
Mathematical modeling of multi-agent search &
task allocation

Jonas A. Grønbakken

Thesis submitted for the degree of
Master in Cybernetics and Autonomous Systems

60 credits

Department of Technology Systems
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2023

Mathematical modeling of multi-agent
search & task allocation

Jonas A. Grønbakken

© 2023 Jonas A. Grønbakken

Mathematical modeling of multi-agent search & task allocation

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Multi-agent search and task allocation(MASTA) has a wide range of applications, including search
& rescue, ecological monitoring & sampling, military applications, etc. Considerable di�culty
in designing such systems has been a lack of analytical modeling tools, requiring the researchers
and engineers to rely on computer modeling & simulation(M&S). While M&S is an extraordinary
and important tool, it often does not lend itself easily to human insight, can require a great deal
of time and energy, and is frequently not �tting for quick decision-making. In this thesis, an
analytical model of MASTA is presented and compared to a MASTA computer implementation as
a baseline. The analytical model preforms within a few percent error and allows for greater insight
into system behavior and parameter interactions. The model presented might reduce the design
time of MASTA systems and allow for greater control of such systems with fast decision-making.

1

Mathematical modeling of multi-agent search & task

allocation

Jonas A. Grønbakken

May 15, 2023

Contents

1 Introduction 3
1.1 Aim of thesis . 4
1.2 Outline . 4

2 Background 4
2.1 Multi robot search and task allocation . 4
2.2 Markov chains . 8
2.3 Scienti�c Veri�cation and Validation . 11

3 Method and Implementation 13
3.1 Model description . 13
3.2 Software . 16

4 Simulation experiments, results and analysis 16
4.1 Veri�cation . 17
4.2 Parameter choices & initial conditions . 21
4.3 Modeling search . 25

4.3.1 single task single agent . 26
4.3.2 Multi task one agent . 46
4.3.3 Single task multi agent . 49
4.3.4 Multi task multi agent . 50

4.4 Modeling task allocation . 58
4.4.1 Single task . 63

4.5 Modeling search & task allocation . 65
4.5.1 Single task multi agent . 65
4.5.2 Multi task Multi agent . 74
4.5.3 Generalization by proportional DTMC models 76

5 Discussion 84

6 Conclusion and future work 84
6.1 Future work . 85

2

References 85

1 Introduction

Multi-robot task allocation (MRTA) concerns systems of multiple robots that solve tasks that they
often cannot solve independently. It can be de�ned as an optimal assignment problem. [20]. This
problem is often complex and is usually NP-hard. [21]. As a result, many di�erent approaches
have been developed. One of the most popular decentralized multi-agent systems of interest is
market-based methods. In single-item auctions, an agent will start an auction for a task, the
other agents will send bids based on their utility, and the auctioneer will choose the winners. We
are interested in looking at systems that need to search for a task and then allocate it, so we
combine search and task allocation. In real systems, communication radius and the ability to
detect tasks is limited and can be prohibitively expensive, especially under water. We propose
combining simple, cheap agents adaptively to create mobile phased arrays capable of longer-range
communication and task detection. We refer to these agents as constituents, as they form a howl
agent (composite) together. To our knowledge, this idea of constituent agents is not explored
in previous literature. The optimal formation of composite agents is a complicated problem, as
it a�ects search, communication and task allocation performance. If e�ective methodologies for
forming and interacting composite agents are developed, it could allow for a large group of simple
robots to take on tasks of much more expensive equipment.

[32]
[39]
[41] Researchers look into dynamic task allocation for search and retrieval with retrieval con-

straints. Objects for retrieval are found by searching a set of locations, which individual robots
can do. Objects are associated with a type; before search and retrieval, a list is created of when
each type of task can be delivered in relation to each other. For example, with types red and
blue, given a list {red,blue,red,red}, any red or blue object found can �ll the requirement but only
following the speci�ed order. First, an extended sequential single-item auction is developed and
compared against an implicit coordination (consensus control) approach. They found consensus
control completed all the tasks quicker, but agents moved less with the auction approach.

A potential application is underwater tasks where communication and navigation are pro-
hibitively expensive; autonomous underwater vehicles (AUVs) can cost upwards of a hundred
thousand dollars. Researchers [13] resent a method with which one expensive underwater robot
can guide a swarm of simpler cheap robots using a hydrophone. The simple agents estimate relative
heading by Doppler shift of frequencies emitted and distance by amplitude. Constituent agents
forming phased arrays might be able to act as leaders, communicating with vehicles closer to the
surface for navigation.

[24]
[44]
[34]
[27]
[36]
[18]
4. Swarm
The animal kingdom also sees agents coming together and emitting a stronger signal. . For

example, glowworms (�re�ies, lightning bugs) attract each other with bio-luminescence during

3

mating season. Their glow increases in intensity as they congregate, attracting glowworms from
further away. As a result, certain glowworm species will �ash synchronously, many hundred to-
gether lighting up trees at a constant frequency with complete darkness in between [19].

[25]
[9]
[45]
[43]

1.1 Aim of thesis

The thesis aims to mathematically model the performance of MAS search and task allocation
under a range of parameters such as; the number of agents, detection radius, number of tasks,
etc. The models aim to increase understanding of MASTA systems and reduce design time and
computational demand. In addition, mathematical models might also allow for the design and
development of MASTA controllers. The goal is to answer the following research questions:

1. Is it possible to model MASTA systems mathematically?

2. Do these models increase understanding of MASTA?

3. Do these models reduce computational demand?

1.2 Outline

In section 2, background material is presented, consisting of short summaries of relevant �elds for
the thesis. Section 3 describes the implemented computer model and software. Section 4 contains
experiments and results interwoven with analysis. Section 5 discusses the results from section 4.
Finally, in section 6, conclusions are drawn, and ideas for future work are presented.

2 Background

2.1 Multi robot search and task allocation

First, we introduce MRTA (multi-robot task allocation) and de�ne how search is Incorporated.
The general MRTA problem is de�ned as follows, given a set of R robots and T tasks, each subset
of robots ri has an utility uij associated with each subset of tasks tj. We wish to �nd a set of
allocations X of robots to tasks s.t

∑
UX is maximized, the utility of all allocations while no hard

constraint is broken (e.g.
∑

i xij = 1,∀j where xij is an allocation of robot i to task j, tasks can
only be solved once by a single robot). When discussing tasks, it is bene�cial to consider them
more than just basic operations. Imagine moving a set of planks from one location to another. It
is natural to de�ne the act of moving all the planks as one task and moving one or a set of planks
as a sub-task. In this case, we can decompose the task into many sets of sub-tasks Ts such that
when certain combinations of those sub tasks Tc is completed the task is completed. We call the
set (Ts, Tc) a decomposition of task T, not all decomposition's are possible to follow through on,
like starting with the plank on the bottom of the pile. When a decomposition is solvable by a
MRS we refer to it as allocatable. Further classi�cation of task types and taxonomies of MRTA
help organize literature and solve problems with greater ease.

4

Figure 1: a) The three dimensions in [15] taxonomy, �rst, tasks who can be solved by one robot (SR)
vs task who require multiple robots (MR). second, robots who can only solve one task concurrently
(ST) vs robots solving multiple tasks concurrently (MT). Thirdly instantaneous assignment where
no regard for future allocations is possible vs time-extend assignment where enough information
is avalible such that the optimal assignment requires considering future assignments. b) types of
tasks as de�ned by [46] and c) multi-robot task allocation.

5

Figure 2: Scheduling dependencies (from Figure 3 in [21])

Brian P Gerkey and Maja J [15] Introduced in their taxonomy the three axis for classi�cation
of MRTA problems. Singel-task robots (ST) robots that only can work on one task at a time vs.
multi-task robots (MT), which can work on multiple tasks simultaneously. Singel-robot tasks (SR)
can be solved by a single robot vs. mult-robot tasks (MR) who require more than one to be solved.
Lastly, they introduced instantaneous assignment (IA) vs. time-extended assignment (TA). With
IA problems, there is no possibility for planning. All the information available for the system does
not permit it to make future allocations or predictions on task completion/arrival. The opposite is
true for TA. There are two other taxonomies on MRTA; the �rst [46] combines de�nitions for task
decomposition's with scheduling dependencies for tasks and other agents. The second taxonomy
focuses on temporal and ordering constraints without [46] task de�nitions. Lets �rst describe task
decomposition, a decomposition of T is a set (TS, TC) where TS is a set of sub tasks and TC is a
combination of those sub tasks such that the tuple satis�es T.

� Multiple decomposability refers to task which has more than one decomposition

� Elemental task - a task that cannot be decomposed

� Simple task - an elemental task or a decomposable simple task

� Decomposable simple task - can be decomposed into elemental tasks or decomposable
simple sub-tasks (if there exists no multi-robot allocatable decomposition)

� Multi-robot allocatability is a task that can be allocated to a group of robots such
that no sub-team or robot solves it alone and the task is complete. That is, if the
only allocation of task that satis�es it requires that a single robot or sub-group only
completes it, then the allocation is obvious and is not an allocatability problem.

� Compound task - can be decomposed into a set of simple or compound tasks requiring the
existence of precisely one �xed full decomposition for the task.

� Full decomposability is a set of simple sub-tasks that can be derived within a �nite
amount of decomposition steps.

� Complex task - multiple decomposable tasks for which at least one decomposition is multi-
robot allocatable. Sub-tasks may be simple, compound, or complex.

For these task de�nitions, [21] introduces the dependencies:

� No dependencies (ND) - utility of an agent is not a�ected by other tasks or other agents
in the system. Task decomposition and task allocation are decoupled concerns of simple or
compound tasks. Linear assignment problems

6

� In-schedule dependencies (ID) - the utility of an agent is a�ected by its own schedule,
but no one else; task decomposition and task allocation are decoupled, simple, or compound
tasks. NP-hard.

� Cross-schedule dependencies (XD) - the utility is a�ected by inter-schedule and ID,
so an agent's schedule cannot be constructed optimally without considering other agents'
schedules. Task decomposition is decoupled from task allocation, simple or compound tasks.

� Complex-schedule dependencies (CD) - inter-schedule dependencies for complex tasks,
task decomposition, and task allocation depend on each other. Therefore, one must consider
the joint problem of task decomposition, allocation, and individual agent schedule for optimal
utility.

Secondly [28] introduces a new taxonomy on top of [15]. Where they distinguish between:

� Time windows (TW) vs. synchronization and precedence (SP)

� time window is a speci�ed interval (a, b) of time wherein it is possible to complete a
task, if a = 0 its also called a deadline.

� precedence constraint required ordering of tasks.

� synchronization constraint are constraints relating the completion of tasks, for in-
stance equal completion times.

� Hard temporal constraints vs. soft temporal constraint

� hard constraints means they have to be satis�ed

� soft constraints can be violated but at a cost.

� Deterministic vs. stochastic models

� Deterministic models give the same output every time while stochastic models try to
represent something uncertain which gives di�ering results.

Other taxonomies have also been made on the basis of system functions such as [12], where groups
are based not on the problem that is to be solved, but for example communication range and
topology. We will look away from the later mentioned taxonomy and attempt to de�ne problems in
relation to the three mentioned above. One of the simplest problems is linear assignment problems
which fall under ND[SR-ST-IA] (single robot-task, single task, instantaneous assignment, and no
dependencies) with no temporal or ordering constraints (which will be the case unless otherwise
mentioned). Linear assignment problems are solvable in polynomial time by a number of algorithms
by, for example, representing it as a linear program; Maximize∑

i∈N

∑
j∈M

xijuij

for N agents and M tasks subject to ∑
i∈N

xij = 1,∀j ∈ M

7

and ∑
i∈N

xij = 1,∀j ∈ M

where
xij ∈ [0, 1]

[15] . This problem is also optimally solvable by an auction algorithm [5], here presented as
an optimum matching problem on a graph. In [38] the authors present the problem of moving
boxes, some of which require multiple agents. They use a distributed problem-solving (DSP)
approach, where agents form a coalition that can overlap to move the boxes. We can classify this
problem as XD[MR-MT-IA]:SP with the introduction of precedence constraints. The authors use
greedy set partitioning and coverage algorithms to solve the problem, which requires global agent
communication. Some work has been done with search. In [16] the robots �nd and collect items
in a generated environment. These items have an associated weight requirement and speed at
which they can be returned based on the robot's work capacity. When a task is found, the agent
starts an auction where other agents bid on the task. The auctioneer then chooses the winners,
which help move the item to a speci�ed location. Leaders of groups (auctioneers) can bid between
each other for agents if they need help solving the task they have found. We can classify this
as XD[ST-MR-IA] as the coalitions break apart after task completion. When combining search
and task allocation, the problem can become very complicated. Search and task allocation can
encompass multiple classi�cations.

2.2 Markov chains

Markov chains, also called Markov processes, are stochastic models describing the state transitions
of some systems with the Markov property. They can be used in several ways; Markov decision
processes are used for decision-making and control in robotics and autonomous systems. Hidden
Markov models are used when an underlying process is assumed to have the Markov property,
but its states are not directly observable. Here we will discuss Markov chains with �nite states
that operate in discrete and continuous time [42]. These models are commonly represented with
matrices, which for discrete time Markov chains(DTMC) consist of state transition probabilities.
A typical example is a prediction of the weather tomorrow if the weather today is known. Say if
it is sunny, then there is a probability α that it will be sunny tomorrow, and a probability 1 − α
that it will rain. On the other hand, if it is raining today, there is a probability β that it will rain
tomorrow, and a probability 1− β for the contrary. Then the Markov transition matrix will look
like.

