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We deal with the problem of constructing, representing, and manipulating 𝐶3 quartic splines on a 
given arbitrary triangulation  , where every triangle of  is equipped with the quartic Wang–Shi 
macro-structure. The resulting 𝐶3 quartic spline space has a stable dimension and any function in 
the space can be locally built via Hermite interpolation on each of the macro-triangles separately, 
without any geometrical restriction on  . We provide a simplex spline basis for the space of 𝐶3

quartics defined on a single macro-triangle which behaves like a B-spline basis within the triangle 
and like a Bernstein basis for imposing smoothness across the edges of the triangle. The basis 
functions form a nonnegative partition of unity, inherit recurrence relations and differentiation 
formulas from the simplex spline construction, and enjoy a Marsden-like identity.

1. Introduction

Splines, in the classical sense of the term, are piecewise functions consisting of polynomial pieces glued together in a certain 
smooth way, usually by imposing equality of derivatives up to a given order. Besides their theoretical interest, splines find application 
in a wide range of contexts such as geometric modeling, signal processing, data analysis, visualization, and numerical simulation, 
just to mention a few. For many of these applications, a high smooth join between the different pieces is beneficial or even required 
[6,13].

In the univariate case, splines of maximal smoothness, i.e., piecewise polynomials of degree 𝑑 with 𝐶𝑑−1 joins, are the most 
popular splines. In fact, smoother splines give the same approximation order as less smooth splines of the same degree but involve 
fewer degrees of freedom and have less tendency to oscillate [14,24].

When moving to the bivariate setting and considering polygonal partitions, e.g., triangulations, maximal smoothness is still very 
appealing but becomes an arduous task to achieve. Bivariate spline spaces with too low degree compared to the smoothness are 
exposed to several shortcomings: they may lack a stable dimension, optimal approximation power, and stable locally supported 
bases. In addition, the practical wish of constructing any function of the spline space locally on each of the elements of the partition 
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( ) may require a significant gap between the degree (𝑑) and the smoothness (𝑟). For instance, on a triangulation a degree 𝑑 ≥ 4𝑟 +1
is necessary to admit such a local construction [3,13,33].

The above drawbacks can be mitigated by considering a so-called macro-structure, where the partition  is further refined in a 
specific manner (often referred to as splits). In case  is a triangulation, the most famous examples are the Clough–Tocher (CT) split 
[3,4,13,23] and the Powell–Sabin (PS) 6 and 12 splits [1,13,21,23,25]. They subdivide each triangle of  into 3, 6, and 12 subtri-
angles, respectively. Nevertheless, no spline spaces of maximal smoothness 𝑟 = 𝑑 − 1 can be constructed over general triangulations 
with the above mentioned splits for degree 𝑑 > 2; see, e.g., [13].

In [32], Wang and Shi introduced a family of degree-dependent splitting schemes to refine any triangle Δ of a given triangulation. 
The split of degree 𝑑 is obtained by uniformly distributing 𝑑+1 points on each edge of Δ and by taking the complete graph connecting 
these boundary points. For 𝑑 = 1 we have no split and for 𝑑 = 2 the Wang–Shi (WS) split reduces to the PS-12 split. Contrarily to the 
well-known splits mentioned above, when 𝑑 increases, the family of WS splits generates a very large number of polygonal pieces in 
each Δ. For cubics we get a set of 75 polygons which includes triangles, quadrilaterals, and pentagons, while for quartics the split 
consists of 250 polygonal regions. Thanks to this very articulated geometry, the cubic/quartic WS splits allow us to locally construct 
𝐶2 cubic/𝐶3 quartic spline spaces on general triangulations. Unfortunately, in practice, the complexity of the geometry hampers 
a piecewise treatment — in terms of a local polynomial basis — of spline functions on WS splits and discourages the use of such 
interesting spaces.

To overcome this issue, a simplex spline basis for the local space of 𝐶2 cubics on the cubic WS split of any Δ in  has been 
presented in [15]. Such a basis behaves like a B-spline basis within each triangle of  and like a Bernstein basis for imposing 
smoothness across the edges of  . More precisely, the basis functions form a nonnegative partition of unity, inherit recurrence 
relations and differentiation formulas from the simplex spline structure, and enjoy a Marsden-like identity for the representation of 
cubic polynomials. Moreover, they admit simple conditions for 𝐶2 joins to neighboring triangles in  and a control net can be set 
up that mimics the shape of the spline function. Other simplex spline bases for local spline spaces over a macro-triangle have been 
considered for the PS-12 split in [5,19] and for the CT split in [16,18]. The multivariate Alfeld split has been addressed in [17].

In this paper, we consider the quartic WS split for constructing 𝐶3 quartic splines on a general triangulation  . Given the complex 
geometry of the split, it is imperative to produce a basis for the local spline space over each (refined) triangle Δ in  that intrinsically 
avoids in its construction to deal with separate polynomial representations on each of the 250 polygonal subelements of Δ. Taking 
into account the complete graph structure of the WS split, a basis formed by (scaled) simplex splines emerges again as the natural 
solution to the problem. We construct such a basis for the local space of 𝐶3 quartics on the quartic WS split of Δ and attain properties 
similar to the cubic case. The local representation in terms of the simplex spline basis makes that the complex geometry of the WS 
split is transparent to the user, offering a pathway for effective use of the related spline space.

We remark that for all the above mentioned splits, neither the Bernstein basis nor the simplex spline basis provides a global 
basis for the full spline space on (the refinement of)  . Global B-spline bases have been developed for 𝐶1 PS spline spaces on 
triangulations [7,10,11,30], for PS spline spaces with higher smoothness [8,27,29], and for 𝐶1 CT spline spaces [9,28]. A general 
framework to obtain a global basis is the technique of minimal determining sets described for the local Bernstein basis in [13]. The 
latter technique has been exploited in [15] to produce a global basis starting from local simplex spline bases for 𝐶2 cubic splines 
over triangulations refined according to the cubic WS split. Although a similar approach could be used in the quartic case as well, it 
seems more convenient to work directly with the local representations provided by the local simplex spline basis, rather than with 
the global basis for the full spline space.

The remainder of this paper is divided into four sections. In Section 2, we describe the family of WS splits and we summarize 
the definition and some properties of simplex splines. In Section 3, we present a local simplex spline basis for the refinement of a 
single triangle and discuss some of its properties. An interesting subspace containing the polynomials of degree four is also provided. 
The full space of 𝐶3 quartic splines is discussed in Section 4 paying special attention to smoothness conditions across the edges of 
the given triangulation. We end with some concluding remarks in Section 5. Finally, the appendix aggregates data related to the 
presented simplex spline bases that were used in the proofs and might be useful for practical purposes as well.

Throughout the paper, we use small boldface letters for vectors. Function spaces are denoted by symbols like 𝕊. In particular, ℙ𝑑

stands for the space of bivariate polynomials with real coefficients of total degree ≤ 𝑑. The partial derivatives in 𝑥 and 𝑦 are denoted 
by 𝐷𝑥 and 𝐷𝑦, respectively. Given a vector 𝒖, the associated directional derivative is denoted by 𝐷𝒖. The directional derivative in 
the direction of the vector from point 𝒑1 to 𝒑2 is denoted by 𝐷𝒑1𝒑2 .

2. Preliminaries

In this section, we collect some preliminary material about the Wang–Shi splits and simplex splines of interest in the rest of the 
paper.

2.1. The Wang–Shi splits

Given three noncollinear points 𝒑1, 𝒑2, 𝒑3 in ℝ2, the triangle Δ ∶= ⟨𝒑1, 𝒑2, 𝒑3⟩ with vertices 𝒑1, 𝒑2, 𝒑3 will serve as our macro-
triangle. Given a degree 𝑑 ∈ ℕ, we divide each edge of Δ into 𝑑 equal segments, respectively, resulting into 3𝑑 boundary points. 
Then, we refine Δ into a number of subelements delineated by the complete graph connecting those boundary points which consists 
of the three edges of the triangle and of 3𝑑(𝑑 −1) interior lines. The resulting partition is called the WS𝑑 split of Δ as it was originally 
2

proposed by Wang and Shi [32]. We denote the obtained mesh structure by ΔWS𝑑 , and the set of polygons in ΔWS𝑑 by 𝑑 . Note 
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Fig. 1. WS𝑑 splits for 𝑑 = 2,3,4.

that we are dealing with a cross-cut partition of Δ because we are drawing only lines connecting boundary points. All the possible 
intersections of these lines are called vertices of ΔWS𝑑 . The cases 𝑑 = 2, 3, 4 are shown in Fig. 1. For 𝑑 = 1 we have 1 = {Δ}, while 
for 𝑑 = 2 we obtain the well-known PS-12 split [21]. For 𝑑 > 2 not all elements of 𝑑 are triangles and the complexity of the mesh 
grows quickly. For 𝑑 = 3 we have 58 vertices and 75 regions, while for 𝑑 = 4 the number of vertices increases up to 178 and we get 
250 regions; see Figs. 2 and 3.

We consider the space

𝕊𝑑−1
𝑑

(ΔWS𝑑 ) ∶= {𝑠 ∈ 𝐶𝑑−1(Δ) ∶ 𝑠|𝜏 ∈ ℙ𝑑 , ∀ 𝜏 ∈ 𝑑}. (1)

The dimension of 𝕊𝑑−1
𝑑

(ΔWS𝑑 ) can be computed using the general dimension formula for spline spaces over cross-cut partitions from 
[2, Theorem 3.1]. In particular, under the assumption that at most 𝑑 + 1 cross-cuts intersect at an interior vertex of ΔWS𝑑 , we have

dim(𝕊𝑑−1
𝑑

(ΔWS𝑑 )) = dimℙ𝑑 + 3𝑑(𝑑 − 1);

see [15, Theorem 2]. Thus, for 𝑑 = 4, we get

dim(𝕊3
4(ΔWS4 )) = dimℙ4 + 36 = 51, (2)

because it can be directly checked that at most 4 cross-cuts intersect at any interior vertex of ΔWS4 ; see Fig. 2.

2.2. Simplex splines

Simplex splines are a very elegant extension of univariate B-splines to the multivariate setting. Like B-splines, they are defined in 
terms of knots whose number and position completely determine their properties. In this section, we define simplex splines and we 
shortly summarize some properties of interest for the paper. For further properties and proofs, we refer the reader to, e.g., [20,22].

For 𝑒 ∈ ℕ, 𝑑 ∈ ℕ0, let 𝑛 ∶= 𝑑 + 𝑒 and let Ξ ∶= {𝝃1, … , 𝝃𝑛+1} be a sequence of possibly repeated points in ℝ𝑒 called knots. The 
multiplicity of a knot is the number of times it occurs in the sequence. For the sake of simplicity, we assume vol𝑒(⟨Ξ⟩) > 0, where ⟨⋅⟩ denotes the convex hull of a sequence of points. Let 𝜎 = ⟨𝝃1, … , 𝝃𝑛+1⟩ be any simplex in ℝ𝑛 with vol𝑛(𝜎) > 0, whose projection 
𝜋 ∶ℝ𝑛 →ℝ𝑒 onto the first 𝑒 coordinates satisfies 𝜋(𝝃𝑖) = 𝝃𝑖 for 𝑖 = 1, … , 𝑛 + 1.

The simplex spline 𝑀Ξ can be defined geometrically by

𝑀Ξ ∶ℝ𝑒 →ℝ, 𝑀Ξ(𝒙) ∶=
vol𝑛−𝑒

(
𝜎 ∩ 𝜋−1(𝒙)

)
vol𝑛(𝜎)

.

For 𝑑 = 0 we have

𝑀Ξ(𝒙) =

{
1∕vol𝑛(⟨Ξ⟩), 𝒙 ∈ interior of ⟨Ξ⟩,
0, if 𝒙 ∉ ⟨Ξ⟩,

and the value of 𝑀Ξ on the boundary of ⟨Ξ⟩ has to be dealt with separately. We refer the reader to [26] for a convention to decide 
in which region each edge and vertex belongs.

The simplex spline 𝑀Ξ is a nonnegative piecewise polynomial of total degree 𝑑, supported on ⟨Ξ⟩ and has unit integral. Moreover, 
𝑀Ξ enjoys the following fundamental recurrence formulas, sometimes referred to as the 𝐴𝐵𝐶 of simplex splines, which generalize 
the well-known analogs for B-splines.

• Differentiation formula (𝐴-recurrence): For any 𝒖∈ℝ𝑒 and any 𝑎1, … , 𝑎𝑑+𝑒+1 such that ∑𝑖 𝑎𝑖𝝃𝑖 = 𝒖, ∑𝑖 𝑎𝑖 = 0, we have

𝑑+𝑒+1∑

3

𝐷𝒖𝑀Ξ = (𝑑 + 𝑒)
𝑖=1

𝑎𝑖𝑀[Ξ⧵𝝃𝑖].
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Fig. 2. A possible numbering of the 178 vertices of the WS4 split.
4

Fig. 3. A possible numbering of the 250 regions of the WS4 split.
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Fig. 4. Labeling of the knots on the boundary of the triangle Δ.

• Recurrence relation (𝐵-recurrence): For any 𝒙∈ℝ𝑒 and any 𝑏1, … , 𝑏𝑑+𝑒+1 such that ∑𝑖 𝑏𝑖𝝃𝑖 = 𝒙, ∑𝑖 𝑏𝑖 = 1, we have

𝑀Ξ(𝒙) =
𝑑 + 𝑒

𝑑

𝑑+𝑒+1∑
𝑖=1

𝑏𝑖𝑀[Ξ⧵𝝃𝑖](𝒙).

• Knot insertion formula (𝐶-recurrence): For any 𝒚 ∈ℝ𝑒 and any 𝑐1, … , 𝑐𝑑+𝑒+1 such that ∑𝑖 𝑐𝑖𝝃𝑖 = 𝒚, ∑𝑖 𝑐𝑖 = 1, we have

𝑀Ξ =
𝑑+𝑒+1∑
𝑖=1

𝑐𝑖𝑀[Ξ∪𝒚⧵𝝃𝑖].

If 𝑒 = 1 then 𝑀Ξ is the univariate B-spline of degree 𝑑 with knots Ξ, normalized to have its integral equal to one.
In the bivariate case, 𝑒 = 2, the lines in the complete graph of Ξ are called knot lines and provide a partition of ⟨Ξ⟩ into polygonal 

elements. Denoting by #Ξ the cardinality of Ξ, the simplex spline 𝑀Ξ is a polynomial of degree 𝑑 = #Ξ − 3 in each region of this 
partition. Across a knot line we have 𝑀Ξ ∈ 𝐶𝑑+1−𝜇 , where 𝜇 is the number of knots on that knot line, including multiplicities.

