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Abstract 

Quick clay landslides may have major consequences on human civilization and are 

responsible for some of the most damaging natural disasters in Norway. Quick clay hazard 

zones in Norway are mapped as either low-, medium-, or high-hazard, but are not updated 

based on any regular monitoring. The main goal of the study was to investigate if 

precipitation and erosion data gathered from previous quick clay landslides in Oslo and Viken 

in southeastern Norway could be used to create a threshold for when conditions of quick clay 

reach the critical levels that may trigger a landslide event. The ultimate goal is that these 

thresholds can be used as part of a method to periodically update the hazard zone categories. 

The method used to create thresholds was based on machine learning models, including two 

different ensemble models (RUSBoosted decision trees and Bagged decision trees) and two 

Support Vector Machine (SVM) models (Cubic and Quadratic kernels). The models’ ability 

to classify landslides correctly were evaluated using area under the receiver operating 

characteristics curve (AUC) and confusion matrix to measure the false-negative and the false-

positive rates. The results showed that the Quadratic SVM model and the Bagged decision 

trees had the highest AUC (0.74, 0.85) and the lowest false-negative rate (54.5 %, 63.6 %) of 

the models trained when the models were trained with a combination of precipitation and 

erosion data. Training with only precipitation data did not change the results much, though a 

minor improvement was seen when including erosion data. The high false-negative rates 

suggest that the method as used here is unsuitable as part of a monitoring system. One major 

problem is lack of erosion data, and an improvement of the method will probably require 

yearly gathering of erosion data in addition to testing of other predictor variables. 
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1 Introduction 

Quick clay can be found in large parts of Norway and 

Sweden and also exists in Finland, Canada and Alaska 

(NGI, 2023). In Norway it is found along the coastal areas, 

with the main areas of quick clay in Østlandet and 

Trøndelag (Figure 1). Quick clay landslides can have large 

consequences as was recently seen in the quick clay 

landslide in Gjerdrum where 11 people lost their lives and 

more than 1600 people had to be evacuated from their 

homes. The landslide also caused extensive damages that 

cost almost 2 billion Norwegian kroner in damages and 

reparations after the event (NOU, 2022). 

Triggering factors for quick clay landslides in recent years 

are mainly caused by anthropic activity (L’Heureux et al., 

2018) but also from natural erosion. Erosion in riverbeds is 

caused by wet seasons and years of high precipitation with high water flow in rivers. An 

increase in precipitation and runoff as a result of climate change is also expected (IEA, 2022) 

which could lead to an increase in erosion and erosion-triggered quick clay landslides.   

Although quick clay areas are categorized and evaluated for their danger in Norway, there is 

no warning system similar to the one that exists for landslides (Krøgli et al., 2018) and the 

hazard zones categories remain static after they are set. The hazard zones are not updated 

based on any regular monitoring, although it can be updated based on new investigations in 

the hazard zone this is not part of a routine or periodic assessment (NVE, 2020b). A way to 

create warning systems are through rainfall thresholds, which have been used for warning of 

rainfall induced landslide for a while since the concept was introduced by (Endo, 1969). In 

later years, several types of thresholds have been suggested together with reviews of advances 

and issues with these thresholds (Segoni et al., 2018).  

There is not much literature on rainfall thresholds related to quick clay landslides, but 

Gauthier & Hutchinson (2012) attempted to create a threshold based on cumulative 

antecedent precipitation for intervals ranging from one day to 365 days. While some of the 

Figure 1 - Mapped quick clay areas in Norway are 

shown in red. Figure from NVE Atlas: 

https://atlas.nve.no/ 



2 

 

landslide events that they looked at had a high correlation with an antecedent precipitation 

interval none of the events had a high correlation with the same antecedent precipitation 

interval even if the events were spatially and temporarily related.  

 

 

1.1 Aims  

The main goal of this master thesis is to use machine learning algorithms to create a threshold 

based on precipitation and erosion data for when quick clay landslides release.  

This will be obtained through: 

• Collecting precipitation and erosion data from previous quick clay events. 

• Creating a more complete quick clay landslide inventory than the one that can be 

downloaded from The Norwegian Water Resources and Energy Directorate (NVE). 

• Developing a method with the machine learning tools in MATLAB to create 

thresholds for when the quick clay landslide trigger. 

• Evaluating whether the thresholds can be used in a method to periodically to update 

the categories of the quick clay hazard zones. 
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1.2 Contributions 

The method used in this thesis is developed together with Vegard Rogstad Kvalvær and one 

of our supervisors Jose Cepeda. Vegard is testing the method in Trøndelag for his thesis to get 

a comparison of how the method works in different areas in Norway. 

The work on developing the method was split between Vegard and me, each of us focusing on 

one part of the method. Vegard worked on the erosion data, and I worked on the precipitation 

data. The work was done individually but during the process we had regular meetings with 

our supervisor to discuss how we wanted to complete our task and develop the method.  

For the quick clay inventory, we split the work into our study areas, Vegard having the main 

responsibility for quality control of Trøndelag in Mid-Norway and I having the main 

responsibility for the quality control of the quick clay landslides in Oslo and Viken in 

southeastern Norway.  

1.3 Software used in thesis. 

ArcGIS pro 

I used ArcGIS Pro v. 3.1.0 for exploratory analysis of the quick clay inventory from NVE and 

to create the new inventory with additional quick clay landslides from L’Heureux & Solberg, 

(2012) and NGI (2011). It was also used as part of the quality control of our quick clay 

inventory, checking for duplicates, wrongly categorized slides, wrong dates or positions, and 

for creating maps showing the study area and overlays of marine limit and population density 

maps. ArcGIS pro was also used for the erosion analyses. 

MATLAB 

I used MATLAB R2021a Update 7 (9.10.0.2015706) for exploratory analysis of the 

precipitation data and for creating scripts for statistical analysis. I used the Classification 

Learner App with the machine learning tools to create the quick clay landslide thresholds. 
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2 Theory 

2.1 Characteristics of quick clay 

Quick clay can be found in places that are lower than the marine limit, which is the height of 

the land that was depressed under water during the ice age in Norway, and because of the 

postglacial land uplift the marine clay is now on land. The marine limit ranges, based on 

where in Norway, from 0 to 220 meters above sea level (NGU, 2021). 

The classification of a quick clay is in Norway based on the sensitivity of the soil. A 

geotechnical definition is clays that have a remoulded shear strength less than or equal to 0.5 

kPa (kN/m2). The NVE is more conservative than the geotechnical definition and classifies all 

brittle materials in surficial deposits, clays or silt that have a possibility of being an area 

landslide as materials with a remoulded shear strength less than or equal to 2 kPa 

(Gjerdrumutvalget, 2021).  

 

2.1.1 Formation of Quick clay 

After the ice melted and the land rose at the end of the ice age, clay deposits that were 

previously under sea and had formed unstable structures with salt were now above sea level. 

As the salt is washed out over hundreds to thousands of years, “quick clay” or “sensitive clay” 

is formed (L’Heureux, 2013). 

The clay in saltwater forms an open card house like structure (Figure 2), where the edges and 

planes have a different charge and are attracted to each other. The salt contributes to the 

binding forces keeping the card house structure stable. As the salt is washed out, the card 

house structure stays the same, but the binding forces are weakened (Gjerdrumutvalget, 

2021).    
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Figure 2 - Schematic illustration of quick clay card house structure. Red points indicate attraction points between clay flakes 

which keep the structure stable. As salt is washed out the card house structure stays stable, but the binding forces are 

weakened. When overloaded the structure will collapse leading to the liquification that can be seen in quick clay landslides. 
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2.2 Types of quick clay landslides 

According to the NVE guideline safety against quick clay landslides (NVE, 2020b) the main 

slides for quick clay are retrogressive slides, rotational slides and flake slides. 

These types of slides can happen individually but are often seen in the same quick clay 

landslide event, as was the case in the slide in the 1978 Rissa slide (Gregersen, 1981) where 

the a small initial slide developed into retrogressive slides that triggered large flake slides. 

2.2.1 Retrogressive slide 

Large quick clay landslides are often retrogressive (L’Heureux, 2012). The initial slide creates 

an unstable back scarp which can fail and then retrogressively fail until there is a stable back 

scarp. The retrogressively failing slope can lead to the material rapidly flowing down the 

slope (Nigussie, 2013). Figure 3 shows the principle of a retrogressive slide, starting from an 

initial slide caused by erosion in the river and retrogressively expanding up the slope. 

 

 

Figure 3 - Example of a retrogressive quick clay landslide where erosion in the river has weakened the hillside leading to an 

initial slide that retrogressively expands up the slope. Figure modified from (NVE, 2020b). 
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2.2.2 Rotational slide 

A rotational slide is a slide with a curved slip surface that usually moves as a relatively 

coherent mass and shows a clear rotation (Figure 4). The size of the slide is limited by the 

height of the slope and limitations in the terrain can help prevent further retrogression.  

In rotational slides the mass does not liquefy except for at the glide plane (Issler et al., 2012). 

In the case where the rotational slide triggers further slides, it is referred to as the initial slide 

(NVE, 2020b). 

 

Figure 4 – Example of a rotational quick clay landslide showing rotational movement of the mass. Figure modified from NVE 

(2020b). 

 

2.2.3 Flake slide 

Flake slides happen when large flakes in gentle slopes release and quickly break up into large 

chunks or disintegrate (Torrance, 2012). This can occur in relatively thin layers of quick clay 

that collapse and liquefy because of loading at the top of a slope or cuts or erosion at the 

bottom of the slope leading to a progressive failure along the quick clay layer releasing the 

flake. Figure 5 shows a flake slide being triggered by addition load at the top of a slope 

leading to progressive failure in the quick clay layer causing a flake to release. 
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Figure 5 – Example of a flake quick clay landslide, which is triggered by loading on the top of the hill and then undergoes a 

progressive failure. Figure modified from (NVE, 2020b). 

