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Abstract

In this paper we employ Malliavin calculus to derive a general stochastic maximum prin-
ciple for stochastic partial differemtial equations with jumps under partial information. We
apply this result to solve an optimal harvesting problem in the presence of partial information.
Another application pertains to portfolio optimization under partial observation.
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1 Introduction

In this paper we aim at using Malliavin calculus to prove a general stochastic maximum prin-
ciple for stochastic partial differential equations (SPDE’s) with jumps under partial informa-
tion. More precisely, the controlled process is given by a quasilinear stochastic heat equation
driven by a Wiener process and a Poisson random measure. Further the control processes are
assumed to be adapted to a subfiltration of the filtration generated by the driving noise of the
controlled process. Our paper is inspired by ideas developed in @ksendal & Zhou [14], where
the authors establish a general stochastic maximum principle for SDE’s based on Malliavin
calculus. The results obtained in this paper can be considered a generalization of [14] to the
setting of SPDE’s.

There is already a vast literature on the stochastic maximum principle. The reader is
e.g. referred to [2], [1] , [7], [16], [13], [17] and the references therein. Let us mention that
the authors in [2], [16] resort to stochastic maximum principles to study partially observed
optimal control problems for diffusions, that is the controls under consideration are based on
noisy observations described by the state process. Our paper covers the partial observation
case in [2], [16], since we deal with controls being adapted to a general subfiltration of the
underlying reference filtration. Further, our Malliavin calculus approach to stochastic control
of SPDE’s allows for optimization of very general performance functionals. Thus our method
is useful to examine control problems of non-Markovian type, which cannot be solved by
stochastic dynamic programming. Another important advantage of our technique is that we
may relax the assumptions on our Hamiltonian, considerably. For example, we do not need
to impose concavity on the Hamiltonian. See e.g. [13], [1]. We remark that the authors in [1]
prove a sufficient and necessary maximum principle for partial information control of jump
diffusions. However, their method relies on an adjoint equation which often turns out to be
unsolvable.
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We shall give an outline of our paper: In Section 2 we introduce a framework for our
partial information control problem. Then in Section 3 we prove a general (sufficient and
necessary) maximum principle for SPDE’s by invoking Malliavin calculus. See Theorem 3.
In Section 4 we use the results of the previous section to solve a partial information optimal
harvesting problem (Theorem 5). Further we inquire into an portfolio optimization problem
under partial observation. The latter problem boils down to a partial observation problem
of jump diffusions, which cannot be captured by the framework of [14].

2 Framework

In the following, let {Bs}o<s<7 be a Brownian motion and N(dz,ds) = N(dz,ds) — dsv(dz)
a compensated Poisson random measure associated with a Lévy process with Lévy measure
v on the (complete) filtered probability space (2, F, {ft}OStST, P). In the sequel, we assume

that the Lévy measure v fulfills
/ 22v(dz) < oo,
Ro
where Rg := R—{0}.
Consider the controlled stochastic reaction-diffusion equation of the form
d'(t,x) = [LI(t,x)+b(t,z,T(t,z), VI'(t,x), u(t, z))] dt
+o(t,z,T(t,z), VI'(t, ), u(t, x))dBy (1)
+ f]R{ 9(t7 xz, F(t7 iL‘), \Y (tv .le), ’U,(t, .’L'), Z)N(dzv dt):
(t,z) € [0,T)xG
with boundary condition
F(O,l’) = g(.’E), T e év
Dtz) = n(t,a), (Lo) € (0,T) x IG,

Here L is a partial differential operator of order m and V the gradient acting on the space
variable x € R” and G C R" is an open set. Further

b(t,z,v,7,u) 0, 7] x G xRxR"xU —R
o(t,x, v, u) 0, 7] x G xRxR"xU — R
o(t,z,v,7, u, 2) 0, 7] x G xR xR"xU xRy — R
§(x)

x)

n(t,

are Borel measurable functions, where U C R is a closed convex set. The process

(0,7) x 0G — R

u:[0,T]xGxQ—U

is called an admissible control if (1) has a unique (strong) solution I' = I'®) such that
u(t, z) is adapted with respect to a subfiltration

& CF, 0<t<T, (2)



and such that

IE[/OT/G|f(t,:1c,1“(t,m),u(t,3:),w)]dxdt—l—/G]g(:v,F(T,m),w)\dx < 50

for some given C! functions that define the performance functional (see (3) below)

f o 0T xGxRxUxQ—R,
g : GXxRxQ—R.

A sufficient set of conditions, which ensures the existence of a unique strong solution of
(1), is e.g. given by the requirement that the coefficients b, o, 6 satisfy a certain linear growth
and Lipschitz condition and that the operator L is bounded and coercive with respect to
some Gelfand triple. For more general information on the theory of SPDE’s the reader may

consult e.g. [4], [9].
Note that one possible subfiltration & in (2) is the d-delayed information given by

E=F5 t>0

where 6 > 0 is a given constant delay.

The o-algebra &; can be interpreted as the entirety of information at time ¢ the controller
has access to. We shall denote by A = Ag the class of all such admissible controls.

For admissible controls u € A define the performance functional

J(u):E[/OT/Gf(t,:v,F(t,x),u(t,:v),w)dxdt—I—/Gg(m,I‘(T,:c),w)dm . (3)

The optimal control problem is to find the maximum and the maximizer of the perfor-
mance, i.e. determine the value J* € R and the optimal control u* € A such that

J* =sup J(u) = J(u") (4)
ucA

3 A Generalized Maximum Principle for Stochastic Partial
Differential Equations with Jumps

In this Section we want to derive a general stochastic maximum principle by means of Malli-
avin calculus. To this end, let us briefly review some basic concepts of this theory. As for
definitions and further information on Malliavin calculus see e.g. [12] or [5].