P =

[
α 1− α

1− β β

]
We de�ne it so that Pij is the probability of transitioning from state i to state j. Markov chains
follow the Markov property, de�ned as.

P{Xn+1 = j|Xn = i,Xn−1 = i1, .., X1 = in−1} = P{Xn+1 = j|Xn = i}

So the probability of going to a state depends only on the current state. Any other information
is super�uous and does not lead to any better prediction. The Markov process is often referred
to as the memory-less process. For transition matrices in DTMC, each row sums to 1; that is a
probability of 1 that we either leave or stay in the current state. To �nd one-step transitions, we

8

can look at the matrix. For two steps, we need to consider the possible paths, say we start in state
1 and wish to know the probability of ending up in state 2 after 2 steps.

P 2
1,2 = (1− α)β + α(1− α)

We can either go straight to state 2 and stay there or stay for one step in state 1 and go to state
2. Raising the transition matrix to the power of two we have that.

P 2 =

[
α 1− α

1− β β

]
∗
[

α 1− α
1− β β

]
=

[
α2 + (1− α)(1− β) α(1− α) + β(1− α)
α(1− β) + β(1− β) (1− α)(1− β) + β2

]
We see that P 2

1,2 = P 2
12 the probability of ending in state 2 after 2 steps starting in state 1. This

is true in general from the de�nition of matrix multiplication.

cij =
n∑

k=1

aikbkj

We see that cij is the sum of all paths from i to j. The Chapman-Kolmogorov equations tells us
that,

Pm+n
ij =

∞∑
k=1

Pm
ik P

n
kj

where.

Pm+n
ij = P{Xm+n = j|X0 = i}

When P is a transition matrix the expression reduces to matrix multiplication

Pm+n = PmP n

and in general an n step transition is given by P n.
State classi�cations, a state j is accessible from state i if P n

ij > 0 for some n ≥ 0, this is not
always a two way relationship, we can have what is referred to as an absorbing state after which
no other state is entered like the system. 0.1 0.5 0.4

0.8 0.1 0.1
0 0 1

In this example state 2 is accessible from state 1 and vice versa, we say that state 1 and 2
communicate . Additionally we see that both state 1 and 2 are transient,that is.

∞∑
n=1

P n
11 < ∞

Since the chain will eventually get stuck in state 3, a state is called recurrent if

∞∑
n=1

P n
ii = ∞

9

A set of states that communicate are referred to as a class, if a Markov chain consists of multiple
classes it is referred to as reducible, since di�erent classes e�ectively divides the state space.

If we want to know the probability of being in some state far ahead in the future, say n → ∞
we can in some cases simply multiply P with itself until it converges, but this is not generally
possible as some Markov chains are periodic, that is a state might only be reachable every k'th
step. Instead we de�ne πj = 1/mj the long run proportion of time spent in state j, where

mj = E[Nj|X0 = j]

Where

Nj = min{n > 0|Xn = j}

That is mj is the expected number of transitions after leaving state j to enter it again, this is a
general valid de�nition for irreducible and recurrent Markov chains[35]. To �nd the vector π we
note that.

πj =
∑
i

πiPij → π = P Tπ

and that
∑

i πi = 1, say

P =

 0.3 0.1 0.6
0.3 0.5 0.2
0.4 0.5 0.1

then we can �nd π by creating

y =

 0
0
1

And

M =

[
[P T − I]1:2×3

1, 1

]
We have that (P T − I)π = 0 then

Mπ = y → π = M−1y ≈

 0.33
0.37
0.3

In general we can �nd π with y = [0, .., 0, 1]T ∈ Rn and

M =

[
[P T − I]1:n−1×n

1, .., 1

]
∈ Rn×n

Systems that change state continuously, require continuous-time Markov chains (CTMC); in-
stead of jumps during discrete jumps, these Markov chains can transition at any time. However,
since we still want to retain the Markov property, the time we spend at a state cant change the
probability of changing the state that is.

P{X(t+ s) = j|X(t) = i} = P{X(s) = j|X(0) = i}

10

The only continuous distribution with this property is the exponential distribution λe−λt, having
mean E[t] = 1

λ
, where λ is referred to as the rate. For CTMC we use what is called a rate matrix,

whose rows sum to 0.

Q =

 −λ12 − λ13 λ12 λ13

λ21 −λ21 − λ23 λ23

λ31 λ32 −λ31 − λ32

So if Qij < Qih then we expect to transfer to state h more often as the transition, on average,
takes less time. The minimum of a set of exponential distributed random variables {x1, .., xn}with
rates λ1, .., λn is exponentially distributed with mean.

E{min{x1, .., xn}} =
1

λ1 + ..+ λn

So the higher the rates of a state, the less time we will spend in that state [30]. We can �nd
the stationary distribution π for CTMC by using the constraints QTπ = 0 and

∑
π = 1, using a

similar trick to the one above, we de�ne

M =

[
QT

1:n−1×n

1, ..., 1

]
∈ Rn×n

And
y = [0, .., 0, 1]T ∈ Rn

Then
π = M−1y

The time evolution given by the Kolmogorov forward equation

dP (t)

dt
= P (t)Q

which has the solution
P (t) = P (0)etQ = etQ

where e is the matrix exponential. Di�erent interpretations of CTMC are equivalent, so we will
not discuss them here.

2.3 Scienti�c Veri�cation and Validation

Oberkampf and Roy mention four important parts of modeling and simulation credibility in [29].

Quality of the analysts In this case, the analyst is me, a master's student, which carries
low credibility (quality). But the supervisor and institute have a lot of credibility,
constituting the most important part of analyst credibility.

Quality of physics modeling The quality of physics modeling may not directly apply to
this project, but in essence, it is the quality of model choices and comprehensiveness.
Of course, comprehensiveness, in our case, is only important when it comes to general-
izations of results. Still, our model is quite abstract, and one cannot assume that the
results directly apply to some other system without good arguments for why it would
be. This part of credibility is then covered by the model description in 3.1 and the
extent to which that section covers modeling choices.

11

Veri�cation & validation activities Validation is building the right model, while veri�ca-
tion is building the model right [7]. In our case, validation could be done by using real
robots, but it will not be conducted in this project. Veri�cation, on the other hand,
is the most crucial part of our credibility. We will discuss veri�cation in greater depth
shortly.

Uncertainty quanti�cation & sensitivity analyses Uncertainty quanti�cation is the
process of quantifying elements of the model or model implementation that could cause
uncertainties in the results. Model assumptions, initial conditions, etc., could cause
these uncertainties. One could point to many potential uncertainties in our model,
such as boundary shape, and how these would a�ect the translatability of our results
to other experiments or studies. But as this project has a limited scope, we study
the model described as is and don't consider uncertainty quanti�cation. Sensitivity
analysis is the process of connecting output uncertainties to all the parts that make up
the model, usually conducted with uncertainty quanti�cation. While also essential to
modeling and simulation credibility, it is outside this project's scope.

As stated before, veri�cation is building the model right. In our case, this refers to the software
implementation created to run simulation experiments with the model. The precondition required
to do veri�cation is the model description given in 3.1. The implementation can only be as precise
as the description. �There is no silver bullet to guarantee software correctness and, consequently, all
available techniques for fault detection and correction should be used.� [22], software veri�cation is a
complex topic, and many di�erent approaches have been developed. The �rst defensive line against
software errors is good programming practices, such as coding conventions. A great deal of e�ort
did go into code design. However, since my expertise is questionable and the code is not reviewed
by anybody else, its quality is questionable. In this project, agile programming was used, [29],
as iterative software development suits small scienti�c projects well. Other software development
methods would probably lead to higher correctness, such as the Vienna Development Method [22];
where an abstract model is re�ned to code level hand in hand with a formal speci�cation. One
can formally prove that the program is correct at each re�nement step. This approach falls into
the category of formal methods, where one uses rigorous mathematical approaches to prove that a
program is correct regarding its speci�cation (successful veri�cation). While there are many tools
to assist in such e�orts like [4], with an automated theorem prover, this approach would be too
time consuming given the scope of our project and expertise at hand. The most important part of
our veri�cation is black-box testing, where we consider the system a black box, designing a set of
tests with inputs and expected outputs. Black-box testing is often the best way of �nding faults,
[22], but like with any test, it does not show that software is without fault; rather, tests' inability
to detect faults increases our trust in the software implementation.

ABMS is unique regarding veri�cation, as most ABMS is exploratory in nature [14], as is
the case in our project. Being exploratory implies that we do not know all outputs for a given
input. Even though running simulations do not create information [1] unavailable through the
model de�nition, emergent behavior is not exempt from this either. But human insight is still
generated, which is why we do modeling and simulation in the �rst place. We can design test
cases for simpler parts of our system that provide con�dence in the software implementation. [17]
argues for testing ABMS at di�erent levels, micro, meso and macro levels. At the micro level, we
test individual agents or elements that make up the agents and environmental elements. At the
meso level, we test agent interaction, such as communication, while macro-level tests consider the
entire system. The exploratory nature of ABMS gives rise to one more challenge: artifacts [14]

12

which are signi�cant changes in system behavior created not by some implementation fault but
by faulty model assumptions. A clear example of this in our case is agent activation; when agents
are not randomly activated each step, they can form groups that outperform systems without this
behavior. To deal with these artifacts and further inspect our system, we use visual veri�cation
to see how the agents move and interact with the environment in real-time. Visual veri�cation is
part of face validity. [17] While relying on the quality of the analysts, it has been a vital tool for
us to asses program correctness, which the supervisor could easily inspect.

3 Method and Implementation

3.1 Model description

Agents are distributed uniformly in the search space. They search by choosing a random direction
until they reach the boundary, where a new direction is determined uniformly, and the process
repeats. This is achieved by each iteration for each agent checking if they are out of bounds and
changing the required dimension of their velocity. Agents also check each iteration to see if they
can see a task. If that is the case, they will move towards the task and �ag themselves as on task.
If multiple tasks are within the detection radius, which can happen after a task is solved or after
initialization in pseudo-code:

13

Algorithm 1 search
rd=detection radius

s=speed

l=side length of search space

dms=maximum distance at which a task can be solved

Initialize:

current_task=Null

on_task=false

for each agent:

1. agent.position=[x1, x2] ∗ l, x1, x2 ∼ U(0, 1)
2. agent.velocity=normalize([v1, v2]) ∗ s, v1, v2 ∼ U(−1, 1)

for each iteration:

for each agent:

for i in each dimension:

if agent.position.i>l

agent.velocity.i=U(-1,0)

agent.position.i=l

else if agent.position.y<0

agent.velocity.i=U(0,1)

agent.position.i=0

else

agent.velocity.i=U(-1,1)

agent.velocity=normalize(agent.velocity)*s

if !on_task

if any(d(agent,tasks)<rd)

current_task=task s.t d(agent,task)==min(d(agent,tasks))

on_task=true

agent.velocity=normalize(task.position-agent.position)*s

elseif d(agent,current_task)<dms

agent.velocity=0

tasks have an associated requirement to be solved, tr while agents each have an associated
potential ap when tr ≤

∑n
i=1 a

i
p then a task can be solved. If all agents have equal potential then

we can use tr ≤ nap where n is the number of agents. For each task, we check if the task is solvable
for each iteration. When it gets solved, all agents are revealed of the task and rerun initialization,
as seen above. The task is reset and receives a new random position, and a counter increases for
the number of tasks solved.

14

Algorithm 2 Solving task
for each iteration:

for each task:

if tr ≤ nap

for each agent on task

reinitialize(agent)

reset(task)

task_count+=1

To measure the performance of our systems we use a metric, the mean number of tasks solved
per iteration. ts(i) the number of tasks solved at iteration i, them E[ts] =

1
n

∑n
i ts(i) is our primary

metric. It has some valuable properties, and it converges to a �xed value over time for any system
where ts is a distribution whose mean is smaller than i. In general, this will be true for most of
our simulations. We don't expect a task or multiple tasks to be solved in each iteration or for
the number of tasks solved in each iteration to accelerate. That is d2E[ts] = 0 in steady state, so
for systems where this measure does not converge dE[ts] = k so we will get a constant slope with
respect to i. For all of our simulations, we have a maximum number of tasks. If that number is 3,
then at most k = 3, but this is usually not the case in search and task allocation systems, as the
search takes time and so does solving the tasks.

For algorithms with communication, we need to decide on task inference capability. There are
a number of things that agents can infer about a task and other agents. One is if agents can see
task requirements at the same distance, they can detect a task. It is not evident that this would be
the case as it is easy to imagine being able to sense a task and its direction with less information
than what is required to tell the type of task and its requirements. If the system is set out to
solve a single type of task, then the agents would hold this information. If there are multiple types
of tasks, they might be unable to infer immediately. Sometimes it might be unknown, and they
would have to �gure it out.

A second inference is an ability to see if other robots are at the task, that is, within dms, say
an agent detects the task and wants to start an auction. Selecting fewer agents than required
will be optimal if no robots are already at the task. This inference can be sidelined by assuming
that all agents behave the same and that we communicate globally. Then if an agent is on the
task, the other agents would already know as an auction would be taking place. It is indeed vital
when detection and task requirement inference distance is larger than communication distance.
In general, starting an auction as early as possible sounds optimal not to waste time moving to
the task, but that might be detrimental if it makes more agents than required quit their searching
process.