2.3 Triggers of quick clay landslides 

The two main triggering factors of quick clay landslides can be divided into anthropic factors 

(filling, excavation, construction activities, urbanisation) or natural causes, mainly erosion 

destabilizing the slope. During the last 70 years more than 50 % of the quick clay landslides 

were because of anthropic factors and as much as 90 % since 2010 (L’Heureux et al., 2018). 

In the disaster in Gjerdrum one of the causes of increased erosion in the river was additional 

runoff from the urbanisation in the catchment (Gjerdrumutvalget, 2021), exemplifying how 

quick clay landslides can result from a mix of anthropic factors and natural factors. The 

autumn season in 2020 was the wettest season in Gjerdrum since autumn 2000, and part of the 

conclusion for why the quick clay landslide released in 2020 and not in 2000 was the effect of 

the erosion over the years reducing the stability of the slope.  

A consideration for the future with increased extreme weather and precipitation caused by 

climate change (Hanssen-Bauer et al., 2016) is the increased water flow in rivers leading to an 

increase in erosion and whether this will again increase the amount of quick clay landslides 

triggered by erosion.  
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2.4 Hazard zones 

After the 1978 Rissa quick clay landslide a national quick clay mapping project was started, 

the method was based on a criteria for the topography based partly on theory and partly on an 

analysis of earlier quick clay landslides (NVE, 2020a).  

• Limited to terrain with height differences of at least 10m from bottom of rivers/sea. 

• Slopes steeper than 1:15 and coastal under water slopes steeper than 1:6. 

• Release area maximal length equivalent 15 x height difference on land and 6 x height 

coastal underwater slopes in the sea.  

• Release area width is only limited by distance to more stable topography. 

In local projects more consideration must be taken as there can be landslides in less critical 

conditions. 

The hazard zones are classified in three classes, “low-hazard”, “middle-hazard” and “high-

hazard” and are given a score based the on probability of a quick clay landslide according to 

topographical conditions, geological conditions and terrain changes including both natural 

and manmade triggering causes. The zones are also divided into three consequence classes 

“less-severe”, “severe” and “very-severe”. Based on the hazard and consequence the zones 

are divided into risk class 1 to 5 with lowest risk in class 1 and highest in class 5 (NVE, 

2020a). 
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Figure 6 - Map showing examples of quick clay hazard zones in Romerike, SE Norway, from NVE Atlas (atlas.nve.no). The 

yellow zones are low-hazard, the orange zones are middle-hazard and the red zones are high-hazard 
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2.5 Machine Learning Algorithms 

Machine learning methods have been used for susceptibility mapping and early warning 

(Collini et al., 2022; Kuradusenge et al., 2020; Li et al., 2020; Vallet et al., 2016) though more 

commonly used in landslide susceptibility mapping than for creating rainfall thresholds and 

landslide prediction. 

2.5.1 Ensemble Models 

RUSBoosted decision trees and Bagged decision trees are ensemble models, which combines 

results of several more or less successful models and not only keeping the “best” model 

because the less successful models might have valuable information that could improve the 

ability to create accurate predictions. The ensemble model also helps guard against failure in 

individual models (Baker & Ellison, 2008). 

Random Undersampling (RUS) Boosted decision trees 

The RUSBoost algorithm is a model that helps with class imbalance, through undersampling, 

removing examples from the majority class, and boosting which improves the performance of 

a weak classifier. It was introduced by Seiffert et al. (2010) based on the SMOTEBoost 

algorithm.  

Landslide data is often imbalanced, as there are many years with no landslides, so a model 

like RUSBoost seems like a good fit, however this model may also create many false 

positives (Xiao et al., 2022) which would not work for a traditional landslide warning system. 

Bagged decision trees 

Bagging or Bootstrap aggregating introduced by Breiman (1996), creates an ensemble of 

classifiers by selecting random samples of data from the dataset with replacements which 

means the same data can be chosen for different samples (IBM, n.d.). 

An advantage of the bagging method is that it can compensate for overfitting (Berk, 2006) 

however the model can be computationally expensive.  

Formulas and the details of how the ensemble models work can be found in MATLAB’s 

Classification Learner app from the help text documentation on Statistics and Machine 

Learning Toolbox, Classification Ensembles (The MathWorks Inc., 2023a). 
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2.5.2 Support Vector Machine (SVM) 

SVMs finds the best boundary or hyperplane to sperate the data into different classes. 

Depending on the kernel the hyperplane can be linear or non-linear. The kernel is a function 

that transforms the input data into a higher dimensional space where the data becomes linearly 

separable (Boswell, 2002). 

The Linear, Cubic and Quadratic SVMs in MATLAB uses different kernels, linear for Linear, 

and polynomial for Cubic and Quadratic (Ekız & Erdoğmuş, 2017). The formulas and 

functions of the models can be found in the Classification Learner app available in the 

MATLAB help text for Support Vector Machine Classification (The MathWorks Inc., 2023c). 
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3 Method 

The goal of the thesis was to develop a method to create thresholds based on precipitation and 

erosion for when quick clay landslides trigger, and to evaluate if that threshold could be used 

in a process to periodically update the hazard categorizes of the quick clay zones. The flow 

chart below shows the main steps of the procedure: 
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3.1 Study area 

Oslo and Viken 

In Norway over 100 000 people live on registered quick clay areas (NVE, 2022), many of 

which live in the counties Oslo and Viken (Figure 7) which has a population of around 2 

million. Areas that have the possibility for quick clay to have been formed are all under what 

is called the marine limit. Large, populated areas in Oslo and Viken are below the marine 

limit (Figure 8).  

In Oslo and Viken over 1000 quick clay hazard zones are registered, and we have seen large 

quick clay landslides both historically and recently. The most recent is the disaster in 

December 2020 in Ask, Gjerdrum where 11 people lost their lives (Gjerdrumutvalget, 2021). 

The 23 events used in the exploratory precipitation analysis were the naturally triggered quick 

clay landslides inside hazard zones in Oslo and Viken (Table 1,Figure 7).  

Table 1 - Quick clay landslide events selected for the exploratory precipitation analysis, showing the date of the event, the 

hazard zone and the name of the event. All selected quick clay landslide events in Oslo and Viken were within a hazard zone 

with a buffer of 35 m. 

Date Hazard Zone Event Name 

13.05.1823 321 Gullaug Gullaug 2 

06.09.1890  2606 Torsbekk Utrasingen av melkefabrikken på 

Sannesund 

20.10.1924 107 Kogstad Kankedalen 

17.04.1925 281 Årum Gretnes 

29.04.1927 1785 Brubakkveien Sør Lodalen 2 

22.12.1953 43 Borgen Borgen 

01.12.1954 353 Katterrud Ilangskogen 

03.05.1955 2435 Rolvøysund Vest Rolvsøy 

20.03.1967 77 Hekseberg Hekseberg 

10.04.1967 530 Nordby Nordre Nordby 

11.09.1984 485 Smørgrav Strandajordet, Øvre Eiker 

15.07.1999 1384 Kåbbel Nordre Kåbøl, Våler 

15.07.2000 1323 Fossnes Hvittingfoss, Kongsberg 

19.11.2000 79 Bjørkemoen Frogner, Lillestrøm 

01.01.2011 782 Foss leirskred øst for Nesveien 
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01.01.2012 782 Foss Nesveien, Skiptvedt 

01.06.2012 89 Hilton Tveiter, Gjerdrum 

24.09.2012  1383 Kåbbel Søndre Hobølelva, Våler  

09.11.2012 534 Vestby Båhus, Nannestad 

20.04.2016 394 Bøler Søndre Rotnes, Årnes 

01.03.2020 517 Ånåsrud Nord Leirbekken 1, Nannestad  

17.12.2020 521 Nygård Leirbekken 2, Nannestad 

30.12.2020 470 Hønsisletta Ask, Gjerdrum 

 

 

Figure 7 - Map with the study area Oslo and Viken (Se Norway) outlined in black, with red dots indicating quick clay 

landslides used in the analysis. Background Map: Topografisk Norgeskart 4. 
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Figure 8 - Map illustrating which part of the study area (Figure 7) is below the marine limit, with red dots indicating quick 

clay landslides used in the analysis. Background map: Topografisk Norgeskart 4. 
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3.2 Data collecting and pre-processing 

The data was collected from different databases, as open data available from webpages owned 

by organizations run by the Norwegian state (Table 2).  

Table 2 - Overview of the data used for the method with information about producers and webpages from where the data 

were downloaded. 

The Norwegian Water Resources and Energy Directorate (Norges vassdrags- og 

energidirektorat, NVE)  

• Precipitation data from nve.api.no 

• Initial landslide database and hazard zones from nedlasting.nve.no/gis 

The Norwegian Mapping Authority (Kartverket) 

• Digital Terrain Models (DTM) from hoydedata.no 

• GIS data for the analysis (background maps, county boundaries, marine limit) 

from geonorge.no which is a part of the “Norge Digitalt” cooperation.  

 

A quality check was done on the initial landslide database to identify landslides that were 

categorized wrong or had the wrong date and position in the database and to remove 

duplicates.  