3.1 Some Elementary Concepts of Malliavin Calculus for Lévy Processes

Suppose that B; is a Brownian motion on the filtered probability space

(Q(l)’f(1)>{flf(l)}ogth?P(l))v



where {fél)}ogth is the P —augmented filtration generated by B; with F(1) = .7-";1).
Analoguously, assume a stochastic basis

@, FO {7 ocrcr PD)

associated with the compensated Poisson random measure N (dt, dz).

_ Let us recall the chaos representation property of square integrable functionals of B; and
N(dt,dz):
(i) If F e L2(FM, PM) then

F =Y 1(fn) (5)

n>0

for a unique sequence of symmetric f,, € L?(\"), where ) is the Lebesgue measure and
T tn to
IW(f,) = n!/ (/ (| falty, . tn)dBy,)dBy,...dB;, ,n € N
o Jo 0

the n-fold iterated stochastic integral with respect B;. Here L(Ll) (fo) := fo for constants fj.
(ii) Similarly, if G € L?(F®, P(?)), then

G =312 (gn). (6)

n>0

for a unique sequence of kernels g,, in L?((Axv)"), which are symmetric w.r.t. (t1,21), ..., (tn, 2n)-
Here 1Y (gn) is given by

T tn to ~ ~
2)(gn) = n!/ / / / (/ / Gn(t1, 21, tn, 2n)dBy )N (dt1, dz1)...N(dt1,dz1),n € N.
0 Rg JO Ro 0 Ro

It follows from the It6 isometry that

1FNZ2py = Dt I falT2amy
n>0
and

||GHi2(p(2>) = Z”! Hgn”%?(()\xu)") :
n>0

Definition 1 (Malliavin derivatives D; and D; ) (i) Denote by Dglg the stochastic Sobolev
space of all F € L*(FM, PW) with chaos expansion (5) such that

(B[S = = nnt | fall 72

n>0

Then the Malliavin derivative Dy of F € Dglg in the direction of the Brownian motion B is
defined as

D,F = Zn[ (faz1),

n>1



where fn_l(tl, v tn—1) = fu(t1, oy tn_1,t).
(i) Similarly, let Dgz% be the space of all G € L*(F®), P?)) with chaos representation (6)
satisfying

[te]ls () = = il [lgall7z(axym) < 00
n>0

Then the Malliavin derivative Dy . of G € ]Df% in the direction of the pure jump Lévy process
n = fOT Jr, 2N (dt, dz) is defined as

Dt ZG an gn 1

n>1

where gn—1(t1, 21, ..y tn—1, 2n—1) := gn(t1, 21, oy tn—1, Zn—1, t, 2).

A crucial argument in the proof of our general maximum principle (Theorem 3) rests on
duality formulas for the Malliavin derivatives D; and Dy . [12], [6]:

Lemma 2 (Duality formula for D, and D; ) (i) Require that o(t) is ft(l)—adapted with
Epq) [fo o%( dt} < oo and F € Dglg Then

Epa) [F /OT So(t)dBt] = Epq) [/OT w(t)Dtht} :

(ii) Assume that ¥(t,z) is ]:t(z)—adapted with Ep) [fOT fRo V2(t, z)u(dz)dt} < oo and G €
Dg Then

T N T
Epe [G /O [ e z)N(dt,dz)] — Epo [ /O [ e z)DmGy(dz)dt].

In the following we shall confine ourselves to the stochastic basis
(Q’ F, {ft}0§t§T7 P>7

where @ = QW x Q@ F= 70 x 7@ 7 = 7V x 73 p = pW) x p@),
We remark that we may state the duality relations in Lemma 2 in terms of P.
3.2 The maximum principle

In view of the optimization problem (4) we require the following conditions (i)-(v):

(i) The functions b(t, z, T, T, u), o(t,z, T, TV, u), 0(t,z, T, ", u, 2), f(t,z, T, u,w), and g(z,T,w)
are contained in C! with respect to the arguments v € R and u € U.



(ii) For all 0 < t < T and all & ® B(R)—measurable random variables «, the control

ﬁa(&x) = X[t,T}(S)a 0<s<T, (7)

where x[; 77 denotes the indicator function on [t,T], is an admissible control.
(iii) For all u, 8 € Ag with § bounded there exists a § > 0 such that
u+yl e A¢ (8)
for all y € (—9,9).
(iv) For all u, 3 € Ag with 8 bounded the process

Y (t,x)=YP(t,z) = dirwﬂlﬁ) (t,z)
Y

exists and

LY (t,z) = — LT8¢ 1)

y=0

VY (t,x) = (10)

d

Yy
d L yr(utyb) (t, )
dy ’

y=0

Further suppose that Y (¢, z) follows the SPDE
t
0
Y(t,z) = / [LY(S,:U) + Y(s,x)a—vb(s,x,F(s, x),VI(s,x),u(s,x))
0

+VY(s,x)=— 0 (s, 2, (s, z), VF(S,CL‘),U(S,CL‘))] ds

0y

t 0
+ /0 [Y(s, ﬂz)a—va(s, z,I(s,z), VI'(t, z), u(s, x))

+VY (s, ) ai

/ / [ (3 z,I(s,x), VI'(t,x), u(s, x), z)

+VY (s~

o(s,z,I'(s, x), VF(t,x),u(s,az))} dB;

,:L‘)(;)//H(s,x,F(s,x),VF(t,x),u(s,:L‘),z)] ﬁ(dz,ds)

+/Ot [ﬁ(s,x)aaub(s,x,F(s,:L'),VF(s,x),u(s,m))} ds

—I-/ ﬁ(s,m)ga(s,m,f‘(s,x),VF(t,a:),u(s,x))st

/ //B (s,z,T(s,z), VI'(t, z), u(s, z), 2) N(dz, ds) ,
(t,x) € [0,T]xG,



with

Y(0,2) = 0,z€G,
Y(t,z) = 0, (t,x) € (0,T) x 0G .

