conflicting
objectives and bridge the technological gap between suppliers
and clients. A more recent viewpoint was provided by Wohlrab
et al. [76]. They conducted multiple case studies to identify
collaboration challenges in traceability management and re-
ported very little traceability support for external organisations.
These organisations communicate via e‐mail and change,
delete or insert data manually into their requirements man-
agement tools. This may lead to inconsistencies and mistakes,
as the update of trace links is not done automatically [76]. The
authors attributed this challenge to the heterogeneity of tools
used by different organisations and to the fact that suppliers
work with a variety of customers without customising their
traceability practices [76].

4.2.5 | Regulatory challenges

Implicit traceability requirements in regulations
Requirements traceability is vital for the safe and effective
development of safety‐critical systems; therefore, it is mandated
by domain and country‐specific standards and guidelines [8].
Examples of these standards are ASPICE (Automotive Software
Performance Improvement and Capability dEtermination) for
the automotive industry [27] or GPSV (General Principles of
Software Validation) for the healthcare industry [7]. However, it
has been reported that the references to traceability are not
explicit in regulations [7]. For instance, the European regulation
for medical devices, named Medical Device Directive, does not
explicitly refer to requirements traceability throughout the
software lifecycle. Instead of that, it requires the validation of
medical software according to the ‘state of the art’, which is open
to interpretation.

Granularity in requirements for traceability
Standards differ in the level of traceability detail they provide
[7]. It has been reported that there are standards that do not
mandate traceability throughout the software lifecycle. For
instance, IEC 62304 does not require traceability through the
design and implementation stages. On the other hand,
there are standards such as GPSV that require traceability
among the following artefacts: requirements‐design‐code test,
at both the function and module level [7]. The identification of
references to traceability within each of the standards with
different levels of detail may be time consuming and may
complicate the implementation of effective traceability [7].

Legal and intellectual property constraints
Often, there is a need to create traceability links between arte-
facts of different organisations; for example, in the automotive
domain, artefacts are exchanged between organisations due to
the OEM (Original Equipment Manufacturer)–supplier rela-
tionship [27]. However, in practice, traceability across organ-
isational boundaries is challenging due to legal and intellectual
property constraints [12, 27, 76]. For instance, the OEM does
not share confidential artefacts that contain intellectual property
with suppliers. The restricted access to artefacts complicates the
creation of traceability links by suppliers [27].

5 | DISCUSSION

In this section, we discuss our general observations, propose
blockchain for requirements traceability and present future
research directions. The section concludes with a discussion on
the potential threats to validity.

5.1 | General observations

Over the years, researchers have identified a variety of chal-
lenges of (semi‐)automated requirements traceability. To
provide a holistic view of these challenges, we carried out a
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systematic literature review. We selected a set of 70 primary
studies and observed that most of these studies were pub-
lished in conference proceedings. A plausible explanation for
this could be related to the significant advances in traceability
research in the International Requirements Engineering con-
ference over the years. For instance, Nair et al. [31] identified
70 primary studies published in the RE conference within the
period 1993–2012. In fact, a closer look at the publication
sources of our primary studies reveals that 12 out of 37
conference studies (32%) were published in the proceedings
of the RE conference. This is in line with Winkler and Pil-
grim's [17] statement that a significant part of traceability
research has been conducted by the requirements engineering
community.

Furthermore, we observed that over half of the primary
studies used experiments (36 out of 70%, 51%) and 5 studies
presented solutions without validating them. Consequently, the
lack of exploratory approaches, such as case studies and sur-
veys, is one of our findings. In fact, given that RT is an
interdisciplinary and complex field, exploratory approaches can
contribute by providing empirical evidence of how traceability
practices are performed in the industry. Likewise, Niu et al. [31]
identified case studies and surveys as the least used empirical
methods in traceability studies and they suggested that re-
searchers explore industrial perspectives and experiences. The
need for more empirical evidence has been also observed in
the wider scope of RE [104].

We observed the following two main dimensions of
traceability research regarding the challenges: approaches that
address (semi‐)automated traceability creation and mainte-
nance challenges and approaches that explore challenges
attributed to humans in the tracing process. The findings
revealed that the most frequent challenge is the low accuracy of
traceability recovery methods. Likewise, Wang et al. [13]
concluded that the majority of the selected primary studies
focus on improving the trustworthiness degree of trace links.
Thus, 40% of our primary studies identified and/or addressed
this challenge, whereas human challenges were identified and/
or addressed by 25% of the studies. These findings indicate
that human factors have not received enough attention in
the traceability community. In fact, this is not surprising
because human factors in software engineering do not receive
the attention they deserve [105].

5.2 | Blockchain applicability

This SLR identified 21 challenges of (semi‐) automated re-
quirements traceability which were categorised into five
groups: technological, human factors, organisational, commu-
nication and coordination challenges, and regulatory challenges
(see Table 4). New technologies are called to address these
challenges [13]. In this work, we propose the use of blockchain
technology for requirements traceability. This proposal is in
line with software engineering researchers who advocated the
cross fertilisation between hyped technologies such as block-
chain and software engineering [106, 107].

Blockchain is a distributed ledger that stores transactions in
a chain of blocks [108]. The chain of blocks is created due to
the fact that each block contains the hash of the previous block
ensuring immutability, which can be defined as the inability to
tamper with transactions stored on the blockchain [109]. In
order for transactions to take place in a decentralised, yet
reliable manner, a variety of core technologies are integrated,
such as cryptographic hashes, distributed consensus mecha-
nisms, and digital signatures that rely on asymmetric cryptog-
raphy [110]. Due to these properties, multiple parties share a
single truth via a distributed ledger, which is verifiable at any
time. Therefore, blockchain can facilitate trusted collaboration
and coordination in distributed software development, soft-
ware provenance, and software integrity assessment [111].
Another important blockchain property is smart contracts,
which are self‐executing scripts stored on the blockchain to
enable reliable transactions and agreement among different
trustless parties [112]. Thus, smart contracts can enable the
automation of a variety of software engineering activities that
usually require human reasoning, such as the acceptance phase,
payments to software engineers, and compliance adherence
[111].

A recent systematic mapping study carried out to explore
the software engineering applications enabled by blockchain
technology [111] observed a growing trend of blockchain‐
oriented software engineering studies during the last 3 years.
For instance, Yilmaz et al. [113] proposed the use of block-
chain technology to ensure integrity in large‐scale agile soft-
ware development. The authors considered developers as
miners who develop code and testers as validators of the code.
The incentive mechanism enabled by blockchain technology
eliminates the need for project leaders to assign tasks to de-
velopers; instead of that developers compete for creating the
best code. Other SE researchers have proposed the use of
blockchain as a backbone of the SDLC ecosystem [114–116],
while Singi et al. [114] presented a blockchain‐enabled gover-
nance framework to ensure the trustworthiness of the software
development process. The framework monitors and captures
event data and assesses their adherence to regulations and best
practices by means of smart contracts. Finally, Bose et al. [115]
introduced a blockchain‐enabled framework for reliable soft-
ware provenance, named Blinker. The framework consists of
data ingestion tools for the extraction of data from disparate
sources and the transformation of the data in compliance with
PROV specifications. Provenance data are validated by means
of voting mechanisms or social certifications. The former re-
quires all or a set of participants to approve transactions ac-
cording to voting policies and the latter relies on participants
rating the provenance data based on their perceived benefits.
Once consensus is achieved, provenance data are appended to
the distributed ledger. Thereby, they cannot be modified or
accessed by unauthorised users. To provide insights from
provenance information, the framework enables provenance
query services that focus on artefacts, agents and processes.
Additionally, to enhance comprehension, the authors visualise
provenance information through interactive hierarchical
graphs.
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The aforementioned studies provide inspiration and
interesting insights into the potential of using blockchain to
address software engineering issues and trigger new promising
directions that are not explored in the previous literature on
requirement engineering. One of such directions is the use of
blockchain for requirements traceability in distributed settings.
Traceability information such as artefacts and traceability links
that are created by distributed participants can be stored on the
blockchain. Due to the inherent properties of blockchain, all
authorised stakeholders share a holistic, reliable, and trust-
worthy traceability knowledge base and may verify its
authenticity at any time. This can address interorganisational
collaboration challenges with respect to traceability by ensuring
the reliability and availability of traceability information [103].
In Section 4.2.4, we outline the restricted access to artefacts
due to organisational boundaries as one of the factors that
complicates traceability. We argue that the roots of this
restriction lie in the lack of trust between parties involved in
the development of large‐scale software. These trust issues can
be mitigated by using blockchain technology.

Another RT challenge that blockchain can address is the
reluctance of practitioners to invest in creating quality trace
links [76] which is caused by three related factors: the perceived
overhead, invisible benefits, and the provider–user gap. In
order to motivate participants to participate in traceability
tasks, an incentive mechanism can be enabled by smart con-
tracts. Smart contracts can allocate digitised tokens to partici-
pants who create quality trace links. Despite the fact that the
validation of traceability quality is not trivial and requires
manual work [27], this approach can potentially enhance
traceability quality which, in turn, may encourage stakeholders
to use traceability links to support SDLC tasks. However, the
advantages of using blockchain for requirements traceability
remain theoretical and further efforts are required to validate
them.

5.3 | Future research directions

Our findings suggest the following research directions that are
underexplored in the current scientific literature:

5.3.1 | Distributed traceability

The distributed development paradigm and the need for
interorganisational collaboration call for distributed trace-
ability management. Creating trace links across organisational
boundaries is a challenging task since some of the artefacts
are inaccessible due to confidentiality constraints. For
instance, OEMs do not share artefacts containing intellectual
property that differentiates them in the market [27]. The
reduced subset of artefacts that can be accessed by a project
partner is not sufficient for achieving complete requirements
traceability [103]. Therefore, the project partner has to rely on
the traceability information provided by the other partners.
Given that mistrust is as a critical issue in interorganisational

projects [117], Rempel et al. [103] required practitioners to
ensure reliability and availability of traceability across organ-
isational boundaries. In particular, this requirement can be
aligned with the inherent properties of blockchain technology.
We perceive blockchain as a promising discipline that can
contribute to distributed traceability, as mentioned before in
Section 5.2.

5.3.2 | Human factors

We identified limited empirical evidence with respect to human
factors in the tracing process. In this regard, more studies are
needed in two facets. First, the identification of factors that
influence the performance of analysts during the vetting pro-
cess and the tool support that is needed to assist them, for
example, tagging or contextual information about artefacts.
Second, it is important to investigate how practitioners can be
motivated to invest in trace link quality. We perceive gamifi-
cation as an appealing area that can contribute to enhancing
the motivation and engagement of practitioners in traceability
tasks.

5.3.3 | Traceability in agile and continuous
software engineering

Traditional RT techniques are infeasible in agile and contin-
uous software engineering environments, due to the absence
of requirements specification documents, continuous inte-
gration, testing, and delivery. Wang et al. [13] identified only
one study that focusses on agile‐oriented traceability. In this
SLR, we found six additional studies, probably due to the fact
that the scope of our study is not limited to RT technologies.
However, the popularity that agile and, particularly, DevOps
practices are recently gaining indicates that more lightweight
traceability approaches are needed to support agile and
DevOps practices.

5.3.4 | More exploratory studies

Our findings revealed a low number of exploratory studies that
focus on how (semi‐)automated RT is performed in industrial
environments, what the existing challenges are and the prac-
tical needs for traceability. In fact, more empirical evidence
could enhance the overall understanding of traceability prac-
tices, and henceforth motivate practitioners to implement
(semi‐)automated requirements traceability.

5.4 | Threats to validity

Although this SLR was conducted with rigour and a repro-
ducibility package is provided [39] to ensure transparency and
replicability, few limitations exist. In the following section, we
explain the main threats to validity.
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Internal validity refers to the degree to which researchers
of the study can draw conclusions from causes and effects. A
typical threat to internal validity is researchers' biases; for
instance, the selection of five databases. Although there is
some inevitable subjectivity, this study followed with rigour the
guidelines for performing systematic literature reviews in
software engineering [43] in order to minimise these biases as
much as possible. The guidelines consist of planning and
developing a review protocol, developing research questions
using the PICO strategy, using backward snowballing in
addition to the database search, developing adequate search
strings, inclusion/exclusion criteria, and using a data extraction
form that includes quality criteria. Moreover, another threat to
internal validity could be the maturity of the field. In this re-
gard, given that requirements traceability has been studied for
over 3 decades, we believe that the field is mature enough, at
least from the research perspective, thus suitable for a sys-
tematic review.

External validity refers to the extent to which the findings
are generalisable to other contexts. It is worth mentioning that
we did not constrain the selection of studies to a specific
domain or tracing tool; thereby, the majority of challenges we
identified are of general nature. Nonetheless, the interpretation
and priority of these challenges could be different in different
types of domains. For instance, humans' judgement in the
vetting process is very important in safety‐critical systems,
whereas in general‐purpose systems it does not have the same
relevance.

Construct validity refers to the extent to which the study
measures the construct adequately. To ensure that the selected
studies focus on (semi-)automated requirements traceability,
we used these terms in the search string. Given that the term
‘traceability’ can be used interchangeably with the term
‘tracing’, we included both these terms to retrieve as many
relevant studies as possible. Additionally, we conducted two
searches: first, with the term ‘automated’ and ‘semi‐automated’
and second, with other terms such as ‘assisted’. These two
searches retrieved the same set of primary studies. However,
we recognise that other terms could be used. To minimise this
threat, we performed backward snowballing and identified 10
relevant studies. Although this study cannot ensure
completeness, we believe that it includes the most relevant
primary studies regarding (semi‐)automated requirements
traceability.

Conclusion validity refers to reliability, that is, the extent
to which results can be relied on to lead to correct conclusions.
To ensure reliability, we developed the review protocol via
brainstorming sessions, conducted searches in two rounds and
cross checked the results of the search process. Moreover, two
of the authors assessed the selected studies against quality
criteria independently, and the third author assessed the entire
process. Disagreements were resolved through long discus-
sions and consensus was achieved for the final set of primary
studies. Regarding the data analysis process, we did not
conduct it automatically by means of an analysis tool. Manual
coding is potentially prone to human errors; however, two of
the authors performed the coding process independently, and

their results were assessed by the third author with experience
in SLRs in software engineering.

Furthermore, to ensure replicability of our study, we pro-
vide our extracted data as an archived package that can be
accessed online [39]. In this way, our work can be assessed
and/or extended by other researchers. It is noteworthy that
there are interdependencies between the categories presented
in this study; for instance, change notification and propagation
of communication/collaboration challenges in distributed en-
vironments or poor visualisation of perceived overhead.
However, these interdependencies are outside the scope of this
study and are intended for future research. The interpretation
of the interdependencies could enhance the understanding of
the challenges.

6 | CONCLUSION

We carried out a systematic literature review to shed light on
the challenges of implementing (semi‐)automated requirements
traceability, as reported by the recent literature. A total of 4530
studies were retrieved and 70 of these studies were selected as
relevant to this SLR. The objective of this study is to provide a
holistic view of (semi‐)automated RT challenges in order to
encourage further research in this area and to motivate prac-
titioners to implement traceability practices. Our findings
indicate experiments as the most frequent research method and
a lack of exploratory studies, such as surveys and case studies.

We identified 21 challenges and classified these challenges
into the following categories: technological challenges, human
factors, organisational challenges, communication and collab-
oration challenges, and regulatory challenges. The most
frequent challenges identified and/or addressed were techno-
logical challenges, in particular, the low accuracy of traceability
recovery methods. Based on the findings, we also outlined
promising dimensions that deserve further research. Block-
chain technology was proposed as a suitable technical solution
to address distributed traceability. Furthermore, we identified
the need to address the human facet of the tracing process in
two directions: by exploring how human analysts can be sup-
ported during the vetting process and how stakeholders can be
motivated to assign high priority to traceability tasks. Finally,
further research effort should be devoted to the exploration of
traceability challenges in organisational settings. More empir-
ical evidence may boost practitioners to adopt traceability
practices.

Our future work consists of a more detailed analysis of the
challenges by investigating the interdependencies among the
categories. Further, we plan to conduct case studies in order to
validate our findings in organisational settings. The findings of
this study are part of an ongoing research effort that aims to
develop a blockchain‐oriented framework for requirements
traceability in interorganisational software projects [118].
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Abstract: The novel, yet disruptive blockchain technology has witnessed growing attention, due to
its intrinsic potential. Besides the conventional domains that benefit from such potential, such as
finance, supply chain and healthcare, blockchain use cases in software engineering have emerged
recently. In this study, we aim to contribute to the body of knowledge of blockchain-oriented software
engineering by providing an adequate overview of the software engineering applications enabled by
blockchain technology. To do so, we carried out a systematic mapping study and identified 22 primary
studies. Then, we extracted data within the research type, research topic and contribution type facets.
Findings suggest an increasing trend of studies since 2018. Additionally, findings reveal the potential
of using blockchain technologies as an alternative to centralized systems, such as GitHub, Travis
CI, and cloud-based package managers, and also to establish trust between parties in collaborative
software development. We also found out that smart contracts can enable the automation of a variety
of software engineering activities that usually require human reasoning, such as the acceptance
phase, payments to software engineers, and compliance adherence. In spite of the fact that the field
is not yet mature, we believe that this systematic mapping study provides a holistic overview that
may benefit researchers interested in bringing blockchain to the software industry, and practitioners
willing to understand how blockchain can transform the software development industry.

Keywords: software engineering; blockchain technology; smart contracts; systematic mapping

1. Introduction

Currently, organisations worldwide are showing an increasing interest in blockchain
technology due to the promise of significant business benefits. Blockchain technology
gained popularity after the publication of the Bitcoin white paper in 2008 [1]. The utility
of blockchain, as the underlying technology of Bitcoin, consists of enabling the peer-
to-peer exchange of cryptocurrencies, without the involvement of a trusted third party.
In 2013, Ethereum was introduced as a platform that incorporated a set of new and
promising features to apply the advantages of blockchain to other fields [2]. Ethereum
allows building decentralized applications, ranging from financial applications, semi-
financial applications, such as self-enforcing rewards for solutions to computational tasks,
to non-financial applications, such as decentralized governance and online voting [3]. This
is possible due to Ethereum’s built-in Turing-complete programming language, which
enables anyone to write smart contracts, and to create their own ownership rules and
formats of transactions. In 2015, the Linux Foundation launched the Hyperledger project
to encourage the development of permissioned blockchains that allow a restricted set
of known and identified participants to participate in the network. In this way, secure
interactions among participants that share a common goal but do not fully trust each other
can be achieved, for instance, businesses that exchange goods or information [4].

The intense hype around blockchain technology and its adoption in different indus-
tries [5] has brought the attention of researchers to its application in software engineering
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(SE). In 2017, Porru et al. [6] identified the need for specific software engineering practices
that consider the distinctive properties of blockchain and coined the term blockchain-
oriented software engineering (BOSE). These authors revealed the following BOSE chal-
lenges: the need for new professional roles, specific methodologies to ensure security
and reliability, new modeling languages, and specific metrics adapted to BOSE, e.g., met-
rics to measure complexity, resource consumption and performance of such systems. In
2018, the need for the new discipline of BOSE was also advocated by Destefanis et al. [7].
According to these authors, the reliance on smart contracts on a non-standard software
lifecycle, poses issues, such as the difficulty in updating delivered applications or resolving
bugs by releasing a new software version. These issues call for BOSE to contribute to
testable and reliable smart contract software development. In fact, Marchesi [8] called
attention to the bi-directional relationship between software engineering and blockchain
technology. Colomo-Palacios [9] also emphasized the importance of cross-fertilization
between software engineering and technologies that are hyped, such as machine learning
and blockchain technology.

Despite the fact that several secondary studies have examined the wider use of
blockchain technology, they do not specifically examine its use in improving SE activities.
In this paper, we aim to provide a holistic and comprehensive overview of emerging SE
applications enabled by blockchain technology. To address this goal, we carried out a
systematic mapping study that categorizes research studies according to their contribution,
research type and topic. The latter refers to SE knowledge areas where blockchain has
been introduced. Finally, we discuss the main findings in order to identify opportunities
for future research in the SE field. Therefore, this study can be of interest to two main
readers: researchers interested in bringing blockchain to the software industry in the form
of applications, and practitioners willing to understand how blockchain can transform the
software industry.

The remainder of the paper is structured as follows: In Section 2, a review of the SE,
blockchain technologies, and related works is presented. Section 3 describes the research
design adopted for this study. In Section 4, we present the main results which are further
discussed in Section 5, along with the main validity threats. Finally, in Section 6 the work
is concluded and directions are provided for future research.

2. Background and Related Works
2.1. Software Engineering

Over the last 60 years, software has evolved from being a technological tool for
solving specific problems, into becoming an industry, which is ubiquitous in most of today’s
business processes. According to IEEE Standard 610.12 [10], software engineering is defined
as “the application of a systematic, disciplined, quantifiable approach to the development, operation,
and maintenance of software; that is, the application of engineering to software”. The guide to
the Software Engineering Body of Knowledge (SWEBOK) provides a detailed overview of
the main SE knowledge areas (KAs) [11], which are also considered by this study. KAs are
groupings of information with a related theme, such as software requirements, software
process, software testing, software quality, software maintenance, software configuration
management and engineering management. There are also some SE practices and their
related challenges that deserve to be mentioned due to the emergence of new technologies,
such as blockchain that can help to address.

Global software engineering is becoming a more common practice as software prod-
ucts are the result of collaborations among a variety of partners during conceptualization,
development, production and maintenance phases [12]. However, it has been reported that
many software organizations that adopted global software engineering failed to leverage
its benefits in terms of time, cost and skillful resources [12,13]. By conducting a system-
atic literature review, Niazi et al. [13] identified challenges related to client and vendor
organizations. The authors analyzed 101 papers and identified the following challenges:
lack of communication and coordination between distributed teams, improper knowledge
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transfer which leads to poor quality of software artifacts and lack of team awareness, lack
of project visibility, and lack of trust between distributed teams.

