
Text-Based Prediction of
Dwelling Condition
Thesis submitted for the degree of
Master in Data Science: Language technology
60 credits

Ece Cetinoglu
Master’s Thesis, Spring 2023



The cover page was designed by Martin Helsø.



Abstract

The exploration of regression analysis based on text is understudied compared
to other tasks, and there are limited literature on this topic, with very few stud-
ies delving into this specific task. This thesis aims to contribute to this topic
while solving a real-life problem, i.e., not by experimenting on a benchmark.
Our objective was to predict the condition score, a value between 0 and 3, of
dwellings in the real estate market in Norway based on the features extracted
from the textual content of their respective listing advertisements. Usually, the
condition of a dwelling is described in a publicly available condition report writ-
ten by a certified assessor. We aspired to obtain a benchmark method that
can be utilized to predict the score in case of missing condition reports. We
approached the regression task by creating progressively more complex models.
We experimented with these models to improve the accuracy, for instance by
hyperparameter tuning and oversampling. The results have shown that while
the BERT-based regression models demonstrated superior performance, simpler
regression methods trained on features extracted from text using Bag of Words
(BoW) approaches produced comparable results. Among the models explored
in this thesis, the gradient boosting regression model trained on bag-of-words
features, and the unfrozen NB-BERTBASE model both trained on the oversam-
pled data set, stood out with noteworthy results, yielding mean absolute errors
of 0.1835 and 0.1578 respectively. The results obtained in this thesis present
convincing evidence that text-based regression analysis with BoW-based and
BERT-based approaches is a viable and promising downstream task. This the-
sis can potentially contribute to the advancement of knowledge in the real estate
market and introduces a novel application of Natural Language Processing, a
field that traditionally emphasizes classification tasks rather than prediction of
continuous variables.

ii



Acknowledgements

First and foremost, I would like to express my sincere gratitude to Aslak Wigdahl
Bergersen and Andrey Kutuzov for being great supervisors and being patient
with me. Your invaluable guidance and exceptional pedagogical skills have been
instrumental in shaping my thesis.

I would also like to like to thank deeply to my colleague, Sebastian Mitusch
for his insightful tips and constructive critique of my writing, and my former
colleague, Herman T. Holmøy for developing the web crawler that I utilized
to gather essential data for this thesis. I am grateful to Boligmappa AS for
generously funding the computational resources essential for conducting the
experiments and analyses in this thesis.

Finally, I would like to thank my family for always believing in me, especially
during those times when I did not. Living in a different country than you while
writing a thesis has been a challenge, but your unwavering support has tran-
scended geographical boundaries. Through hours of FaceTime, you have been a
constant source of encouragement. Your unconditional love and understanding
have been crucial in keeping me motivated and focused on this journey.

As my time as a student at the University of Oslo comes to an end, I take a
look back and see five great years with excessive amounts of joy and excitement,
but also self-growth and friendships that I hope will last life-long. The years
spent here and the people I have spent them with have shaped me into the
woman that I am today, and I will not take that for granted.

Thank you.

Ece Cetinoglu

iii



Contents

1 Introduction 1

2 Background 3
2.1 Previous work on dwelling quality . . . . . . . . . . . . . . . . . 3
2.2 Previous work on using NLP for regression . . . . . . . . . . . . 5
2.3 Real estate in Norway . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Matrikkelen . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Purchasing real estate . . . . . . . . . . . . . . . . . . . . 6
2.3.3 Condition reports . . . . . . . . . . . . . . . . . . . . . . . 7

3 Data 8
3.1 Advertisement texts . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Sold dwellings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Condition reports . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 Vendu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Unbolt AS . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 Documents from Boligmappa . . . . . . . . . . . . . . . . 14

3.4 Condition score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Merging datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Text-Based prediction of the dwelling condition 20
4.1 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Naive baseline models . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Bag of Words-based approaches . . . . . . . . . . . . . . . . . . . 20

4.3.1 Document representations . . . . . . . . . . . . . . . . . . 21
4.3.2 Regression models . . . . . . . . . . . . . . . . . . . . . . 22
4.3.3 Grid-search for tuning the gradient boosting model . . . . 25

