
.

Master’s thesis

Planes in Cubic 3-folds

Are Sjøwall Aamot

Mathematics
60 ECTS study points

Department of Mathematics
Faculty of Mathematics and Natural Sciences

Spring 2023





Are Sjøwall Aamot

Planes in Cubic 3-folds

Supervisors:
John Christian Ottem

Karoline Moe





Abstract

We show that singular complex cubic 3-folds with only isolated singularities contain at
most 15 planes, realized by the Clebsch-Segre cubic. We do this by using the classification
of singular complex cubic surfaces and by counting lines and (possibly reducible) conics in
a curve in P3 associated to singular complex cubic 3-fold with only isolated singularities.

i



Chapter 0. Abstract

ii



Acknowledgements

One of my supervisors, Karoline Moe, once told me that once you’ve finished a masters
degree in mathematics you will in some sense also have completed some sort of degree
on your own psychology. With that in mind I would like to thank both John Christian
Ottem and Karoline Moe for their limitless patience, compassion and support throughout
the previous year, and for alway guiding me gently in the right direction. Without them
I would still be banging my head against a wall. I especially want to thank John
Christian Ottem for reminding me that problems are usually easier than they seem,
and for countless tips during the year. I want to give a special thank you to Karoline
Moe for being my rubber duck for a year, and helping me sort my ideas into something
comprehensible.

I want to thank Johanna Karlsson-Aamot for all her love and support during my
masters degree, for always being kind and amazing in the way only she can.

Throughout my entire masters degree Leandros De Jonge has always been someone
I could share my struggles and laughter with, which has helped me soldier on. For that
I want to extend a special thank you.

I want to thanks my sister Karna Sjøwall Aamot being a pillar I can use for support
whenever I need.

I want to thanks Sigrid Gjerde Weidemann for reminding me to believe in myself.
I also want to thank Asbjørn Michelsen for all the late nights we had on the 11th

floor in NHA. I want to thank Alexander for always jumping at the opportunity to
procrastinate by helping me. I want to thank Jonas Eidesen for always sharing my
enthusiasm when we encounter some strange mathematical object none of us understand.
I want to thanks Jon Pål Hamre for asking me for insight, even when I may have none.
I want to thanks Nicolas Triantafilidis for reminding me it’s all bullshit in time of need.

And finally I want to thanks everyone at the study hall on the 11th floor in NHA,
you have all made the last two years some of the best of my life.

iii



Chapter 0. Acknowledgements

iv



Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 The Story So Far . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Singular cubics 5
2.1 Singular cubic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Singular cubic 3-folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Projection and blowups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Counting planes by counting lines and conics . . . . . . . . . . . . . . . . 9

3 The maximal number of planes in X when V (q) ⊂ P3 is reducible 13
3.1 Intersecting planes to unique lines . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Counting lines by way of singularities . . . . . . . . . . . . . . . . . . . . 15

4 The maximal number of planes in X when V (q) ⊂ P3 is singular 17
4.1 Reducing cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 The maximal number of planes in X when V (Q) ⊂ P3 is smooth 21
5.1 C as a curve in P1 × P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Clebsch-Segre cubic 3-fold . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Conclusion 27

v



Contents

vi



Chapter 1

Introduction

Figure 1.1: Visualization of the Clebsh Cubic by User: Fly by Night [Wik12]. This file is licensed
under the Creative Commons Attribution-Share Alike 3.0 Unported license. To view a copy of
this license, visit https://creativecommons.org/licenses/by-sa/3.0/deed.en. No changes made.

1.1 The Story So Far

Counting the number of lines in a surface is a classical problem in algebraic geometry.
The most classical result about the number of lines on a surface is that any smooth
complex cubic surface always contains exactly 27 lines, which was discovered by A.
Cayley in 1849[Cay09], and by G. Salmon in 1915[Lon15]. A. Clebsch also produced a
proof in 1861[Cle61].
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Chapter 1. Introduction

If the complex cubic surface is singular, the maximal number of lines is 21. Moreover,
there is a correspondence between types of singularities and the number of lines in a
singular complex cubic surface. This correspondence was classified by L. Schläfli[Sch63]
and A. Cayley[Cay69]. A more modern approach is given by J. W. Bruce and C. T. C.
Wall in 1979, using Dynkin diagrams.[BW79]

For complex quartic surfaces the maximal number of lines is 64, which is given by
the F. Schur quartic. This is a result by Segre, but his proof contains a mistake. But
the idea by Segre was later used in [RS15] and [DIS17] to prove this fact. For a quintic
surface, an upper bound of 127 was shown by S. Rams and M. Schütt[RS20]. But it is
unknown if this bound is strict, although the Fermat quintic and the Barth quintic are
both examples of quintic surfaces with 75 lines. This suggests moving up in degree leads
to more lines. For a smooth complex surface of degree d ≥ 3, T. Bauer and S. Rams
gave an upper bound of 11d2 − 32d + 24 lines in 2020[BR20]. This is the best upper
bound found so far for d ≥ 6.

In 1972 C. H. Clemens and P. A. Griffiths used the intermediate Jacobian of a cubic
3-fold to show, among other results, that a general cubic 3-fold is irrational[CG72]. This
included the study of lines on a cubic 3-fold. This gave another example of a varieties
that was unirational, but not rational.

A new world of problems arises when the dimensions is increased. In 2023 A.
Degtyarev, I. Itenberg and J. C. Ottem showed that for a complex smooth cubic 4-
fold the maximal number of planes is 450. Moreover they proved that for cubic 4-folds
with strictly more than 350 planes, there are only three projectively equivalent cubics.

Theorem 1.1. Let X ⊂ P5 be a complex smooth cubic 4-fold with ≥ 351 planes, then
X is projectively equivalent to one of the following:

• the Fermat cubic with 405 planes, or

• the Clebsch-Segre cubic with 357 planes, or

• the 351-cubic with 351 planes.

Where the Fermat cubic is given by

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 = 0, (1.1)

the Clebsh-Segre cubic is given by

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 + x3
6 = x0 + x1 + x2 + x3 + x4 + x5 + x6 = 0 (1.2)

And the 351-cubic is given by

g(x0, x1, x2) = g(x3, x4, x5), g(t0, t1, t2) := t0t2
1 − t3

2 − t0t2
2. (1.3)

Moreover they gave an upper bound for singular complex 4-folds.

Proposition 1.2. The number of planes contained in a nodal complex cubic 4-fold is at
most 302.

[DIO23]. In the nodal case they approach the problem by counting the maximal
number of lines and conics in a K3 surface related to the nodal cubic.

A smooth complex cubic 3-fold contains no planes, but for a singular complex 3-fold
a strict upper bound is not known in the literature. This is what motivates the goal of
this thesis, which is to prove the following theorem.
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1.2. Outline

Theorem 1.3. Let X ⊂ P4 be a complex singular cubic 3-fold, then the maximal number
of planes in X is 15. Moreover this bound is strict and is realized by the Clebsch-Segre
cubic given by

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 = x0 + x1 + x2 + x3 + x4 + x5 = 0 (1.4)

1.2 Outline

In chapter two we will do most of the heavy lifting. To be precise, we will start with
a short introduction to the classification of singular complex cubic surfaces. Singular
cubic surfaces are fully classified with regards to types of singularities and the number
of lines contained in them. This will later help us reduce the objects of study in this
thesis to singular complex cubic 3-fold with only isolated singularities. Next we will
prove that any complex cubic 3-fold X containing at least one plane must be singular.
We then show that if X contains a singular line of multiplicity three, then X is a double
cone. And if X is contains a singular line of multiplicity 2, then it must contain a finite
number of planes, bounded by the maximal number of lines on a singular cubic surface.
Moreover we show that if X is reducible, then it always contains an infinite number of
planes. This motivates us to introduce normal the form for the equations for singular
cubic 3-folds,

f = c(x0, x1, x2, x3) + q(x0, x1, x2, x3)x4. (1.5)

Any cubic 3-fold given by a polynomial on this form has a singularity at the point
O = (0 : 0 : 0 : 0 : 1), and by a linear change of coordinates we may always move
a singular point to O. In particular q(x0, x1, x2, x3) will enable us to reduce the main
problem to three main cases by considering Q = v(q) ⊂ P3. The first case is when Q is
reducible, so we may assume

q = x0x1. (1.6)

The second case is when Q is singular in a point, we may then assume

q = x0x1 − x2
2. (1.7)

The third case is when Q is smooth, we may then assume

q = x0x1 − x2x3. (1.8)

One of the main tools for studying planes in a cubic 3-fold will be by projecting planes
in X down to P3. With this in mind we remind the reader of the blowup of P4 in a point.
We then blowup a generic singular cubic 3-fold X in O, and show that X − V (c, q) is in
bijection to P3 − V (c, q), so X is in fact rational. Next our goal is the find a one to one
correspondence with planes in X and lines and (possibly reducible) conics in

C = V (c, q) ⊂ P3 (1.9)

First we will divide planes contained in X into two classes, namely planes containing O,
which we call type 1, and planes not containing O, which we call type 2. Then we will
spend some time to show that lines in C is in bijection with planes of type 1. Moreover
we show that under certain conditions (possibly reducible) conics in C is in bijection
with planes of type 2. We are then done with the preliminaries.