Agile practices have been reported to enhance projects’ visibility and transparency by
means of iteration/sprint planning meetings, standup meetings and retrospectives [14].
The transparency and visibility enhance vigilance which in turn increases trust within
teams. However, when scaling up agile practices, technical issues related to inter-team co-
ordination arise [15]. The emphasis on autonomous teams may cause technical divergences,
for instance in coding styles, and distrust between teams [15]. Moreover, it is worthy
to note that short and frequent release cycles are enabled by continuous integration (CI)
practices. However, it has been reported that CI systems are prone to misconfigurations
and security attacks, for instance, malicious code can be deployed through the deployment
pipeline [16].

Collaboration practices in interorganizational software projects may be complicated, as
well. It has been reported that there is an underlying conflict between the common project
goal and independent organizational goals, for instance, one organizational goal could be
to not disclose functional knowledge [17]. This implies restricted access to artifacts at the
partner’s side, which in turn impedes complete and reliable requirements traceability and
hinders the assessment of whether quality gates have been passed [17]. These organizations
may outsource their work to a defined or undefined labour to work on a variety of software
engineering activities. The latter is named crowdsourced software engineering. This
software engineering paradigm has gained growing interest in industry and academia [18].
In a comprehensive survey on crowdsourced software engineering, Mao et al. [18] reported
on SE tasks that make use of crowdsourcing and their respective platforms, for instance,
Bountify for coding tasks and uTest for software testing tasks. Besides the advantages
that crowdsourcing brings to the SE field, such as reduced costs, time and defects, the
authors also pointed out unexplored issues, such as communication and coordination
issues, intellectual property and data security. This is not surprising, as crowdsourcing
makes use of an open call format for participation and task information is accessible by the
general public.

2.2. Blockchain Technology

Blockchain technology, known as the “Internet of Individuals”, has been considered a
revolutionary paradigm [2]. From an architectural perspective, blockchain is a distributed
ledger, that stores transactions in an ever-growing chain of blocks [19]. Figure 1 illustrates
how each block contains the hash of the previous block, leading to the structure of a linked
list [20].

Figure 1. Blockchain structure, adapted from [20].

This structure ensures an important property of blockchain which is immutability. The
following scenario explains how this property is ensured [21]: Suppose there is an attempt
to tamper with data in block n. This would cause a re-computation of that block’s hash.
Additionally, this hash is also present in the following block n + 1. Thereby, the hash of
block n + 1 would need to be re-calculated, along with all the following blocks’ hashes. In
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this scenario, creating new valid blocks becomes difficult, as the attacker would need the
majority of the network’s computational power to rewrite history and calculate new blocks.

Furthermore, blockchain is decentralized and as opposed to centralized systems, there
is no single entity that manages the network or the blockchain itself [21]. While the
decentralized nature of blockchain is advantageous because it eliminates the single point of
failure problem experienced in centralized systems, it also implies the need for a distributed
validation process. As the number of transactions increases, the computational effort for
validation also increases. To address this, blockchain-based systems, such as Bitcoin make
use of Merkle trees which are data structures that store hashes of transactions [20]. These
hash trees enable nodes to verify transactions without the need to download the entire
blockchain [20].

The data stored on the public blockchain are transparent to each node [22]. However,
transparency comes at the price of privacy. One may argue that the openness of transaction
data may imply identifiability. To provide anonymity, users are linked to public addresses.
As a consequence, users’ personal details are preserved to some extent from being revealed,
although means to link information in a public blockchain exist. A variety of techniques
and proposals to increase the level of anonymity have been extensively discussed in a
technical survey provided by Tschorsch and Scheuermann [20].

The potential of blockchain has been greatly extended with the introduction of smart
contracts [23]. Smart contracts are scripts stored on blockchain, that are triggered by posting
a transaction to the blockchain [24]. Afterwards, smart contracts are self-executed in a
predefined way on every network node [25]. The result of such execution causes a status
change in the blockchain [24]. To simplify the concept, smart contracts allow us to convert
the business logic in code. Originally, smart contracts were conceived to automatically
achieve agreement between two parties when they sign a contract [26]. To date, the scope
of smart contracts has been extended and in fact, from a conceptual perspective, they can
perform any task that general-purpose software programs can perform. However, it is
important to identify SE use cases that could benefit from the aspects that blockchain offers,
e.g., decentralized, immutability, transparency, anonymity and smart contracts.

2.3. Related Works

Several (secondary) studies have reviewed the application of blockchain, e.g., applica-
tions [21] and smart contract development [24]. One of the most recent systematic mapping
studies on blockchain technologies was performed by Bharadwaj et al. [21]. In this study,
the authors aim to identify and map various domains of research related to blockchain and
recognize possible directions for future research. Moreover, Vacca et al. [24] conducted a
systematic literature review of blockchain and smart contract development. In particular,
the authors identified methods, techniques, tools and challenges faced during the develop-
ment and testing of blockchain-oriented software. Their analysis suggests future research
on how to adapt standard testing techniques to blockchain-oriented software and how
to measure code metrics for code optimization. Both previous studies answer questions
related to the wider use of blockchain technology, but they do not examine specifically its
use in improving SE activities. Indeed, they did not take a close look at the contributions
that blockchain aspects can bring to SE.

Specifically, in relation to the application of blockchain to SE, to the best of our
knowledge, there appear to be very limited secondary studies. The more closely-related
study is a systematic mapping study conducted by Tariq and Colomo-Palacios [27]. This
study reported on the uses of blockchain in software engineering and outlined the benefits
that this new technology can bring to the SE field. The results of this study indicate that
smart contacts can automate the verification of tasks that usually require human-in-the-
loop. Smart contracts execute tests, produce results and automatically reward software
engineers. Additionally, blockchain can enhance the trust between parties in outsourcing
software development. The software requestor uploads the work and reward and the
interested developers develop the code and get the reward if all the tests passed, without
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the need of any intermediary company. Finally, blockchain can be used to keep track of
developers who add third-party components to the final product. In distributed software
development, developers may add third-party codes without reporting to team leaders,
which may affect software quality and the reputation of the company. By keeping track
of third-party components, it is possible to verify their adherence to license compliance
policies. In our view, this study provides valuable insights, but it is limited to studies
published up to 2018. Indeed, the field of research in relation to blockchain is rapidly
evolving, which indicates the need for an updated summary of the most recent research
works, in particular, blockchain aspects including but not limited to smart contracts, in
order to guide new research activities.

3. Research Design

We carried out a systematic mapping study according to the guidelines for systematic
mappings in SE proposed by Petersen et al. [28]. This section describes the design of the
proposed research process which includes: (a) defining research questions, (b) conducting
the search for relevant papers, (c) screening of papers, (d) keywording of abstracts, and
(e) data extraction and mapping. Figure 2 depicts the essential process steps.

Figure 2. Overview of the systematic mapping study, adapted from [28].

3.1. Research Questions

The goal of the study is to provide a comprehensive overview of how blockchain
technology has been used in SE. According to the goal, we formulated four research
questions (RQ), as follows:

1. RQ1 What is the trend of studies that use blockchain in SE? With this research question, we
aim to provide a quantitative overview of the current research progress on the uses
of blockchain technology in SE. This research question will also look into research
methods in order to provide insights on the trends of the research approaches adopted
by the selected studies.

2. RQ2 What are the blockchain uses in SE that have been reported in literature? To answer
this research question, we classify the studies according to SE knowledge areas in
which blockchain can contribute. This, in turn, will help in identifying potential areas
that have been overlooked.

3. RQ3 What blockchain platforms are used in developing SE applications? This research
question aims to provide implementation details of blockchain-enabled SE applica-
tions, regarding blockchain platforms and consensus algorithms. These findings may
suggest which blockchain platform is the most suitable for specific SE use cases.

4. RQ4 How can blockchain contribute to the SE landscape? With this research question,
we intend to provide a holistic view of the contributions that blockchain can bring
to the SE landscape. To achieve this goal, we map blockchain properties with SE
challenges addressed.

3.2. Search Process

The search process aims to identify as many primary studies related to the research
questions as possible. To do so, we develop a research protocol that included an unbiased
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search strategy. Our strategy to identify potential primary studies was based on the scope
of our study, i.e., blockchain technology in software engineering. Thereby, these keywords
were used as search terms in order to construct the search string. For the automated
search, the search string consisted of two main parts: blockchain AND software engineering.
Furthermore, a list of alternate terms was used and connected through the Boolean operator
OR to construct a broader search string. Blockchain technology is per se a distributed ledger,
and we argue that its main uses are enabled by smart contracts. We conducted trial searches
with these keywords and observed that relevant studies, such as [29] were only retrieved
when smart contracts were used in the search string. In fact, it has been reported that
smart contracts have the strongest implications in software engineering [30]. In a wider
scope, smart contracts have been considered as the technology with the highest potential
to revolutionize transactions among people and businesses [31]. Therefore, to ensure a
broad set of results, we included smart contracts in our search string due to their potential,
particularly in software engineering.

Moreover, by iterating with different versions of the search string, we observed that
some authors mention only software development in their studies although software
engineering encompasses the concept of software development. Therefore, this term was also
included, to minimize the risk of missing relevant literature. As a result, we constructed
the following final search string:

(blockchain OR “smart contracts” OR “distributed ledger”) AND

(“software development” OR “software engineering”)

We performed an automated search process using four digital databases: (a) IEEE Dig-
ital Library, (b) ACM Digital Library, (c) Science Direct, and (d) Springer Link. The selected
databases are well-known and are constantly used in secondary studies in the software
engineering field [28,32]. The main filter that we used is the field of “Computer Science”
and subfield of “Software Engineering”, where available in the databases. Regarding the
time period, we searched for studies published up to 2020. That means that the search
period did not have a lower bound. The details of the primary studies (i.e., title, author(s),
abstract, keywords, year of publication, and the name of the data source) were directly
exported from the digital libraries to a reference manager, namely Zotero.

3.3. Screening of Studies for Inclusion/Exclusion Criteria

The initial search process returned a set of 999 studies. We analyzed the title, abstract and
introduction/conclusion (when necessary) of these studies against the inclusion/exclusion
criteria. On a second round, the inclusion/exclusion criteria were applied to each study’s
full text. Table 1 lists the inclusion/exclusion criteria used in the manual inspection.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Studies that focus on the uses of blockchain in SE Studies that use blockchain in domains other than
software engineering

If a journal study follows the same conference study, only the
journal study is included Studies that focus on SE issues of blockchain-based software

If a similar study is published by more than one source by the same
authors, only the most recent or extended version is included

Studies that do not discuss or propose approaches for using
blockchain in SE

The full text of the study is available in English The study is an editorial, keynote, tutorial, poster or panel

There were a significant number of the initial studies focused on SE for blockchain-
based software, which is outside the scope of this research, e.g., [6,7,33]. Other studies
adopted principles behind blockchain to specific domains such as cyber–physical systems
(CPS) and embedded systems. Although software is an important component of these
systems, it has been reported that software engineering and development in such systems
are tailored to the complex nature of CPS [34]. Therefore, studies such as [35] were excluded,
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because we decided to take a more general domain-agnostic approach. Furthermore, few
studies were excluded because their respective extended studies were identified. For
instance, [36] was the initial version of [37]; in such a case the extended version [37] was
chosen (for excluded studies refer to data available online [38]). As a result of the screening
process, only 18 studies fit our inclusion criteria. Additionally, backward snowballing was
carried out, given that we delimited our initial search to four databases. References of
the selected studies were scanned and four relevant studies were identified. A total of
22 research papers constitute the final set of our primary studies (see Appendix A). Table 2
shows the number of studies selected in each of the phases of the research process.

Table 2. Overview of primary studies.

Database Initial Search First Exclusion Final Exclusion

IEEE Xplore 140 17 10
ACM Digital Library 339 13 7

Science Direct 320 0 0
SpringerLink 200 1 1

Selected studies 999 31 18
Snowballing 4

Primary studies 22

3.4. Classification Scheme

We opted for the keywording technique, in order to develop the classification scheme,
as suggested by Petersen et al. [28]. The first step to develop such a scheme consists of
carefully reading the abstracts of the selected studies and extract keywords related to the
research topic, research type and contribution type. These keywords were then clustered to
form map categories. The three facets are as follows:

• Research topic facet. This facet intends to structure the topics related to the uses
of blockchain technology in the SE KAs. The main topics are then discussed in
combination with the research type and contribution facets.

• Research type facet. We aim to identify the research approach adopted by the selected
studies. The classification provided by Petersen et al. [28] was used, due to its general-
izability and simplicity. According to this classification, the main research types are
validation research, evaluation research, solution proposal, philosophical, opinion and
experience study. These research approaches are presented and explained in Table 3.

• Contribution type facet. We aim to investigate the contribution type of the selected
studies. We adapted the contribution type facet introduced by Petersen et al. [28], as
explained in Table 4.

Table 3. Research types.

Research Type Explanation

Validation Research Novel approaches are validated in experimental settings, but they are not implemented in practice.

Evaluation Research Novel approaches are implemented in industrial settings and this implementation is evaluated. It
also includes studies that evaluate the impact of implementing blockchain technology in SE.

Solution Proposal The study identifies a problem and proposes the respective solution. Its applicability, benefits and
challenges are discussed, yet neither validated nor evaluated.

Philosophical Study The study presents a new perspective at existing issues, usually by means of a conceptual framework.
Opinion Study The study presents the opinion of the author related to a specific topic.

Experience Study The study represents the personal experience of the author related to the practical implications of a
specific technique or approach.
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Table 4. Contribution Types.

Contribution Type * Explanation

Model Studies that propose a novel model or improve existing ones.
Framework Studies that propose a conceptual framework to guide the development of a solution.
Interviews Studies that aim to explore a particular technology such as blockchain in the field of SE, by means of interviews.
Platform Studies that propose platforms that add value to existing business models or establish new ones.

* The contribution type of the studies is based on what the authors of these studies claim to contribute (in cases where they specify their
contribution type).

4. Results
4.1. Trend of Studies That Use Blockchain in Software Engineering (RQ1)

The interrelation between blockchain and SE, in particular, the applications of blockchain
in SE have been overlooked according to Beller and Hejderup [30]. This is also supported
by the low number of studies identified in our systematic mapping. We retrieved a total of
999 studies by searching four online databases. These studies went through a two-stage
assessment process against inclusion/exclusion criteria and as a result, 18 studies were
selected. This indicates a high number of irrelevant studies retrieved (98% noise), which
is common in database searches [39]. We observed some of the irrelevant studies to un-
derstand the main reasons for exclusion. Studies were excluded in the first assessment
phase mainly because they explore blockchain in other more mature fields, such as supply
chain and healthcare. Additionally, studies were excluded in the second phase mainly
because they focus on software engineering issues in blockchain-oriented software, which
is outside the scope of our study. We also carried out snowballing, as complementary to
the database search. In total, we selected 22 studies. A plausible explanation of the low
number of studies could be related to the novelty of blockchain technology itself. While
it is true that Bitcoin, the first blockchain application, was invented in 2008 by Satoshi
Nakamoto, smart contracts became popular with the release of Ethereum in 2015, as a
Turing-complete blockchain platform. A recent systematic mapping study on blockchain-
based smart contracts carried out by Macrinici et al. [40] found out an increasing trend of
publications since 2016.

The first study that we identified was published in 2015 and it uses cryptocurrency
blockchain technology for decentralized software license validation [41]. As expected, this
study does not make use of smart contracts. The first study that implements smart contracts
was published in 2017 with the goal to develop a non-stoppable virtual organization
for software development communities [29]. The remaining studies (91%, 20/22) were
published during the last three years (2018–2020) and they were devoted to addressing
issues in collaborative software development, by means of blockchain technology. This
trend indicates growing research efforts in blockchain-based software engineering (see
Figure 3). The growing trend seems to respond to Marchesi’s [8] call for more studies
in the 1st International Workshop on Blockchain Oriented Software Engineering (BOSE).
Moreover, the selected studies were published in conferences and workshops (see details
in Appendix A), which suggest a conference-driven publication culture.

Figure 3. Distribution of studies based on publication year and publication venue.
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Figure 4 shows that all the studies except [42] propose solutions or validate them in
experimental settings, while 17 out of 22 studies contribute by means of models or frame-
works. Many of the studies (10 out of 22) propose solutions that need to be implemented
and tested to assess their strengths and weaknesses. We identified only one evaluation
study [42]. The authors of this study investigate the impact of blockchain in global software
development, by conducting interviews with industry practitioners. However, the number
of interviews is limited, only 5. The scarce empirical evidence on the impact of blockchain
in SE calls for empirical research on the influence and repercussion of blockchain in SE.

Figure 4. Visualization of our systematic map in the form of a bubble plot.

4.2. Blockchain Uses in Software Engineering Reported in Literature (RQ2)

This section presents the findings of our study with respect to the uses of blockchain
to support software engineering activities. Figure 4 is a scatter plot that depicts the in-
tersection of the research type and contribution type facets with the research topic facet.
Bubbles’ sizes represent the frequency of studies that fall within these intersections (The
total number of studies in this map overcomes the number of selected studies, because one
study, in specific, [30] refers to more than one topic). Inspired by SWEBOK, we classified
the selected studies into 8 categories, namely, (i) software requirements [43], (ii) software
engineering process [30,44–46], (iii) software testing [47,48], (iv) software quality [49–51],
(v) software maintenance [29], (vi) software configuration management [30,41,52], (vii) soft-
ware engineering management [37,42,53–56], and (viii) professional practice [57–59]. We
briefly describe the SE applications below.

Software requirements. Requirements management and traceability face a variety
of challenges, such as lack of confidence in existing tools, integration issues among het-
erogeneous tools, manual work, lack of motivation, and confidentiality constraints that
impede complete traceability across organizational boundaries [43]. In this regard, a
blockchain-based approach was proposed for the trustworthy management and traceabil-
ity of requirements in interorganizational software projects [43]. Stakeholders register,
requirements and metadata on the blockchain and track their evolution through blockchain
query functions. Blockchain enables an auditable history of requirements that is visible
and verifiable by authorized users, such as partners and customers. Although this study
is part of ongoing work, the author claims that blockchain has the potential to enhance
the immutability, trust, visibility and traceability of requirements throughout the software
development lifecycle (SDLC).

Software engineering process. Król et al. [44] proposed a reliable platform called
ChainSoft, for outsourcing software development. This platform makes use of oracles that
allow the smart contract to communicate with GitHub/Travis CI. The software requestor
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creates tests, submits them to a GitHub repository, and submits the task and reward to a
smart contract. The developer creates code that passes the tests and uploads the solution to
his/her GitHub repository. The smart contract then checks whether all the tests are covered
by the solution. It is noteworthy that this is the only study that performs a security analysis.
According to this analysis, the platform relies on the honesty of third-parties, which raises
several concerns: (i) it may happen that GitHub/Travis CI do not run the tests as intended,
intentionally (ii) their services may become unavailable which leads to users submitting
tasks at a later time and paying additional transaction fees, and (iii) relying on these
systems introduces centralization to some extent, which goes against the decentralized
blockchain mindset.

Lenarduzzi et al. [45] introduced two blockchain-based models for the management
of Scrum-based and Lean–Kanban projects. According to these authors, smart contracts
enable the automation of the acceptance phase and the payment to developers. The
customer creates the smart contract for the specific project and the product owner registers
user stories, acceptance tests and the hash of expected output. Developers execute the
acceptance tests and if the tests pass, they register the hash of the correct output. The
smart contract checks the hash of the output against the hash of the expected output. If
all the tests passed, Ethers are sent automatically to the developer’s address. Although
this proposal was not validated, the authors remain optimistic about the potential of using
blockchain and in specific smart contracts, to transform other phases of the SDLC that
currently rely on human rationale.

Yilmaz et al. [46] proposed a blockchain-based model to address integrity in large-scale
agile software development. Interestingly, these authors perceive software development as
the Byzantine Generals’ Problem and software practitioners who cause defects as Byzantine
participants. In their proposed model, developers are miners who develop code and testers
are the validators of developers’ work. The project leader publishes work structs on the
blockchain (work description, test description, reward, and the signature of the project
leader). The work structs form the genesis block and the consequent blocks consist of
additional work structs, code structs (related work ID, code, and signature), and the hash
of the previous block. These blocks are validated and digitally signed by testers.

Finally, Beller and Hejderup [30] proposed a decentralized continuous integration
model, as opposed to the centralized Travis CI. In this model, developers enter a build and
its reward to the network and interested workers perform the build. Once consensus is
reached among peers, the transaction is appended to the distributed ledger. The authors
raise two concerns regarding the implementation of the system: the storage of build logs
(on the blockchain or off-the-chain) and the issue of non-deterministic builds.

Software testing. Wang et al. [47] adopted blockchain technology to address issues in
software testing using bug bounties, such as the lack of transparency regarding the price
information for bug bounties, and the difficulty in establishing mutual trust between testers
and software buyers/sellers. Their proposed solution consists of appending test results
and documents as blocks on the distributed ledger to ensure traceability in the context of
disputes between the party who initiated the bounty and the testers. Different testers adopt
different methods and this may lead to discrepancies between testing results. To resolve
this issue, the authors propose a novel consensus protocol, namely Proof of Skill. Once
testers upload their results to the platform, their skill rating which relies on the historical
testing performance is calculated and then grouped. The dispute is won by the group with
the highest skill rating.