4.4 Pre-trained BERT-based approaches . . . . . . . . . . . . . . . . 26
4.4.1 Available Pre-trained BERT-based models for Norwegian 27
4.4.2 Finding the optimal parameters . . . . . . . . . . . . . . . 28
4.4.3 Improving the model performance: Oversampling and un-

freezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Results and analysis 34
5.1 Naive baseline models . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Regression models . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Regression on imbalanced data . . . . . . . . . . . . . . . 35
5.2.2 Grid-search for the gradient boosting model . . . . . . . . 39
5.2.3 Regression on balanced data . . . . . . . . . . . . . . . . 41

5.3 BERT-based models . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.1 Frozen pre-trained BERT-based models on imbalanced data 45
5.3.2 Frozen pre-trained BERT-based models on oversampled

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.3 Unfrozen pre-trained BERT-based models on imbalanced

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iv



5.3.4 Unfrozen pre-trained BERT-based models on oversampled
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Discussion 55

7 Conclusion 58

References 59

A Code repository 62

B Computational resources 62

v



1 Introduction

Having a secure roof over our heads, is one of our most fundamental needs.
On an individual level, it is a necessity that provides us with physical shelter,
as well as a sense of safety and privacy. In Norway, homeownership is given
great importance not just for individuals, but for the entire society. After the
Second World War, and especially after the deregulation of the housing market
in the 1980s, the Norwegian government has aimed to ensure that most of the
Norwegian population is able to purchase and retain their homes through the
Norwegian housing policy (Nordic Journal of Housing Research, 2021). The
Norwegian government encourages home ownership through various incentives,
such as low-interest loans and tax deductions. As a consequence of this policy,
Norway is one of the countries with the highest homeownership rate, with 81.9%
of the population fully or partially owning the dwelling they live in (Statistics
Norway, 2023a). For comparison, the homeownership rate in some of the other
Scandinavian countries, Finland, Sweden and Denmark, were 70.3%, 64.9%, and
59.2%, respectively (Eurostat, 2023).

Regardless of the homeownership rate, real estate is one of the most im-
portant categories of assets in any economy. Under normal circumstances, real
estate prices in Norway generally followed an increasing pattern. However, it
is important to note that there have been exceptional events that have affected
the prices negatively, such as the Norwegian Banking Crisis in 1988-1992, which
had a significantly negative effect on the house price indices (Eitrheim & Er-
landsen, 2004). Other notable events were the Financial crises that caused the
real estate prices in Norway to go down by 11 percent (Dreyer, 2018) in the
summer of 2008, and the COVID-19 global pandemic which caused the average
office rental prices in Oslo to go down by 4 percent (Hangaard, 2020). Notwith-
standing the effects of these extraordinary events on the real estate market, real
estate prices have an increasing trend (Eiendom Norge, 2023) since the 70s up
to today, with the aggregate house price index rising by almost 1300% between
the 70s to 2003 (Eitrheim & Erlandsen, 2004). The inflation in the same period,
however, was only 859,31% (Statistics Norway, 2023b).

On an individual level, purchasing a house is often the most significant invest-
ment a person makes in their lifetime. Individuals in Norway tend to allocate a
substantial part of their savings on purchasing a house, resulting in high housing
debts. According to Statistics Norway, the average household debt in Norway in
2012 amounted to NOK 1.1 million (Statistics Norway, 2012). Despite the high
values of debt, purchasing a house has generally proven to be rewarding in the
long term due to the consistent increase in housing prices relative to inflation.
In addition to the economic advantages that come with owning a home, many
people might also argue that having your own space and being able to personal-
ize it without any (or, with very few) restrictions gives a feeling of comfort and
freedom.

Yet, while making a crucial decision like purchasing a home, many indi-
viduals have limited access to the information real estate agents and financial
institutions sit on. The only free and open platform for insight into the real
estate market in Norway is hjemla.no. Hjemla provides its users with valuable
information to guide them to make well-informed decisions during the processes
of purchasing, selling, or renovating their homes. Some of the offerings on the

1



platform are insight into previous sold prices and public data for all homes, an
automated valuation, and renovation calculators. One missing part of the cur-
rent offering is the lack of information on dwelling quality. This could both be
of direct value to users, but also improve existing offerings like the automated
valuation models. An important question is, how do we measure a qualitative
variable like the level of maintenance in a dwelling?

