
A&A 675, A130 (2023)
https://doi.org/10.1051/0004-6361/202346724
c© The Authors 2023

Astronomy
&Astrophysics

Shape-based clustering of synthetic Stokes profiles using
k -means and k -Shape

Thore E. Moe1,2 , Tiago M. D. Pereira1,2 , Flavio Calvo3 , and Jorrit Leenaarts3

1 Rosseland Centre for Solar Physics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway
2 Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway

e-mail: t.e.moe@astro.uio.no
3 Institute for Solar Physics, Dept. of Astronomy, Stockholm University, AlbaNova University Centre, 10691 Stockholm, Sweden

Received 21 April 2023 / Accepted 5 June 2023

ABSTRACT

Context. The shapes of Stokes profiles contain a great deal of information about the atmospheric conditions that produced them.
However, a variety of different atmospheric structures can produce very similar profiles. Thus, it is important for a proper interpretation
of the observations to have a good understanding of how the shapes of Stokes profiles depend on the underlying atmosphere. An
excellent tool in this regard is forward modeling, namely, computing and studying synthetic spectra from realistic simulations of the
solar atmosphere. Modern simulations routinely produce several hundred thousand spectral profiles per snapshot. With such numbers,
it becomes necessary to use automated procedures in order to organize the profiles according to their shape. Here, we illustrate the use
of two complementary methods, k-means and k-Shape, to cluster similarly shaped profiles and demonstrate how the resulting clusters
can be combined with knowledge of the simulation’s atmosphere to interpret spectral shapes.
Aims. We aim to showcase the use of clustering analysis for forward modeling. In particular, we wish to introduce the k-Shape
clustering method to the solar physics community as a complement to the well-known k-means method.
Methods. We generated synthetic Stokes profiles for the Ca ii 854.2 nm line using the Multi3D code from a Bifrost simulation
snapshot. We then applied the k-means and k-Shape clustering techniques to group the profiles together according to their shape and
investigated the within-group correlations of temperature, line-of-sight velocity, and line-of-sight magnetic field strengths.
Results. We show and compare the classes of profile shapes we retrieved from applying both k-means and k-Shape to our synthetic
intensity spectra. We then show the structure of the underlying atmosphere for two particular classes of profile shapes retrieved by the
clustering and demonstrate how this leads to an interpretation for the formation of those profile shapes. We applied both methods to
the subset of our profiles containing the strongest Stokes V signals and we demonstrate how k-Shape can be qualitatively better than
k-means at retrieving complex profile shapes when using a small number of clusters.
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1. Introduction

Forward modeling of the solar atmosphere is a very useful tool
for understanding the relative importance of atmospheric com-
ponents in the formation of polarized spectra, thereby guid-
ing interpretations of observations. By computing synthetic
Stokes profiles from realistic 3D radiative magnetohydrody-
namic (rMHD) simulations, we can directly compare a particular
spectral signature with the full state of the atmosphere that pro-
duced it (see e.g., Leenaarts et al. 2013a,b; Pereira et al. 2013,
and others in the series). Modern simulations routinely contain
several hundred thousand pixels, with each pixel giving rise to
a set of Stokes profiles. Depending on the spatial resolution of
the numerical model, and the spectral resolution considered for
the synthesis, these profiles can be quite complex; often exhibit-
ing more complicated behavior than what is typically resolved in
real observations. It is obviously not feasible to analyze the for-
mation of so many profiles one by one, nor is it practical to man-
ually sort them into groups according to their features. Rather,
some automated procedure must be used to organize the profiles
in a meaningful manner for further human analysis.

One way of reducing the number of individual pro-
files into more manageable collections is the use of cluster-

ing techniques such as k-means (Steinhaus 1956; MacQueen
1967). The k-means method has seen extensive use in solar
and stellar physics (for example in Sánchez Almeida & Lites
2000; Pietarila et al. 2007; Viticchié & Sánchez Almeida 2011;
Panos et al. 2018; Sainz Dalda et al. 2019; Bose et al. 2019,
2021; Kuckein et al. 2020; Joshi et al. 2020; Woods et al.
2021; Nóbrega-Siverio et al. 2021; Barczynski et al. 2021;
Kleint & Panos 2022; Mathur et al. 2022; Sainz Dalda et al.
2022). Apart from k-means, other clustering methods have also
been used on solar spectra, for instance the t-distributed stochas-
tic neighbor embedding employed by Verma et al. (2021). The
purposes of the clustering vary from identifying and studying
the observational signatures of particular physical processes and
features, to reducing the spatial dimensionality of data-sets for
inversions, or performing statistical characterizations of observa-
tions. One area that has been scarcely explored is the application
of clustering techniques in a forward modeling context, with one
notable exception being Khomenko et al. (2005). In this paper,
we aim to address that issue, applying the k-means method to
Ca ii 854.2 nm Stokes I and Stokes V profiles generated from a
Bifrost (Gudiksen et al. 2011) snapshot using the Multi3D radia-
tive transfer code (Leenaarts & Carlsson 2009), which has been
extended (Calvo & Leenaarts, in prep.) to include polarization,
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accounting for the Zeeman effect. We focus on the shapes of
the Stokes profiles, aiming to illustrate what different classes of
shapes do (or do not) tell us about the underlying atmospheric
conditions.