(v) Suppose that for all u € Ag the processes

K(t,z) := 0

T 9
7 7 d
6’yg(:zc,I‘(T,Jc),(,u)—F/t 6’yf(s,x,lj(s,x),u(s,x),u}) S

0 T 0
DK (t,x) := Dta—vg(x,I‘(T, x),w) —|—/t D, (87]‘(3,x,F(s,x),u(s,x),w)) ds

T
D, .K(t,z) = Dt’zgg(:c,F(T, x),w) -l—/ Dy, <aaf(s,x,F(s,x),u(s,l‘),w)) ds
t Y

Oy
H0(87:B7 ’YJ ’7/7u) :: K(S7 x)b(87 x?")/? f}//’ u) +D5K(87 x)o-(87 m)"Y? 7/7 u) (11)
+ / Do K (5,2)0(5, 2,7, 7 u)v(dz) (12)
R

(9

pta) = Kla)+ [ {8Ho<s,x7r<s,x>,vr<s7x>,u(m)) LK (s,2)
t Y

+9 (2 Ha(s, .5, 2), VT (5,2, u(sa) ) | s
Q(t, l’) = Dtp(tvx)
r(t,x, z) = Dy .p(t,z); t€]0,T], z€ Ry, z € G,



where L* is the dual operator of L, are well-defined and that
T 0
B[] {ixean (12veo+ Voo oo 60, 900, .0
0 G
|30t 0) Sb(t D0, 2), VT 0,0). ()|
U
+ ‘VY(t, x)é%b(t, z,D(t,z), VI(t, z), u(t, z)) )

+ | DK (t,x)| <’Y(t,x)§ya(t, x,T'(t,x), VF(t,:L‘),u(t,:U))’

|9 (t0) 560, 0,2, 90 2), 0,0

+ ‘ﬂ(t, sc)gua(t, z,I(t,x), VI'(¢, ), u(t, x))’)

9
+/R|Dt,zK(t, 2)| <‘Y(t,$)m9(t,x,F(t,x),VI‘(t,x),u(t, 2),2)

+ ‘VY(t, x)iﬁ(t, z,[(t,z), VI'(¢, z),u(t, z), 2)

oy
) v(dz)

n ‘ﬁ(t, 0) 20t , D1, 2), V1, 2), ul, ), )

+ ‘ﬁ(t, x>8auf(t, 2, D(t, ), u(t, a:))‘} dtd:):}

< oQ.

Let us comment on that DK (t,z) and D, . K (t,x) in (v) exist, if e.g. coefficients b, o, 0
in (1) fulfill a global Lipschitz condition and the operator L is the generator of a strongly
continuous semigroup. See e.g. [12], [15] and [3, Section 5].

Now let us introduce the general Hamiltonian

H:0,TIxGxRxR"xUxQ—R
by
H(t,z,v,7 u,w) = f(t,z,v,u,w)+p(t, 2)b(t, x, 7,7, u,w) + Dp(t,x)o(t,z, 7,7, u,w)

+ / Diap(t, @)t 2,7, u, 2, w)w(dz). (13)
R

We can now state a general stochastic maximum principle for our partial information
control problem (4):

Theorem 3 Retain the conditions (i)-(v). Assume that u € Ag is a critical point of the
performance functional J(u) in (4), that is

d .
d—J(u +yB) =0



for all bounded 3 € Ag. Then

E [/ Qﬁ(t,x,f(t,x),vf(t,x),a(t,x))dx
G au

Et} =0 a.e in (t,z,w),
where

L(t,z) = @t z),
ﬁ—(t’ m? 77 7/7’1’1’7 w) == f(t’ m? 77 u7 w) +Z/)\(t7 x)b(t7 x? 77 fylﬂ u’ w) + th/)\(tﬂ x)a-(t7 x? 7? F)/,? u? w)

+ / Do Bt 2)8(t, 2,7, u, 2, w)w(dz) |
R

with
~ T(o ~ ~ ~
Bita) = Rt 1‘)—1—/ {GWHO(S,x,F,F',ﬂ,w)+L*K(s,:c)
t
+V iH (s,x .4 w) | ¢ ds
87/ 0 b b ) b 9 )
and

0
K(t,:c):a—7 g(z,T(T, z),w / %fsxf(s ,x),u(s,x),w)ds .
Remark 4 We remark that in Theorem & the patial derivative of H and Hy with respect
to u, vy, and v denotes only the differentiation at places where the arguments appear in the

coefficients in the definitions (11) and (13).