During the process of selling a dwelling, the seller hires an assessor who
writes a detailed appraiser report describing the dwelling’s condition prior to
sale. The contents of this report can be considered as industry standard for
the objective measure of the quality of the dwelling. However, the condition
reports are not available for every dwelling. We might have to consider other
sources to estimate the dwelling condition, such as online pictures in the listing,
or the judgment of a potential buyer after visiting a house. Another source of
information to consider is the advertisement description in the listings. While
this text also may be biased depending on by whom it was written, it may
still provide the reader with more detailed information. In this thesis, we will
explore how we can extract new features from the advertisement text regarding
the condition of a house, and whether this text can be used to successfully
predict the condition of homes that we do not have an appraisal report for.

Previous studies, (Ooi, Le, & Lee, 2014), (Mamre & Sommervoll, 2022) have
mostly focused on the correlation between the level of maintenance on the value
of a dwelling, and demonstrated that these two aspects are correlated. Nev-
ertheless, the objective of this thesis differs as we would like to estimate the
dwelling condition itself, rather than to examine its impact on the value. Fur-
thermore, to the best of our knowledge, there have been no studies conducted
with the goal of predicting dwelling conditions. Even if our objective is under-
studied, previous studies have suggested some useful manual methodologies for
extracting the condition of a dwelling from the sources and data at our disposal
(Oust & Yemane, 2021). This thesis aims to fill in some of the gaps in the
literature by incorporating the advertisement texts to a greater extent in these
model, to build a more robust, and objective algorithm to predicting the con-
dition of dwellings. Moreover, we approach our objective as a regression task
and conduct regression analysis based on text with common techniques within
the Natural Language Processing (NLP), a field that traditionally emphasizes
classification tasks rather than prediction of continuous variable.

In Chapter 2, we present the previous work done on assessing or utilizing
the dwelling quality in literature and discuss studies where text-based regres-
sion models were conducted. We also shortly explain the real estate market
in Norway in order to provide more context about the data sets described in
Chapter 3. In Chapter 4, we present and explain the models and NLP tech-
niques employed to accomplish our objective of estimating the condition score
of dwellings based on advertisement text. The results obtained by our models
are presented in Chapter 5, and further discussed in Chapter 6.

2



2 Background

2.1 Previous work on dwelling quality
There has been a lot of work on trying to connect the condition or the rate
of depreciation of a dwelling to its sale or rental price. Many of these studies
discussed in this chapter have argued for and shown that the level of maintenance
and the price of the house is positively correlated. However, most of the previous
work has focused on the impact of the dwelling condition on its value in terms of
the sale price or rental price. Moreover, when assessing the value of a dwelling,
researchers have often included other attributes, such as structural features of
the dwelling and spatial attributes. To what extent the condition of a dwelling
contributes to the price has also been shown to depend on its other features,
such as the size of the dwelling and the number of rooms (Mathur, 2019).

(Wilhelmsson, 2008) is one of the few works in the literature that examines
the dwelling condition in a more granular way. The study uses 640 observations,
all of which are detached houses in Stockholm, Sweden, and investigates the de-
preciation rate of the houses depending on their level of maintenance. Sources
of the information in the data set are the tenants who were surveyed. In con-
trast to other studies, this paper takes into account the condition of some areas
and aspects of a dwelling as separate features. There are, in addition to the
attribute that measures the overall quality of the house, binary attributes rep-
resenting the quality of the exterior and the interior. The overall quality is the
value that is appraised for tax assessment purposes. The attributes representing
the indoor condition include the condition of the kitchen, electricity facilities,
and the laundry room. These attributes were acquired from the surveys, in
which the house owner states whether the kitchen, laundry, and electricity fa-
cility need repairs. Similarly, the attribute representing the outdoor condition
informs whether the outdoor facilities need improving. This study has shown
that the need of renovating the indoors and outdoors affects the price negatively,
where the need of rehabilitating the kitchen had a greater impact than the other
attributes. One shortcoming of this study is that the binary attributes on the
indoor and outdoor conditions are hard to interpret and they do not provide
details about the degree of maintenance that is needed. For instance, it is not
specified whether the kitchen only needs to get a new coat of paint, or it needs
a complete renovation. Hence, the need of repairing the interior or exterior can
have very different meanings for two different houses.