Thirdly there is a possible inference about agents moving toward the task. In the most optimal
system (assuming one also knows the agents at the task location), one would have this information
before approaching a task or starting an auction. On the other hand, if enough agents are already
moving toward a task to solve, then it is better to continue searching. For the performance of
communication behaviors, it is essential to know how many agents to call.

-auction
-call-out

tr Task requirement, a scalar which is associated with each tasks, the amount of work

15

required to solve a task

tc Task capacity, a scalar associated with each agent, the agents capacity to do work

n Number of agents

nt Number of tasks

l Side length of search area

rd Detection radius, associated with each agent, the distance at which a task can be
detected

rc Communicated radius, associated with each agent, the distance at which agents can
communicate

Nr Number of runs, number of repeated simulations with same parameters

Ns Number of steps or iterations per simulation

3.2 Software

Agent based modeling and simulation (ABMS) is used in a wide area of domains, from economics
and industry to natural sciences and military applications. A recent review of ABMS tools is
found in [2] looking at 85 distinct software tools. Constructing arguments for which tool choices
are optimal in this project would be very time-consuming. Since most programming languages
and many software libraries could support this project, it seemed the most time e�cient to see if
the software we were familiar with was satisfactory for our purpose, and indeed it was.

In this project, we use the programming language Julia [8] designed for high-performance and
scienti�c computing with accessible parallel computing. Julia performs similarly to C [8] for single-
core while dynamically and faster typed than most other languages. Julia also has many other
features, such as meta-programming and directly calling code from other programming languages
such as C, Python, R, Fortran, etc. Julia is a relatively new language, so calling on packages from
other languages is an excellent way to plug the holes where they exist. The syntax of Julia is similar
to Python's, so code development is relatively fast. In this project, a range of Julia packages was
used. Agents.jl [11] is package for agent based simulation with a multitude of features while having
far higher performance than Mesa, Netlogo and Mason [3]. Dr Watson [10] has also been of seminal
help with running simulations and organizing the project. A large amount of other packages has
also been used from �le readers to statistical analysis to symbolic and numeric integration.

4 Simulation experiments, results and analysis

This section covers all experiments and results that were interesting. In addition, we analyze the
results and construct a mathematical model. Before we can run experiments, we need to establish
the credibility of our simulator.

16

4.1 Veri�cation

We are interested in studying steady-state behavior. Transient behavior is largely subject to initial
conditions and randomness, making it more di�cult to understand. In addition, transient behavior
is of little importance with longer-running systems. To start our veri�cation and simulation process,
we need to know when a steady state is reached with respect to our metric.

Figure 3: Time until steady state, both �gures show 10k iterations with Nr = 24. (a) with one
task, one agent, rd = 2.5 we see steady state is reached at around 4k iterations. (b) with 30 agents,
5 tasks, rd = 10 steady state is reached before 2k steps.

As seen in �gure 3 systems that solve tasks more often reach steady state sooner, this is not
surprising since with rarer events one needs more samples to estimate the mean. We will run most
simulations with Nr = 24 and Ns = 10k this is probably far more than required, meaning its
almost guaranteed that we reach steady state with any parameter set. If a parameter set needs
even higher Nr or Ns that will be mentioned. In �gure 4 we see the performance of our system for
di�erent communication protocols, this results coincides well with [26] which did a master thesis
on a similar topic. This serves as a good indication that our software is working correctly.

Figure 4: Validation of the simulator shows that auction performance is best, followed closely by
call-out until a breakpoint is reached. Where the agents start to aggregate, and search capability
falls.

Further, we have designed a set of black box tests at the micro,meso, and macro level, described

17

in Table 1, In addition, we have data processing software. Therefore, the results will be evaluated
concurrently as we use the data processing segment to make graphs showing our behavior and
metrics measurements. The results can be seen in Figures 5 on the next page and 6 on page 20.

Table 1: Black-box tests

Parameter/Function Metric Test setup/expected result

speed,time step
& step count

distance
traveled

generate random values of velocity,
time step, and step count. In simula-
tions with no tasks. The distance trav-
eled should be exactly velocity*time
step*step count.

task detection
radius

tasks
solved

Simulations with increasing radius, at
0, tasks solved should be zero. Tasks
solved should increase with task detec-
tion radius, until it covers the search
area.

tasks solved tasks
solved

One task and one agent with full detec-
tion radius. The number of tasks solved
should be equal to the number of time
steps.

task
requirement &
task capacity

tasks
solved

Simulations with one agent with full
detection radius and one task. Let
the agent have task capacities [1,..,n]
and the task have requirement [1,..,n].
Then a heat map of the performance
should be triangular, where one side
has 0 performance and the other has
a constant performance.

maximum
solving distance

tasks
solved

Simulations with increasing radius,
performance should increase as radius
increases.

Multi agent task
requirement and

capacity

tasks
solved

Multiple agents with same task ca-
pacity, simulate span in number of
agents,task capacity and task require-
ment. Agents should be able to solve
tasks when ntc ≥ tr otherwise not.

communication
radius

tasks
solved

Run simulations of call-out,auction &
random with increasing communication
radius. At zero radius call-out and
auction should be equal to random.
Tasks solved increases for auction until
it reaches steady state. Call-out per-
formance increases until it peaks after
which performance falls.

18

Auction distance Have one task and n agents, with task
capacity 1, task requirement <n and
full communication. After a task is
solved wait with placing a new task so
agents get to spread out. When a task
is found, the distance to the agent who
is the furthest away and won should on
average be equal to the k'th order met-
ric of the distance between one point
and (n-1) others uniformly in the search
space.

Figure 5: Veri�cation tests (a) Parallel coordinate plot showing that total distance traveled is multiplicative

with the number of steps, velocity, and step size. In (b), the number of tasks solved per iteration increases with

the detection radius until one task is solved per iteration. (c) With a con�guration that can solve one task each

iteration, we see that a correct number of tasks are solved.

19

Figure 6: (d) We see that tasks only can be solved when task requirement ≤ task capacity. (e) As the maximum

solving distance increases the agent spends less time traveling to tasks, and eventually solves them instantly. (f)

With n = 11 we see that tasks are only solved when tr ≤ ntc. (g) We see the distance to the furthest agent required

to solve a task is approximately equal to what is expected with uniformly distributed points.

We see that all the results agree with our predictions, which increases our trust in the system.
Since the measure on our simulation will vary according to thousands of uniform random e�ects,

the performance distribution on the same parameter set should be normally distributed. Showing
this is true would also allow us to run statistical tests assuming the normal distribution, which will
be very helpful later. If the results are not normally distributed, it probably hints at some error in
the simulator. To �nd out whether the results are normally distributed we use the Shapiro-Wilk
test [37], a widely used normality test, histograms and qq plots. Shapiro-Wilks is implemented
by Pingouin package in Julia, using algorithm AS R94. We �nd it su�cient to choose one set of
parameters, rd = dm = 10, n = nt = v = dt = 1,l = 50. N = 10000 and Nruns = 50000 so we get
50000 points of data to plot. For Shapiro-Wilks we choose 200 random data points, which seems
to return true every time the test is ran, with W = 0.993565 and p = 0.53349. Though the test
started to fail for over 500 data points, normality tests generally do not deal well with too many
samples as they weigh outliers too high. The results can be seen on �gure 7

Figure 7: Evaluation of normality, (a)histogram and (b)q-q plot. We see that our data is normally
distributed.

20

All taken into account, we believe our model implementation and, therefore, simulation results
are credible within the limitations of the project

4.2 Parameter choices & initial conditions

[26] found that uniform initial distribution of agents led to a faster steady state. Therefore, we
will use the same initial distribution in this project. Additionally, tasks are distributed uniformly.

To improve transferability and repeatability, we wish to normalize some parameters with respect
to others. Normalization of detection radius, communication radius, and velocity concerning the
side length of the search area seems natural, and there is no apparent reason why this would
not work. So we generate a set of non-normalized and normalized data with equal parameters.
Simulations with a continuous auction are slow with a low communication radius because a lot of
computation is involved. We, therefore, only let agents hold a single auction. As we can see in the
comparative plots in Figure 8 on the following page the normalization works well. We can assume
that representing speed, detection radius and communication radius as a proportion of side length
is transferable to any equivalent simulation with equal proportions.

21

Figure 8: Here we see simulations ran with di�erent speed and boundary limits (side length
of search space) with communication and detection radius's that span from 2.5 to 50

√
2. The

normalized heat-maps are on the left, we see virtually no di�erence except for the occasional noise.

Another critical parameter is the time step, dt. Reducing dt increases the simulation's time
resolution by reducing agent movement and increasing sampling frequency and communication
frequency per time unit. However, reducing dt also shortens the e�ective length of a simulation
if dt = 0.1 and Ns = 1000 the simulation runs for 100 time units, as we know from 4.1 the
more tasks we solve per step the faster we reach steady state. When dt is low we might need to
increase Ns to reach steady state, increasing computation time. Further when dt is high there is a
chance of passing by a task without detecting it, we can analyze this phenomenon to increase our
understanding of how the choice of dt a�ects the simulations.

For each time step the agents checks if a task is within their detection radius. We then have a

22

sampling frequency

fs =
1

dt

sampling once every step. Given a sampling frequency, we encounter a problem; for any time step
�nitely bigger than 0, there is a probability a collision (overlap between detection area and task)
will not be detected. Understanding the relationship between this probability and the parameters
we choose for our simulator is essential, as it will a�ect our primary metric. The parameters that
a�ect this problem are; sampling frequency, velocity, and detection radius. The tasks are treated
as particles, while our agents move in straight paths.

Figure 9: agent (gray circle) moves a distance vdt with detection radius r. A contains the area in
which a task can stay undetected

In Figure 9 we see that the probability of a task going undetected per step is the areas in which
a task can stay undetected divided by the newly sampled area. We �nd a function that adjusts
for this probability, then run some simulations to see how well it accounts for variability in dt.

23

Figure 10: Here we see an agent moving a distance d, with detection radius r, A0 is the overlap
area, AIT internal triangle,φ angle to detection radius intersection

We want to �nd A0 in Figure 10, because of symmetry we know that the intersection point
occurs at d

2
on the x-axis. Then

rcos(φ) =
d

2
→ φ = arccos(

d

2r
)

, so the area of the circular segment is φr2. We see that

AIT = 2(
1

2

d

2
rsin(φ)) =

d

2
rsin(arccos(

d

2r
)) =

d

2
r

√
1− (

d

2r
)2 =

d

2

√
r2 − d2

4
=

d

4

√
4r2 − d2

φr2 − AIT is half the area of the lens A0, then

A0 = 2(φr2 − AIT) = 2r2arcos(
d

2r
)− d

2

√
4r2 − d2

Then the new area we discover after moving a distance d is

Ad = πr2 − 2r2arcos(
d

2r
) +

d

2

√
4r2 − d2

Knowing A0 we can �nd A in Figure 9 on the previous page by noting that

A1 =
4r2 − πr2

4
=

r2

4
(4− π)

is one fourth of the area enclosed between a circle of radius r and the square that bounds it. This
area contains a proportion of A, we can �nd A

2
by removing the extra enclosed area A2. We can �nd

A2 by �rst making a rectangle from d
2
(mid point between the circles) to where the circle intersect

24

the x axis, giving it a width of r− d
2
, then we give it a height r. This rectangle contains the extra

area in A1 in addition to one fourth of the lens between the circles. We then see that

A2 = r(r − d

2
)− A0

4

so

A = A1−A2 =
r2

4
(4−π)−r(r−d

2
)+

1

4
(2r2arcos(

d

2r
)−d

2

√
4r2 − d2) =

rd

2
+
1

2
r2arcos(

d

2r
)−r2π

4
−d

8

√
4r2 − d2

.
We can now adjust for the probability to not see a task by

A

Ad

=
rd
2
+ 1

2
r2arcos(d

2r
)− r2π

4
− d

8

√
4r2 − d2

πr2 − 2r2arcos(d
2r
) + d

2

√
4r2 − d2

.
In Table 2 we run simulations with di�erent values of dt, with Nr = 100, n=10, nt = 10 and

v=1. For every simulation the amount of total time is kept constant, so with N = 10000 for dt=1,
the equivalent total time for dt = 20 gives N=500

Table 2: tasks solved total

dt rd = 2.5 rd = 2.5,adjusted rd = 10 rd = 10,adjusted
0.01 1769 1769 8229 8229
0.1 1768 1768 8172 8172
1 1714 1725 7712 7715
rd 1565 1639 3755 3933
2rd 1226 1687 2159 2971

When rd = 2.5 we can adjust fort dt quite well. When dt = 2rd = 5 we get N = 2000, and
most of the loss here seems to be because we don't detect tasks we could have with a lower dt.
When the probability of �nding a task per sampling is high, then reducing the number of samples
has a much higher cost on performance than the increase in dt. When rd = 10 and dt=1 we solve a
task almost every iteration, increasing dt increases the amount of area sampled per iteration, but
since the probability of �nding a task is already high it cant make up for the loss in total number
of samples. We get the same results when varying v and keeping dt constant, if there was a �xed
distance at which tasks could be solved that is rd ̸= dm then high vdt might cause the agents
to jump around the tasks greatly reducing e�ciency. Lastly we could have a separate sampling
frequency, but as we have no speci�c target values for sampling frequency this makes little sense
and will increase computation time. A good trade o� seems to be keeping dt = 1, so we will use
that value unless otherwise mentioned.