I filtered out landslides to only include those in Oslo and Viken, and only those that are 

triggered by natural causes. I chose a date for which landslides to extract for the analysis 

based on availability of the DTMs, and I limited the dataset to only hazard zones where 

landslides had occurred within the timeframe that fits with the erosion data from the DTMs. 
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3.3 Quick clay inventory 

To ensure that all quick clay events were available for the analysis, a quick clay inventory was 

needed. While NVE has a quick clay data base it is not complete, missing some older events 

and with duplicates of reported events from different organizations. Therefore, a quality 

control was needed to make sure the events were not wrongly categorized or had wrong 

position or dates. The quality control mostly consisted of tracking down official reports, 

newspapers other articles and theses on the events and checking dates and position as well as 

whether the events had quick clay in the area and wasn’t misclassified.  

The new quick clay inventory was created based on the NVE existing database of quick clay 

events and in the process of quality control further quick clay landslides were added from 

L’Heureux & Solberg (2012) and NGI (2011). After a final check of the inventory for 

duplicate landslides another inventory was created for the analysis that only included 

landslides that were triggered by natural causes. This included landslides that in the inventory 

had missing or unknow triggering causes. 

The database from NVE consist of a table with event names, place name, time of the 

landslide, position of the landslide, triggering cause, damage to infrastructure, death or injury, 

source of the registered event, and if there was a quality control of the event. The inventory is 

available in the appendix (Appendix 1). As the inventory covers all of Norway, a column was 

added to the inventory with the coordinates in UTM33. 
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3.4 Precipitation analysis 

The goal of the precipitation analysis was to identify if there were any trends in the 

precipitation that could be connected to triggering of quick clay landslides. From theory 

(NGU, n.d.) and experience from earlier quick clay landslides, it was not expected that 

precipitation alone triggers quick clay landslides. However, it can cause higher pore pressure 

in the quick clay weakening the slope, which again means that increased precipitation can 

lead to increased erosion, the main natural triggering factor.  

The precipitation data downloaded (Table 2) combines rain and snowmelt. The precipitation 

data is a grid-based dataset (1x1 km grids measuring 24-hour data) from hundreds of 

measuring stations in Norway. The measured precipitation data is then interpolated to the 1x1 

km grids using an algorithm based on the Bayesian interpolation method “Optimal 

Interpolation” (Lussana et al., 2018; NVE et al., n.d.-a). The snowmelt data is added to the 

dataset using a snow model that calculates the amount of snow based on the precipitation and 

temperature in each 1x1 km grid (NVE et al., n.d.-b; Saloranta, 2014). 

All the naturally triggered quick clay landslides Oslo and Viken that occurred after 1960 were 

inspected for daily, monthly, seasonal and yearly precipitation values using a simple code 

(Appendix 2) in MATLAB and compared to the maximum rain and snowmelt in the areas 

where quick clay landslides occurred. Seasons were defined as 3-month starting from 

December – February, March – May etc.  
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3.5 Preparing data for MATLAB classification 

It was decided that only quick clay landslides that occurred inside a quick clay hazard zone 

would be used in the MATLAB classification, partly to reduce the time the analysis would 

take and partly to fit better with the availability of DTMs to calculate erosion. The dataset was 

further limited to the years 2000-2022, as the quick clay landslides for these years were the 

most accurate and properly registered quick clay events in the database. The earliest year with 

available DTMs was 2007. Table 3 shows the selected events for the analysis. 

 

Table 3 - Overview of the quick clay events selected for the analysis, showing the number and name of each quick clay 

hazard zone, the name of the event, and the year of the event. 

Hazard Zone Event Name Year 

1323 Fossnes Hvittingfoss, Kongsberg 2000 

79 Bjørkemoen Frogner, Lillestrøm 2000 

782 Foss Øst for Nesveien and 

Nesveien, Skiptvedt 

2011 and 2012 

89 Hilton Tveiter, Gjerdrum 2012 

1383 Kåbbel Søndre Hobølelva, Våler 2012 

534 Vestby Båhus, Nannestad 2012 

394 Bøler Søndre Rotnes, Årnes 2016 

517 Ånåsrud Nord Leirbekken 1, Nannestad 2020 

521 Nygård Leirbekken 2, Nannestad 2020 

470 Hønsisletta Ask, Gjerdrum 2020 
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3.5.1 Precipitation 

Taking into consideration the different precipitation amounts at different sites, a mean of the 

precipitation for the last 30 years, 01.01.1990 to 01.01.2023, was calculated for each quick 

clay landslide site. Seasonal and yearly precipitation data was compared to the mean as a 

percentage of yearly precipitation for that site. The 30 year mean was chosen as a baseline for 

comparison to avoid changing weather caused by climate change (Meteorologisk institutt, 

2022) and changes in the catchment area that could affect the water supply to obtain a mean 

that more closely represents the current weather conditions, although going back to 1957 

(Lussana et al., 2018; NVE et al., n.d.-a) was possible. 

Since yearly precipitation is a measure of precipitation that fell in a particular calendar year, it 

is not an optimal way to measure precipitation within the year a quick clay event occurred. 

Therefore, I used a different measure for the years where a quick clay landslide occurred, 

calculating the antecedent precipitation from the date of a quick clay event. The 365 days 

before the quick clay event for the annual rain and snowmelt and the 90 days before an event 

as the seasonal rain and snowmelt to ensure that only precipitation before the event was 

counted and not precipitation that happened after the event but still in the same calendar year. 

3.5.2 Erosion 

Part of the erosion step in the method was to evaluate which quick clay zones should be 

included in the analysis. This was done by creating a 35m buffer in ArcGIS Pro around the 

quick clay hazard zones and then selecting the hazard zones where an event had occurred 

since year 2000 and with at least two DTMs available from separate years before the event.  

The hazard zones which were selected were exported as shapefiles, which specify the area and 

project when downloading DTM data from hoydedata.no. The DTMs were downloaded with 

a resolution of 1 m and in the UTM 32 coordinate system. The DTMs were then further 

clipped with the ‘clip raster’ tool in ArcGIS Pro to better fit the hazard zones. 

To calculate the amount of erosion in the hazard zones, the tool ‘raster calculator’ was used to 

subtract the oldest DTM by the newest DTM. If a zone has more than two DTMs, the erosion 

was calculated between every DTM in steps going from oldest to second oldest and from 

second oldest to the newest DTM. The result was available as different values such as mean, 



22 

 

min, max and std in meters. To be on the safe side when it comes to the amount of erosion for 

each site, the max value of erosion was chosen for the final analysis. 

As DTMs were not available for every year, the erosion was set to zero in years before an 

available DTM. The first DTM for a given year was also set to zero erosion and then between 

the last and the first DTM, the erosion was interpolated up to the measured erosion in the final 

DTM. In years after the final DTM, the erosion was set to the same as the final measured 

erosion. In years after an event the erosion was again set to 0. 

An erosion rate was also calculated as meters of erosion divided by the number of years 

between the DTMs. 

Table 4 includes the DTMs used in the project. 

Table 4 - The Digital Terrain Models (DTM) from hoydenorge.no used to calculate erosion. 

Name of DTM Projects 

Romerike 07pkt 2007 

Romeriksåsene 2013 

NDH Akershus 2pkt 2015 

Gjerdrum Ullensaker Nannestad 5pkt 2020 

Ullensaker Nes Nannestad 2010 

 

 

3.5.3 Antecedent precipitation method 

To test the same method with a different approach to the formatting of the data, an antecedent 

dataset was created, with daily, 30- 60- and 90-day intervals antecedent rain and snowmelt. 

The same timeframe was chosen 2000-2022. The table (Appendix 3) consists of the 

antecedent intervals, the hazard zone name, the date and response which indicates whether 

there was a quick clay landslide that day.  
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3.6 Training models in MATLAB 

To create thresholds through model training in MATLAB’s Classification Learner app, three 

different datasets were used: 1) only precipitation, 2) precipitation and erosion, and 3) 

antecedent precipitation. For all three datasets, the response variable (class) was 

Landslide/Not Landslide, dependent on whether there was a quick clay landslide that year. 

Predictor variables are shown in Table 5. The full table for dataset 1 and 2 is found in 

Appendix 4 and the table for dataset 3 is found in Appendix 3. Datasets 1 and 2 are class 

imbalanced with only 11 out of 230 datapoints belonging to the Landslide class. This is even 

more severe for the antecedent precipitation dataset with daily precipitation values leading to 

a class imbalance with still only 11 datapoints within the Landslide class but over 80,000 

within the Not landslide class. 

 

Table 5 - Predictor variables (with explanation) for the three datasets, which were used to train in MATLAB models in 

classification of quick clay landslide event. 

Predictor variable Explanation Dataset 1: only 

precipitation 

Dataset 2: 

precipitation 

and erosion 

Dataset 3: 

antecedent 

precipitation 

Hazard zone Name of the quick clay 

hazard zone 

X X X 

Year/Date Ranging from 2000-2022 X X X 

Highest seasonal rain 

and snowmelt % 

Season with highest rain 

and snowmelt for that year 

X X  

Annual rain and 

snowmelt % 

The annual rain and 

snowmelt for that year 

X X  

Erosion between 

DTMs 

Erosion between the two or 

more DTMs 

 X  

Erosion Rate Calculated as the erosion 

that occurred between the 

DTMs 

 X  

DTM for year yes or no of whether there 

was a DTM available for 

that year 

 X  

DTM Date Day and month of when the 

DTM was created for that 

specific year 

 X  

Daily antecedent 

precipitation and 

snowmelt 

   X 

30-day antecedent 

precipitation and 

snowmelt 

   X 
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60-day antecedent 

precipitation and 

snowmelt 

   X 

90-day antecedent 

precipitation and 

snowmelt 

   X 

 

3.6.1 Model selection in MATLAB 

The model results can differ from each session and therefore, several sessions of each model 

were done to find the “best” classification models. A session starts with defining the models 

that you wish to use and then training them on the imported dataset. After the model is done 

training, the results can be evaluated in MATLAB by using either the Validation Confusion 

matrix (see 3.6.2), which gives information about the amount of correct and wrong 

classifications or using the ROC curve graph showing the relationship between true positives 

and false positives (see 3.6.3). 