Another study that has examined the condition of different aspects of a
house and their impact on the price separately is (Ooi et al., 2014). This study
investigates over a hundred thousand sale transactions of apartment units in
Singapore and the impact of construction quality on the sale prices. The qual-
ity of construction, measured by a construction scoring system introduced in
Singapore in 1989 (CONQUAS, Singapore Building and Construction Author-
ity , n.d.), is an aggregated numerical value from 1 to 100, which is assessed to
the units according to national standards. The final score is an aggregation of
three components: 1) the structural works, i.e the strength of the concrete, 2)
architectural works, i.e internal finishes, external works, and 3) mechanical &
electrical (M&E) works, i.e air conditioning, sanitary and plumbing. The study
shows that the construction quality score alone and the components separately
impact the unit price positively and are of high significance. One weakness of

3

https://www.sciencedirect.com/science/article/abs/pii/S1051137714000497


this study is that the construction quality score is only assessed to new homes.
Thus, the impact of the construction quality was only measured on units that
are brand new and do not need any maintenance. Although the conclusions
drawn from this paper may not be applicable to data set used in this thesis, it
is clear that high quality houses is something demanded and appreciated by the
buyers.

A more recent study (Oust & Yemane, 2021) aimed to investigate whether
the inclusion of dwelling condition attributes would improve the performance of
an Automated Valuation Model (AVM) that estimates the price of a dwelling
based on its features. Their data and the source of information for determining
the dwelling condition are very similar to ours, including over 11 thousand ob-
servations from Oslo, the capital of Norway, and the second and fourth biggest
cities in Norway, Bergen, and Trondheim, respectively. Most of their data, how-
ever, belonged to houses in these cities due to the fact that they struggled with
merging the dwelling condition data to the dwelling data confidently, dooming
them to exclude most of the observations which were apartments from their
experiments. The condition score of a single dwelling is calculated from its ac-
companying appraisal report, which contains information about a collection of
checkpoints evaluated. The number of checkpoints included in the report can
vary from unit to unit, hence the condition scores are combined into several
categories, with the average score of checkpoints in a category being the final
score for that category. Some of the categories were the condition of the kitchen,
bathroom, windows, doors, and roof. This approach provided information on
the condition of separate parts of the unit and allowed them to examine how
the condition of each minor aspect impacts the big-picture. Some of the im-
portant findings of this study were, the inclusion of dwelling condition features
has improved all of their models in all three cities to a similar extent, and the
information about the bathroom condition had the highest impact on the price
across the models. Similarly, the condition of doors, roofs, and exterior exten-
sions such as balconies and terraces, were found to have a low impact on the
price and were statistically insignificant. While these findings are important
and insightful for this thesis, we must not forget the exclusion of the data on
apartments and the lack of data from other places in Norway. What is more
desirable for us is to build a model that is applicable to all kinds of dwellings
anywhere in the country.

Finally, another study from Norway that has investigated the impact of the
level of maintenance of a dwelling on the dwelling price in terms of renovation
premiums was (Mamre & Sommervoll, 2022). They have divided over 10 thou-
sand dwellings into 4 categories: 1) fully renovated, 2) partially renovated, 3)
neutral (neither renovated nor unmaintained), and 4) unmaintained. 85.5% of
the observations in their data were apartments, and 65.1% of data were classified
as "neutral". All of the observations were from Oslo, Norway. They have esti-
mated that the maintained dwellings value 5-7% more than the others, and the
unmaintained dwellings cost 9-10% less. They have also found that the amount
of which the level of maintenance contributes to the total price depends on the
time of the sale. The renovation premium and the contribution of the renovation
was seemingly low when the real estate market was "hot". Similarly, the nega-
tive premium for unmaintained dwellings is reduced in a more heated market.
One limitation of this study is that the dwelling condition was computed based
on reading searching of the description texts in the listings. This classification

4



method might not be reliable, as an advertisement text is often shallow and
does not focus on the smaller details to the same degree like an appraisal report
written by a professional. Moreover, the feature extracted from the listing that
represents the level of maintenance disregards information about which parts of
the dwelling need maintenance or which parts are well-maintained.

2.2 Previous work on using NLP for regression
Natural Language Processing (NLP) is a branch of Artifical Intelligence (AI)
that focuses on creating methods and algorithms that uses natural language
data as input that aim to solve a machine learning task. (Goldberg, 2017).
Some tasks that can be solved by using NLP are document classification, where
the input data is the text from the documents and the output is some discrete
information about the document (e.g who it is written by or what source it is
from), and sentiment analysis, where the input data is a collection of documents
or sentences and the output is whether the data is written from a positive,
negative or neutral point of view. While NLP is widely used for classification
tasks where labels assigned to the data are discrete values that represents a class,
there are less examples of regression tasks and predicting continuous variables
with NLP.