3. A simplex spline basis for 𝕊𝟑
𝟒(𝚫𝐖𝐒𝟒 )

In this section, we focus on the space 𝕊3
4(ΔWS4 ); see (1) with 𝑑 = 4. We provide a basis for the space consisting of scaled simplex 

splines and consider some properties of such a basis. With a slight abuse of notation we also refer to the basis functions as simplex 
splines. The simplex spline basis intrinsically takes care of the complex geometry of the WS4 split by construction. Therefore, it 
provides a tool to practically deal with this quartic space.

3.1. A simplex spline basis

For a given triangle Δ = ⟨𝒑1, 𝒑2, 𝒑3⟩, the WS4 split is shown in the right plot of Fig. 1. From (2) we know that the dimension of 
𝕊3
4(ΔWS4 ) is 51. In order to construct a basis for this space, we first specify 12 points along the boundary of the triangle (see Fig. 4): 

the three vertices 𝒑1, 𝒑2, 𝒑3, the points

𝒒1,2 ∶=
3
4
𝒑2 +

1
4
𝒑3, 𝒒1,3 ∶=

1
4
𝒑2 +

3
4
𝒑3,

𝒒2,1 ∶=
3
4
𝒑1 +

1
4
𝒑3, 𝒒2,3 ∶=

1
4
𝒑1 +

3
4
𝒑3,

𝒒3,1 ∶=
3
4
𝒑1 +

1
4
𝒑2, 𝒒3,2 ∶=

1
4
𝒑1 +

3
4
𝒑2,

(3)

and the midpoints of the edges

𝒒1 ∶=
1
2
𝒑2 +

1
2
𝒑3, 𝒒2 ∶=

1
2
𝒑1 +

1
2
𝒑3, 𝒒3 ∶=

1
2
𝒑1 +

1
2
𝒑2. (4)

Note that these points are part of the WS4 split. We then consider the quartic simplex splines 𝑀1, … , 𝑀51 as schematically illustrated 
in Fig. 5, where each simplex spline has seven (including multiplicity) knots chosen among the 12 points above. For instance, 𝑀4 is 
defined by the sequence

{𝝃1,… ,𝝃7} = {𝒑1,𝒑1,𝒑1,𝒑1,𝒒3,1,𝒒3,𝒒2,1}.

The B-recurrence relation may be used to compute each of them. We define the following set of 51 (scaled) simplex splines:
5

 ∶= {𝐵𝑖 ∶=𝑤𝑖𝑀𝑖, 𝑖 = 1,… ,51}, (5)
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Fig. 5. Sequences of knots for a set of simplex spline basis functions for 𝕊3
4(ΔWS4 ). Each black disc shows the position of a knot and the number inside indicates its 

multiplicity.

with the scaling factors given by

𝑤𝑖 ∶=
|Δ|
480

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪

2, 𝑖 = 1,2,3,
4, 𝑖 = 4,… ,9,
6, 𝑖 = 10,… ,15,
8, 𝑖 = 16,… ,24,
12, 𝑖 = 25,… ,30,
14, 𝑖 = 31,32,33,
18, 𝑖 = 34,… ,39,
8, 𝑖 = 40,… ,45,
9, 𝑖 = 46,47,48,

(6)
6

⎪⎩15, 𝑖 = 49,50,51.
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Here |Δ| stands for the area of Δ. Note that the scaling factors sum up to |Δ|.
There are eleven different types of simplex splines in . For each type, a representative 𝐵𝑖 is depicted in Figs. 11–21 in the 

appendix; the remaining ones can be obtained by symmetry. On any edge of Δ, there are eight nonzero basis functions. Their 
restrictions to that edge are nothing but the set of univariate 𝐶3 quartic B-splines defined on a uniform open-knot sequence with 
three interior knots. For instance, for the edge 𝒑1𝒑2, they correspond to the univariate quartic B-splines on the knot sequence specified 
by {𝒑1, 𝒑1, 𝒑1, 𝒑1, 𝒑1, 𝒒3,1, 𝒒3, 𝒒3,2, 𝒑2, 𝒑2, 𝒑2, 𝒑2, 𝒑2}.

Theorem 1. The simplex splines {𝐵1, … , 𝐵51} in (5) form a nonnegative partition of unity basis for the space 𝕊3
4(ΔWS4 ).

Proof. Let 𝐵 be one of the functions 𝐵𝑖. We first prove that 𝐵 belongs to the space 𝕊3
4(ΔWS4 ). Since 𝐵 has seven knots, it is a 

piecewise quartic polynomial. Moreover, since the knots of 𝐵 are a subset of the knots shown in Fig. 4, the knot lines of 𝐵 are a 
subset of the knot lines in the complete graph; see Fig. 1 (right). We also see that each interior knot line contains at most two knots, 
so 𝐵 has 𝐶3 smoothness according to the smoothness property of simplex splines; see Section 2.2. It follows that 𝐵 ∈ 𝕊3

4(ΔWS4 ).
We now focus on the property of linear independence. Using the 𝐴𝐵𝐶 formulas for simplex splines and the scaling factors in (6), 

we compute values and derivatives of 𝐵 corresponding to the following 51 operators: 𝜌1, … , 𝜌30 are related to the vertices,

𝜌1(𝑓 ) ∶= 𝑓 (𝒑1), 𝜌2(𝑓 ) ∶= 𝑓 (𝒑2), 𝜌3(𝑓 ) ∶= 𝑓 (𝒑3),

𝜌4(𝑓 ) ∶=𝐷𝒑1𝒑2𝑓 (𝒑1), 𝜌5(𝑓 ) ∶=𝐷𝒑1𝒑3𝑓 (𝒑1), 𝜌6(𝑓 ) ∶=𝐷𝒑2𝒑3𝑓 (𝒑2),

𝜌7(𝑓 ) ∶=𝐷𝒑2𝒑1𝑓 (𝒑2), 𝜌8(𝑓 ) ∶=𝐷𝒑3𝒑1𝑓 (𝒑3), 𝜌9(𝑓 ) ∶=𝐷𝒑3𝒑2𝑓 (𝒑3),

𝜌10(𝑓 ) ∶=𝐷2
𝒑1𝒑2

𝑓 (𝒑1), 𝜌11(𝑓 ) ∶=𝐷2
𝒑1𝒑3

𝑓 (𝒑1), 𝜌12(𝑓 ) ∶=𝐷2
𝒑2𝒑3

𝑓 (𝒑2),

𝜌13(𝑓 ) ∶=𝐷2
𝒑2𝒑1

𝑓 (𝒑2), 𝜌14(𝑓 ) ∶=𝐷2
𝒑3𝒑1

𝑓 (𝒑3), 𝜌15(𝑓 ) ∶=𝐷2
𝒑3𝒑2

𝑓 (𝒑3),

𝜌16(𝑓 ) ∶=𝐷𝒑1𝒑2𝐷𝒑1𝒑3𝑓 (𝒑1), 𝜌17(𝑓 ) ∶=𝐷𝒑2𝒑3𝐷𝒑2𝒑1𝑓 (𝒑2), 𝜌18(𝑓 ) ∶=𝐷𝒑3𝒑1𝐷𝒑3𝒑2𝑓 (𝒑3),

𝜌19(𝑓 ) ∶=𝐷3
𝒑1𝒑2

𝑓 (𝒑1), 𝜌20(𝑓 ) ∶=𝐷3
𝒑1𝒑3

𝑓 (𝒑1), 𝜌21(𝑓 ) ∶=𝐷3
𝒑2𝒑3

𝑓 (𝒑2),

𝜌22(𝑓 ) ∶=𝐷3
𝒑2𝒑1

𝑓 (𝒑2), 𝜌23(𝑓 ) ∶=𝐷3
𝒑3𝒑1

𝑓 (𝒑3), 𝜌24(𝑓 ) ∶=𝐷3
𝒑3𝒑2

𝑓 (𝒑3),

𝜌25(𝑓 ) ∶=𝐷2
𝒑1𝒑2

𝐷𝒑1𝒑3𝑓 (𝒑1), 𝜌26(𝑓 ) ∶=𝐷2
𝒑1𝒑3

𝐷𝒑1𝒑2𝑓 (𝒑1), 𝜌27(𝑓 ) ∶=𝐷2
𝒑2𝒑3

𝐷𝒑2𝒑1𝑓 (𝒑2),

𝜌28(𝑓 ) ∶=𝐷2
𝒑2𝒑1

𝐷𝒑2𝒑3𝑓 (𝒑2), 𝜌29(𝑓 ) ∶=𝐷2
𝒑3𝒑1

𝐷𝒑3𝒑2𝑓 (𝒑3), 𝜌30(𝑓 ) ∶=𝐷2
𝒑3𝒑2

𝐷𝒑3𝒑1𝑓 (𝒑3);

(7)

𝜌31, … , 𝜌48 are related to the edges,

𝜌31(𝑓 ) ∶=𝐷𝒒3𝒑3𝑓 (𝒒3), 𝜌32(𝑓 ) ∶=𝐷𝒒1𝒑1𝑓 (𝒒1), 𝜌33(𝑓 ) ∶=𝐷𝒒2𝒑2𝑓 (𝒒2),

𝜌34(𝑓 ) ∶=𝐷2
𝒒3,1𝒑3

𝑓 (𝒒3,1), 𝜌35(𝑓 ) ∶=𝐷2
𝒒2,1𝒑2

𝑓 (𝒒2,1), 𝜌36(𝑓 ) ∶=𝐷2
𝒒1,2𝒑1

𝑓 (𝒒1,2),

𝜌37(𝑓 ) ∶=𝐷2
𝒒3,2𝒑3

𝑓 (𝒒3,2), 𝜌38(𝑓 ) ∶=𝐷2
𝒒2,3𝒑2

𝑓 (𝒒2,3), 𝜌39(𝑓 ) ∶=𝐷2
𝒒1,3𝒑1

𝑓 (𝒒1,3),

𝜌40(𝑓 ) ∶=𝐷3
𝒒3,1𝒑3

𝑓 (𝒒3,1), 𝜌41(𝑓 ) ∶=𝐷3
𝒒2,1𝒑2

𝑓 (𝒒2,1), 𝜌42(𝑓 ) ∶=𝐷3
𝒒1,2𝒑1

𝑓 (𝒒1,2),

𝜌43(𝑓 ) ∶=𝐷3
𝒒3,2𝒑3

𝑓 (𝒒3,2), 𝜌44(𝑓 ) ∶=𝐷3
𝒒2,3𝒑2

𝑓 (𝒒2,3), 𝜌45(𝑓 ) ∶=𝐷3
𝒒1,3𝒑1

𝑓 (𝒒1,3),

𝜌46(𝑓 ) ∶=𝐷3
𝒒3𝒑3

𝑓 (𝒒3), 𝜌47(𝑓 ) ∶=𝐷3
𝒒1𝒑1

𝑓 (𝒒1), 𝜌48(𝑓 ) ∶=𝐷3
𝒒2𝒑2

𝑓 (𝒒2);

(8)

and the final 𝜌49, 𝜌50, and 𝜌51 are related to the triangle,

𝜌49(𝑓 ) ∶= 𝑓 (𝒗3), 𝜌50(𝑓 ) ∶= 𝑓 (𝒗1), 𝜌51(𝑓 ) ∶= 𝑓 (𝒗2), (9)

where

𝒗3 ∶=
3
8
𝒑1 +

3
8
𝒑2 +

1
4
𝒑3, 𝒗1 ∶=

3
8
𝒑2 +

3
8
𝒑3 +

1
4
𝒑1, 𝒗2 ∶=

3
8
𝒑3 +

3
8
𝒑1 +

1
4
𝒑2. (10)

The computed values are shown in Tables 3–5 in the appendix. The matrix [𝜌𝑗 (𝐵𝑖)] ∈ ℝ51×51 is block triangular with nonsingular 
diagonal blocks, so linear independence of the set of functions {𝐵1, … , 𝐵51} follows. As a consequence, due to (2), these functions 
form a basis of the space 𝕊3

4(ΔWS4 ). At the same time, we may conclude linear independence of the set of operators {𝜌1, … , 𝜌51}
defined on 𝕊3

4(ΔWS4 ).
Simplex splines are nonnegative, so it only remains to prove that the functions in (5) sum up to one on Δ. A direct inspection of 

Tables 3–5 shows that

𝜌𝑗

( 51∑
𝑖=1

𝐵𝑖

)
=

51∑
𝑖=1

𝜌𝑗 (𝐵𝑖) = 𝜌𝑗 (1), 𝑗 = 1,… ,51.
7

Since the operators 𝜌𝑗 are linearly independent, ∑51
𝑖=1𝐵𝑖 must be equal to the unity function which belongs to 𝕊3

4(ΔWS4 ). □
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Fig. 6. Hermite degrees of freedom on the WS4 split. Left: (11), (12), (13), and (16). Right: (14) and (15).

The proof of Theorem 1 implies that we can formulate a Hermite interpolation problem to characterize any spline in 𝕊3
4(ΔWS4 ); 

see also [31, Theorem 7.28].

Corollary 2. For given data 𝑓𝑘,𝛼,𝛽 , 𝑔𝑘, 𝑔𝑘,𝑙 , 𝑔̄𝑘, 𝑔̄𝑘,𝑙 , and ℎ𝑘 there exists a unique spline 𝑠 ∈ 𝕊3
4(ΔWS4 ) such that

𝐷𝛼
𝑥𝐷

𝛽
𝑦𝑠(𝒑𝑘) = 𝑓𝑘,𝛼,𝛽 , 0 ≤ 𝛼 + 𝛽 ≤ 3, 𝑘 = 1,2,3, (11)

𝐷𝒏𝑘 𝑠(𝒒𝑘) = 𝑔𝑘, 𝑘 = 1,2,3, (12)

𝐷2
𝒏𝑘
𝑠(𝒒𝑘,𝑙) = 𝑔𝑘,𝑙, 𝑘, 𝑙 = 1,2,3, 𝑘 ≠ 𝑙, (13)

𝐷3
𝒏𝑘
𝑠(𝒒𝑘) = 𝑔̄𝑘, 𝑘 = 1,2,3, (14)

𝐷3
𝒏𝑘
𝑠(𝒒𝑘,𝑙) = 𝑔̄𝑘,𝑙 , 𝑘, 𝑙 = 1,2,3, 𝑘 ≠ 𝑙, (15)

𝑠(𝒗𝑘) = ℎ𝑘, 𝑘 = 1,2,3, (16)

where 𝒏𝑘 is the normal (or any nonparallel) direction of the edge opposite to vertex 𝒑𝑘, and the points 𝒒𝑘,𝑙 , 𝒒𝑘, and 𝒗𝑘 are defined in (3), 
(4), and (10), respectively.

A schematic visualization of the Hermite degrees of freedom specified in Corollary 2 is shown in Fig. 6 using graphical symbols 
that are common in finite element literature; see, e.g., [3].

