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Abstract

Deep brain stimulation (DBS) is a technique used in treatment of various brain dis-
orders, where electrodes releasing constant stimuli are implanted within the brain. As
a way to study DBS, we explored the potential of machine learning in predicting action
potentials within axons in response to stimuli. Using the NEURON simulator and the
LFPy 2.0 Python module, we modeled straight and curved axon structures to simulate
their response to different stimuli with varied axon and stimulus parameters. Through
these simulations, we generated extensive datasets where the occurrence and absence
of an action potential defined a binary outcome. Subsequently, the datasets were used
to train a feedforward neural network (FNN). Based on parameters, such as minimum
distance between the axon and electrode, stimulus amplitude, stimulus duration, and
spatial coordinates of axon endpoints, our machine learning model was able to predict
the occurrence of action potentials in response to stimuli with great accuracy. However,
the predictive accuracy of our FNN decreased when including additional spatial coordin-
ates along the axon as features.
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Chapter 1

Introduction

In 1987, Alim Louis Benabid discovered that continuous electrical stimulation via im-
planted electrodes in specific areas of the brain could alleviate symptoms of movement
disorders, such as Parkinson’s disease (PD) [4]. This revolutionary approach paved the
way for the development of deep brain stimulation (DBS), which has since become a
highly effective treatment for multiple neurological disorders [27, 29]. Moreover, DBS
continues to be explored as a promising treatment option for nearly any brain disorder [5].

Despite extensive research, the therapeutic mechanisms of deep brain stimulation are yet
to be understood [2]. At its core, DBS is thought to operate by evoking action potentials
in axons, which in turn affects the flow of neuronal information. However, the precise
timing and location of these action potentials depend on the characteristics of both the
axon and the stimulation parameters. Typically, any change in the DBS parameters, or
the location and orientation of the DBS electrode, can alter the therapeutic outcomes
[14].

To further improve DBS as a treatment, it is essential to better our understanding of
these therapeutic mechanisms. Unfortunately, research progress can be slow due to
ethical reasons that limit access to necessary data [2, 13, 31]. However, advances in
technology are opening up new possibilities for computational research on DBS, which
can help overcome some of these challenges.

On a microscopic scale, the biophysics involved in DBS are fundamentally simple and
can be studied through simulations [28]. To perform such simulations, neurons must be
modeled with detailed biophysical properties that capture both their morphological and
electrophysiological features, as both factors are critical for determining the neuronal
response to DBS. This can be done with simulation environments such as the NEURON
simulator and the LFPy 2.0 Python module [15].

1.1 Research Objectives

Within the field of artificial intelligence (AI), machine learning (ML) has become a power-
ful tool in identifying patterns and classifying information beyond human capabilities.
ML allows computers to learn from extensive datasets containing various parameters,
also known as features. Through training, computers use this data to create, enhance
and update models with the purpose of predicting outcomes based on the relationship
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Chapter 1. Introduction

between these features.

In this thesis, we aim to simulate deep brain stimulation (DBS) using the NEURON
simulator and the LFPy 2.0 Python module. Our goal is then to generate extensive
datasets by varying stimulation parameters, and record the occurrence of action poten-
tials in axons. Utilizing these datasets, our primary objective is to explore the potential
of artificial neural networks1 in predicting these action potentials when using arbitrary
axon and stimulation parameters.

Ultimately, we seek to demonstrate the applicability of machine learning to DBS re-
search. Successfully training a network to accurately predict the location and timing of
axonal firing based on DBS parameters, becomes a valuable tool when combined with
point neuron network models of neural activity in the presence of DBS. This combina-
tion holds great potential for studying and understanding how DBS is affecting neural
network activity.

1.2 Thesis Framework

The thesis follows a systematic structure containing four subsequent chapters. In chapter
2, we elaborate on the theory and background needed to understand the underlying ap-
proach of our research, further exploring topics such as deep brain stimulation, axonal
function, neural modeling and machine learning. Following that, in chapter 3, we offer a
detailed description of the methods employed in conducting our study, covering the en-
tire process from neural modeling and data collection to the development of our machine
learning algorithm. The results derived from these applied methods are then presented
in chapter 4. Finally, in chapter 5, we provide a detailed discussion of these results and
conclude our research.

1In this thesis, it is important to note that when we mention "artifcial neural networks" we are
specifically referring to the neural networks used in machine learning, not neural networks designed to
simulate biological neural activity. Similarly, when we mention an "artificial neuron," we are referring to
a node within an artificial neural network, not a computational model of a biological neuron.
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Chapter 2

Background & Theory

In this chapter, we aim to provide the necessary background information and theory
required to understand the motivation and methods of our research. To begin, we give
an introduction to deep brain stimulation (DBS) and its applications in neuroscience.
Subsequently, we will discuss neural modeling and simulation, particularly in utilizing
simulation environments such as the NEURON simulator and the LFPy 2.0 Python
module. Finally, we will outline the key concepts of machine learning within the context
of binary classification and neuroscience.

2.1 Introduction to Deep Brain Stimulation (DBS)

As previously mentioned, DBS involves surgical implantation of electrodes delivering
persistent stimulation to certain parts of the brain. Primarily used as a treatment for
movement disorders such as Parkinson’s disease, essential tremor and dystonia, DBS is
also being explored as a potential treatment for a variety of other conditions [27, 29].
These include Alzheimer disease, epilepsy, and psychiatric disorders such as major de-
pression, obsessive–compulsive disorder (OCD) and Anorexia nervosa. The dysfunction
of regions within the basal ganglia, including the subthalamic nucleus (STN) and globus
pallidus, internus (GPi), is known to be a cause of various neurological and psychiatric
disorders [6]. Therefore, these regions are commonly selected as primary targets for DBS
[3, 29, 34].

It is apparent that DBS operates by affecting the electrical activity of local neurons
within the targeted regions. However, the precise way in which these neurons are af-
fected remains unknown [2]. Instead of a singular function of action, DBS is believed to
work by a variety of mechanisms. Currently, there are a few selected hypotheses aimed
at explaining its effects.

Contrary to initial belief, studies have shown that the mechanisms of DBS extends bey-
ond mere excitation and inhibition of local neurons [2, 11, 12, 16, 21]. Instead, it affects
the entire network being stimulated, involving processes such as neural and synaptic
plasticity. Moreover, the timing of therapeutic outcomes varies significantly. While
some effects are seen within seconds, others may take several months [2]. The mechan-
isms and response times rely not only on the specific neurological disorder being treated
but also on the type of brain region undergoing stimulation [12, 16].
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Another key aspect regarding DBS is that stimulation primarily targets local axons
rather than the soma [18]. This is because the soma typically requires a higher threshold
for activation. As a result, when stimulation is applied in a particular area, it is possible
for a soma located further away to be activated instead of the nearest soma. This can
occur if the distant soma has axons and dendrites positioned closely to the electrode.
Consequently, understanding the impact of DBS on axonal pathways are of particular
importance.

Furthermore, the complex nature of DBS lies in the multitude of stimulation paramet-
ers available for selection [14, 25]. Currently, testing and determination of stimulation
parameters, such as electrode position, stimulation amplitude, duration and frequency,
are performed during the surgical procedure itself, often demanding several visits [8].
Both patients and medical staff face considerable difficulties with this approach. The
relationship between the chosen stimulation parameters and their impact on neuronal
activity remains unknown [39], and establishing a correlation between these parameters
and neuronal response would help alleviate some of these difficulties.

2.2 Neural Modeling and Simulation

Neural modeling and simulation are crucial in advancing our understanding of the brain,
especially when empirical research can be slow due to reasons such as ethical consid-
erations or lack of accessibility [2, 8, 13, 31]. The fundamental aim of computational
models is to realistically replicate the biophysical properties of the brain, providing us
with a controlled and accessible research environment to explore the mechanisms under-
lying various brain functions. Nevertheless, computational methods have yet to reach
their potential and are subject to their own limitations. These limitations include in-
sufficient computational power and resources [35] or oversimplified models that deviate
from realistic standards [38]. However, combining empirical and computational research
can benefit the field of neuroscience as a whole.