The dataset was small enough for all available models in MATLAB to be tested in a short 

amount of time. The final decision of which models to use was mainly based on results from 

the testing in MATLAB. The models selected to perform the analysis in the end were two 

SVM models, Cubic and Quadratic, and the two ensemble models RUSBoosted- and Bagged 

decision trees.  Before training a model some advanced options can be set depending on the 

type of model, for example for the ensemble models the number of learners can be set. For the 

final analysis, the models were left on default values (Table 6), but they were all tested with 

different options and no significant differences in results were found. 

Table 6 – The advanced options selected for the Support Vector machine (SVM) and the ensemble models RUSBoosted- and 

Bagged decision trees in MATLAB. All options were left on default values after initial tests showed significant differences 

with different settings. 

Model Advanced options 
SVM Box constraint: 1 

Kernel Scale Mode: Auto 

Standardize data: On 
RUSBoosted Number of splits: 20 

Number of learners: 30 

Learning rate: 0.1 
Bagged Number of splits: 6 

Number of learners: 30 

Learning rate: 0.1 
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3.6.2 Confusion matrix  

A confusion matrix can be used to define the performance of a classification method. Figure 9 

Figure 9illustrates the matrix for a binary classification, where P is positive, N is negative, T 

is true and F stands for False. True Positive (TP) would be an observation that is true and is 

predicted to be true, that is predicting a landslide when there was one. False Positive (FP) 

would be predicting a landslide when there wasn’t a landslide.   

In MATLAB’s Classification Learner app, the confusion matrix has two options, the True 

Positive Rates (TPR) and False Negatives Rates (FNR) option and the Positive Predictive 

Values (PPV) and False Discovery Rates (FDR) option. TPR is the proportion of correctly 

classified observations per true class and FNR is the proportions of incorrectly classified 

observations per true class. PPV and FDR work well for displaying the amount of false 

positives in the classifier, PPV the proportion of correctly classified observations per class 

and FDR is the proportion of incorrectly classified observations per class (The MathWorks 

Inc., 2023d).  

The last option can be important if the data set has imbalanced classes like landslide data 

where there are many years without an event. The false positives will not be as visible in the 

first option.  

 

 

Figure 9 – Example of a Confusion Matrix for the classes Landslide and Not Landslide. P- positive, N- negative, F – false, T- 

true. 
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3.6.3 Receiver operating characteristics (ROC) curve  

ROC is a method to evaluate classifiers based on their performance, with a graph visualizing 

the trade-off between hit rates and false alarm rates of classifiers (Fawcett, 2006). Using two 

parameters, true positive rate (TPR) and False positive rate (FPR), the ROC curve plots the 

TPR and FPR parameters at different thresholds. 

True Positive Rate: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

False Positive Rate: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

The ROC results can be evaluated by calculating the Area Under the ROC Curve (AUC). The 

value of the AUC will be between 0.0 and 1.0 (Fawcett, 2006). A random classifier would 

have the same values for the FRP and the TPR with an AUC value of 0.5 and a perfect 

classifier would have a value of 1.0 (The MathWorks Inc., 2023b) as shown in Figure 10. 

What is considered an acceptable AUC value can change depending on the field of study and 

the aim of the analysis. One way to quantify the AUC values is 0.9-1 as an excellent model, 

0.9-0.8 as a good model and 0.8-0.7 as an acceptable model (Kikuchi et al., 2023). 

 

Figure 10 - Illustration of the principle behind Area Under the Curve (AUC), showing an example of a random classifier to 

the left (0.5) and a perfect classifier to the right (1.0). 

 



27 

 

4 Results 

4.1 Precipitation analysis 

The exploratory analysis shows no clear correlation in the data that points to precipitation 

being the main triggering factor in any of the quick clay events. There was, however, a high 

amount of precipitation both yearly and seasonally during the years where the events occur, 

but this does not represent the peak precipitation events for the area. For some events there 

was no precipitation at the day of the event. 

In the hazard zone 1323 Fossnes and the quick clay event called Hvittingfoss in year 2000, 

the yearly precipitation and snowmelt was the peak precipitation and snowmelt for that area 

during the last 70 years, however the landslide released on the 15th of July 2000 and the 

precipitation events that created the highest precipitation came during the autumn season after 

the landslide had released (Figure 11). 

 

 

 

  

A B 

Figure 11 - Monthly and yearly precipitation for the quick clay event Hvittingfoss in 2000, in the hazard zone 1323 Fossnes. 

Monthly precipitation of the month when the event happened (marked in red) is low compared to precipitation in the autumn 

season (A), which is causing the peak rainfall and snowmelt for the area in the year 2000 (B). 
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4.2 Models trained with only precipitation data 

The Cubic SVM has a 27.3 % True Positive Rate (TPR) and a 72.7 % False Negative Rate 

(FNR) for the landslide Class, classifying three of the 11 quick clay landslides correctly and 

classifying three non-landslides as landslide with a False Discovery Rate (FDR) of 50 % for 

the landslide class (Table 7). The Cubic SVM achieved an AUC value of 0.67 (Table 8). 

The Quadratic SVM has a 36.4 % TPR and a 63.6 % FNR for the landslide Class, classifying 

four of the 11 quick clay landslides correctly and no false positives with a 0 % FDR for the 

landslide class (Table 7). The Quadratic SVM achieved an AUC value of 0.71 (Table 8). 

The RUSBoosted decision tree ensemble model has a 45.5 % TPR and a 54.5 % FNR for the 

landslide Class, classifying five of the 11 quick clay landslides correctly and classifying 60 

non-landslides as landslide with a FDR of 92.3 % for the landslide class (Table 7). The 

RUSBoosted decision tree ensemble model achieved an AUC value of 0.57 (Table 8).  

The Bagged decision trees ensemble model has a 18.2 % TPR and a 81.8 % FNR for the 

landslide Class, classifying two of the 11 quick clay landslides correctly no false positives 

with a 0 % FDR for the landslide class (Table 7). The Bagged decision tree ensemble model 

achieved an AUC value of 0.73 (Table 8).  

Table 7 - Comparison of the four models trained with only precipitation data, showing the True Positive Rate (TPR), the 

False Negative Rate (FNR), the Positive Predictive Value (PPV) and the False Discovery Rate (FDR) for the Landslide and 

Not Landslide classes. 

 
Landslide Not Landslide Landslide Not Landslide 

Models TPR FNR TPR FNR PPV FDR PPV FDR 

Cubic 27.3 % 72.7 % 98.6 % 1.4 % 50.0 % 50.0 % 96.4 % 3.6 % 

Quadratic 36.4 % 63.6 % 100 % 0.0 % 100 % 0.0 % 96.9 % 3.1 % 

RUSB 45.5 % 54.5 % 72.6 % 27.4 % 7.7 % 92.3 % 96.4 % 3.6 % 

Bagged 18.2 % 81.5 % 100 %  0 % 100 %  0 % 96.1 % 3.9 % 

 

Table 8 - Comparison of the four models trained with only precipitation data, showing the number of True and False 

predictions for the Landslide and Not Landslide classes, and the Area Under the Curve (AUC) values. 

 
Landslide Not Landslide AUC 

Models True False True False  

Cubic 3 3 216 8 0.67 

Quadratic 4 0 219 7 0.71 

RUSB 5 60 159 6 0.57 

Bagged 2 0 219 9 0.73 
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4.3 Models trained with precipitation and erosion 

The Cubic SVM has a 36.4 % True Positive Rate (TPR) and a 63.6 % False Negative Rate 

(FNR) for the landslide Class, classifying four of the 11 quick clay landslides correctly and no 

false positives with a 0 % FDR (Table 9). The Cubic SVM achieved an AUC value of 0.72 

(Table 10). 

The Quadratic SVM has a 45.4 % TPR and a 54.4 % FNR for the landslide Class, classifying 

five of the 11 quick clay landslides correctly and no false positives with a 0 % FDR (Table 9). 

The Quadratic SVM achieved an AUC value of 0.74 (Table 10). 

The RUSBoosted decision tree ensemble model has a 54.4 % TPR and a 45.5 % FNR for the 

landslide Class, classifying six of the 11 quick clay landslides correctly and classifying 63 

non-landslides as landslide with a FDR of 91.3 % for the landslide class (Table 9). The 

RUSBoosted decision tree ensemble model achieved an AUC value of 0.61 (Table 10).  

The Bagged decision trees ensemble model has a has a 36.4 % TPR and a 63.3 % FNR for the 

landslide Class, classifying four of the 11 quick clay landslides correctly no false positives 

with a 0 % FDR for the landslide class (Table 9). The Bagged decision tree ensemble model 

achieved an AUC value of 0.85 (Table 10). 

Table 9 - Comparison of the four models trained with precipitation and erosion data, showing the True Positive Rate (TPR), 

the False Negative Rate (FNR), the Positive Predictive Value (PPV) and the False Discovery Rate (FDR) for the Landslide 

and Not Landslide classes. 