Proof. Since u € Ag is a critical point, there exists for all bounded 8 € Ag¢ a § > 0 as in

(8). We conclude that
- [/ / ( T(s,2), (s, 2),w)VP(s, 2)

+%f(s,m L(s, ), (s, z),w)B(s, a:)) d$d8+/ 87 g(z, T(T, z),w)Y?(T, 2)dz|

d .
0= g




where Y7 is as defined in (iv) with « = @ and fulfills

9 ys,, P(s, ), VE(s, ), 8(s, )

t
YAt x) = /[LYﬁ(s,a:)+Yﬂ(s,m)8
0 v

+VYP(s,2)— 0 (s, x I(s,2), Vf(s,x),ﬂ(s,x))} ds

o
tAﬁsxéasxAsx Z),u(s,x
# [P0 o0 o), VE 00, 05,)

+VY P (s, 2) aa/

(s,1:,f(s,x),Vf(t,x),a(s,x))] dBs
/ / [Yﬂ —9(5 z,D(s,z), VI (t, z),0(s, x), 2)

—i—VYﬁ(s,a;)ai,H(s,m,F(s,x),VF(t x),u(s,x), )} N(dz,ds)

—i—/t [ﬁ(s x)aib(s,x,f(s,m),vf(&x)j@(ij))} ds

/ B(s,x) (s,2,T(s, ), VI(t, ), (s, z))dBs
/ /ﬁ —9 (s, F(s x), VI(t, ), U(s,z),z)N(dz, ds)
(t,x) € [0,T)xG
with

Y%(0,2) = 0,z€@G
Y(t,z) = 0, (t,z) € (0,T) x 8G.

Thus we obtain that

E / gyg(x,f(T,x),w)?ﬂ(T,x)dx]
N /E 867
. / B

0
+VY (s, x)aab(s z,T(s, z), VF(S x),u(s,x))

(z,T(T, z), )}Afﬁ(T,m)} dx

~ ~ ~

T A~
g(z, (T, z), w) (/0 [Lyﬂ(s,x) + gyb(s,x,I‘(s,a:),VF(s,x),ﬂ(s,x))Yﬁ(s,a:)

37

—l—ﬁ(s,x)%b(s,x,l“(s,x) VI (s,z), (s, x))} ds

10



T o ~ ~ . >3
+/0 [ma(s,x,F(s,x),VF(s,x),u(s,x))Y (s,x)

+VYP(s, )%U(S z,T(s,z), VI (s, z),7(s, z))

+20(s T F(s x), VF(S x),u(s, $))5(37x)} dB;

/ /Ro [9 s,z,0(s,2), VI(s, z),0(s, z), 2) VP (s, )

+VY P (s5,2)—— 0(3 2, D(s,z), VI (s,z), (s, z))

o

+8%e(s,x,f(s,x) VI (s, ), (s, ), z)ﬁ(s‘,m)} N(ds,dz))] dx

Then by the duality formulas (Lemma 2) we get that

E [ /G ;g(x,f(T,x),w)?ﬁ(T,m)dx]
= /GE [/OT {837 (x, I‘(T x),w) [L)Afﬁ(s,a;) + ;b(s,x,f(s,x),Vf(s,aﬁ),@(s,aj))?ﬂ(s,x)

—1—68/6(3 T F(s x), Vf(s,l’),a(&x))vy(svx)

o ~
—i-%b(s,ac,f‘(s,a:) VF(s x), u(s, x))ﬁ(s,x)}

+Dj <i (x,f(T,x),w)) [ia(s,x,f(s,x),Vf(s,x),a(s,x))?ﬁ(s,x)

|
Q0
\.CIJ
B
)
)
2
<
o)
\.L'IJ
2
“w
2
<
~
@
@
2

(
+ /R 0 {Ds,z (ag(x,f(T,:U),w)> [;;a(s z,D(s,z), VI (s,z), (s, ), 2)Y (s, z)

+——0(s,z,T(s,z), VI (s,z),0(s,z), 2)VYP (s, 2)
—i—gue(s, x,T(s,x), VI (s, 2),u(s, z), 2)B(s ", x)} } V(dz)} ds] dx.

Further we similarly obtain by duality and Fubini’s theorem that

11



E [/OT/G ;}/f(s,x,f(s,x),ﬂ(s,x),w)?ﬁ(s,a:)dsdx

_ /GE /OT{/tTaif(s,x,f(s,x),ﬂ(s,a;),w)ds

-zi%mw+§ﬁw%ﬂumvﬂamﬁwmﬁmmm

+aab(t, z,D(t,z), VI (s,2),1(t, ))B(t, )

+%b(t z,T(t, z), VI(s,2),q(t,2)) VY (L, x)] dr

+/T D, <8f(s x f(s ), (s, x) w)) ds [80@ x,T(t, ), VI (s, z),0(t, ))YP(t, z)
' 8’}/ b b ) ) b ) afy ) ) ) b ) ) ) )

+aa,y,a(t,w, L(t,z), VI (s, ), a(t,z))VYP(t, z)

2ot ), VT (s,2), 8230

/]RO/ {Dt'z(f 5,0, 1(s, ), u(s,w),w)>ds

[ae@ 2, T(t,2), VD(s, ), i(t, 2), 2) VO (t, )

c’)
a /

—l—(,%@(t, x,T(t,z), VI (s, 2),U(t, ), 2) B(t, x)] } u(dz)} dt] dx

—O(t,z,T(t,x), VI (s,2),0(t, z), 2) VY P (t, )

Thus by the definition of K (¢,2) and notation (iv) it follows that

12



[// { [LYﬁ(t 37)+;b(t,x,f(t,x),V%(t,x%ﬁ(t’x))?ﬁ(t’m)

+?b(t z, T(t, ), VI(t, 2), 1(t, 2)) VY (¢, 2)