While k-means is a fast and robust clustering technique, it
does not directly cluster profiles based on their shapes. It works
by minimizing the sum of within-cluster Euclidean distances
between profiles, which can potentially lead to distinctly dif-
ferent shapes appearing in the same cluster, as demonstrated in
Fig. 1. Or two Doppler-shifted spectral profiles with the oth-
erwise same exact shape can be put into separate clusters, for
instance. Furthermore, the centroid, or “representative profile”
(RP), of a cluster is given as the mean of the profiles belonging
to the cluster, which in some cases can give a poor representation
of the typical profile shapes in the cluster. Of course, increasing
the number of clusters can mitigate this problem, but at the cost
of interpretability, which is the main point of the kind of forward
modeling we seek to undertake in this paper.

A relatively fast clustering method that is inherently shape-
based is the k-Shape method of Paparrizos & Gravano (2015).
Though originally developed for use on time-series, the method
is quite general and we apply it here to the case of Stokes
profiles with the obvious substitution of the time axis for a
wavelength axis. A feature of k-Shape is that the clustering is
largely independent of Doppler-shifts, which can be beneficial or
detrimental depending on the intended usage case. By ignoring
Doppler-shifts and using a different measure of similarity than k-
means, the profiles are matched more directly according to their
similarity in actual shape, rather than being matched according
to a combination of shape and wavelength position. Furthermore,
as the centroid computation is rather different from the one in k-
means, the RPs are much more prototypical of the clustered pro-
files. The cost, of course, is that all absolute velocity-information
is not considered in the clustering.

2. Methods

2.1. Generating synthetic profiles

We generated our synthetic spectra from the 23 km resolution
atmospheric model described in Moe et al. (2022). This is a
Bifrost model (Gudiksen et al. 2011) with a magnetic field con-
figuration constructed to resemble a coronal hole. The model has
512×512×512 grid points, spanning roughly 12 Mm in the hor-
izontal directions and going from z = −2.5 Mm below up to
z = 8 Mm above the solar surface. The horizontal spacing of
the grid points is uniform, resulting in a horizontal resolution of
23 km pix−1.

We used an extension (Calvo & Leenaarts, in prep.) of the
Multi3D code (Leenaarts & Carlsson 2009) with polarimetric
capabilities to produce 3D full Stokes profiles of the Ca ii 854.2
nm line accounting for the Zeeman effect. As 3D computations
are immensely expensive we cut the bottom 112 grid points, cor-
responding to below −0.4 Mm beneath the surface, under the
assumption that these are too deep to affect the formation of our
line of interest. Furthermore, we neglected to include the effects
of partial frequency redistribution (PRD) and isotopic splitting.
The obtained synthetic profiles were normalized by the nearby
continuum, meaning each profile was divided by the Stokes I
value of the reddest wavelength in the synthesis at approximately
λ0 + 0.95 nm, and interpolated to 100 equidistant wavelength
points in the range λ0 ± 0.05 nm, where λ0 denotes the central
wavelength of the line. We performed this interpolation in order
to give equal weight to all parts of the profile when clustering
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Fig. 1. Example showing how k-Shape (left) and k-means (right)
partition a dataset with three distinct signal shapes. While k-Shape
recovers the three distinct classes of shapes, k-means mixes the
class containing a peak and a drop with the class containing only
a drop. This illustration is adapted from the documentation of
the tslearn-library (https://tslearn.readthedocs.io/en/
stable/auto_examples/clustering/plot_kshape.html#
sphx-glr-auto-examples-clustering-plot-kshape-py).

since the original wavelength grid used in the synthesis is non-
equidistant.

2.2. k-means clustering

The most common clustering technique for spectral profiles is k-
means clustering. The full set of profiles is divided into k clusters
of similarly shaped profiles, where the number k must be chosen
at the outset. The measure of similarity is the Euclidean distance
between profiles; that is, the distance between two profiles is the
sum over wavelengths of the squared difference in their ampli-
tudes:

distance =
∑

i

(I1(λi) − I2(λi))2, (1)

where I(λi) denotes the amplitude of the profile at each wave-
length point λi. Each cluster has a centroid, and the goal is to
assign the profiles to the k clusters in such a way that the sum
of distances between all profiles and their nearest centroid (often
called the inertia) is minimized. Algorithmically, k-means per-
forms the following steps: (1) initialize k centroids, one for each
cluster; (2) assign each profile to the cluster with the closest cen-
troid; (3) recompute the centroids as the mean (for each wave-
length) of the profiles belonging to the cluster; (4) repeat 2 and
3, until no profile changes cluster, a fixed number of iterations
has been performed, or until the total inertia no longer changes
above a set tolerance.