3.2. Domain points

For the scaled simplex spline basis (5), we now compute special points in Δ that are often used in geometric modeling to give a 
geometric interpretation to the representation of any element of 𝕊3

4(ΔWS4 ) in terms of the considered spline basis. To this end, we 
solve the system

𝜌𝑗

( 51∑
𝑖=1

𝑏∗𝑖 (𝑓 )𝐵𝑖

)
= 𝜌𝑗 (𝑓 )

for the two functions 𝑓1(𝑥, 𝑦) ∶= 𝑥 and 𝑓2(𝑥, 𝑦) ∶= 𝑦. The points

𝒃∗𝑖 ∶= (𝑏∗𝑖 (𝑓1), 𝑏
∗
𝑖 (𝑓2)), 𝑖 = 1,… ,51, (17)

are called the domain points of the basis (5). Together with the partition of unity, the domain points provide an explicit representation 
of any affine function with respect to the basis (5). The barycentric coordinates with respect to the triangle Δ of the domain points 
(17), multiplied by the common factor 336, are given by

𝒃∗1 ∶ (336,0,0) , 𝒃∗2 ∶ (0,336,0) , 𝒃∗3 ∶ (0,0,336) ,

𝒃∗4 ∶ (315,21,0) , 𝒃∗5 ∶ (315,0,21) , 𝒃∗6 ∶ (0,315,21) ,

𝒃∗7 ∶ (21,315,0) , 𝒃∗8 ∶ (21,0,315) , 𝒃∗9 ∶ (0,21,315) ,

𝒃∗10 ∶ (273,63,0) , 𝒃∗11 ∶ (273,0,63) , 𝒃∗12 ∶ (0,273,63) ,
8

𝒃∗13 ∶ (63,273,0) , 𝒃∗14 ∶ (63,0,273) , 𝒃∗15 ∶ (0,63,273) ,
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Fig. 7. The domain points given by (18) for 𝕊3
4(ΔWS4 ). Only 48 distinct points are depicted; there are three pairs of coincident points, namely {𝒃∗40 , 𝒃∗41}, {𝒃∗42 , 𝒃∗43}, and 

{𝒃∗44 , 𝒃∗45}.

𝒃∗16 ∶ (294,21,21) , 𝒃∗17 ∶ (21,294,21) , 𝒃∗18 ∶ (21,21,294) ,

𝒃∗19 ∶ (210,126,0) , 𝒃∗20 ∶ (210,0,126) , 𝒃∗21 ∶ (0,210,126) ,

𝒃∗22 ∶ (126,210,0) , 𝒃∗23 ∶ (126,0,210) , 𝒃∗24 ∶ (0,126,210) ,

𝒃∗25 ∶ (252,63,21) , 𝒃∗26 ∶ (252,21,63) , 𝒃∗27 ∶ (21,252,63) ,

𝒃∗28 ∶ (63,252,21) , 𝒃∗29 ∶ (63,21,252) , 𝒃∗30 ∶ (21,63,252) ,

𝒃∗31 ∶ (162,162,12) , 𝒃∗32 ∶ (12,162,162) , 𝒃∗33 ∶ (162,12,162) ,

𝒃∗34 ∶ (196,105,35) , 𝒃∗35 ∶ (196,35,105) , 𝒃∗36 ∶ (35,195,105) ,

𝒃∗37 ∶ (105,196,35) , 𝒃∗38 ∶ (105,35,196) , 𝒃∗39 ∶ (35,105,196) ,

𝒃∗40 ∶ (210,63,63) , 𝒃∗41 ∶ (210,63,63) , 𝒃∗42 ∶ (63,210,63) ,

𝒃∗43 ∶ (63,210,63) , 𝒃∗44 ∶ (63,63,210) , 𝒃∗45 ∶ (63,63,210) ,

𝒃∗46 ∶ (84,84,168) , 𝒃∗47 ∶ (168,84,84) , 𝒃∗48 ∶ (84,168,84) ,

𝒃∗49 ∶ (140,140,56) , 𝒃∗50 ∶ (56,140,140) , 𝒃∗51 ∶ (140,56,140) .

(18)

These points are depicted in Fig. 7. When representing a spline 𝑠 ∈ 𝕊3
4(ΔWS4 ) in the basis (5),

𝑠 =
51∑
𝑖=1

𝑏𝑖𝐵𝑖, (19)

the corresponding control points are defined as (𝒃∗𝑖 , 𝑏𝑖), 𝑖 = 1, … , 51 which are usually connected into a control net. Unfortunately, the 
domain points in (18) are not all distinct; there are three pairs of coincident points, namely {𝒃∗40, 𝒃

∗
41}, {𝒃∗42, 𝒃

∗
43}, and {𝒃∗44, 𝒃

∗
45}. This 

makes their use of limited interest in geometric modeling.

3.3. A Marsden-like identity

We now provide a Marsden-like identity to represent any quartic polynomial with respect to the scaled simplex spline basis (5). 
The results are obtained by direct computation.

Theorem 3. Given the triangle Δ = ⟨𝒑1, 𝒑2, 𝒑3⟩, we first introduce the points

𝒖1 ∶=
1
7
𝒑1 +

3
7
𝒑2 +

3
7
𝒑3, 𝒖2 ∶=

3
7
𝒑1 +

1
7
𝒑2 +

3
7
𝒑3, 𝒖3 ∶=

3
7
𝒑1 +

3
7
𝒑2 +

1
7
𝒑3,

𝒘1 ∶=
1
3
𝒑1 +

1
2
𝒑2 +

1
6
𝒑3, 𝒘2 ∶=

1
3
𝒑1 +

1
6
𝒑2 +

1
2
𝒑3, 𝒘3 ∶=

1
6
𝒑1 +

1
3
𝒑2 +

1
2
𝒑3,
9

𝒘4 ∶=
1
2
𝒑1 +

1
3
𝒑2 +

1
6
𝒑3, 𝒘5 ∶=

1
2
𝒑1 +

1
6
𝒑2 +

1
3
𝒑3, 𝒘6 ∶=

1
6
𝒑1 +

1
2
𝒑2 +

1
3
𝒑3,
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Table 1

The dual points 𝒓𝑖,𝑗 , 𝑖 = 1, … , 48, 𝑗 = 1, … , 4 used in the Marsden-like identity (20).

𝑖 1 2 3 4 5 6 7 8 9 10 11 12
𝒓𝑖,1 𝒑1 𝒑2 𝒑3 𝒑1 𝒑1 𝒑2 𝒑2 𝒑3 𝒑3 𝒑1 𝒑1 𝒑2
𝒓𝑖,2 𝒑1 𝒑2 𝒑3 𝒑1 𝒑1 𝒑2 𝒑2 𝒑3 𝒑3 𝒑1 𝒑1 𝒑2
𝒓𝑖,3 𝒑1 𝒑2 𝒑3 𝒑1 𝒑1 𝒑2 𝒑2 𝒑3 𝒑3 𝒒3,1 𝒒2,1 𝒒1,2
𝒓𝑖,4 𝒑1 𝒑2 𝒑3 𝒒3,1 𝒒2,1 𝒒1,2 𝒒3,2 𝒒2,3 𝒒1,3 𝒒3 𝒒2 𝒒1

𝑖 13 14 15 16 17 18 19 20 21 22 23 24
𝒓𝑖,1 𝒑2 𝒑3 𝒑3 𝒑1 𝒑2 𝒑3 𝒑1 𝒑1 𝒑2 𝒑2 𝒑3 𝒑3
𝒓𝑖,2 𝒑2 𝒑3 𝒑3 𝒑1 𝒑2 𝒑3 𝒒3 𝒒2 𝒒1 𝒒3 𝒒2 𝒒1
𝒓𝑖,3 𝒒3,2 𝒒2,3 𝒒1,3 𝒒3,1 𝒒3,2 𝒒1,3 𝒒3,1 𝒒2,3 𝒒1,2 𝒒3,1 𝒒2,3 𝒒1,2
𝒓𝑖,4 𝒒3 𝒒2 𝒒1 𝒒2,1 𝒒1,2 𝒒2,3 𝒒3,2 𝒒2,1 𝒒1,3 𝒒3,2 𝒒2,1 𝒒1,3

𝑖 25 26 27 28 29 30 31 32 33 34 35 36
𝒓𝑖,1 𝒑1 𝒑1 𝒑2 𝒑2 𝒑3 𝒑3 𝒒3 𝒒1 𝒒2 𝒒3 𝒒2 𝒒1
𝒓𝑖,2 𝒒3 𝒒2 𝒒1 𝒒3 𝒒2 𝒒1 𝒒3,1 𝒒1,2 𝒒2,3 𝒒3,1 𝒒3,1 𝒒3,2
𝒓𝑖,3 𝒒3,1 𝒒3,1 𝒒3,2 𝒒3,2 𝒒1,3 𝒒1,3 𝒒3,2 𝒒1,3 𝒒2,1 𝒒2,1 𝒒2,1 𝒒1,2
𝒓𝑖,4 𝒒2,1 𝒒2,1 𝒒1,2 𝒒1,2 𝒒2,3 𝒒2,3 𝒖3 𝒖1 𝒖2 𝒘1 𝒘2 𝒘3

𝑖 37 38 39 40 41 42 43 44 45 46 47 48
𝒓𝑖,1 𝒒3 𝒒2 𝒒1 𝒒2 𝒒2 𝒒1 𝒒1 𝒒1 𝒒1 𝒑3 𝒑1 𝒑2
𝒓𝑖,2 𝒒3,2 𝒒1,3 𝒒1,3 𝒒3,1 𝒒3,1 𝒒3,2 𝒒3,2 𝒒1,3 𝒒1,3 𝒒1 𝒒1 𝒒1
𝒓𝑖,3 𝒒1,2 𝒒2,3 𝒒2,3 𝒒2,1 𝒒2,1 𝒒1,2 𝒒1,2 𝒒2,3 𝒒2,3 𝒒2 𝒒2 𝒒2
𝒓𝑖,4 𝒘4 𝒘5 𝒘6 𝒒3 𝒒3 𝒒3 𝒒3 𝒒2 𝒒2 𝒒3 𝒒3 𝒒3

and recall the points 𝒒𝑖,𝑗 and 𝒒𝑖 defined in (3) and (4), respectively. We have the identity

(1 + 𝒚𝑇 𝒙)4 =
51∑
𝑖=1

𝜓𝑖(𝒚)𝐵𝑖(𝒙), 𝒚 ∈ℝ2, 𝒙 ∈Δ, (20)

where the functions 𝜓𝑖 are called dual polynomials. The first 48 dual polynomials can be written in the form

𝜓𝑖(𝒚) ∶= (1 + 𝒚𝑇 𝒓𝑖,1)(1 + 𝒚𝑇 𝒓𝑖,2)(1 + 𝒚𝑇 𝒓𝑖,3)(1 + 𝒚𝑇 𝒓𝑖,4), 𝑖 = 1,… ,48

in terms of the dual points 𝒓𝑖,𝑗 specified in Table 1, and

𝝍49(𝒚) ∶= (1 + 𝒚𝑇 𝒒3)
(
− 32

5
(1 + 𝒚𝑇 𝒒3)3 +

11
15

(1 + 𝒚𝑇 𝒒3,1)(1 + 𝒚𝑇 𝒒3)(1 + 𝒚𝑇 𝒒3,2)

+ 29
5
(1 + 𝒚𝑇 𝒒3)(1 + 𝒚𝑇 𝒒3,2)(1 + 𝒚𝑇 𝒒1,2) −

59
15

(1 + 𝒚𝑇 𝒒3,2)(1 + 𝒚𝑇 𝒒1,2)(1 + 𝒚𝑇 𝒒1)

+ 11
5
(1 + 𝒚𝑇 𝒒1,2)(1 + 𝒚𝑇 𝒒1)(1 + 𝒚𝑇 𝒒1,3) −

11
15

(1 + 𝒚𝑇 𝒒1)(1 + 𝒚𝑇 𝒒1,3)(1 + 𝒚𝑇 𝒒2,3)

− 11
15

(1 + 𝒚𝑇 𝒒1,3)(1 + 𝒚𝑇 𝒒2,3)(1 + 𝒚𝑇 𝒒2) +
29
5
(1 + 𝒚𝑇 𝒒3,1)(1 + 𝒚𝑇 𝒒3)(1 + 𝒚𝑇 𝒒2,1)

− 59
15

(1 + 𝒚𝑇 𝒒3,1)(1 + 𝒚𝑇 𝒒2)(1 + 𝒚𝑇 𝒒2,1) +
11
5
(1 + 𝒚𝑇 𝒒2,3)(1 + 𝒚𝑇 𝒒2)(1 + 𝒚𝑇 𝒒2,1)

)
,

𝝍50(𝒚) ∶= (1 + 𝒚𝑇 𝒒1)
(
− 32

5
(1 + 𝒚𝑇 𝒒1)3 +

11
5
(1 + 𝒚𝑇 𝒒3,1)(1 + 𝒚𝑇 𝒒3)(1 + 𝒚𝑇 𝒒3,2)

− 59
15

(1 + 𝒚𝑇 𝒒3)(1 + 𝒚𝑇 𝒒3,2)(1 + 𝒚𝑇 𝒒1,2) +
29
5
(1 + 𝒚𝑇 𝒒3,2)(1 + 𝒚𝑇 𝒒1,2)(1 + 𝒚𝑇 𝒒1)

+ 11
15

(1 + 𝒚𝑇 𝒒1,2)(1 + 𝒚𝑇 𝒒1)(1 + 𝒚𝑇 𝒒1,3) +
29
5
(1 + 𝒚𝑇 𝒒1)(1 + 𝒚𝑇 𝒒1,3)(1 + 𝒚𝑇 𝒒2,3)

− 59
15

(1 + 𝒚𝑇 𝒒1,3)(1 + 𝒚𝑇 𝒒2,3)(1 + 𝒚𝑇 𝒒2) −
11
15

(1 + 𝒚𝑇 𝒒3,1)(1 + 𝒚𝑇 𝒒3)(1 + 𝒚𝑇 𝒒2,1)

− 11
15

(1 + 𝒚𝑇 𝒒3,1)(1 + 𝒚𝑇 𝒒2)(1 + 𝒚𝑇 𝒒2,1) +
11
5
(1 + 𝒚𝑇 𝒒2,3)(1 + 𝒚𝑇 𝒒2)(1 + 𝒚𝑇 𝒒2,1)

)
,

𝝍51(𝒚) ∶= (1 + 𝒚𝑇 𝒒2)
(
− 32

5
(1 + 𝒚𝑇 𝒒2)3 +

11
5
(1 + 𝒚𝑇 𝒒3,1)(1 + 𝒚𝑇 𝒒3)(1 + 𝒚𝑇 𝒒3,2)

− 11
15

(1 + 𝒚𝑇 𝒒3)(1 + 𝒚𝑇 𝒒3,2)(1 + 𝒚𝑇 𝒒1,2) −
11
15

(1 + 𝒚𝑇 𝒒3,2)(1 + 𝒚𝑇 𝒒1,2)(1 + 𝒚𝑇 𝒒1)

+ 11
5
(1 + 𝒚𝑇 𝒒1,2)(1 + 𝒚𝑇 𝒒1)(1 + 𝒚𝑇 𝒒1,3) −

59
15

(1 + 𝒚𝑇 𝒒1)(1 + 𝒚𝑇 𝒒1,3)(1 + 𝒚𝑇 𝒒2,3)

+ 29
5
(1 + 𝒚𝑇 𝒒1,3)(1 + 𝒚𝑇 𝒒2,3)(1 + 𝒚𝑇 𝒒2) −

59
15

(1 + 𝒚𝑇 𝒒3,1)(1 + 𝒚𝑇 𝒒3)(1 + 𝒚𝑇 𝒒2,1))

10

+ 29
5
(1 + 𝒚𝑇 𝒒3,1)(1 + 𝒚𝑇 𝒒2)(1 + 𝒚𝑇 𝒒2,1) +

11
15

(1 + 𝒚𝑇 𝒒2,3)(1 + 𝒚𝑇 𝒒2)(1 + 𝒚𝑇 𝒒2,1) .
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Fig. 8. Sequences of knots for a set of simplex spline basis functions for a subspace of 𝕊3
4(ΔWS4 ). Each black disc shows the position of a knot and the number inside 

indicates its multiplicity.