+a%b(t, x,T(t,z), VI(t, ), a(t, 2)) B(t, m)]

+DK (t,z) [aia(t,x,f(t,x),Vf(t,x),ﬂ(t,x))?ﬁ(t, )

0 - - ~ ~
+8fv/a(t,x,f‘(t,az),vr(t, z), u(t,z))YP(t, )

8— (t,m,F(t,:c),VF(t,x),ﬂ(t,x))ﬁ(t,a:)}

/ {th [ 0(r,t. D¢, 2), VIt ), (t, 2), 2)V3(r, 2)

(7“ t,T(t, z), VI(t, ), a(t, z), 2) VY (r, z)
+ aue(t 2, (¢, 2), (¢, 2), )g(t,x)] } o(d2)

e 2. F0,2). 00,0030, 0) v

= 0
We observe that for all 8, € Ag as defined in (7)

17@*(3,3:)20, 0<s<t,zed.

Then by inspecting (14) we have that
A+ A+ A3+ A4 =0

where

13

(14)

(15)



T
A, = E // K(s,m)gb(s,m)Yﬁa(s,x)+DSK(s,x)ga(s,x)Yﬁ°‘(s,x)
GJt Iy oy
+ DS,ZIA((S, 33)8879(5, z, 2)Y P (s, x)u(dz)} dsdx}

R
Ay — E[/G/tT{I?(s,:r)ib(s,:r)—i—DSI?(s,x);uo(s,x)

Ds 2K (s, ) 86 0(s,x, z)v(dz) + gf(s 33)} adsd:n}

As = [// K(s,z)LY P (s, x)dacdt]

Ay = [/ / { (s 2)VY P (s,2) + D IA((s,x)aafyla(s,m)V?ﬂ“(s,m)

0 ~
+ /RDS’ZK(S’QJ)WH(& z,z)VYPe (s,x)u(dz)} dsdx]
Note by the definition of Y5 that we have

yPa (s,z) = / {L?ﬁo‘ (r,x) + Y Pa (r, x)aab(r, x) + VY Pe (r, ac)aa,b(r, x) + :b(r, x)a} dr
t Y Y

U

S~ 0 -~ 0 0
Ba Ba il
~|—/ {Y (r,x) 70(7‘ ,x) + VYP(r x) 7/a(r, x) + ua(r,x)oz} dB,

/ /Ro {Yﬁa )5 g, 0 2) + VY (- x)aaﬁ(r,x,z)

+8u9(rajz) } N(dz,dr); 0<t<s<T (16)
Put
Ho(s,z,v,7,u) = I?(s,:v)b(s,x,’y,'y’,u)—i—DsIA((s,:B)a(s,x,’y,'y’,u)
+ADs,zk(s,x)9(s,x,777’,z,U)V(dZ) (17)
Then

T
A = E[// 8H0(S,$)Yﬁa(8,$)d8d$:|
cJi Oy

= Aip+Ai2+ A3

[/ / HO s,x,u) + f(s,2 u)) adsdx]
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Ay = E[/G/tTIA((s,x)L}?ﬂa(s,x)dxdt}
E [ /G /t ' L*f((s,x)?ﬁa(s,x)dxdt]

= A31+ Az2+ A33

Ay = [// < Hosa:)> ?ﬁa(s,x)dsdx]

= Aj1+As2+413

where by duality and Fubini

A

At

Az

Az

[// (/{ Hosw)aib(v,:v)JrDv (;ﬁ0(5,$)> (;a(v,x)

/ sz< Ho(s m)) ;9(v,x,z)u(dz)}?ﬂ“(v,a})dv

E [/G /tT (/t {L*f?(s,x);yb(v,m) + D, (LR (s.2)) gya(v,m)

[ Do (1R 52)) 00220000 | T 0, 2)

—i—/ L*k(s,x)L?ﬁa(v,x)dv> dsdx} ;
¢

[ (e e 0. (55760) Lot

+/RO Dy (LR (s,7)) ie(v,x,z)u(dz)}du) adsdx];

E

K
/t { x)ai,b(v,x) + D, (L*I?(s,x)) ;Y/U(va)
+/Ro D, . (L*I?( )) ;ﬂy/@(v,x,z)y(dz)} vy Be (v,x)dv> dsdx] ’

15

(19)

(20)

(23)



—I—EH()(S, a:)LYB“ (t, a:)) dsdm] ; (27)
y

~ T 5 . RN
;HQ(S,CC)CZS b(t,z,u) + Dy < t 37H0(S7$)d5> o(t,z,u)

where



with
1(t, x) / —Hosxuds (29)

d T(o ~ 0 0 ~ 0
Gay = & [ L {%Hf)(s,x)wb(t,x)wt (mws,x)) 5ot

G0 = =8| [ 2 (Folta) + f0.00) ad] (31)
%A&l = _E[// <{ sx—btm —i—Dt(L* ) o(t, z)
/thLK(sx))aHtxz dz} Vb (t
VLFR (s, ) LY P (t,x)) dsd:v] : (32)
Ly = B [ | 5 (fate.o.) adx] (33)

where L* is the adjoint operator of L and
Hy(s,w,7,7 ) = Ka(s,2)b(s,,7,7 ,u) + DyKa(s,x)o(s,2,7.7 s w)
+/Ds,z&(s,x)@(s,w,%’/,z,U)l/(dZ)
R