The Hodgkin-Huxley (HH) Model

The Hodgkin-Huxley (HH) model stands out as the most used and well-known math-
ematical model to describe the electrical properties involved in axons [36]. Their model
provided the first quantitative description of the mechanisms involved in the generation
of action potentials, and demonstrated the significance of ion channels within the axon
membrane [20].

In the HH model, the action potential is described in terms of the membrane potential,
which is influenced by the behavior of voltage-gated ion channels. The model involves
a set of differential equations which describe the conductance of sodium channels, po-
tassium channels and leak channels. Moreover, the model considers the probability of
these channels being open or closed at a given membrane potential. Although additional
voltage-gated ion channels have been discovered since [22], the HH model accurately
replicates the characteristics of action potentials observed experimentally [20].
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Multicompartmental Models

As most neurons are non-isopotential, meaning the membrane potential varies spatially
along the axon, it is of high interest to explore how action potentials propagate through
axons with complex geometries. Such considerations has led to the development of mul-
ticompartmental models, where the axon is seen as being divided into distinct cylindrical
compartments. Each compartment is characterized by an area (a) equal to πdl, repres-
enting the product of the diameter (d) and the length (l) of the compartment.

Multicompartmental models utilize circuit theory to characterize the electrical proper-
ties of each compartment [37], while cable theory is employed to describe the collective
behavior of the axon [24]. In this context, a patch of cell membrane is seen as an RC
circuit. The cell membrane is regarded as capacitor with a specific capacitance (Cm),
and a resistor with a specific resistance (Rm). Furthermore, current can flow both ex-
tracellularly and intracellularly along the axon, where the intracellular medium holds a
specific axial resistivity (Ra).

Let us examine a compartment referred to as j, and the neighboring compartments
denoted j + 1 and j − 1. As a result of Kirchhoff’s current law, combined with the
capacitive current and Ohm’s law, we are left with the fundamental equation of a
compartmental model [37]. Specifically

Cm
dVj

dt
= Em − Vj

Rm
+ d

4Rm

(
Vj+1 − 2Vj + Vj−1

l2

)
+ Ie,j

πdl
. (2.1)

Here, V denotes the membrane potential of the specified compartment, Em represent the
resting membrane potential, or equilibrium potential, and Ie,j signifies a current injected
from an electrode into compartment j.

NEURON and LFPy

The NEURON simulator and the LFPy 2.0 Python module are powerful tools for neural
modeling and simulation, providing environments for exploring detailed neural struc-
tures and their electrical properties.

The NEURON simulator employs multicompartmental models to allow for creation of
neurons with complex geometries [10, 17]. Specifically, NEURON performs integration
methods, such as the backward Euler or Crank-Nicholson method, to numerically solve
equation (2.1). The primary goal of NEURON is to calculate the transmembrane voltage
and current of each individual compartment within the neural structure being modeled.

On the other hand, LFPy 2.0 relies on the calculated transmembrane voltages and cur-
rents of NEURON to effectively compute the extracellular potential [15, 26]. This allows
for easy modeling of stimulation and recording devices, enabling us to study the effects
of externally applied electrical potentials [26]. These features are especially relevant in
deep brain stimulation (DBS) research.
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Chapter 2. Background & Theory

2.3 Machine Learning in Neuroscience

Machine learning has emerged as a valuable tool across various fields, enabling recog-
nition of complex patterns from extensive datasets. The field of Neuroscience is no
exception, as it provides new ways to understand brain function and make predictions
regarding various aspects of neural activity [40].

As mentioned in chapter 1, the main objective of this thesis is to use machine learning
techniques to make predictions of axon spiking behavior in response to stimuli. This
approach involves training algorithms on known patterns of neural activity, also known
as supervised learning. Specifically, supervised learning revolves around situations where
the outcome of the input data is already known. The aim of this learning framework
is to learn from the existing information to make predictions based on arbitrary input
data. Supervised learning includes both classification and regression tasks. Classifica-
tion refers to the task of predicting outcomes that belong to distinct categories, while
regression involves predicting continuous numerical values. In this thesis, we are faced
with a binary classification problem, where the outcome reduces to the occurrence (1)
or absence (0) of an action potential.

Feedforward Artificial Neural Networks (FNNs)

Feedforward artificial neural networks (FNNs) are highly effective in solving binary clas-
sification problems. They consist of nodes arranged in layers, including an input layer,
one or more hidden layers, and an output layer. FNNs operate by letting information
flow forward from the input layer, through the hidden layers, eventually reaching the
output layer. In the case of a binary classification problem, the output layer consists of
one node.

Each node carries an unknown parameter, also known as weights, which for the nodes
in subsequent layers are the weighted sum of the input weights. These weights are then
passed through an activation function, which essentially determines the degree of em-
phasis assigned to each node.

The rectified linear unit (ReLU) activation function and the Sigmoid activation function
are two examples of commonly used activation functions. The ReLU activation function
is defined such that

f(x) =
{

0, if x < 0
x, otherwise.

(2.2)

This function returns zero for any negative input value, and the input value itself
otherwise.
On the other hand, the Sigmoid activation function states that

σ(x) = 1
1 + e−x

, (2.3)

which returns any value between 0 and 1. The Sigmoid activation function is particularly
useful in binary classification problems.
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2.3. Machine Learning in Neuroscience

Optimization and Training

The training of an artificial neural network (ANN) involves the concept of optimizing its
performance by employing an optimization algorithm, such as the adaptive moment es-
timation (ADAM) optimizer [23, 32]. By utilizing a method known as backpropagation
[33], this algorithm calculates the gradients and updates the weights of each node during
training. The aim of the optimization algorithm is to minimize the loss function, which
calculates the differences between predicted and actual outcomes. In the context of bin-
ary classification, the binary cross-entropy loss (BCELoss) function can be employed to
calculate such loss [19].

Regularization

In machine learning, regularization techniques are included as a way to prevent overfit-
ting, a phenomenon in which the model performs well on the training data but fails to
generalize to the test data. To address this issue, regularization techniques such as early
stopping and dropout are employed. Early stopping terminates the training process
when the performance of the model fails to improve for a certain amount of iterations.
On the other hand, dropout prevents overfitting by ignoring the contributions of a frac-
tion of nodes during each iteration. These regularization techniques improves the ability
of the model to generalize, thereby promoting genuine learning rather than memoriza-
tion.

Evaluation Metrics

Evaluation metrics are crucial in assessing the performance of machine learning (ML)
algorithms. When it comes to binary classification, the four most well-known metrics
include accuracy, precision, recall, and the F1 score. These evaluation metrics are reli-
ant on predictions made by the machine learning model, specifically taking into account
the number of true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN).

Accuracy provides an overall ratio of correct predictions made by the model, i. e.

Accuracy = TP + TN
TP + TN + FP + FN , (2.4)

where a higher accuracy indicates better performance. Furthermore, precision is defined
such that

Precision = TP
TP + FP . (2.5)

This equation indicated the model’s ability to avoid false positives. Additionally, recall
is an evaluation metric that reflects the model’s ability to avoid false negatives, where

Recall = TP
TP + FN . (2.6)

Lastly, the F1 score combines precision and recall to provide the model’s ability to avoid
both false positives and false negatives. It is defined such that

F1 score = 2 × Precision · Recall
Precision + Recall . (2.7)
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Chapter 2. Background & Theory

These evaluation metrics offer important information about the performance of ML mod-
els, allowing for assessment of their accuracy, precision, recall, and overall ability to make
reliable predictions.

8



Chapter 3

Methods

In this chapter, we will discuss the methods utilized to accomplish our main objective;
exploring the potential of machine learning in predicting the occurrence of action poten-
tials in axons in response to different stimuli. We begin by explaining how we modeled
and simulated the axon, followed by an overview of the procedure used to generate the
datasets. Lastly, we discuss the development of our machine learning algorithm and
present our approach for evaluating its performance.