3.4. A proper subspace

As observed in Section 3.2, the domain points for the basis functions in (5) are not all distinct and this makes their use of limited 
interest in geometric modeling. We now provide a proper subspace of the space 𝕊3

4(ΔWS4 ), still containing ℙ4, which can be equipped 
with a simplex spline basis whose elements enjoy distinct domain points.

We consider the subspace spanned by the simplex splines identified by the knot sequences in Fig. 8 and scaled to form a partition 
of unity. We denote these functions by

̂ ∶= {𝐵1,… ,𝐵48}. (21)

It can be directly checked that

𝐵𝑖 =𝐵𝑖, 𝑖 = 1,… ,39,

𝐵40 =𝐵40 +𝐵41, 𝐵41 =𝐵42 +𝐵43, 𝐵42 =𝐵44 +𝐵45, (22)
11

𝐵𝑖 =𝐵𝑖+3, 𝑖 = 43,… ,48.
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Fig. 9. Left: The domain points for the subspace 𝕊̂3
4(ΔWS4 ). Right: A possible control net configuration.

From (22) we easily deduce that the domain points 𝒃̂∗𝑖 associated with the new set of functions in (21) are

𝒃̂
∗
𝑖 = 𝒃

∗
𝑖 , 𝑖 = 1,… ,39,

𝒃̂
∗
40 = 𝒃

∗
40 = 𝒃

∗
41, 𝒃̂

∗
41 = 𝒃

∗
42 = 𝒃

∗
43, 𝒃̂

∗
42 = 𝒃

∗
44 = 𝒃

∗
45,

𝒃̂
∗
𝑖 = 𝒃

∗
𝑖+3, 𝑖 = 43,… ,48.

(23)

These points are depicted in Fig. 9 (left) and a possible control net with triangular and hexagonal connectivity in Fig. 9 (right). Note 
that, contrarily to the domain points associated with the basis (5), the points in (23) are all distinct and therefore allow us to define 
a proper control net.

The distribution of the domain points in (23) makes the considered subspace particularly attractive from the geometric mod-
eling point of view. The following result ensures that the subspace also contains all quartic polynomials and so can provide full 
approximation power.

Proposition 4. Let 𝕊̂3
4(ΔWS4 ) be the subspace of 𝕊3

4(ΔWS4 ) spanned by the functions in (21). Then,

ℙ4 ⊂ 𝕊̂3
4(ΔWS4 ).

Proof. The result follows from (22) and from the expressions of the dual polynomials given in Theorem 3 for 𝑖 = 40, 41, 42, 43, 44,
45. □

4. 𝑪𝟑 quartic splines on general triangulations

In the previous section, we have provided a simplex spline basis for the space 𝕊3
4(ΔWS4 ) of 𝐶3 quartic splines on the WS4 split of 

a given triangle Δ. In this section, we discuss how the WS4 split can be used as refinement strategy to locally construct 𝐶3 quartic 
splines on general triangulations. Let  be a triangulation of a polygonal domain Ω and let WS4 denote its refinement obtained by 
taking the WS4 split of each triangle in  .

4.1. 𝐶3 quartic splines on WS4

Let us consider the space of 𝐶3 quartic splines on WS4 , i.e.,

𝕊3
4(WS4 ) ∶= {𝑠 ∈ 𝐶3(Ω) ∶ 𝑠|𝜏 ∈ ℙ4, 𝜏 is polygon in WS4}.

The unisolvency of the local Hermite interpolation problem stated in Corollary 2 implies that the dimension of the global space 
𝕊3
4(WS4 ) only depends on combinatorial properties of the triangulation. Indeed, for a given triangle Δ and any of its edges, say 
𝒑1𝒑2, the interpolation data (11)–(16) associated with points on the considered edge (namely 𝒑1, 𝒒3,1, 𝒒3, 𝒒3,2, and 𝒑2) completely 
characterize the values of the spline and its derivatives up to order three along the entire edge. More precisely, along this edge, 
any element of 𝕊3

4(ΔWS4 ) is a univariate 𝐶3 quartic spline with break points at 𝒑1, 𝒒3,1, 𝒒3, 𝒒3,2, and 𝒑2. Therefore, it is uniquely 
12

determined by its values and derivatives (in the direction of the edge) up to order three at the two vertices 𝒑1 and 𝒑2. Similarly, 
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along the edge, the first, second, and third derivatives (in any direction) of the spline are univariate 𝐶2 cubic, 𝐶1 quadratic, and 𝐶0

linear splines, respectively, with the same break points. The considered Hermite data also uniquely specify their values. Hence, we 
directly deduce that

dim(𝕊3
4(WS4 )) = 10𝑛𝑉 + 6𝑛𝐸 + 3𝑛𝑇 , (24)

where 𝑛𝑉 , 𝑛𝐸 , 𝑛𝑇 are the number of vertices, edges, and triangles of  , respectively; see also [31, Theorem 7.28].
Any spline function of 𝕊3

4(WS4 ) can be locally constructed on each (macro-)triangle Δ of  via the Hermite data (used in 
Corollary 2), and the corresponding spline piece on Δ can be represented in the form (19). Conversely, any function, which is 
represented locally in the form (19) on each Δ of  , is 𝐶3 smooth over each Δ of  but not necessary 𝐶3 smooth across the edges 
of  . For this reason we refer to the basis in (5) as local simplex spline basis for the space 𝕊3

4(WS4 ). Such a local basis plays the same 
role as Bernstein polynomials for spline spaces on triangulations that are not refined.

A global basis for the space 𝕊3
4(WS4 ) can be constructed by using the technique of minimal determining sets [13], following the 

same line of arguments as in [15, Section 4.2]. However, paraphrasing [13, Section 5.8], such a global basis has mainly a theoretical 
interest. For computation in 𝕊3

4(WS4 ), it is more convenient to work directly with the local representations provided by the basis in 
(5), rather than with the global basis for the full spline space. The smoothness relations between the local representations across the 
edges of the triangulation  are a crucial ingredient in the construction of minimal determining sets. In the next two sections, we 
will derive conditions on the local spline coefficients in (19) that ensure global smoothness across the edges of  .

4.2. Global 𝐶2 smoothness conditions

In this section, we seek conditions on the local spline coefficients in (19) to guarantee 𝐶0, 𝐶1, and 𝐶2 smoothness across a 
common edge of two adjacent triangles of  . In Section 4.3, we will address 𝐶3 smoothness. To this end, we start by defining specific 
operators, similar to the ones in (7)–(9): 𝜍1, … , 𝜍6 are related to first derivatives at points on the edge 𝒑1𝒑2,

𝜍1(𝑓 ) ∶=𝐷𝒑1𝒑3𝑓 (𝒑1), 𝜍2(𝑓 ) ∶=𝐷𝒑1𝒑2𝑓 (𝒑1), 𝜍3(𝑓 ) ∶=𝐷𝒑1𝒑3𝑓 (𝒒3),

𝜍4(𝑓 ) ∶=𝐷𝒑1𝒑2𝑓 (𝒒3), 𝜍5(𝑓 ) ∶=𝐷𝒑1𝒑3𝑓 (𝒑2), 𝜍6(𝑓 ) ∶=𝐷𝒑1𝒑2𝑓 (𝒑2);
(25)

𝜍7, … , 𝜍18 are related to second derivatives at points on the edge 𝒑1𝒑2,

𝜍7(𝑓 ) ∶=𝐷2
𝒑1𝒑3

𝑓 (𝒑1), 𝜍8(𝑓 ) ∶=𝐷𝒑1𝒑3𝐷𝒑1𝒑2𝑓 (𝒑1), 𝜍9(𝑓 ) ∶=𝐷2
𝒑1𝒑2

𝑓 (𝒑1),

𝜍10(𝑓 ) ∶=𝐷2
𝒑1𝒑3

𝑓 (𝒒3,1), 𝜍11(𝑓 ) ∶=𝐷𝒑1𝒑3𝐷𝒑1𝒑2𝑓 (𝒒3,1), 𝜍12(𝑓 ) ∶=𝐷2
𝒑1𝒑2

𝑓 (𝒒3,1),

𝜍13(𝑓 ) ∶=𝐷2
𝒑1𝒑3

𝑓 (𝒒3,2), 𝜍14(𝑓 ) ∶=𝐷𝒑1𝒑3𝐷𝒑1𝒑2𝑓 (𝒒3,2), 𝜍15(𝑓 ) ∶=𝐷2
𝒑1𝒑2

𝑓 (𝒒3,2),

𝜍16(𝑓 ) ∶=𝐷2
𝒑1𝒑3

𝑓 (𝒑2), 𝜍17(𝑓 ) ∶=𝐷𝒑1𝒑3𝐷𝒑1𝒑2𝑓 (𝒑2), 𝜍18(𝑓 ) ∶=𝐷2
𝒑1𝒑2

𝑓 (𝒑2);

(26)

and 𝜍19, … , 𝜍38 are related to third derivatives at points on the edge 𝒑1𝒑2,

𝜍19(𝑓 ) ∶=𝐷3
𝒑1𝒑3

𝑓 (𝒑1), 𝜍20(𝑓 ) ∶=𝐷2
𝒑1𝒑3

𝐷𝒑1𝒑2𝑓 (𝒑1), 𝜍21(𝑓 ) ∶=𝐷𝒑1𝒑3𝐷
2
𝒑1𝒑2

𝑓 (𝒑1),

𝜍22(𝑓 ) ∶=𝐷3
𝒑1𝒑2

𝑓 (𝒑1), 𝜍23(𝑓 ) ∶=𝐷3
𝒑1𝒑3

𝑓 (𝒒3,1), 𝜍24(𝑓 ) ∶=𝐷2
𝒑1𝒑3

𝐷𝒑1𝒑2𝑓 (𝒒3,1),

𝜍25(𝑓 ) ∶=𝐷𝒑1𝒑3𝐷
2
𝒑1𝒑2

𝑓 (𝒒3,1), 𝜍26(𝑓 ) ∶=𝐷3
𝒑1𝒑2

𝑓 (𝒒3,1), 𝜍27(𝑓 ) ∶=𝐷3
𝒑1𝒑3

𝑓 (𝒒3),

𝜍28(𝑓 ) ∶=𝐷2
𝒑1𝒑3

𝐷𝒑1𝒑2𝑓 (𝒒3), 𝜍29(𝑓 ) ∶=𝐷𝒑1𝒑3𝐷
2
𝒑1𝒑2

𝑓 (𝒒3), 𝜍30(𝑓 ) ∶=𝐷3
𝒑1𝒑2

𝑓 (𝒒3),

𝜍31(𝑓 ) ∶=𝐷3
𝒑1𝒑3

𝑓 (𝒒3,2), 𝜍32(𝑓 ) ∶=𝐷2
𝒑1𝒑3

𝐷𝒑1𝒑2𝑓 (𝒒3,2), 𝜍33(𝑓 ) ∶=𝐷𝒑1𝒑3𝐷
2
𝒑1𝒑2

𝑓 (𝒒3,2),

𝜍34(𝑓 ) ∶=𝐷3
𝒑1𝒑2

𝑓 (𝒒3,2), 𝜍35(𝑓 ) ∶=𝐷3
𝒑1𝒑3

𝑓 (𝒑2), 𝜍36(𝑓 ) ∶=𝐷2
𝒑1𝒑3

𝐷𝒑1𝒑2𝑓 (𝒑2),

𝜍37(𝑓 ) ∶=𝐷𝒑1𝒑3𝐷
2
𝒑1𝒑2

𝑓 (𝒑2), 𝜍38(𝑓 ) ∶=𝐷3
𝒑1𝒑2

𝑓 (𝒑2).

(27)

We apply them to all the basis functions in (5); the resulting values are collected in Tables 6–8 in the appendix.