with

Ky(t,z) = /t TL*f((s,x)ds (34)
%,433 _ E VG /tT <{L*I?(s,x)ai/b(t,x)+Dt ('R (s.2)) ;ya(t,x)
+ /R Dy. (LK (s, ) (,i,e(t,x,z)u(dz)}v?ﬁa(t,x)) dsdm]; (35)

o = o[ ([ (o) o (5 () o

+/RO D;. <v <§yﬁo(s,x)>> gye(t,x,z)u(dz)} YO (t, z)
+V <ﬁ0(s,x)> LY Pa (t,x)) dsd:n} ; (36)

d 0 [~ ~
&A472 =-F |:/C‘Yv % (Hg(t,x,'d)) Oéde':|

17



where

ﬁg(S, x, 7, ’Y,a U) - [?3(87 $)b(8, Z,7, 7/7 U) + DSI?3(3a l’)U(S, z,7, 7/7 ’LL)
4 [ DeeRals,2)0(5.2.7,7' 2 u)w(dz)
R

with -
Rs(t, 2) :/ v <8ﬁ0<s,x,a)> ds (37)
t (9u

/G/tT {V <ai,ffo(s,a:)> ai,b(t,a:) + Dy (V (867/?[0(3,95)>> ;/g(t7g;)
0

+ /R O Dy (v ((gﬁo(s,x)>) W@(t,x,z)v(dz)} v?ﬂa(t,x)dsdx] ; (38)

d
—A = —-F
at

Then we get by combining (28),(31), (33) and (26) with (15), we get that:

E |:/ % {ﬁo(s,x,@) + ﬁl(‘g?xaa) + ﬁ2($7xva) + ﬁ3(87$7a) + f(87x7a)} d.’L‘:| =0 (39)
G

Hence by the definition of p(¢, x), we have
pt,x) = K(t,2) + Ky (t, %) + Ky (t, z) + Ks(t, z)

Then substitution of ﬁo, ﬁl, Hy and Hj in (39) gives
a o~ /] o~ ]~
E [/ W {f(t,:r,F, u,w) + p(t,x)b(t, =, T, T, u,w) + Dip(t,x)o(t,z, [, IV, u,w)
G ou

+ [ Duat )02, 0,1, 5. utd) | s
R
=0

Since this holds for all bounded £ —measurable random variable «, we conclude that

E [ / O H(t,, Tt 2), VO (1, 2), (t, 2))da
G 8’&

Et] =0 a.e. in (¢t,z,w),

which completes the proof. m

4 Applications

In this Section we take aim at two applications of Theorem 3 : The first one pertains to
partial information optimal harvesting, whereas the other one refers to portfolio optimization
under partial observation.
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4.1 Partial information optimal harvesting

Assume that I'(¢, z) describes the density of a population (e.g. fish) at time ¢ € (0,7") and at
the location z € G  R%. Further suppose that ['(¢,x) is modelled by the stochastic-reaction
diffusion equation

dl'(t,x) = BAI‘(L‘, x) +b(t,w)[(t,z) — c(t) | dt + o(t,w)'(t,x)d By

+/ﬁ@%wwmmﬁu@ﬁy@@wqmﬂxa (40)
R
2

n
0
where A= g Wis the Laplacian
— i

with boundary condition
ro,z) = &x),r€G
D(t,) = n(ta), (ta) € (0,T) x OG.

where b, o, 0 are given F;—predictable processes. The process ¢(t) > 0 is our harvesting rate,
which is assumed to be a & —predictable admissible control.

We persue to maximize both expected cumulative utility of consumption and the terminal
size of the population subject to the performance functional

[//g' @m+/@ T@m} (41)

where U : [0, +00] — R is a C! utility function, ((s) = ((s, z,w) is an F;—predictable process
and = £(w) is an Fr—mesurable random variable.
We want to find an admissible control ¢ € A¢ such that

sup J(c) = J(¢) (42)
cEAg

Using the previous notation, we note that in this case, with u = ¢,

f(tv €L, F(tv fL‘), C(t)a w) = C(Sv w)U(C(t)); g($, F(ta f)? w) = g(w)F(C) (tv m)

Hence
K(t,z) = gyg(x T, z) / (s,z,T(s,x),u(s,x),w)ds = &(w)
DtK(t,x = Dt,zK( 5 ) = 0
Hﬂ(tv r,7,¢C = 5(&1) (b(t? l’,u))’}/ - C)

)
)
T
Ki(t,z) = /t b(t,z,w)&(w)dt
) = Kg(t,$)20
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Then T
p(t,x) = &(w) +/t b(t, z,w)&(w)dt (43)
and the Hamiltonian becomes
H(t,z,v,¢) = ¢()U(c)+p(t,x) (b(t,z)I'(¢,z) — c(t)) + Dep(t, x)o (1)
—|—/R Dy .p(t,x)0(t, z)v(dz) (44)

Then, ¢ € Ag is an optimal control for the problem (42) if we have:
0 A
0 = E UG & H(t,2, (¢, ), (t))de | &]
= | [ {coven) - o) il
a
U'(é(t)E [/G C(t,x)d:c|8t} - FE [/Gp(t,m)dxlé't]

We have proved a similar version of Theorem 4.2 in [14]:

Theorem 5 If there exists an optimal harvesting rate ¢(t) of problem (42), then it satisfies
the equation

U'(e(t) E [ /G C(t,x)dm]ﬁt} :E[ /G p<t,x)dmyet] (45)

4.2 Application to optimal stochastic control of jump diffusion with partial
observation

In this Subsection we want to apply ideas of non-linear filtering theory in connection with
Theorem 3 to solve a portfolio optimization problem, where the trader has limited access
to market information (Example 6). As for general backround information on non-linear
filtering theory the reader may e.g. consult [2]. For the concrete setting that follows below
see also [10] and [11].