Yau and Patel [48] used blockchain to share software testing information, e.g., test
planning, test cases, test results and test results assessment, among diverse teams in a
reliable and trusted manner. The authors implemented their model using Hyperledger
Fabric. According to the lifecycle of a transaction in Hyperledger Fabric (execute-order-
validate), each testing result needs to satisfy acceptance criteria, endorsement policy and
consensus. This eliminates the risk of injection attacks in software systems and makes the
proposed model suitable for trusted testing in large-scale and complex projects.
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Software quality. Badreddin [50] developed the Susereum platform using the blockchain
development platforms: OpenChain and Quorum. Susereum platform intends to empower
software teams to dynamically propose sustainability and quality metrics which are then
used to validate sustainable code contributions by miners. According to the authors, sus-
tainability rating can be perceived as a way to assess code quality. The authors also raise
questions regarding ways to ensure metrics’ quality and ways to measure the impact of
this proposal on software sustainability.

Kim and Kim [49] proposed a model that stores code quality measurements on the dis-
tributed ledger to ensure their reliability and immutability. The authors measure software
quality in terms of code complexity, by calculating the cyclomatic number as a function of
the number of edges, number of nodes and the number of connected components, as well
as connectivity by measuring interconnections among modules. According to the authors,
this model ensures the transparent code quality measurement history, i.e., visible to any
authorized user.

Lin et al. [51] proposed a blockchain-based platform namely CoderChain. This plat-
form consists of three roles: developers, code and jury. The novelty of this approach lies in
the “jury” concept which entails developers with advanced skills. The jury assesses and
reviews the code of developers and stores this review on the blockchain ledger. The authors
conclude that such an approach ensures the reliability of code reviews, the anonymity of
reviewers and enhances code quality.

Software maintenance. Given that the maintenance of open-source software projects
is at the mercy of volunteers [29], it may happen that after development the software
is no longer maintained and further developed. To address this issue, Alimoğlu and
Özturan [29] proposed implementing a continuously operating virtual organization to
represent the software, by means of Ethereum smart contracts. Their model enables the
collection of funds for software development proposals through cryptocurrencies and,
additionally, records citations, software usage and software executions on the public
blockchain. The proposed model is deployed on a local Ethereum blockchain network,
however, the validation is constrained to the gas consumption of smart contracts functions
and does not consider aspects of performance efficiency, such as latency and throughput.

Software configuration management. Herbert and Litchfield [41] introduced the first
peer-to-peer software license validation approach based on blockchain technology back
in 2015. Different from the other studies that make use of smart contracts or chaincode,
such an approach uses bitcoins that are held by the user to prove software entitlement.
Blockchain enables developers or vendors to allocate licenses to users in a cost-effective
and transparent manner. These licenses are stored on the blockchain ledger and can be
verified by any node.

Beller and Hejderup [30] proposed a user-run package management model, where any
participant may propose new packages and verify the work of others. This approach aims to
replace centralized package management systems, in order to democratize and profession-
alize the SE field. In turn, D’mello and González-Vélez [52] proposed a blockchain-enabled
package control system that stores metadata of the new packages (owner name, package
name, version and dependencies) on the distributed ledger and package files on IPFS
(InterPlanetary File System). Their model was successfully tested with 4338 packages from
NPM (Node Package Manager). The authors strongly believe that the use of smart contracts
could have a significant impact on the open-source ecosystem, in terms of maintaining a
block chain of version and dependencies in software packages.

Software engineering management. The development of software by distributed
teams that make use of a variety of artifacts from disparate sources leads to issues, such as
the lack of integrity, lack of provenance, and ineffective compliance monitoring [37]. To
address these issues, Bose et al. [37] proposed a blockchain-based governance framework
for trustworthy software development which consists of three layers, as follows:

• Data Layer. The goal of this layer is to capture and monitor event data from the variety
of tools used throughout the SDLC. To model the diverse sources of data, the authors
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propose the use of PROV family of specifications which support the capture of the
software development resource view, process-flow view and data-flow view.

• Analytical Layer. This layer comprises the analysis of event data for: compliance check-
ing, provenance services and integrity assessment. Regulations and best practices, e.g.,
libraries should not be used if their vulnerability score is 5 and above (vulnerability
threshold is 4), are encoded in the form of smart contracts [53]. Additionally, the
framework enables the analysis of provenance through services, such as provenance
query services that can focus on agents, artifacts or the process, and inference services
to uncover non-trivial insights [54]. Finally, the framework provides services that
generate composite cryptographic hashes of artifacts as the result of the concatenation
of the hashes based on metadata and hashes based on content. These sub-identities
uniquely identify artifacts, and their combination generates the composite software
identity [55].

• Advisory Layer. This layer provides services to alert users in case of non-compliant
issues and suggests remedial measures to address such issues.

Ulybyshev et al. [56] addressed the problem of unauthorized access, modification and
transfer of software modules among entities in collaborative software development, by
means of blockchain technology. Their proposal relies on access-control policies established
in smart contracts. Software module requests and transfers are recorded on the blockchain
ledger, ensuring in this way the integrity of the provenance data and accountability.

More recently, an evaluation study was carried out by Akbar et al. [42] to explore the
impact of blockchain on the global software development environment from a management
perspective. The authors of this study conducted interviews with academic experts and
industry practitioners. Their findings confirmed the positive impact of blockchain in such
environments in the following dimensions: visibility, updated task status, secure payment
at distributed sites, and accountability of team members.

Software engineering professional practice. Jhala et al. [57] proposed a smart collab-
oration mechanism where each collaboration is encoded as a transaction message. Changes
that collaborators make are appended to the blockchain after consensus from all the parties.
Their proposed model consists of three entities: collaborators who perform code commits,
administrators who authorize specific actions, and miners who verify transactions. One of
the major drawbacks of this system is increased latency, as messages are broadcasted first
to administrators and then to miners.

Yau and Patel [58] address the issue of trusted coordination in collaborative software
development. Each software team is represented by a blockchain node and generates
software specifications for each of the SDLC phases, e.g., requirements, implementation
and testing, in the form of smart contracts. The smart contract contains teams allowed
to participate in the smart contract, and software specifications in {key, value} format.
Software specifications are then assessed against the results generated by the other allowed
teams. The authors provide a couple of examples to illustrate their approach and plan to
analyze the scalability in complex and large-scale software projects.

Singi et al. [59] proposed a blockchain-based incentive framework to ensure transpar-
ent incentives to software engineers who contribute to any activities throughout the entire
software lifecycle: pre-development, development, post-development. The framework
captures events and assets’ metadata from the distributed software delivery ecosystem
and analyzes these events according to incentive policies. In case of adherence, valid
participants are incentivized by means of digital tokens. As future work, the authors
proposed the incorporation of gamification elements to enhance the incentivization of
software engineers.

4.3. What Blockchain Platforms Are Used in Developing SE Applications (RQ3)

As can be seen in Table 5, Ethereum and Hyperledger Fabric are the most used
blockchain platforms by the selected studies. This is not surprising, given that these plat-
forms are designed to run smart contracts or chaincode, and the ability to run code has the
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strongest contributions for blockchain-oriented SE according to Beller and Hejderup [30].
In Ethereum, all programmable computations, such as invoking and deploying smart con-
tracts, are subject to fees [60], which serve to reward miners for adding blocks to the system.
Two of the selected studies measured the fees for calling smart contracts functions [29,44].
Krol et al. [44] evaluated a cost of 1 $ up to 8 $, depending on the processing speed. They
concluded that a cost below $4 is reasonable in the case of software development projects
that usually require a significant amount of money to finish. On the other side, Hyper-
ledger Fabric provides higher levels of scalability and confidentiality due to the delineation
of roles, such as ordering and validating transactions, which in turn allows for config-
urable consensus. However, challenges related to Hyperledger Fabric may be the high
communication overhead and potential DoS attacks. Ulybyshev [56] provided a modified
transaction validation procedure that involves less communication overhead and protects
Hyperledger from DoS attacks. Their proposed workflow eliminates client communication
with the ordering module, instead of that endorsers send endorsed transactions directly
to the ordering module. However, these authors do not provide information about how
consensus is reached regarding the order of transactions.

Table 5. Blockchain platforms used in developing SE applications.

Platforms

Bitcoin [41]

Ethereum [29], [37], [44] *, [52], [53] ∆, [54] ¥, [55] †, [59]

Hyperledger Fabric [48], [49], [56] ♦, [58]

Others Susereum [50]

* ChainSoft, ∆ CAG, ¥ Blinker, † ShIFt, ♦ Blockhub.

There is very little evidence regarding consensus mechanisms used in our selected
studies. We identified only two consensus mechanisms that were proposed but were
not deployed [46,47]. Yilmaz et al. [46] presented a blockchain-based approach in which
developers are miners who create code and testers are validators. They also proposed a
consensus mechanism to handle situations when many developers claim to have accom-
plished the same work. The consensus mechanism relies on a probability distribution
function which is constructed based on developers’ activity (their contribution and wait-
ing time) and testers’ preference (number of votes for each code). The probability of the
developers’ code to be confirmed increases with the increase of developers’ contribution,
waiting time and votes. Wang et al. [47] presented an approach in which contracted testers
test software for potential vulnerabilities, and register testing results on the blockchain. To
resolve potential disputes that can occur in the testing process, they proposed a consensus
mechanism named Proof of Skill. The idea is to maintain a skill rating for each tester based
on the testing job category and previous testing job performance on the platform. The
algorithm groups testers based on their votes and computes the average skill rating for
each group. The dispute is won by the group with the highest skill rating. Finally, the
algorithm increases the skill ratings for testers in the winner group and decreases for those
in the loser group.

4.4. Contributions of Blockchain to the Software Engineering Landscape (RQ4)

In this section, we provide a holistic view of the contributions that blockchain can
bring to the SE landscape. Table 6 shows the mapping of blockchain properties and the SE
challenges that they address. In what follows, blockchain properties and their contributions
to SE dimensions are described.
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Table 6. Mapping of blockchain properties and SE challenges addressed.

Blockchain Properties SE Challenges Addressed Selected Studies

Decentralization Single point of failure and compromise problems of centralized systems,
e.g., GitHub, Travis CI, and cloud-based package managers [29,30,41–43,46,48,50,52,57,58]

Transparency and trust Lack of trust and visibility of SDLC activities among distributed teams
that usually operate in silos [29,30,37,42,43,45–49,51–54,56–59]

Immutability and data security Unauthorized software artifacts access, modification and transfer [29,37,41–43,46,48,49,52–56,58,59]

Anonymity Lack of fairness in reviewing code/software contributions [51]

Non-repudiation

In outsourcing and crowdsourcing, software requestors or bug bounties
intiators may repudiate payments to developers or testers.

In collaborative software development, collaborators may repudiate
updates they make.

[44,47,48,53,57,58]

Smart contracts/Chaincode
Manual work in the verification of SDLC tasks, e.g., acceptance phase,

compliance to best practicies and regulations, and automatic payment to
software engineers.

[29,30,37,43–45,47–50,52–56,58,59]

Decentralization. The software development ecosystem relies on centralized systems,
such as GitHub and Travis CI [30], and cloud-based package managers [52]. These systems
pose the risks of single points of failure and compromise. For instance, in 2015, GitHub
has been the target of DDoS (distributed denial-of-service) attacks where a high number
of illegitimate requests resulted in intermittent outages [61]. To avoid such issues, these
centralized systems can be replaced with decentralized systems which enable all the
authorized parties to have the same view on transactions stored on the distributed ledger.
Distributed systems offer higher availability and resilience to intermittent outages [30].

Transparency and trust. Distributed teams operate within their own boundaries,
which hinders a 360-degree view over the entire software development lifecycle [59]. For
instance, distributed teams record compliance-related data in their local repositories [53].
These data can be manipulated prior to sharing with other teams or clients, which intro-
duces trust issues. In turn, the detection of manipulated data impacts delivery schedules,
whereas the non-detection may lead to penalties or loss of reputation. Blockchain can serve
as the backbone of the software development lifecycle, meaning that all SDLC events and
artifacts’ metadata can be recorded on the blockchain. In this way, blockchain provides
distributed collaborators with a holistic view of the software development lifecycle. The
authorized collaborators can verify the trustworthiness of software-related information at
any time. Therefore, blockchain can be used as a shared distributed ledger, which due to
its transparency and verifiability contributes to mitigating trust issues between different
parties involved in the development of a complex and large-scale software project.

Immutability and data security. In collaborative software development, multiple
participants can access, modify and transfer software artifacts. Unauthorized software
modifications have been considered as the key issue as software crosses teams’ bound-
aries [55]. For instance, participants can modify code with fraudulent intent or add vul-
nerable open-source components which enable hackers to carry out data breaches. The
blockchain structure as a linked list allows to track the history of each software artifact
and detect any unauthorized attempts to access, modify or transfer software artifacts. The
immutability property of blockchain enhances the security of software artifacts stored on it,
such as code, build files, and third-party components, as they are encrypted, hashed and
appended in chronological order on the blockchain.

Anonymity. Code hosting platforms such as GitHub allow users to store code and rate
the code as a way to reflect code quality. However, this is not enough to assess the quality of
code contributions [51]. To address this issue, Lin et al. [51] proposed an approach in which
developers with advanced skills, referred to as the jury, review the code of developers
in a double-blind process. In this case, anonymity is particularly important to ensure
fairness in the reviewing process, which in turn improves the code review process and
software quality.
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Non-repudiation. Stakeholders in the software development lifecycle can shirk re-
sponsibility. For instance, when software is being developed in a collaborative manner, it
may occur that a collaborator claims to not have added a specific patch [57]. Additionally, in
software-testing with bug bounties, it may occur that bug bounties initiators claim that they
discovered the bug and refuse to reward the tester [47]. These issues can be addressed with
digital signatures and blockchain consensus mechanisms. Transaction messages containing
updates or testing results are digitally signed and validated depending on the consensus
algorithm. Once a transaction is recorded on the blockchain, it cannot be repudiated.

Smart contracts/Chaincode. Smart contracts can automate the verification of tasks,
which usually involves human-in-the-loop. For instance, smart contracts can be used
to automatically verify that tests passed [44,45], and to verify the compliance of SDLC
activities to best practices and policies, e.g., security vulnerabilities compliance and third-
party license compliance. Additionally, smart contracts can automatically reward software
engineers once they have completed their tasks and passed the criteria encoded in smart
contracts via digital coins [45] or tokens [59]. The increased automation has positive
impacts on the speed, quality, and efficiency of the software development process.

5. Discussion
5.1. Theoretical Contributions and Research Implications

The software development process is considered intrinsically complex, and overlook-
ing such complexity may impact the success rate of software projects [62]. This complexity
can be attributed to the fact that nowadays software development is performed globally
in collaboration with a variety of participants, such as vendors or crowd-workers. While
this collaborative effort intends to improve software quality, reduce costs and time to mar-
ket [12], previous research has also reported on challenges. These are lack of communication
and coordination among distributed stakeholders, lack of trust, lack of project visibility,
poor knowledge transfer [13], as well as intellectual property and data security [18]. The
alignment between these issues and blockchain properties inspired us to explore the uses
of this novel technology in SE. Our findings indicate that blockchain, due to its inherent
properties of decentralization, trust, transparency and immutability, can contribute to the
software engineering landscape in four main dimensions (See Table 6): (i) eliminate single
point of failure and compromise, by replacing centralized systems, such as GitHub, Travis
CI, and cloud-based package managers, with decentralized systems that offer availability
and resilience. (ii) blockchain can serve as a backbone of the SDLC ecosystem, in which
all software events and artifacts metadata can be stored and accessed by distributed stake-
holders. In this way, blockchain enables a holistic view of the entire software lifecycle,
which improves trust and collaboration among distributed stakeholders, and facilitates
auditability, compliance, provenance and identity assessment analysis. (iii) secure software
artifacts sharing among collaborators, by detecting any unauthorized attempt to access,
modify or transfer software artifacts. (iv) smart contracts have the potential to enhance
software development efficiency, by automating a set of activities that usually rely on
human rationale, such as verifying if tests passed acceptance criteria, verifying if source
code passed quality criteria, compliance to best practices and regulations, and enabling au-
tomatic payments to software engineers. We did not find evidence of using smart contracts
for the automatic assessment of software design and requirements against pre-defined
acceptance criteria, which presents a promising research direction.

Our findings reveal that researchers have focused on improving disparate SE knowl-
edge areas, but have not investigated the holistic impacts of blockchain on software de-
velopment efficiency and quality. Such investigation can foster the implementation of
blockchain use cases in software organizations and their evaluation by software practi-
tioners. Based on our findings, there is no study that implements blockchain-oriented
SE applications in organizational settings to date. This may be because of the limited
research in this area, the nascent phase of blockchain development, and the existence of
unresolved technical challenges [63]. More future efforts devoted to this topic in the form

163



Appl. Sci. 2021, 11, 2960 16 of 21

of prototypes and proofs-of-concept can encourage software practitioners to incorporate
disruptive blockchain properties into the SE landscape in order to harvest tangible benefits.

Software practitioners should conduct a careful analysis to decide whether blockchain
is required and feasible in the context of SE. This analysis should consider the alignment
between blockchain principles and specific software development principles and strategies,
alternative tools and technologies, appropriate blockchain platforms, and implementation
challenges. There is very little evidence regarding these aspects in the extant literature.
In what follows, we discuss some of these aspects to guide future research efforts. Agile
practitioners should consider the alignment of blockchain principles with agile principles.
At first glance, one may argue that the subtle notion of trust in agile practices contradicts
the trustless nature of blockchain technology. Agile software development relies on trust
among developers, between developers and the product owner, and between the product
owner and business stakeholders. This implies no control of the work done but trans-
parency, communication, accountability and collective responsibility [14]. On the other
hand, researchers point out that blockchain is trustless [64], which means that there is
no need to trust participants, as the system is secure even in the presence of Byzantine
participants. In other words, blockchain could enable collective trust on the basis of mutual
distrust, the so-called trustless trust [65]. Therefore, blockchain transforms the trust notion
from trusting peers to trusting the system. Researchers can further contribute to this topic
by mapping, comparing and discussing other blockchain principles with agile principles.

Regarding the selection of blockchain platforms, the main items that should be consid-
ered are the network permission and smart contracts support [66]. Our findings indicate
that most of the studies use smart contracts to enhance the automation of SDLC activities.
Therefore, the most used blockchain platforms by the selected studies are Ethereum and
Hyperledger Fabric due to their ability to execute code. Ethereum is a permissionless
blockchain platform that can be accessed and verified by anyone, whereas Hyperledger
Fabric is a permissioned blockchain platform that allows only a set of predefined partici-
pants to join the network [60]. Due to the differences in network permission, we perceive
Ethereum as more suitable for the open-source ecosystem with diverse contributors. For
instance, in [52] authors use blockchain for managing open-source packages. Making infor-
mation such as packages and their dependencies, available on a public ledger increases the
chances for code reuse. Additionally, Ethereum can be adopted in crowdsourcing projects
in which the requestor delegates specific development or testing tasks to the general public,
and any developer or tester can compete to solve the task and get the reward. If the collabo-
rators are known, for instance, different departments or teams in a distributed organization,
and they need to share software-related information, e.g., [48], a blockchain platform with
permissioned accessibility, such as Hyperledger Fabric is more appropriate. As blockchain
technology is continuously evolving, we expect blockchain 4.0 platforms that incorporate
artificial intelligence to expand the impact of blockchain on SE practices [9]. Researchers
can compare the features of different blockchain platforms and discuss their applicability
to SE use cases.

Furthermore, practitioners should consider implementation costs, governance, reg-
ulative compliance, and efficiency limitations. A few limitations of blockchain-oriented
SE applications have been mentioned in one of our studies [48]. These are large setup
overhead (blockchain infrastructure setup and cryptographic tools need to be installed
in each node) and storage overhead (the same information is replicated in each node).
The impact of these limitations on software development efficiency should also be in-
vestigated. Future research can be devoted to the investigation of these open issues to
guide implementation efforts of blockchain-oriented SE applications. Finally, the emerging
field of blockchain-oriented SE introduces the need for professionals with well-defined
skills in both blockchain and software engineering [6], in order to ensure that blockchain
applications satisfy the requirements of software engineering.
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5.2. Threats to Validity

An update of systematic mapping guidelines in SE published in 2015, by Petersen
et al. [67] suggested systematic mapping studies to consider the following validity types:
theoretical validity, descriptive validity and interpretive validity. In what follows, we
discuss these validity threats.

Theoretical validity refers to the extent to which the theoretical explanation fits the data.
Inevitably, researchers’ biases exist in the selection of studies, in particular in the design
of the search string, selection of databases and inclusion/exclusion criteria. However, we
minimized this threat by following with rigor the guidelines for systematic mapping in SE.
Additionally, the search was carried out independently by two authors. When discrepancies
emerged, they were discussed among the authors until consensus was reached. Another
threat to theoretical validity is publication bias, which may be probably caused by the
novelty of the topic. Acknowledging the novelty of the topic and the lack of empirical
evidence, to minimize publication biases and to ensure the reproducibility of our study, we
created a reproducibility package, accessible as archived open data [38].

Descriptive validity refers to the degree to which findings are described in an accurate
manner. This threat is mainly related to the design of data extraction forms. Data extraction
forms (publication type, publication year, authors, title, keywords, publication source,
research type, contribution type, research topic, blockchain aspects and platforms) were
designed by the first author and reviewed by the other authors, in accordance with the
research questions and research scope.

Interpretive validity refers to the extent conclusions are reasonable taking into account
the data. The interpretation of the findings was conducted by the first author and validated
by the other authors with experience in secondary studies in the SE field. A threat to
interpretation validity is the categorization of a limited sample of studies. At first glance,
this threat seems to complicate the comprehensive interpretation and discussion of the
findings. However, we perceive this as an opportunity for further research in a variety of
unexplored SE dimensions and blockchain aspects.

6. Conclusions

Recently, blockchain technology has attracted many organizations, due to its intrinsic
potential. The potential of this novel technology has been explored in a variety of domains,
such as financial applications, supply chain management and healthcare. However, the use
of blockchain in software engineering has not received enough attention. In this regard,
we carried out a systematic mapping study to identify software engineering applications
enabled by blockchain.