 
Landslide Not Landslide Landslide Not Landslide 

Models TPR FNR TPR FNR PPV FDR PPV FDR 

Cubic 36.4 % 63.6 % 100 % 0 % 100 % 0 % 96.9 % 3.1 % 

Quadratic 45.4 % 54.5 % 100 % 0 % 100 % 0 % 97.3 % 2.7 % 

RUSB 54.5 % 45.5 % 71.2 % 28.8 % 8.7 % 91.3 % 96.9 % 3.1 % 

Bagged 36.4 % 63.6 % 100 % 0 % 100 % 0 % 96.5 % 3.5 % 
 

Table 10 - Comparison of the four models trained with precipitation and erosion data, showing the number of True and False 

predictions for the Landslide and Not Landslide classes, and the Area Under the Curve (AUC) values. 

 
Landslide Not Landslide AUC 

Models True False True False  

Cubic 4 0 219 7 0.72 

Quadratic 5 0 219 6 0.74 

RUSB 6 63 156 5 0.61 

Bagged 4 0 219 7 0.85 
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4.4 Comparison between models trained with 

precipitation versus precipitation/erosion 

Comparing the SVM models there was an increase in performance with the addition of 

erosion data for all models. The Cubic SVM model correctly classifies one more event and 

three fewer false positives, and the Quadratic model also classifies one more event correctly. 

The models also have a small increase in AUC by 0.05 and 0.03 respectively (Table 11).  

Of the ensemble models the RUSBoosted decision trees model has an increase in correctly 

classified quick clay landslides, correctly identifying one more event, however there is also an 

increase in the false positive with three more non-events classified as quick clay landslides. 

And the Bagged decision trees model also has an increase in correctly classified events with 

two more events correctly classified. The models also have an increase in AUC by 0.04 and 

0.12 respectively (Table 11). 

Table 11 - Difference in classification of each of the four models when trained with only precipitation data versus 

precipitation and erosion data in combination. The difference in number of True and False predictions for the Landslide and 

Not Landslide classes and the Area Under the Curve (AUC) values are calculated from Table 8 and Table 10. 

 
Landslide Not Landslide AUC 

Models True False True False  

Cubic 1 -3 3 -1 0.05 

Quadratic 1 0 0 -1 0.03 

RUSB 1 3 -3 -1 0.04 

Bagged 2 0 0 -2 0.12 
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4.5 Models trained with antecedent precipitation 

data 

The only model to classify any quick clay landslides correctly with the antecedent data was 

the RUSBoosted decision trees ensemble model it had a 36.4 % TPR and a 63.6 % FNR for 

the landslide Class, classifying four of the 11 quick clay landslides correctly and classifying 

30272 non-landslides as landslide with a FDR of 100 % for the landslide class. The 

RUSBoosted decision tree ensemble model achieved an AUC value of 0.49 (Table 12). 

Table 12 - Results from the antecedent precipitation method with intervals of 1, 30, 60 and 90 days with the RUSBoosted 

decision trees ensemble model. Showing the True Positive Rate (TPR) and the False Negative Rate (FNR), the Positive 

Predictive Value (PPV) and the False Discovery Rate (FDR), the number of True and False predictions and the Area Under 

the Curve (AUC) values for the Landslide and Not Landslide classes. 

Landslide Not Landslide AUC 

TPR FNR TPR FNR 0.49 

36.4 % 63.6 % 64 % 36 %  

PPV FDR PPV FDR  

0 % 100 % 100 % 0 %  

True False True False  

4 30272 53727 7  
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5 Discussion 

Quick clay landslides may have major consequences resulting in large damages for society. 

The triggering factors are often a combination of anthropogenic and natural causes, including 

natural erosion following periods of high precipitation. With the expected increase in 

precipitation and extreme weather events as a result of the ongoing climate change (IEA, 

2022; Meteorologisk institutt, 2022), together with the increase in urbanisation which might 

also contribute to increased water flow as was seen in the Gjerdrum event (Gjerdrumutvalget, 

2021), there is a possibility that there will be an increase in erosion trigged quick clay 

landslides. 

The method used in this thesis was developed with the aim to use machine learning 

techniques to create a threshold for when quick clay landslides trigger based on precipitation 

and erosion data gathered from previous quick clay landslide events. If successful, the result 

would be used to evaluate whether this kind of data and method can be used to periodically 

update the categories of quick clay hazard zones. To obtain this, selected models were trained 

with three different datasets (only precipitation data, precipitation data and erosion data 

combined, and antecedent precipitation data) and evaluated for their ability to correctly 

classifying quick clay landslides. 
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5.1 Model performance with regard to classifying 

quick clay landslides 

Evaluating the models trained with only the precipitation dataset, the ensemble model Bagged 

decision trees performed best according to AUC with a value of 0.73 (Table 8), however it 

only classified two of the quick clay landslides. The Quadratic SVM model had an AUC 

value of 0.71 (Table 8), only 0.02 less than the Bagged decision trees model but classified 

four quick clay landslides correctly. In numbers of correctly classified quick clay landslides, 

the ensemble model RUSBoosted decision trees classified most (five) quick clay landslides 

correctly. However, as mentioned by Xiao et al. (2022) the RUSBoosted model is unsuitable 

for warning systems because of the high amount of false positives it creates, as was also the 

case in my study with 60 false positives (Table 8). 

When adding erosion data, all models showed a small improvement in performance, but the 

overall relationship between the models stayed the same, with the Bagged decision trees 

model classifying less quick clay landslides than the Quadratic SVM model but with a higher 

AUC value. While all the models had an increase in AUC value with the addition of erosion 

data, only the Bagged decision trees model had a significant increase from 0.73 to 0.85 (Table 

11). An AUC value of 0.85 is an indication that it can be a good model (Kikuchi et al., 2023), 

but since the quick clay landslide dataset is so imbalanced with only 11 of the 230 data points 

representing the landslide class, the AUC value can be misleading. The Bagged decision trees 

model only had a true positive rate of 36.4 % (Table 9) classifying four out of the 11 quick 

clay landslides. 

It can be hard to evaluate models based on AUC values, as what is considered a good result 

can change depending on the field. As a comparison, Kuradusenge et al. (2020) used machine 

learning models to predict rainfall-induced landslides in Rwanda. They used the random 

forest and logistic regression models, which achieved AUC values of 0.995 and 0.997 and had 

a false negative rate around 10 %. The best performing models in my results only classified 

five or six of the 11 quick clay landslides correctly. If the method was to be used as a first 

step in a warning system for quick clay landslides, a model with a false negative rate of 

around 40-50 % would certainly not be ideal.  

A positive result from the addition of erosion data was a reduction in false positives for the 

models. Of the selected models only the Cubic SVM had false positives in the final result, but 
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in some of the sessions during the training of the models several of the initially tested models 

had more false positives when trained only on precipitation data. 

The dataset based on antecedent precipitation intervals was included as an alternative way to 

represent precipitation data. When training the models with antecedent precipitation in the 

intervals 1 day, 30 days, 60 days and 90 days, only the RUSBoosted decision trees model 

managed to classify anything, but had a large number of false positives (Table 12). Using 

daily precipitation data resulted in a larger dataset, which in turn created even more false 

positives with the RUSBoosted decision trees model.  

Gauthier & Hutchinson (2012) concluded that while some antecedent intervals had high 

correlation with landslides, they were unique for each site, and that precipitation alone could 

not trigger quick clay landslides. This compares well with my results with antecedent 

precipitation, where I don’t see a clear relationship between any specific interval of 

antecedent precipitation and the release of the quick clay landslides that were correctly 

classified. Besides, most models trained in MATLAB could not classify any quick clay 

landslides. 

According to the Gjerdrum report (Gjerdrumutvalget, 2021), the measured erosion in 

Tisilbekken was 2.5 m between the years 2007 and 2015. This fits well with the erosion 

measured in my study, which showed a max erosion of 2.78 m erosion between 2007 and 

2015. While the Gjerdrum report considers more factors when it comes to changes to the 

topography in the Gjerdrum area, such as fills and accumulation, or changes in the path of the 

river, this nevertheless shows that the method applied here can be used to measure erosion 

provided that DTMs of a good enough quality are available (see discussion below with regard 

to quality of DTMs). 
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5.2 Uncertainty in data 

There are several points of uncertainty with regard to the data used in this study, one 

important point being the fact that the precipitation data is obtained from 1x1 km grids and 

interpolated based on a set of measuring stations (Lussana et al., 2018; NVE et al., n.d.-a). 

This means that the precipitation values used might not be the actual precipitation in the quick 

clay zones. A solution to this problem could be to use only zones with a measuring station to 

obtain values closer to reality. However, this would reduce the number of areas that could be 

included in the method as not every hazard zone has a measuring station.  

The precipitation data used for the analyses include rain and snowmelt to obtain the complete 

water supply. This might add another uncertainty as the snowmelt data are not actually 

measured but based on precipitation and temperature data, and because the snow is not 

directly measured this can lead to snowmelt data that differ from the real snow conditions 

especially when the temperature is around zero degrees Celsius (NVE et al., n.d.-b; Saloranta, 

2014).  

There are also two points of uncertainty related to the DTMs. Firstly, there are not enough 

DTMs to cover several years for every quick clay hazard zone, leading to some hazard zones 

with no way to measure the erosion and other hazard zones with just one measure of erosion. 

Secondly, with initially few DTMs available, it might be problematic to remove low 

resolution DTMs, without losing information. For the Gjerdrum 2020 quick clay event, the 

2013 DTM had to be removed because of poor resolution. In the report after the disaster 

(Gjerdrumutvalget, 2021), they came to the same conclusion, that the 2013 DTM was of too 

poor quality to be used for the erosion analysis. For the Gjerdrum site, this was ok as there 

were other DTMs available, but some sites had only two DTMs and removing one would lead 

to no erosion being measured at all. 
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5.3 Uncertainty in method 

One large issue with the method developed using machine learning models is the risk of 

overfitting because the dataset is too small to be split into both training data and testing data. 