It should be noted that the convergence of the k-means algo-
rithm does not guarantee that a global minimum has been found.
Therefore, it is common to re-initialize the clustering a prede-
fined number of times, keeping the result with lowest inertia. In
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this paper, we have used the k-means implementation of scikit-
learn (Pedregosa et al. 2011), employing the k-Means++ initial-
ization (Arthur & Vassilvitskii 2007) for selecting better initial
cluster centroids.

2.3. k-Shape clustering

As the name implies, k-Shape (Paparrizos & Gravano 2015), is
designed to perform a clustering into k clusters of distinct shape.
While the general idea is similar to k-means, it uses a differ-
ent metric for the distance between profiles; as well as another
method for computing the cluster centroids. The distance metric
is based on shifting the profiles across each other and comput-
ing the cross-correlation for each possible shift. Considering two
profiles, I1 and I2, defined on m wavelength points, written in the
form of vectors:

I1 = I1(λ1), I1(λ2), . . . , I1(λm), I2 = I2(λ1), I2(λ2), . . . , I2(λm).
(2)

The cross-correlation sequence between these two profiles,
CCw(I1, I2), is defined as:

CCw(I1, I2) = Rw−m(I1, I2), w ∈ {1, 2, . . . , 2m − 1}, (3)

where

Rk(I1, I2) =

{∑m−k
l=1 I1(λl+k) · I2(λl), k ≥ 0

R−k(I1, I2), k < 0.
(4)

Thus, the sequence CCw(I1, I2) contains the cross-
correlation value for each of the 2m − 1 possible shifts of
the profiles relative to each other; essentially, a sequence of
the vector dot products between zero-padded I1 and I2 for
each possible overlapping shift of the profiles. Normalizing the
cross-correlation sequence (corresponding to dividing by the
Euclidean norm of both profiles):

NCCc =
CCw(I1, I2)

√
R0(I1, I1) · R0(I2, I2)

, (5)

results in a number between −1 and 1 for each entry in the
sequence, where −1 signifies a perfect anti-correlation and 1
signifies a perfect correlation between the profiles. Selecting
the entry with the largest cross-correlation value then gives the
shape-based distance between two profiles as:

distance = 1 −max
w

( CCw(I1, I2)
√

R0(I1, I1) · R0(I2, I2)

)
, (6)

which is bounded between 0 and 2.
As in k-means, each profile is assigned to the closest centroid

in terms of distance and the cluster centroid is recomputed. In
k-Shape, however, the refinement of the cluster centroids is done
by reformulating the minimization of within-cluster distances as
a maximization of a Rayleigh quotient calculation; for details,
we refer to the original paper (Paparrizos & Gravano 2015). It
should, however, be remarked that the k-Shape method assumes
that the profiles have been z-normalized, meaning each profile
has a zero mean and unity standard deviation:

I1
′ =

I1 − µ1

σ1
, (7)

where µ1 and σ1 are, respectively, the mean and the standard
deviation of the profile over the m wavelengths considered. This

assumption is not strictly necessary, as the method can be modi-
fied to work with other data-normalizations. However, the origi-
nal authors found the z-normalization to work best in their tests
and it is beyond the scope of our current work to re-implement
and evaluate the method for other normalizations.

We used the k-Shape implementation from the tslearn library
(Tavenard et al. 2020), with some simple modifications to make
it run in parallel. Even so, the k-Shape method is significantly
slower than the k-means implementation of scikit-learn. In one
example case, using k = 100 clusters for 512 × 512 pro-
files with 100 wavelength points, one run of k-Shapes without
re-initializations took roughly 2.7 h, while a k-means run with
10 re-initializations took about 5 min, both on the same 32-core
workstation. It should be noted that in the tslearn implementation
of k-Shape, k single profiles are randomly chosen as the initial
cluster centroids. In the original paper (Paparrizos & Gravano
2015), the initialization is done by randomly distributing all pro-
files among k clusters

3. Results

3.1. Overview

Our intention has been to illustrate and compare the use of both
k-Shape and k-means for clustering synthetic profiles according
to their shape, and, subsequently, to consider how the result-
ing clusters can reveal correlations between the typical profile
shapes in a cluster and the particular structure of the underly-
ing atmosphere these profiles emerge from. Therefore, we begin
by presenting and discussing the clustering of the intensity pro-
files in Sect. 3.2, then we present a detailed examination of two
particular profile shapes retrieved by the clustering in Sects. 3.3
and 3.4.