4.3 Modeling search

In this section, search is modeled separately from task allocation. Search on its own is the process
of �nding a task. After an agent �nds a task, it is solved immediately. This implies that the
max solving distance. dm = rd and that the task requirement tr = 1. While one can model a
multi-agent system where the agents must also travel to the task itself, it is not considered part

25

of the search process here. Though the �nal model does extend to cases like this. Data is handled
as follows unless otherwise stated, the results from Nr runs is stored in a csv �le along with the
parameters of that run. This can be transformed into a matrix M ∈ RnxNr with n recorded values
and Nr columns, then we average the �nal recorded value, that is performance=

∑Nr

i=1 M [n, i] 1
Nr
.

One could also average the last few recorded values, but it does create some challenges so it is
avoided unless mentioned. Simulations are ran with l = 50 and v = 1, the normalized equivalent
is l = 1 and v = 0.02 unless otherwise stated.

4.3.1 single task single agent

In this scenario n = 1, nt = 1,agents sampling the same area repeatedly introduces some modeling
challenges, which will be addressed later. But for the time being, each agent samples the area
around it after it has moved a distance of 2rd, vastly reducing correlation between sample's. The
data is scaled by 2rd

vdt
o make it easier to compare and represent. It makes the data look like the

sampling frequency equals dt. Since we solve tasks instantly after they are found from a distance,
the number of tasks solved per iteration should equal the number of tasks found per iteration. We
can estimate the probability of �nding a task by the proportion of the search space sampled. We
call the predictive function H.

H1(rd, l) = min(
π ∗ rd2

l2
, 1) (1)

since

H1(rd, l) = 1 → rd =

√
l2

π
≈ 0.564189584

would limit the possible values of rd. Further rd is normalized by l so

H1(rd, l) = min(
π ∗ rd2

l2
, 1) = min(πr2d, 1) = H1(rd)

to simplify further expressions. A data adjusting function B is also de�ned.

B1(rd, v, dt) =
2rd
vdt

(2)

The full prediction is then done by the combination of applying B to the data and using H to
predict output after application, the pair (Hi, Bj).

As the data produced is normally distributed, con�dence intervals via Student's-t distribution
is used. Detection radius is normalized to between 0 and

√
2 as shown before to be possible.

26

Figure 11: predicted and simulated results with (H1, B1)

In Figure 11 the simulation is ran with dt = 0.01, N = 1000000, Nr = 1000. The prediction
looks reasonably close for small values of rd, but there is some artifacts in the data causing negative
spikes in performance . Since dt > 0 the sampling doesn't always occur after an agent has moved
2r, but instead when the distance moved is between 2r and 2r+ dt ∗ v. The number of samples in
a continuous simulation would be

fc =
vT

2rd

in the discrete case we have

fd = floor

(
vT

dt ∗ ceil
(
2rd

1
dt

))
Where T = Ndt, the total simulation time. Assuming that the performance of this system is

directly proportional to the number of samples an agent takes, this can be corrected by multiplying
the result with fc

fd
. Then

B2(rd, v, N, dt) =
2rd
vdt

fc
fd

(3)

with (H1, B2) we get.

27

Figure 12: Adjusted simulation vs prediction

in Figure 12 results with adjustment are presented, H looks to be a good predictor for single-
task single-agent search (STSA-S) with a low detection radius. Here there is an average relative
di�erence (error)

1

N

N∑
i

|predicted[i]− simulated[i]

simulated[i]
| ≈ 0.17

28

Figure 13: (a) di�erence between predicted and simulated, (b) relative di�erence. In both metrics
the di�erence is low when r is either very low or very high

As seen in Figure 13 (H1, B2) is a good approximation of detection probability when the
detection radius of agents is below 0.15 or over 0.95. Most conceivable real-world multi-agent
search systems would operate with a low detection radius, so (H1, B2) will be a good predictor for
the performance of these systems. To investigate further when this prediction might be used, plots
for lower detection radii are made.

29

Figure 14: (a) Di�erence between predicted and simulated (b) Relative di�erence predicted and
simulated

Figure 14 Shows that (H1, B2) is a very good predictor when it comes to tasks solved at low
detection radii. Since the system solves several tasks, the relative di�erence does not make up a
signi�cant actual di�erence. (H1, B2) will most likely improve as a predictor as rd gets smaller.
While (H1, B2) can be used for systems with low detection radius, a more general predictor would
be useful to more systems.

Instead, the expected distance between uniform points is used since the tasks are placed uni-
formly, and agents are approximately uniformly distributed over time .In [31] we �nd the PDF

gs(s) =

−2
√
s

a2b
− 2

√
s

ab2
+ π

ab
+ s

a2b2
, 0 < s ≤ a2

−2
√
s

a2b
− 1

b2
+ 2

ab
arcsin

(
a√
s

)
+ 2

a2b

√
s− a2, a2 < s ≤ b2

− 1
b2
+ 2

ab
arcsin

(
a√
s

)
+ 2

a2b

√
s− a2 − 1

a2

+ 2
ab
arcsin

(
b√
s

)
+ 2

ab2

√
s− b2 − π

ab
− s

a2b2
b2 < s ≤ a2 + b2

for the squared distance between two uniform points in a box with side lengths a < b. In our

30

simulator a = b = l so we can omit the middle term and rewrite.

gs(s) =

{
π
l2
+ s

l4
− 4

√
s

l3
0 < s ≤ l2

4
l2
arcsin

(
l√
s

)
+ 4

l3

√
s− l2 − 2

l2
− π

l2
− s

l4
l2 < s ≤ 2l2

The distribution of the squared distance is of little use, so gd(d) where d =
√
s is derived as

follows.

P (
√
S ≤ d) = P (S ≤ d2) = G√

S(d) = GS(d
2)

Then

gd(d) = g√S(d) =
d

dd
GS(d

2) = 2dgs(d
2)

So

gd(d) = 2dgs(d
2)

where d is distance. then

g(d) =

2d
(

π
l2
+ d2

l4
− 4 d

l3

)
0 < d ≤ l

2d
(

4
l2
arcsin

(
l
d

)
+ 4

l3

√
d2 − l2 − 2

l2
− π

l2
− d2

l4

)
l < d ≤ l

√
2

The CDF will give the probability that a uniform point is within a distance d from another
point, making it more useful,

G(d) =

∫
g(d)dd

we have that

g(d)1 = 2d

(
π

l2
+

d2

l4
− 4

d

l3

)
=

1

l
2
d

l

(
π +

d2

l2
− 4

d

l

)
so we can substitute x = d

l

G(x)1 =

∫
2x
(
π + x2 − 4x

)
dx

and �nd that

G(x)1 =
x2 (3x2 − 16x+ 6π)

6
+ C

but C = 0 since we want G(0)1 = 0,then

G(x)1 =
x2 (3x2 − 16x+ 6π)

6
; 0 ≤ x ≤ 1

.
For G(d)2we have

G(d)2 = 2d

(
4

l2
arcsin

(
l

d

)
+

4

l3

√
d2 − l2 − 2

l2
− π

l2
− d2

l4

)
31

=
1

l
2
d

l

4arcsin

(
l

d

)
+ 4

√(
d

l

)2

− 1− 2− π − d2

l2

=

1

l
2
d

l

(
4arcsin

(
l

d

)
+ 4

√
d2 − l2

l2
− 2− π − d2

l2

)
so again we can substitute x = d

l
,then

G(x)2 =

∫
2x

(
4arcsin

(
1

x

)
+ 4

√
x2 − 1− 2− π − x2

)
dx

=
16 (x2 − 1)

3
2 − 3x4 + x2

(
24arcsin(1

x
)− 6π − 12

)
+ 24x

√
1− 1

x2

6
+ C; 1 ≤ x ≤

√
2

Since we want G(
√
2)2 = 1 we have that C = 1

3
then

G(d) =

x2 (3x2 − 16x+ 6π)

6
0 ≤ x ≤ 1

16(x2−1)
3
2−3x4+x2(24arcsin(1

x
)−6π−12)+24x

√
1− 1

x2

6
+ 1

3
1 ≤ x ≤

√
2

(4)

This distribution arises from the convolution of multiple uniform random numbers. For exam-
ple, say we throw an n-sided die two times, and then in a coordinate system, mark the �rst throw
on the x-axis and the second on the y-axis. Calling this our �rst point, then we repeat creating a
second point. Now we can measure the distance between these points as illustrated in Figure 15.

Figure 15: 4 dice rolls creating two points (1,5) and (9,7) with the distance between them given
by d

We can double check that G(d) follows this same behavior with the simple Algorithm 3 then
plot the relative di�erence between its output and the result given by G(d)

32

Algorithm 3 Distance between uniform points
N #number of repeats

m # distance resolution

dists=zeros(m) #initialization of distance vector

for _ in 1:N

P1=[U(0,1),U(0,1)] #Point by two draws from the uniform distribution

P2=[U(0,1),U(0,1)]

d=distance(P1,P2)

index=Int(floor(d*(m)))+1 # Index that corresponds to distance d

dists[index]+=1 #add one to distance vector at index

end

dists/=sum(dist) #normalize dists

D=[sum(dists[1:i]) for i in 1:m] # Cumulative distribution of dists

To compare the results given by Algorithm 3 with gd(d) and Gd(d) they �rst need to be averaged
over the intervals that dists uses.

Algorithm 4 Average function over intervals
res=1000000 #resolution to approximate continuity

d=LinRange(0,
√
2,res) # vector of evenly spaced values from 0 to

√
2

m=100 #number of intervals

f_vec=zeros(m) #Initialization of results vector

f(d)=gd(d) # the function that is being averaged as a vector

for i in 1:m

ind_min=
(i−1)N

m
+ 1

ind_max= iN
m

+ 1
f_vec[i]=sum(f(d)[ind_min:ind_max])m

N

end

return f_vec

33

Figure 16: (a) Simulated distance distribution by 3 and average normalized(AN) gd(d). (b) Rel-
ative di�erence between simulated and gd(d) (AN). (c) Averaged Gd(d) and simulated cumulative
distribution. (d) Relative di�erence between averaged Gd(d) and simulated cumulative distribu-
tion.

The simulated distribution is normalized by its sum, hence, gd(d) must be normalized by its
sum. In addition Algorithm 4 is used, so the distribution is averaged and normalized.As seen
in Figure 16 both cumulative and normal distributions overlap almost exactly. There is some
di�erence at the endpoints in the relative di�erence plots, but this is most likely caused by the low
probability of having good statistics with such low and high distances. The di�erence that we can
see mostly highlights a need for mathematics when things become very costly to compute, and it
is quite convincing that gd(d) follows the behavior described.

Now predictions are done with
H2(rd) = Gd(rd) (5)

and B2

34

Figure 17: Simulated with 95% con�dence interval and sampling error correction vs predicted
with gd

As seen in Figure 17 the prediction �ts much better over the detection radius range. Relative
average error is

1

n

∑
abs

(
predicted(i)− simulated(i)

simulated(i)

)
≈ 0.058

.

35

Figure 18: relative di�erence and di�erence between prediction and simulation with 95% con�dence
interval

In Figure 18 the relative error decreases as the radius increases. The error still present might
be caused by agents sampling the same area, when rd gets large the probability that a loss caused
by overlap will matter decreases, since tasks are detected anyways. The di�erence between the
two predictive functions gets smaller as rd gets smaller,

Gd(rd)−H1(rd)
H1(rd)

=
r2d(3r

2
d−16rd+6π)

6
−πr2d

πr2d
=

3r2d−16rd
6π

,

then limrd→0

(
Gd(rd)−H1(rd)

H1(rd)

)
= 0.

As an example, when rd = 0.001 the relative di�erence between the predictions are ≈ 0.00085,
which for most uses is undetectable.

A reasonable explanation for the error is the overlap between the agents, as there is a loss when
an area is re-sampled. Assuming that the agent position is uniform, the location of two samples
from the agent is uniform. This is not the case but for larger agents moving 2rd a boundary
interaction will change its direction uniformly, and then the distance from the previous sampling

36

location will have some distribution. Assuming this distribution is random, we can model the
expected overlap.

We know that the loss from two agents overlapping is

Aol(rd, d) =
Ao

2
= r2darcos(

d

2rd
)− d

4

√
4r2d − d2

(see equation 4.2) since the points are uniform we can use

Gd(d)Aol(rd, d)

as the probability weighted loss given d and rd. Then the integral

Eol[rd] =
1

2rd

∫ 2rd

0

Gd(d)Aloss(rd, d)dd

is the expected overlap loss given rd, using SageMath [40] we symbolically integrate and �nd that

Eol[rd] = −2

3
πr6d +

128

75
r7d +

16

9
πr5d −

16

105

(
8r6d + 7πr4d

)
rd; rd < 0.5

For rd > 0.5 we need to solve this integral numerically. There is of course a probability that three
samples will overlap without a task being found, but that probability is very low so its excluded
here. To incorporate the loss rd is corrected,

r∗d =

√
πr2d − Eol[rd](1−Gd(rd))

π
(6)

the loss needs to be multiplied by
(1−Gd(rd))

since its only relevant if a task is not detected. then the update prediction is given by

H3(rd) = Gd(r
∗
d) (7)

.