By testing on the trained dataset the models can perform better or even perfectly on the 

trained data, but when used on an unknown dataset the model is inaccurate (Ying, 2019). This 

is an important issue if the method is to be used as a type of warning system. However, 

splitting the available data into a training and a testing dataset would lead to models being 

trained on too little data and creating poor models because the initial training dataset would be 

too small for the models to find the parameters that would lead to a landslide. 

According to Berk (2006) the bagging model can compensate for the issue of overfitting. 

However, Xiao et al. (2022) had issues with overfitting with the training set almost achieving 

an AUC value of 1.00, but the testing set an AUC value of only 0.64 and suggested that the 

bagging model was not suitable for class-imbalanced problems. 

An improvement to the method could be adding additional predictors. Adding more predictors 

that could increase the correlation between precipitation and erosion would address the lack of 

DTMs and erosion values. Adding predictors that measure water saturation in the soil for the 

month or season of the quick clay landslide, or measuring the peaks of the water flow rate in 

rivers as an additional measure of increase in erosion, could potentially help the models to 

find thresholds for erosion triggered landslides. Gauthier & Hutchinson (2012) found that 

ground frost conditions and thawing coincided with several large landslides in Eastern 

Canada, and that these are important factors to take into consideration when looking for 

triggering factors. While the conditions in Norway might be somewhat different than those in 

Canada, in the Gjerdrum report (Gjerdrumutvalget, 2021) they also noted that it was an 

unusually mild December with little ground frost.  

Collini et al. (2022) did a review of previous work using machine learning for susceptibility 

mapping and predicting landslides and compared to their own work to find the “best” 

predictors. They found that for rainfall-induced landslides, features such as 3-day antecedent 

rainfall, max temperature the previous day and the level of water in the rivers were the most 

relevant predictors. This could indicate that more predictors focusing on water levels or river 

flow rates also might increase the performance of detecting quick clay events. 
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As part of the method, an updated quick clay inventory had to be produced. This inventory is 

more complete than the data that can be downloaded from NVE, with some additional quick 

clay landslides from both L’Heureux & Solberg (2012) and NGI (2011). Although a quality 

control was done, checking for wrongly categorized landslides, wrong coordinates or dates, 

there are still uncertainties in the inventory, as for some landslides I was unable to find any 

reports or articles about the events. 
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6 Conclusion 

The main goal of the thesis was to develop a method using machine learning to create 

thresholds for when quick clay landslides release based on precipitation and erosion data 

collected from previous events. For this I used machine learning models in MATLAB which 

included Cubic and Quadratic SVM and RUSBoosted and Bagged decision tree models. To 

evaluate the models AUC and the Confusion matrix tools in MATLAB was used. 

The main conclusion from the study was that even the best performing machine learning 

models, the Quadratic SVM model and the Bagged decision trees model had high false 

negative rates at 54.4 % and 63.6 % and thus evaluated as unsuitable for the purpose of 

updating the categories of the quick clay hazard zones. 

The models did show an improvement in AUC when trained with precipitation and erosion 

data in combination compared to only using precipitation data, 0.03 for the Quadratic SVM 

and 0.12 for the Bagged decision trees. However, overall the low amount of available erosion 

data is a major problem with the method.  

  

6.1 Future studies 

A suggestion for future studies would be to investigate if an improvement in performance of 

the models could be obtained with the addition of more erosion data. This would, however, 

require a method for gathering erosion measurements from selected quick clay sites, perhaps 

on a yearly basis.   

Another point for further study would be to add more predictors such as water flow rate or 

water levels in rivers, measurement of ground frost, water supply or other similar predictors, 

which might better explain or detect the possible correlation between precipitation events and 

increase in erosion. 
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Quick clay Inventory 

Appendix 1 

Only chosen columns. Excel file with the full table with all Columns available from: 

https://github.com/JakobBGit/MasterThesisAppendix/blob/main/Final_Inventory_Thesis.xlsx 

skredNavn stedsnavn skredTidspunkt utlosningArsak kilde POINT_

X 

POINT_

Y 

Heimstad Trondheim Forhistorisk 
 

(L’Heureux & Solberg, 

2012) 

269773 7032958 

Langørjan Trondheim Forhistorisk 
 

(L’Heureux & Solberg, 

2012) 

257825 7041212 

Leiffossen Trondheim Forhistorisk 
 

(L’Heureux & Solberg, 

2012) 

271783 7036019 

Lund Trondheim Forhistorisk 
 

(L’Heureux & Solberg, 

2012) 

265680 7032848 

Olderdalen Trondheim Forhistorisk 
 

(L’Heureux & Solberg, 

2012) 

275966 7039457 

Othilienborg Trondheim Forhistorisk 
 

(L’Heureux & Solberg, 

2012) 

271873 7038763 

Sjetnemarka Trondheim Forhistorisk 
 

(L’Heureux & Solberg, 

2012) 

270109 7034849 

Stavset Trondheim Forhistorisk 
 

(L’Heureux & Solberg, 

2012) 

267243 7036904 

Groruddalen Oslo Forhistorisk 
 

(NGI, 2011) 271070 6654022 

Telthusbakken Telthusbakken 15.07.1100 
 

NGU 262423 6650472 

Duedalen Duedalen 28.07.1625 

12:00:00 

Erosjon NGU 270817.9 7041294 

Bakklandet Bakklandet 20.11.1634 

12:00:00 

Erosjon NGU 270728.8 7041510 

Leirfallsgata Leirfallsgata 26.07.1705 
 

NGU 262837.9 6650062 

Litl-Amdal 01.09.1723 

12:00:00 

Naturlig utlost 353816.3 7157878 

https://github.com/JakobBGit/MasterThesisAppendix/blob/main/Final_Inventory_Thesis.xlsx
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Kvam-Auglaraset Kvam 21.09.1726 

21:00:00 

Naturlig utlost NGU 328007.5 7082495 

Dæli Rissa 09.03.1760 

16:30:00 

Naturlig utlost NGU 259347.3 7067259 

Lille-Amdal 01.08.1763 

12:00:00 

Naturlig utlost 353856.5 7157915 

Tesenfallet Tesenfallet 21.10.1795 

10:00:00 

Naturlig utlost NGU 300069.3 6674774 

Stubergfallet Værnes 15.10.1807 

23:00:00 

Naturlig utlost NGU 298659.4 7040749 

Tiller Tiller 07.03.1816 

17:30:00 

Naturlig utlost NGU 271243.1 7032371 

Gullaug 2 
 

13.05.1823 

12:00:00 

Hoyt poretrykk 235649.4 6631991 

Egga Eggem 14.01.1825 

12:00:00 

Naturlig utlost NGU 256330.7 7037403 

Brådalen Brådalen 20.05.1831 

12:00:00 

Naturlig utlost NGU 258818.1 7033839 

Oppdal 3 Oppedal 3 30.08.1854 

14:00:00 

Naturlig utlost NGU 351856.4 7150409 

Gløymem Gløymem 21.03.1857 

12:00:00 

Naturlig utlost NGU 359589.2 7158867 

Nypan Nypan 10.11.1867 

08:00:00 

Naturlig utlost NGU 266530.7 7028743 

Leirfallet 2 Leirfallet 2 26.03.1869 

09:00:00 

Naturlig utlost NGU 262488.1 7032800 

Kvidal Kvidal 17.12.1871 

12:00:00 

Naturlig utlost NGU 252312 7052844 

Holem Holem 07.04.1874 

12:00:00 

Naturlig utlost NGU 361878.8 7126307 

Svendengen 23.03.1878 

19:00:00 

Graving 
 

264181.8 6648402 

Utrasingen av melkefabrikken på Sannesund 06.09.1890 

08:00:00 

Naturlig utlost 277321.3 6577239 

Elvberg 
 

04.12.1892 

22:00:00 

Naturlig utlost 311864.9 7067688 

Verdalsraset Verdalsraset 19.05.1893 

00:30:00 

Erosjon NGU 333414.2 7077461 
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Bislet Bislet 02.07.1895 

16:30:00 

Ikke gitt NGU 261664.7 6650531 

Grubbåsen Grubbåsen 1900-05-05 

10:00:00 

Ikke gitt NGU 303775.5 7058112 

Gullsmedvika Gullsmedvika 1902-11-11 

18:00:00 

 
NGU 461150 7355600 

Haugan, Vuku Haugan, Vuku 1906-09-19 

8:30:00 

Naturlig utlost NGU 345978.2 7079858 

Smestadbanen Smestadbanen 1913-07-03 

12:00:00 

Ikke gitt NGU 260726.2 6651149 

Skarpsno-Skøyen Skarpsno-Skøyen 1913-10-24 

12:00:00 

 
NGU 259061.2 6650295 

Chr. Kroghsgt Chr. Kroghsgt 1914-06-05 

14:00:00 

Ikke gitt NGU 262995.5 6649586 

Lånke 
 

1918-03-17 

3:00:00 

Naturlig utlost 301399.3 7039962 

Meråker 
 

1919-08-19 

13:00:00 

Naturlig utlost 334797.2 7038594 

Kankedalen Kankedalen 1924-10-20 

22:00:00 

Infiltrasjon av 

vann 

NGU 279667.2 6668809 

Lodalen Lodalen 1925-01-29 

0:00:00 

 
NGU 264354.3 6647955 

Gretnes Gretnes 1925-04-17 

18:30:00 

Erosjon NGU 276901.5 6575772 

Lodalen 2 Lodalen 2 1927-04-29 

5:00:00 

 
NGU 269671.9 6652403 

Brådalen 5 Brådalen 5 1928-04-24 

12:00:00 

Naturlig utlost NGU 258996.4 7033823 

Brådalen-Gaulosen Brådalen-Gaulosen 1928-05-01 

12:00:00 

Naturlig utlost NGU 259084.4 7033755 

Ner-Tingstad Ner-Tingstad 1932-01-27 

12:00:00 

Naturlig utlost NGU 318688.5 7072624 

Grungstadvatnet Grungstadvatnet 1932-03-31 

10:00:00 

Naturlig utlost NGU 366300 7162700 

Nydalen Nydalen 1934-12-12 

13:00:00 

Ikke gitt NGU 263366.9 6653671 

Merradalen Merradalen 1936-03-31 

0:00:00 

 
NGU 254559.9 6658140 



4 

 