As the k-Shape method assumes that its input profiles are
z-normalized, we used the same normalization for the k-means
method in order to do a fair comparison. This turned out to be a
reasonable approach for the synthetic intensity profiles, as they
have signal values in the same general range. However, the polar-
ized components of the Stokes vector can vary vastly in ampli-
tude, so the z-normalization can cause tiny signals to appear
misleadingly large compared to stronger signals as the amplitude
is given in units of the per-profile standard deviation. Therefore,
we focused mostly on the intensity profiles, although we did per-
form a clustering of the very strongest Stokes V signals (those
with a signal exceeding 0.5% of the nearby continuum intensity),
which we discuss in Sect. 3.5.

3.2. Clustering the intensity profiles

We clustered the synthetic intensity profiles into k = 100 clus-
ters using both k-means and k-Shape. The resulting clusters
are shown in Figs. 2 and 3, respectively. The choice of 100
clusters was made after some experimentation, as a reasonable
trade-off between the two opposing considerations of accuracy
and human interpretability. The k-means method was run with
10 re-initializations, while the k-Shape method was run with a
single initialization due to being around two orders of magni-
tude slower. We tested k-Shape with 10 re-initializations, which
yielded qualitatively very similar results to the single initializa-
tion run. We therefore elected to use the single initialization run
in order to compare the methods for somewhat more similar run-
times.

The first observation we can make is that both clustering
techniques seem to recover a similar variety of different profile
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Fig. 2. k-means clusters for synthetic Ca ii 854.2 nm intensity profiles, using 100 clusters on z-normalized profiles. The red line is the cluster
centroid profile (average), while the black lines are all individual profiles assigned to each cluster. The grey line is a visual aid that denotes the
position of λ0.

shapes. These range from typical absorption profiles (e.g., #35
in Fig. 2, #52 in Fig. 3), through increasingly strongly skewed
absorption profiles (e.g., #9 and #37 in Fig. 2, #30 and #44 in
Fig. 3), to more complicated profiles, including double-peaked
profiles (e.g., #98 and #100 in Fig. 2, #97 and #100 in Fig. 3),
asymmetric emission profiles (e.g., #73 in Fig. 2, #64 in Fig. 3)
and multi-lobed profiles (e.g., #81 in Fig. 2 or #84 in Fig. 3).

The clustering appears to be reasonably tight, and in both
methods there are several clusters showing very similar shapes,
namely, there is more than one cluster per “family” of shapes.
Encouragingly, both clustering methods seem to recover all the
same types of cluster “families”, for instance, several clusters
with similar asymmetric emission peaks or double peaks show
up in both clusterings, although there is obviously no one-to-one
correspondence between individual clusters across the methods.
Conversely, at first glance there do not seem to be clusters with
very distinct shapes found only with one method compared to
the other. The most unique-looking clusters are perhaps #56 and
#88 in Fig. 2, but even these find quite similar counterparts in
#97 and #47 in Fig. 3. This gives us some confidence that our
choice of 100 clusters reasonably covers the range of typical pro-
file shapes.

A second observation we can make concerns how the
retrieved clusters do differ between the methods. The k-Shape
groupings demonstrate the method’s insensitivity to Doppler-

shifts, especially the clusters containing the asymmetric emis-
sion peaks (e.g., #63, #64, #65, in Fig. 3) show the same shape
at different shifts grouped together. Conversely, k-means splits
these into different clusters (e.g., #72, #73, #74 in Fig. 2) accord-
ing to their Doppler shifts. The fact that both methods retrieve
the same “families”, but differently distributed over the clusters,
can be beneficial for analysis, as we see in Sect. 3.3. With such
a stereoscopic view of the underlying atmospheres, it becomes
easier to discern by inspection which atmospheric parameters
are important and which are incidental for the formation of the
particular profile shapes. In particular, k-Shape’s insensitivity
to Doppler shifts contrasted with k-means sensitivity to them
allows us to better discern which atmospheric behaviors are cor-
related solely with the shape of the profile, as opposed to being
correlated to the combination of shape and Doppler-shift.

A third observation relates to how and where the methods
perform poorly, in terms of profiles not being a good fit for their
assigned clusters. As mentioned, cluster #56 in k-means does
not seem to be well captured by k-Shape. It turns out that most
of the profiles from this cluster are assigned to #68 and #73
in Fig. 3. These profiles are on the whole quite different from
their assigned k-Shape centroids, but when the profiles and the
centroids are shifted drastically across each other, the overlap-
ping parts agree sufficiently for them to be grouped together. As
k-Shape computes all possible shifts, it may occasionally find
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Fig. 3. k-Shape clusters for synthetic Ca ii 854.2 nm intensity profiles, using 100 clusters on z-normalized profiles. The red line is the cluster
centroid from k-Shape, and the black lines are all individual profiles assigned to the cluster. The grey line is a visual aid that denotes the position
of λ0.

large shifts (and thereby a large clipping of the signal) to be the
least bad option, leading to such apparently poor assignments.
That type of signal clipping does not happen with k-means.