In chapter three the goal is to use the classification of singular cubic surfaces and the
corresponding lines to give a strict upper bound when Q = V (q) ⊂ P3 is reducible. We

3



Chapter 1. Introduction

will do this by showing that there exits a linear hyperplane H ⊂ P4 containing the node
O = (0 : 0 : 0 : 0 : 1), such that intersecting H with X induces an injection of planes in
X to lines in S = X ∩ H. We then have a singular cubic surface in P3. To get an upper
bound on the number of planes in X, we then show that S contains a singularity of type
Ak with k ≥ 2, which implies that S contains at most 15 lines, and thus X contains at
most 15 planes.

In chapter four the goal is to show that five planes is a strict upper bound in the
number of planes contained in any singular cubic 3-fold X when the defining polynomial
of X is given by

f = c(x0, x1, x2, x3) + x4(x0x1 − x2
2). (1.10)

We do this first by reducing this to six sub cases to check. We then use the exceptional
locus C = V (c, q) and the bijection between lines and (possibly reducible) conics to go
through all the six cases and conclude that five planes is the maximal number.

In chapter five the goal is to show that if X is defined by a polynomial on the form

f = c(x0, x1, x2, x3) + x4(x0x1 − x2x3), (1.11)

then X contains at most 15 planes, and this bound is strict. Our first step here is to
note that Q = V (q) ⊂ P3 is isomorphic to P1 × P1. Then we note that C = V (c, q)
is isomorphic to some (3, 3)-curve for any C. This enables us enumerate the different
configurations of (1, 0)-, (0, 1)- and (1, 1)-curves that a (3, 3)-curve in P1×P1 may contain.
As (1, 0)- and (0, 1)-curves map to lines, (1, 1)-curves map to irreducible conics, and the
union of a (1, 0)-curve and a (0, 1)-curve map to a reducible conic. We then enumerate
them and show that the maximal number of planes contained in any X given by such
an f is 15.

1.3 Notation

We let P4 have coordinates (x0 : x1 : x2 : x3 : x4), and likewise P3 has coordinates
(x0 : x1 : x2 : x3). We will denote coordinates in P1 × P1 by (u0 : u1, v0 : v1). From
now on we always assume that a cubic 3-fold X is irreducible and only has isolated
singularities unless explicitly stated otherwise. C = V (c, q) will always mean a curve in
P3. We try to strictly use capital letters for the zero locus of some ideal I, while lower
case letters will be used to denote polynomials.
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Chapter 2

Singular cubics

Cubic hypersurfaces in general, and cubic surfaces in particular are objects that have
been of interest in algebraic geometry since its conception. Cubic surfaces on will be of
use to us, especially singular cubic surfaces.

2.1 Singular cubic surfaces

In chapter 3 we will use the classification of singular cubic surfaces to show that the
upper bound of planes contained in a cubic 3-fold on the form V (c + x4x0x1) is 15.
Therefore we introduce some facts about singular cubic surfaces. The table bellow gives
a correspondence of types of singularities on a singular cubic surface S and the number
of lines contained in S. That the number of lines contained in a singular cubic surface S

Table 2.1: Lines on singular cubic surfaces

Singularity A1 2A1 A1A2 3A1 A1A3 2A1A2 4A1 A1A4 2A1A3 A12A2

No. of lines 21 16 11 12 7 8 9 4 5 5

A1A5 A2 2A2 3A2 A3 A4 A5 D4 D5 E1 Ẽ6

2 15 7 3 10 6 3 6 3 1 ∞

with at least one singularity of type Ak with k ≥ 2 is at most 15 will be used in chapter
3. For now we just state that the only case when a singular cubic surface S contains an
infinite number of lines is when it contains a singularity of type Ẽ6. S is isomorphic to
a surface S̃ defined by a polynomial on the form

f = x2
1x2 − x0(x0 − x2)(x0 − ax2), (2.1)

where a ∈ C − 0, 1[SAK10]. In particular S is then a cone.

2.2 Singular cubic 3-folds

The goal of this section is to show what properties the cubic 3-fold we want to study,
moreover we want justify why we omit studying any cubic 3-fold which is irreducible or
with an infinite number of singularities.

The first observation we make is that any cubic 3-fold containing a plane is singular.
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Chapter 2. Singular cubics

Proposition 2.1. Let X ⊂ P4 be a cubic 3-fold, and let P be some plane such that
P ⊂ X then X contains at least four singular points.

Proof. Let X = V (f) be a cubic 3-fold and P = V (l1, l2), where l1 and l2 are polynomials
of degree 1. Then P is a plane in P4. Now assume P ⊂ X. Then by the correspondence
X ⊃ P =⇒ I(X) ⊂ I(P ), we get that any cubic 3-fold that contains a plane can be
written as the zero-set of an ideal on the form l1q1 + l2q2, where q1, q2 are quadratic
polynomials. We use this to prove that any cubic 3-fold that contains at least one plane
must be singular. Let X be a cubic 3-fold as above, then its Jacobian matrix is as follows

J =



∂l1
∂x0

q1 + l1
∂q1
∂x0

+ ∂l2
∂x0

q2 + l2
∂q2
∂x0

∂l1
∂x1

q1 + l1
∂q1
∂x1

+ ∂l2
∂x1

q2 + l2
∂q2
∂x1

∂l1
∂x2

q1 + l1
∂q1
∂x2

+ ∂l2
∂x2

q2 + l2
∂q2
∂x2

∂l1
∂x3

q1 + l1
∂q1
∂x3

+ ∂l2
∂x3

q2 + l2
∂q2
∂x3

∂l1
∂x4

q1 + l1
∂q1
∂x4

+ ∂l2
∂x4

q2 + l2
∂q2
∂x4

 . (2.2)

Observe that for l1 = l2 = q1 = q2 = 0 the rank of the Jacobian matrix drops. Now
by Bezout’s theorem V (l1, l2, q1, q2) is four points, counting multiplicity, or infinite. In
particular it is non-empty, so X is singular in at least four points.

As a direct consequence of Proposition 2.1, we can pinpoint that the number of
singularities in a plane contained in X is at least four.

Corollary 2.2. Any plane P in X contains at least four singularities.

Now as each cubic 3-fold must contain singularities, we introduce normal form for
singular cubic 3-folds.

Definition 2.3. A singular cubic 3-fold is said to be on normal form if

f = c(x0, x1, x2, x3) − x4q(x0, x1, x2, x3) (2.3)

is the defining polynomial, where c is a cubic and q is a quadratic polynomial.

Now let O denote the point (0 : 0 : 0 : 0 : 1) ∈ P4. Next we prove a lemma showing
that if f is a polynomial on normal form, and X = V (f), then X has a singularity at
O. We may then always assume a cubic 3-fold is the zero locus V (f) of a polynomal on
normal form, since we may move any singular pont to O by a linear change of coordinates.

Lemma 2.4. A cubic 3-fold has a singularity at O = (0 : 0 : 0 : 0 : 1) if and only if the
defining polynomial f can be written as f = c(x0, x1, x2, x3) − x4q(x0, x1, x2, x3).