3.1 Neural Modeling and Simulation

Using the NEURON simulator, we construct an axon composed of numerous segments.
The shape, length and diameter of the axon are determined by lists of Cartesian
coordinates and diameters of each segment. Specifically, x, y and z represent lists
of the x-, y- and z-coordinates of each segment, while d represents a list of segment
diameters. Thus, we have that

x = [x1, x2, . . . , xnseg ],
y = [y1, y2, . . . , ynseg ],
z = [z1, x2, . . . , znseg ]

and

d = [d1, d2, . . . , dnseg ],

where nseg denotes the total number of segments.

Straight axons are simply created with Cartesian coordinates that define a linear path.
However, to better mimic the shapes of real axons and their meandering trajectories, we
perform cubic spline interpolation in the x- and y-direction. This is done by using the
CubicSpline class from the SciPy library.

Furthermore, we employ the axon morphology with LFPy 2.0 to define the axial res-
istivity, membrane capacitance, initial membrane potential, as well as the start and end
times of our simulations. Any other optional parameters related to the axon are kept to
their default values. Subsequently, the LFPy.Cell class is used to create the cell object
representing our axon. To define the position of the axon, we utilize the LFPy.set_pos
and LFPy.set_rotation methods, which allow us to specify the Cartesian coordinates of
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Chapter 3. Methods

the axon endpoint and the rotation of the axon around the Cartesian axes, respectively.

Having completed the setup of our axon, we are now ready to model the electrical
stimulation. Let us begin by assuming that the medium surrounding the axon is the
same in all positions (homogeneous), and that the extracellular conductivity, denoted σ,
remains the same in all directions (isotropic). Under these assumptions, the extracellular
potential from a stimulus point source is given as

ϕ = I

4πσR
, (3.1)

Here, I represents the stimulus current, σ denotes the extracellular conductivity, and R
indicates the distance between the stimulus point source and the location at which the
extracellular potential is being evaluated [30]. This equation is employed to compute
the extracellular potential resulting from the stimulus point source to each segment of
the axon.

We are now ready to simulate the axon-stimulus interaction. To incorporate the extra-
cellular potential, derived from equation (3.1), as a boundary condition in the NEURON
model, we employ the LFPy.insert_v_ext method. Subsequently, we initiate the simu-
lation by using the LFPy.simulate method, allowing us to record the membrane voltage
and membrane current of each segment.

To ensure the correct setup of our model, we create a plot that illustrates the position
of the axon and electrode, the current pulse of the stimulus, the extracellular potential
resulting from the stimulus, and the membrane potential. This plotting process is con-
ducted for both straight and curved axons using the Matplotlib library.

Thresholds

Using the same plotting setup, we want to investigate how axons respond to stimuli
at their endpoints compared to the midsections. Specifically, we aim to examine the
stimulus amplitude threshold for triggering an action potential in the axon under three
different scenarios.

In the first scenario, the stimulus point source is placed beside the endpoint of a straight
axon. In the second scenario, the axon is shaped with two perpendicular lines of equal
length, and the stimulus point source is positioned next to the right angle. Lastly, in
the third scenario, the stimulus point source is placed beside the midpoint of a straight
axon. In all three scenarios, the distance between the stimulus point source and the
closest point on the axon remains constant.

3.2 Data Collection

We utilize our axon model to conduct a multitude of simulations using various axon and
stimulus parameters. The aim is to extract valuable information about the axonal activ-
ity triggered by stimuli, ultimately generating an extensive dataset suited for machine
learning training. In our thesis, we will direct our focus towards three key parameters
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3.3. The Machine Learning Algorithm

that significantly impact axonal activity in response to stimuli; axon positions, stimulus
amplitude, and stimulus duration [7].

The axon positions and stimulus durations are randomly generated from a uniform dis-
tribution, while the stimulus amplitudes are drawn from a log-uniform distribution. This
process generates a set of axon positions, stimulus amplitudes and durations. Simula-
tions are then performed using different combinations of axon positions and stimuli based
on these parameters.

Any recorded membrane potential that reaches or exceeds 0 mV are classified as an ac-
tion potential. During each simulation, we record whether or not an action potential is
evoked. Additionally, we calculate the Euclidean distance from the stimulus point source
to each segment, and determine the minimum distance among them.

Subsequently, we create a large dataset that includes the parameters of each simulation.
The dataset is organized such that each column corresponds to a specific parameter;
the stimulus amplitude, stimulus duration, the calculated minimum distance, and the
Cartesian coordinates of the axon endpoints. Additionally, the dataset includes a binary
column that indicates the occurrence of an action potential, also known as a spike, where
a value of zero indicates that no spike was recorded, and a value of one indicates that a
spike was recorded.

We are also interested in creating datasets that provide more information about the
axon positions. Specifically, we want to create a selection of datasets that incorporate
additional coordinates along the axon as parameters, rather than solely including the en-
dpoints. The aim of this approach is to evaluate the optimal parameters required for the
machine learning algorithm to achieve its highest performance, as well as to examine the
amount of information necessary. For this purpose, we generate datasets with a uniform
distribution of 2, 5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 Cartesian points
along the axons, which we will denote df2, df5, df10, df20, df40, df60, df80, df100, df120,
df140, df160, df180 and df200, respectively. This is done for both straight and curved axons.

To visualize our simulations, we use the Matplotlib library to make a three-dimensional
plot showing the position of the electrode alongside some of the axons. Furthermore, we
create a scatter plot illustrating the relationship between the minimum distance, stim-
ulus amplitude and the occurrence of spikes. This is also done for both straight and
curved axons.

3.3 The Machine Learning Algorithm

We aim to explore the potential of our datasets in the development of a machine learning
algorithm that predicts spiking activity in axons. The main objective is to determine
the possibility of such predictions, potentially contributing in the field of deep brain
stimulation research.
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Artificial Neural Network Architecture

In this pursuit, we employ the PyTorch library to create a feedforward neural network
model consisting of three linear layers. These layers comprised an input layer with 128
nodes, a hidden layer with 64 nodes, and an output layer with a single node. Our specific
challenge concerns a binary classification problem, for which we apply the rectified linear
unit activation function (ReLU) to both the initial and hidden layer, and the Sigmoid
activation function to the final layer.

Data Preprocessing

It is assumed that the dataset follows a specific format, with columns representing vari-
ous input parameters as well as the output parameter. In our datasets, these parameters
consist of stimulus amplitude, stimulus duration, minimum distance, axon coordinates,
and the spike indicator. Once extracted, these parameters are used as features in the
machine learning algorithm.

The dataset is divided into training, validation and testing subsets using the Strati-
fiedShuffleSplit class from the Scikit-learn library. This ensures that the distribution
of the outcome variable is preserved in all subsets. The size of our validation and test
subsets are set to 0.1, indicating that 10% of the datasets are used for validation, and
10% is used for testing.

The input features of the dataset are normalized by applying min-max normalization,
which scales the values between 0 and 1. As a result, the feature values become balanced
within equal range, preventing certain features from overpowering others solely based
on their magnitudes.

Training

The model is trained by the ADAM optimizer, utilizing backpropagation to adjust the
model parameters based on computed gradients. The predictions of the model are then
compared to the actual outcomes by calculating the loss using the binary cross-entropy
loss (BCELoss) function. Furthermore, the loss of the validation data is calculated as
a way to implement early stopping in the training process. Training involves a series
of iterative updates referred to as epochs. If there is no improvement in the validation
loss for a certain amount of epochs, the training is stopped. To prevent overfitting,
dropout is also incorporated as a regularization technique, which ignores a fraction of
nodes during training by setting their outputs to zero. Additionally, to check for signs
of overfitting, we plot the calculated loss of each epoch, considering both the training
and validation data.