37

Figure 19: Prediction adjusted with expected overlap given uniform distribution

in Figure 19 relative di�erence is slightly reduced, mostly for higher values of rd the average
error is now 0.054%

To further investigate where the prediction error might stem from, the actual positional dis-
tribution of the agents is recorded. They are not completely uniform, as assumed in the model.
The agent distribution is reconstructed by setting up a m×n grid and recording when an agent is
within each box. This can be done for di�erent parameter sets by normalizing the position matrix
s.t
∑m

i=1

∑m
j=1Mij = 1We obtain a 2-dimensional PDF representing the probability that an agent

is within one of the boxes. With M, rejection sampling is used to simulate the probability of �nding
a task where agents have a distribution given by M. The description of this algorithm is given at
algorithm 5.

38

Algorithm 5 Detection probability simulation with agent distribution M and uniform task dis-
tribution

M ∈ Rnxm positional PDF for agents

r #detection radius

z=maximum(M) # maximum value of M used for rejection sampling

N #number of iterations

c=0 #counter

ns=0 #tasks solved

for 1:N

i=U(1,n) #Uniform random index

j=U(1,m) #Uniform random index

k=U(0,z) #Uniform random acceptance value

task_position=[U(0,1),U(0,1)]

if Mi,j ≤ k #if k is greater use the position Mi,j

c+=1 #increment counter

#if task is within radius solve task and increment task counter

if distance(Mi,j,task_position)≤ r

ns+=1

end

end

end

return ns
c

39

Figure 20: (a) Distribution with n=1,n_t =1 and r=0.05 (b) distribution with n=10,nt =3 and
r=0.4 (auction mechanism) (c) relative di�erence between the distributions where positive values
indicate a higher probability of �nding agents from (b)

40

As seen in Figure 20 systems with a higher density of tasks and agents spend more time in
the middle of the search space compared to systems with a lower density of tasks and agents.
This is expected as agents change direction when they �nd or are called to a task via the auction
mechanism. Agents that do not �nd tasks must move to the boundary to change direction. To
investigate if the actual agent distribution can be used to account for the modeling error directly,
simulations using this distribution can be compared to the model. Suppose the di�erence and rela-
tive di�erence of the simulations with the approximate distribution matches that of the simulation
vs. model. In that case, it is a strong indication that the error comes from the assumption of
uniform distribution.

Figure 21: Relative di�erence between model and simulations on the two distributions show in
�gure 20 (a) distribution with n=1,nt=1 and r=0.05 (b) distribution with n=10,nt = 3 and r=0.4
(auction mechanism)

As seen in Figure 21 the relative di�erence between simulations with approximate distributions
and model prediction does not match the �ndings earlier, so its not straightforward to use this
knowledge to adjust for model error.

A second approach would be to investigate the agent movement pattern in the short term. As

41

agents change direction on the boundary it is likely that their new path will overlap with their old
in some way.

Figure 22: Agent path from P1 to P2 to P3, (blue line) detection area within the dashed blue
lines. Agent detection area self overlaps in the red triangle by P2.

To calculate the overlap area in Figure 22 Polyhedra [23] package is used. The polygon areas
and their intersection is found as described in Algorithm 6

42

Algorithm 6 Pathing overlap
#Lines L1(P1,P2) and L2(P2,P3) extend a distance rd normal to the line

#creating quadrilaterals that overlap.

N # number of repeats

rd # detection radius

function R(θ) # rotation matrix

Espo = 0 #initialization of expected self pathing overlap

for i in 1:N

uniform random points on boundary,

no two consecutive points on same boundary face

P1,P2,P3

m1 = (P2y − P1y)/(P2x − P1x) # L1 gradient

x1 =
rd√
m2

1+1
x change s.t. ||[x1, x1m1]|| == rd

v1 = [x1, x1m1]
P1∗ = P1− v1
P2∗ = P2 + v1
Poly1=Polygon(P1∗ +R(π/2)v, P1∗ +R(−π/2)v, P2∗ +R(−π/2)v, P2∗ +
R(π/2)v)
#repeat with P2 = P3 and P1 = P2 to make Poly2

Poly3=Poly1∩Poly2 #intersection of polygons Poly1 and Poly2

#intersection area divided by total combined area

Espo+=(area(Poly3)/(area(Poly1)+area(Poly2)-area(Poly3)))/N

end

return Espo

The Espo is then used to adjust the prediction, by

r∗d =

√
r2

Espo(1−Gd(rd))
(8)

then we predict with
H4 = Gd(r

∗
d) (9)

43

Figure 23: Relative di�erence when using new prediction

As seen in the �gure above, the error is reduced signi�cantly. Now the mean error is 2.5%.
However, there are some peaks, especially for high detection radii. The remaining error is probably
due to discretization. We assume the agents move continuously, which is not the case, one can go
one step further and recreate this discrete movement, but it is di�cult to do so without essentially
recreating the simulator itself.

To look into this further an algorithm is made Algorithm 7 to simulate agents walking in
straight paths in a more direct way than they do in the main simulator. While this algorithm does
recreate much of the behavior of the main simulator with one agent and one task, it speci�es more
strictly how agents move from point to point, distilling the e�ect.

44

Algorithm 7 Movement algorithm
end_pos # target position on boundary

pos # position

rd # detection radius

dt # time step

f=2rd
dt

sampling frequency

v # velocity

solved=0 # tasks solved counter

N # total number of steps

c_steps=0 # step counter

function getRandomBoundaryPoint()

if U(0,1)>0.5

point=[U(0, 1),U(0,1)]
else

point=[U(0,1),U(0, 1)]
end

return point

end

function newEndPosition(pos)

end_pos=getRandomBoundryPoint()

v=normalize([end_pos[1]-pos[1],end_pos[2]-pos[2]])

return v,end_pos

end

pos=getRandomBoundryPoint()

v,end_pos=newEndPosition(pos)

for 1:N

if pos==end_pos

v,end_pos=newEndPosition(pos)

end

if steps≥f

if distance(pos,task_pos)≤r

task_pos=[U(0,1),U(0,1)]

solved+=1

steps=0

end

end

pos+=v*dt

steps+=1

end

45

Figure 24: Di�erence and relative di�erence of predicted H2 vs simulated and as found by the
movement algorithm 7

As seen in Figure 24 the movement algorithm acts as a much better predictor of di�erence and
the relative di�erence between predicted and simulated results. In the absence of other explana-
tions, this mechanism is the most likely cause of the prediction error seen.

4.3.2 Multi task one agent

Further model performance on systems with multiple tasks is investigated. To predict the perfor-
mance of this con�guration, with multiple tasks, the distribution g

(
r
l

)
is sampled nttimes. Only

one task can be found in each iteration, so the performance prediction becomes the probability of
�nding at least one task. That is

H5(rd, nt) = 1− (1−G (rd))
nt (10)

, a tasks is found or its not, so the result is binomial statistic. As seen in Figure 25 the prediction
di�ers more for multi-task than single-task systems. But the error given by the movement algorithm
has a very high correlation with the prediction error. Though the scaling is slightly o�, this is the
most likely cause of the error.

46

Figure 25: Simulated vs predicted for di�erent number of tasks, seen in the title of each graph.
Side by side with relative di�erence of prediction, simulation and movement algorithm.

When we apply pathing overlap as in equation 8 to detection radius ranging from 0.001 to
√
2

we get a much smaller error.

47

Figure 26: Relative di�erence with pathing overlap with average linear error

In Figure 26 the error is calculated by taking a random uniform number between 0 and
√
2

then taking the closest corresponding relative error value and averaging the result from many such
samples as described in Algorithm 8. We see that on a linear scale, the error is relatively low, but
we have high peak errors of around 18% when there are many tasks and rd ∈ (0.075, 0.33).

Algorithm 8 Random linear error single axis
xvals # x-axis values

yvals # y-axis values, relative difference values

N # number of repetitions

error=0 #initialization of error

for _ in 1:N

#generate uniform random x between min and max of xvals

x=minimum(xvals)+U(0,1)*maximum(xvals)

ind=minimumIndex(abs(xvals-x)) # the index on xvals thats closest to x

error+=abs(yvals[ind]) # add the absolute relative difference value at ind

end

return error/N

48

4.3.3 Single task multi agent

To predict single-task multi-agent performance, we use mostly the same equation as in multi-task
single agents. Since now there is one task that is either found or not found by n agents, we want
to have the probability that this task is found by any of the agents, which is.

H6(rd, n) = 1− (1−Gd(rd))
n (11)

Figure 27: Simulated and predicted tasks solved per step with corresponding relative di�erence
and linear error

The error seen in Figure 27 might be explained by agent overlap. By using self pathing overlap
8 the error is further reduced.

49

Figure 28: Relative di�erence predicted/simulated with self pathing overlap adjustment

in Figure 28 we see that the average error is almost nonexistent, though there are error peaks
of upwards 10%.

4.3.4 Multi task multi agent

With multi-task multi-agent systems, there are more moving parts, but we can view it as a se-
quential search since there is no interaction between the agents. Agents activate sequentially in
each iteration.

50

Figure 29: Heat maps of tasks solved per step for di�erent number of tasks, with number of agents
on the y-axis and detection radius on x-axis

In Figure 29 we see performance as expected. When the detection radius and the number of
agents increase, the number of tasks solved increases up to a maximum of minimum([n, nt]).

To predict performance in multi-agent multi-task systems, we must combine approaches from
MTSA and STMA. One approach would be to multiply the MTSA equation by n, then

n(1− (1−Gd(rd)))
nt (12)

. This equation work for low values of rd where n is not very high compared to nt, but when these
conditions are not met it can overestimate the number of tasks solved. Call the maximum number
of tasks solved mnt = minimum([n, nt]). Then we can predict with

51

H6(rd, n, nt) = minimum (n(1− (1−Gd(rd)))
nt ,mnt) (13)

Figure 30: Relative di�erence between prediction by H6 and simulated data with B2 with linear
average error.

In �gure Figure 30 we see that the prediction preforms well at low detection radii and very
high detection radii, but there are high peak errors of over 60% with rd ≈ 0.2 and nt = 15. The
error is calculated as shown in Algorithm 9.

52

Algorithm 9 Linear error calculation matrix
xvals # values on x-axis

yvals # values on y-axis

reldifdata # relative difference matrix

res #resolution

#Vector of evenly spaced values between min(xvals) and max(xvals)

x_vec=LinRange(min(xvals),max(xvals),res)

#Vector of evenly spaced values between min(yvals) and max(yvals)

y_vec=LinRange(min(yvals),max(yvals),res)

error=0 #initialization of error

for i in 1:res

#Index of xvals value closest to x_vec[i]

x_ind=min_index(abs(xvals-x_vec[i]))

for j in 1:res

#Index of yvals value closest to y_vec[j]

y_ind=min_index(abs(yvals-y_vec[j]))

add relative difference at [x_ind,y_ind] to error

error+=reldifdata[x_ind,y_ind]

end

end

return error/(res^2)

These agents still overlap themselves by how they move so Espo can be used to account for it.
In addition agents overlap each other, as long as there isn't a very large amount of agents we can
use (n− 1)Elo to estimate this loss. Then rd is updated as

r∗d =

√
1

π

(
πr2d

1 + Espo[rd] ∗ (1−Gd(rd))
− (n− 1)Elo[rd] ∗ (1−Gd(rd))

)
(14)

Then predict performance as

H7(rd, n, nt) = minimum (n(1− (1−Gd(r
∗
d)))

nt ,mnt) (15)

53

Figure 31: Relative di�erence between simulated and predicted (H7, B2)

In Figure 31 we see the average and peak error is reduced, at the cost of slightly higher under-
prediction in some cases. However, the peak error is still relatively high at up to 40%.

The likely reason for this is that if a task is found before the last agent samples during an
iteration, the probability of that agent �nding a task is

1− (1−Gd(rd))
nt−1

instead of
1− (1−Gd(rd))

nt

With that insight a prediction can be made as

54

ks = min{max{k}|
k∑

i=0

1

1− (1−Gd(rd))nt−i
≤ n,mnt}

Then the number of tasks solved per iteration is

ks∑
i=0

1

1− (1−Gd(rd))nt−i
+ (n− ks)(1− (1−Gd(rd))

nt−ks) (16)

Then we de�ne the prediction as

H8(rd = r∗d, n, nt) =
ks∑
i=0

1

1− (1−Gd(rd))nt−i
+ (n− ks)(1− (1−Gd(rd))

nt−ks) (17)

55

Figure 32: Relative di�erence between simulation and prediction by H8

As seen in 32 errors are now much lower, with an average error between 2% and 3%. In addition,
the peak error is also signi�cantly reduced, at a maximum of about 18%.

H8 is slightly complicated, we can estimate it by realizing that

k

(1− (1−Gd(rd))nt
≤ n ≤ k

(1− (1−Gd(rd))nt−k

Then the minimum value of k,

k1 = n ∗ (1− (1−Gd(rd))
nt

56

which is H6 without bounds. The maximum value k2 given by

k

(1− (1−Gd(rd))nt−k
= n

is a bit more complicated to calculate. Rewrite

(1−Gd(rd))
nt−k = P nt−k

then

k

1− P nt−k
= n → k = n(1− P ntP−k)

so
k = n− nP ntP−k

then multiply by P k so
kP k = nP k − nP nt

then multiply by P−n so
(k − n)P (k−n) = −nP nt−n

Then change the equation to yey by multiplying with ln(P), so

ln(P)(k − n)eln(P)(k−n) = −nP nt−nln(P)

The equation yey = x can be solved with Lambert's W function at branch 0, that is y = W0(x).
We then �nd that

ln(P)(k − n) = W0(−nP nt−nln(P)) → k2 =
W0(−nP nt−nln(P))− nln(P)

ln(P)

Then we can predict with

H9(rd = r∗d, nt, n) =

k1

mnt

k1+k2
2

k1 ≤ 1

rd =
√
2

otherwise

(18)

57

Figure 33: Relative di�erence between simulated and predicted result by H9

The performance of H9 in Figure 33 is almost identical to H8 while being more tractable in
some sense, though its worth mentioning that while Lambert's W function is well known, it cannot
be expressed in terms of elementary functions.