Proof. First assume f = c(x0, x1, x2, x3) − x4q(x0, x1, x2, x3), and X = V (f). Now the
Jacobian matrix of f is:

Jf =



∂c
∂x0

− ∂q
∂x0

x4
∂c

∂x1
− ∂q

∂x1
x4

∂c
∂x2

− ∂q
∂x2

x4
∂c

∂x3
− ∂q

∂x3
x4

q

 (2.4)

Let fi denote the ith row of Jf , now since c is of degree 3, and q is of degree 2, fi(O) = 0,
for i = 0, . . . , 3, and clearly q(O) = 0. Hence the rank of Df is 0 at O, and thus X is
singular at O. Next assume f is irreducible and not a cone, but that is has a defining
polynomial not on normal form. This gives us two cases:
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2.2. Singular cubic 3-folds

1. Assume
f = c(x0, x1, x2, x3) + l(x0, x1, x2, x3)x2

4 (2.5)

, where l is of degree 1, and c is of degree 3. Then for at least one i fi = ∂c
∂xi

+ αx2
4,

and thus fi(O) = α. It follows that the Jacobian matrix has rank 1 at O, implying
X is non-singular at O.

2. Assume
f = c(x0, x1, x2, x3) + αx3

4, (2.6)

then f4 = ∂c
∂x4

+ 3αx2
4 = 3αx2

4. Thus fi(O) = 3α, so the Jacobian matrix has rank
1 at O, implying that X is non-singular at O.

From here on we now always assume that X is given by a polynomial f on normal
form.

Now we give three examples to justify why we focus on singular complex 3-folds with
only isolated singularities.

We begin with an example where X contains a singular line with multiplicity 3, X
will then contain an infinite number of planes.

Example 2.5. Let X ⊂ P4 be a singular cubic 3-fold such that X contains a singular line
of multiplicity 3. Then for any linear hyperplane H ⊂ P4 the cubic surface S = X ∩ H
will be singular and contain a singularity of type Ẽ6, which implies that X contains an
infinite number of lines.

In the next example we justify why a cubic 3-fold singular in a line of multiplicity 2
will not be studied in this thesis.

Example 2.6. Assume X ⊂ P4 is a cubic 3-fold singular in a line of multiplicity 2.
Then for any linear hyperplane H ⊂ P4, the surface S ∩ H wil be singular, and thus be
bounded by the number of lines on singular cubic surfaces. The upper bound is then
strict with 21 planes. An example of this is any cone with defining polynomial

f = (x0 − ax1)(−x0 + (b + 1)x1 − bx2)(x1 − cx2) − x3(x0x2 − x2
1), (2.7)

where a, b, c are distinct elements of C − 0, 1. As V (f) ⊂ P3 defines a singular cubic
surface with one singularity of type A1.

Lastly we show that any reducible cubic 3-fold contains an infinite number of planes,
thus we will not include reducible cubics in our analysis.

Example 2.7. Assume X ⊂ P4 is a reducible cubic 3-fold. Then we may assume
X = V (x0q) by a linear change of coordinates, where q is some quadratic polynomial.
Then X contains a P3 thus and infinite number of lines.

From here on we then assume X contains only isolated singularities and is irreducible
unless otherwise stated.

7



Chapter 2. Singular cubics

2.3 Projection and blowups

We will study cubic 3-folds by projecting them down to P3 and observe some properties
of this map. The set in P3 where the projection is not bijective will play a crucial role.
We therefore introduce the blowup as it is a handy way to think about projection from
a point. Moreover, any birational map factors through a blowup, and we will see that
any cubic 3-fold X with only isolated singularities is in fact birational to P3, that is X
is rational. Before we blowup of X at O as a way to study the projection from O, let us
recall the definition of the blowup at a point.

Definition 2.8. Let P4 be projective 4 space, and O be the point (0 : 0 : 0 : 0 : 1), the
blowup (BlO(P4)) of P4 at O is then defined to be the zero set of the minors of the two
by two matrix

A =
(

x0 x1 x2 x3
u0 u1 u2 u3

)
(2.8)

inside P 4 × P3

Now let X̃ = BlO(P3), and let π1 be the map that sends (x0 : . . . : x4)× (u0 : . . . : u3)
to (x0 : . . . : x4). Now π−1

1 (O) = E is the exceptional divisor of X̃. The morphism π1
is bijective outside of E, in other words, π1 is a birational morphism. Next we look at
the morphism π2 from X̃ to P3, where we forget the first five coordinates, that is we
map (x0 : . . . : x4) × (u0 : . . . : u3) to (u0 : . . . : u3). Now for a point p1 ∈ P3 we get
that π−1

2 (p1) are points (p : x4) × (p) ∪ (0 : 0 : 0 : 0 : 1) × (p) by abuse of notation,
where x4 ̸= 0 but is otherwise free. Thus π1(π−1

2 (p1)) is a line L through O. Now for
any point p2 ∈ L not equal to O π2(π−1

1 (p2)) = p1. Thus π = π2 ◦ π−1
1 corresponds to

projecting from P4 to P3. As we now have a grasp of how the blowup can be considered
a projection, we now want to realize the blowup of a singular cubic, and with the tools
at our disposal find the open set where X is birational to P3.

For a cubic 3-fold on the form X = V (f), where f = c(x0, x1, x2, x3) −
x4q(x0, x1, x2, x3), we will call

C = V (c, q) ⊂ P3 (2.9)

the exceptional locus. The point of this is that x4 = c
q , and thus we get a one to one

morphism from P3 − V (c, q) to X − V (c, q), in other words a birational map. That is
the map where we send (x0 : . . . : x3) to (qx0 : . . . : qx3 : c). The exceptional locus will
be of great use to us, as we will see later.

Next we prove that any singularity on a cubic 3-fold not equal to O, maps to a
singular point on the exceptional locus C = V (c, q).

Lemma 2.9. Assume p ∈ X is a singular point, not equal to the point O which we
project from. Then any line l from O to p is contained in S = V (c, q) ⊂ X ⊂ P4.
Moreover π(p) ∈ C = V (c, q) ⊂ P3 is a singular point of C.

Proof. First assume we project from O = (0 : 0 : 0 : 0 : 1), and write the equation for X
as f = c − x4q. Then the Jacobian is

JX =


∂c

∂x0
− x4

∂q
∂x0

. . .
∂c

∂x3
− x4

∂q
∂x3

q

 (2.10)
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2.4. Counting planes by counting lines and conics

By a linear change of coordinates, we may assume that p ∈ D+(x4). So as JX has rank
0 at p, we have that ∂c

∂xi
= ∂q

∂xi
for i = 0 . . . 3. We also have that q(p) = 0, which implies

c(p) = 0. So π(p) ∈ C = V (c, q) ∈ P3.
The Jacobian of C is

JC =


∂c

∂x0
∂q

∂x0...
...

∂c
∂x3

∂q
∂x3

 (2.11)

but, by the above ∂c
∂xi

= ∂q
∂xi

at p, so the rank of JC is strictly less than 2, and hence C
is singular at π(p).

2.4 Counting planes by counting lines and conics

We have narrowed down our objects of interest to cubic 3-folds with only isolated
singularities, and introduced projecting from O as one tool in our toolbox. We now
want to show that by projecting X down to P3 we may count planes contained in X by
counting lines and (possibly reducible) conics in the exceptional locus C = V (c, q). To
do this it will be advantageous to split planes contained in a cubic 3-fold into two types.
So we introduce two definitions:

Definition 2.10. A Plane P that is contained in a cubic 3-fold X is said to be of type
1 if O ∈ P .

Definition 2.11. A plane P that i contained in a cubic 3-fold X is said to be of type
2 if O /∈ P :

Next we give an example of a cubic 3-fold that contains one plane of type 1.

Example 2.12. Let c = x3
0 +x3

1 +x1x2x3, and q = x0(x1 +x2 +x3). Now let f = c−x4q,
and X = V (f).Then X contains one plane V (x0, x1), which does not contain O. Observe
that by rewriting f as f = x0(x2

0 + (x4x1 + x2 + x3)) + x1(x2
1 + x2x3), we see clearly that

(f) ∈ (x0, x1). Which gives that V (f) ⊃ V (x0, x1).