Evaluation

The performance of our machine learning model is tested with the unseen data from the
dedicated test subset. To assess the performance of the model, we employ evaluation
metrics based on the number of true positives (TP), false positives (FP), true negatives
(TN) and false negatives (FN). Specifically, we calculate the accuracy of the predictions
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by employing equation (2.4), and the precision utilizing equation (2.5). Furthermore, we
calculate the recall using equation (2.6), and lastly, we utilize equation (2.7) to compute
the F1 score.

To identify any patterns in the incorrect predictions made by the model, we are in-
terested in visualizing these predictions. This is achieved by generating a scatter plot
showing the relationship between minimum distance, stimulus amplitude, false positives
(FP), false negatives (FN), true positives (TP) and true negatives (TN).

All evaluation metrics are calculated for the datasets df2, df5, df10, df20, df40, df60, df80,
df100, df120, df140, df160, df180 and df200. Subsequently, we generate two plots to visualize
the accuracy and F1 score obtained through each dataset. The first plot illustrates the
results for the datasets involving simulations of straight axons, while the second plot
shows the results for the datasets involving simulations of curved axons.

3.4 Code Availability

The code developed throughout this thesis can be found publicly available on GitHub
at https://github.com/kariannestrand/FYS5960.git.
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Chapter 4

Results

This chapter provides a presentation of the results obtained through our methods out-
lined in chapter 3. Firstly, we will examine the outcome of modeling and simulating both
the straight and curved axon. Following that, we will present the generated datasets and
the associated visualizations. Finally, we deliver an overview of the outcomes derived
from assessing the performance of our machine learning algorithm.

4.1 Overview of the Model

In our simulations, we modeled each axon with a length of 3000 µm, consisting of 200
compartments. Each segment within the axon was created with a diameter of 1.0 µm, a
membrane capacitance of 1.0 µF/cm2, and an axial resistivity of 150 Ωcm. Additionally,
we chose −65 mV as the resting membrane potential, and kept a constant extracellular
conductivity of 0.3 Siemens per meter. The total simulation time was set to 120 ms,
using a time step size of 2−5 ms, with the electrode positioned at the origin.

Figure 4.1 and 4.2 illustrate our simulation of an electrode giving stimulus to a straight
and curved axon, respectively. These figures clearly show the rapid change in the mem-
brane potential, thereby imitating the characteristics of an action potential in response
to stimuli.
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Figure 4.1: The first panel shows the position of the electrode (star) and the straight axon (line)
with the three dots marking the midpoint and the endpoints of the axon. The next panels show
the current pulse of the stimulus, the extracellular potential resulting from the stimulus, and
the membrane potential of each compartment marked by dots, respectively. Here the stimulus
amplitude was set to −1000 µA, and stimulus duration was set to 1.0 ms.

Figure 4.2: The first panel shows the position of the electrode (star) and the curved axon (line),
with the three dots marking the midpoint and endpoints of the axon. The next panels show
the current pulse of the stimulus, the extracellular potential resulting from the stimulus, and
the membrane potential of each compartment marked by dots, respectively. Here the stimulus
amplitude was set to −10000 µA, and stimulus duration was set to 1.0 ms.

Thresholds

To develop a better understanding of how extracellular current stimulation is influenced
by the shape of the axon, we examined three different scenarios.
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The threshold for evoking an action potential in the first scenario, where the electrode
was positioned beside the endpoint, was found to require a stimulus amplitude of ap-
proximately −158 µA. The simulation illustrating this scenario is showed in figure 4.3.

Figure 4.3: The first panel shows the position of the electrode (star) and the axon (line), with the
three dots marking the midpoint and endpoints of the axon. The next panels show the current
pulse of the stimulus, the extracellular potential resulting from the stimulus, and the membrane
potential of each compartment marked by dots, respectively. Here the stimulus amplitude was
set to approximately −158 µA, marking the threshold for evoking an action potential in the
axon, while the stimulus duration was set to 1.0 ms.

In the second scenario, where the electrode was positioned beside the midpoint of an
axon shaped as a right angle, the threshold was determined as a stimulus amplitude of
approximately −200 µA. The simulation showing this scenario is illustrated in figure 4.4.
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Figure 4.4: The first panel shows the position of the electrode (star) and the axon (line), with the
three dots marking the midpoint and endpoints of the axon. The next panels show the current
pulse of the stimulus, the extracellular potential resulting from the stimulus, and the membrane
potential of each compartment marked by dots, respectively. Here the stimulus amplitude was
set to approximately −200 µA, marking the threshold for evoking an action potential in the
axon, while the stimulus duration was set to 1.0 ms.

Lastly, a stimulus amplitude of approximately −398 µA was found to be the threshold in
the third scenario, where the electrode was positioned beside the midpoint of a straight
axon. The simulation of this scenario can be seen in figure 4.5.

Figure 4.5: The first panel shows the position of the electrode (star) and the axon (line), with the
three dots marking the midpoint and endpoints of the axon. The next panels show the current
pulse of the stimulus, the extracellular potential resulting from the stimulus, and the membrane
potential of each compartment marked by dots, respectively. Here the stimulus amplitude was
set to approximately −398 µA, marking the threshold for evoking an action potential in the
axon, while the stimulus duration was set to 1.0 ms.
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We see that an axon with the electrode placed at its endpoint demanded the lowest
amplitude, while both a right-angled axon and a straight axon with the electrode placed
beside their midpoints required larger amplitudes, as shown in previous literature [1,
9]. Predicting the conditions under which an action potential occurs is a significant
challenge, as it depends on the morphological details of the cell and various stimulation
parameters. As a result, we will turn to machine learning as a means to solve this prob-
lem.

4.2 Overview of the Data

The stimulation amplitude varied between −10000 µA and −10 µA, while the stimula-
tion duration ranged from 0.5 ms to 2.0 ms. Axon positions were defined based on the
Cartesian coordinates of the endpoint, and were adjusted between −3000 µm and 3000
µm in each direction. Additionally, axon positions were also determined by the rotation
of the axon around the Cartesian axes, ranging from 0 to 2π.

By employing these specified boundaries, we successfully generated datasets containing
columns representing each parameter. For both straight and curved axons, we created
datasets with 2, 5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 Cartesian points
along the axon, which resulted in a total of 26 datasets. Each of these datasets was
constructed with a size of 100 000 samples. The 100 000 simulations were shared across
the 13 datasets of the straight axons, while an additional 100 000 simulations were con-
ducted for generating the 13 datasets of the curved axons.

Figure 4.6 illustrates a selection of the simulated axon positions surrounding the elec-
trode, which were used to generate the datasets of straight axons. Similarly, figure 4.7
shows a selection of the simulated axon positions used to create the datasets of curved
axons.
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Figure 4.6: 3D representation showing the positions of the electrode (dot) and 150 straight axons
(lines).

Figure 4.7: 3D representation showing the positions of the electrode (dot) and 150 curved axons
(lines).

Furthermore, the scatter plot showing the relationship between the stimulus amplitude,
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minimum distance and the occurrence of spikes can be seen in figure 4.8 across 100 000
simulations of straight axons. Additionally, figure 4.9 displays the corresponding scatter
plot for the 100 000 simulations of the curved axons.

Figure 4.8: Scatter plot showing the relationship between the normalized minimum distance,
logarithm of the stimulus amplitude and the occurrence of spikes across 100 000 simulations of
straight axons. Each dot represents a single simulation, with yellow dots indicating the occurrence
of a spike, and purple dots indicating the absence of a spike. There are a total of 49121 yellow
dots representing the occurrence of a spike, and 50879 purple dots representing the absence of a
spike.

21



Chapter 4. Results

Figure 4.9: Scatter plot showing the relationship between the normalized minimum distance,
logarithm of the stimulus amplitude and the occurrence of spikes across 100 000 simulations of
curved axons. Each dot represents a single simulation, with yellow dots indicating the occurrence
of a spike, and purple dots indicating the absence of a spike. There are a total of 51322 yellow
dots representing the occurrence of a spike, and 48678 purple dots representing the absence of a
spike.