Suppose that the state process X(t) = X((t) and the observation process Z(t) are
described by the following system of SDE’s:

dX(t) = a(X(t),u(t))dt + B(X(t),u(t))dBX(t)

dZ(t) = h(t, X (1))dt + dBZ(t) + [, €N (dt,dg) (46)

where (BX(t); B4(t)) € R? is a Wiener process independent of the initial value X (0), and
N, is an integer valued random measure with predictable compensator

:u(dta d£7 w) = )‘(tv Xt7 g)dtl/(d§)

for a Lévy measure v and an intensity rate function (¢, z,<), such that the increments of Ny
are conditionally independent with respect to the filtration generated by B;¥. Further u(t) is

20



a control process which takes values in a closed convex set U C R and which is adapted to a
subfiltration & C G;. Here G, is generated by the observation process Z(t). The coefficients
a:RxU—R, :RxU—R, A:RL xRxRy— Rand h: Ry x R— R are twice
continuously differentiable.

In what follows we shall assume that a strong solution X; = Xt(u) of (46), if it exists,
takes values in a given Borel set G C R. Let us introduce the performance functional

T
J(u) :=E[ [ rex@. 2001+ g0x(0). 2000

where f: G xRxU — R, g: G x R — R are lower bounded C! functions. We want to
find the maximizer v* of J, that is

J* =supJ(u) = J(u") (47)
ucA
where A is the set of admissible controls consisting of & —predictable controls u such that
(46) admits a unique strong solution.

We shall now briefly outline how the optimal control problem (47) for SDE’s with partial
observation can be transformed into one for SPDE’s with complete information. See e.g. [2]
and [10] for details. In the sequel we assume that A(t,z,&) > 0 for all ¢,z,£ and that the
exponential process

M, = exp{/oth(X(s))dBZ(s)—;/t h2(X (5))ds

0

N / /R log A, X(3). O Na(ds, ) + | | / - A(s,X<s>,s>stv<d£>} 20

is well defined and a martingale. Define the change of measure
d@Q) = MrpdP

and set
Nr = M;*

Using the Girsanov theorem for random measures and the uniqueness of semimartingale
characteristics (see, e.g. [8]), one sees that the processes (46) get decoupled under the measure
@ in the sense that system (46) transforms to

dX(t) = a(X(2), u(t))dt + B(X (1), u(t))dBX (t)
dZ(t) = dB(t) + dL(t)

where Z(t) is a Levy process independent of Brownian motion BX(t), and consequently
independent of X (t), under Q). Here

B(t):BZ(t)—/O h(X (s))ds
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is the Brownian motion part and

L(t) = /0 [ envtar,ag)

is the pure jump component associated to the Poisson random measure N (dt, d§) = N (dt, d§)
with compensator given by dsv(d¢).
Define the differential operator A = A, ,, by

2
A6(2) = Au(a) = o, w) (@) + 55,0 L5 @)

for ¢ € C2(R). Hence A, is the generator of X (t), if u is constant. Set

a(e,u) = 5 0%z, ). (15)
Then the adjoint operator A* of A is given by
0 d 0 0
wo= 5 (awwf@) + o (Grws@) - 5 o). @)

Let us assume that the initial condition X (0) has a density pp and that there exists a unique
strong solution ®(¢, z) of the following SPDE (Zakai equation)

dD(t,z) = A*®(t, 2)dt + h(x)®(t, 2)dB(t) + /R I\t z,€) — 1]®(t, z)N(dt, dg)  (50)

with
®(0,z) = po(x)

Then ®(t,z) is the unnormalized conditional density of X (t) given G; and satisfies:

Eolo(X (6)Ni[Gy] = / b(2)® (1, 2)dz (51)

for all ¢ € Cp(R).
Using (51) and (50) under the change of measure ) and the definition of the performance
functional we obtain that

Tw) = [/ FOX, 20, 0)d + 90X (D), 200
- 5o { / FX, 200) )t + 905, 2(T) | 4
— Eq / F(X(8), Z(8), u(t) Nudt + g(X(T), Z(T))NT]

= Eq / Q [F(X(®), Z(t), u(t))Ne | Ge] dt + Eq g (X(T%Z(T))NT\QA}

T o / /fa: Z(t), u(t) (¢, x)dmdt+/Gg(a;,Z(T))cp(T,x)dx]
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The observation process Z(t) is a Q-Lévy process. Hence the partial observation control
problem (47) reduces to a SPDE control problem under complete information. More precisely,
our control problem is equivalent to the maximization problem

T
supFg [ /0 /G o, Z(0), u(t)) B (L, 2)ddt + / o, Z(T)) (T, 2)dx (52)

G

where @ solves the SPDE (50). So the latter problem can be tackled by means of the
maximum principle of Section 2.
For convenience, let us impose that a in (48) is independent of the control, i.e.

a(z,u) = a(x).

Denote by A; the set uw € A for which (50) has a unique solution. Consider the general
stochastic Hamiltonian (if existent) of the control problem (52) given by

H(t,z,¢,¢',u,w) = f(t,2,2(t),u)¢+ p(t,2)b(t, z, ¢, ¢, u) + Dip(t, x)h(z)¢

A Dy zp(t, ©)[A(E, 2, §) — 1o (d2), (53)

where

btz 0.8,) = (L5 — atoa) ) o+ (G200) - o)) o

and where p(t,z) is defined as in (13) with
9(x, ¢, w) = g(x, Z(T))¢
and

%)

da?