Theorem 5. Suppose the triangles Δ𝐿 ∶= ⟨𝒑1, 𝒑2, 𝒑3⟩ and Δ𝑅 ∶= ⟨𝒑1, 𝒑2, 𝒑4⟩ share the common edge with vertices 𝒑1, 𝒑2, and let

𝒑4 = 𝜂1𝒑1 + 𝜂2𝒑2 + 𝜂3𝒑3, 𝜂1 + 𝜂2 + 𝜂3 = 1. (28)

Let {𝐵𝐿
𝑖
, 𝑖 = 1, … , 51} and {𝐵𝑅

𝑖
, 𝑖 = 1, … , 51} be the scaled simplex spline basis defined by the knot sequences in Fig. 5 on Δ𝐿 and Δ𝑅, 

respectively. We assume the numbering of the basis functions in agreement with Fig. 5. Let us consider the spline functions

𝑠𝐿 ∶=
51∑
𝑖=1

𝑏𝐿𝑖 𝐵
𝐿
𝑖 , 𝑠𝑅 ∶=

51∑
𝑖=1

𝑏𝑅𝑖 𝐵
𝑅
𝑖 .
13

We have
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• 𝑠𝐿, 𝑠𝑅 join 𝐶0 across the common edge if and only if

𝑏𝑅𝑖 = 𝑏𝐿𝑖 , 𝑖 = 1,2,4,7,10,13,19,22; (29)

• 𝑠𝐿, 𝑠𝑅 join 𝐶1 across the common edge if and only if they join 𝐶0 and in addition

𝑏𝑅5 = 𝜂1𝑏
𝐿
1 + 𝜂2𝑏

𝐿
4 + 𝜂3𝑏

𝐿
5 ,

𝑏𝑅16 =
(
𝜂1 +

𝜂2
2

)
𝑏𝐿4 +

𝜂2
2
𝑏𝐿10 + 𝜂3𝑏

𝐿
16,

𝑏𝑅25 =
(
𝜂1 +

2
3
𝜂2

)
𝑏𝐿10 +

𝜂2
3
𝑏𝐿19 + 𝜂3𝑏

𝐿
25,

𝑏𝑅31 =
(4
7
𝜂1 +

3
7
𝜂2

)
𝑏𝐿19 +

(3
7
𝜂1 +

4
7
𝜂2

)
𝑏𝐿22 + 𝜂3𝑏

𝐿
31,

𝑏𝑅28 =
(
𝜂2 +

2
3
𝜂1

)
𝑏𝐿13 +

𝜂1
3
𝑏𝐿22 + 𝜂3𝑏

𝐿
28,

𝑏𝑅17 =
(
𝜂2 +

𝜂1
2

)
𝑏𝐿7 +

𝜂1
2
𝑏𝐿13 + 𝜂3𝑏

𝐿
17,

𝑏𝑅6 = 𝜂1𝑏
𝐿
7 + 𝜂2𝑏

𝐿
2 + 𝜂3𝑏

𝐿
6 ;

(30)

• 𝑠𝐿, 𝑠𝑅 join 𝐶2 across the common edge if and only if they join 𝐶1 and in addition

𝑏𝑅11 = 𝜂1(2𝜂1 − 1)𝑏𝐿1 + 𝜂2(3𝜂1 − 𝜂3)𝑏𝐿4 + 𝜂3(3𝜂1 − 𝜂2)𝑏𝐿5 + 𝜂22𝑏
𝐿
10 + 𝜂23𝑏

𝐿
11 + 4𝜂3𝜂2𝑏𝐿16,

𝑏𝑅26 =
1
2
(2𝜂1 + 𝜂2)(𝜂1 − 𝜂3)𝑏𝐿4 +

𝜂2
6
(9𝜂1 + 4𝜂2 − 3𝜂3)𝑏𝐿10 + 𝜂3(3𝜂1 + 𝜂2)𝑏𝐿16 +

1
3
𝜂22𝑏

𝐿
19 + 2𝜂3𝜂2𝑏𝐿25 + 𝜂23𝑏

𝐿
26,

𝑏𝑅34 =
1
27

(2𝜂2 + 3𝜂1)(𝜂2 + 3𝜂1 − 3𝜂3)𝑏𝐿10 +
1
54

(
12𝜂1(2𝜂2 + 3) + 𝜂2(17𝜂2 + 21)

)
𝑏𝐿19

+ 1
18

(3𝜂1 + 4𝜂2)(𝜂2 − 3𝜂3)𝑏𝐿22 +
𝜂3
9
(9𝜂1 + 5𝜂2)𝑏𝐿25 +

7
18
𝜂3(3𝜂1 + 5𝜂2)𝑏𝐿31 + 𝜂23𝑏

𝐿
34,

𝑏𝑅37 =
1
27

(2𝜂1 + 3𝜂2)(𝜂1 + 3𝜂2 − 3𝜂3)𝑏𝐿13 +
1
54

(
12𝜂2(2𝜂1 + 3) + 𝜂1(17𝜂1 + 21)

)
𝑏𝐿22

+ 1
18

(3𝜂2 + 4𝜂1)(𝜂1 − 3𝜂3)𝑏𝐿19 +
𝜂3
9
(9𝜂2 + 5𝜂1)𝑏𝐿28 +

7
18
𝜂3(3𝜂2 + 5𝜂1)𝑏𝐿31 + 𝜂23𝑏

𝐿
37,

𝑏𝑅27 =
1
2
(2𝜂2 + 𝜂1)(𝜂2 − 𝜂3)𝑏𝐿7 +

𝜂1
6
(9𝜂2 + 4𝜂1 − 3𝜂3)𝑏𝐿13 + 𝜂3(3𝜂2 + 𝜂1)𝑏𝐿17 +

1
3
𝜂21𝑏

𝐿
22 + 2𝜂3𝜂1𝑏𝐿28 + 𝜂23𝑏

𝐿
27,

𝑏𝑅12 = 𝜂2(2𝜂2 − 1)𝑏𝐿2 + 𝜂1(3𝜂2 − 𝜂3)𝑏𝐿7 + 𝜂3(3𝜂2 − 𝜂1)𝑏𝐿6 + 𝜂21𝑏
𝐿
13 + 𝜂23𝑏

𝐿
12 + 4𝜂3𝜂1𝑏𝐿17.

(31)

Proof. First, we show that the conditions of (29) lead to 𝐶0 smoothness across the common edge 𝒑1𝒑2. The restrictions onto this 
edge of the two functions 𝑠𝐿 and 𝑠𝑅 are univariate 𝐶3 quartic splines with (interior) knots at the points 𝒒3,1, 𝒒3, and 𝒒3,2. In particular, 
considering the corresponding basis functions {𝐵𝐿

𝑖
, 𝑖 = 1, … , 51} and {𝐵𝑅

𝑖
, 𝑖 = 1, … , 51}, the only elements that are nonzero along the 

edge are

(𝐵𝑅
𝑖 )|𝒑1𝒑2 = (𝐵𝐿

𝑖 )|𝒑1𝒑2 , 𝑖 = 1,2,4,7,10,13,19,22,

and these are nothing but the univariate quartic B-splines on the knot sequence specified by {𝒑1, 𝒑1, 𝒑1, 𝒑1, 𝒑1, 𝒒3,1, 𝒒3, 𝒒3,2, 𝒑2, 𝒑2, 𝒑2,
𝒑2, 𝒑2}. They are linearly independent and so 𝐶0 smoothness is equivalent to agreement of the corresponding coefficients. This proves 
(29).

Next, we consider 𝐶1 smoothness across the common edge. It suffices to prove that along the edge 𝒑1𝒑2 the functions 𝐷𝒑1𝒑3𝑠
𝐿

and 𝐷𝒑1𝒑3𝑠
𝑅 agree. These functions are univariate 𝐶2 cubic splines with (interior) knots at the points 𝒒3,1, 𝒒3, and 𝒒3,2. Therefore, 

each of them is uniquely determined by its value and its first and second derivative at the two endpoints of the edge and by the value 
at the midpoint 𝒒3. From (28) we know that

𝒑1𝒑3 =
1
𝜂3
𝒑1𝒑4 −

𝜂2
𝜂3
𝒑1𝒑2,

so that

𝐷𝒑1𝒑3 =
1
𝜂3
𝐷𝒑1𝒑4 −

𝜂2
𝜂3
𝐷𝒑1𝒑2 .

By employing the values in Table 6 we get

𝐷𝒑1𝒑3𝑠
𝐿(𝒑1) = −16𝑏𝐿1 + 16𝑏𝐿5 ,

𝐷𝒑1𝒑3𝑠
𝑅(𝒑1) =

1
𝜂3

(−16𝑏𝑅1 + 16𝑏𝑅5 ) −
𝜂2
𝜂3

(−16𝑏𝑅1 + 16𝑏𝑅4 ).

With the aid of the 𝐶0 smoothness conditions, equating the above expressions results in the first condition of (30). With a similar 
14

line of arguments, we can show the remaining six conditions of (30).
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Finally, we outline the proof for 𝐶2 smoothness. Assume 𝑠𝐿 and 𝑠𝑅 join 𝐶1 across the common edge 𝒑1𝒑2. To prove 𝐶2 smoothness 
across the same edge, it suffices to prove that along 𝒑1𝒑2 the functions 𝐷2

𝒑1𝒑3
𝑠𝐿 and 𝐷2

𝒑1𝒑3
𝑠𝑅 agree. Along the edge 𝒑1𝒑2, the above 

functions are univariate 𝐶1 quadratic splines with (interior) knots at the points 𝒒3,1, 𝒒3, and 𝒒3,2. Therefore, each of them is uniquely 
determined by its value and its first derivative at the two endpoints of the edge and by the value at the points 𝒒3,1 and 𝒒3,2. From 
(28) we know that

𝐷2
𝒑1𝒑3

=
( 1
𝜂3
𝐷𝒑1𝒑4 −

𝜂2
𝜂3
𝐷𝒑1𝒑2

)2
.

By employing the values in Table 6 in the appendix, a direct computation gives

𝐷2
𝒑1𝒑3

𝑠𝐿(𝒑1) = 192𝑏𝐿1 − 288𝑏𝐿5 + 96𝑏𝐿11,

𝐷2
𝒑1𝒑3

𝑠𝑅(𝒑1) =
1
𝜂23

(192𝑏𝑅1 − 288𝑏𝑅5 + 96𝑏𝑅11) −
2𝜂2
𝜂23

(192𝑏𝑅1 − 192𝑏𝑅4 − 192𝑏𝑅5 + 192𝑏𝑅16) +
𝜂22

𝜂23

(192𝑏𝑅1 − 288𝑏𝑅4 + 96𝑏𝑅10).

By equating these expressions and taking into account the 𝐶1 smoothness conditions, we get the first equation in (31). With a similar 
line of arguments, we can show the remaining five relations in (31). □

Some remarks are in order.

Remark 6. The Cartesian coordinates of the domain points 𝒃∗𝐿𝑖 and 𝒃∗𝑅𝑖 , 𝑖 = 1, … , 51 in two adjacent triangles Δ𝐿 and Δ𝑅 satisfy 
conditions (29)–(31) across the common edge because they are the coefficients related to the two local simplex spline bases of 
the smooth functions 𝑓1(𝑥, 𝑦) ∶= 𝑥 and 𝑓2(𝑥, 𝑦) ∶= 𝑦. This allows us to give a nice geometric interpretation to the above mentioned 
smoothness conditions in terms of control points in a full analogy with the interpretation of smoothness conditions for the Bernstein–
Bézier representation. For 𝐶0 smoothness, only the eight pairs of control points associated with the common edge are involved and 
the elements of each pair must coincide, i.e.,

(𝒃∗𝑅𝑖 , 𝑏𝑅𝑖 ) = (𝒃∗𝐿𝑖 , 𝑏𝐿𝑖 ), 𝑖 = 1,2,4,7,10,13,19,22.

For 𝐶1 smoothness, there are seven sets of four control points along the common edge that must be all pairwise coplanar, i.e.,

(𝒃∗𝑅5 , 𝑏𝑅5 ) = 𝜂1(𝒃∗𝐿1 , 𝑏𝐿1 ) + 𝜂2(𝒃∗𝐿4 , 𝑏𝐿4 ) + 𝜂3(𝒃∗𝐿5 , 𝑏𝐿5 ),

(𝒃∗𝑅16 , 𝑏
𝑅
16) =

(
𝜂1 +

𝜂2
2

)
(𝒃∗𝐿4 , 𝑏𝐿4 ) +

𝜂2
2
(𝒃∗𝐿10 , 𝑏

𝐿
10) + 𝜂3(𝒃∗𝐿16 , 𝑏

𝐿
16),

(𝒃∗𝑅25 , 𝑏
𝑅
25) =

(
𝜂1 +

2
3
𝜂2

)
(𝒃∗𝐿10 , 𝑏

𝐿
10) +

𝜂2
3
(𝒃∗𝐿19 , 𝑏

𝐿
19) + 𝜂3(𝒃∗𝐿25 , 𝑏

𝐿
25),

(𝒃∗𝑅31 , 𝑏
𝑅
31) =

(4
7
𝜂1 +

3
7
𝜂2

)
(𝒃∗𝐿19 , 𝑏

𝐿
19) +

(3
7
𝜂1 +

4
7
𝜂2

)
(𝒃∗𝐿22 , 𝑏

𝐿
22) + 𝜂3(𝒃∗𝐿31 , 𝑏

𝐿
31),

(𝒃∗𝑅28 , 𝑏
𝑅
28) =

(
𝜂2 +

2
3
𝜂1

)
(𝒃∗𝐿13 , 𝑏

𝐿
13) +

𝜂1
3
(𝒃∗𝐿22 , 𝑏

𝐿
22) + 𝜂3(𝒃∗𝐿28 , 𝑏

𝐿
28),

(𝒃∗𝑅17 , 𝑏
𝑅
17) =

(
𝜂2 +

𝜂1
2

)
(𝒃∗𝐿7 , 𝑏𝐿7 ) +

𝜂1
2
(𝒃∗𝐿13 , 𝑏

𝐿
13) + 𝜂3(𝒃∗𝐿17 , 𝑏

𝐿
17),

(𝒃∗𝑅6 , 𝑏𝑅6 ) = 𝜂1(𝒃∗𝐿7 , 𝑏𝐿7 ) + 𝜂2(𝒃∗𝐿2 , 𝑏𝐿2 ) + 𝜂3(𝒃∗𝐿6 , 𝑏𝐿6 );

see Fig. 10 for an illustration. Finally, also the 𝐶2 smoothness conditions show a similarity with the 𝐶2 join of two adjacent triangular 
Bernstein–Bézier patches; see [12, Example 2]. There are six sets of seven control points that must belong (separately) to a quadratic 
surface. For the sake of brevity we omit the equations that can be immediately obtained from (31).

Remark 7. Since the smoothness conditions provided in Theorem 5 do not involve the functions {𝐵𝑖, 𝑖 = 40, … , 51}, the same relations 
also hold true for the subspace 𝕊̂3

4(ΔWS4 ) defined in Section 3.4.

4.3. Global 𝐶3 smoothness conditions

The basis functions 𝐵𝑖, 𝑖 = 40, … , 48 and 𝑖 = 49, 50, 51, can be associated with the degrees of freedom corresponding to third 
derivatives related to the edges of Δ (i.e., those used by the linear operators 𝜌𝑖, 𝑖 = 40, … , 48) and to function values at interior points 
(i.e., those used by the linear operators 𝜌𝑖, 𝑖 = 49, 50, 51), however, they do not allow for a complete separation of these degrees 
of freedom. This can be understood by looking at the structure of the Hermite collocation matrix which is block triangular but not 
triangular in the part containing the last 11 rows/columns; see Tables 3–5 in the appendix. Unfortunately, this prevents the possibility 
of obtaining elegant localized conditions on the local spline coefficients in (19) for 𝐶3 smoothness across the edges of  .

Inspired by the approach in [15, Section 3.4], we consider an alternative local basis for 𝕊3
4(ΔWS4 ) to achieve more practical 𝐶3

smoothness conditions. We denote this basis by
15

̃ ∶= {𝐵1,… ,𝐵51}. (32)
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Fig. 10. A 𝐶1 spline surface on two adjacent domain triangles. The 7 pairs of triangles in the control nets that must be coplanar according to the smoothness conditions 
are colored.

The functions in (32) are computed as

𝐵𝑖 =𝐵𝑖, 𝑖 = 1,… ,33,

and

(𝐵34,… ,𝐵51)𝑇 = 𝐶 (𝐵34,… ,𝐵51)𝑇 ,

where 𝐶 is the conversion matrix specified in Table 2.