These scatter plots show a clear pattern between the spiking activity, minimum distance,
and the stimulus amplitude. This relationship suggests that the ANN is likely to pre-
dict spike occurrences with ease in regions exclusively consisting of positive or negative
spikes. However, it may struggle with predictions in the boundary region, where positive
and negative spikes overlap.

The datasets were divided into training, validation and test subsets, with equal distribu-
tion of outcomes. Moreover, each parameter was appropriately normalized as described
in section 3.3.

4.3 Performance Evaluation of the Machine Learning Algorithm

The model of the machine learning algorithm was trained using each generated dataset
individually. In this section, we will present the results obtained by training the model
with df2 as its dataset, encompassing simulations of both straight and curved axons.
Additionally, the comparison of the performance across all datasets will be presented.

During training, a learning rate of 0.01 was employed. Furthermore, dropout was utilized
as a regularization technique, with a rate of 0.1. Lastly, early stopping was employed,
terminating the training process if there was no observed improvement in validation loss
after 10 consecutive epochs.
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Figure 4.10 shows the result of plotting the calculated loss of each epoch, covering both
the training and validation data, when training the model using df2 with straight axon
simulations as its dataset.

Figure 4.10: Plot showing the calculated training loss and validation loss for each epoch
throughout the training process. The model is trained using df2 with straight axon simulations
as its dataset.

Similarly, figure 4.11 shows the corresponding result of the loss plot when training the
model using df2 with curved axon simulations as its dataset.
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Figure 4.11: Plot showing the calculated training loss and validation loss for each epoch
throughout the training process. The model is trained using df2 with curved axon simulations
as its dataset.

The plots within figures 4.10 and 4.11 clearly demonstrate a decline in the computed
loss. Furthermore, the training and validation loss appears remarkably similar, seem-
ingly showing no sign of overfitting.

Section 7.1 in the appendix contains the plots of the training and validation loss com-
puted from training the model using the remaining datasets that involve simulations of
straight axons. Specifically, figure 7.1 presents the loss plots obtained when training
the model with df5, df10, df20, df40, df60 and df80, while figure 7.2 shows the loss plots
when training the model with df100, df120, df140, df160, df180 and df200. Correspondingly,
the equivalent loss plots obtained through the curved axon simulations can be found in
figures 7.3 and 7.4.

In figure 4.12, we see the scatter plot showing the relationship between the minimum
distance, stimulus amplitude, false negatives (FN), false positives (FP), true positives
(TP) and true negatives (TN) when training the model using df2 with straight axon
simulations as its dataset.
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Figure 4.12: Scatter plot showing the relationship between the normalized minimum distance,
normalized stimulus amplitude, false negatives (FN), false positives (FP), true positives (TP)
and true negatives (TN). The model is trained using df2 with straight axon simulations as its
dataset. Each dot represents a single straight axon simulation, with gray dots indicating the
correct predictions of the model (TP and TN), teal dots indicating false positives (FP), and
purple dots indicating false negatives (FN).

The corresponding scatter plot using df2 with curved axon simulations can be seen in
figure 4.13.
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Figure 4.13: Scatter plot showing the relationship between the normalized minimum distance,
normalized stimulus amplitude, false negatives (FN), false positives (FP), true positives (TP)
and true negatives (TN). The model is trained using df2 with curved axon simulations as its
dataset. Each dot represents a single straight axon simulation, with gray dots indicating the
correct predictions of the model (TP and TN), teal dots indicating false positives (FP), and
purple dots indicating false negatives (FN).

As predicted, we can see that the errors of these scatter plots are concentrated near
the boundary region observed in the relationship between the minimum distance and
stimulus amplitude seen in figures 4.8 and 4.9.

Likewise, when training the model with the remaining datasets that involve simulations
of straight axons, we obtained the scatter plots showing the relationship between the
minimum distance, stimulus amplitude, false negatives (FN), false positives (FP), true
positives (TP) and true negatives (TN). Section 7.2 in the appendix contains these scat-
ter plots, where figure 7.5 presents the scatter plots obtained when training the model
with df5, df10, df20, df40, df60 and df80. Furthermore, figure 7.6 shows the scatter plots
obtained when training the model with df100, df120, df140, df160, df180 and df200. The
equivalent scatter plots acquired through the curved axon simulations can be found in
figures 7.7 and 7.8.

In table 4.1, we have collected the number of true positives (TN), true negatives (TN),
false positives (FP) and false negatives (FN), along with the computed accuracy, preci-
sion, recall and F1 score for all datasets involving simulations of straight axons.
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Data TP TN FP FN Accuracy Precision Recall F1 score
df2 4716 4910 145 229 0.9626 0.9702 0.9537 0.9619
df5 4780 4598 457 165 0.9378 0.9127 0.9666 0.9389
df10 4620 4861 194 325 0.9481 0.9597 0.9343 0.9468
df20 4812 4596 459 133 0.9408 0.9129 0.9731 0.9421
df40 4575 4455 600 370 0.9030 0.8841 0.9252 0.9042
df60 4007 4933 122 938 0.8940 0.9705 0.8103 0.8832
df80 3824 4969 86 1121 0.8793 0.9780 0.7733 0.8637
df100 3875 4949 106 1070 0.8824 0.9734 0.7836 0.8683
df120 4724 3706 1349 221 0.8430 0.7779 0.9553 0.8575
df140 4546 3838 1217 399 0.8384 0.7888 0.9193 0.8491
df160 3583 4990 65 1362 0.8573 0.9822 0.7246 0.8339
df180 3559 4895 160 1386 0.8454 0.9570 0.7197 0.8216
df200 4286 2942 2113 659 0.7228 0.6698 0.8667 0.7556

Table 4.1: The number of true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN), and the related accuracy, precision, recall and F1 score for each dataset with the
straight axon simulations.

Similarly, table 4.2 contains the corresponding values for all datasets involving simula-
tions of curved axons.

Data TP TN FP FN Accuracy Precision Recall F1 score
df2 4992 44460 278 270 0.9452 0.9472 0.9486 0.9480
df5 5080 4296 442 182 0.9376 0.9200 0.9654 0.9421
df10 4750 4601 137 512 0.9351 0.9720 0.9027 0.9361
df20 5017 4292 446 245 0.9309 0.9184 0.9534 0.9356
df40 5126 4002 736 136 0.9128 0.8744 0.9742 0.9216
df60 4895 4042 696 367 0.8937 0.9705 0.9303 0.9021
df80 4953 3793 945 309 0.8746 0.8398 0.9413 0.8876
df100 4932 3868 870 330 0.8800 0.8501 0.9373 0.8915
df120 4012 4593 145 1250 0.8605 0.9651 0.7624 0.8519
df140 5094 3523 1215 168 0.8617 0.8074 0.9681 0.8805
df160 4189 4424 314 1073 0.8613 0.9303 0.7961 0.8580
df180 4505 2640 2098 757 0.7145 0.6823 0.8561 0.7594
df200 3960 2732 2006 1302 0.6692 0.6638 0.7526 0.7054

Table 4.2: The number of true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN), and the related accuracy, precision, recall and F1 score for each dataset with the
curved axon simulations.

Figure 4.14 shows the result of plotting the accuracy and F1 score of the model for each
dataset involving simulations of straight axons.
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Figure 4.14: The accuracy and F1 score plotted for all datasets with straight axon simulations.

Correspondingly, figure 4.15 shows the result of plotting the accuracy and F1 score for
each dataset involving simulations of curved axons.

Figure 4.15: The accuracy and F1 score plotted for all datasets with curved axon simulations.

These figures illustrate a declining trend in performance when using datasets with ad-
ditional axon points as parameters. Additionally, we observe that the accuracy and F1
score are of similar values for each dataset. This trend is further supported by the loss
plots in figures 7.1, 7.2, 7.3 and 7.4, and the scatter plots in figures 7.5, 7.6, 7.7 and
7.8. In these plots, it is evident that the loss function loses its shape, and the scatter
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plots no longer exhibit distinct patterns with an increasing number of axon points used
as parameters. This unexpected decrease in performance, despite the increasing avail-
ability of information about the shape of the axon, came as a surprise. In chapter 5, we
will discuss the potential reasons behind this observation.