This systematic mapping follows the guidelines for systematic mappings in SE pro-
vided by Petersen et al. [28]. After a careful search and selection process, we identified
22 relevant studies and extracted data within three facets: research type, research topic and
contribution type. Our findings suggest an increasing trend of studies since 2018 (20 out of
22 studies, 91%). Several studies focused on replacing centralized systems, such as GitHub,
Travis CI and cloud-based package managers, while other studies focused on using smart
contracts to automate SDLC activities, such as the acceptance phase, payments to software
engineers, and compliance adherence. Additionally, blockchain facilitates trusted collabo-
ration and coordination in distributed software development, software provenance, and
software integrity assessment.

As the application of blockchain in software engineering is an emerging field, re-
searchers should contribute with more prototypes and proofs-of-concept in order to en-
hance the understanding of contributions that blockchain can bring to the SE landscape.
More research efforts devoted to this topic can encourage practitioners to implement
blockchain-oriented SE applications. Based on our analysis we present the following
future directions: (i) automatically verify software design and requirements against pre-
defined acceptance criteria, by means of smart contracts (ii) investigate the holistic impacts
of blockchain on software development quality and efficiency (iii) investigate the align-
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ment between blockchain principles and agile principles (iv) compare features of different
blockchain platforms and investigate their applicability to SE use cases (v) explore the im-
pact of blockchain 4.0 on software engineering, and (vi) address the need for professionals
competent in both blockchain and software engineering. Our future work will focus on
developing and validating a blockchain-enabled framework for requirements management
and traceability in interorganizational software projects.
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Appendix A

Table A1. Selected studies.

Reference Year Title Source

1 [41] 2015 A novel method for decentralized peer-to-peer software license validation using cryptocurrency blockchain technology Conference
(ACSC)

2 [29] 2017 Design of a smart contract based autonomous organization for sustainable software Conference
(e-Science)

3 [44] 2018 ChainSoft: Collaborative software development using smart contracts Workshop
(CRYBLOCK)

4 [45] 2018 Blockchain applications for agile methodologies Conference
(XP)

5 [49] 2018 A study of blockchain based on graph database for software quality measurement integrity Conference
(ICTC)

6 [50] 2018 Powering software sustainability with blockchain Conference
(CASCON)

7 [51] 2018 CoderChain: A blockchain community for coders Conference
(HotICN)

8 [56] 2018 (WIP) Blockhub: Blockchain-based software development system for untrusted environments Conference
(CLOUD)

9 [57] 2018 Smart collaboration mechanism using blockchain technology Conference
(EdgeCom)

10 [37] 2019 Framework for trustworthy software development Workshop
(ASEW)

11 [30] 2019 Blockchain-based software engineering Conference
(ICSE-NIER)

12 [46] 2019 Applying blockchain to improve the integrity of the software development process Conference
(EUROSPI)

13 [47] 2019 Blockchain-based marketplace for software testing Conference
(PST)

14 [52] 2019 Distributed software dependency management using blockchain Conference
(PDP)

15 [53] 2019 CAG: Compliance adherence and governance in software delivery using blockchain Workshop
(WETSEB)

16 [54] 2019 Blinker: A blockchain-enabled framework for software provenance Conference
(APSEC)

17 [55] 2019 ShIFt—Software identity framework for global software delivery Conference
(ICGSE)

18 [42] 2020 Towards efficient and secure global software development using blockchain Conference
(EASE)

19 [43] 2020 Blockchain-oriented requirements engineering: a framework Conference
(RE)

20 [48] 2020 A blockchain-based testing approach for collaborative software development Conference
(Blockchain)

21 [58] 2020 Application of blockchain for trusted collaboration in collaborative software development Conference
(COMPSAC)

22 [59] 2020 Are software engineers incentivized enough? An outcome-based incentive framework using tokens Workshop
(IWBOSE)
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Abstract. Requirements traceability has been broadly recognized by researchers
as an important quality of any software development process. However, among
stakeholders, requirements traceability is often perceived as an extra task that
disrupts their workflow. This perceived overhead demotivates stakeholders to
participate in the creation, maintenance and use of traceability links. The chal-
lenges of implementing requirements traceability are amplifiedwhen complex and
large-scale software systems are developed by cross-organizational and distributed
teams. Different organizational backgrounds, conflicting objectives, and organiza-
tional boundaries lead to trust issues that complicate the implementation of trace-
ability in such settings. In this paper, the authors propose a blockchain-enabled
framework for requirements traceability. This framework aims to: (i) enable a
holistic and reliable view of artifacts and traceability links, (ii) provide an incen-
tive mechanism for creators of traceability links, (iii) ensure the authenticity and
quality of traceability links by means of voting mechanisms, (iv) facilitate com-
prehension from traceability information through query services, and (v) enable
interactive graphical visualization of traceability links.

Keywords: Requirements traceability · Blockchain technology · Smart
contracts · Distributed software development

1 Introduction

Requirements traceability refers to “the ability to follow the life of a requirement in both
a forward and backward direction” [1]. The need to maintain bidirectional traceability of
requirements for quality purposes has been formulated by software process improvement
models, such as CMMI, ISO/IEC 15504 (SPICE) [2] and more recently ISO/IEC 33000.
Requirements traceability contributes to the development of high-quality software, as it
supports many activities of the software development lifecycle, for instance, software
maintenance [3], project management [4], change management and impact analysis [5].
However, in practice, traceability is perceived as an extra task that practitioners need to
perform or as an activity that disrupts their workflow [6]. This perceived overhead can be
explained by the provider-user gap, meaning that creators of trace links are often not the
ones who use them [6, 7]. For instance, developers create links between implementation
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tasks and source code commits which are actually used by project managers to track
project’s progress. Thereby, developers become demotivated and set a low priority to
traceability tasks, which may lead to incorrect or missing links. Maro et al. [6] proposed
the incorporation of gamification elements into traceability tools to increase the moti-
vation and engagement of developers in traceability creation and maintenance tasks.
Moreover, Wohlrab et al. [7] carried out 24 interviews to explore the relation between
traceability management and collaboration. The respondents proposed the inclusion of
voting features into traceability tools to enable stakeholders to jointly indicate incor-
rect links or to agree with the connected artifacts. This collaborative effort improves
the effort/benefit ratio, which in turn motivates developers to contribute to traceability
management.

As the complexity of software increases, the development is carried out by cross-
organizational and distributed teams. This paradigm complicates traceability, particu-
larly when distributed teams need to share artifacts [6]. In such environments, previous
literature proposed the use of a centralized data storage in which all artifacts are stored
and accessed by distributed stakeholders [6]. However, artifacts provided by distributed
teams cannot always be trusted, as they may have malicious intentions [8]. The partic-
ipation of third-party vendors exacerbates trust issues, due to different organizational
background, conflicting objectives, and organizational boundaries [9]. Different orga-
nizations may use different tools, methodologies, and processes that reside within the
organizational boundaries, making it difficult to leverage requirements traceability in
an efficient manner [9]. Additionally, organizational objectives of one organization may
contradict objectives of the other organizations that are involved in the project. For
instance, organizations may create incompatible links in terms of type or granularity,
which leads to unusable trace links [6]. Finally, organizational boundaries can imply
restricted access to some artifacts due to confidentiality constraints [6, 9] which in turn
complicates the creation of complete traceability. To address these challenges, there is
a need for a reliable and shared traceability knowledge base, in order to keep track of
all artifacts and trace links created by distributed stakeholders throughout the software
development lifecycle (SDLC). This can be achieved bymeans of blockchain technology.

Blockchain is a distributed ledger that stores transaction records in blocks. Each
block includes the hash of the preceding block to point to the previously validated block
in the chain [10]. This structure of a cryptographically linked list ensures immutabil-
ity which refers to the inability to tamper with the contents stored on the blockchain.
The main utility of blockchain is that it enables the exchange of data or transactions
among untrusted participants in a distributed network, without relying on a centralized
trusted party. Centralized third parties are prone to failures, malfunctions, and security
compromises which may lead to system unavailability [11]. Blockchain-based systems
overcome these risks, as every participant keeps a copy of the ledger and can verify the
legitimacy of the transactions [10]. Since 2015, the potential of blockchain technology
extended greatly due to the introduction of smart contracts [12]. Smart contracts are
self-executing computer programs that run across the blockchain network and enable
trusted transactions and agreements among different parties [13]. The results of smart
contracts execution are verified by the nodes of the network and stored on the distributed
ledger. Smart contracts were originally conceived to automatically implement the terms
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of the contract that two parties agreed upon in a trustless environment [14]. Nowadays,
the scope of smart contracts has been largely extended to perform any conceivable task,
similarly to general-purpose software programs [14]. Smart contracts are intended for
a variety of application domains, ranging from financial, notary, game, wallet to library
which comprises general-purpose operations that can be used by other smart contracts
[15].

In this paper, we propose a blockchain-enabled framework for requirements trace-
ability. To the best of our knowledge, this is the first study that uses blockchain to keep
track of artifacts and traceability links in distributed settings. This framework aims to:

• enable a holistic and reliable view of artifacts and traceability links
• provide an incentive mechanism for creators of traceability links
• ensure the authenticity and quality of traceability links bymeans of votingmechanisms
• facilitate comprehension from traceability information through query services
• enable interactive graphical visualization of traceability links

The paper is structured as follows: Related work is presented in Sect. 2. Section 3
describes the proposed framework, and Sect. 4 concludes the work and presents future
research directions.

2 Related Work

Mader et al. [16] emphasized the importance of a traceability information model in facil-
itating traceability creation and maintenance. These authors presented the traceability
information model used by their prototype, namely, traceMaintainer. They conducted
experiments with subjects who were provided with the traceability information model
and were required to create trace links between use cases and analysis classes and trace
links between analysis classes and design classes. The subjects reported that they were
satisfied with the guidance provided when creating trace links and that traceMaintainer
prevented them from creating trace links in an inappropriate manner. The authors advo-
cate the use of traceability information models as they enable different analyses, such
as validating traces, impact analysis and change propagation, coverage analysis, and
relation count analysis.

Cleland-Huang et al. [17] proposed a model-based approach that enables stakehold-
ers to plan and execute traceability strategies in a graphical modeling environment. This
approach consists of four layers: strategic layer, document management layer, stored
query layer, and executable layer. The strategic layer represents the traceability graph
structure which consists of artifacts and trace paths, using a standard XML format. The
document management layer documents individual set of artifacts using a standardXML
representation. The stored query layer constructs queries for primitive traces between
adjacent artifacts types, and composite traceability paths between non-adjacent artifacts
in the strategic traceability graph. Finally, the executable layer provides the user interface
to display the pre-defined trace queries and visualize the results. Our study adopts these
conceptual layers, albeit it implements them in a different manner.

Elamin and Osman [5] proposed a user-defined traceability metamodel that uses
XML patterns to define artifacts, trace links, and trace type rules. According to these
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authors, the main limitations of traceability approaches lie in the representation and
storage of traceability information. To address these limitations, the authors implemented
a graph traceability repository to store artifacts and trace links. The benefits of the
graph repository were demonstrated by applying it to three varying datasets. The results
confirmed that the graph repository outperforms traceability matrices, cross-reference
tables and relational databases in terms of visualizing trace links, representing multi-
dimensional relations and performance. We adopt the concept of rules for trace links
semantics, however we encode these rules into smart contracts and store artifacts and
trace links on a distributed ledger.

None of the aforementioned approaches address requirements traceability in dis-
tributed environments. In this regard, Rempel et al. [9] investigated the need for require-
ments traceability in inter-organizational software projects. The authors carried out
semi-structured interviews with 17 organizations. The results indicated that on the
one hand requirements traceability has the potential to address inherent issues of inter-
organizational software projects, such as compliance, operational excellence and com-
munication between parties. On the other hand, the different organizational backgrounds,
conflicting objectives, and organizational boundarieswere found to complicate the appli-
cation of requirements traceability. The authors presented the following guidelines for
distributed requirements traceability: ensure the reliability and availability of traceability
information, mitigate conflicting objectives and bridge the technological gap that exists
between clients and suppliers. Despite the valuable insights, this study does not provide
further information on how these guidelines can be implemented.

Furthermore, recent literature has encouraged the cross-fertilization of software engi-
neering and hyped technologies, such as blockchain technology [18, 19]. In fact, we have
observed an increasing trend of studies that use blockchain to support software engi-
neering activities during the last three years [20]. In what follows, we present a few of
these studies: Yilmaz et al. [21] used blockchain to improve the integrity of the software
development process. The authors proposed an incentive mechanism where develop-
ers compete for developing the best code, instead of being assigned a specific task by
the project manager. This proposal may be valuable to address trust issues, particu-
larly in large-scale agile development. Bose et al. [22] proposed a blockchain-oriented
framework for trustworthy software provenance in global software development. The
framework captures provenance data from the variety of tools used throughout the SDLC
and transforms them according to PROV-specifications. The authenticity of these data is
verified by authorized personnel by means of voting mechanisms. Recently, Singi et al.
[23] proposed an incentive framework enabled by blockchain technology that captures
events throughout the entire software development lifecycle, analyzes these events for
their compliance to incentive policies by means of smart contracts, and automatically
delivers incentives in the form of digitized tokens to software engineers, accordingly.
These studies provide valuable insights into the applications of blockchain in the soft-
ware engineering landscape, however none of the aforementioned studies is devoted to
the use of blockchain for requirements traceability in distributed settings.
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3 Proposed Framework

Figure 1 depicts the blockchain-enabled requirements traceability framework. The
proposed framework consists of the following components:

Fig. 1. Blockchain-enabled requirements traceability framework

Strategic Layer. A feasibility analysis should be carried out in order to investigate
whether the application of blockchain for requirements traceability is required and fea-
sible in the given environment. This analysis should take into consideration the align-
ment between blockchain features and requirements traceability strategies, alternative
tools, and technologies for representing and storing traceability links. The latter has been
achieved in the form of traceabilitymatrices, cross-reference tables, relational databases,
and graph traceability repositories [5]. It is also vital that the analysis explores the bene-
fits of applying blockchain for requirements traceability, along with challenges, such as
implementation costs, technical, regulatory and governance challenges. The next com-
ponent of the strategic layer is the traceability information model (TIM) which provides
guidance on what software artifacts to trace and what relations to establish, and con-
sequently prevents inconsistent results in large projects with many stakeholders [16].
Determining the traceable artifacts and relations in advance has been considered a best
practice for establishing the traceability environment [24]. Figure 2 depicts a simple
traceability information model which consists of three main elements, as follows [5]:

• Artifacts to define what artifacts should be traced and their properties.
• Trace links to define relations between artifacts based on source artifact ID and

destination artifact ID.
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• Trace type rules to define the naming rules for the trace links. For instance, if the
source code is related to the requirement, then the name of the relation is “satisfy”.

These elements can be encoded into smart contracts to enforce the registration of only
those artifacts and trace links that are needed in the project and automatically identify
trace links semantics.

Fig. 2. A simple traceability information model

The last component of the strategic layer is the incentive policy that aims to define
who is eligible to create trace links, how to validate the quality of trace links, e.g.,
can be validated by stakeholders using traceability quality metrics such as correctness,
timeliness, accuracy, completeness, consistency and usefulness [25], and how much
incentive goes for the creation of trace links based on their priority.

Blockchain Proposal. The blockchain proposal forms the core component of the
framework and consists of:

• Data collection. A variety of tools are used throughout the software development
lifecycle, such as Rational DOORS for requirements management, and Git as a ver-
sion control system. These tools generate artifacts that are defined in the traceability
information model. Artifacts generated from these disparate sources can be captured
automatically by means of data ingestion tools/plugins [22] and are parsed prior to
being recorded on the blockchain. Additionally, stakeholders create trace links manu-
ally and invoke the respective smart contract to register these links on the distributed
ledger.

• Storage layer and smart contracts. Smart contracts are created to enable the fol-
lowing functions: register artifacts, e.g., requirements (id, type, name, description,
priority, parent_id), register trace links (source_artifact_id, destination_artifact_id,
trace_type), validate trace links quality and reward trace links creators, accordingly.
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On platforms such as Ethereum, the storage costs gas and can lead to network syn-
chronization issues and the high consumption of disk space on the nodes [26]. To
resolve storage limitations, the framework allows to store artifacts’ contents off-chain
in immutable storage, such as IPFS (InterPlanetary File System). Moreover, the qual-
ity of trace links is validated by approvers or verifiers whose selection depends on
voting policies. The approvers provide their consent or rejection which is logged as
a vote on the distributed ledger. The smart contract calculates cumulative votes and
accepts or rejects trace links based on the vote score. It is noteworthy that the assess-
ment of traceability links quality is challenging because it requires manual checking
[6]. Finally, the incentive policies are encoded in the smart contract that distributes
digitized tokens to stakeholders who create quality trace links.

• Query layer. This layer facilitates comprehension from traceability information stored
on the blockchain. Traceability-related queriesmust be constructed fromprimitive and
composite links [17]. Primitive links are links between adjacent artifacts types defined
in the traceability information model. These queries comprise simple forms of traces,
for instance, return the list of requirements satisfied by source code or using filters
to include only artifacts with a specific attribute value. Composite trace links are
more complicated to implement as they take place between non-adjacent artifacts, for
instance return requirements that trace to source code which failed its test case [17].

• Presentation layer.This layer is responsible for the visualization of traceability-related
information. Traceability visualization enhances stakeholders’ ability to comprehend
relationships between artifacts. Previous literature reports on difficulties in uncovering
insights from traceability information due to the fact that trace links are represented
through lists or mega tables [6, 27]. Other approaches use two-dimensional graphical
formats such as hierarchical leaf node and tree view. These representations fail to
explore relations between different artifacts in an interactive manner which aids in
comprehending the overall system [28]. Our framework suggests hierarchical and
interactive visualization of trace links to enhance traceability comprehension.

Implementation. In this phase, the blockchain proposal is developed and imple-
mented. The development of the blockchain proposal requires close cooperation between
blockchain developers and requirements traceability experts or professionals with skills
in both blockchain and requirements traceability. The need for new professional roles
has been also observed in the broader field of blockchain-oriented software engineer-
ing by Porru et al. [29]. Furthermore, the best fitting blockchain platform should be
selected by mapping the requirements of the desired system and blockchain features. As
the number of blockchain platforms is growing rapidly, the selection of the appropriate
platform becomes challenging. To guide the selection process, we refer to previous lit-
erature that provides a grounded blockchain platform selection process [30]. The main
items to consider comprise network acessibility, smart contract support, and whether
tokens are required or not [30]. For instance, open-source software with diverse con-
tributors might require public accessibility whereas the development of complex and
large-scale software among a set of known distributed teams or organizations might
require restricted accessibility. Finally, disruptive technologies such as blockchain are
adopted once organizational resistance is overcome which in turn can be achieved if
the organization perceives the value of such a system [31]. Therefore, it is important to
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communicate the value of implementing blockchain for requirements traceability in a
transparent and clear manner to all the participants involved in the software development
lifecycle.

Assessment. In this phase, the contributions of the blockchain proposal to the soft-
ware development lifecycle are assessed. The proposed framework provides an incentive
mechanism to create quality trace links, which motivates stakeholders to participate in
traceability creation and maintenance. Furthermore, the framework enables a holistic
and trustworthy view of artifacts and trace links and presents them in a hierarchical
and graphical way which encourages the use of traceability to support SDLC activities.
In turn, the increased use of traceability improves the performance of practitioners in
solving SDLC tasks, for instance maintenance tasks. The performance can be measured
as the combination of the time to solve the task and correctness of the solution [3].
Finally, the increased quality and completeness of traceability has a positive impact on
software quality which can be measured in terms of defect rate [32]. A reduced defect
rate implies less need for software maintenance and consequently cost savings that can
be quantified [32]. It is worthy to note that the components of the proposed framework
are designed to be extensible and should be tailored to organizational requirements. For
instance, organizations developing safety-critical systems may use smart contracts to
automatically validate compliance to regulations or standards that impose traceability
requirements, e.g., ISO 26262 and ASPICE in the automotive domain [6].

4 Conclusion

In this paper, we propose a novel blockchain-enabled framework for requirements trace-
ability. This framework uses blockchain as the backbone of the software development
lifecycle, to enable an auditable trail of artifacts and trace links created by multiple
distributed stakeholders. Due to its inherent properties, blockchain ensures visibility
regarding what/how/when trace links were created and who created them. Additionally,
the framework can be used to query and represent traceability-related information to
enhance the understanding of the overall system.