On the other hand, the k-means clusters appear to have issues
distinguishing profiles where there is a large difference in signal
strength over a narrow wavelength region. For instance, the k-
means cluster #79 in Fig. 2 turns out to be a mix of profiles,
with enhanced shoulders on either the right side or on both sides
of the line core, as well as some with only a weakly enhanced
right shoulder followed by a second absorption feature to the
right. In the k-Shape clustering vast majority of these profiles
are assigned to #77, #78, #94, and #95 in Fig. 3.

To summarize, neither method performs ideally, in the sense
that both have clusters where some members that are rather
poorly represented by the centroids. The obvious way to improve
the fidelity of the clusters is to increase the number of clusters or
to possibly carry out more re-initializations. However, the meth-
ods seem to complement each other, each balancing out the oth-
ers weaknesses to an extent, and are useful as starting points for
human analysis.

3.3. CBG-like profiles

As an example of the sort of analysis facilitated by these kinds of
clustering techniques, we decided to perform an in-depth exam-

ination of the family of asymmetric blue-lobed single-peaked
Stokes I profiles found in Fig. 2 (exemplified by cluster number
#70 and #72) and Fig. 3 (exemplified by cluster numbers #64
and #65). These profiles are reminiscent of the chromospheric
bright grains (CBGs) seen in the Ca ii H and K lines (see for
instance Carlsson & Stein 1997; Mathur et al. 2022, and refer-
ences therein) so we call them CBG-like.

Figure 4 shows the Stokes I and Stokes V signals (with
each profile normalized to its nearby continuum Stokes I value),
as well as the stratification of temperature, line-of-sight veloc-
ity, and line-of-sight magnetic field strength for all the profiles
belonging to k-means cluster #70 and #72. The atmospheric
quantities are plotted as a function of the logarithm of optical
depth for radiation at wavelength 500 nm (5000 Å), log(τ5000).
Throughout this paper, we used the convention positing that pos-
itive heights, velocities, and vertical magnetic field components
point outwards from the solar surface. Each row of Fig. 4 cor-
responds to one cluster, and the profiles are stacked along the
vertical axis for each panel. The k-Shape clusters #64 and #65
are shown in a similar fashion in Fig. 5.

Looking at the intensities, we see that the clusters are indeed
well constrained for the most part. The k-means method pro-
duces clusters where the emission peak is at approximately the
same wavelength throughout each cluster, but with some vari-
ance in the other features of the profile shapes. The k-Shape
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Fig. 4. Stokes I and V profiles for two clusters, along with some atmospheric parameters for their simulation columns. Here, we show the k-
means clusters #70 (top row) and #72 (bottom row) from Fig. 2, both of which have CBG-like profiles. All profiles for each cluster are stacked
along the vertical axes of the plots, so the y-axis merely counts the profile number. The left column shows the continuum-normalized intensity
versus wavelength from line core. The second-from-left column shows the continuum-normalized Stokes V profiles. The last three columns show,
respectively, the temperature, the line-of-sight velocity, and the line-of-sight magnetic field strength, as a function of log(τ5000).

0

250

500

750

1000

1250

1500

1750

2000
I/Ic V/Ic Temperature [K] Vz [m/s] Bz [T]

0.4 0.2 0.0 0.2 0.4
[Å]

0

500

1000

1500

2000

2500

0.4 0.2 0.0 0.2 0.4
[Å]

6 5 4 3 2 1
log 5000

6 5 4 3 2 1
log 5000

6 5 4 3 2 1
log 5000

0.2 0.4 0.6 0.8 1.0 1.2 0.004 0.002 0.000 0.002 0.004 3000 4000 5000 6000 7000 5000 0 5000 0.010 0.005 0.000 0.005 0.010

Fig. 5. Same as Fig. 4, but for the k-Shape clusters #64 (top) and #65 (bottom) from Fig. 3.
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Fig. 6. Same as Fig. 4, but for the k-means clusters #98 (top) and #100 (bottom) from Fig. 2.

method, on the other hand, retrieves clusters where the location
of the emission peak varies considerably in wavelength, but the
shapes in each cluster seem more consistent in their shapes. For
instance, the wavelength distance of the slope from peak to bot-
tom seems to be more regular, and the red-side absorption fea-
tures show less variance.

As for the Stokes V profiles, with both methods the wave-
length positions of the strongest Stokes V signals seem to coin-
cide with the sharpest changes in the intensity, as we might
expect from the weak field approximation. However, there do
not seem to be any other universal tendencies in Stokes V across
all the CBG-like clusters. Similarly for the stratification of the
line-of-sight magnetic field strengths, there do not appear to be
clear tendencies neither within nor across the clusters. This sug-
gests that the structure of the vertical magnetic field component
does not play a direct role in the formation of these CBG-like
Stokes I profiles.