We also give an example of a cubic 3-fold containing one plane of type 2.

Example 2.13. Let c = (x0−x1)(x2
1+x2

2+x2
3), and q = x0x1−x2x3. Now let f = c−x4q,

and X = V (f). Now (f) ⊂ (x0 − x1, x4), so P = V (x0 − x1, x4) ⊂ X = V (f). Moreover
O /∈ P .

For the rest if this chapter the goal is to show that planes of type 1 is in bijection
with lines in C, and that planes of type 2 is in bijection with (possibly reducible) conics
in C. The first step is to prove that for any plane P of type 1 contained in X, π(P ) is
a unique line in C = V (c, q) ⊂ P3.

Lemma 2.14. For any plane P of type 1 , π(P ) as a unique line in C = V (c, q).

Proof. Let P = V (l1(x0, x1, x2, x3), l2(x0, x1, x2, x3)), where li is of degree 1. By
assumption P ⊂ X, thus we may write X = V (l1q1 + l2q2). But we may write
the equation of X as c + x4q, thus we may split q1 and q2 into ki(x0, x1, x2, x3) +
x4ei(x0, x1, x2, x3), where ei is of degree 1 and ki is of degree 2. We rewrite this as
X = V (l1k1 + l2k2 + l1x4e1 + l2x4e2), and note that l1k1 + l2k2 = c, and l1e1 + l2e2 = q.
This implies that P ⊂ S = V (c, q) ⊂ P4. Thus any line L ⊂ P contracts to a point when

9



Chapter 2. Singular cubics

projected to P3, which implies P contracts to a line when projected to P3. To see that
this line is unique assume that there exists two distinct planes P1 and P2 of type 1. Now
π(P1) = π(P2) implies that any line in P1 is also a line in P2, but then they must be the
same plane, contradicting that they are distinct.

The next lemma will show that given a line in C = V (c, q) there exists a unique
plane of type 1 contained in X. Thus lines in C = V (c, q) is in bijection with planes in
X.

Lemma 2.15. Given a line L ⊂ C = V (c, q) ⊂ P3, there is a unique plane P ⊂ X ⊂ P4

of type 1.

Proof. Assume L = V (l1, l2) is a line contained in C. Then c = l1k1 + l2k2 for some
quadratic polynomials ki(x0, x1, x2, x3) for i = 1, 2 and q = l1e1 + l2e2 for some linear
polynomials ei(x0, x1, x2, x3) for i = 0, 1. As X = V (f), where f = c − x4q and
(f) ⊂ (l1, l2), which implies V (l1, l2) ⊂ V (F ) = X.

This leads immediately to the following proposition:

Proposition 2.16. Any plane of type 1 is in one to one correspondence with lines in
C = V (c, q).

Our next goal is to show that planes of type 2 is in bijection with (possibly reducible)
conics in C = V (c, q), under the condition that if K ⊂ C is a (possibly reduced) conic,
then K intersects no other line in C in more than one point counting multiplicity. The
first step on the way will be to show that a plane of type 2 intersects C in a (possibly
reducible) conic when projected down to P3.

Lemma 2.17. For any plane P of type 2 in X, the intersection of π(P ) and C = V (c, q)
is a (possibly reducible) conic. To be clear π(P ) ∩ C = V (l, (̂q)), where l is a polynomial
of degree one, and q is a polynomial of degree 2.

Proof. Let l1(x0, x1, x2, x3) and l2(x0, x1, x2, x3) be distinct linear polynomial. But l2
may be identically zero, then P = V (l1, l2 + x4) is a plane of type 2. We may write
X = V (l1k1 + (l2 + x4)k2), for some polynomial ki(x0, x1, x2, x3), i = 0, 1, of degree 2.
Now c = l1k1 + l2k2, and q is simply equal to k2. We project this plane down, and obtain
π(V (l1, l2 + x4)) = V (l1), and intersect this with V (c, q). But we observed above that
c = l1k2 + l2q, so V (l1, q, l1k1 + l2q) = V (l1, q) which is a (possibly reducible) conic, in
P3, which completes the proof.

Next we show that if K ⊂ C is a (possibly reducible) conic such that for any line
L ⊂ C that is not contained K, the intersection K ∩ L is at most a point counting
multiplicity, there is a corresponding plane of type 2 in X.

Lemma 2.18. If K = V (l1, q1) ⊂ C, where l is a polynomial of degree one, and q is a
polynomial of degree 2, such that K.L ≤ 1 for any line L in C not contained in K, then
there exists a unique corresponding plane P ⊂ X, of type 2.

Proof. Assume K = V (l1, k1) ⊂ C ⊂ P3 where l1(x0, x1, x2, x3) is some linear
polynomial, and k1(x0, x1, x2, x3) is a quadratic polynomial, in other words K is a
(possibly reducible) conic. Moreover assume K.L ≤ 1 for any line L in C not contained
in K. Now K ⊂ C = V (c, q) implies that c = l1k2 + k1l2 and and q = l1l3 + k1, for some
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2.4. Counting planes by counting lines and conics

quadratic polynomial k2(x0, x1, x2, x3) and linear polynomial l2(x0, x1, x2, x3). But, this
implies that

f = l1k2 + k1l2 + x4(l1l3 + k1) = l1(k2 + x4l3) + (l2 + x4)k1. (2.12)

V (l1, l2 + x4) ⊂ X is a plane of type 2 in X as O clearly is not a point in P .

Remark. The assumption that K.L ≤ 1 is necessary here. If K.L = 2, then K and L lie
in the same plane V (l1) ⊂ P3. Assume K = V (l1, k1), L = V (l1, l2) and K.L = 2, then
V (l1) ∩ V (c, q) = V (l1, l2k1). But this implies that

c = l1k2 + l2k1, (2.13)

and that
q = l1l2. (2.14)

Thus
f = l1l2 + l2k1 + x4l1l3. (2.15)

For X to contain a P plane of type 2 such that π(P ) ∩ C = K, we must have k1 = l1l3,
but then X is not irreducible.

Next we want to make sure that no two planes of type 2 project down to the same
plane, and thus intersect in the same conic.

Lemma 2.19. Assume X is a cubic 3-fold that is irreducible, then no two planes of type
2 project down to the same plane in P3.

Proof. For contradiction, assume two planes of type 2, say P1 and P2 in X both project
down to the same plane in P3. Then as our projection point O has multiplicity 2, and
both planes project to the same plane, any line from O to any point on P1 also intersects
P2. By Bézout’s theorem the entire line is contained in X. But this amounts to X
containing a P3, then X is not irreducible, contradicting our assumption.

Combining Lemmas 2.17 to 2.19 we now have a one to one correspondence between
(possibly reducible) conics in C = V (c, q) and planes of type 2.

Proposition 2.20. Planes of type 2 is in one to one correspondence with (possibly
reducible) conics K such that for any L ⊂ C not contained in K, K.L ≤ 1.

We have now introduced most of the heavy machinery we need to prove the main
goal of this thesis.
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Chapter 3

The maximal number of planes in X

when V (q) ⊂ P3 is reducible

In this chapter we will use the classification of cubic singular surfaces in P3 to give an
upper bound on the number of planes a cubic 3-fold X may have if X = V (c + x4q),
where V (q) ⊂ P3 is the union of two planes. Now if V (q) is the union of two planes, we
may by a linear change of coordinates assume q = x0x1.

Cubic singular surfaces in P4 have been classified in families where types of singularity
correspond to the number of lines on said cubic singular surface. In particular we will
show that if X = V (c + x4x0x1), then there exits a general enough linear hyperplane
H such that X ∩ H induces an injection from planes to lines. Then using Lemma 3 in
[BW79], we will be able to deduce that X has at most 15 planes, giving us the following
theorem.

Theorem 3.1. Let f = c + x4x0x1, then V (f) contains at most 15 planes.

3.1 Intersecting planes to unique lines

The goal of this section is to show that we may always find a linear hyperplane H that
contains O, and such that if Pi is any finite collection of planes in P4 then H ∩ Pi is a
line for all i and H ∩ Pi ̸= H ∩ Pj for i ̸= j.