29



Chapter 4. Results

30



Chapter 5

Discussion & Conclusion

In this chapter, we aim to provide a detailed discussion of the results presented in chapter
4. We begin by giving a summary of our findings, and continue with an analysis of these
results. Lastly, we discuss future work and conclude our thesis in relation to the research
objectives.

5.1 Summary of Findings

As evident by figures 4.1 and 4.2, we successfully employed the NEURON simulator
and LFPy 2.0 to simulate both straight and curved axons in the presence of a stimu-
lus point source. The simulated axons showed their electrical properties in response to
stimuli through the prominent spikes observed in the membrane potentials, effectively
mimicking the occurrence of action potentials. Additionally, we found that positioning
electrodes near the midpoints of axons required higher amplitudes to generate a spike,
compared to placing the electrode near the endpoints. These results are in accordance
with previous findings [1, 9]. Notably, the straight axon with the electrode placed beside
its midpoint revealed the highest threshold amplitude.

During the training process, it was observed that the loss computed for both the test
and validation data effectively decreased, and remained virtually identical throughout.
These findings are evident by the loss plots in figures 4.10 and 4.11, and strongly suggest
the absence of overfitting. Furthermore, the data showed a clear relationship between
spiking activity, the normalized minimum stimulus distance, and the log-normalized
stimulus amplitude, as seen by the scatter plots in figures 4.8 and 4.9. The prediction
errors of the artificial neural network (ANN) were shown to lie within the boundary area
of this relationship, as observed in figures 4.12 and 4.13.

Lastly, when plotting the accuracy and F1 score of the model obtained with each dataset,
a clear and similar decrease was observed for both straight and curved axon simulations
when incorporating additional axon points as parameters. These findings can be ob-
served in figures 4.14 and 4.15. Moreover, the F1 score, a metric that provides the
ability of the model to avoid false negatives and false positives, and the accuracy of the
model was found to have similar values for each dataset. The fact that this metric aligns
with the overall accuracy of the model indicates a balanced performance, meaning that
there is no preference in predicting false positives over false negatives, or vice versa.
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5.2 Analysis of Results

In determining spike thresholds, our results showed the significance of electrode place-
ment in relation to the axon endpoints compared to midsections, as previous research
has shown [1, 9]. This led to the initial belief that the ANN would need additional
information about the location and structure of the axon in order for it to effectively
distinguish between endpoints and midsections, thereby influencing its performance.
However, our findings revealed that the machine learning model achieved the highest
performance when employing the least amount of axon points as features, seemingly
treating additional points as noise. This unexpected finding indicates that ANNs can
predict spiking behavior to a high degree by using less complex machine learning archi-
tecture than expected. Nevertheless, it is important to note that this level of accuracy
likely arises from the simplicity of our axon-stimulus model, and may not hold true for
more realistic computational models. Consequently, further development of the machine
learning algorithm is necessary to enhance its performance in later use.

The errors of the ANN were found to lie within the boundary region of the relationship
between the normalized minimum distance and log-normalized stimulus amplitude. It
is important to note that even though the ANN performs well overall, it does not un-
dermine the importance of factors such as the mentioned thresholds or the additional
information regarding the location and shape of the axon. In our model, the overlapping
spiking behavior observed in the boundary region is likely due to the effects of these
factors. However, they may drown in the noise of more dominant factors, such as the
minimum distance and stimulus amplitude. A first approach in improving the perform-
ance in this boundary region would be to increase the test data size within its range,
although the primary focus should be on improving the machine learning algorithm to
account for increased model complexity.

5.3 Future Work

In future work, the neural model should be improved to more accurately simulate both
the axon and electrode. One approach is to include increasingly complex morphological
properties of the axon, as well as one or more electrodes with cylindrical shapes. Al-
though previous work has explored more realistic neural models [28], they still hold great
potential for being explored within machine learning.

Furthermore, the concepts of this thesis can be applied to point neuron network models,
allowing us to study and predict the electrical activity in response to stimuli within
neural networks as a whole.

Notably, these neural models will require more complex sets of features, thus requiring
the need for more advanced machine learning algorithms.

5.4 Conclusion

As a way to study deep brain stimulation (DBS), our research explored the potential of
machine learning techniques in predicting action potentials within axon-stimulus inter-
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actions. Through simulations using the NEURON simulator and LFPy 2.0, we employed
different axon and stimulus parameters to generate extensive datasets where the occur-
rence or absence of an action potential were defined as a binary outcome. These datasets
were then used to train a feedforward neural network as a way to solve the binary clas-
sification problem.

The results showed that the machine learning model achieved a high level of accuracy
in predicting the occurrence of action potentials when using features including the min-
imum distance between the axon and electrode, stimulus amplitude, stimulus duration,
and spatial coordinates of axon endpoints. However, when additional spatial coordin-
ates along the axon were included as features, the performance of the machine learning
algorithm decreased. This suggests the need for further development of the machine
learning algorithm in handling model complexity.

To address our main research objective, we have shown that machine learning can be used
to predict action potentials in response to stimuli when using arbitrary axon and stim-
ulation parameters. Although further work is needed to advance the methods presented
in this thesis, the proof of concept still remains. This demonstrates the potential of
machine learning in DBS research, ultimately leading to improved treatment of brain
disorders.

33



Chapter 5. Discussion & Conclusion

34



Chapter 6

Bibliography

35



Chapter 6. Bibliography

36



Bibliography

[1] Aman S. Aberra, Angel V. Peterchev and Warren M. Grill. ‘Biophysically realistic
neuron models for simulation of cortical stimulation’. In: Journal of neural
engineering 15.6 (2018), pp. 066023–066023. doi: 10.1088/1741-2552/aadbb1.

[2] Keyoumars Ashkan et al. ‘Insights into the mechanisms of deep brain stimulation’.
In: Nature Reviews Neurology 13.9 (2017), pp. 548–554. doi: 10.1038/nrneurol .
2017.105.

[3] Alim Louis Benabid et al. ‘Acute and Long-Term Effects of Subthalamic Nucleus
Stimulation in Parkinson’s Disease’. In: Stereotactic and functional neurosurgery
60 (1994), pp. 76–84. doi: 10.1159/000098600.

[4] Alim Louis Benabid et al. ‘Combined (Thalamotomy and Stimulation) Stereotactic
Surgery of the VIM Thalamic Nucleus for Bilateral Parkinson Disease’. In:
Stereotactic and Functional Neurosurgery 50 (1987). doi: 10.1159/000100803.

[5] Hagai Bergmann. The hidden life of the basal ganglia: at the base of brain and
mind. The MIT Press, 2021. Chap. 18, p. 215.

[6] Hagai Bergmann. The hidden life of the basal ganglia: at the base of brain and
mind. The MIT Press, 2021. Chap. 1, p. 4.

[7] Hagai Bergmann. The hidden life of the basal ganglia: at the base of brain and
mind. The MIT Press, 2021. Chap. 18, p. 216.

[8] Alexandre Boutet et al. ‘Predicting optimal deep brain stimulation parameters
for Parkinson’s disease using functional MRI and machine learning’. In: Nature
communications 12.1 (2021), pp. 3043–3043. doi: 10.1038/s41467-021-23311-9.

[9] Kelsey L. Bower and Cameron C. McIntyre. ‘Deep brain stimulation of terminating
axons’. In: Brain stimulation 13.6 (2020), pp. 1863–1870. doi: 10.1016/j.brs.2020.
09.001.

[10] Nicholas T. Carnevale and Michael L. Hines. The NEURON book. Cambridge
University Press, 2006.

[11] Satomi Chiken and Atsushi Nambu. ‘Mechanism of Deep Brain Stimulation:
Inhibition, Excitation, or Disruption?’ In: The Neuroscientist 22 (2016), pp. 313–
322. doi: 10.1177/1073858415581986.