Theorem 8. The functions {𝐵1, … , 𝐵51} in (32) form a partition of unity basis for the space 𝕊3
4(ΔWS4 ). Moreover, for any given direction, 

the third derivative in that direction vanishes

a) along the edge 𝒑1𝒑2 for 𝐵35, 𝐵36, 𝐵41, 𝐵42, 𝐵49;

b) along the edge 𝒑2𝒑3 for 𝐵37, 𝐵38, 𝐵43, 𝐵44, 𝐵50;

c) along the edge 𝒑1𝒑3 for 𝐵34, 𝐵39, 𝐵40, 𝐵45, 𝐵51.

Proof. Since the conversion matrix in Table 2 is nonsingular and each of its columns sum up to one, the functions in (32) inherit the 
properties of linear independence and partition of unity from the basis elements in (5); see Theorem 1.

Regarding the property of vanishing third derivatives, let us focus on the first case a). From the smoothness property of simplex 
splines it follows that the functions 𝐵35, 𝐵36, 𝐵40, 𝐵41, 𝐵42, 𝐵43, 𝐵46, 𝐵49 are 𝐶2 smooth across the edge 𝒑1𝒑2 (see Fig. 5), thus they 
vanish with all their derivatives up to order two along the edge. By construction, this property carries over to the functions 𝐵35, 𝐵36, 
𝐵41, 𝐵42, 𝐵49. Moreover, along the same edge, the third derivative in any direction of these functions is a univariate 𝐶0 linear spline 
with break points at 𝒑1, 𝒒3,1, 𝒒3, 𝒒3,2, 𝒑2. Now, let us consider the function 𝐵35. Taking into account the supports of 𝐵35, 𝐵40, and 
𝐵41, a direct inspection of the values in Table 2 and Tables 4,5 in the appendix shows that

𝐷3
𝒒3,1𝒑3

𝐵35(𝒑1) =𝐷3
𝒒3,1𝒑3

𝐵35(𝒒3,1) =𝐷3
𝒒3,1𝒑3

𝐵35(𝒒3) =𝐷3
𝒒3,1𝒑3

𝐵35(𝒒3,2) =𝐷3
𝒒3,1𝒑3

𝐵35(𝒑2) = 0.

Therefore, 𝐷3
𝒒3,1𝒑3

𝐵35 vanishes along 𝒑1𝒑2. Since we already know that all the derivatives of 𝐵35 vanish up to order two along 𝒑1𝒑2, 
this implies that all third derivatives (in any direction) of 𝐵35 also vanish along 𝒑1𝒑2. With the same line of arguments, the stated 
results for the other functions and the other derivative cases can be obtained as well. □

When representing spline functions on two adjacent macro-triangles sharing a common edge, say 𝒑1𝒑2, in terms of the new basis 
(32), the 𝐶2 smoothness conditions remain the same as given in Theorem 5. Indeed, any derivative up to the second order in any 
direction along 𝒑1𝒑2 agrees for 𝐵𝑖 and 𝐵𝑖, 𝑖 = 1, … , 51. On the other hand, the representation in the basis (32) allows us to derive 
16

simpler 𝐶3 smoothness conditions.
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Table 2

Conversion matrix between {𝐵34, … , 𝐵51} and {𝐵34 , … , ̃𝐵51}.

𝐵34 𝐵35 𝐵36 𝐵37 𝐵38 𝐵39 𝐵40 𝐵41 𝐵42 𝐵43 𝐵44 𝐵45 𝐵46 𝐵47 𝐵48 𝐵49 𝐵50 𝐵51

𝐵34 1 0 0 0 0 0 − 3
4

− 1
4

0 0 0 0 0 0 0 0 0 0

𝐵35 0 1 0 0 0 0 − 1
4

− 3
4

0 0 0 0 0 0 0 0 0 0

𝐵36 0 0 1 0 0 0 0 0 − 3
4

− 1
4

0 0 0 0 0 0 0 0

𝐵37 0 0 0 1 0 0 0 0 − 1
4

− 3
4

0 0 0 0 0 0 0 0

𝐵38 0 0 0 0 1 0 0 0 0 0 − 3
4

− 1
4

0 0 0 0 0 0

𝐵39 0 0 0 0 0 1 0 0 0 0 − 1
4

− 3
4

0 0 0 0 0 0

𝐵40 0 0 0 0 0 0 3 −1 0 0 0 0 0 0 0 0 0 0
𝐵41 0 0 0 0 0 0 −1 3 0 0 0 0 0 0 0 0 0 0
𝐵42 0 0 0 0 0 0 0 0 3 −1 0 0 0 0 0 0 0 0
𝐵43 0 0 0 0 0 0 0 0 −1 3 0 0 0 0 0 0 0 0
𝐵44 0 0 0 0 0 0 0 0 0 0 3 −1 0 0 0 0 0 0
𝐵45 0 0 0 0 0 0 0 0 0 0 −1 3 0 0 0 0 0 0

𝐵46 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0
𝐵47 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0
𝐵48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0
𝐵49 0 0 0 0 0 0 0 0 0 0 0 0 −15 0 0 1 0 0
𝐵50 0 0 0 0 0 0 0 0 0 0 0 0 0 −15 0 0 1 0
𝐵51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −15 0 0 1

Theorem 9. Consider the same assumptions as in Theorem 5. Let {𝐵𝐿
𝑖
, 𝑖 = 1, … , 51} and {𝐵𝑅

𝑖
, 𝑖 = 1, … , 51} be the spline bases as in (32)

on Δ𝐿 and Δ𝑅, respectively. Then, the spline functions

𝑠𝐿 ∶=
51∑
𝑖=1

𝑏𝐿𝑖 𝐵
𝐿
𝑖 =

33∑
𝑖=1

𝑏𝐿𝑖 𝐵
𝐿
𝑖 +

51∑
𝑖=34

𝑏̃𝐿𝑖 𝐵
𝐿
𝑖

and

𝑠𝑅 ∶=
51∑
𝑖=1

𝑏𝑅𝑖 𝐵
𝑅
𝑖 =

33∑
𝑖=1

𝑏𝑅𝑖 𝐵
𝑅
𝑖 +

51∑
𝑖=34

𝑏̃𝑅𝑖 𝐵
𝑅
𝑖

join 𝐶3 across the common edge if and only if they join 𝐶2 and in addition

𝑏𝑅20 = 𝜂1(2𝜂1 − 1)(3𝜂1 − 2)𝑏𝐿1 +
𝜂3
2
(21𝜂21 − 12𝜂1𝜂2 + 3𝜂22 − 9𝜂1 + 𝜂2)𝑏𝐿5 +

𝜂2
2
(36𝜂21 + 18𝜂1𝜂2 + 3𝜂22 − 28𝜂1 − 7𝜂2 + 4)𝑏𝐿4

+ 1
2
𝜂23(11𝜂1 − 7𝜂2)𝑏𝐿11 +

1
2
𝜂22(11𝜂1 − 7𝜂3)𝑏𝐿10 + 𝜂2𝜂3(27𝜂1 − 5)𝑏𝐿16 + 𝜂33𝑏

𝐿
20 + 𝜂32𝑏

𝐿
19 + 9𝜂2𝜂23𝑏

𝐿
26 + 9𝜂22𝜂3𝑏

𝐿
25,

(33)

and

𝑏𝑅21 = 𝜂2(2𝜂2 − 1)(3𝜂2 − 2)𝑏𝐿2 +
𝜂3
2
(21𝜂22 − 12𝜂1𝜂2 + 3𝜂21 − 9𝜂2 + 𝜂1)𝑏𝐿6 +

𝜂1
2
(36𝜂22 + 18𝜂1𝜂2 + 3𝜂21 − 28𝜂2 − 7𝜂1 + 4)𝑏𝐿7

+ 1
2
𝜂23(11𝜂2 − 7𝜂1)𝑏𝐿12 +

1
2
𝜂21(11𝜂2 − 7𝜂3)𝑏𝐿13 + 𝜂1𝜂3(27𝜂2 − 5)𝑏𝐿17 + 𝜂33𝑏

𝐿
21 + 𝜂31𝑏

𝐿
22 + 9𝜂1𝜂23𝑏

𝐿
27 + 9𝜂21𝜂3𝑏

𝐿
28,

(34)

and

𝑏̃𝑅40 =
1
32

(2𝜂1 + 𝜂2)(𝜂1 − 𝜂3)(6𝜂1 + 3𝜂2 − 4)𝑏𝐿4 +
(
−23
72
𝜂2 +

71
864

𝜂22 +
21
16
𝜂1𝜂

2
2 +

65
72
𝜂1𝜂2 +

9
8
𝜂21𝜂2 +

4
3
𝜂21 −

2
3
𝜂1 +

37
96
𝜂32

)
𝑏𝐿10

+
𝜂3
16

(21𝜂21 + 15𝜂1𝜂2 + 3𝜂22 − 9𝜂1 − 4𝜂2)𝑏𝐿16 +
(
− 19
288

𝜂2 +
209
432

𝜂22 +
3
8
𝜂22𝜂1 +

8
9
𝜂2𝜂1 +

5
24
𝜂1 +

23
96
𝜂32

)
𝑏𝐿19

+ 1
288

(3𝜂1 + 4𝜂2)(𝜂2 − 3𝜂3)(36𝜂2 + 27𝜂1 − 22)𝑏𝐿22 +
𝜂3
144

(108𝜂22 + 243𝜂2𝜂1 + 115𝜂2 + 288𝜂1)𝑏𝐿25

+ 1
16
𝜂23(11𝜂1 + 2𝜂2)𝑏𝐿26 +

7
288

𝜂3(81𝜂21 + 243𝜂1𝜂2 + 189𝜂22 − 66𝜂1 − 83𝜂2)𝑏𝐿31 +
1
16
𝜂23(32𝜂1 + 59𝜂2)𝑏̃𝐿34 + 𝜂33 𝑏̃

𝐿
40,

(35)

and

𝑏̃𝑅43 =
1
32

(2𝜂2 + 𝜂1)(𝜂2 − 𝜂3)(6𝜂2 + 3𝜂1 − 4)𝑏𝐿7 +
(
−23
72
𝜂1 +

71
864

𝜂21 +
21
16
𝜂2𝜂

2
1 +

65
72
𝜂2𝜂1 +

9
8
𝜂22𝜂1 +

4
3
𝜂22 −

2
3
𝜂2 +

37
96
𝜂31

)
𝑏𝐿13

+
𝜂3
16

(21𝜂22 + 15𝜂2𝜂1 + 3𝜂21 − 9𝜂2 − 4𝜂1)𝑏𝐿17 +
(
− 19
288

𝜂1 +
209
432

𝜂21 +
3
8
𝜂21𝜂2 +

8
9
𝜂1𝜂2 +

5
24
𝜂2 +

23
96
𝜂31

)
𝑏𝐿22

+ 1
288

(3𝜂2 + 4𝜂1)(𝜂1 − 3𝜂3)(36𝜂1 + 27𝜂2 − 22)𝑏𝐿19 +
𝜂3
144

(108𝜂21 + 243𝜂1𝜂2 + 115𝜂1 + 288𝜂2)𝑏𝐿28

+ 1
16
𝜂23(11𝜂2 + 2𝜂1)𝑏𝐿27 +

7
288

𝜂3(81𝜂22 + 243𝜂2𝜂1 + 189𝜂21 − 66𝜂2 − 83𝜂1)𝑏𝐿31 +
1
16
𝜂23(32𝜂2 + 59𝜂1)𝑏̃𝐿37 + 𝜂33 𝑏̃

𝐿
43,

(36)
17

and
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𝑏̃𝑅46 =
1
36

(2𝜂2 + 3𝜂1)(𝜂2 + 3𝜂3)(4𝜂3 − 2𝜂1 − 1)𝑏𝐿10 +
1
36

(2𝜂1 + 3𝜂2)(𝜂1 + 3𝜂3)(4𝜂3 − 2𝜂2 − 1)𝑏𝐿13

+
(
3𝜂21 −

2
3
𝜂31 −

7
8
𝜂2 +

5
8
𝜂22 + 3𝜂1𝜂2 + 𝜂1𝜂

2
2 −

3
2
𝜂1 +

17
36
𝜂32

)
𝑏𝐿19

+
(
3𝜂22 −

2
3
𝜂32 −

7
8
𝜂1 +

5
8
𝜂21 + 3𝜂2𝜂1 + 𝜂2𝜂

2
1 −

3
2
𝜂2 +

17
36
𝜂31

)
𝑏𝐿22

+
𝜂3
8
(21𝜂21 + 24𝜂1𝜂2 + 7𝜂22 − 15𝜂1 − 9𝜂2)𝑏𝐿25 +

𝜂3
8
(21𝜂22 + 24𝜂2𝜂1 + 7𝜂21 − 15𝜂2 − 9𝜂1)𝑏𝐿28

+ 7
8
𝜂3(2𝜂21 + 6𝜂1𝜂2 + 2𝜂22 + 3𝜂1 + 3𝜂2)𝑏𝐿31 +

9
8
𝜂23(3𝜂1 + 𝜂2)𝑏̃𝐿34 +

9
8
𝜂23(3𝜂2 + 𝜂1)𝑏̃𝐿37 + 𝜂33 𝑏̃

𝐿
46.

(37)

Proof. Assume 𝑠𝐿 and 𝑠𝑅 join 𝐶2 across the common edge 𝒑1𝒑2. To prove 𝐶3 smoothness across the same edge, it suffices to prove 
that along 𝒑1𝒑2 the functions 𝐷3

𝒑1𝒑3
𝑠𝐿 and 𝐷3

𝒑1𝒑3
𝑠𝑅 agree. Along the edge 𝒑1𝒑2, the above functions are univariate 𝐶0 linear splines 

with (interior) knots at the points 𝒒3,1, 𝒒3, and 𝒒3,2. Therefore, each of them is uniquely determined by its value at the two endpoints 
of the edge and by its value at the points 𝒒3,1, 𝒒3, and 𝒒3,2. From (28) we know that

𝐷3
𝒑1𝒑3

=
( 1
𝜂3
𝐷𝒑1𝒑4 −

𝜂2
𝜂3
𝐷𝒑1𝒑2

)3
.

By using the values in Tables 6–8 in the appendix together with those in Table 2, a direct computation provides the expressions of

𝐷3
𝒑1𝒑3

𝑠𝐿(𝒑), 𝐷3
𝒑1𝒑3

𝑠𝑅(𝒑), 𝒑 ∈ {𝒑1,𝒒3,1,𝒒3,𝒒3,2,𝒑2}.

By equating these expressions and taking into account the 𝐶2 smoothness conditions, we obtain the conditions (33)–(37). □

Remark 10. Using the conversion between the bases (5) and (32), see Table 2, we can immediately rewrite the 𝐶3 smoothness 
conditions provided in Theorem 9 solely in terms of coefficients of the basis (5).