We start by setting up a so that if there exits a linear hyperplane H satisfying the
two conditions, it will induce and injection from a finite number of planes in P4 to lines
in P3.

Proposition 3.2. Let H be a linear hyperplane, P = ∪n
0 Pi any finite union of planes

in P4, and assume the following holds:

1. For all Pi ⊂ P in P4, H ∩ Pi is a line.

2. For all Pi, Pj ⊂ P with i ̸= j in P4, H ∩ Pi ̸= H ∩ Pj.

Then H ∩ P is is an injection of planes P to lines in P3.

Proof. As H ≃ P3, now if H satisfies both conditions, any plane in P intersects down
to a unique line in P3.

13



Chapter 3. The maximal number of planes in X when V (q) ⊂ P3 is reducible

A priori we do not know if we may find a hyperplane satisfying those conditions. To
show that there does exits such a hyperplane, we will show that finding such a linear
hyperplane H is equivalent to finding a linear hyperplane H such that for any finite
collection of lines L = ∪n

i Li, H ∩ Li is a point for all i.
First we show that condition 1. in Proposition 3.2 is may be replaces by finding a

line L such that H ∩ L is a point.

Lemma 3.3. Let P be a plane, and H some a hypersurface in P4, then P ∩ H is a line
if and only if there exists a line L ⊂ P such that H ∩ L is a point.

Proof. First assume P ∩ H is a line L1. Now pick any other line L2 contained in P . As
P ≃ P2, L2 ∩ L1 is a point. H ∩ L2 must be a point.

For the other implication, assume for contradiction that P ⊂ H, then clearly for any
line L ⊂ P , H ∩ L = L.

Next we want to show that condition 2. in Proposition 3.2 may also be replaced by
requiring H intersecting a given line only in a point. We will do this in two steps.

First we show that if we have two planes P1 and P2 where P1 ∩ P2 is either a point
or empty, then H ∩ P1 ̸= H ∩ P2, for any H. This will show that for any pair of planes
that intersect in a point or is empty, we now know that we get injectivity for free.

Lemma 3.4. Assume P1 and P2 are two planes in P4 such that P1 ∩ P2 is either a point
or empty. Then H ∩ P1 ̸= H ∩ P2.

Proof. Assume P1 and P2 are two planes in P4 such that P1 ∩ P2 is either a point or
empty. Now H ∩ Pi is either a plane or a line. If H ∩ P1 = H ∩ P2, then P1 ∩ P2 ∩ H
is either a plane or a line. But P1 ∩ P2 is assumed to be either a point or empty, so
H ∩ P1 ̸= H ∩ P2.

What remains to show is that if two planes intersect in a line, we can to pick a
hyperplane that does not intersect both planes in the same line. In line with the previous
two lemmas we show that this may also be replaced by finding a linear hypersurface H
that intersects a given line in only a point.

Lemma 3.5. Let P1 and P2 be planes in P4 such that P1 ∩ P2 is a line L. Moreover let
H be a linear hypersurface in P4, and assume P1, P2 ̸ subsetH. Then P1 ∩ H ̸= P2 ∩ H
if and only if P1 ∩ P2 = L ̸⊂ H.

Proof. For one implication assume P1 ∩ H ̸= P2 ∩ H, then (P1 ∩ H) and (P2 ∩ H) are
two different lines. Moreover (P1 ∩ H) ∩ (P2 ∩ H) = (P1 ∩ P2) ∩ H = L ∩ H is a point,
so L ̸⊂ H.

For the other implication assume P1 ∩ P2 = L ̸⊂ H. Then L ∩ H is a point, which
implies that P1 ∩ H ̸= P2 ∩ H.

The two conditions on H in Proposition 3.2 now reduces to finding a linear
hypersurface H such that for a finite collection of lines in P4, each line intersects H
only in a point.

Our next step is to show that there is an open set in the dual space (P4)∨, where
each point corresponds to a hypersurface in P4 which satisfies this. Above we mentioned
that we want a linear hypersurface H such that O ∈ H. We want this to ensure that
X ∩ H is a singular surface, otherwise it will be smooth, and thus have 27 lines.

Now each point p in P 4 has a corresponding hypersurface H∨
p ⊂ (P4)∨, and for any

point p∨ ∈ H∨
p , there is a corresponding hypersurface Hp that contains p. In other words
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3.2. Counting lines by way of singularities

H∨
p parametrizes linear hypersurfaces in P4 that contain p. We want to make this explicit.

(P4)∨ is isomorphic to P4, so to keep track of where we are let (P4)∨ have coordinates
(y0 : y1 : y2 : y3 : y4). Now let p = (a0 : a1 : a2 : a3 : a4) ∈ P4 be a point. Then
H∨

p ⊂ (P4)∨ is given by V (a0y0 +a1y1 +a2y2 +a3y3 +a4y4) ⊂ (P4)∨. Now pick any point
p∨ ∈ Hp, say p∨ = (b0 : b1 : b2 : b3 : b4). Now Hp = V (b0x0 + b1x1 + b2x2 + b3x3 + b4x4),
and by construction it contains p.

Conversely if Hp parametrizes hypersurfaces containing p ∈ P4, then (P4)∨ − Hp

parametrizes hypersurfaces not containing p. We are now ready to show that we may
always find some hypersurface H, so that H intersects each line in a finite union of lines
only in a point. We will then have shown that we may always find a hypersurface H,
such that if X contains a finite number of planes, H ∩ X is a singular surface, and each
plane intersects down to a unique line.

Proposition 3.6. Let p be a point, and P = ∪n
i=0P be a finite union of lines in P4,

then there exits a linear hypersurface H such that

1. p ∈ H.

2. For each i ̸= j H ∩ Pi ̸= H ∩ Pj, moreover Pi ̸⊂ H, for any i.

Proof. To satisfy 1 we p ∈ H for for any point ph ∈ Hp ⊂ V (p∨) ⊂ P4. We have already
shown that 2 is equivalent to finding an H such that for any finite union of lines, there
is a point on each line not contained in H. Now points corresponds to hypersurfaces in
(P4)∨, and so we need to argue that for n ∈ N,

H := ((P4)∨ − ∪n
i=0HPi) ∩ Hp (3.1)

is non-empty. But this is
Hp − ∪n

i=0HPi ∩ Hp. (3.2)

Now Hp is isomorphic to P3, and HPi ∩ Hp is isomorphic to P2, unless HPi = Hp, but
we are free to choose any point on each line, so we may choose a point different from
p. Therefore we have a three dimensional space where we cut out a finite union of two
dimensional linear hypersurfaces, so by dimension H is non empty.

Remark. H is in fact an open subset of V (H∨
p ). We will use this at the end of the chapter

to prove Theorem 3.1 at the end of the chapter.

3.2 Counting lines by way of singularities

Now that we have shown that for any collection of planes in P4 we may always find a
linear hypersurface H, such that intersecting H with any finite collection of planes in P4,
each plane intersects uniquely down to a line in P3. We want to use a lemma from Bruce
and Wall’s paper to show that when we take any hypersurface satisfying Proposition 3.2,
and intersect it with a cubic 3-fold X, where X = V (c(x0, . . . , x3)+x4x0x1), the resulting
singular cubic surface has either one singularity of type Ak with k ≥ 2, or more than
one singularity.

Lemma 3.7 (Lemma 3[BW79]). Let f = c(x0, x1, x2) + x3x0x1, p = (0 : 0 : 0 : 1), and
S = V (f) ⊂ P3. Then

• S has a singularity of type Ak for k ≥ 2.
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Chapter 3. The maximal number of planes in X when V (q) ⊂ P3 is reducible

• singularities of S other than that at p correspond with multiple intersections of
V (x0x1) with V (c) away from (0 : 0 : 1).

• A k-tuple intersection away from (0 : 0 : 1) corresponds to an Ak−1 singularity.

• If c(0 : 0 : 1) ̸= 0 we have an A2 singularity at p. If (0 : 0 : 1) is a ki-tuple
intersection with xi = 0 with c = 0, i = 0, 1, then p is an Ak0+k1+1 singularity for

k0, k1 = 1, 1, 1, 2 1, 3. (3.3)

If k0 and k2 are both at least 2, then S has a non isolated singularity.