What does seem to be common to all the clusters, and there-
fore important for the formation of these profile shapes, is the
depth-stratification of temperature and line-of-sight velocities.
Mostly, we see a temperature increase in the atmosphere, fol-
lowed by a large velocity gradient slightly higher up. Mostly this
manifests as upflowing material from below meeting downflow-
ing material from above, but not exclusively as there are some
instances of faster downflows from above meeting slower down-
flows; namely, there is not necessarily any sign change in the
vertical velocity, but there is a significant change in speed.

The fact that the temperature increase occurs deeper in the
atmosphere than the velocity gradient, as well as the fact that
the absolute values of the velocity are less important for the for-
mation of these shapes than the presence of a strong gradient, is
more easily seen with the k-Shape clusters, since each of them
contains the CBG-like profile shapes at a range of Doppler shifts.
In any case, the correlation between the temperature increase, the

velocity-gradient and the profile shape is certainly made clearer
when comparing the results of both clustering methods.

In terms of explaining the formation of these profiles, we are
reminded of the interpretation of Ca ii K and H bright grains
provided in Carlsson & Stein (1997) as signatures of acoustic
shocks propagating upwards through the chromosphere, with
the asymmetry being caused by Doppler shifts of the opacity
across the shock front. The increased temperature enhances the
local source function, which produces enhanced emission. The
velocity gradient to more rapidly downflowing material above
the heating event causes an opacity shift as the absorbing mate-
rial is shifted to redder wavelengths, letting the bluer part of the
profile escape while attenuating the redder part.

A point that is worth noting is that the correlation between
the atmospheric structure and the CBG-like profile shapes is
apparent straight from the clustering when we have access to
underlying atmosphere. This allowed for a qualitative interpre-
tation of the profiles’ formation without having to resort to
using response functions or contribution functions, which are ill-
defined for the case of 3D radiative transfer.

3.4. Double peaked profiles

As another example, we now consider the double peaked profiles
seen in k-means clusters #98 and #100, and in k-Shape clus-
ters #97 and #100. Similarly to Figs. 4 and 5, the continuum-
normalized intensity and Stokes V signals, as well as the height-
stratified temperature, line-of-sight velocity, and line-of-sight
magnetic field strength for all the individual profiles in each clus-
ter is shown in Figs. 6 and 7 for the k-means and k-Shape clus-
ters, respectively.

Once again, the clusters, on the whole, seem fairly well con-
strained regarding the shape of the intensity profiles. Here, there
seems to be a broader variation in the absolute values of the
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Fig. 7. Same as Fig. 4, but for the k-Shape clusters #97 (top) and #100 (bottom) from Fig. 3.

intensities compared to the previous example. This sort of vari-
ation is not unexpected; since the z-normalization scales, each
profile independently to have a standard deviation equal to one,
thus: our clusters are relatively insensitive to amplitudes and
focused instead on the shapes. Comparing the methods, we see
they mostly recover the same profiles. An exception is that the
k-means cluster #98 in the top row of Fig. 6 has some unique
profiles around profile number 300, which appear to have either
a very weak left peak or only a single peak on the right, followed
by a prominent absorption feature to the right of the rightmost
peak. Looking at the temperature and velocity structure for these
atypical profiles with suppressed left peaks, it appears they have
a temperature enhancement coinciding in height with a moder-
ate downflow. This temperature enhancement persists upwards
through a velocity gradient to a region of strong upflow, before it
hits a very strong downflow. Their formation can potentially be
explained in the same manner as the CBG-like profiles; but with
an oppositely signed velocity gradient and with the strong down-
flow above the upflow causing the additional strongly redshifted
absorption feature.

Returning to the general behavior of the clusters, we find that
the Stokes V profiles seem to behave as expected from the weak-
field approximation, in that they follow the behaviour of the
intensity profiles. There is, however, a rather interesting region
between profile number 200 to 300 in the bottom row of Fig. 6,
where the rightmost Stokes V signal is very low despite a gra-
dient in the intensity and the vertical magnetic field component
has a sign change around log τ5000 = −4.

The temperature structure of the atmosphere is more varied
for the double peaked profiles, compared to the CBG-like pro-
files. There are both regions of temperature enhancements with
little variation spanning decades in log τ5000, and hot regions

bounded by colder plasma above and below. The common fea-
ture for all these double peaked profiles is enhanced tempera-
tures in the range of −5 < log τ5000 < −3. That was also the
case for the CBG-like profiles, though the CBG-like profiles sel-
dom showed these colder layers above the first strong tempera-
ture increase.