Blockchain, as any other technology, does not fit all the use cases in requirements
traceability however this ongoing study is exploring a way of investing, using and tak-
ing the best from blockchain. Although there is large setup and storage overhead when
implementing blockchain for software engineering [33], blockchain can ensure visibility,
transparency, traceability and trustworthiness of artifacts and trace links. The framework
comprises customizable incentive and voting policies to ensure the trustworthiness of
trace links and presents them in an interactive manner to enhance comprehension. These
components can potentially encourage the use of traceability to support SDLC activi-
ties, and in turn improve the performance of practitioners in solving SDLC tasks and
enhance software quality. However, it could also be interesting to improve the proposed
framework by incorporating gamification elements in order to enhance the motivation
and engagement of practitioners in traceability tasks.
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Despite the aforementioned potential benefits, the framework also has limitations that
are mainly related to the manual work involved in the creation of smart contracts and in
the validation of quality trace links. Another open issue to be addressed is how to resolve
conflicts that may occur when different participants claim to have created the same trace
links. Furthermore, it is noteworthy that the implementation of blockchain technology
for requirements traceability may be challenging due to the limited research efforts in
this dimension, the nascent stage of blockchain development and open technical chal-
lenges. These limitations have also been identified when implementing blockchain in
conventional domains such as supply chain [34]. Although the proposed framework aims
to be easy to used, it requires software practitioners to have knowledge of both fields:
blockchain technologies and requirements traceability. Further research efforts devoted
to the development of prototypes and proofs-of-concept in this area may encourage soft-
ware development organizations to implement blockchain for requirements traceability.
Therefore, the blockchain-enabled framework proposed in this studywill be validated by
means of blockchain and requirements traceability experts. Then, a blockchain-enabled
requirements traceability prototype will be developed and use cases will be performed
to test the concept. In so doing, some questions arise: What will be the main benefits
of an organization to implement your framework? How easy is the framework for use?
What type of knowledge that engineering needs to be able to use the framework? In a
common project how should use your framework?
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Abstract

Blockchain technology has emerged as a “disruptive innovation” that has received

significant attention in academic and organizational settings. However, most of the

existing research is focused on technical issues of blockchain systems, overlooking

the organizational perspective. This study adopted a grounded theory to unveil the

blockchain implementation process in organizations from the lens of blockchain

experts. The results revealed three main categories: key activities, success factors,

and challenges related to blockchain implementation in organizations, the latter being

identified as the core category, along with 17 other concepts. Findings suggested

that the majority of blockchain projects stop at the pilot stage and outlined organiza-

tional resistance to change as the core challenge. According to the experts, the fol-

lowing factors contribute to the organizational resistance to change: innovation–

production gap, conservative management, and centralized mentality. The study aims

to contribute to the existing blockchain literature by providing a holistic and domain-

agnostic view of the blockchain implementation process in organizational settings.

This can potentially encourage the development and implementation of blockchain

solutions and guide practitioners who are interested in leveraging the inherent bene-

fits of this technology. In addition, the results are used to improve a blockchain-

enabled requirements traceability framework proposed in our previous paper.

K E YWORD S

blockchain technology, grounded theory, interorganizational software projects, requirements
traceability

1 | INTRODUCTION

Blockchain (BC) has been considered a cutting-edge technology with the potential to disrupt conventional domains and business models,1 as per-

vasively as the Internet had done.2 The Internet changed humans' understanding of time and space by intensifying social relations, creating a

global ecosystem.3 Within this global ecosystem, BC is transforming the nature of human relations and organizations by enabling smart contracts

(SC) that ensure trust among individuals and organizations.3 From an architectural perspective, BC is a distributed ledger technology that stores

all committed transactions in an ever-growing chain of blocks.4 The fundamental feature of BC is peer-to-peer data sharing and storage, removing

the need to entrust central authorities for the maintenance of the ledger.5 Although BC research is on the rise,6 most of this research is focused

on a technical perspective and takes a simplistic view on organizational issues.7 Our preliminary research suggested little empirical evidence on
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how BC is implemented in organizational settings. Beck and Müller-Bloch8 concluded that BC is a radical innovation, and as such, organizations

engage with this technology by means of three main processes: discovery, incubation, and acceleration. Similarly, Dozier and Montgomery9 used

a grounded theory (GT) approach to unveil the BC evaluation process. To explain the evaluation process, the authors presented the proof-of-value

model that is composed of three main activities: understand, organize, and test. Despite these valuable efforts, further empirical evidence is

needed to enhance the understanding of the implementation process of BC in organizations.

Inherent benefits of BC, such as disintermediation, automation, trust, cost reduction, and non-repudiation have generated growing interest10

across a variety of industry sectors ranging from financial services to manufacturing and public services.7 Recently, an increasing number of BC

applications has been noticed in the software engineering (SE) landscape.11 BC has also been proposed to keep track of artifacts and trace links

created by distributed stakeholders in interorganizational software projects.12 This study is an extension of our previous study presented in

EuroSPI conference.12 The authors aim to improve the proposed BC-enabled requirements traceability (RT) framework by using categories and

concepts grounded in data. GT was identified as the most suitable approach to unveil these categories and concepts, given the novel and multi-

faced nature of BC. Data were collected through semi-structured and in-depth interviews with BC experts and analyzed by means of GT coding

techniques. The results revealed the core category, blockchain implementation in organizations; three related categories, key activities, success fac-

tors and challenges; and 17 concepts to further expound on the categories.

The contributions of this study lie in two main dimensions: (i) providing evidence on the implementation process of BC in organizational set-

tings from the lens of BC experts. This evidence may serve as a guide for researchers and practitioners who are interested in this technology,

enhance the comprehension of this technology, and consequently encourage the development and implementation of BC solutions. Another is

(ii) improving our previous BC-enabled RT framework12 by supporting it with categories that are grounded in empirical data.

The sections of this study are as follows: Section 2 presents the extant literature in the fields of BC-enabled SE, and RT. Section 3 describes

the research approach followed in this study, the experts' selection process, data collection, and analysis. Section 4 provides a thorough descrip-

tion and explanation of the key results of the study. Section 5 discusses the validity of the results and limitations of the study. In addition, this

section puts the results in the context of a specific use case on the application of BC for RT in interorganizational software projects. Finally,

Section 6 concludes the study and presents a set of potential future research directions.

2 | BACKGROUND

2.1 | BC for SE

BC has made the concept of “shared registry” possible for a variety of application domains ranging from cryptocurrencies to potentially any sys-

tem that requires decision-making to be decentralized, reliable, and automated in a multi-stakeholder environment.5 Recently, BC has captured

the attention of SE researchers who advocate for the cross-fertilization of SE with BC technologies.13,14 Our recent systematic mapping study on

this topic revealed an increasing trend of studies that have used BC in the SE landscape since 2018.11 A set of these studies is presented as fol-

lows. Lenarduzzi et al.15 proposed the automation of the acceptance phase and the payment to developers by means of SC. SC are created by the

customer, and then the product owner registers the following artifacts: user stories, acceptance tests that are executed by developers, and the

hash of expected output. The hash of the output is assessed against the hash of the expected output and once all the tests pass, Ethers are allo-

cated to the address of the developer. According to the authors of this study, BC can potentially transform other phases of the software lifecycle

that currently depend on human rationale.

Beller and Hejderup16 introduced two BC-enabled models: (i) a decentralized continuous integration (CI) model that aims to replace the con-

ventional Travis CI. In this model, developers enter builds and their respective rewards to the distributed network and interested entities perform

the builds. Additionally, (ii) a user-run package management system as opposed to centralized package management systems allows entities to

propose new packages and validate others' work.

Yilmaz et al.17 focused on improving the integrity of large-scale agile software development. The authors proposed a BC model that considers

developers who develop code as miners and testers as the validators of the work performed by developers.

Bose et al.18 proposed Blinker, a BC-enabled framework for trusted software provenance. The framework monitors and captures provenance

data that are generated from various tools used throughout the software lifecycle. The data are modeled according to standard provenance model

specification. SC are also created to validate provenance data by voting mechanisms and for compliance checking.

Yau and Patel19 used BC to ensure trusted coordination in complex and collaborative software development. In their proposal, software

teams produce software specifications for different software lifecycle phases, such as requirements, implementation and testing in {key, value}

format. These specifications are then evaluated against the output generated by the other teams.

Singi et al.20 presented a token-based incentive framework that uses BC and SC to provide transparent and reliable incentives to those soft-

ware engineers who contribute to any activities of the software lifecycle. The framework entails capturing incentive policies and their associated
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data, monitoring events, and recording events data on the distributed ledger. These data are then assessed against incentive policies and accord-

ingly, incentives are distributed in the form of persistent wallet tokens in an automatic fashion by means of SC.

These studies focused on improving different aspects of the software lifecycle and contributed to software being built in a reliable, transpar-

ent, and auditable manner.20 Despite these promising contributions, the BC-enabled SE field is still emerging and further research efforts are

required.11 In this study, the authors aim to contribute to this field by presenting a BC-enabled framework for RT in interorganizational software

projects.

2.2 | Requirements traceability

As software-intensive systems are becoming increasingly important in industrial projects, and more innovative and high-quality systems are

required to be brought to market in a quick fashion, there is a need for efficient requirements engineering.21 Within the requirements engineering

community, RT has gained importance, as a quality attribute for software for three decades now.22,23 The foundational work in this field has been

carried out by Gotel and Finkelstein24 with their seminal study An analysis of the requirements traceability problem. The authors of this study

defined RT as “the ability to describe and follow the life of a requirement, in both a forwards and backwards direction ….” At a fundamental scope,

traceability refers to the ability to relate artifacts' data and examine these relations.25 These relations provide valuable information that contribute

to a variety of software and systems engineering activities, such as software maintenance,26 change and defect management,27,28 and project

management.28 Ultimately, RT ensures visibility into required elements of the development process, which leads to a better understanding of the

system under development.25

The theoretical importance of RT would suggest a widespread use of RT in practice. However, in practice, RT has been perceived as an

optional task of low priority and performed by means of ad-hoc individual efforts.24,29 Previous studies have proposed the inclusion of

gamification elements29 and voting features into traceability tools.30 The former aims to enhance the motivation of developers to engage in trace-

ability tasks, and the latter enables stakeholders to identify incorrect trace links or agree on related artifacts as a result of a joint effort.

The increased need for complex and large-scale software has paved the way for the distributed development paradigm, that is, development

performed by cross-organizational and distributed teams.12 According to Maro et al.,29 this development paradigm complicates RT as distributed

teams need to share software artifacts. These artifacts can be stored in a centralized data storage and accessed by distributed and diverse

teams.29 However, these teams cannot always trust artifacts provided by the other teams as competitors and malicious entities may be involved

in the collaboration.31 The involvement of third-party vendors raises even more significant trust concerns among the participating entities.19 The

distance produced by participating entities in interorganizational software projects has been acknowledged also by Rempel et al.32 According to

the authors, traceability may contribute to bridging this distance. However, achieving complete RT in such environments is far from being trivial,

due to three main problem areas: (i) different organizational background of participating entities lead to the use of a diverse set of tools and meth-

odologies that reside within organizational boundaries32; (ii) contradicting organizational objectives of entities involved in the project, for instance,

each entity may create trace links that are not compatible with the other entities in terms of trace links types or granularity;30 and

(iii) organizational boundaries may lead to restricted access to artifacts created by the other participating entities, due to confidentiality con-

straints.30,32 Entities may have the right to access only a small subset of the entire set of artifacts generated throughout the software develop-

ment lifecycle (SDLC). This small subset of artifacts is not sufficient to enable complete RT.32 To address these challenges, this study proposes the

use of BC technology as a viable technical solution with the potential to serve as a shared, trusted, and auditable traceability knowledge base.

3 | RESEARCH METHODOLOGY

3.1 | Research approach

This study adopted a qualitative approach by conducting semi-structured interviews with BC experts. BC experts were interviewed in order to

provide a comprehensive, holistic, and domain-agnostic overview of the implementation of BC technology in organizational settings. The empirical

work in this phase was conducted by applying traditional GT. Although a variety of methodological genres exist, researchers seem to unanimously

agree that GT is a process or method by which conceptual frameworks or theories are generated from inductive analysis of data.33–35

In this empirical study, GT was selected as the most suitable research methodology for three main reasons. First, factors influencing the

implementation of BC in organizations go beyond technical aspects. The underlying socio-technical nature of this novel technology makes it suit-

able for the application of GT. Second, GT contributes to investigate a novel multifaced phenomenon in detail.36 Despite the fact that the applica-

tion of BC in various domains has been explored recently, BC research remains at an early stage in terms of theoretical and empirical grounded

work and methodological diversity.3 Lastly, GT is appropriate when researchers do not have an upfront hypothesis; instead of that, they aim to

construct a theory grounded in the data. In this study, GT was adopted to derive constructs grounded in the data which will be further used to
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improve the initial BC-enabled RT framework.12 In addition, the study followed the GT guidelines by focusing on a wide area such as BC rather

than a specific research problem.37

Although GT has been used vastly in social studies, applications of this method have been noticed also in human-related aspects of SE.38,39

Figure 1 depicts the GT stages that are used in this study, adapted from Hoda et al.38

3.2 | Data collection

Data collection in GT is an ongoing activity to achieve theoretical saturation that refers to the point at which no new information is being

acquired.33 The initial data collection process is aimed to identify the main concepts that are then used to decide on the data to be collected in

the next stages of the process.40 This approach is referred to as theoretical sampling by Glaser40 and is adopted by our study. The following sec-

tions describe the experts selection and interviewing processes.

3.2.1 | Experts selection

Experts should be selected so that the most credible and accurate judgments are provided. To govern the selection process, a set of criteria was

formulated by considering the recommendations of NUREG-1150 cited in Li and Smidts41: demonstrated experience related to the topic of inter-

est by publications, consulting firms, laboratories, or government agencies; diverse background and affiliations; and willingness to be elicited in

accordance to the designed methodology. Bearing these guidelines in mind, Fehring's42 experts selection criteria for BC was adapted. Although

Fehring's42 criteria were initially designed to select nurses to validate nursing diagnoses, they have also been tailored to the software domain.43

Table 1 depicts the criteria for selecting BC experts, and Table 2 presents the characterization of experts.

F IGURE 1 Grounded theory stages, adapted from Hoda et al.38

TABLE 1 Selection criteria for blockchain experts, adapted from Fehring42

Experts' selection criteria Scores

C1.Over 2 years of experience in BC 04

C2.Academic experience (teaching, supervision of bachelor, master, PhD students) in BC 04

C3.PhD in BC 03

C4.Published journal articles in the field of BC 03

C5.Published conference/workshop/symposium articles/book chapters/reports in BC 02

C6.Master's degree and/or thesis in BC 01

Abbreviation: BC, blockchain.
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The participants of this study were considered BC experts if they were evaluated with a total score of 5 or higher. Forty-five experts in the

domains related to this study were identified as potential candidates by means of the personal network of the authors of this study. This sampling

approach has been referred to as purposive sampling and has been mainly used in qualitative and interpretive research.44 Purposive sampling

allows the authors to exercise expert judgment.45 To apply the selection criteria presented in Table 1, candidates' LinkedIn profiles, personal

websites, and company/university webpage were thoroughly analyzed. Consequently, a set of 35 experts with a score of 5 or higher were

selected and contacted by email. The final set of 10 experts was composed based on their availability and interest to participate in this study. A

detailed description of the project was sent to the final set of experts prior to their participation in the study. In addition, an informed consent that

outlined the implications of experts' participation in this study, their voluntariness, and anonymity rights was sent out to each of the experts (The

informed consent is available online46). To ensure anonymity, experts of this study are referred to by IDs (EXi for i1,10). Table 2 presents the indi-

vidual and mean scores of the final set of experts, along with other characteristics. The data indicate that the majority of the selected experts

(80%) have over 2 years of practical experience with BC, although only two experts present academic experience and 90% of the experts have

published conference/workshop papers, book chapters, or reports on BC-related topics.

3.2.2 | Interviews

The authors collected data by carrying out semi-structured interviews with BC experts. Semi-structured interviews were chosen due to their abil-

ity to provide rich contextual information, and to allow for flexibility and improvisation.47 This technique enables two-way communication

between the interviewer and interviewee, which makes the communication more personal and allows to uncover relevant information for the

study.48 The interviews were conducted via Zoom and lasted from 40 to 95 min. It is noteworthy that interviews were recorded with the inter-

viewees' formal consent. Relying on GT principles,40 the authors asked general questions about the implementation of BC in organizational set-

tings in the first interviews. The transcribed data of these interviews were analyzed in an iterative fashion and used to formulate questions about

specific items in the following interviews.

The interviews started with questions regarding the interviewee's experience related to BC and a brief description of the projects they partic-

ipated. Next, interviewees were asked a set of questions regarding the implementation process of BC in organizational settings, implementation

challenges and success factors, factors to be considered when planning to implement BC, and the selection process of the best fitting BC plat-

form. A sample of the questions can be found in an online repository.46 The data collected from these interviews were analyzed by using GT cod-

ing techniques as explained in Section 3.3, and the BC-enabled RT framework was updated accordingly (see Section 5.2). It is noteworthy that the

BC experts were not provided with the framework beforehand to avoid potential biases.

3.3 | Data analysis

The data analysis approach adopted in this study relies on the traditional GT approach associated with Glaser.34 Qualitative research is character-

ized by an abundance of data, which are difficult to be managed manually. To minimize human error when collecting and analyzing large amounts

of data, qualitative researchers use Computer-Assisted Qualitative Data Analysis Software (CAQDAS). In this study, the authors used NVivo soft-

ware to handle a large amount of qualitative data throughout the whole GT process. This software has been used by other GT studies in SE, for

example, Javdani Gandomani and Ziaei Nafchi.49 In what follows, the GT data analysis process is described.

i. Open coding. In this phase, transcripts were analyzed in order to comprehend the context under study.40 The analysis aimed to identify key

points. Once a key point was identified, a code was assigned to that specific key point.40 Furthermore, the code was compared with previ-

ously identified codes in the same transcript and previous transcripts. This process has been referred to as constant comparison and enables

high-level abstraction and the identification of concepts and categories.40 The emergent categories will be used as the basis to generate the

final theory.

ii. Core category. The open coding process terminates with the identification of the core category. The core category reflects the main concerns

of the interviewees.40 According to Glaser,40 the core category should fulfill a set of criteria: being central, being related to the other catego-

ries meaningfully, and accounting for the majority of data variations. The core category can be identified by using the constant comparison

technique on the categories and by identifying their relationships. After the first four interviews, the authors perceived “feasibility analysis”
as the main category, as it was related to the other categories meaningfully. However, a more detailed analysis indicated that this category

did not fit the following criteria: being central and account for the majority of data variations. Therefore, the authors continued the iterative

constant comparison process and consequently, concluded that the core category was “BC implementation in organizations.” The identifica-

tion of the core category terminates the open coding process and paves the way to selective coding. Selective coding in GT entails coding

only the core category, along with its related categories.40
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iii. Theoretical memoing. The authors created memos in NVivo after each interview to express their ideas, thoughts, and insights related to an

emergent code or category. This process is referred to as theoretical memoing, and it is crucial in ensuring quality in GT studies as it enables

the authors to enhance relationships between codes.

iv. Sorting. Once data collection was finished, the authors started the sorting process. This process is useful in explaining each category and rela-

tionships in detail, consequently, formulating the theory grounded in data. It is noteworthy that the low number of interviews limits the gen-

eralizability of the emerging theory. In order to minimize this threat, the authors triangulated their findings with a minimal literature review

which was performed at this stage of the process.

v. Theoretical coding. Theoretical coding is aimed to discover relationships between the core category and the related categories and formulate

the hypotheses that explain the emergent theory. The authors identified the relationships between the core category “BC implementation in

organizations” and the other related categories: key activities, challenges, and success factors, as presented in Figure 2. Glaser proposed a set

of theories' structures, referred to as theoretical coding family.40 In this study, the authors adopted the temporal/process coding family to

explain the emerging theory, as illustrated in Figure 3. This coding family presents a category in terms of stages, timeliness, conditions,

phases, actions, and temporal ordering of work.49

F IGURE 2 Emergence of grounded theory from the identification of categories and concepts.

F IGURE 3 Presentation of the “key activities” category in the form of Glaser's temporal/process family
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4 | RESULTS

The emergent GT in this study encompasses one core category BC Implementation in Organizations and three related categories: key activities, chal-

lenges, and success factors (see Figure 2). These categories are explained in the following sections.

4.1 | Key activities

Data analysis indicated the emergence of key activities in the implementation process of BC technology in organizational settings. These key

activities are depicted in Figure 3 in the form of Glaser's temporal/process family.

4.1.1 | Identify business needs

The first step of implementing BC into an organization's environment is to identify business needs. According to EX2, the main factor in any suc-

cessful implementation is to define the scope, requirements, and then find the best tool to address these requirements. For instance: “the typical

requirements for supply chain would be traceability. So, you have a product and you want to know who has touched it along the way, where did

it origin from, has it met ethical standards throughout the value chain, has it met environmental standards … and then decide what technology

you can trust to ensure traceability” (EX2). This expert strongly supported that requirements should drive the technological choice and not vice

versa. Likewise, EX3 emphasized that organizations should not decide to implement BC because it is a hyped technology with intrinsic potential,

but because this technology solves a problem that the organization may have. “It is not BC because it is BC, but because it solves a problem that

they may have” (EX3). Likewise, previous studies have reported on the perception of BC as a solution looking for a problem.9

Another important aspect to consider in this phase is that BC does not fit for every use case, as agreed by our experts. In fact, BC use cases

are very specific and constrained (EX6, EX7). In spite of this, the experts considered these use cases as not difficult, but they claimed that practi-

tioners are not trained to recognize them (EX7).

4.1.2 | Feasibility analysis

After identifying the business needs and use case, it is essential to analyze if BC is the most suitable solution to address the identified business

needs compared to existing alternatives. EX7 revealed that the process of investigating the right environment for the implementation of BC takes

60% of the whole implementation process. This expert suggested to consider two main dimensions in this regard:

i. The legal dimension. Do you need to act with other organizations or clients that may not agree with what you claim? EX7 explained this

dimension further: “when you put BC in a context, it is because you need to be able to demonstrate that data is right to people who may not

agree with what happened before … You need to make producers and consumers accept the data they have installed, so you need to put it in

a legal context that they will accept to avoid going to trial.” If this does not exist, then a shared database would be the most appropriate

solution.

ii. BC as a platform. Do you have a market you want to join or do you intend to create an ecosystem for others to join? EX7 further stated “If
you are not talking about a selling platform or to be or to put business in, you do not really need a BC. You have already the cloud for that.”
After identifying the need for BC in a specific organizational environment, it is important to understand the value and benefits of applying

such a technology. EX6 provided an example in which BC was used to prevent double spending of the city pass vouchers and to keep track

of who was using vouchers and how. Although EX6 acknowledged that this could be done with existing technologies, the expert pointed out

the following benefits of using BC in this context: transparency, cost-effectiveness, and reliability. However, as concluded by the experts,

benefits such as transparency and reliability might be difficult to capture and require new measurement methods.