We omit the proof of this lemma.
Before we prove the main goal of this chapter, we list the number of lines and

corresponding singularities for singular cubic surfaces containing at least one Ak with
k ≥ 2. As this will be useful in the proof. We are now ready for the main goal of this

Table 3.1: Lines on singular cubic surfaces

Singularity type A2 A2A1 2A2 A22A1 2A2A1 3A2 A3

No. of lines 15 11 7 8 5 3 10

Singularity type A3A1 A32A1 A4 A4A1 A5 A5A1

No. of lines 7 7 5 6 4 3 2

chapter, to prove Theorem 3.1. We will do this by showing that we may find a linear
hyperplane H, such that S = X ∩ H can be defined by a polynomial on the form in
Lemma 3.7.

Proof. Assume X is a cubic 3-fold with defining polynomial

f = c(x0, x1, x2, x3) + x0x1x4. (3.4)

Now let H be the open set which parametrizes linear hyperplane satisfying
Proposition 3.2, that is for any p∨ ∈ H, there is a linear hyperplane Hp such that
S = Hp ∩ X is a singular surface, and all planes contained in X intersect down to lines
in S. Now as H is open H∩D+(x3) is non empty. We now pick any point in H∩D+(x3),
then Hp = V (a0x0 + a1x1 + a2x2 + a3x3) and we may assume a3 = 1, while ai ∈ C for
i = 0, 1, 2. Now we set x3 = a0x1 + a1x1 + a2x2 and substitute x3 in f so we have

f = c(x0, x1, x2, a0x1 + a1x1 + a2x2) + x0x1x4. (3.5)

Now we do a coordinate change so x3 = x4. Then we get a surface in P3 defined by

f = c(x0, x1, x2) + x0x1x3. (3.6)

This is on the form as in Lemma 3.7, which implies that it has at least one singularity
of type Ak with k ≥ 2. Intersecting with H was an injection of planes in X to lines in
S, and so by the classification of singular cubic surfaces X has at most 15 planes.
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Chapter 4

The maximal number of planes in X

when V (q) ⊂ P3 is singular

In this chapter we turn our attention to the case where Q = V (q) ⊂ P3 is a singular
quadratic surface. That is when Q is isomorphic to V (x0x1 − x2

2). The goal of this
chapter is then to prove the following theorem

Theorem 4.1. If Q = V (q) ⊂ P3 is a singular quadratic surface, and X = V (c + x4q)
is a singular complex cubic 3-fold, then X contains at most five planes.

4.1 Reducing cases

To prove the main theorem of this section, the strategy will be to enumerate the possible
configurations of lines and (possibly reducible) conics in C = V (c, q). We may then
use Propositions 2.16 and 2.20 to prove Theorem 4.1 by counting lines and (possibly
reducible) conics in C. Our first step is to prove a lemma about X that gives us a bound
on the number of lines in C.

Lemma 4.2. If X is a cubic 3-fold that contain 3 planes that intersect in a line L, then
X is singular along L.

Proof. Let X = V (f) be a cubic 3-fold in P4 that contains 3 planes P1, P2, P3 such that
P1 ∩ P2 ∩ P3 is a line L. We may then assume that L = V (l1, l2, l3) where each li is a
linear polynomial. Then, we may further assume that P1 = V (l1, l2), P2 = V (l1, l3) and
P3 = V (l2, l3). Now P1 ∪ P2 ∪ P3 ⊂ X, so we have that

(f) ⊂ (l1, l2) ∩ (l1, l3) ∩ (l2, l3) = V (l1l2, l1l3, l2l3). (4.1)

Hence
f = l1l2A + l1l3B + l2l3C. (4.2)

where A, B, C are linear polynomials. Now each partial derivative of f is of the form

∂l1
xi

l2A+l1
∂l2
xi

A+l1l2
∂A

xi
+ ∂l1

xi
l3B+l1

∂l3
xi

B+l1l3
∂B

xi
+ ∂l2

xi
l3C +l2

∂l3
xi

C +l2l3
∂C

xi
. (4.3)

The point is that for each term either l1,l2 or l3 is a factor. So along the line
L = V (l1, l2, l3), the Jacobian matrix of f has rank 0, implying that X is singular
along L.
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Chapter 4. The maximal number of planes in X when V (q) ⊂ P3 is singular

As a consequence of this lemma observe that if C = V (c, q) contains three lines, all
three lines intersect in the singularity O3 = (0 : 0 : 0 : 1) of Q = V (q) ⊂ P3. Moreover as
each line corresponds to a plane of type 1, and π−1(O3) is a line contained in all three
planes, we have three planes intersecting in a line in the cubic X = V (c + x4q), so X is
singular in a line. Giving us the corollary below

Corollary 4.3. Let Q = V (q) ⊂ P3 and suppose X = V (c + x4q) is not singular in a
line, then C = V (c, q) contains a most two lines.

Thus any C = V (c, q) ⊂ P3 containing more than three lines corresponds to a 3-fold
that is too singular to be of interest to us.

We have now reduced C to three main cases: either C contains zero lines, one line
or two lines. Now we want to pinpoint the possible configuration of lines and (possibly
reducible) conics contained in all three cases. Then we get en exhaustive list of what
the possible configurations of lines and (possibly reducible) conics C may contain.

We start by showing that if C contains two lines it contains either zero or three
conics. Which gives us two different configurations that correspond to cubic 3-folds X
containing planes.

Lemma 4.4. If q = x0x1 − x2
2 and c(x0, x1, x2, x3) is a cubic polynomial such that

C = V (c, q) contains two lines, and X = V (c + x4q) is not singular in a line then C
contains either no conics, or exactly two conics, not excluding the same conic twice.

Proof. Assume q = x0x1 −x2
2 and c(x0, x1, x2, x3) is a cubic polynomial such that V (c, q)

contains two lines, and X = V (c + x4q) is not singular in a line. We will show that if C
contains at least one conic and two lines, then it contains two conics and two lines. So
assume C = L1 ∪L2 ∪M1 ∪R, where Li are lines, M1 is a conic. Then C is of degree six,
and L1 ∪ L2 ∪ M1 is of degree four. It follows that R must be of degree two. R does not
contain any lines by assumption, so it is irreducible which implies that R is a conic.

Next we show that if C contains one line, then it contains zero or one conic. This
will in turn give us two different configurations of lines and conics in C corresponding
to cubic 3-folds containing planes.

Lemma 4.5. If q = x0x1 − x2
2 and c(x0, x1, x2, x3) is a cubic polynomial such that

C = V (c, q) contains one line, and X = V (c + x4q) is not singular in a line, then C
contains at most one conic.

Proof. Assume C = L ∪ K ∪ R, where L is a line K is a conic. C is of degree 6 implies
that R is of degree 3, as L is of degree one and K is of degree 2. Now if R also contains
a conic, then R is the union of a line and a conic, which contradicts our assumption. So
if C contains exactly one line, then it contains at most one conic.

We now have one more main case to exhaust, before we have found all different
possible configurations of lines and conics in C. The next lemma shows that if C contains
no lines, it contains zero, one or three conics, completing our list of cases to check.

Lemma 4.6. If q = x0x1−x2
2 and c(x0, x1, x2, x3) is a cubic polynomial such that V (c, q)

contains no lines, and X = V (c + x4q) is not singular in a line, then C contains zero,
one or three conics.
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4.1. Reducing cases

Table 4.1: Configurations of C and number of planes in X

Case Lines Conics #Planes in X

1 0 1 1
2 0 3 3
3 1 0 1
4 1 1 2
5 2 0 3
6 2 2 5

Proof. That C may contain zero conics or one conic is easy to see. Therefore all we
have to prove is that if C contains at least two conics, then it contains exactly three. So
assume C contains two conics and no lines. Then C = H1 ∪ H2 ∪ R, since C has degree
6, and each Hi is of degree 2, R must be of degree 2. But by assumption C contains no
lines, so R must be of degree two, hence a conic.

Now we have full control over the possible configurations of lines and conics in C.
We now present a proposition that gives us an upper bound on planes in X assuming C
admits the corresponding configuration lines and (possibly reducible) conics. This will
then finish the main goal of this chapter by proving Theorem 4.1.