[12] Jean-Michel Deniau et al. ‘Deep brain stimulation mechanisms: beyond the concept
of local functional inhibition’. In: European Journal of Neuroscience 32 (2010),
pp. 1080–1091. doi: 10.1111/j.1460-9568.2010.07413.x.

[13] Joseph J. Fins et al. ‘Ethical guidance for the management of conflicts of interest
for researchers, engineers and clinicians engaged in the development of therapeutic
deep brain stimulation’. In: Journal of Neural Engineering 8.3 (2011). doi: 10.
1088/1741-2560/8/3/033001.

37

https://doi.org/10.1088/1741-2552/aadbb1
https://doi.org/10.1038/nrneurol.2017.105
https://doi.org/10.1038/nrneurol.2017.105
https://doi.org/10.1159/000098600
https://doi.org/10.1159/000100803
https://doi.org/10.1038/s41467-021-23311-9
https://doi.org/10.1016/j.brs.2020.09.001
https://doi.org/10.1016/j.brs.2020.09.001
https://doi.org/10.1177/1073858415581986
https://doi.org/10.1111/j.1460-9568.2010.07413.x
https://doi.org/10.1088/1741-2560/8/3/033001
https://doi.org/10.1088/1741-2560/8/3/033001


Bibliography

[14] Ulrike Gimsa et al. ‘Matching geometry and stimulation parameters of electrodes
for deep brain stimulation experiments—Numerical considerations’. In: Journal of
Neuroscience Methods 150.2 (2006), pp. 212–227. doi: 10.1016/j.jneumeth.2005.
06.013.

[15] Espen Hagen et al. ‘Multimodal Modeling of Neural Network Activity: Computing
LFP, ECoG, EEG, and MEG Signals With LFPy 2.0’. In: Frontiers in
Neuroinformatics 12 (2018). doi: 10.3389/fninf.2018.00092.

[16] Todd M. Herrington, Jennifer J. Cheng and Emad N. Eskandar. ‘Mechanisms of
deep brain stimulation’. In: J Neurophysiol 115 (2016), pp. 19–38. doi: 10.1152/
jn.00281.2015.

[17] M.L. Hines and N.T. Carnevale. ‘The NEURON Simulation Environment’. In:
Neural Computation 9.6 (1997), pp. 1179–1209. doi: 10.1162/neco.1997.9.6.1179.

[18] Mark H. Histed, Vincent Bonin and R. Clay Reid. ‘Direct Activation of Sparse,
Distributed Populations of Cortical Neurons by Electrical Microstimulation’. In:
Neuron 63 (2009), pp. 508–522. doi: 10.1016/j.neuron.2009.07.016.

[19] Yaoshiang Ho and Samuel Wookey. ‘The Real-World-Weight Cross-Entropy Loss
Function: Modeling the Costs of Mislabeling’. In: IEEE access 8 (2020), pp. 4806–
4813.

[20] A. L. Hodgkin and A. F. Huxley. ‘A quantitative description of membrane current
and its application to conduction and excitation in nerve’. In: The Journal of
physiology 117.4 (1952), pp. 500–544. doi: 10.1113/jphysiol.1952.sp004764.

[21] Erwin B. Montgomery Jr and John T. Gale. ‘Mechanisms of action of deep
brain stimulation (DBS)’. In: Neuroscience and Biobehavioral Reviews 32 (2008),
pp. 388–407. doi: 10.1016/j.neubiorev.2007.06.003.

[22] James Kew and Ceri Davies. Ion Channels: From Structure to Function. Oxford
University Press, 2009. doi: 10.1093/acprof:oso/9780199296750.001.0001.

[23] Diederik P. Kingma and Jimmy Ba. ‘Adam: A Method for Stochastic Optimiza-
tion’. In: arXiv.org (2017).

[24] Christof Koch. Biophysics of computation: information processing in single
neurons. Oxford University Press, 1999.

[25] Sydnei Lewis et al. ‘Pilot Study to Investigate the Use of In-Clinic Sensing to
Identify Optimal Stimulation Parameters for Deep Brain Stimulation Therapy in
Parkinson’s Disease’. In: (In press). doi: 10.1016/j.neurom.2023.01.006.

[26] Henrik Lindén et al. ‘LFPy: a tool for biophysical simulation of extracellular
potentials generated by detailed model neurons’. In: Frontiers in neuroinformatics
7 (2014), pp. 41–41. doi: 10.3389/fninf.2013.00041.

[27] Andres M. Lozano et al. ‘Deep brain stimulation: current challenges and future
directions’. In: Nature Reviews Neurology 15 (2019), pp. 148–160. doi: 10.1038/
s41582-018-0128-2.

[28] Svjetlana Miocinovic et al. ‘Computational Analysis of Subthalamic Nucleus and
Lenticular Fasciculus Activation During Therapeutic Deep Brain Stimulation’. In:
Journal of Neurophysiology 96.3 (2006), pp. 1569–1580. doi: 10.1152/jn.00305.
2006.

38

https://doi.org/10.1016/j.jneumeth.2005.06.013
https://doi.org/10.1016/j.jneumeth.2005.06.013
https://doi.org/10.3389/fninf.2018.00092
https://doi.org/10.1152/jn.00281.2015
https://doi.org/10.1152/jn.00281.2015
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1016/j.neuron.2009.07.016
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1016/j.neubiorev.2007.06.003
https://doi.org/10.1093/acprof:oso/9780199296750.001.0001
https://doi.org/10.1016/j.neurom.2023.01.006
https://doi.org/10.3389/fninf.2013.00041
https://doi.org/10.1038/s41582-018-0128-2
https://doi.org/10.1038/s41582-018-0128-2
https://doi.org/10.1152/jn.00305.2006
https://doi.org/10.1152/jn.00305.2006


Bibliography

[29] Svjetlana Miocinovic et al. ‘History, Applications, and Mechanisms of Deep Brain
Stimulation’. In: JAMA Neurol. 70 (2013), pp. 163–171. doi: 10 . 1001 / 2013 .
jamaneurol.45.

[30] Paul L. Nunez and Ramesh Srinivasan. Electric fields of the brain: the neurophysics
of EEG. Oxford University Press, 2006. Chap. 3, p. 104.

[31] Peter Rabins et al. ‘Scientific and Ethical Issues Related to Deep Brain Stimulation
for Disorders of Mood, Behavior, and Though.’ In: Arch Gen Psychiatry 9 (2009),
pp. 931–937. doi: 10.1001/archgenpsychiatry.2009.113.

[32] Setareh Rafatirad. Machine learning for computer scientists and data analysts:
from an applied perspective. Springer, 2022.

[33] David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams. ‘Learning
representations by back-propagating errors’. In: Nature (London) 323.6088 (1986),
pp. 533–536.

[34] J. Siegfried and B. Lippitz. ‘Bilateral chronic electrostimulation of ventroposter-
olateral pallidum: a new therapeutic approach for alleviating all parkinsonian
symptoms’. In: Neurosurgery 35 (1994), pp. 1126–1129. doi: 10.1227/00006123-
199412000-00016.

[35] David Sterratt et al. Principles of computational modelling in neuroscience.
Cambridge University Press, 2011. Chap. 11, pp. 315–316.

[36] David Sterratt et al. Principles of computational modelling in neuroscience.
Cambridge University Press, 2011. Chap. 3, p. 47.

[37] David Sterratt et al. Principles of computational modelling in neuroscience.
Cambridge University Press, 2011. Chap. 2, pp. 37–41.

[38] Christoph Teufel and Paul C. Fletcher. ‘The promises and pitfalls of applying
computational models to neurological and psychiatric disorders’. In: Brain
(London, England : 1878) 139.10 (2016), pp. 2600–2608. doi: 10 . 1093 / brain /
aww209.