4.4 Modeling task allocation

To separate task allocation from search rd =
√
2 ,tthen each agent sees the entire search space.

When modeling task allocation, the goal is to understand how much time is spent solving a task
and what parameters a�ect it. Assuming agents are distributed uniformly in the search space, one
wants to �nd the distance from the task to the furthest agent required to solve it. The distribution

58

gd(d) gives a good starting point, as each sample of gd(d) is a distance from one uniform point to
another. When n samples are drawn from gd(d)

they will have an order
d1:n ≤ d2:n ≤ d3:n ≤ d4:n... ≤ dn:n

where d1:n is the smallest realization. Consider that we want to �nd the cumulative distribution
of the smallest of 2 draws,

F1:2(d) = P (D1:2 ≤ d)

=P(at least 1 of D1, D2 is at most d) which equals P(1 of D1, D2 at most d)+P(2 of D1, D2 at
most d)

Then

F1:2(d) = 2F (d)(1− F (d)) + F (d)2 = F (d)(2(1− F (d) + F (d))

= F (d)(2− F (d)) = 2F (d)− F (d)2 = 1− (1− F (d))2

.

We see that this coincides with the tail binomial distribution,since

Fi:n(d) =
∑n

i P(exactly i of d1:n... is at most d)=
∑n

i

(
n
i

)
F (d)i(1− F (d)n−i

We �nd the PDF of Fi:n(d) in [6] to be

fi:n(d) =
n!

(i− 1)!(n− i)!
F (d)i−1(1− F (d))n−if(d) (19)

Then the expected distance from one uniform point to another can be calculated by substituting
f(d) for gd(d) and taking the expected value, that is

E[d]i:n =

∫ √
2

0

d
n!

(i− 1)!(n− i)!
G(d)i−1(1−G(d))n−ig(d)dd (20)

E[d]i:n is solved numerically by Integrals.jl [33], since there is only a few discrete values they are
easy to store. The results are given below,

order\samples 1 2 3 4 5 6 7 8 9 10

1 0.5214 0.3795 0.3111 0.2692 0.2403 0.2188 0.2021 0.1887 0.1775 0.1681

2 0.0 0.6633 0.5162 0.4368 0.3849 0.3476 0.3191 0.2964 0.2779 0.2623

3 0.0 0.0 0.7369 0.5955 0.5147 0.4596 0.4188 0.387 0.3614 0.3401

4 0.0 0.0 0.0 0.7841 0.6494 0.5698 0.514 0.4718 0.4384 0.4111

5 0.0 0.0 0.0 0.0 0.8177 0.6891 0.6116 0.5562 0.5136 0.4794

6 0.0 0.0 0.0 0.0 0.0 0.8435 0.7201 0.6449 0.5903 0.5478

7 0.0 0.0 0.0 0.0 0.0 0.0 0.864 0.7452 0.6722 0.6186

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.881 0.7661 0.6951

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8954 0.7838

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9077

59

order\samples 11 12 13 14 15 16 17 18 19 20

1 0.16 0.1529 0.1467 0.1412 0.1362 0.1317 0.1276 0.1239 0.1205 0.1173

2 0.2491 0.2376 0.2275 0.2186 0.2106 0.2034 0.1969 0.191 0.1855 0.1805

3 0.322 0.3065 0.293 0.2811 0.2704 0.2609 0.2523 0.2444 0.2373 0.2307

4 0.3881 0.3686 0.3516 0.3367 0.3236 0.3118 0.3011 0.2915 0.2827 0.2746

5 0.4512 0.4273 0.4067 0.3888 0.373 0.3589 0.3463 0.3349 0.3245 0.315

6 0.5133 0.4846 0.4601 0.439 0.4204 0.404 0.3893 0.376 0.364 0.353

7 0.5765 0.5421 0.5131 0.4884 0.4668 0.4478 0.4309 0.4158 0.4021 0.3896

8 0.6427 0.6011 0.5669 0.5379 0.513 0.4912 0.4719 0.4547 0.4392 0.4252

9 0.7148 0.6635 0.6225 0.5886 0.5597 0.5348 0.5129 0.4934 0.476 0.4603

10 0.7992 0.7319 0.6817 0.6414 0.6078 0.5791 0.5542 0.5323 0.5128 0.4953

11 0.9186 0.8126 0.747 0.6978 0.6581 0.625 0.5966 0.5718 0.5499 0.5303

12 0.0 0.9282 0.8245 0.7604 0.7122 0.6732 0.6405 0.6123 0.5877 0.5659

13 0.0 0.0 0.9369 0.8352 0.7725 0.7252 0.6869 0.6546 0.6267 0.6023

14 0.0 0.0 0.0 0.9447 0.8448 0.7834 0.737 0.6993 0.6674 0.6399

15 0.0 0.0 0.0 0.0 0.9518 0.8536 0.7933 0.7478 0.7107 0.6792

16 0.0 0.0 0.0 0.0 0.0 0.9584 0.8617 0.8025 0.7577 0.7211

17 0.0 0.0 0.0 0.0 0.0 0.0 0.9644 0.8691 0.8108 0.7668

18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.97 0.8759 0.8186

19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9753 0.8823

20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9802

60

order\samples 21 22 23 24 25 26 27 28 29 30

1 0.1144 0.1117 0.1091 0.1068 0.1045 0.1024 0.1005 0.0986 0.0968 0.0951

2 0.1759 0.1716 0.1676 0.1638 0.1603 0.157 0.1539 0.151 0.1482 0.1456

3 0.2246 0.219 0.2137 0.2088 0.2042 0.1999 0.1959 0.1921 0.1885 0.185

4 0.2672 0.2603 0.2539 0.248 0.2424 0.2372 0.2323 0.2277 0.2233 0.2192

5 0.3062 0.2981 0.2907 0.2837 0.2772 0.2711 0.2654 0.26 0.2549 0.2501

6 0.343 0.3337 0.3251 0.3171 0.3097 0.3028 0.2962 0.2901 0.2844 0.2789

7 0.3782 0.3677 0.358 0.349 0.3407 0.3329 0.3255 0.3187 0.3122 0.3061

8 0.4124 0.4007 0.3898 0.3798 0.3705 0.3618 0.3537 0.3461 0.339 0.3322

9 0.446 0.433 0.4209 0.4099 0.3996 0.39 0.3811 0.3727 0.3649 0.3575

10 0.4794 0.4649 0.4516 0.4394 0.4281 0.4176 0.4079 0.3987 0.3902 0.3821

11 0.5127 0.4967 0.4821 0.4687 0.4564 0.4449 0.4343 0.4243 0.415 0.4063

12 0.5463 0.5287 0.5127 0.498 0.4845 0.472 0.4604 0.4496 0.4395 0.4301

13 0.5805 0.5611 0.5434 0.5273 0.5126 0.499 0.4865 0.4748 0.4639 0.4537

14 0.6156 0.594 0.5746 0.557 0.5409 0.5262 0.5126 0.4999 0.4882 0.4772

15 0.652 0.6279 0.6065 0.5872 0.5696 0.5536 0.5388 0.5252 0.5125 0.5007

16 0.6901 0.6632 0.6394 0.6181 0.5989 0.5814 0.5654 0.5507 0.537 0.5243

17 0.7308 0.7002 0.6736 0.65 0.6289 0.6098 0.5924 0.5765 0.5617 0.5481

18 0.7753 0.7398 0.7096 0.6833 0.66 0.639 0.6201 0.6027 0.5868 0.5722

19 0.8258 0.7832 0.7482 0.7184 0.6924 0.6693 0.6485 0.6297 0.6125 0.5966

20 0.8882 0.8326 0.7905 0.7561 0.7266 0.7009 0.678 0.6574 0.6387 0.6216

21 0.9848 0.8938 0.8389 0.7974 0.7634 0.7344 0.7089 0.6862 0.6658 0.6473

22 0.0 0.9891 0.899 0.8448 0.8039 0.7703 0.7416 0.7164 0.694 0.6738

23 0.0 0.0 0.9932 0.904 0.8504 0.81 0.7769 0.7485 0.7236 0.7014

24 0.0 0.0 0.0 0.9971 0.9086 0.8556 0.8158 0.783 0.755 0.7303

25 0.0 0.0 0.0 0.0 1.0008 0.913 0.8606 0.8212 0.7889 0.7611

26 0.0 0.0 0.0 0.0 0.0 1.0043 0.9172 0.8653 0.8264 0.7944

27 0.0 0.0 0.0 0.0 0.0 0.0 1.0076 0.9212 0.8698 0.8313

28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0108 0.925 0.8741

29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0139 0.9287

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0168

We can verify the equation the same way as before, by throwing some dice (drawing uniform
numbers) and measuring their distance from each other. Then average the ordered results from n
draws as described in the Algorithm 10. In the algorithm, two arrays of n points are created, then
the n distances between the points are calculated term-wise, and the distance is then sorted and
averaged.

61

Algorithm 10 order statistic veri�cation
n #number of draws

N #number of samples for each draw

d_vec=zeros(n) # vector of draws

for _ in 1:N

Pv1=rand(n,2) # array of n uniform points

Pv2=rand(n,2) # array of n uniform points

dists=zeros(n) # initialization of vector of distances

#fill distance vector

for i in 1:n

dists[i]=distance(Pv1[i,:],Pv2[i,:])

end

d_vec+=sort(dists) # add the sorted distance vector term wise to d_vec

end

return d_vec/N # divide termwise by N

Figure 34: (a) Simulated mean distance with number of draws on the x-axis and order on the
y-axis. (b) Predicted expected distance with E[d]i:n. (c) Relative di�erence between (a) and (b).

62

As seen in �gure 34 the di�erence between simulated values by 10 and predicted values is
practically nonexistent.

4.4.1 Single task

To allow agents to spread tasks are given a respawn timer trt,if tasks respawn instantly, the agents
will move to the next task as a group. While we can model the artifact behavior of group formations,
it is not of interest just yet. As in most practical applications of search and task allocation systems,
a task is unlikely to be found right after another task is solved.

The average time between tasks solutions needs to be found to measure the performance of
task allocation prediction. While simulating, the cumulative number of tasks solved is recorded
per iteration, creating a vector V . De�ne the sequence

ji = min{j|j > ji−1, Vji−1
− Vj ̸= 0} with j0 = 1

then knowing the total number of tasks solved VN the sum

1
VN

∑VN

i=1 dt ∗ ji − trt

is the average time between solved tasks.

rd =
√
2 so the agents see the task from anywhere within the search space, this means all the

agents required to solve the task need to travel to it. With low detection radius one agent would
already be at the task when it is found. Instead each agent needs to travel some distance d− dm
where dm is the maximum distance at which a task can be solved. To predict the time taken to
solve a task we use

H =
E[rd]i:n − (dm − dt)

dt ∗ v
(21)

along with

B =
1

VN

VN∑
i=1

dt ∗ ji − trt (22)

it seems that subtracting dt from dm increased predictor performance, it is not obvious why it
would be better. The di�erence between

H = E[rd]i:n−dm
v

and

H = E[rd]i:n−(dm−dt)
v

,

equals dt
v
so as simulation time resolution increases the di�erence decreases.

63

Figure 35: (a) simulated time to solve tasks with number of agents on x-axis and task requirement
on y-axis. (b) Predicted time to solve task with H. (c) Di�erence between (a) and (b). (d) relative
di�erence between (a) and (b)

In Figure 35the average error is ≈0.049. There are some peak lows at -12.5% for low task
requirements. It might be that the distribution does not �t perfectly because when a task is
found, it can be viewed as a �xed point. Then one needs to �nd the distribution of distance from
that single point to tr other points. Our distribution still assumes that task location is uniform,
and arises from the distance between 2tr points. Interestingly if one considers

H = E[rd]i:n−c
v

and optimizes for c to minimizes error one �nds that when c = 0.031 the average error is ≈ 0.03.

64

Figure 36: Relative di�erence between prediction and performance with optimized o�set

As seen in 36 the peak errors are also reduced, except for a quite high error with 12 agents and
tr = 1.

Other task allocation con�gurations, such as multi-task, are hard to separate from the search
process. Therefore, they will be modeled in combined search and task allocation.

4.5 Modeling search & task allocation

4.5.1 Single task multi agent

trt = 20 to let agents spread after solving a task.

65

Figure 37: System performance for di�erent number of agents required to solve the task, since
task requirement=1,agents required=tr. the Number of agents is given on the y-axis and detection
radius on x-axis.

To predict this behavior we need to combine search and task allocation. We use

H6(rd, n) = 1− (1−Gd(r
∗
d))

n

with r∗d corrected for self pathing overlap as in single task multi agent search. From task allocation
we have E[d]i:n, in this case we assume that an agent is already on the task so the expected distance
from the task to the agent furthest away is

E[d]tr−1:n−1

66

As in To use E[d]i:n for prediction we �rst need to consider what

1−
(
1−G

(r
l

))nt

represents and convert it in a way so that we can combine it with the expected distance.

H =
Ts

tdTs + trt + ts

Where
1

1−
(
1−G

(
r
l

))nt

is the expected number of iterations before a task is found, so when it is solved instantly it would
represent the time required to solve a task on average.