Remark 11. A global basis for the space 𝕊3
4(WS4 ) can be constructed by using the technique of minimal determining sets [13], 

following the same line of arguments as in [15, Section 4.2]. Even though both the local bases (5) and (32) may be used to this aim, 
the second one is preferable. Indeed, when using the basis (32), the locality of the smoothness conditions provided in Theorems 5
and 9 implies the local support of the global basis functions.

5. Conclusion

We have addressed the 51 dimensional space of 𝐶3 quartic splines on the WS4 split of a given triangle. For this space we have 
constructed a (scaled) simplex spline basis and we have provided a unisolvent Hermite interpolation problem which allows us to 
locally characterize any function belonging to the space of 𝐶3 quartic splines on the WS4 refinement of a given triangulation. These 
results are a quartic extension of those obtained in [5] and [15] for the PS-12 split and the WS3 split, respectively, i.e., for the 
quadratic and the cubic members of the Wang–Shi split family.

As in the quadratic and cubic cases, the basis is a B-spline basis within a single macro-triangle but globally it behaves like a 
Bernstein basis across macro-triangles. We have proved that the basis has many desirable B-spline properties including that it forms 
a nonnegative partition of unity and enjoys a Marsden-like identity. The restriction of each basis function onto a boundary edge of 
the macro-triangle reduces to a classical univariate 𝐶3 quartic B-spline.

The basis can be equipped with control points and a control net. The control net is unusual in the sense that it incorporates three 
pairs of coincident domain points. A proper 48 dimensional subspace containing quartic polynomials has been identified for which 
a classical control net (based on different domain points) with triangular and hexagonal connectivity can be naturally constructed. 
Furthermore, explicit conditions for smoothness up to the third order across a common edge of two macro-triangles have been 
derived in terms of the respective control points. We have also proposed an alternative basis for the space 𝕊3

4(ΔWS4 ) that simplifies 
the imposition of 𝐶3 smoothness conditions across edges.

The technique of minimal determining sets can be used to build (stable) locally supported global basis functions for the space 
𝕊3
4(WS4 ); see Remark 11. In addition, the availability of such a global basis allows us to show the optimal approximation power of 

the space using a similar line of arguments as in [15, Section 4.2].
For computation with splines belonging to 𝕊3

4(WS4 ), it is convenient to work directly with the local representations provided by 
the simplex spline basis (5) or the alternative basis (32). The evaluation of the simplex spline basis functions can be achieved by 
applying the recurrence relation (B-recurrence) of simplex splines; see Section 2.2. However, it might be more convenient to use a 
lookup-table approach as proposed in [15, Section 5.1] for the 𝐶2 cubic case. The explicit expressions of the simplex spline basis 
elements can be stored in a suitable table and then accessed by a search algorithm based on boolean vectors. The alternative basis 
functions in (32) can be immediately deduced from the previous ones by means of the conversion matrix in Table 2.

The local simplex spline basis makes the treatment of the complex geometry of the WS4 split more affordable because it intrinsi-
cally avoids to consider separate polynomial representations on each of the 250 polygonal subelements of the split. This transparency 
of the WS4 split to the user offers a pathway for effective use of the interesting space of 𝐶3 quartic splines on the WS4 refinement of 
18

a given triangulation.
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Fig. 11. The simplex spline basis function 𝐵1 and its support.

Fig. 12. The simplex spline basis function 𝐵4 and its support.

Generalizations of the presented construction to higher degrees 𝑑 ≥ 5 would be desirable. Extensions to splines in three or more 
variables would be of great interest as well. However, neither appears straightforward.

Data availability

No data was used for the research described in the article.
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Appendix A

In this appendix, we collect data related to the simplex spline basis functions 𝐵1, … , 𝐵51 in (5) that were used in the proofs and 
might be useful for practical purposes as well. The different types of basis functions are depicted in Figs. 11–21. The values of the 
operators 𝜌𝑖 in (7)–(9) applied to the 𝐵𝑗 ’s are collected in Tables 3–5. The values of the operators 𝜍𝑖 in (25)–(27) applied to the 𝐵𝑗 ’s 
are collected in Tables 6–8.
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Fig. 13. The simplex spline basis function 𝐵10 and its support.

Fig. 14. The simplex spline basis function 𝐵16 and its support.

Fig. 15. The simplex spline basis function 𝐵19 and its support.
20

Fig. 16. The simplex spline basis function 𝐵25 and its support.
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Fig. 17. The simplex spline basis function 𝐵31 and its support.

Fig. 18. The simplex spline basis function 𝐵34 and its support.

Fig. 19. The simplex spline basis function 𝐵40 and its support.
21

Fig. 20. The simplex spline basis function 𝐵46 and its support.
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𝐵14 𝐵15 𝐵16 𝐵17 𝐵18

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
96 0 0 0 0
0 96 0 0 0
0 0 192 0 0
0 0 0 192 0
0 0 0 0 192
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

08 0 0 0 0 0
−1408 0 0 0 0
0 −1408 0 0 0
0 0 −2304 0 0
0 0 −2304 0 0
0 0 0 −2304 0

8 0 0 0 −2304 0
−768 0 0 0 −2304
0 −768 0 0 −2304

0 0 0 0 0

0 − 20
9

0 0 0

− 20
9

0 0 0 0

0 0 −120 0 0

0 0 −120 0 0

0 0 0 −120 0

0 0 0 −120 0
613
6

0 0 0 −120
0 613

6
0 0 −120

0 0 1896 0 0

0 0 1896 0 0

0 0 0 1896 0
87 0 0 0 1896 0

− 1387
3

0 0 0 1896
0 − 1387

3
0 0 1896

00 0 0 0 0 0

0 − 4000
3

0 0 0

− 4000
3

0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Table 3

Values of 𝜌𝑖(𝐵𝑗 ) for 𝑖 = 1, … , 51, 𝑗 = 1, … , 18, where 𝜌𝑖 is defined in (7), (8), and (9).

𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐵6 𝐵7 𝐵8 𝐵9 𝐵10 𝐵11 𝐵12 𝐵13

𝜌1 1 0 0 0 0 0 0 0 0 0 0 0 0
𝜌2 0 1 0 0 0 0 0 0 0 0 0 0 0
𝜌3 0 0 1 0 0 0 0 0 0 0 0 0 0

𝜌4 −16 0 0 16 0 0 0 0 0 0 0 0 0
𝜌5 −16 0 0 0 16 0 0 0 0 0 0 0 0
𝜌6 0 −16 0 0 0 16 0 0 0 0 0 0 0
𝜌7 0 −16 0 0 0 0 16 0 0 0 0 0 0
𝜌8 0 0 −16 0 0 0 0 16 0 0 0 0 0
𝜌9 0 0 −16 0 0 0 0 0 16 0 0 0 0

𝜌10 192 0 0 −288 0 0 0 0 0 96 0 0 0
𝜌11 192 0 0 0 −288 0 0 0 0 0 96 0 0
𝜌12 0 192 0 0 0 −288 0 0 0 0 0 96 0
𝜌13 0 192 0 0 0 0 −288 0 0 0 0 0 96
𝜌14 0 0 192 0 0 0 0 −288 0 0 0 0 0
𝜌15 0 0 192 0 0 0 0 0 −288 0 0 0 0
𝜌16 192 0 0 −192 −192 0 0 0 0 0 0 0 0
𝜌17 0 192 0 0 0 −192 −192 0 0 0 0 0 0
𝜌18 0 0 192 0 0 0 0 −192 −192 0 0 0 0

𝜌19 −1536 0 0 2688 0 0 0 0 0 −1408 0 0 0
𝜌20 −1536 0 0 0 2688 0 0 0 0 0 −1408 0 0
𝜌21 0 −1536 0 0 0 2688 0 0 0 0 0 −1408 0
𝜌22 0 −1536 0 0 0 0 2688 0 0 0 0 0 −14
𝜌23 0 0 −1536 0 0 0 0 2688 0 0 0 0 0
𝜌24 0 0 −1536 0 0 0 0 0 2688 0 0 0 0
𝜌25 −1536 0 0 2304 1536 0 0 0 0 −768 0 0 0
𝜌26 −1536 0 0 1536 2304 0 0 0 0 0 −768 0 0
𝜌27 0 −1536 0 0 0 2304 1536 0 0 0 0 −768 0
𝜌28 0 −1536 0 0 0 1536 2304 0 0 0 0 0 −76
𝜌29 0 0 −1536 0 0 0 0 2304 1536 0 0 0 0
𝜌30 0 0 −1536 0 0 0 0 1536 2304 0 0 0 0

𝜌31 0 0 0 0 0 0 0 0 0 − 20
9

0 0 − 20
9

𝜌32 0 0 0 0 0 0 0 0 0 0 0 − 20
9

0

𝜌33 0 0 0 0 0 0 0 0 0 0 − 20
9

0 0

𝜌34 0 0 0 147
2

0 0 0 0 0 613
6

0 0 0

𝜌35 0 0 0 0 147
2

0 0 0 0 0 613
6

0 0

𝜌36 0 0 0 0 0 147
2

0 0 0 0 0 613
6

0

𝜌37 0 0 0 0 0 0 147
2

0 0 0 0 0 613
6

𝜌38 0 0 0 0 0 0 0 147
2

0 0 0 0 0

𝜌39 0 0 0 0 0 0 0 0 147
2

0 0 0 0

𝜌40 0 0 0 −1029 0 0 0 0 0 − 1387
3

0 0 0

𝜌41 0 0 0 0 −1029 0 0 0 0 0 − 1387
3

0 0

𝜌42 0 0 0 0 0 −1029 0 0 0 0 0 − 1387
3

0

𝜌43 0 0 0 0 0 0 −1029 0 0 0 0 0 − 13
3

𝜌44 0 0 0 0 0 0 0 −1029 0 0 0 0 0

𝜌45 0 0 0 0 0 0 0 0 −1029 0 0 0 0

𝜌46 0 0 0 0 0 0 0 0 0 − 4000
3

0 0 − 40
3

𝜌47 0 0 0 0 0 0 0 0 0 0 0 − 4000
3

0

𝜌48 0 0 0 0 0 0 0 0 0 0 − 4000
3

0 0

𝜌49 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌50 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌51 0 0 0 0 0 0 0 0 0 0 0 0 0
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𝐵34 𝐵35 𝐵36 𝐵37 𝐵38 𝐵39

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

144 0 0 0 0 0

0 144 0 0 0 0

0 0 144 0 0 0

0 0 0 144 0 0

0 0 0 0 144 0

0 0 0 0 0 144

−4320 384 0 0 0 0

384 −4320 0 0 0 0

0 0 −4320 384 0 0

0 0 384 −4320 0 0

0 0 0 0 −4320 384
0 0 0 0 384 −4320

−3456 0 0 −3456 0 0

0 0 −3456 0 0 −3456
0 −3456 0 0 −3456 0
27
640

1
1920

1
1920

27
640

0 0

0 0 27
640

1
1920

1
1920

27
640

1
1920

27
640

0 0 27
640

1
1920
Table 4

Values of 𝜌𝑖(𝐵𝑗 ) for 𝑖 = 1, … , 51, 𝑗 = 19, … , 39, where 𝜌𝑖 is defined in (7), (8), and (9).

𝐵19 𝐵20 𝐵21 𝐵22 𝐵23 𝐵24 𝐵25 𝐵26 𝐵27 𝐵28 𝐵29 𝐵30 𝐵31 𝐵32 𝐵33

𝜌1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜌4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜌10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜌19 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌20 0 256 0 0 0 0 0 0 0 0 0 0 0 0 0
𝜌21 0 0 256 0 0 0 0 0 0 0 0 0 0 0 0
𝜌22 0 0 0 256 0 0 0 0 0 0 0 0 0 0 0
𝜌23 0 0 0 0 256 0 0 0 0 0 0 0 0 0 0
𝜌24 0 0 0 0 0 256 0 0 0 0 0 0 0 0 0
𝜌25 0 0 0 0 0 0 768 0 0 0 0 0 0 0 0
𝜌26 0 0 0 0 0 0 0 768 0 0 0 0 0 0 0
𝜌27 0 0 0 0 0 0 0 0 768 0 0 0 0 0 0
𝜌28 0 0 0 0 0 0 0 0 0 768 0 0 0 0 0
𝜌29 0 0 0 0 0 0 0 0 0 0 768 0 0 0 0
𝜌30 0 0 0 0 0 0 0 0 0 0 0 768 0 0 0

𝜌31 − 88
9

0 0 − 88
9

0 0 8
3

0 0 8
3

0 0 56
3

0 0

𝜌32 0 0 − 88
9

0 0 − 88
9

0 0 8
3

0 0 8
3

0 56
3

0

𝜌33 0 − 88
9

0 0 − 88
9

0 0 8
3

0 0 8
3

0 0 0 56
3

𝜌34
95
6

0 0 169
2

0 0 −152 48 0 0 0 0 −196 0 0

𝜌35 0 95
6

0 0 169
2

0 48 −152 0 0 0 0 0 0 −196
𝜌36 0 0 95

6
0 0 169

2
0 0 −152 48 0 0 0 −196 0

𝜌37
169
2

0 0 95
6

0 0 0 0 48 −152 0 0 −196 0 0

𝜌38 0 169
2

0 0 95
6

0 0 0 0 0 −152 48 0 0 −196
𝜌39 0 0 169

2
0 0 95

6
0 0 0 0 48 −152 0 −196 0

𝜌40 − 131
3

0 0 −2197 0 0 744 −1120 0 0 0 0 5124 0 0

𝜌41 0 − 131
3

0 0 −2197 0 −1120 744 0 0 0 0 0 0 5124
𝜌42 0 0 − 131

3
0 0 −2197 0 0 744 −1120 0 0 0 5124 0

𝜌43 −2197 0 0 − 131
3

0 0 0 0 −1120 744 0 0 5124 0 0

𝜌44 0 −2197 0 0 − 131
3

0 0 0 0 0 744 −1120 0 0 5124
𝜌45 0 0 −2197 0 0 − 131

3
0 0 0 0 −1120 744 0 5124 0

𝜌46 − 464
3

0 0 − 464
3

0 0 2496 0 0 2496 0 0 3360 0 0

𝜌47 0 0 − 464
3

0 0 − 464
3

0 0 2496 0 0 2496 0 3360 0

𝜌48 0 − 464
3

0 0 − 464
3

0 0 2496 0 0 2496 0 0 0 3360

𝜌49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜌50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜌51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Fig. 21. The simplex spline basis function 𝐵49 and its support.

Table 5

Values of 𝜌𝑖(𝐵𝑗 ) for 𝑖 = 1, … , 51, 𝑗 = 40, … , 51, where 𝜌𝑖 is defined in (7), (8), and (9).