Furthermore, the organization has to make a set of strategic considerations, for instance, where the computers will be, how to ensure their secu-

rity, and how will they communicate with each other. Afterwards, the process proceeds with the identification of the number of nodes of each

company, the types of tokens to be signed, and the acceptance or rejection rules for the different tokens. It is noteworthy that not every com-

puter on the network can be considered suitable to sign specific transactions. For instance, transactions committed by providers should be

checked by institutions related to the providing process, but not by providers that are related to the final consortium (EX7).

Furthermore, as pointed out by EX7, “BC is only one part of the solution you are putting into market, but it is not the whole solution.” While

it is true that BC is responsible for protecting the stored data and transactions, it is also true that BC is not responsible for what happens before
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and after. Therefore, EX7 outlined that “we need to focus on how to link the systems that go before the BC [sensors, machines, any kind of hard-

ware] and systems that go after the BC [artificial intelligence, ERPs, any kind of software].” The last concern raised by the experts entails the delay

of certification that the whole network is performing about transactions and data stored. In this regard, it is necessary to make sure that this delay

is acceptable for the whole context.

4.1.3 | BC platform selection

The experts provided valuable insights into the BC platform selection process. For instance, EX8 selected the most suitable BC platforms for spe-

cific use cases in the banking domain and elaborated on the reasons behind these choices: “We decided to use IOTA because we needed an Inter-

net of Things technology and you cannot use Ethereum, Bitcoin or Hyperledger because it is too big. We used Ethereum when it comes to buy

and sell shares on the stock exchange and the reason was programmability and that the smart contracts generation is very efficient. But you can-

not use Ethereum when it comes to money because you do not know who is paying and who is receiving. So, we needed to use Corda which is a

private chain ….”
According to EX4, foundational values of the organization should drive the underlying technological choice: “If you support the anarchistic

values of Bitcoin, in a way to disrupt banking and maybe governments, then this is something you should build into … If the energy consumption

is a problem for you, then you should look into a technology that uses less energy. So, I guess you should know what your values are, and from

there choose a platform.” According to this expert, the alignment between the organizational values and BC platforms is more important than

quantitative analysis, for example, the number of transactions per second, given the emergence of new platforms and solutions such as Ethereum

Layer 2 scaling solutions (EX1).

Other factors to be considered when choosing the BC platform are as follows:

i. Network accessibility which entails the selection between public and private BC platforms: “If you need a public platform, you are saying that

you need the crowd saying that what you are doing is right. If you need a private platform, you are saying that you need some actors or com-

panies to say that what you are doing is right” (EX7).
ii. Transaction fees. As EX9 stated, “transaction fees in platforms such as Ethereum are very high at the moment. So, you usually end up with

an application that costs a lot of money to run. New platforms such as Avalanche and Cardano have supposedly lower transaction fees.”
iii. Consensus mechanism was mentioned by two of the experts (EX1 and EX4). EX1 elaborated on this factor: “it has been recognized that

proof-of-work which is the consensus mechanism of traditional BCs like Bitcoin is very energy-intensive. And that has become controversial.

So, it appeals for new types of consensus. One of them is proof-of-stake. In IOTA we have developed something that is even an alternative

to proof-of-stake, so it is a customized version of that.”
iv. Programmability. According to EX3, it is important to consider whether the BC platform supports SC and the programming language used to

build SC.

v. Community of developers. Two of the experts (EX8 and EX9) suggested considering the developers' community when selecting the best

fitting BC platform. EX8 outlined the importance of this factor: “what is good with Ethereum is that if I would like to make a new project, and

I am looking for a programmer, then there are hundreds or thousands of people doing Ethereum and it is very important that there is a

market.”

The majority of the experts confirmed that organizations face difficulties when selecting the best fitting BC platform. Two of the experts (EX3

and EX9) explained the difficulty with the fast-moving pace of BC technologies and their expansion in various domains. New platforms are emerg-

ing and as admitted by EX9: “it is difficult to follow on everything.” The rapid increase of the number of BC platforms in the market has been iden-

tified as a significant challenge for organizations also in literature.50 EX1 claimed that currently there are no standards to guide the selection

process. The expert also stated that “there is a lack of clarity in the BC space, so you have lots of BCs pretending to be doing something, but in

the end they do not perform as expected or do not scale towards what they claim.” According to EX1, misleading indicators such as the perfor-

mance of cryptocurrencies may contribute to the lack of clarity because “there is a whole domain of BC that is not reflected into these crypto-

currency trends” (EX1). Conversely, EX4 recommended the pragmatic approach of “following the stream.” According to this expert, monitoring

and following what BC platforms other developers, organizations, and governments are choosing is a safe and cost-effective approach. “If there is

a lot of development happening, if the tooling is good, if the security audits are happening all in one BC, then you get a lot of stuff for free. But if

you were to use a lower ranked BC, then you will have to use your own resources for creating development tools, testing tools, security audits

….”
Furthermore, EX3 explained the difficulty in selecting BC platforms with the dependence of SC language with the underlying BC ledger. This

expert pointed out that existing solutions are built with one SC language, which is bound to a specific BC platform. Consequently, “if the organiza-

tion wants to then shift [into a new BC platform], a lot of rework is needed to be done” (EX3). Therefore, EX3 emphasized the importance of SC
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that are able to talk to different ledgers because “that makes the choice easier for decision-makers in the sense that they can build a solution

using one smart contract language and they would be assured that the solution that they built can work, irrespectively of the ledger they may

choose in the future” (EX3).

4.1.4 | Prototype

The experts outlined that based on their previous experience with various companies, implementing BC is rarely a decisive choice of the manage-

ment. Instead, “it is more of a slow testing prototype thing, often through the innovation people or the innovation department. They test out a

prototype and then, they move it slowly into the real organization, into production, which almost never happens” (EX4). EX7 refers to this process

as the pilot stage, which entails creating a simulated network that covers the whole process to test whether the process is right and can work.

Dozier and Montgomery9 concluded that organizations test BC through prototypes and proof of concepts to maximize the comprehension, mini-

mize risks, and identify the business value of this technology. Furthermore, the experts recommended carrying out a performance analysis of the

BC-based solution in terms of latency, transaction throughput, and transaction speed (EX8, EX9), security analysis when dealing with sensitive

data (EX8, EX9), and user-interaction analysis to evaluate how the user interacts with BC (EX9).

While BC applications have become more available and easier to develop with time (EX3, EX4), three of the experts (EX1, EX3, EX7) agreed

that the most difficult part of the implementation process is designing the right BC-oriented solution. EX1 claimed that “a lot of the bottlenecks

are in the development phase, rather than scaling or implementation. Developing the solution means to design it. A lot of people have a problem

understanding BC and how to design a solution that utilizes it.” Likewise, EX4 confirmed the difficulty of the design phase: “I think having the

right design for the client is the hardest part because our minds are not really thinking the BC way. We are thinking the services way, we are

thinking that we have fast service on the cloud, that we can query and get answers. In the case of BC, you can query but to get answers you need

to accomplish some rules and these rules must be consensual among all parties having the infrastructure”

4.1.5 | Production and scaling

The pilot stage is followed by the production and scaling stage that aims to support the increasing volume of transactions and data. Previous stud-

ies have reported on limited production implementations of BC systems6,9 and scarce empirical studies investigating the reasons.6 The experts

confirmed that most of the projects stop at the pilot stage and provided three main reasons. According to EX6, this may occur because the solu-

tion did not deliver the expected value. On the other hand, EX4 perceived this as a strategic problem rather than a technical problem. Further-

more, EX4 elaborated on this perception: “I guess the bottleneck in organization is often that the receivers or the people working in production,

or with real life products when they are faced with taking over the project from the innovation team, moving from prototyping into production

show a lot of resistance, because maybe they hadn't been included or maybe they hadn't included themselves in the process” (EX4). The organiza-

tional resistance to change barrier has been explained in detail in Section 4.2.2.

Finally, EX3 who is specialized in building prototypes and proof of concepts for different customers considered the scaling of these solutions

challenging: “We provide MVPs, proofs of concepts for different customers, but then when the scaling of the solutions does come forward, it is

much harder because it goes back to this business discussion so it starts to involve other parties, and then the doubts from these different parties

starting being raised on who controls what, what are the benefits for my side to actually onboard such system.” According to EX3, one of the eas-

iest ways of putting a BC system into a full-scale operation is when there is one central party that has a lot of market power to push the other

parties into the system.

4.2 | Challenges

4.2.1 | Economic challenges

All the experts discussed the costs related to the implementation of BC in organizations. As EX7 pointed out, “having a decentralized network

with different machines, working in different places that need to be protected and secured is not the cheapest thing you can think.”
The experts mentioned five types of costs: (i) transaction fees, which are significant when building on public BC platforms (EX1, EX3, and

EX9). EX1 referred to these fees as “not only substantial, but also unpredictable”; (ii) legal costs “when you try to live in that gray area, in the brink

of something illegal, then you have to use a lot of money on lawyers making sure you do not end up in jail” (EX4); (iii) cost of shifting into another

BC platform (EX3, EX4); and (iv) development and infrastructure costs (EX7) which EX7 categorized into three groups:
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i. Application for providers. These costs vary depending on whether you have to update existing software, find a standard application that can

work or develop a new application for providers. EX7 outlined challenges faced in each of the aforementioned options: “there is no standard

application, so you have to pick different solutions,” “No one wants to expand their applications to let them work with BC, because no one

wants to pay,” “the problem is that you have a lot of companies having their own vision on what should be done. In the end, you need to

make everyone happy and this is not easy.”
ii. Applications for consumers. Consumers are not always the same entities as providers; hence, they do not use the same applications. In fact,

consumers may vary a lot. EX7 illustrated the difference between consumers and producers with the following example: “producers in a mar-

ket for selling shoes, they all make shoes. So, their software can be similar or maybe they use a standard software … And consumers could be

stores, parties in the middle, consumers could be the same providers. So, the ecosystem of applications you have may vary more.” The most

cost-effective solution in this scenario would be to create the same application for providers and consumers. Otherwise, the cost of each

application may vary from $20,000 to $100,000–$300,000 depending on the complexity of the application, according to EX7.

iii. Infrastructure costs entail data storage, network communication, and hardware. The data storage depends on the type of data transferred and

the amount of data. However, it is noteworthy that storage costs are much lower compared with those from 20 years ago (EX7). Regarding

communication, there is a lot of information that moves from providers to the network, inside the network to reach synchronicity of

machines, and information going out. Therefore, it is important to determine the number of clients and providers and enable machines to

avoid data movement redundancy. Finally, it is important to determine hardware costs that depend on the number of nodes.

EX7 presented the whole picture of costs involved in BC projects: “If we are talking about a small network of 3–4 nodes having one kind of pro-

vider, I do not really care if they are 3 or 5 companies but they act if they were just one, they use the same software and they are putting the

same kind of data inside. And when it happens something in the same way with the clients, then you can start pricing the whole solution, maybe

$250,000. But when you have a complex scenario, when you have a lot of companies, a lot of providers, a lot of consumers, prices go really high

compared to that.” Indeed, financial stability of the organization is necessary in order to support the implementation of BC.51 Therefore, our

results suggested that the decision on whether to implement BC given the associated costs also depends on the economic environment of the

organization. As stated by EX8, “if an organization has a lot of money, then there is tolerance … if there is not so much money, the organization is

cautious about what to implement.”

4.2.2 | Organizational resistance to change

The experts considered the organizational resistance to change as a core challenge when implementing disruptive technologies such as BC. This is

in line with previous research on the topic.52 Walsh et al.52 attributed the resistance to the lack of standards and regulatory backing. Our results

suggested that the resistance to change and skepticism is related to the hype of the technology: “people will be against it [BC], even if it would

make some sense, but they would be for it even if it would not make a lot of sense to implement it” (EX6). Moreover, three main factors that con-

tribute to organizational resistance to change emerged from data analysis:

i. Innovation–production gap. As EX4 outlined “BC is a technological choice, which is pushed through by innovation people who are often busi-

ness people.” The pressure to implement BC solutions does not come from the top, but from the innovation department. Therefore, techni-

cians working in production or with real-life products are resistant when they take over the project from the innovation team. EX4 explained

that this may occur due to their lack of participation in the process (they have not been included or they have not included themselves) or

their unwillingness to utilize this technology.

ii. Conservative management. EX1 raised the concern of conservative managers or decision makers that challenges the implementation of BC in

organizations: “they are thinking operationally how to maximize the performance of the organization and when you bring BC you need to

divert from the usual course of action.” Two of the experts (EX8 and EX9) referred to specific domains that are conservative: healthcare and

banking. EX9 raised the following concern: “to make changes in the healthcare industry takes a lot of time and I think a lot of people in the

decision-making positions are quite reluctant to disruptive changes and if you look at electronic health records, they are controlled by a few

very large actors that supply these systems and they have not adopted blockchain.” EX8 stated that banks are slow in adopting new technol-

ogies, especially when it comes to cryptocurrencies: “they do not like cryptocurrencies and the reason is financial authority. They have to

know who is paying and who is receiving … However, when it comes to using BC as a technology for sharing information, they are very much

looking into it, at least in Norway.”
iii. Centralized mentality. EX3 reported on having worked with different entities with a centralized mentality. According to EX3, “this is their mod-

ulus operandi, but it defies the purpose of using distributed ledger technology or BC, if an entity wants to control everything.” In order to change

this mentality, education is essential.
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4.2.3 | Poor understanding of BC

All experts acknowledged the issue of poor understanding of BC. This challenge has been also confirmed in the existing literature.6,51–53 EX1

reported on the confusion between the concepts of SC and BC and the tendency to overuse SC in any context. In this regard, EX1 clarified: “you
can use BC without an association with SCs and smart contracts is just a layer on top of it ….” In addition, EX1 outlined the difficulty in designing

solutions that utilize BC due to the poor understanding of this technology. On the other hand, EX3 acknowledged that BC solutions have become

more available and easier to develop, but there is a gap from most companies in understanding the potential. In the same line, EX10 reported that

decision makers have difficulties in understanding the technology and its potential: “they think the implementation of BC can be similar to

implementing CRM [customer relationship management] or ERP [enterprise resource planning].” These difficulties have been confirmed also by

EX9: “a lot of people have trouble wrapping their head around the decentralized governance part of the technology since this is quite new.” Four
of the experts (EX2, EX3, EX4, and EX8) asserted that BC is immature and companies fail to understand the appropriate application of such a

technology.

On the other hand, EX6 perceived the hype around the technology as the problem, rather than the poor knowledge: “people have polarizing

views on how beneficial it [BC] is, so they either are completely against it without knowing much about it, or they are strongly supporting it even

though they know some of the drawbacks and some of the use cases they are pushing will not be possible to implement.” This expert strongly

believed that the hype that has been raised around this technology will never be matched regardless of the improved BC platforms that will

emerge in the future.

4.2.4 | Business challenges

EX7 considered BC a “business technology,” which is pushed into an organization's environment by business people who identify the need for

new markets: “A technician will never think of BC. The technician will think of the cloud that (s)he can manage and can make it grow in an easy

way and have a lot of techniques that are really prepared to do that. When you put BC inside companies is because the business part of the com-

pany says, we need new markets. We need to create incomes from collateral activities, and we need to join the rest of our clients.” However,

experience has revealed that business people are not committed to understanding the potential of BC (EX7). This expert described how subject

matter experts assist business people in understanding BC “When we go to a new company that is interested in BC, we say to them, we do not

want to talk with your tech people. We need to talk to business people and tell them you are losing clients because your clients are going to that

market that they have created. Well, you need to join that, but you need to understand first, what the internet of value is, and how you can use it

in your organization to grow your business and to create new businesses around. So, it is 50% working with business people, 50% working with

legal people. When everything is fine, tech people enter the equation.”
The implementation of BC-based solutions requires the willingness of organizations to take a step forward and be ready to digitally transform

their businesses into new business models (EX3). According to EX1, “BC-based solutions are not just plugins to enhance cost efficiency. Most of

the time, they bring some sort of business model transformation.” Organizations need to make strategic considerations either by moving into a

new market or by creating new products from their old products. EX4 illustrated this with an example: “you cannot do lending as you do today,

but you will have to look into decentralized finance … If you are utilizing kind of ecosystem building, opening up your data, that would mean that

your product will be something new, but you will still do lending in a way. And that could of course change how your whole business is built.”

4.2.5 | Regulations

While it is true that regulations may reduce the level of experimentation because of associated risks, it is also true that regulations ensure that

what gets experimented with is well-thought and less risky (EX3). Hence, EX1 outlined the importance of being aware of regulations in the market

in which the organization operates and being willing to engage in regulatory discussions. This expert has dealt with different regulators in various

industries and revealed that these parties set up sandboxes to allow innovation to get observed and understood. Therefore, the organization that

aims to implement BC needs to be ready to be exposed to this type of environment. Interestingly, EX1 encouraged those who believe in the

potential of the technology to stand in front and push to the reshaping of regulatory frameworks. However, EX3 admitted that working with pub-

lic BCs is unlikely to happen in a realistic way, at least for regulated industries, due to the need to be approved by regulators. Some entities may,

however, sidestep regulations and experiment anyway, given that public BCs offer this capability.

On the other hand, EX4 and EX9 believed that the problem is not regulation per se. EX9 considered the fear of regulation and confusion

related to whether the BC is aligned with current regulations as the crucial issues: “mainly when I talk about this [BC] technology with people

within the health domain, I usually get that question. Can we implement this with the current regulation and I do not see any reason why not …
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There are gray areas, but there is no sort of regulation that really put sort of a break towards it. But I think, the fear of regulation and maybe a lit-

tle bit of confusion if it is suitable with the current regulation or not.”
In addition, EX4 raised concerns about ethical issues introduced by entities who try to bend regulations: “It is very challenging because what

these companies will try to do is often in a gray area of the law or regulation and that is not the fault of the regulation, it is because people will try

to bend the rules because it is the BC.” Furthermore, EX8 acknowledged the importance of regulations but claimed that regulators are slow: “If
the regulators were faster and they could regulate the market, then you could trust the market and more money comes into the market.” Likewise,

EX7 argued that technology moves to a faster pace compared with regulations which means that what is being regulated risks to become out-

dated: “they are trying to regulate the picture of how Bitcoin and Ethereum were two years ago. That is so far from where we are now.” This

expert introduced another problem which entails the need for an invitation to join BC ecosystems. Once an entity joins, the BC assures that all

the data and transactions are protected mathematically and shared among all entities. However, BC does not take responsibility for what happens

outside the platform. As EX7 stated: “this makes BC a private club … We have to require that the government is invited to every private network

and why should they be ….”
One of the most critical problems discussed by the experts is the General Data Protection Regulation (GDPR). The immutability nature of BC

goes against the right to be forgotten enforced by GDPR. EX4 elaborated on this issue: “you will need to always put one part of private data on

BC, which can be the Ethereum address or Bitcoin address which is not erasable … But it is a challenge to store private data on BC forever, which

goes directly against GDPR.” In addition, EX6 reflected upon storing data on BC in relation to GDPR: “according to GDPR, you are only allowed

to gather what you specifically need or must have. BC of course collects a lot more usually ….” The absence of compulsion to comply with data

privacy regulations such as GDPR has been considered a barrier also by previous studies.3,54

4.2.6 | Technical concerns

Interoperability is an important concern that has captured the attention of BC researchers.55 Organizations may choose different BCs that do not

communicate with each other. This defies BC's purpose of sharing information by creating additional silos. EX3 explained this technical limitation,

as follows: “interoperability is definitely a concern that may impact the implementation of such systems, because as people start to see that differ-

ent [BC] platforms are popping up, and they decided to use one instead of the other. So, different organizations may see that it ends up being sim-

ilar to centralized systems, because different organizations are in different systems, so siloed and these silos do not communicate with each other

….” EX3 outlined the need for SC languages that are able to talk to various ledgers. The idea is to build solutions that work, irrespectively of the

ledger that organizations choose in the future. Furthermore, this expert elaborated on this issue: “right now, if you choose to go with Ethereum, it

bounds to solidity. If you go with Hyperledger Fabric, you are bound to the chain code. If you are going for R3 Corda, SCs are developed through

Java and Kotlin … If for instance, you have a SC language that can talk to all these, you kind of separate this aspect from the underlying ledger.”
Currently, EX3 is working with a technology that enables an SC language that is independent of the underlying ledger. EX2 emphasized the impor-

tance of abstraction and encouraged discussions regarding abstraction rather than BC itself. This expert quoted one of the customers who is the

head of US Homeland Security's Silicon Valley Innovation Program: “We want to stop talking about BC … We want to abstract that so far away

that we never need to talk about it at all.” Currently, EX2 is working with decentralized identifiers and verifiable credentials as an abstraction that

sits on top of distributed ledger technologies.

Furthermore, the experts mentioned other technical concerns. One of the concerns is scalability, which is the capability to process

transactions to the same degree of efficiency if the network grows and the number of transactions increases (EX1). Another concern is

security, that is, organizations need to host BC systems and guarantee that they are secure against attacks that may deny the service and

are inaccessible by unauthorized users (EX3). Security issues are even more severe in safety-critical domains. EX6 claimed that “some of

the blockchain applications have not been very good at that [ensuring security in safety-critical domains].” This expert supported this claim

with several attacks against cryptocurrencies that have led to significant financial losses. On the other hand, EX7 perceived BC as “the best

technology we have created thinking about security” and supported this perception by claiming that “in 10 years working with Bitcoin, no

one could break it, and we are talking about something that a lot of people would like to break to pick the money. So, it makes it really sta-

ble, and really secure.” Paradoxically, this expert considered BC as “the most vulnerable technology we have put into market” because “all
computers have the whole storage.” EX7 elaborated on this concern: “your network is as secure as the least secure computer on the net-

work, because if I am a hacker, and I can enter one node, I can steal the whole information on the system. So, instead of having one com-

puter in the cloud that I have to attack, I have thousands of machines that I can attack. So, we have created a lot of points of attack for

hackers.” This is in line with other studies that identified security as both a benefit and a challenge of BC systems.3 Although the increased

security built into the design of BC is a benefit for enabling peer-to-peer transactions, several attacks such as account-take over, 51%

attack, hacking, and digital identity theft are theoretically possible.3 However, Bitcoin, the first BC application, has not been successfully

attacked.2
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4.3 | Success factors

4.3.1 | Agility

In order to implement BC successfully, organizations should be agile, meaning that they need to be ready to experiment in an iterative fashion

and to learn from mistakes quickly (EX1). Likewise, EX5 encouraged small iterations in order to understand problems quickly and prioritize them.