Proposition 4.7. If q = x0x1 − x2
2 and c(x0, x1, x2, x3) is a cubic polynomial such that

X = V (c + x4q) ⊂ P4, then the following table lists the possible configurations of lines
and conics in C = V (c, q) and the corresponding number of planes in X:

We remind the reader that Proposition 2.16 gives a one to one correspondence
between lines in C = V (c, q) ⊂ P3 and planes of type 1 in the cubic 3-fold X = V (c−x4q),
and that Proposition 2.20 gives a one to one correspondence between C = V (c, q) and
planes of type 2 in the cubic 3-fold X = V (c − x4q). We do this as we will now use these
two theorems repeatedly to prove the above proposition. Our hope is that it is clear
from context if we use Proposition 2.16 or ?? or both.

Proof. Consider Table 4.1. As previously explained there are six different possible
configurations of lines and conics in C = V (c, q).
In case 1 C contains no lines and one conic, and thus corresponds to a cubic 3-fold
containing one plane of type 2
In case 2 C contains no lines and three conics, and thus corresponds to a cubic 3-fold
containing three planes of type 2.
In case 3 C contains one line and no conics, and thus corresponds to a cubic 3-fold
containing one plane of type 1.
In case 4 C contains one line and one conic, and thus corresponds to a cubic 3-fold
containing one plane of type 1 and one plane of type 2.
In case 5 C contains two lines and no conics, moreover any two lines on Q = V (q)
intersect, so C also contains a reducible conic, the corresponding cubic 3-fold contains
two planes of type 1, and one plane of type 2.
In case 6 C contains two lines and two conics, as in case 5, it must also contain a reducible
conics, so the corresponding cubic 3-fold contains two planes of type 1 and three planes
of type 2.

We have now shown that if a X = V (c − x4(x0x1 − x2)) ⊂ P4, then X contains at
most five planes, which proves Theorem 4.1.
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Chapter 5

The maximal number of planes in X

when V (Q) ⊂ P3 is smooth

5.1 C as a curve in P1 × P1

The goal of this chapter is to prove the following theorem

Theorem 5.1. If Q = V (q) ⊂ P3 is smooth and c ̸= 0 is any cubic polynomial such that
the 3-fold X = V (c + x4q) ⊂ P4 is irreducible and not a cone, then X contains at most
15 planes.

We assume that Q = V (q) is smooth, we may then assume q = x0x3 −x1x2. We want
to use that Q ≃ P1 × P1. Before we continue we need a definition so we may compare
curves on Q with curves in P1 × P1.

Definition 5.2. A (a, b)-curve in P1 × P1, where a, b ∈ N is defined as the zero set of a
polynomial

a∑
i=0

b∑
j0

αijua−i
0 ui

1vb−j
0 vj

1, (5.1)

where αij ∈ C.

Now C is isomorphic to a (3, 3)-curve in P1 ×P1. So we may enumerate the different
configurations of (1, 0)-, (0, 1)- and (1, 1)-curves that a (3, 3)-curve can contain. As we
shall see shortly (1, 0)- and (0, 1)-curves correspond to lines in C, and so we may count
the number of planes of type 1 in X by counting (1, 0)- and (0, 1)-curves and using
Proposition 2.16. Moreover a (1, 1)-curve correspond to a plane quadratic curve in C,
and the union of a (1, 0)- and a (0, 1)-curve correspond to the union of two lines in C.
In other words if we have a (1, 1)-curve, or one (1, 0)-curve and a (0, 1)-curve in P1 ×P1,
we get a conic in C in the first case, and a reducible conic in the second case, so by
Proposition 2.20 there is a corresponding plane in X in each case.
Remark. Proposition 2.20 requires that no other line in C intersects the (possibly
reducible) conic in C. Since V (q) ≃ P1 × P1 we will check this in P1 × P1 where it
is straight forward to see.

Now let us set the stage, let P1 × P1, where C[u0, u1 : v0, v1] is the usual bigraded
ring. The Segre embedding

σ : P1 × P1 → P3 (5.2)
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which sends
(u0 : u1; v0 : v1) 7→ (u0v0 : u0v1 : u1v0 : u1v1) (5.3)

gives us an isomorphism V (q) ≃ P1 × P1 [Har77, Ex. I.2.15]. Moreover, if we pick an
element g ∈ Γ(OP1×P1(3, 3)), then σ(V (g)) = V (c),for some c ∈ Γ(OQ(3)). We will use
this to enumerate, up to symmetry, all the different ways C = v(c, q) can split into lines
and plane quadratic curves. To do this, we need to know how bidegree (1, 0)-, (0, 1)-
and (1, 1)-curves map into Q. We begin with a lemma showing that (1, 0)-curves and
(0, 1)-curves map to lines via the Segre embedding.

Lemma 5.3. If g ∈ Γ(OP1×P1(1, 0)) or g ∈ Γ(OP1×P1(0, 1)), in other words, if V (g) is a
bidegree (1, 0)- or (0, 1)-curve, then V (g) maps to a line in P3 under the Segre embedding.

Proof. Let g ∈ Γ(OP1×P1(1, 0)), then g = au0 + bu1 with a, b ∈ C, not all zero. Now
D+(v0), D+(v1) is a cover of P1 ×P1, and on D+(v0), V (au0 + bu1) = V (au0v0 + bu1v0).
and likewise on D+(v1) we have that V (au0 + bu1) = V (au0v1 + bu1v1). So

σ(V (au0 + bu1)) = V (ax0 + bx2, ax1 + bx3, q) (5.4)

Moreover q = x0x3 − x1x2 is contained in (ax0 + bx2, ax1 + bx3), so:

(ax0 + bx2)(ax1 + bx3) − ax1(ax0 + bx2) − bx2(ax1 + bx3) (5.5)
= ab(x0x3 − x1x2).

Thus
σ(V (au0 + bu1)) = V (ax0 + bx2, ax1 + bx3), (5.6)

which is the intersection of two planes in P3, thus a line. The case where g ∈
Γ(OP1×P1(0, 1)) is symmetrical.

Next we introduce a lemma showing how (1, 1)-curves map into Q.

Lemma 5.4. If g ∈ Γ(OP1×P1(1, 1)), then V (g) maps to a (possible reducible) conic in
Q under the Segre embedding.

Proof. Let g ∈ Γ(OP1×P1(1, 1)), then g = au0v0 + bu0v1 + cu1v0 + du1v1, for some
a, b, c, d ∈ C, with at least one of a, b not zero, and at least on of c, d not zero. . So we
have that

σ(V (au0v0 + bu0v1 + cu1v0 + du1v1)) = V (ax0 + bx1 + cx2 + dx3, q) (5.7)

which is a quadratic curve in P3.

Note that we at no point here assumed the (1, 1)-curve is irreducible, but since the
Segre embedding is an isomorphism in this case, if the (1, 1)-curve is irreducible, it maps
into a conic, and if the (1, 1)-curve is reducible it maps into a reducible conic.

We will now start with a g ∈ Γ(OP1×P1(3, 3)), then map it into P3, the image σ(V (g))
will then be something on the form C = V (c, q) ⊂ P3, which will then give us our
X ⊂ P4, by letting f = c + x4q. By Proposition 2.16, any plane of type 1 in X have
a corresponding line in C. By Proposition 2.20 any plane of type 2 in X, there is a
corresponding (possibly reducible) conic in C which does not intersect any line in more
than one point. The reasoning behind starting with a (3, 3)-curve in P1 × P1, is that we
then have full control over how many different lines C contains, how they intersect and
how many ways C contains a (possibly reducible) conic. To find all the ways C may
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contain lines and (possibly reducible conics) we will enumerate partitions of (3, 3), but
as, for instance (1, 0)+(2, 3) is symmetrical to (0, 1)+(3, 2), we can skip some partitions.
By the fundamental theorem of algebra, any curve of bidegree (a, 0), where a ≥ 2, is
reducible, and is a sum of a bidegree (1, 0) curves, which we will write as a(1, 0). To
keep track of all the components, we will denote curves of bidegree (1, 0) as Li, with
i = 1, 2, 3, and curves of bidegree (0, 1) as Mi, while curves of bidegree (1, 1) will be
denoted Hi. We will also denote any irreducible curves of bidegree (a, b) where a+ b ≥ 3
as R.