[39] Matteo Vissani, Ioannis U. Isaias and Alberto Mazzoni. ‘Deep brain stimulation: a
review of the open neural engineering challenges’. In: Journal of Neural Engineering
17.5 (2020). doi: 10.1088/1741-2552/abb581.

[40] Mai-Anh T. Vu et al. ‘A Shared Vision for Machine Learning in Neuroscience’. In:
38.7 (2018), pp. 1601–1607. doi: 10.1523/JNEUROSCI.0508-17.2018.

39

https://doi.org/10.1001/2013.jamaneurol.45
https://doi.org/10.1001/2013.jamaneurol.45
https://doi.org/10.1001/archgenpsychiatry.2009.113
https://doi.org/10.1227/00006123-199412000-00016
https://doi.org/10.1227/00006123-199412000-00016
https://doi.org/10.1093/brain/aww209
https://doi.org/10.1093/brain/aww209
https://doi.org/10.1088/1741-2552/abb581
https://doi.org/10.1523/JNEUROSCI.0508-17.2018


Bibliography

40



Chapter 7

Appendix

41



Chapter 7. Appendix

7.1 Loss Plots

Straight Axon Simulations

(a) Model is trained using df5 with straight axon
simulations as its dataset.

(b) Model is trained using df10 with straight axon
simulations as its dataset.

(c) Model is trained using df20 with straight axon
simulations as its dataset.

(d) Model is trained using df40 with straight axon
simulations as its dataset.

(e) Model is trained using df60 with straight axon
simulations as its dataset.

(f) Model is trained using df80 with straight axon
simulations as its dataset.

Figure 7.1: Plots showing the calculated training loss and validation loss for each epoch
throughout the training process, each plot showing the loss with different datasets used to train
the model. In subfigures a, b, c, d, e and f, the model is trained using df5, df10, df20, df40, df60
and df80 with straight axon simulations as its datasets, respectively.
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7.1. Loss Plots

(a) Model is trained using df100 with straight axon
simulations as its dataset.

(b) Model is trained using df120 with straight axon
simulations as its dataset.

(c) Model is trained using df140 with straight axon
simulations as its dataset.

(d) Model is trained using df160 with straight axon
simulations as its dataset.

(e) Model is trained using df180 with straight axon
simulations as its dataset.

(f) Model is trained using df200 with straight axon
simulations as its dataset.

Figure 7.2: Plots showing the calculated training loss and validation loss for each epoch
throughout the training process, each plot showing the loss with different datasets used to train
the model. In subfigures a, b, c, d, e and f, the model is trained using df100, df120, df140, df160,
df180 and df200 with straight axon simulations as its datasets, respectively.
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Chapter 7. Appendix

Curved Axon Simulations

(a) Model is trained using df5 with curved axon
simulations as its dataset.

(b) Model is trained using df10 with curved axon
simulations as its dataset.

(c) Model is trained using df20 with curved axon
simulations as its dataset.

(d) Model is trained using df40 with curved axon
simulations as its dataset.

(e) Model is trained using df60 with curved axon
simulations as its dataset.

(f) Model is trained using df80 with curved axon
simulations as its dataset.

Figure 7.3: Plots showing the calculated training loss and validation loss for each epoch
throughout the training process, each plot showing the loss with different datasets used to train
the model. In subfigures a, b, c, d, e and f, the model is trained using df5, df10, df20, df40, df60
and df80 with curved axon simulations as its datasets, respectively.
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7.1. Loss Plots

(a) Model is trained using df100 with curved axon
simulations as its dataset.

(b) Model is trained using df120 with curved axon
simulations as its dataset.

(c) Model is trained using df140 with curved axon
simulations as its dataset.

(d) Model is trained using df160 with curved axon
simulations as its dataset.

(e) Model is trained using df180 with curved axon
simulations as its dataset.

(f) Model is trained using df200 with curved axon
simulations as its dataset.

Figure 7.4: Plots showing the calculated training loss and validation loss for each epoch
throughout the training process, each plot showing the loss with different curved axon simulation
datasets used to train the model. In subfigures a, b, c, d, e and f, the model is trained using df100,
df120, df140, df160, df180 and df200 with curved axon simulations as its datasets, respectively.
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7.2 Scatter Plots

Straight Axon Simulations

(a) The model is trained using df5 with straight
axon simulations as its dataset.

(b) The model is trained using df10 with straight
axon simulations as its dataset.

(c) The model is trained using df20 with straight
axon simulations as its dataset.

(d) The model is trained using df40 with straight
axon simulations as its dataset.

(e) The model is trained using df60 with straight
axon simulations as its dataset.

(f) The model is trained using df80 with straight
axon simulations as its dataset.

Figure 7.5: Scatter plots showing the relationship between the normalized minimum distance,
normalized stimulus amplitude, false negatives (FN), false positives (FP), true positives (TP)
and true negatives (TN). Each dot represents a single straight axon simulation, with gray dots
indicating the correct predictions of the model (TP and TN), teal dots indicating false positives
(FP), and purple dots indicating false negatives (FN). In subfigures a, b, c, d, e and f, the model
is trained using df5, df10, df20, df40, df60 and df80 with straight axon simulations as its datasets,
respectively.
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7.2. Scatter Plots

(a) The model is trained using df100 with straight
axon simulations as its dataset.

(b) The model is trained using df120 with straight
axon simulations as its dataset.

(c) The model is trained using df140 with straight
axon simulations as its dataset.

(d) The model is trained using df160 with straight
axon simulations as its dataset.

(e) The model is trained using df180 with straight
axon simulations as its dataset.

(f) The model is trained using df200 with straight
axon simulations as its dataset.

Figure 7.6: Scatter plots showing the relationship between the normalized minimum distance,
normalized stimulus amplitude, false negatives (FN), false positives (FP), true positives (TP)
and true negatives (TN). Each dot represents a single straight axon simulation, with gray dots
indicating the correct predictions of the model (TP and TN), teal dots indicating false positives
(FP), and purple dots indicating false negatives (FN). In subfigures a, b, c, d, e and f, the model
is trained using df100, df120, df140, df160, df180 and df200 with straight axon simulations as its
datasets, respectively.
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Curved Axon Simulations

(a) The model is trained using df5 with curved
axon simulations as its dataset.

(b) The model is trained using df10 with curved
axon simulations as its dataset.

(c) The model is trained using df20 with curved
axon simulations as its dataset.

(d) The model is trained using df40 with curved
axon simulations as its dataset.

(e) The model is trained using df60 with curved
axon simulations as its dataset.

(f) The model is trained using df80 with curved
axon simulations as its dataset.

Figure 7.7: Scatter plots showing the relationship between the normalized minimum distance,
normalized stimulus amplitude, false negatives (FN), false positives (FP), true positives (TP)
and true negatives (TN). Each dot represents a single curved axon simulation, with gray dots
indicating the correct predictions of the model (TP and TN), teal dots indicating false positives
(FP), and purple dots indicating false negatives (FN). In subfigures a, b, c, d, e and f, the model
is trained using df5, df10, df20, df40, df60 and df80 with curved axon simulations as its datasets,
respectively.
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7.2. Scatter Plots

(a) The model is trained using df100 with curved
axon simulations as its dataset.

(b) The model is trained using df120 with curved
axon simulations as its dataset.

(c) The model is trained using df140 with curved
axon simulations as its dataset.

(d) The model is trained using df160 with curved
axon simulations as its dataset.

(e) The model is trained using df180 with curved
axon simulations as its dataset.

(f) The model is trained using df200 with curved
axon simulations as its dataset.

Figure 7.8: Scatter plots showing the relationship between the normalized minimum distance,
normalized stimulus amplitude, false negatives (FN), false positives (FP), true positives (TP)
and true negatives (TN). Each dot represents a single curved axon simulation, with gray dots
indicating the correct predictions of the model (TP and TN), teal dots indicating false positives
(FP), and purple dots indicating false negatives (FN). In subfigures a, b, c, d, e and f, the model
is trained using df100, df120, df140, df160, df180 and df200 with curved axon simulations as its
datasets, respectively.
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