According to this expert, “one of the biggest mistakes organizations are doing is that they start out big, they do it too fast, and then they do not

understand what they are doing.” According to EX1, many practitioners are not knowledgeable in this regard; therefore, this expert recommended

“setting up dedicated teams working as a task force to actually do these developments, rather than starting from the existing teams and opera-

tions.” Moreover, EX3 stressed the importance of close collaboration between subject matter experts or startups that offer their BC expertise

and customers by involving customers in all the meetings and sessions that are carried out internally. In this way, customers can be aware of the

different tasks that need to be developed.

4.3.2 | Collaborative environment

BC aims to break the silos between different types of organizations. A crucial requirement to fully leverage this technology is the collaboration

not only on an intra-organizational level but also on an inter-organizational level.8 As EX1 stated, “It is not enough to apply it downwards into

your own organization; it is about how you collaborate with the other parties, so you need to have collaborative environment.” Likewise, EX5

claimed that the main benefits of using BC do not come by just applying it in your organization, but by creating the “network effect.” Frizzo-

Barker et al.3 define the network effect as the concept that the value of a product or service is based on the total number of users. In addition,

EX1 highlighted the importance of creating new value streams in collaboration with other parties and referred to this as innovation ecosystems.

This collaboration can take the form of alliance structures in which all the parties can define together how the solution will be orchestrated and

governed by the different parties (EX1). Moreover, collaborations can also be in the format of public–private partnerships. EX1 illustrated this with

the IOTA case: “IOTA technology can be utilized for public sector level, as part of the digital infrastructure and you will have the private sector on

top, leveraging that technology and using it.”
Furthermore, EX4 pointed out that collaboration is essential in a BC ecosystem; however, it has taken a new decoupled form. This means that

there is no need to know the other parties or have bilateral agreements; instead, you just need to integrate with them and leverage their SC or

services in your service. Finally, EX9 mentioned the importance of collaboration between industry and academia. According to this expert, most

of the developments within the BC sphere are carried out by startups in the sector. Although the development is faster in the private sector than

in the academic sector, EX9 reported that in the healthcare domain, executives are very interested in academic research to support their decision

to implement BC.

4.3.3 | Digital transformation capabilities

The experts had different views on the importance of digital capabilities of organizations that intend to implement BC. EX1 raised the concern

that “companies that are not techie are going to struggle a bit” and suggested companies “to be ready to hire some talent, probably people that

are of younger generation who know how to manipulate those technologies.” Similarly, EX3 acknowledged the importance of hiring talents in

order to bring a different vision, but outlined the need to be balanced with the business knowledge that experienced people have. However, three

of the experts (EX3, EX5, and EX6) did not perceive this factor as critical for most organizations, given the possibility to leverage BC startups and

consultants. Despite leveraged expertise, it is still important for an organization to understand what can be done with BC and what value it can

bring. In addition, EX7 strongly recommended organizations to invest in training existing personnel and getting BC knowledge in-house, due to

the scarce market of BC experts, which has also been confirmed by other studies.3,53

4.3.4 | Education

The experts confirmed the need for education in three perspectives: (i) education on how to recognize BC use cases because “BC is not a solve

everything solution”(EX4) or “BC does not fit for everything” (EX7). According to EX6, many people treat BC as a silver bullet that enables you to

do a variety of things. In fact, there are very specific and constrained use cases that may yield benefits from using BC, (ii) to educate managers

regarding the business value of implementing such a technology (EX5) and to change their centralized mindset (EX3, EX9); (iii) education from a

technical perspective in order to develop expertise on how to build BC-based systems (EX3). However, understanding what knowledge is required
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to implement BC in organizational settings is not trivial because “BC is not a technology that was created in a university environment or labora-

tory … So we cannot say this is the standard and this is what everyone should know to put the technology into real work … Universities try to do

that but technology evolves in an uncontrolled way” (EX7).

4.3.5 | Open mindset of top managers

One of the key success factors of implementing BC in organizational settings is to approach it with an open mindset as innovators and be willing

to take some degree of risk, which is inherently associated with innovation (EX1). EX1 outlined the importance of being open to change: “When

you bring BC, you need to divert from the usual course of action.” In the same line, EX4 considered BC a new way of doing things, and therefore

advocated “openness to change and new way of thinking.”

4.3.6 | BC as a platform

The experts suggested interested organizations to think of BC as a platform. EX7 encouraged organizations to consider implementing BC if there

is a market they want to join or if they intend to create a market for others to join (see Section 4.1.2). EX4 reported on previous communications

with different organizations and discovered that “they want to leverage data in a way that benefits them and not their competitors. However, that

does not make much sense in the BC world. It is important to create the platform which other parties are using and thereby giving away a lot of

power and data for free to get people into your platform, to get people to build on top of your data, to leverage your ecosystem.” EX3 revealed

that getting new organizations or entities into your platform is not a trivial process: “When you want to invite new organizations to join your con-

sortium or join your efforts to build a system where you interact with multiple parties on a certain topic, that is where the conversations just keep

going and going. Agreements are not always easy and quick.”
In addition, according to EX4, it is important to think big, and not try to digitize only a part of a process or put it on BC because it will not

make sense from the business perspective. In such a case, existing technologies would be more suitable. The efficiency of BC can be perceived in

the case of a larger chunk of the process that includes many parties. EX4 illustrated this with an example: “working with the Norwegian Business

Registry, I see that the value for them is not kind of tokenizing shares and just creating a digital representation of the company's stocks, but it is

building the ecosystem so when they deliver the foundation which is a tokenized stock, then any company can come in and expand on that reve-

nue stream with functionality and businesses, so that could be crowdfunding, lending, it could be new kind of portfolio systems either for viewing

or for doing index funds.”
The main findings are summarized in Table 3.

5 | DISCUSSION

5.1 | Results evaluation

Glaser40 introduced four criteria to evaluate the validity of the emergent categories that compose the theory: fit, workability, relevance, and modi-

fiability. These criteria are explained in the following section:

i. Fit refers to codes, categories, and a theory that emerge from data, rather than preconceived perceptions, views, and biases of researchers.

The authors of this study did not perform an extensive literature review in the initial phases to prevent preconceived perceptions, views, and

biases from influencing the data. In fact, data only emerged from the interaction between the researchers and participants. In addition, the

authors selected a diverse set of participants in terms of job positions, project domains, and countries (see Table 2) to ensure different per-

spectives on the emerged concepts and categories and fulfill the fit criterion.

ii. Workability refers to the extent the core category is integrated with related categories and the extent the theory explains the area under

study.

iii. Relevance refers to the extent the theory enables the emergence of core problems and processes in the area under study. In order to assess

the workability and relevance criteria, the authors provided participants with a preliminary report of the results. BC experts were asked to pro-

vide feedback on the results. In what follows, the authors present the feedback provided by a few experts: “I do think results provided are

valid and relevant,” “There is always a bias in all implementations, but I can figure out real situations behind the rationale depicted. Maybe it

is not covering all cases, also true …,” “some of the most important challenges can be derived from results provided. It paves the way towards

better and clearer challenges, and opportunities can be seen there,” “very interesting results.”
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Based on the feedback received, the authors confirm that the emergent categories work because they explain the reality of the area under study

and are relevant because they allow core problems and processes in the BC sphere to emerge.

iv. Modifiability refers to the ability of the theory for continual modification and development with the occurrence of new data. The categories

that emerged in this study went through different modifications over time due to the constant comparison techniques that were followed.

The authors compared new data with existing codes, concepts, and categories until the theoretical saturation point was identified. Because

this process allows the results to be modifiable, future work may focus on evolving the categories upon receipt of new and more diverse

data.

5.2 | Implementing BC for RT using the emerged concepts

In this section, the authors aim to improve the initial BC-enabled RT framework presented in their previous study12 using the emerged concepts

(see Section 4). Such an initial framework consisted of four elements: strategic layer, BC proposal, implementation, and assessment. The improved

framework (depicted in Figure 4) keeps the BC proposal at the core and integrates the other three elements into the core categories as follows.

5.2.1 | Identify the need for distributed RT

As recommended by the experts, the first phase should commence with determining the scope, identifying business needs and requirements, and

then choosing the best tool to address these requirements. The focus of our case study is on RT in interorganizational software projects. First, it

is important for organizations to identify the need for RT in such projects. Rempel et al.32 provided a good overview of the importance of RT in

distributed software projects, as a proof-of-quality and correctness of the end product to avoid costly disputes. In addition, traceability is needed

to track the project's progress to determine if the project can finish in time, within budget and with the expected output, and to verify the compli-

ance of the project execution with legal regulation. In spite of the importance of sharing traceability information among participating entities, pre-

vious studies revealed that this information is not always disclosed and relied upon due to organizational boundaries and conflicting objectives.32

For instance, the organizational goal of one project partner may be to keep technical knowledge confidential, and this may contradict the need of

F IGURE 4 An implementation framework for BC-enabled RT
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the other entity to gain product knowledge, which could be used for further release planning.32 These problems enable us to deduce the following

requirements for traceability information: available, shared, reliable, and trusted. Organizations should identify a suitable solution that addresses

these requirements and the ultimate scope of enabling a shared, reliable, and available traceability knowledge base that ensures visibility to all the

participating entities regarding what/how/when trace links were created and by whom.

5.2.2 | Feasibility analysis

In this phase, organizations should decide on the most suitable technology to address the identified needs. BC can be a viable technical solution

to ensure reliability and availability of traceability information in interorganizational software projects.23 This technology needs to be compared

with existing solutions for the storage and representation of trace links such as cross-reference tables, traceability matrices, relational databases,

and graph traceability repositories.56 Our results suggest that the assessment of whether BC is required for RT should consider two dimensions:

(i) The legal dimension. In interorganizational software projects, clients may claim the product was not delivered with the expected quality, and they

may raise bugs even if the software is working in accordance to client's specifications.32 In order to avoid expensive disputes, the supplier should

prove the correctness of the software and this can only be done by tracing the requirements specified by the clients with implementation/

verification artifacts of suppliers.32 (ii) BC as a platform. An ecosystem for developing complex and large-scale software systems can be created

among different parties that want to join and participate in any of the SDLC phases, such as customers, distributed teams composed of require-

ments engineers, developers, testers, third party vendors, crowd-workers, and regulators. Furthermore, our results indicate the need to make a

set of decisions (see Section 4.1.2), for instance, how to link tools used throughout the SDLC with BC, and how to ensure that the delay of certifi-

cation for transactions and data stored on the distributed ledger does not impact the quality and time-to-market of the software under

development.

After identifying the need for BC in interorganizational software projects, the organization should determine the benefits along with the

challenges associated with the implementation of this technology. Due to its inherent features, BC is expected to provide a holistic and reliable

view of artifacts and trace links to all distributed stakeholders, incentivize software practitioners to create quality trace links, increase the use

of traceability to support SDLC tasks and consequently, improve the performance of practitioners in addressing SDLC tasks. The increased

quality and completeness of traceability may lead to increased software quality, consequently, less need for software maintenance and cost

savings.12

Despite these benefits, organizations should be aware of the challenges associated with the implementation of this technology into

their organizational environment. Our results revealed economic challenges in particular costs for the infrastructure (storage, network com-

munication, and hardware) and for the development of applications for practitioners who participate in SDLC activities, and also for entities

such as customers and regulators who need to access the data stored on the distributed ledger to verify requirements coverage, monitor

project's progress and assess compliance to regulations. In addition, the results revealed that the implementation of BC in organizational

settings is prone to organizational resistance to change, which is caused by three main factors: innovation–production gap, conservative

management, and centralized mentality. These factors are related to the poor understanding of BC; therefore, education has been outlined

as a critical success factor that can minimize the organizational resistance to change by changing the centralized mindset, improving the

understanding of BC business values, and enhancing BC technical skills. To address the innovation–production gap, the findings suggest

involving technicians working in production in the prototype testing process, which is led by the innovation team. In addition, the experts

mentioned business, regulation, and technical concerns such as interoperability, security, and scalability issues. Although the category of

business challenges emerged, the authors perceive this factor as not critical when applying BC for RT because they do not expect business

transformation or new business models. As EX4 stated, “if you are trying to only achieve a kind of track and trace database, do not have

high hopes of amazing transformative stuff ….” Furthermore, the experts encouraged organizations to continuously monitor the compliance

of BC solutions with domain-specific regulations. A particular focus needs to be paid to the (mis)alignment between GDPR principles and

inherent BC features.

The experts also recommended organizations to be agile, to experiment in an iterative fashion, and to set up dedicated teams working as a

task force for the development and implementation of BC solutions. Given the globally distributed nature of organizations that may be interested

in implementing BC technology, scaling agile is important.57 Therefore, frameworks for scaling agile, such as Scaled Agile Framework (SAFe) can

be adopted.57 Principles of SAFe concepts, in particular, agile release trains (ART) are aligned with BC principle of breaking silos that exist within

an organization or across organizational boundaries. In the case of BC-based SE solutions, ARTs should consist of dedicated teams with all the

capabilities (e.g., SE, RT, and BC expertise) necessary to define, deliver and operate BC solutions. The experts also advocated creating a collabora-

tive environment among different parties such as organizations interested to join the BC ecosystem, collaboration with BC startups, BC experts,

and academic researchers who may guide the implementation process. However, due to the scarce market of BC experts, it is highly rec-

ommended to upskill existing personnel and acquire BC knowledge in-house.
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5.2.3 | Traceability information model and incentive policies

This phase consists of defining the traceability information model (TIM), which has been advocated as a best practice by traceability

researchers.58,59 The main utility of TIM lies in guiding the setup of traceability and enabling the validation of changes.58 In addition, implementing

traceability in an agreed manner ensures the consistency of results in multi-stakeholder projects.58 A basic TIM defines types of artifacts to be

traced and their metadata, trace links based on source artifact ID and destination artifact ID, and trace type rules to generate the semantics of

trace links.56 SC can be used to register only the artifacts and trace links that are defined in TIM and identify the semantics of trace links automat-

ically. Further, organizations interested in implementing BC to enhance the motivation of practitioners to engage in traceability tasks need to

define incentive policies that focus on the eligibility to create trace links, the validation of trace links quality and the amount of incentive that goes

for the creation of quality trace links according to their priority.12

5.2.4 | BC platform selection

The experts provided guidance to the BC platform selection process that can be useful for organizations interested in implementing BC for

RT. The results indicate network accessibility and programmability as critical elements that need to be considered. The selection between private

and public BC platforms depends on the type of software under development. For instance, public platforms may be suitable in the case of open-

source software with diverse and unknown contributors, while private platforms are more aligned with complex and large-scale software being

developed by known organizations or distributed teams. The latter is the main focus of the BC proposal in Figure 4. Furthermore, programmability

is another important factor to consider because the BC proposal makes use of SC to enable a set of functions. Therefore, it is necessary to choose

a platform that supports SC execution.

The results suggested other factors to be considered, such as the alignment between foundational organizational values and BC platforms,

transaction fees, consensus mechanism, and community of developers. Additionally, concerns were raised by the experts regarding the diffi-

culty in selecting the best fitting BC platform due to the emergence of new platforms. A cost-effective practice advocated by the experts to

facilitate the selection process is to continuously monitor what BC platforms other organizations or developers are choosing and “follow the

stream.”

5.2.5 | Prototype

Our findings revealed that the innovation team of the interested organization is expected to test out a BC-enabled RT prototype. However,

according to the experts, designing the right BC solution is not trivial. Figure 4 depicts a BC-enabled solution for RT, which entails four main

components: (i) Data collection. The SDLC is composed of a variety of tools that generate artifacts that need to be traced, according to TIM.

Data ingestion tools/plugins can be used to capture these artifacts. In addition, eligible stakeholders can create trace links and register these

links on BC by means of SC. (ii) Storage layer and smart contracts. In this proposal, SC enable the following functions: register artifacts (id, type,

name, description, priority, and parent_id), register trace links (source_artifact_id and dest_artifact_id), validate the quality of trace links, and

reward the creators of quality trace links by means of digitized tokens based on incentive policies that are encoded into SC. (iii) Query layer.

This layer enables traceability-related queries that comprise primitive links between adjacent artifact types in TIM and composite links

between non-adjacent artifact types. (iv) Presentation layer. This layer enables the visualization of traceability information in an interactive and

hierarchical manner to facilitate the comprehension of the overall system. For a more detailed description of the proposal, the authors refer to

their previous study.12

Finally, based on the recommendations of our BC experts, organizations need to perform a performance analysis of the solution (latency,

transaction throughout, and transaction speed), security analysis if the software is built for safety-critical systems, and user-interaction analysis to

evaluate how stakeholders of the SDLC interact with BC.

5.2.6 | Production and scaling

In this phase, the prototype shifts into production. However, as confirmed by the experts, most of BC projects stop at the pilot phase. The inter-

ested organization should be aware that the main problem lies in the resistance of practitioners working in production because they have not

been included in the pilot phase carried out by the innovation team or they have decided to not participate. Therefore, our results suggested close

collaboration between the innovation and production teams during all the phases of the BC project. The inclusion of the production team in the

early stages of the project may minimize their resistance and bridge the innovation–production gap, as referred to in this study.
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5.3 | Limitations

The main limitation of this study is limited generalizability. This study does not claim that its results are generalizable due to the low number of

interviews. The authors noticed that after eight interviews, no new concepts emerged; however, they decided to perform two more interviews to

validate the theoretical saturation point. Although the theoretical saturation point was reached, it does not ensure generalizability. To address this,

the authors selected a diverse set of participants in terms of job positions, projects domains and countries (see Table 2). Nonetheless, limited gen-

eralizability is a known limitation of qualitative research because qualitative research aims to enable a contextualized understanding of human

experience.60 While it is true that GT ensures the discovery of high-level concepts that are not specific to a subject or setting,61 it is also true that

any qualitative inquiry method may be subject to external validity threats.60 Furthermore, Myers62 claimed that novice researchers may find the

coding process to be time-consuming and tiring. Consequently, they are prone to feeling lost in the coding process and unable to unveil concepts

and categories grounded in data. As recommended by Annells63 and Chun Tie et al.,34 the first author of this study was assisted in her journey of

inquiry by the other more experienced authors.

6 | CONCLUSION AND FUTURE WORK

This study adopted a GT approach to unveil the BC implementation process in organizational settings by performing semi-structured and in-depth

interviews with BC experts. BC experts were selected through a rigorous selection process that put an emphasis on their diversity in terms of job

positions, projects domains, and countries. The results revealed key activities, success factors, and core challenges, along with 17 concepts to

explain the phenomenon under study.

The authors used the emerged concepts to improve a BC-enabled framework for RT in interorganizational software projects. The results

suggested that the implementation process follows the following phases in an iterative manner: identify the need for distributed RT, perform a

feasibility analysis, define the TIM and incentive policies, select the best fitting BC platform, test through prototypes, and shift from prototyping

to production and scaling. These results may enhance the knowledge regarding this publicized technology and may encourage the collaboration

between BC experts and requirements engineers towards developing more prototypes and proof-of-concepts.

Future efforts can be devoted to the following dimensions: (i) evolving the categories and concepts by collecting new data from a larger set

of BC experts and other data collection techniques, such as observation; (ii) focusing on one of the emerged categories in-depth and using GT

techniques to provide an explanatory theory, given that this study takes a general perspective on the implementation process of BC; and

(iii) applying the results of this study in different domains and identifying similarities and discrepancies of the implementation process. Our main

priority will be the development of the proposed BC-enabled RT prototype and the validation of the improved framework by requirements engi-

neering experts.
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Abstract. The ever-increasing globalization of the software industry presents
challenges related to requirements engineering activities.Managing requirements’
changes and tracing software artifacts is not trivial in a multi-site environment
composed of a variety of stakeholders that do not trust each other. In this study,
we propose a neural blockchain prototype for the traceability of requirements
(BC4RT) throughout the software development lifecycle in interorganizational
software projects. The prototype is implemented using a neural blockchain plat-
form, namelyNDLArcaNet, due to its inherent properties: performance efficiency,
sustainability, and scalability. Besides these features, the proposed prototype pro-
vides a holistic and reliable view of software artifacts, requirements’ changes,
and trace links. The increased visibility enhances collaboration, communication,
and trust among stakeholders, and can potentially improve software development
efficiency and quality.

Keywords: Blockchain technology · Requirements traceability ·
Interorganizational software projects · Neural distributed ledger

1 Introduction

Software engineering (SE) has shifted from conventional co-located development to
global distributed development. Today’s software products are developed as a result of
complex supply chains that entail the collaboration of a variety of distributed partners
throughout the software lifecycle, from conceptualization and development, to mainte-
nance [1].While global software development companies leverage benefits of distributed
development: time, cost, and access to skillful resources, they also face a set of chal-
lenges: lack of communication and coordination, lack of uniformprocesses in amulti-site
environment, lack of trust, lack of management and transfer, and challenges related to
requirements engineering (RE) activities [2] which is the focus of this study. Managing
requirements’ changes, and tracing software artifacts in both a forward and backward
direction is not a trivial activity in interorganizational software projects [3]. Although
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a plethora of traceability studies exists [4], the traceability community has outlined the
open challenge of enabling full traceability in complex and large-scale software devel-
opment contexts that rely on cross-organizational collaboration of multiple stakeholders
[5, 6].