Proposition 5.5. Up to symmetry the following table are the possible configuration of
(1, 0)-,(0, 1)-, and (1, 1)-curves in a (3, 3)-curve in P1 × P1. Moreover corresponding
to each configuration there is the maximal number of planes in a cubic 3-fold given by
V (c + x4q) where V (q) is isomorphic to a (3, 3)-curve of this configuration.

Table 5.1: Partitions of (3, 3) and maximal number of planes

Case Partition #Planes in X

1 (1, 0) + (2, 3) 1
2 (1, 1) + (2, 2) 1
3 2(1, 0) + (1, 3) 2
4 (1, 0) + (0, 1) + (2, 2) 3
5 3(1, 1) 3
6 (1, 0) + (0, 1) + 2(1, 1) 5
7 2(1, 0) + (0, 1) + (1, 2) 5
8 2(1, 0) + 2(0, 1) + (1, 1) 9
9 3(1, 0) + 3(0, 1) 15

The next section is dedicated to going through all our cases above, and verifying,
once we are done we have a proof of Theorem 5.1. From now on, we will assume
gΓ(OP1×P1(3, 3)), and that V (g) is the union of at least two bidegree curves, all of which
are irreducible. Moreover C = V (c, q) ⊂ P3 will be the image of V (g) under the Segre
embedding, and X = V (c + x4q) ⊂ P4 is the cubic corresponding to each partition. We
will also just write (a, b)-curve when we mean a curve of bidegree (a, b). Assume V (g)
is the union of a (1, 0)-curve, and a (2, 3)-curve. Then

V (g) = L1 ∪ R (5.8)

, and so C = σ(V (g)) is the union of a line and a degree 5 curve. Now by Proposition 2.16
X has exactly one plane. Likewise if g is the union of some M1 and R, in other words, a
curve of bidegree (0, 1) and a curve of bidegree (3, 2), thus X contains exactly one plane.

L1

Figure 5.1: A single line corresponding to L1

1. (1, 1) + (2, 2) Assume V (g) is the union of a (1, 1)-curve and a (2, 2)-curve. Then
V (g) = H1 ∪ R, so C = σ(V (g)) is the union of a quadratic curve, and a quntic
curve. Now by Proposition 2.20 we know that X contains exactly one plane.
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H1

Figure 5.2: A single line corresponding to H1

2. 2(1, 0) + (1, 3) Assume V (g) is the union of two (1, 0)-curves and a (1, 3)-curve.
Then V (g) = L1 ∪ L2 ∪ R, and so C consists of two lines, that does not intersect,
and a curve of degree 4. So by Proposition 2.16 X has exactly two planes.

L1

L2

Figure 5.3: Two nonintersecting lines L1 and L2

3. (1, 0) + (0, 1) + (2, 2) Assume V (g) is the union of a (1, 0)-curve, a (0, 1)-curve and
a (2, 2)-curve, then V (g) = L1 ∪ M1 ∪ R. So C now has three components, two
intersecting lines, and a curve of degree 4. So by Proposition 2.16 we have two
planes corresponding to each line, moreover σ(V (L1 ∪M1)) is now a reducible conic
in C, so by Proposition 2.16, there is a corresponding plane in X.

L1

M1

Figure 5.4: Two intersecting lines L1 and M1

4. 3(1, 1) Assume V (g) is the union of three (1, 1)-curves, then V (g) = H1∪H2∪H3. C
then consists of three irreducible conic curves, and by Proposition 2.20 X contains
three planes.

H1

H2

H3

Figure 5.5: Three lines corresponding to H1,H2 and H3

5. (1, 0) + (0, 1) + 2(1, 1) Assume V (g) is the union of one (1, 0)-curve, one (0, 1)-
curve and two (2, 2) curves. Then V (g) = L1 ∪ M1 ∪ H1 ∪ H2. So C consists of
two intersecting lines, and two irreducible conic curves. As we saw above, the two
intersecting lines gives us 3 planes, and since L1 ∩ H1 is just one point, each Hi is
in one to one correspondence with a plane in X, so X contains five planes.
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L1

M1
H1

H2

Figure 5.6: The configuration in P1 × P1

6. 2(1, 0) + (0, 1) + (1, 2) Assume V (g) is the union of two (1, 0)-curves, one (0, 1)-
curve, and one (1, 2)-curve. Then V (g) = L1 ∪ L2 ∪ M1 ∪ R. So C consists of
three lines, and a degree 3 curve. Now by Proposition 2.16 we se imediatley that
we have at least three planes, moreover as L1 ∩ M1 is a point, and L2 ∩ M1 is a
point, we have two reducible conics in C, so by Proposition 2.20 we have two more
planes, so X contains exactly five planes.

L2

L1

M1

Figure 5.7: The configuration in P1 × P1

7. 2(1, 0) + 2(0, 1) + (1, 1) Assume V (g) is the union of two (1, 0)-curves, two (0, 1)-
curves and one (1, 1)-curve. Then V (g) = L1 ∪ L2 ∪ M1 ∪ M2 ∪ H1. So C
consists of four lines and an irreducible conic curve. So by ?? we have four planes
corresponding to the lines in C. Morover, H1 and each Li ∪ Mj correspond to a
plane by Proposition 2.20, giving five aditional planes, for a total of nine planes in
X.

L2

L1

M1 M2H1

Figure 5.8: The configuration in P1 × P1

8. 3(1, 0) + 3(0, 1) Assume V (g) is the union of three (1, 0)-curves, and three (0, 1)-
curves. Then V (g) = L1 ∪ L2 ∪ L3 ∪ M1 ∪ M2 ∪ M3. So C consists of six lines,
and by Proposition 2.16 there are six corresponding lines in X, moreover each of
the nine unions of lines Li ∪ Mj corresponds to a plane in X by Proposition 2.20,
hence there are a total of 15 planes in the corresponding X.

This proves Proposition 5.5 and thus we have shown Theorem 5.1.
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L3

L2

L1

M1 M2 M2

Figure 5.9: The configuration in P1 × P1

5.2 Clebsch-Segre cubic 3-fold

We stated in our introduction that there is a cubic 3-fold X containing 15 planes, and
that this is isomorphic to the Clebsch-Segre cubic 3-fold defined by

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 = x0 + x1 + x2 + x3 + x4 + x4 = 0. (5.9)

We will do this by giving an example of a cubic 3-fold X containing 15 planes, we will
then just state that it has 10 singularities. and use two propositions from [Dol16] showing
that X is isomorphic to the Clebsch-Segre cubic 3-fold.

Example 5.6. Let

c = −x0x1x2 + x0x2x3 + x1x2x3 − x2x2
3, (5.10)

and let
q = x0x1 + x2x3. (5.11)

Then X = V (c − x4q) is a cubic 3-fold containing 15 planes. We show this by showing
that C = V (c, q) is the union of six lines. Then X is a realization of case 9 in Table 5.1.
In fact

C = V (c, q) = V (x3, x1)∪V (x3, x0)∪V (x2, x1)∪V (x2, x0)∪V (x1−x3, x0+x2)∪V (x1+x2, x0−x3).
(5.12)

By using Maccaulay2[GS] we found that X has 10 isolated singularities. Now we write
out proposition 2.1 and 2.2 from [Dol16], which will show that X is isomorphic to the
Clebsch-Segre cubic 3-fold.

Proposition 5.7. Two 10 nodal-cubic hypersurfaces in P4 are projectively isomorphic.

and

Proposition 5.8. The Segre-Clebsh cubic 3-fold contains 10 nodes and 15 planes.
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Conclusion

In conclusion we have shown that is X is a cubic 3-fold with only isolated singularities,
X contains at most 15 planes. Moreover the Clebsch-Segre cubic 3-fold is a realization
of such a cubic 3-fold. We conjecture that the bound of 15 from Theorem 3.1 is not
strict, and that a strict bound is in fact 9 when Q = V (q) ⊂ P3 is reducible.
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