The vertical velocities are also rather varied in their struc-
ture, but three general features stand out compared to the CBG-
like profiles from before. Firstly, the shift from upflows (or weak
downflows) to strong downflows at the top tends to occur at
a higher point in the atmosphere. Secondly, the starting points
for the temperature enhancements coincide with slower plasma
velocities and weaker velocity gradients, as opposed to the CBG-
like profiles where the temperature increase starts slightly below
strong velocity gradients. Thirdly, we note that the second veloc-
ity layer from the top, roughly −5.5 < log τ5000 < −4.5, typically
shows low to moderate velocities and fairly modest gradients. As
such, the effect of opacity shifting in this layer is less, and both
intensity peaks due to the temperature enhancements survive.

Another noteworthy point is that when these double peaked
profiles do have downflows from the top extending deeper (to
log τ5000 ≈ −5.5), the downflows are very strong and there is a
corresponding absorption feature on the red side of the reddest
peak. A possible interpretation is that the previously discussed
opacity shifting is so red-shifted in those cases that it overshoots
the red peaks from the slower flowing regions and, therefore, it
does not suppress them.

Interestingly, (and in contrast to the CBG-like profiles) the
vertical component of the magnetic field does in many of these
double peaked profiles display some correlations with the ver-
tical velocities and temperature stratifications. To wit, there
are areas of Figs. 6 and 7 where the velocities change signs
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Fig. 8. k-means clusters for Stokes V profiles, using 20 clusters on z-normalized Stokes V . The red line is the cluster centroid (average), and the
black lines are all individual profiles assigned to the cluster. The blue line is a visual aid that denotes the position of λ0. The bottom two rows show
all the z-normalized Stokes V profiles belonging to the corresponding clusters in the two top rows, with the individual profiles stacked along the
vertical axis. It should be noted that the clusters are not equally populated, so the grey-scale maps will have different densities of profiles along the
vertical axis.

coinciding with an appreciable gradient in vertical field strength
to more negative (downward) values. Furthermore, the starting
heights of the temperature increases coincide with the appear-
ance of the stronger vertical magnetic field components; partic-
ularly obvious examples are profiles number 100 through 200 in
the bottom row of Fig. 6, and profiles number 300 through 500
in the top row of Fig. 7.

In summary, these double peaked profiles seem to arise from
a range of different atmospheric conditions. The common fea-
tures are increased temperatures in the low chromosphere-upper
photosphere, coinciding with low or modest velocities and weak

velocity gradients. This, combined with cospatial enhanced ver-
tical magnetic field strengths, suggests that these profiles are not
all caused solely by acoustic shocks, in contrast with the CBG-
like profiles. Whether the cause of the heating is due to a mag-
netic phenomenon, or if we simply see already hot plasma being
transported, is unclear from this analysis.

3.5. The strongest Stokes V profiles

We have so far focused on the clustering of intensity profiles,
since the z-normalization scaled Stokes V signals of very dif-

A130, page 9 of 12



Moe, T. E., et al.: A&A 675, A130 (2023)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

0.5 0.0 0.5
[Å]

4

2

0

2

4 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20

Fig. 9. k-shape clusters for Stokes V profiles, using 20 clusters on z-normalized Stokes V . The red line is the cluster centroid from k-Shape, and
the black lines are all individual profiles assigned to the cluster. The blue line is a visual aid that denotes the position of λ0. The bottom two rows
show all the z-normalized Stokes V profiles belonging to the corresponding clusters in the two top rows, with the individual profiles stacked along
the vertical axis. It should be noted that the clusters are not equally populated, so the grey-scale maps will have different densities of profiles along
the vertical axis.

ferent amplitudes to a misleadingly similar range. Many of our
Stokes V profiles contained only very weak signals, and clus-
tering according to the shapes of such weak signals should not
be expected to provide much diagnostic information. However,
by restricting our focus to the Stokes V profiles containing an
(unsigned) amplitude larger than 0.5% of the nearby continuum
intensity, we were able to perform a clustering on profiles with
similar strengths. Out of our 512 × 512 synthetic profiles, only
7054 (≈2.7%) matched that selection criterion. The results of
k-means and k-Shape clustering with k = 20 clusters on this sub-

set of Stokes V profiles are shown in Figs. 8 and 9 respectively.
In this case, we deliberately selected a rather low number

of clusters. This was partly done to avoid having clusters with
very few members considering our reduced dataset, and partly to
compare the performance of the two methods when using a very
limited, and possibly too low, number of clusters. It is obvious
from looking at Figs. 8 and 9 that a collection of 20 clusters is not
sufficient to capture all the complexities present in the profiles
with either method, although the clusterings do reproduce the
primary features of the profiles.
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Comparing these two clustering results reveals some inter-
esting differences. Most noticeably, not all shapes are common
to both methods. The double peaked Stokes V profiles of clus-
ter number #8 and #10 in the k-Shape result are not retrieved as
a separate class by the k-means method; instead they are mixed
into most of the k-means clusters, though primarily into #1, #7,
#10, #12, and #17. On the other hand, the valley-peak-valley
shape apparent in cluster number #16 from the k-means method
does not appear in the k-Shape case. Looking in more detail at
the individual profiles comprising that cluster, we find almost
no profiles with a shape similar to that of the cluster mean. The
triple-lobed shape of the cluster mean (marked in red) is instead
mostly a mix of valley-peak and peak-valley shapes. In this case,
the k-Shape centroids are more faithful representations of the
shapes picked up by each cluster.