This study proposes a neural blockchain prototype for the trustworthy management
and traceability of requirements in interorganizational software projects. This proposal
lies in the concept of creating tokens for each requirement, tracking the lifecycle of
such tokens, and certifying operations that are performed on tokens, without the need
for resource-wasteful consensus algorithms. Therefore, neural blockchains present an
opportunity to store artifacts created throughout the software development lifecycle in
a scalable, efficient, and transparent manner, while retaining security. In addition, the
proposed prototype enables participants of the software development lifecycle with a
holistic and reliable view of software artifacts, requirements’ changes, and trace links.
The increased visibility on the software development process may lead to enhanced
communication and coordination, and trust among stakeholders in interorganizational
software projects. In turn, this can potentially improve software development efficiency
and quality.

The remainder of this study is structured as follows: Sect. 2 provides an overview
of the fundamental blockchain concepts, applications of blockchain technology in soft-
ware engineering, and requirements engineering and traceability challenges. Section 3
proposes a neural blockchain prototype for the management and traceability of require-
ments throughout the software development lifecycle, and Sect. 4 presents implementa-
tion details of the prototype. Section 5 concludes the study and presents directions for
future research.

2 Background

2.1 Blockchain Basics

Blockchain is a peer-to-peer (P2P) distributed ledger technology that stores digital trans-
actions in a chain of blocks [7]. These digital transactions represent interactions between
P2P network peers that entail the exchange of digital assets which can be in the form
of information, good, services or rules to trigger another transaction [8]. Network peers
group up the transactions into blocks and distribute them throughout the network. It is
noteworthy that these peers need to achieve agreement with regards to the correct data
state on the system. Ensuring the consistency of data on the ledger for all network peers
requires the deployment of consensus algorithmswhich vary among different blockchain
implementations. The main two groups of consensus algorithms are [8]: (i) Proof-of-X
algorithms, and (ii) Byzantine Fault Tolerant algorithms. Furthermore, the exchange of
assets relies on contractual rights and obligations of nodes that can be digitized and
managed by smart contracts (SCs). SCs are computer programs that are stored on the
blockchain and enable the modification of the ledger state when certain conditions are
met. The modification of the ledger state is triggered by a transaction posted to the
distributed ledger [9]. Initially, smart contracts were conceptualized to enable trusted
agreements among different parties in a trustless environment [9], but nowadays they
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are considered similar to general purpose software programs and can, at least theoreti-
cally, perform any computational task that can be performed by conventional programs
[10].

The first blockchain application was proposed in 2008 and was named Bitcoin
[11]. Although distributed ledger technologies existed prior to Bitcoin, the novelty of
blockchain lies in the combination of existing technologies, such as P2P networks, cryp-
tography, transactions timestamping and shared computational power [8]. The combi-
nation of these technologies enables the sharing and storage of data in a decentralized
manner without the need to entrust a central party for the maintenance of the ledger.
Belotti et al. [8] categorized blockchains with respect to network accessibility in: (i)
permissionless blockchains – anyone can participate in the network and modify the net-
work state, e.g., Bitcoin and Ethereum. (ii) permissioned blockchains – only selected
nodes can participate in the network and modify the network state. The latter can be
further categorized according to the nature of participants in private blockchains and
consortium blockchains. While in private blockchains participants are within the same
organization, in consortium blockchains several organizations share a common goal.

2.2 Blockchain in Software Engineering

Recently, academic researchers have encouraged the cross-fertilization of blockchain
technology and SE [12, 13]. Our previous systematic mapping study [14] explored the
alignment betweenblockchain inherent properties and themodern (global) SE landscape,
benefits and challenges of using this technology, and the proposed use cases. In what
follows, a limited number of these use cases is introduced:

Lenarduzzi et al. [15] proposed a blockchain model that uses SCs to relieve some
of the duties of the product owner in agile processes such as Lean-Kanban or Scrum.
In this model, SCs automatically validate the correctness of user stories implemented
by developers by comparing the acceptance tests output with the expected output. The
correct implementation of user stories triggers the automatic payment to developers in
cryptocurrencies or tokens.

Yilmaz et al. [16] proposed a blockchainmodel inwhich the project leader introduces
new work structures to the blockchain network, developers choose their preferred tasks
and develop code which is validated by testers. Testers share a candidate block and
generate consequent blocks collaboratively. This model is aimed to address trust and
integrity issues in large-scale agile development.

Bose et al. [17] proposed the application of blockchain for trustworthy software
provenance. The authors introduced a framework enabled by blockchain technology
named Blinker that captures and queries provenance data by means of PROV family
of specifications, verifies the authenticity of the data through voting mechanisms and
enables hierarchical and interactive visualization of provenance related data.

Yau and Patel [18] adopted blockchain technology to achieve reliable coordination in
collaborative software development. Their blockchain-based approach aims to address
limitations of centralized solutions, such as single point of failure, data tampering and
auditability, and lack of verification for the data to be stored. Smart contracts are used
to verify the compliance of acceptance criteria for software components in an automatic
fashion.
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None of these studies focus on the application of blockchain technology for the man-
agement and traceability of requirements throughout the software development lifecycle
in interorganizational software projects.

2.3 Requirements Engineering and Traceability

Requirements engineering (RE) is a critical component of effective software develop-
ment projects. While previous studies provided empirical evidence to support the contri-
bution of effective RE to improved productivity, product quality, and risk management
[19], the RE process has been considered as inherently complex and difficult to stan-
dardize via holistic solutions [20]. As software becomes more complex and the number
of stakeholders, along with their heterogeneity increases, there is a need to enhance the
large-scale RE process [21]. One of the most critical challenges that has been identified
in RE, particularly in managing requirements’ changes in global software development
is the lack of communication, coordination, and control that leads to reduced levels of
trust and confidence among distributed team members [22]. In addition, Akbar et al.
[22] highlighted the lack of change impact analysis at distributed sites as a significant
challenge. Estimating the impact of changes on the system’s costs, time and quality is
essential, yet difficult to achieve in distributed settings.

According to Jayatilleke and Lai [23], requirements traceability can contribute to
keep track of the impact of changes. Traceability has been defined as “the ability to follow
the life of a requirement in both a forward and backward direction…” [24] or as the ability
to create, maintain, and use links between artifacts generated in different phases of the
software lifecycle [5]. Traceability is particularly important in safety-critical domains,
in light of proving the specification of safety requirements, the consideration of these
requirements during the design and development phases, and their validation in test
cases [25]. Despite its importance, establishing traceability in practice is not a trivial task
[25]. Our recent systematic literature review reported on 21 challenges of implementing
traceability in organizational settings [4]. In particular, the findings revealed that in
practice, traceability is perceived as an overhead, and its potential benefits are invisible
throughout the software development lifecycle. Previous studies [6, 25] pinpointed the
provider-user gap as the main factor that shapes this perception, along with the poor
visualization of trace links. As a result, practitioners become demotivated to create
and maintain trace links and assign a low priority to traceability tasks. In addition,
previous studies [6, 25, 26] raised concerns regarding the deterioration of trace links
as a consequence of not updating these links when artifacts change. These changes
should be propagated and affected stakeholders should be notified in order to update the
corresponding trace links.

The global software development paradigm exacerbates these issues, as the commu-
nication, coordination, and trust among stakeholders is difficult to achieve in distributed
settings [4]. One of the few studies that provides empirical evidence on requirements
traceability in interorganizational software projects has been carried out by Rempel et al.
[3]. Rempel et al. [3] outlined organizational boundaries as the main problem area, as
it leads to restricted access to artifacts created by the other project parties due to lack
of trust. Therefore, the authors outlined the need to ensure availability and reliability of
traceability in interorganizational software projects. To address these requirements, our
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study proposes a blockchain-enabled prototype for requirements traceability (BC4RT)
which is described in Sect. 3.

3 Blockchain-Enabled Requirements Traceability Prototype

Managing and tracing requirements throughout the software development lifecycle in a
transparent and reliable fashion is important to ensure trust among different stakeholders.
Figure 1 depicts a simplifiedversion of the software development lifecyclewhich consists
of 4 logical users – requirements manager, developer, tester, and customer. Other users
are omitted for simplicity.

Fig. 1. High-level conceptualization of blockchain-enabled requirements traceability prototype:
BC4RT

This prototype relies on the assumptions that users are located in distributed settings,
and they do not trust each other, but they need to collaborate for the development of a
large-scale software development project. In this context, blockchain technology can
serve as a secure repository to store software artifacts and their changes by ensuring
reliability, transparency, trust, traceability, and auditability. The logical users can perform
different operations which are explained in the following section.

Requirements managers can create or register new projects and new requirements
for each project that should be stored on the distributed ledger. The timestamp of when
the requirement was created, contributor name, and the current status “created” should
also be stored on the ledger. In addition, requirements managers should be able to change
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existing requirements and their respective attributes, such as version, description, short
name. In such a case, the current status of the requirement should be “changed” from
“created” and the timestamp of when the requirement is changed should be stored on
the ledger. However, the immutable nature of blockchain technologies does not allow
changing stored data.

At first glance, onemay argue that the immutable property of blockchain goes against
the ever-changing nature of software artifacts. The authors identified two potential solu-
tions to address this challenge: (i) when requirements managers change existing require-
ments, a new requirement record with a new ID is created. This new requirement should
point to the initial requirement that was changed by means of a previous requirement
ID field; (ii) perceive requirements as digital assets and using the concept of tokens to
represent them. Each token may generate its own blockchain ledger to audit the lifecycle
of any requirement token throughout the software development lifecycle. In this study,
the authors followed the latter approach, as it is more efficient than the former.

Furthermore, developers can register source code files for each specific requirement
and consequently, the current status of the requirement is updated from “created” or
“changed” to “implemented”. Testers can register test cases for each requirement and
the results of these test cases. The registration of test cases changes the status of the
requirement automatically from “implemented” to “tested”. Moreover, the customer has
permission to view requirements’ changes, and track requirements’ lifecycle using the
audit mode. In addition, the customer can perform more complex queries, for instance
retrieve the IDs and number of requirements whose status is “tested”, but the test result
is “failed”.

Finally, it is important to consider an efficient, scalable and secure platform to store
software artifacts, such as source code files, or test cases files. If conventional blockchain
platforms were chosen, these files would have been stored in secure off-chain storage,
such as IPFS (Interplanetary File System) and the generated hashwould have been stored
in the blockchain platform to access the file’s content [17]. This study adopts a novel
blockchain platform that enables the secure storage of files of any size and type, while
retaining efficiency and scalability. The blockchain platform adopted by this study is
explained in the following Sect. 4.1.

4 Implementation

4.1 Neural Distributed Ledger

The concept of neural distributed ledger (NDL) was recently proposed by Velasco et al.
[27] and inspired by Swan [28]’s idea of developing blockchains as “personal thinking
chains”. A neural blockchain is internally structured into subsets of groups that work
in parallel and are interconnected analogously to how neuron groups are aggregated in
human brains. The main utility of such blockchains lies in addressing interoperability,
performance, and scalability issues that exist in conventional blockchain platforms [27].
In this study, the authors decided to implement an innovative and collaborative P2P
network, namelyNDLArcaNet. NDLArcaNet ensures the protection and secure transfer
of digital assets of any type.
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In order to understand NDL ArcaNet, it is important to explain the concept of NDL
Arca, as a secure token directory. NDLArca [29] is a distributed repository of tokens that
ensures the protection of tokens’ content against illegitimate access. Tokens are valu-
able, unique and certified data that must be accessed only by their legitimate owners and
must be stored throughout their lifecycle in a secure repository to prevent unauthorized
access and illegitimate modifications. Tokens are grouped into tables which are in turn
grouped into databases. This structure lies in the combination of key-value storage and
column-based databases. The keys are valuable to enable the identification of contents
in any environment and are expressed in the ULID (Universally Unique Lexicographi-
cally Sortable Identifier) format. ULID generates identifiers by considering both base32
encoded timestamp (first 10 characters), and randomness (remaining 16 characters). The
values are always encrypted and point to dynamic tables (variable array []). The non-
static columns of these tables contain token fields’ ID and token fields’ content. This
dynamic nature enables token fields’ values to be changed according to users’ needs.
CRUD (create, read, update, delete) operations can be performed on tokens, along with
other operations, such as import and export.

Moreover, according to [29], the security of NDL Arca is ensured by applying a
set of techniques, such as 2-key encrypted token, as the data is double encrypted with
database password and token password,AES256 (AdvancedEncryption Standard), RSA
(Rivest-Shamir-Adleman), zero trust and zero knowledge cryptography, and hashing
functions. It is worthy to mention that although NDL Arca was designed mainly for a
blockchain network due to its inherent capabilities of replication, hashing of contents,
and distributing them across the network, it can be installed on any system according to
[29], e.g., using Arca to create a centralized dedicated server, or a database system in the
cloud. The use of NDL Arca in a multi-domain network is referred to as NDL ArcaNet.

In our case study, requirements are considered tokens because they are valuable,
identifiable, and unique digital assets. Requirements tokens are stored in a secure token
repository and are created and updated in a collaborative manner among different stake-
holders of the software development lifecycle who share a secret key. Each operation
applied on tokens is visible and transparent to other parties in the network. All the opera-
tions performed on tokens will be validated by trusted certifiers who are incentivized by
means of service payments that they receive for each digital signature. Trusted certifiers
will validate operations on tokens without knowing the content of tokens, by applying
zero-knowledge cryptography.

The authors selected this platform due to three main advantages that are important in
the software engineering context: (i) performance efficiency – each node (wallet) applies
and verifies its own transactions independently, enabling parallel work, thus maximizing
the number of transactions per second. Each node can trust the token content by checking
signatures, removing the need for the majority of the network nodes to vote and reach a
consensus. The lack of consensus leads to each wallet working as a local database, but
with slightly higher latency due to the use of signature mechanisms. Should consensus-
based distributed ledger technologies be used, storing a large number of requirements or
other large software files would not be affordable. However, NDL systems scale better
and their limitations regarding real time operations are comparable to the limitations
of centralized databases. (ii) sustainability – nodes collaborate to validate transactions,
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therefore costly, resource-wasteful, and competitive-based consensus algorithms (e.g.,
PoW, PoS) are not used and gas is not required to perform transactions. (iii) scalability
– the platform can integrate million nodes because each node is independent and can
work in real-time. While the Internet transfers packets of data, NDL ArcaNet transfers
signed packets of data. Despite this, ArcaNet is able to scale in a similar fashion to the
Internet.

4.2 Blocks Structures for BC4RT Prototype

The proposed blockchain-enabled requirements traceability prototype relies on the
underlying blocks structures that are depicted in Fig. 2.

Fig. 2. Blocks structures for BC4RT prototype

Each token generates its own signed blockchain ledger that enables the verification
of its provenance, integrity, evolution, and history, by means of the audit mode. The
goal of the BC4RT prototype is to trace the lifecycle of requirements throughout the
software development lifecycle. Therefore, a token was created for each requirement,
as a child of the project token. The project token consists of the following fields: token
code (ULID), domain, name of the project, and the password of the token. Other fields
can be created to include additional information regarding the project. Furthermore, the
requirement token consists of the following fields: token code (ULID), project code
that points to the parent token, token password, domain, version of the requirement,
the current status of the requirement (created, modified/changed, implemented, tested),
requirement’s description, short name, timestamp of when the requirement was created,
timestamp of when the requirement was modified, the contributor who performed a
specific operation on the token, flags (implemented/tested), source code file, and test
cases file.
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The emission of the requirement token generates the first block (Block #1) which
is composed of the following elements: metadata, e.g., ULID, and timestamp, previous
block/parent signatures which entail signing with private keys the hash of the previous
block, token content which consists of the fields’ content of the requirement token, next
signers or the signers of the next block which are a set of trusted certifiers and random
nodes, and the signatures of the current block. Signers that are defined in the previous
block’s next signers field should sign with their private keys the hash of the current
block fields (metadata, parent signatures, token content, and next signers). While the
consequent blocks have the same structure as the first block, they do not store the whole
content of token fields, only the changes.

Finally, it is noteworthy that any first block needs a genesis block which is pro-
vided by the other parties of the network in a random manner. This structure allows
stakeholders of the software development lifecycle to keep track of what/when/how/by
whom requirementswere created, changed, implemented, and tested in a trustworthy and
transparent manner. A shared traceability repository based on blockchain ensures that
software artifacts stored by distributed stakeholders have not been altered illegitimately.

4.3 User Interface

In what follows, we present the front end of the BC4RT application using simple sce-
narios that rely on the iTrust application that can be accessed online [30]. iTrust is an
electronic health records application that is developed andmaintained as a software engi-
neering project for undergraduate students at North Carolina State University [31]. iTrust
was chosen because it deals with safety-critical information and due to the availability
of the traceability dataset [31].

The user logs in by specifying the role, i.e., requirements manager, coder, tester, or
customer, as depicted in Fig. 3. Figure 4, Fig. 5, and Fig. 6 show the view of the require-
ments manager who is allowed to create a new project, new requirement tokens, and
update existing requirements, respectively. The attributes of requirements are require-
ment ID, contributor, requirement version, description, short name, current state, history
of states (created, changed, implemented, tested), source code file, and test case file.
Each of these tokens generates its own blockchain ledger that stores the changes that
have been validated by trusted certifiers.

Fig. 3. Login view
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First, the requirements manager creates a new project with the assigned project
token ID: 01G4JM6G1FQPPHKAH4EAXNA27M (See Fig. 4). Then, the requirements
manager creates new requirements for the project by clicking on the “Create” option of
the radio button “Requirement”, inputs the description and short nameof the requirement,
while the token ID is generated automatically (See Fig. 5).

Fig. 4. Requirements manager view (“Create project”)

Fig. 5. Requirements manager view (“Create requirement”)

Once the requirements manager clicks “Accept”, the blockchain ledger is gen-
erated for the requirement token. The current state of the requirement is “created”,
and the timestamp of when the requirement was created is also presented to the user
(See Fig. 6). The requirements manager can also update previously-created require-
ments by clicking on the “Update” option of the radio button “Requirement”. For
instance, in Fig. 6 the requirements manager is updating the requirement with the ID =
01G4JMRW7M6CZPXJJK030H4AKK, by entering the new version= 1.1, description
= “The patient should be able to view and edit lab procedure tasks” and short name =
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“REQ_ViewEditLab”. Once the requirement manager clicks “Accept”, the requirement
token fields are updated, the current status is “changed”, and the timestamp of when the
requirement was changed is also stored and presented to the user, as depicted in Fig. 6.

Fig. 6. Requirements manager view (“Update requirement”)

Second, the developer logs in the blockchain platform and is allowed to upload the
source code file for each requirement (See Fig. 7). Once the developer enters a source
code file and clicks on the “Accept” button, the state of the specific requirement token
is updated in three dimensions: (i) source code field is updated with the name of the file
(ii) the implemented field is updated (iii) the current status is changed from “created”
or “changed” into “implemented”.

Fig. 7. Developer view (“Upload source code”)

Third, the tester logs in the blockchain platform and is allowed to upload the test
case file for each requirement (See Fig. 8). Once the tester enters a test case file and
clicks on the “Accept” button, the state of the specific requirement is updated in three
dimensions: (i) test case field is updated with the test case file name (ii) the current status
of the requirement is changed from “implemented” into “tested” (iii) the tested field is
updated, if the tester clicks on the “Passed” option of the radio button “Test Result”.
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Fig. 8. Tester view (“Upload test cases and test results”)

Finally, the customer is constrained to only view the state of the project token and
requirements tokens. Therefore, the customer can check the list of all requirements,
which requirements have been created, changed, implemented, and/or tested. In addition,
it is possible to trace the lifecycle of each requirement by double clicking on a specific
requirement record. An example of the history of a specific requirement is depicted in
Fig. 9.

Fig. 9. Trace the lifecycle of a specific requirement

5 Conclusion and Future Work

This study presented a blockchain-oriented prototype, namely BC4RT to enable the
traceability of software artifacts created by distributed stakeholders throughout the soft-
ware development lifecycle. For each requirement stored on the distributed ledger, one
could trace its origin, updates, the timestamp of when it was created or changed, if it
was implemented and/or tested, and by whom, the current status, and related software
artifacts, such as source code and test cases, in a scalable, efficient and trustworthy man-
ner. Therefore, requirements managers, developers, testers, customers, along with other
stakeholders, e.g., project managers or quality assurance team could benefit from the
application of blockchain, since it ensures full visibility on the software development
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lifecycle and facilitates tracking projects’ progress. Enabling full visibility can enhance
the performance of practitioners in solving software engineering tasks. For instance,
keeping track of all changes in a transparent and reliable manner facilitates the analysis
of the impact of these changes on system’s cost, time, and quality, which is not a trivial
task in distributed settings.

The authors implemented the proposed BC4RT prototype using a novel neural dis-
tributed ledger, namely NDL ArcaNet because the inherent features of this platform
ensure performance efficiency, sustainability and scalability while retaining security.
The authors perceive the potential of third and fourth generation blockchain platforms
and encourage further exploration of the benefits and feasibility of such platforms beyond
the software engineering context. Domains that need to process massive data, such as
Internet-of-Things (IoT) may greatly benefit from the efficiency and increased security
of neural blockchain platforms.

Our future work will focus on validating the usefulness, practicality, and validity
of the blockchain-enabled prototype through software engineering experts’ judgement.
Future versions of the prototypemay incorporate the emission of tokens to represent other
software artifacts, such as source code and test cases, as children of requirements’ tokens.
In addition, futureworkmay be devoted to automate the registration of software artifacts,
their attributes, content and changes, by means of data ingestion tools or plugins that
can capture the artifacts generated from a variety of tools used throughout the software
development lifecycle [32].
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