67

Figure 38: Relative di�erence between predicted and simulated value for a di�erent number of
agents required to solve the task.

We can create a better model by further studying the process that is occurring in the system.

68

Figure 39: Illustration of system processes, a task is found at time 0. The time it takes to
solve a task is at least trt - the task respawn time. Ts - the sampling period can be viewed as
the fundamental time interval of our system. Since each task starts with a sampling, system
performance equals the expected number of sampling periods per task.

After trt the time until the next sample is

ti = ceil(
trt
Ts

)Ts − trt

then there is a probability equal to P (t ≤ ti) that the task can be solved at time ti + trt after the
previous task was found.

With the equation

t =
l ∗ d− dm
v ∗ dt

where d follows the cumulative order statistic Gi:n(d), it follows that

P (t ≤ ti) = P (t ≤ l ∗ d− dm
v ∗ dt

) = P (d ≤ t ∗ v ∗ dt
l

− dm) = Gi:n(
ti ∗ v ∗ dt

l
− dm)

Where we further de�ne
ti = (ceil(

trt
Ts

) + i)Ts − trt

Combined with the probability
1− (1−Gd(r

∗
d))

n

69

that a task is found, there is a probability

Gi:n(
ti ∗ v ∗ dt

l
− dm)(1− (1−Gd(r

∗
d))

n)

that a task takes

Ts(ceil(
trt
Ts

) + i)

time to solve. This information can be combined into a geometric distribution to �nd the
expected time it takes to solve a task.

E[t] =
m∑
i=0

(ti + trt)Gt∗r :n
∗(
ti ∗ v ∗ dt

l
− dm)(1− (1−Gd(r

∗
d))

n)

i−1∏
j=1

(
1−Gt∗r :n

∗(
tj ∗ v ∗ dt

l
− dm)(1− (1−Gd(r

∗
d))

n)

)
(23)

Where
t∗r = tr − 1

and n∗ = n − 1. E[t] converges quickly in most cases but when rd is very small it can be quite
costly to compute. The maximum expected time to solve a task is

trt + ts + Ts ∗ td

Where
td =

1

(1−Gd(r∗d))
n

the expected number of samples for detection. When

td > ts + trt

most the time is spent on detection and

t = Tstd + ts + trt

is a good predictor of the time spent on each task. Additionally when rd is very large there is a
probability that the expected traveling time as predicted by

Gtr−1:n−1(d)

is actually smaller than the time it takes the detecting agent itself to travel to the task.

70

Figure 40: Agent detection boundary in green de�ned by rd and a task in blue within the detection
radius at a distance d from the agent.

The distance between a point and the center of a circle follow a di�erent distribution than g(d),
we can easily simulated this distribution with rejection sampling.

Algorithm 11 Circle distance distribution
N #number of repetitions

res # resolution

d_vec=zeros(res) #intialization of distribution vector

c=0 #counter

for _ in 1:N

d =
√

(2(U [0, 1]− 0.5))2 + (2(U [0, 1]− 0.5))2

if d ≤ 1

ind=floor(d*res)+1 # index of distance d

d_vec[ind]+=1 # increment d_vec

c+=1 #increment counter

end

end

d_vec=d_vec/c #normalize d_vec

D_vec=[sum(d_vec[1:i]) for i in 1:res] #cumulative distribution

Given the cumulative distribution Dc(d) from Algorithm 11, as the detecting agent and the
agents must arrive at the task before it can be solved, this cumulative probability can be multiplied
into geometric distribution. To simplify the algebraic clutter, the following de�nition is applied:

71

P = (1− (1−Gd(r
∗
d))

n)

and

Gt(i) = Gt∗r :n
∗(
ti ∗ v ∗ dt

l
− dm)

Then we can multiply by Dc(d) with d = tiv
rl

E[t] =
m∑
i=0

(ti + trt)Gt(i)PDc(
tiv

rl
)
i−1∏
j=1

(
1−Gt(j)PDc(

tiv

rl
)

)
(24)

Finally we have that

H =

{
Ts

trt+ts+Ts∗td
Ts

E[t]

; td < trt + ts

; otherwise
(25)

72

Figure 41: Relative di�erence between predicted and simulated performance for di�erent number
of agents required with linear error in the titles.

As seen in Figure 41 the average error is greatly reduced. There are some high error peaks,
especially with high detection radii. For low and maximum radii, the predictive performance is
relatively good. But as the equation is complicated, a simpler approximation is

H =
1

td + ceil(trt+ts
Ts

)− 1
(26)

.

73

Figure 42:

4.5.2 Multi task Multi agent

trt = 0

74

Figure 43: Simulated performance of multi agent multi task

The simple model H = 1

td+ceil(
trt+ts

Ts
)−1

can be augmented with mt = min(nt,
tcn
tr
) to make a

quite good predictor for its simplicity H = mt

td+ceil(ts
Ts

)−1
.

75

Figure 44:

4.5.3 Generalization by proportional DTMC models

In this section, a DTMC model is built up gradually and compared to the simulator. DTMC
models allow for the combining observed behaviors of the MASTA system. One can simplify these
models by not attempting to build a direct model but one that is proportional. Given the model
output as a matrix M ∈ Rnxm and simulator output as a matrix D ∈ Rnxm. De�ne the index ind
then

∀i,j,
M [j, i]ϵj,i

M [ind, i]ϵind,i
=

D[j, i]

D[ind, i]

76

Where ϵ is the proportional error s.t.

∀i,j,M [j, i]ϵj,i = D[j, i]

Now if

∀i,j,
M [j, i]

M [ind, i]
≈ D[j, i]

D[ind, i]

them ∀i,j,
ϵj,i

ϵind,i
≈ 1 which implies the proportional error along j is constant for all i. Then

∀i,jM [i, j]ϵi = D[i, j]

So M is a proportional model for the system along the variable j. This can be repeated with
M [j, ind] to show that M is a proportional model along the variable i. If the proportional error is
constant for all j and i, then M is a proportional model to D.

The simplest search and task allocation model considers the probability of �nding a task and
some time to solve it. Assuming tasks do not spawn within the detection radii of agents, they can
only be found by the agent's newly discovered area each iteration. Discovered area

Ad = πr2d − r2dacos

(
v ∗ dt
2rd

)
+

dt ∗ v
2

√
4r2d − (dt ∗ v)2

Then we �nd the radius of a circle with area Ad so

r∗d =

√
Ad

π

Now G(r∗d) can be used to calculate the probability of a task being in the discovered area. Further
de�ne the detection probability as

Pd = 1− (1−G(r∗d))
n∗nt

since DTMC's cant take values greater than 1. If a task is found at the edge of the detection radius
then the traveling time tt to that task is

tt =
rd − dms

dt ∗ v
Additionally the wait time to get help solving a task is

ts =
E[d]tr−1:n−1 − dms

v ∗ dt
Then de�ne

t = max(ts, tt, 1)

We can now construct the �rst DTMC

M1 =

 1− P P 0
0 1− 1

t
1
t

1 0 0

So the �rst state is search, the second is solving task, and the third is simplifying evaluation. The
proportional time spent in state 3 equals the proportional amount of time a task is being solved. So

77

the steady state proportions π can be calculated and π3 is then the predicted system performance.
The proportional error of M1 is calculated as

M [i, j]

M [ind, j]

D[ind, j]

D[i, j]

and can be seen in �gure (here)

Figure 45: DTMC model performance normalized by rd max

78

Figure 46: DTMC model performance normalized by minimum number of agents

Since tasks spawn uniformly in the search space, they can presumably spawn within an agent's
detection radius. So after a task is solved, the probability that it will spawn within some agents
detection radius is

(1− (1−Gd(rd))
n)

assuming the agents are uniformly spread. But in this data set, the tasks spawn instantaneously;
therefore, they can spawn within the detection radius of agents that just solved tasks.

79

Figure 47: agents in green with associated detection radius in black. Solved task in red and newly
spawned task in blue.

So there is three possibilities for the newly spawned task, either it spawns on a group of agents
that just solved a task, on a singular agent that is search for a task or not within any agents
detection radius. But to abuse this knowledge we need some estimate for the number of groups
and free agents. Using

nct =
W0(−nP nt−nln(P))− nln(P)

ln(P)

as an estimate for the number of tasks continuously being worked on we �nd that

nf = n− nct ∗ tr

is the number of free agents.
ntf = nt − nct

Is the number of free tasks, the number of points including groups and free agents is

np = n+ nct(1− tr)

The probability that an agent is detected instantly after it is spawned can now be estimated
by

Pi = (1− (1−Gd(rd))
(ntf+1)(nf+1)

If a group detects the task after it spawns we can estimate the time it takes to solve it by

80

ti =
minimum(l ∗ E[d]1:c, 0.672 ∗ rd)− dm

dt ∗ v
where

c = round(
nct

t
+ ntf + 1)

0.672rd is the expected distance to a uniform point in a circle from the center of that circle. As
the detection radius gets large this distance fails as good estimator because the tasks are bound by
the search space not the detection radius. So smallest expected distance of c draws serves mostly
very large agents, which have a high probability of already seeing all the free tasks in addition
to the one spawning. There is also a probability that a free agent detects the spawning task and
therefor has to wait for other agents to come and help it. In this scenario the solution time is
di�erent, since one needs to account for the probability that a group is called a simple algorithm
3 computes the expected distance. This algorithm could probably be reduced to an algebraic
expression.

Algorithm 12 Expected distance with clusters
n number of agents

nar number of agents required to solve task

N number of iterations

l side length of search area

np = n− nar ∗ nct + nct

n∗
ar = min([np, nar])

pcac =
nct

np−1

E_d=0 expected distance

for _ in 1:N

current_pos=rand(2,1)*l

agents_pos=rand(2,np-1)*l

dists=d(current_pos,agents_pos)

dists=sort(dists)

E_d+=(1− pcac) ∗ dists[nar − 1] + pcac
1

n∗
ar−2

∑n∗
ar−2

i=1 dists[i]

end

return E_d

N

Then we calculate tiw as tiw = l∗Ed−dm
dt∗v . Lastly all timers are divided by nct to scale them by

how many tasks the system works with at once. We can then construct the new model M2.

M2 =

1− P P 0 0 0
0 1− 1

max(tt,tw,1)
1

max(tt,tw,1)
0 0

1− Pi 0 0 nct

np
Pi

np−nct

np
Pi

0 0 1
max(ti,1)

1− 1
max(ti,1)

0

0 0 1
max(tiw,1)

0 1− 1
max(tiw,1)

State 1 represents �normal� search where no new tasks are spawning and agents detect the

tasks by new area discovered each step. State 2 has the time that a task is solved assuming all

81

agents are uniformly distributed. State 3, also the measuring state, simply transport us with a
either state 1 if there is no instantaneous detection. State 4 if a group detects a task and state 5
if a free agent detects a task.

Figure 48: DTMC model 2 performance normalized by minimum number of agents

82

Figure 49: DTMC model 2 performance normalized by rd max

While the results aren't perfect they have improved. The average error stays mostly under 10 %,
DTMC models like this can be built upon further to increase performance. DTMC models allows
for combining di�erent behaviors that occur in di�erent parts of parameter space. If detection
capability is low then Pi ≈ 0 then

M2 =

1− P P 0 0 0
0 1− 1

max(tt,tw,1)
1

max(tt,tw,1)
0 0

1 0 0 0 0
0 0 1

max(ti,1)
1− 1

max(ti,1)
0

0 0 1
max(tiw,1)

0 1− 1
max(tiw,1)

83

And so a class is created of states 1,2 and 3. On the other hand if Pi ≈ 1

M2 =

1− P P 0 0 0
0 1− 1

max(tt,tw,1)
1

max(tt,tw,1)
0 0

0 0 0 nct

np

np−nct

np

0 0 1
max(ti,1)

1− 1
max(ti,1)

0

0 0 1
max(tiw,1)

0 1− 1
max(tiw,1)

creating a class of states 3,4 and 5. So after constructing a DTMC model one can study the

di�erent classes that arise in di�erent parameter space and evaluate their e�ect on performance.

5 Discussion

Through this thesis, it has been shown that you de�nitely can model MASTA systems mathe-
matically. Some parameter domains are more challenging than others. Simple models can predict
performance accurately when the search is the dominating process. Task allocation with uniform
agents can also be modeled relatively easily. Modeling challenges occur when there is a breakdown
of spatial uniformity. Many di�erent agent behaviors can be recognized in certain regions of param-
eter space. For example, observed group formations, where the groups detect tasks after solving
one, the exchange of agents between groups and agents waiting for other tasks to be solved. These
behaviors a�ect task allocation and search, and while possible to model, they pose a challenge.
DTMC is a good way to tackle these behaviors since the properties of di�erent behaviors can be
strung together.

The models provide insight into MASTA systems in terms of performance. Where the models
do not �t well, it indicates that more complicated behavior is occurring. This might be artifact
behavior indicating behavior that can be optimized or something substandard about the simula-
tor. So the models allow a two-pronged attack, improving the simulator by pointing out artifact
behavior and optimizing unforeseen but necessary behavior. In terms of computational perfor-
mance, it depends on the parameter space. The models can reduce computational requirements
by many orders of magnitude for low detection capability. In some parts of the parameter space
that requires more complicated models, such as the sum presented in 4.5.1, there probably is not
much to gain. But systems with low detection capability are computationally expensive because
they require many steps and runs for the mean to stabilize. So one can still reduce computation
time greatly by using analytical models where they �t well and simulating where they do not.