In general, the clusters found by k-means contain one dom-
inant feature, such as a peak, a dip, or both, at a certain wave-
length position with considerable variation in the rest of the sig-
nal. Furthermore, looking at cluster #13 or #16 in Fig. 8 we see
that when the dominant feature in the cluster is multi-lobed, it
might actually be a mix of single-lobed and multi-lobed signals
grouped together, so long as their lobes occur at the same wave-
length. This type of shape-mixing does not happen as readily
with k-Shapes, contrast k-means cluster #13 with k-Shape clus-
ter #15 and #17. Also, k-Shape seems to retrieve profiles with
more commonality also at the weaker parts of the signal; com-
pare for instance k-means clusters #5, #10, and #19 with k-Shape
clusters #1, #5, and #13. k-Shape does, however, occasionally
struggle when excessive shifts of the signal causes clipping of
the features at the edges, which can be most easily seen in clus-
ter #1, #19, or #20 of Fig. 9. While it is by no means perfect,
we find, in conclusion, that k-Shapes performs markedly better
than k-means at identifying shapes with this particular combina-
tion of complex signals and low number of clusters. How well
that observation generalizes to other datasets, cluster numbers,
or both, is not clear, and this issue is beyond the scope of the cur-
rent work. It does, however, indicate the type of problems where
k-Shape can potentially provide an advantage over k-means. As a
note, we have also performed this clustering experiment with k-
means on the continuum-normalized Stokes V profiles and found
that their behavior is very similar to the z-normalized case dis-
cussed above.

4. Discussion and conclusions

We used the k-means and k-Shape clustering techniques to group
according to profile shape synthetic Ca ii intensity and Stokes V
profiles, generated by 3D radiative transfer calculations from a
3D MHD simulation.

Using k = 100 clusters for the intensities resulted in both
methods retrieving qualitatively similar “families” of clusters.
While the k-means method produced clusters whose features
were strongly coherent with regard to wavelength, the k-Shape
method, being insensitive to Doppler shifts, produced clusters
where the same shape appeared over a range of wavelength
shifts. Regarding the methods’ shortcomings, we found that k-
Shape occasionally would mislabel some profiles by clipping the
signals at the edges when comparing across Doppler shifts, while
k-means at times would lump rather differently shaped profiles
together so long as their strongest feature occurred at the same
wavelength.

Armed with full knowledge of the simulation’s atmospheric
parameters, we took an in-depth look at a particular set of profile
shapes and arrived at an explanation of their formation by look-

ing at the correlations in the underlying atmospheric structure.
We remark that the most interesting aspect of this exercise was
not the description itself of how those profile shapes are formed,
but rather how we arrived at it. In that use case, there did not
appear to be much benefit in using one method over the other in
terms of the results; although we note that k-means was signifi-
cantly quicker computationally. However, we do note that using
both methods gave a stereoscopic view of the data, making it eas-
ier to determine which atmospheric quantities were important.

Carrying out a clustering analysis of the Stokes V profiles,
based on their shapes, proved difficult due to the large variations
in signal strength being masked by the z-normalization required
by k-Shape, causing strong and weak signals to appear deceiv-
ingly similar. Restricting ourselves to a subset of the strongest
Stokes V profiles, we performed a clustering with k = 20 clusters
using both methods. We found that the methods showed the same
tendencies as with the intensity, but more strongly pronounced
due to the lower number of clusters and more complex shapes.
In this setting, we found that k-means clearly performed qual-
itatively worse than k-Shape at creating clusters with coherent
shapes. However, is difficult to quantitatively compare the meth-
ods since they apply very different metrics.

In conclusion, k-Shape seems interesting for use cases where
one wants human interpretation and small numbers of clusters.
Another interesting possibility is to use the k-Shape distance
metric to search an observation or simulation for the profiles with
shape most similar to a certain prototype, for example, when try-
ing to detect Ellerman bombs. We want to stress that k-Shape
is not at all suited to usage cases (Sainz Dalda et al. 2019, for
example) where the purpose of clustering is to speed up inver-
sions, as the centroids found by k-Shape do not correspond to a
definite Doppler-shift nor to an absolute intensity. In those cases,
k-means is the better option, and one can easily increase the
number of clusters beyond what a human can reasonably pro-
cess. For a qualitative clustering, aimed towards human inter-
pretation and with a comparatively small number of clusters, we
find that k-Shape can be a useful complement to, and sometimes
better than, the more well-known k-means method.
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