𝐵40 𝐵41 𝐵42 𝐵43 𝐵44 𝐵45 𝐵46 𝐵47 𝐵48 𝐵49 𝐵50 𝐵51

𝜌1 0 0 0 0 0 0 0 0 0 0 0 0
𝜌2 0 0 0 0 0 0 0 0 0 0 0 0
𝜌3 0 0 0 0 0 0 0 0 0 0 0 0

𝜌4 0 0 0 0 0 0 0 0 0 0 0 0
𝜌5 0 0 0 0 0 0 0 0 0 0 0 0
𝜌6 0 0 0 0 0 0 0 0 0 0 0 0
𝜌7 0 0 0 0 0 0 0 0 0 0 0 0
𝜌8 0 0 0 0 0 0 0 0 0 0 0 0
𝜌9 0 0 0 0 0 0 0 0 0 0 0 0

𝜌10 0 0 0 0 0 0 0 0 0 0 0 0
𝜌11 0 0 0 0 0 0 0 0 0 0 0 0
𝜌12 0 0 0 0 0 0 0 0 0 0 0 0
𝜌13 0 0 0 0 0 0 0 0 0 0 0 0
𝜌14 0 0 0 0 0 0 0 0 0 0 0 0
𝜌15 0 0 0 0 0 0 0 0 0 0 0 0
𝜌16 0 0 0 0 0 0 0 0 0 0 0 0
𝜌17 0 0 0 0 0 0 0 0 0 0 0 0
𝜌18 0 0 0 0 0 0 0 0 0 0 0 0

𝜌19 0 0 0 0 0 0 0 0 0 0 0 0
𝜌20 0 0 0 0 0 0 0 0 0 0 0 0
𝜌21 0 0 0 0 0 0 0 0 0 0 0 0
𝜌22 0 0 0 0 0 0 0 0 0 0 0 0
𝜌23 0 0 0 0 0 0 0 0 0 0 0 0
𝜌24 0 0 0 0 0 0 0 0 0 0 0 0
𝜌25 0 0 0 0 0 0 0 0 0 0 0 0
𝜌26 0 0 0 0 0 0 0 0 0 0 0 0
𝜌27 0 0 0 0 0 0 0 0 0 0 0 0
𝜌28 0 0 0 0 0 0 0 0 0 0 0 0
𝜌29 0 0 0 0 0 0 0 0 0 0 0 0
𝜌30 0 0 0 0 0 0 0 0 0 0 0 0

𝜌31 0 0 0 0 0 0 0 0 0 0 0 0
𝜌32 0 0 0 0 0 0 0 0 0 0 0 0
𝜌33 0 0 0 0 0 0 0 0 0 0 0 0
𝜌34 0 0 0 0 0 0 0 0 0 0 0 0
𝜌35 0 0 0 0 0 0 0 0 0 0 0 0
𝜌36 0 0 0 0 0 0 0 0 0 0 0 0
𝜌37 0 0 0 0 0 0 0 0 0 0 0 0
𝜌38 0 0 0 0 0 0 0 0 0 0 0 0
𝜌39 0 0 0 0 0 0 0 0 0 0 0 0

𝜌40 768 256 0 0 0 0 0 0 0 0 0 0
𝜌41 256 768 0 0 0 0 0 0 0 0 0 0
𝜌42 0 0 768 256 0 0 0 0 0 0 0 0
𝜌43 0 0 256 768 0 0 0 0 0 0 0 0
𝜌44 0 0 0 0 768 256 0 0 0 0 0 0
𝜌45 0 0 0 0 256 768 0 0 0 0 0 0

𝜌46 0 0 0 0 0 0 96 0 0 1440 0 0
𝜌47 0 0 0 0 0 0 0 96 0 0 1440 0
𝜌48 0 0 0 0 0 0 0 0 96 0 0 1440

𝜌49
31
320

11
720

11
720

31
320

1
72

1
72

43
384

303
2560

303
2560

33
128

43
1536

43
1536

𝜌50
1
72

1
72

31
320

11
720

11
720

31
320

303
2560

43
384

303
2560

43
1536

33
128

43
1536

11 31 1 1 31 11 303 303 43 43 43 33
24

𝜌51 720 320 72 72 320 720 2560 2560 384 1536 1536 128
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𝐵14 𝐵15 𝐵16 𝐵17 𝐵18

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 192 0 0

0 0 0 0 0

0 0 −144 0 0

0 0 −48 0 0

0 0 0 0 0

0 0 0 −48 0

0 0 0 48 0

0 0 0 0 0

0 0 0 −384 0

0 0 0 −192 0

0 0 0 0 0

0 0 0 0 0

0 0 −2304 0 0

0 0 −2304 0 0

0 0 0 0 0

0 0 2688 0 0

0 0 1152 0 0

0 0 384 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 384 0

0 0 0 −384 0

0 0 0 384 0

0 0 0 0 0

0 0 0 0 0

0 0 0 −2304 0

0 0 0 −2304 0

0 0 0 0 0
Table 6

Values of 𝜍𝑖(𝐵𝑗 ) for 𝑖 = 1, … , 38, 𝑗 = 1, … , 18, where 𝜍𝑖 is defined in (25), (26), and (27).

𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐵6 𝐵7 𝐵8 𝐵9 𝐵10 𝐵11 𝐵12 𝐵13

𝜍1 −16 0 0 0 16 0 0 0 0 0 0 0 0

𝜍2 −16 0 0 16 0 0 0 0 0 0 0 0 0

𝜍3 0 0 0 0 0 0 0 0 0 − 8
3

0 0 − 16
9

𝜍4 0 0 0 0 0 0 0 0 0 − 8
9

0 0 8
9

𝜍5 0 0 0 0 0 16 −16 0 0 0 0 0 0

𝜍6 0 16 0 0 0 0 −16 0 0 0 0 0 0

𝜍7 192 0 0 0 −288 0 0 0 0 0 96 0 0

𝜍8 192 0 0 −192 −192 0 0 0 0 0 0 0 0

𝜍9 192 0 0 −288 0 0 0 0 0 96 0 0 0

𝜍10 0 0 0 96 0 0 0 0 0 96 0 0 0

𝜍11 0 0 0 48 0 0 0 0 0 −16 0 0 0

𝜍12 0 0 0 24 0 0 0 0 0 − 88
3

0 0 0

𝜍13 0 0 0 0 0 0 24 0 0 0 0 0 296
3

𝜍14 0 0 0 0 0 0 −24 0 0 0 0 0 − 40
3

𝜍15 0 0 0 0 0 0 24 0 0 0 0 0 − 88
3

𝜍16 0 0 0 0 0 96 96 0 0 0 0 96 96
𝜍17 0 0 0 0 0 192 −96 0 0 0 0 0 96
𝜍18 0 192 0 0 0 0 −288 0 0 0 0 0 96
𝜍19 −1536 0 0 0 2688 0 0 0 0 0 −1408 0 0

𝜍20 −1536 0 0 1536 2304 0 0 0 0 0 −768 0 0

𝜍21 −1536 0 0 2304 1536 0 0 0 0 −768 0 0 0

𝜍22 −1536 0 0 2688 0 0 0 0 0 −1408 0 0 0

𝜍23 0 0 0 −1536 0 0 0 0 0 0 0 0 0

𝜍24 0 0 0 −768 0 0 0 0 0 768 0 0 0

𝜍25 0 0 0 −384 0 0 0 0 0 640 0 0 0

𝜍26 0 0 0 −192 0 0 0 0 0 1216
3

0 0 0

𝜍27 0 0 0 0 0 0 0 0 0 −2304 0 0 − 2048
3

𝜍28 0 0 0 0 0 0 0 0 0 −768 0 0 1024
3

𝜍29 0 0 0 0 0 0 0 0 0 −256 0 0 − 512
3

𝜍30 0 0 0 0 0 0 0 0 0 − 256
3

0 0 256
3

𝜍31 0 0 0 0 0 0 −192 0 0 0 0 0 − 2368
3

𝜍32 0 0 0 0 0 0 192 0 0 0 0 0 320
3

𝜍33 0 0 0 0 0 0 −192 0 0 0 0 0 704
3

𝜍34 0 0 0 0 0 0 192 0 0 0 0 0 − 1216
3

𝜍35 0 0 0 0 0 384 −384 0 0 0 0 896 −896
𝜍36 0 0 0 0 0 768 384 0 0 0 0 768 −128
𝜍37 0 0 0 0 0 1536 −384 0 0 0 0 0 640
𝜍38 0 1536 0 0 0 0 −2688 0 0 0 0 0 1408
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𝐵34 𝐵35 𝐵36 𝐵37 𝐵38 𝐵39

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

144 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 144 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−3456 384 0 0 0 0

1152 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−5184 0 0 −1728 0 0

−1152 0 0 1152 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 384 −6912 0 0

0 0 0 −1152 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
Table 7

Values of 𝜍𝑖(𝐵𝑗 ) for 𝑖 = 1, … , 38, 𝑗 = 19, … , 39, where 𝜍𝑖 is defined in (25), (26), and (27).

𝐵19 𝐵20 𝐵21 𝐵22 𝐵23 𝐵24 𝐵25 𝐵26 𝐵27 𝐵28 𝐵29 𝐵30 𝐵31 𝐵32 𝐵33

𝜍1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜍2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜍3 − 32
3

0 0 − 80
9

0 0 8
3

0 0 8
3

0 0 56
3

0 0

𝜍4 − 16
9

0 0 16
9

0 0 0 0 0 0 0 0 0 0 0

𝜍5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜍6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜍7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜍8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜍9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜍10 0 0 0 72 0 0 −144 48 0 0 0 0 −168 0 0

𝜍11 −32 0 0 −24 0 0 16 0 0 0 0 0 56 0 0

𝜍12 − 8
3

0 0 8 0 0 0 0 0 0 0 0 0 0 0

𝜍13 128 0 0 184
3

0 0 0 0 48 −176 0 0 −280 0 0

𝜍14 32 0 0 88
3

0 0 0 0 0 −16 0 0 −56 0 0

𝜍15 8 0 0 − 8
3

0 0 0 0 0 0 0 0 0 0 0

𝜍16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜍17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜍18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜍19 0 256 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜍20 0 0 0 0 0 0 0 768 0 0 0 0 0 0 0

𝜍21 0 0 0 0 0 0 768 0 0 0 0 0 0 0 0

𝜍22 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜍23 0 0 0 −1728 0 0 0 −1408 0 0 0 0 4032 0 0

𝜍24 0 0 0 576 0 0 −1152 −384 0 0 0 0 −1344 0 0

𝜍25 −256 0 0 −192 0 0 −640 0 0 0 0 0 448 0 0

𝜍26 − 832
3

0 0 64 0 0 0 0 0 0 0 0 0 0 0

𝜍27 1024 0 0 − 2176
3

0 0 4032 0 0 1344 0 0 2688 0 0

𝜍28 1024 0 0 − 640
3

0 0 1152 0 0 −640 0 0 −896 0 0

𝜍29 512 0 0 896
3

0 0 256 0 0 256 0 0 −896 0 0

𝜍30
640
3

0 0 − 640
3

0 0 0 0 0 0 0 0 0 0 0

𝜍31 −4096 0 0 − 1472
3

0 0 0 0 −256 1536 0 0 9408 0 0

𝜍32 −1024 0 0 − 704
3

0 0 0 0 384 −128 0 0 2240 0 0

𝜍33 −256 0 0 64
3

0 0 0 0 0 −640 0 0 448 0 0

𝜍34 −64 0 0 832
3

0 0 0 0 0 0 0 0 0 0 0

𝜍35 0 0 256 −256 0 0 0 0 −2304 2304 0 0 0 0 0

𝜍36 0 0 0 −256 0 0 0 0 −768 1536 0 0 0 0 0

𝜍37 0 0 0 −256 0 0 0 0 0 768 0 0 0 0 0

𝜍38 0 0 0 −256 0 0 0 0 0 0 0 0 0 0 0
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Table 8

Values of 𝜍𝑖(𝐵𝑗 ) for 𝑖 = 1, … , 38, 𝑗 = 40, … , 51, where 𝜍𝑖 is defined in (25), (26), and (27).

𝐵40 𝐵41 𝐵42 𝐵43 𝐵44 𝐵45 𝐵46 𝐵47 𝐵48 𝐵49 𝐵50 𝐵51

𝜍1 0 0 0 0 0 0 0 0 0 0 0 0
𝜍2 0 0 0 0 0 0 0 0 0 0 0 0
𝜍3 0 0 0 0 0 0 0 0 0 0 0 0
𝜍4 0 0 0 0 0 0 0 0 0 0 0 0
𝜍5 0 0 0 0 0 0 0 0 0 0 0 0
𝜍6 0 0 0 0 0 0 0 0 0 0 0 0

𝜍7 0 0 0 0 0 0 0 0 0 0 0 0
𝜍8 0 0 0 0 0 0 0 0 0 0 0 0
𝜍9 0 0 0 0 0 0 0 0 0 0 0 0
𝜍10 0 0 0 0 0 0 0 0 0 0 0 0
𝜍11 0 0 0 0 0 0 0 0 0 0 0 0
𝜍12 0 0 0 0 0 0 0 0 0 0 0 0
𝜍13 0 0 0 0 0 0 0 0 0 0 0 0
𝜍14 0 0 0 0 0 0 0 0 0 0 0 0
𝜍15 0 0 0 0 0 0 0 0 0 0 0 0
𝜍16 0 0 0 0 0 0 0 0 0 0 0 0
𝜍17 0 0 0 0 0 0 0 0 0 0 0 0
𝜍18 0 0 0 0 0 0 0 0 0 0 0 0

𝜍19 0 0 0 0 0 0 0 0 0 0 0 0
𝜍20 0 0 0 0 0 0 0 0 0 0 0 0
𝜍21 0 0 0 0 0 0 0 0 0 0 0 0
𝜍22 0 0 0 0 0 0 0 0 0 0 0 0
𝜍23 768 256 0 0 0 0 0 0 0 0 0 0
𝜍24 0 0 0 0 0 0 0 0 0 0 0 0
𝜍25 0 0 0 0 0 0 0 0 0 0 0 0
𝜍26 0 0 0 0 0 0 0 0 0 0 0 0
𝜍27 0 0 0 0 0 0 96 0 0 1440 0 0
𝜍28 0 0 0 0 0 0 0 0 0 0 0 0
𝜍29 0 0 0 0 0 0 0 0 0 0 0 0
𝜍30 0 0 0 0 0 0 0 0 0 0 0 0
𝜍31 0 0 256 768 0 0 0 0 0 0 0 0
𝜍32 0 0 0 0 0 0 0 0 0 0 0 0
𝜍33 0 0 0 0 0 0 0 0 0 0 0 0
𝜍34 0 0 0 0 0 0 0 0 0 0 0 0
𝜍35 0 0 0 0 0 0 0 0 0 0 0 0
𝜍36 0 0 0 0 0 0 0 0 0 0 0 0
𝜍37 0 0 0 0 0 0 0 0 0 0 0 0
𝜍38 0 0 0 0 0 0 0 0 0 0 0 0
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