While the research questions are answered, they are broad. The presented model might not
provide insight or reduce computational demand for parts of parameter space that have not been
addressed. There are many choices to make when implementing a simulator; agent activation,
timed tasks, and varying speeds. In addition, when designing a real system, one must consider the
physical aspects; in this simulator, no physics is implemented. Much more work must be done to
make models like these reliable and easily applicable to any MASTA system, but we can say it is
most likely possible.

6 Conclusion and future work

In this thesis, a MASTA model has been implemented in software, allowing for the simulation of
single-task robots with instantaneous assignments. A number of multi-agent search con�gurations

84

have been simulated and modeled. An approach to modeling task allocation was developed, com-
bined with previous search models to model combined search and task allocation. Many models
have been presented, motivated by observed system behavior and deviation from predictions. Fi-
nally, a general approach with DTMCs was presented as a possible approach to modeling over
large parts of parameter space.

6.1 Future work

Future work could focus on modeling more communication mechanisms, such as call-outs. The
model constructed in this thesis is not directly applicable to other multi-agent systems that have
di�erent operating principles.

The vast number of possible choices when implementing MASTA M&S creates challenges for
general models. One approach would be to build a library of di�erent models for di�erent prefer-
ences. For example, other real systems might move in various patterns, such as MUGs, causing
di�erent losses. Having di�erent models like these collected allows engineers and scientists to
quickly construct the model that �ts the most to their system.

By developing other modeling approaches, one can see many connections to existing physical
models. One example would be source and sink models in �uid dynamics, where tasks that need
solving act as sinks and solved tasks as sources. Stochastic partial di�erential equations should
work in the context of modeling MASTA. Many constants and symmetries in MASTA systems can
be exploited for this approach. Partial di�erential equations can also allow for complex behavior
without explicitly de�ning it. Further, the performance of MASTA is, in essence, a counting
problem, therefor renewal theory should apply; as with MASTA, tasks are solved at intervals
that follow some probability distribution, equivalent to holding times in renewal theory. Further
�rst-hitting-time models might be used to understand the distribution breakdown in MASTA. For
example, all agents in an area are called to a task - a �rst-hitting-time model might be able to
predict when an agent will arrive in this now-empty area.

Other frameworks, such as those for parallel computing, might be applied to MASTA systems.
Surprisingly Amhdals law can be �tted almost precisely to the distance distribution of uniform
points. MASTA systems often have multiple processes going in parallel, with multiple agents
searching and solving tasks. Interestingly, when analyzing the movement of individual agents,
one sees that the largest components of the Fourier transform of their position are very similar.
Given some further insight, it might be possible to create a method that automatically models
the di�erence between an arbitrary MASTA system and a simple uniform one. If such a method
exists, it would allow for models to be adopted automatically to di�erent MASTA systems.

Further, one might be able to develop controllers for MASTA given a model. For example,
say agents are out searching for tasks in some area. Then, knowing the time it takes to solve a
task, one can determine the density of tasks. If the density is low, it is possible to move agents to
another area. On the other hand, if tasks take too long to solve, agents can be told to stick closer
together.

References

[1] Ontology, epistemology, and teleology for modeling and simulation : Philosophical foundations
for intelligent ms applications, 2013.

85

[2] Sameera Abar, Georgios K. Theodoropoulos, Pierre Lemarinier, and Gregory M.P. OâHare.
Agent based modelling and simulation tools: A review of the state-of-art software. Computer
science review, 24:13�33, 2017.

[3] Agents.jl. Abm framework comparison, 2022. [Online; accessed 26-October-2022].

[4] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner HÃ¿hnle, Peter H Schmitt, and
Mattias Ulbrich. Deductive Software Veri�cation � the KeY Book: From Theory to Practice,
volume 10001 of Lecture Notes in Computer Science. Springer International Publishing AG,
Cham, 2016.

[5] Carlos A Alfaro, Sergio L Perez, Carlos E Valencia, and Marcos C Vargas. The equivalence
between two classic algorithms for the assignment problem. 2018.

[6] Barry C Arnold. A �rst course in order statistics, volume 54 of Classics in applied mathematics
;. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6,
Philadelphia, PA 19104), Philadelphia, Pa., 2008.

[7] Osman Balci. Validation, veri�cation, and testing techniques throughout the life cycle of a
simulation study. Annals of operations research, 53(1):121�173, 1994.

[8] Je� Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach
to numerical computing. SIAM Review, 59(1):65�98, 2017.

[9] Soon-Jo Chung, Aditya Avinash Paranjape, Philip Dames, Shaojie Shen, and Vijay Kumar.
A Survey on Aerial Swarm Robotics. IEEE Transactions on Robotics, 34(4):837�855, Aug
2018.

[10] George Datseris, Jonas Isensee, Sebastian Pech, and TamÃ½s GÃ½l. Drwatson: the perfect
sidekick for your scienti�c inquiries. Journal of Open Source Software, 5(54):2673, 2020.

[11] George Datseris, Ali R. Vahdati, and Timothy C. DuBois. Agents.jl: a performant and
feature-full agent-based modeling software of minimal code complexity. SIMULATION,
0(0):003754972110688, January 2022.

[12] Gregory Dudek, MichaelR.M Jenkin, Evangelos Milios, and David Wilkes. A taxonomy for
multi-agent robotics. Autonomous robots, 3(4):375, 1996.

[13] Erin Marie Fischell, Anne R. Kroo, and Brendan W. O'Neill. Single-Hydrophone Low-Cost
Underwater Vehicle Swarming. IEEE Robotics and Automation Letters, 5(2):354�361, Dec
2019.

[14] Jose Manuel Galan, Luis R Izquierdo, Segismundo S Izquierdo, Jose Ignacio Santos, Ri-
cardo del Olmo, Adolfo Lopez-Paredes, and Bruce Edmonds. Errors and artefacts in agent-
based modelling. Journal of arti�cial societies and social simulation, 12(1), 2008.

[15] Brian P Gerkey and Maja J MatariÄ. A formal analysis and taxonomy of task allocation in
multi-robot systems. The International journal of robotics research, 23(9):939�954, 2004.

[16] Jose Guerrero and Gabriel Oliver. Multi-Robot Task Allocation Strategies Using Auction-Like
Mechanisms. page 12.

86

[17] Ã GÃ×rcan, O Dikenelli, and C Bernon. A generic testing framework for agent-based simu-
lation models. Journal of simulation : JOS, 7(3):183�201, 2013.

[18] Matthew A. Joordens and Mo Jamshidi. Consensus Control for a System of Underwater
Swarm Robots. IEEE Systems Journal, 4(1):65�73, Feb 2010.

[19] Krishnanand N. Kaipa and Debasish Ghose. Glowworm Swarm Optimization. Springer Inter-
national Publishing, Cham, Switzerland, 2017.

[20] Alaa Khamis, Ahmed Hussein, and Ahmed Elmogy. Multi-robot Task Allocation: A Review of
the State-of-the-Art. In Cooperative Robots and Sensor Networks 2015, pages 31�51. Springer,
Cham, Switzerland, May 2015.

[21] G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine Dias. A comprehensive taxonomy
for multi-robot task allocation. International Journal of Robotics Research, 32(12):1495�1512,
Oct 2013.

[22] Janusz Laski and William Stanley. Software Veri�cation and Analysis. Springer-Verlag, Lon-
don, England, UK, 2009.

[23] BenoÃ®t Legat, Robin Deits, Marcelo Forets, Oliver Evans, Gustavo Goretkin, Daisuke
Oyama, Joey Huchette, Twan Koolen, Guillaume Dalle, chachaleo, bzinberg, Chase Coleman,
Christian Schilling, Elliot Saba, Henrique Ferrolho, Hugo Trentesaux, Julia TagBot, Robert
Schwarz, and Guillaume Berger. Juliapolyhedra/polyhedra.jl: v0.7.6, February 2023.

[24] Naomi E. Leonard, Derek A. Paley, Russ E. Davis, David M. Fratantoni, Francois Lekien,
and Fumin Zhang. Coordinated control of an underwater glider �eet in an adaptive ocean
sampling �eld experiment in Monterey Bay. Journal of Field Robotics, 27(6):718�740, Nov
2010.

[25] Qi Lu, G. Matthew Fricke, John C. Ericksen, and Melanie E. Moses. Swarm Foraging Review:
Closing the Gap Between Proof and Practice. Current Robotics Reports, 1(4):215�225, Dec
2020.

[26] Mathias Minos-Stensrud. Exploring information-sharing in multi-robot systems. Master's
thesis, UNIVERSITY OF OSLO, 2020.

[27] Ingunn Nilssen, Ãyvind ÃdegÃ¥rd, Asgeir J. SÃºrensen, Geir Johnsen, Mark A. Moline,
and JÃºrgen Berge. Integrated environmental mapping and monitoring, a methodological
approach to optimise knowledge gathering and sampling strategy. Marine Pollution Bulletin,
96(1):374�383, 2015.

[28] Ernesto Nunes, Marie Manner, Hakim Mitiche, and Maria Gini. A taxonomy for task allo-
cation problems with temporal and ordering constraints. Robotics and Autonomous Systems,
90:55�70, Apr 2017.

[29] William L Oberkampf. Veri�cation and validation in scienti�c computing, 2010.

[30] Shyam Parekh. Continuous time markov chains, fall 2020. "Lecture notes".

[31] Johan Philip. The probability distribution of the distance between two random. In Points in
a Box., TRITA MAT 07 MA 10, ISSN, pages 1401�2278, 2007.

87

[32] Jorge Pena Queralta, Jussi Taipalmaa, Bilge Can Pullinen, Victor Kathan Sarker, Tuan
Nguyen Gia, Hannu Tenhunen, Moncef Gabbouj, Jenni Raitoharju, and Tomi Westerlund.
Collaborative multi-robot search and rescue: Planning, coordination, perception, and active
vision. IEEE Access, 8:191617�191643, 2020.

[33] Christopher Rackauckas and Qing Nie. Di�erentialequations.jl â a performant and feature-rich
ecosystem for solving di�erential equations in julia. The Journal of Open Research Software,
5(1), 2017. Exported from https://app.dimensions.ai on 2019/05/05.

[34] Brooks Reed and Franz Hover. Oceanographic pursuit: Networked control of multiple vehicles
tracking dynamic ocean features. Methods in Oceanography, 10:21�43, Sep 2014.

[35] Sheldon M. Ross. Introduction to Probability Models. Elsevier, 11 edition, 2014.

[36] Kunal Shah, Grant Ballard, Annie Schmidt, and Mac Schwager. Multidrone aerial surveys of
penguin colonies in Antarctica. Science Robotics, 5(47):eabc3000, Oct 2020.

[37] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete samples).
Biometrika, 52(3/4):591, 1965.

[38] Onn Shehory and Sarit Kraus. Methods for task allocation via agent coalition formation.
Arti�cial intelligence, 101(1):165�200, 1998.

[39] Hongwei Tang, Anping Lin, Wei Sun, and Shuqi Shi. An Improved SOM-Based Method for
Multi-Robot Task Assignment and Cooperative Search in Unknown Dynamic Environments.
Energies, 13(12):3296, Jun 2020.

[40] The Sage Developers. SageMath, the Sage Mathematics Software System (Version x.y.z),
YYYY. https://www.sagemath.org.

[41] Changyun Wei, Koen V. Hindriks, and Catholijn M. Jonker. Dynamic task allocation for
multi-robot search and retrieval tasks. Applied Intelligence, 45(2):383�401, Sep 2016.

[42] Wikipedia contributors. Markov chain � Wikipedia, the free encyclopedia, 2022. [Online;
accessed 10-January-2022].

[43] Guang-Zhong Yang, Jim Bellingham, Pierre E. Dupont, Peer Fischer, Luciano Floridi, Robert
Full, Neil Jacobstein, Vijay Kumar, Marcia McNutt, Robert Merri�eld, Bradley J. Nelson,
Brian Scassellati, Mariarosaria Taddeo, Russell Taylor, Manuela Veloso, Zhong Lin Wang, and
Robert Wood. The grand challenges of Science Robotics. Science Robotics, 3(14):eaar7650,
Jan 2018.

[44] Yanwu Zhang, Michael A. Godin, James G. Bellingham, and John P. Ryan. Using an Au-
tonomous Underwater Vehicle to Track a Coastal Upwelling Front. IEEE Journal of Oceanic
Engineering, 37(3):338�347, Jun 2012.

[45] Haitao Zhao, Hai Liu, Yiu-Wing Leung, and Xiaowen Chu. Self-Adaptive Collective Motion of
Swarm Robots. IEEE Transactions on Automation Science and Engineering, 15(4):1533�1545,
Jun 2018.

[46] Robert Michael Zlot. An Auction-Based Approach to Complex Task Allocation for Multirobot
Teams. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, 9 2006.

88

	Introduction
	Aim of thesis
	Outline

	Background
	Multi robot search and task allocation
	Markov chains
	Scientific Verification and Validation

	Method and Implementation
	Model description
	Software

	Simulation experiments, results and analysis
	Verification
	Parameter choices & initial conditions
	Modeling search
	single task single agent
	Multi task one agent
	Single task multi agent
	Multi task multi agent

	Modeling task allocation
	Single task

	Modeling search & task allocation
	Single task multi agent
	Multi task Multi agent
	Generalization by proportional DTMC models

	Discussion
	Conclusion and future work
	Future work

	References