Ness Ness 1936-04-03 

12:00:00 

Naturlig utlost NGU 381350 7163300 

Arnebråtveien Arnebråtveien 1936-05-29 

12:00:00 

Graving NGU 258173 6653424 

Holand Holand 1942-01-12 

19:00:00 

Naturlig utlost NGU 362665.4 7153704 

 
Byneset, Nedre Mule 1943-05-18 

0:00:00 

 
NGI 258001 7033162 

Lade Lade 1944-04-11 

16:30:00 

Naturlig utlost NGU 272281.5 7043298 

 
Kverne 1944-10-09 

0:00:00 

 
NGI 230500 6581492 

 
Tune / Isebakke 1944-11-10 

0:00:00 

 
NGI 288733 6558764 

Leirådalen Leirådalen 1950-07-28 

12:00:00 

Naturlig utlost NGU 373729.3 7128825 

 
Bøler 1950-10-10 

0:00:00 

 
NGI 285271 6627170 

Østersem Østersem 1951-07-27 

12:00:00 

Naturlig utlost NGU 371000 7124300 

Gaustadbekken Oslo 1953-04-01 

0:00:00 

  
260811.5 6652500 

Bekkelaget Bekkelaget 1953-10-07 

7:37:00 

Utfylling NGU 263373.9 6645806 

Borgen Borgen 1953-12-22 

23:00:00 

Naturlig utlost NGU 288861.7 6668415 

Lodalen 3 Lodalen 3 1954-10-06 

0:00:00 

 
NGU 264010.1 6648147 

 
Ilangskogen 1954-12-01 

0:00:00 

 
NGI 303674.2 6676020 

Bragernes 8 Viktoriatomten 1955-01-06 

12:00:00 

Ikke gitt NGU 230218.1 6632768 

 
Rolvsøy 1955-05-03 

0:00:00 

 
NGI 273137 6576335 

Ingedalsbekken 1956-06-01 

12:00:00 

Ikke gitt 
 

283660 6566792 

Økern Økern 1957-06-04 

19:00:00 

Ikke gitt NGU 267057.5 6650338 
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Urstad 
 

1958-07-08 

5:30:00 

Naturlig utlost 376135.5 7158946 

Vibstad Vibstad 1959-02-22 

22:30:00 

Erosjon NGU 351904.8 7153681 

Furre Furu 1959-04-14 

8:50:00 

Erosjon NGU 343983.4 7151475 

Bergsmoen Bergsmoen 1961-04-15 

3:00:00 

Naturlig utlost NGU 365230 7151810 

Hovraset Hovraset 1962-09-14 

23:00:00 

Naturlig utlost NGU 303982.1 7048739 

Bergsmoen 2 Bergsmoen 2 1965-04-06 

22:00:00 

Naturlig utlost NGU 365440 7151680 

Selnes Selnes 1965-04-18 

15:15:00 

 
NGU 328136.4 7149493 

 
Heksberg 1967-03-19 

0:00:00 

 
NGI 290275.3 6655947 

Hekseberg Hekseberg 1967-03-20 

12:00:00 

Erosjon NGU 282144.1 6663108 

 
Nordre Nordby 1967-04-10 

0:00:00 

 
NGI 276819 6682009 

 
Hovin 1968-04-30 

0:00:00 

 
NGI 251576.1 6983635 

 
Drammen travbane 1970-12-01 

0:00:00 

 
NGI 225706.3 6634286 

 
G. Dahle 1971-07-13 

0:00:00 

 
NGI 279445.5 6661451 

 
Trevarebyen 1972-05-21 

0:00:00 

 
NGI 270650.8 6664447 

 
Våle 1972-07-12 

0:00:00 

 
NGI 223526.6 6583595 

 
Halse - Nordmøre 1972-09-07 

0:00:00 

 
NGI 162921.8 7016436 

 
Flatner 1973-06-16 

0:00:00 

 
NGI 279480.8 6661516 

Gullaug 1 
 

1974-11-29 

10:02:00 

Utfylling 
 

235172.5 6631753 

Båstad Båstad 1974-12-05 

16:30:00 

Graving NGU 290598.2 6624195 
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Holtet Gård, Tune 1976-04-07 

0:00:00 

 
NGI 329667.2 6733981 

Lånke Lånke 1976-04-20 

12:00:00 

Naturlig utlost NGU 298429.6 7041395 

Songe Songe, Tore Olsens Mek Verksted 1976-11-15 

0:00:00 

 
NGI 153197.6 6520554 

Terråk Terråk 1977-03-15 

15:00:00 

Graving NGU 377220 7221020 

Hyggen Hyggen 1978-01-25 

8:30:00 

Utfylling NGU 239362.4 6628818 

Rissaraset Rissa 1978-04-29 

14:10:00 

Utfylling NGU 248900.3 7057320 

Lahelle, Fredrikstad Fredrikstad 1980-08-17 

23:00:00 

Utfylling NGU 269571.1 6571051 

Vibe, Steinkjer Vibe 1982-10-04 

6:00:00 

Ikke gitt NGU 332359 7102817 

Bjørnåga, Vefsn Øver-Bjørnåga 1984-07-08 

3:00:00 

Naturlig utlost NGU 421700.7 7294350 

Hilton, Ullensaker Hilton 1984-07-19 

14:00:00 

Infiltrasjon av 

vann 

NGU 284261.3 6665359 

Strandajordet, Øvre Eiker Strandajordet 1984-09-11 

14:45:00 

Ikke gitt NGU 211999.2 6633015 

Imsen, Åfjord Imsen 1984-12-01 

13:30:00 

Utfylling NGU 266474.3 7105600 

Fosshaugen, Målselv Fosshaugen 1985-05-02 

11:00:00 

Naturlig utlost NGU 645464.3 7663619 

Lundsbekken, Indre Østfold Lundsbekken 1988-04-15 

0:00:00 

Infiltrasjon av 

vann 

NGU 278073.2 6612909 

Sandbukta, Balsfjord Sandbukta 1988-08-24 

6:35:00 

Graving NGU 671816.4 7686713 

Nordsetrønningen, Klæbu Nordsetrønningen 1988-11-24 

0:00:00 

Infiltrasjon av 

vann 

NGU 273016.2 7031240 

Leinstranda, Trondheim Stokkaunet 1988-12-23 

0:00:00 

Hoyt poretrykk NGI 266115.4 7029155 

Lersbakken, Heimdal Lersbakken 1988-12-31 

0:00:00 

Infiltrasjon av 

vann 

NGU 266541.3 7031104 

Jørstad, Snåsa Jørstad 1989-03-12 

0:00:00 

Ikke gitt NGU 365882.7 7122248 
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Sørkedalen, Trondheim Sørkedalen 1989-11-22 

0:00:00 

 
NGU 266993.3 7032067 

Finneidfjord, Hemnes Finneidfjord 1996-06-20 

0:30:00 

Utfylling NGU 445775.3 7340787 

Åby 
 

1999-06-01 

15:48:00 

Erosjon 
 

192146.3 6551536 

Kåbøl, Våler Kåbøl 1999-07-15 

0:00:00 

Erosjon NGU 264251.8 6602960 

Hvittingfoss, Kongsberg Hvittingfosss 2000-07-15 

0:00:00 

 
NGU 217353.4 6603179 

Frogner, Lillestrøm Frogner 2000-11-19 

12:00:00 

 
NGU 284003.1 6663352 

Malvik, Trondheim Malvik 2002-04-24 

4:00:00 

Utfylling NGU 281896.8 7039994 

Beitstad, Steinkjer Beitstad 2002-04-27 

12:00:00 

Erosjon NGU 325991.5 7115547 

Kamperud, Ørje Kamprud 2002-05-06 

18:30:00 

Graving NGU 306400 6603526 

Sjåenget, Overhalla Sjåenget 2007-03-23 

12:00:00 

Kunstig utlost NGU 340415.1 7154928 

Reina, Overhalla Reina 2007-05-16 

8:15:00 

Erosjon NGU 354658.6 7158038 

Tortenlia, Fauske Tortenlia 2008-01-17 

12:00:00 

Utfylling NGU 517134.2 7464176 

Skred vest for Vidnesveien 2009-01-01 

12:00:00 

Erosjon 
 

283152.7 6596585 

Kattmarka Kattmarka 2009-03-13 

11:50:00 

Kunstig utlost NGU 328655.6 7154577 

Lyngseidet, Lyngen 2010-09-03 

15:40:00 

Utfylling NGU 703213 7725273 

leirskred øst for Nesveien 2011-01-01 

12:00:00 

Erosjon 
 

286836.1 6601167 

Setnes, Rauma Setnes 2011-07-07 

0:00:00 

 
NGU 123951.6 6957444 

Åby 
 

2011-09-02 

12:00:00 

Erosjon 
 

192198.5 6551496 

Esp, Trondheim Esp 2012-01-01 

0:00:00 

Erosjon NGU 257211.1 7038563 
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Nesveien, Skiptvedt 2012-01-01 