Ly(z) = a(z)—— (z), ¥ € CF(R).

Assume that the conditions (i)-(v) of Section 3.2 hold with respect to (52) for controls
u € Aj. Then by the general stochastic maximum principle (Theorem 3) applied to the partial
information control problem (47) we find that

E[/ O At2,8.8 a,w)dz | & =0, (54)
G au

if & € A; is an optimal control
Example 6 (Optimal consumption with partial observation) Let us illustrate the maz-

imum principle by inquiring into the following portfolio optimization problem with partial
observation: Assume the wealth X (t) at time t of an investor is modelled by

dX (t) = [uX(t) — u(t)]dt + o X (£)dBX(t),0 <t < T
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where m € R, 0 # 0 are constants, BX(t) a Brownian motion and u(t) > 0 the consumption
rate. Suppose that the initial value X (0) has the density po(x) and that u(t) is adapted to the
filtration Gy generated by the observation process

dZ(t) = mX (t)dt + dB(t) + / ENy(dt,d€), Z(0) =0,
Ro

where m is a constant. As before we require that (BX(t), B#(t)) is a Brownian motion
independent of the initial value X (0), and that Ny is an integer valued random measure as
described in (?7). Further, let us restrict the wealth process X (t) to be bounded from below
by a treshold ¢ > 0 for 0 <t < T. The investor intends to maximize the expected utility of
his consumption and terminal wealth according to the peformance criterion

Jw) = E [/OT “:ft) dt +0X7(T)| ,r € (0,1), 6> 0. (55)

So we are dealing with a partial observation control problem of the type (47) (for G = [(, >0)).
Here, the operator A in (50) has the form

A9(x) = 5070 (x) + [z — ] (2) (56)

(where 1 denotes the differentiation which respect to x) and hence

A9(w) = 0% (x) — [ — )6/ (2) — (). (57)

Therefore the Zakai equation becomes
1
do(t,z) = [2023:2([)”(15,:1;) — [ux — u)®' (t,x) — p®(t,z)| dt + z®(t,x)dB(t) (58)

+ / (¢, 2, &) — 1]®(t, )N (dt, dE)
Ro

O(t,z) = po(x), z>(

o(t,0) = 0; te(0,7),
where N(dt, d€) is a compensated Poisson random measure under the corresponding measure
Q. Since Ly = %021:2%(1:) is uniformly elliptic for x > ( there exists a unique strong

solution of (58). Further one verifies that condition (iv) of Section 3.2 is fulfilled. See [2].
So our problem amounts to finding an admissible & € Ay such that

J1(@) = sup Ji(u) (59)
u€ Ay

Ji(u) = Eq [ /0 ! /G @@(t,x)dxdw /V ex"@(T,x)dx]

where
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Using the notation of (53) we see that

(@, Z(t),u(t) =
g(z, Z(T)) = 6a"

L*®(t,x) = —o°x*=——P(t,z)
x

K(t,z) = 02"(T) +/T L(t)ds
Ho(t,z,0,¢',u) = [(—pz —u)d'(t,z) — po(t, z)] K(t,2) + DK (t, z)x

+ e Dt,zK(ta l’) P‘(ta x, 5) - 1]¢V(d£)

T
Ki(t,x) = /t { pK(s,z) + DsK(s,z)x + A DS’ZKl(S,x)[)\(s,x,g)—1]1/(d£)}ds
1
27

T 2
Ks(t,x) :/ o’z a— K(s,z)ds
t

T
Ks(t,x) = /t i[(—ux—u)K(s,m)]ds
T 2
) = K+ [ {Go% Sk + 5 (Cn - u)K(s.2)]

—uK(s,z)+ DK (s,z)x + A D, Ki(s,z)[A(s,z,§) — l]y(df)} ds

So the Hamiltonian is well-defined and becomes

H(t,z,¢,¢ ,u) = urr(t)qﬁ + [(—pz —w)¢/(t,z) — po(t, x)] p(t, x)

+Dyp(t, x)xd + A Dy .p(t, z)[A(t, z,8) — 1]pv(dE)

Hence, if 4 is an optimal control of the problem (47), then it follows from (54) and (51) that
0 ~ o~
0 = Eg —H(t,x,®,® ,u)dz | G
G ou

— Eo /G {ur1(t)&>(t,x)+§>’(t,x)ﬁ(t,x)}dx\gt]

Thus we get
Bq | Jo @ (t.2)p(t, 2)d | G

W) = —
(t) Eg [fG (t,x)dx | Q’t}
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Using integration by parts and (51) implies that

1

B [ ¥ty |G]\ T
Eq [ Jor ®(t,)dz | gt}

1

u(t) =

1

Eg [fc Zﬁ(t, x)ﬁ'(t’ z)dz | gt] L
Eq [fG ‘/Is(t, z)da | gt]

<EQ[ﬁ<t,X<t>>Nt | %])*11
Eq[Nt | Gt

= B[FX0) 6]

So if u*(t) mazimizes (55) then uw*(t) necessarily sastisfies

w(t) = B [F(6,X(1) | 67T (60)

Remark 7 Note that the last example cannot be treated within the framework of [14], since
the random measure Ny (dt,d§) is not necessarily a functional of a Lévy process. Let us also
mention that the SPDE mazximum principle studied in [13] does not apply to Example 6.
This is due to the fact the corresponding Hamiltonian in [13] fails to be concave.
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