12:00:00 

Erosjon 
 

286065.9 6601668 

Svensrud, Gjerdrum  Svensrud, Gjerdrum kommune 2012-05-20 

8:30:00 

Graving regObs 280847.6 6666536 

Tveiter, Gjerdrum 2012-06-01 

0:00:00 

Naturlig utlost 283374.8 6665845 

Hobølelva, Våler  Kåbbel 2012-09-24 

1:00:00 

Naturlig utlost NGU 264443.1 6602504 

Båhus, Nannestad Båhus, Nannestad 2012-11-09 

21:00:00 

Erosjon regObs 278486.8 6683078 

Hauga, Suldal Garaneset 2014-02-17 

12:00:00 

Utfylling regObs 6898.383 6625678 

Eskalerende erosjon vest for Riukveien 2015-01-01 

12:00:00 

Erosjon 
 

283291.4 6604838 

Skjeggestad, Holmestrand 2015-02-02 

14:40:00 

Utfylling 
 

233810.6 6601761 

Ogndal, Steinkjer Ogndal 2015-03-17 

16:30:00 

Graving regObs 339018.5 7103205 

Elstad, Grong 2015-04-24 

0:00:00 

Naturlig utlost 376969.5 7157646 

Ingedal, Sarpsborg 2015-05-21 

14:00:00 

Naturlig utlost 283984.3 6567332 

Fv 76 ved Bjørnstokkvika, 

Tosbotn 

Fv 76 ved Tosbotn 2016-04-01 

7:28:00 

Infiltrasjon av 

vann 

regObs 404204.4 7247123 

Fv 76 ved Bekkevoll, Tosbotn Fv 76 ved Bekkevoll, Tosbotn 2016-04-02 

12:50:00 

Infiltrasjon av 

vann 

regObs 403957.1 7246982 

Søndre Rotnes, Årnes 2016-04-20 

8:00:00 

Erosjon 
 

302735 6670249 

Asakveien, Sørum 2016-11-10 

15:55:00 

Utfylling 
 

287163.1 6661159 

Pallaunet Pallaunet 2016-12-08 

17:05:00 

Naturlig utlost regObs 261192 7068456 

Styggneset, Overhalla 2018-10-31 

0:00:00 

Ikke gitt regObs 352013.2 7157255 

Bommamyra, Steinkjer 2018-12-24 

7:00:00 

Naturlig utlost regObs 329691.8 7105003 

  
2019-03-05 

17:04:38 

 
regObs 599967 7593000 
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Li, Nittedal 2019-09-16 

9:37:00 

Graving 
 

273197.4 6659118 

Steinselva, Jøa 2019-09-26 

8:00:00 

Erosjon regObs 321940.6 7173456 

  
2019-10-02 

16:05:33 

 
regObs 322297 7172924 

Østerøyveien 41, Sandefjord 2020-01-06 

14:00:00 

Utfylling 
 

229107.5 6563753 

Leirbekken 1, Nannestad  Leirsked leirbekken, Nannestad 

kommune 

2020-03-01 

12:00:00 

Naturlig utlost regObs 279120.8 6679165 

Brennstadmoen, Rana Rana, brennstadmoen boligfelt 2020-04-15 

6:00:00 

Erosjon regObs 460366.3 7358446 

Jonsrud, Vefsn 2020-05-13 

6:30:00 

Naturlig utlost regObs 415074 7315426 

Kråknes, Alta Kråknes 2020-06-03 

15:30:00 

Utfylling regObs 806608.2 7789315 

Leirbekken 2, Nannestad Leirbekken, Nannestad 2020-12-17 

12:00:00 

Naturlig utlost regObs 279217.7 6679305 

Ask, Gjerdrum 2020-12-30 

3:55:00 

Erosjon regObs 279459.7 6665226 

Solvang, Balsfjord Balsfjord / Troms 2021-05-13 

10:00:00 

Naturlig utlost regObs 667922.1 7702600 

Søndre Vestby, Aurskog-Høland 2021-07-05 

8:00:00 

Erosjon regObs 299530.8 6629140 

Skred ved Ombekken i Overhalla 2022-07-24 

17:30:00 

Naturlig utlost 354753.5 7159296 

Mikkeløra ved Fredriksberg Mikkeløra ved Fredriksberg 2022-10-16 

7:19:00 

Erosjon regObs 644123 7669144 
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Appendix  

Appendix 2 

Code on Github: 

https://github.com/JakobBGit/MasterThesisAppendix/blob/main/Code_Thesis 

MATLAB code for exploratory analysis of precipitation data. 

clear all 

clc 

  

Fname = 'Example'; 

TT=readtimetable([Fname,'.csv'],'NumHeaderLines', 1);  % read the file; 

convert to timetable 

TT.Properties.VariableNames{1} = 'R_S_mm'; %renaming the precipitation 

variable 

R = standardizeMissing(TT, 65535); % identifying the cells with 65535 as 

nodata and removing them 

TT = rmmissing(R); 

TR1 = timerange('01.01.1990','01.01.2023'); %setting timerange for the 

dataset 

TT = TT(TR1,:); 

  

TTmS = retime(TT,'monthly','sum'); 

TTyS = retime(TT,'yearly','sum'); 

TTyS = retime(TT,'yearly','sum'); 

  

TT2 = [datetime(1989,12,31):calmonths(3):datetime(2023,04,01)]'; %defining 

the seasons, dec-feb(winter), mar-may, jun-aug, sep-nov 

TTsS = retime(TT,TT2,'sum'); %seasonal Sum of rain and snowmelt 

TTsSM = retime(TTsS, 'yearly', 'max');%max of the seasonal Sum 

  

[~, mon, ~] = ymd(TTsS.Date); 

WinterSeason = TTsS(mon == 12, :); 

SpringSeason = TTsS(mon == 3, :); 

SummerSeason = TTsS(mon == 6, :); 

AutumnSeason = TTsS(mon == 9, :); 

  

  

yearlymean = mean(TTyS.R_S_mm); 

  

percentofyear = ((TTyS.R_S_mm / yearlymean)*100); 

  

TTyS = addvars(TTyS, percentofyear); 

  

percentofyearSeason = ((TTsS.R_S_mm / yearlymean)*100); 

  

TTsS = addvars(TTsS, percentofyearSeason); 

  

TTsSM = retime(TTsS, 'yearly', 'max');%max of the seasonal Sum 

  

https://github.com/JakobBGit/MasterThesisAppendix/blob/main/Code_Thesis
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%% 

TRS = timerange('2019','years'); 

OneYearS = TTsM(TRS,:); 

max(OneYearS.WaterSupplyPer) 

  

%% 

  

TR = timerange('2019','years'); 

OneYear = TTmM(TR,:); 

b = bar(OneYear.Date,OneYear.WaterSupplyPer, 'b'); 

b.FaceColor = 'flat'; 

b.CData(9,:) = [1,0,0]; 

title('Monthly') 

ylabel('Mean Water Supply %') 

  

exportgraphics(gca,strcat(Fname,'Monthly_mean.png')) 

  

%% 

hold on 

b = bar(TTyM.Date,TTyM.WaterSupplyPer,0.7, 'b'); 

TTyMD = TTyM('01.01.2019',:); 

b2 = bar(TTyMD.Date,TTyMD.WaterSupplyPer, 310, 'r','EdgeColor', 'none'); 

title('Yearly Mean Water Supply') 

ylabel('Mean Water Supply in %') 

xlabel('Years') 

%ylim([2 4]) 

hold off 

exportgraphics(gca,strcat(Fname,'Yearly_mean.png')) 

  

%% 

hold on 

b = bar(TTsM.Date,TTsM.WaterSupplyPer, 'b'); 

TTsMD = TTsM('30-Jun-2000',:); 

b2 = bar(TTsMD.Date,TTsMD.WaterSupplyPer, 75, 'r','EdgeColor', 'none'); 

title('3 Month Seasons') 

ylabel('Mean Water Supply in %') 

xlabel('Years') 

%ylim([0 8]) 

hold off 

  

exportgraphics(gca,strcat(Fname,'Season_mean.png')) 

  

%% 

  

TR = timerange('15.07.2000','months'); 

OneMonth = TT(TR,:); 

TR2 = OneMonth('15.07.2000 06:00',:); 

hold on 

b = bar(OneMonth.Date,OneMonth.WaterSupplyPer, 'b'); 

b2 = bar(TR2.Date,TR2.WaterSupplyPer, 'r'); 

%ax = gca; 

%ax.XTick = OneMonth.Date; 

title('Daily Water Supply') 

ylabel('Mean Water Supply in %') 

hold off 

  

exportgraphics(gca,strcat(Fname,'Daily_mean.png')) 
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Antecedent Precipitation 

Appendix 3 

The table is available on Github.  

https://github.com/JakobBGit/MasterThesisAppendix/blob/main/AntecedentPrecipitationOslo

AndViken 

 

  

https://github.com/JakobBGit/MasterThesisAppendix/blob/main/AntecedentPrecipitationOsloAndViken
https://github.com/JakobBGit/MasterThesisAppendix/blob/main/AntecedentPrecipitationOsloAndViken
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Final Table Imported to MATLAB 

Appendix 4 

The table is available on Github. 

https://github.com/JakobBGit/MasterThesisAppendix/blob/main/ImportMatlabOsloViken 

 

https://github.com/JakobBGit/MasterThesisAppendix/blob/main/ImportMatlabOsloViken
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