Age prediction, a commonly studied task in NLP, is a regression task aim-
ing to predict a continuous variable, the age of the author or writer, based on
the texts thee authors have written. An intermediate study that approaches
to age prediction by utilizing text was conducted by (Nguyen, Smith, & Rose,
2011). Their data set consisted of three different corpora, each corpus contain-
ing text mainly written by people from different age groups. They extracted
unigrams and bigrams from their corpus and fed the features into their linear
regression models. They have created three individual models trained on the
corpora individually, as well as joint models where all three corpora were taken
into account. Their experiments have resulted in high correlations between the
predicted and actual values for age, as well as mean absolute errors between
4.1 and 6.8 years, showing that there are signals in the corpora indicating the
author’s age. This paper has also showed that even the linear regression models
fed with unigrams, relatively simple method for extracting features from text,
has satisfactory performance.

One of the first studies that has used NLP for making predictions on continu-
ous variables and introducing the text regression was (Kogan, Levin, Routledge,
Sagi, & Smith, 2009). Their goal was to forecast financial volatility of compa-
nies from the text in their their annual reports. They have used support vector
regression (SVR) models, and the features extracted from the text and fed into
the model were 1) term frequency (TF), 2) term frequency-inverse document
frequency (TF-IDF) and 3) log-normalization of TF. They have compared dif-
ferent models, some of which estimating the volatility based on the historical
volatility values without textual features, estimating with textual features only,
and combining historical features with textual features. Model performances
were measured in terms of mean squared error. They have demonstrated that
the models with only textual features have performed almost as good as the
model without any textual features, where the best text-only model yielded an
MSE of 0.1667 and the best historical model achieved an MSE of 0.1576. It was
also demonstrated that the combined models outperforms the others, where the

5



best-performing combined model yielded an error of 0.1538. They have shown
that textual features add a lot of information to the model in addition to the
historical features, and a continuous variable such as volatility can successfully
be predicted from text using uncomplicated models.

A more recent study that is similar to Kogan et.al.’s was conducted by
(Dereli & Saraclar, 2019). They also aimed to predict volatility, based on a
set of input features with and without information extracted from the annual
reports. They have used relatively more complicated models, where they fed
static and non-static word embeddings into convolutional neural network models
with a convolution layer that consisted of tri-grams, four-grams and five-grams.
Finally, they measured the model performances in terms of mean squared error
(MSE) and demonstrated that their models gained performance in the presence
of textual features.

While these studies mentioned above assess the impact of textual features
in linear regression models predicting continuous variables, most of them are
older than 10 years old, and do not cover state-of-the-art methods in NLP field,
such as the Large Language Models (LLMs). To the best of our knowledge,
regression analysis with LLMs, such as Generative Pre-trained Transformers
(GPT) (Radford, Narasimhan, Salimans, & Sutskever, 2018) and Bidirectional
Encoder Representations from Transformers (BERT) (Devlin, Chang, Lee, &
Toutanova, 2018) is rarely performed. In the forthcoming chapters, we explore
and discuss the predictive power of BERT-based approaches in estimating the
condition score, as well as more traditional approaches like the bag-of-words
methods.

2.3 Real estate in Norway
Before diving into data and models, we shortly explain the real estate market,
the cadastral register system and the process of purchasing real estate in Norway
in order to provide context about the datasets utilized in the upcoming chapters.

2.3.1 Matrikkelen

Like most countries in the world, Norway has its own cadastral register system
for to keep record of real estates and properties in the country, Matrikkelen.
Matrikkelen contain information about properties, such as property borders,
buildings and adresses registered on the property, etc. Matrikkelen consists of
several "matrikkel units", each of them denoted by a unique number, called
"matrikkelnumer" (cadastral key). The registration number is composed of five
numbers, community identification number, cadastral unit number, property
unit number, lease number, and unit number.

Real estate in Norway are identified by unique matrikkel numbers, and this
number is used later in this thesis to identifiy and merge data acquired from
three different sources, explained in Chapter 3.

2.3.2 Purchasing real estate

Purchasing real estate in Norway is a highly regulated process. A normal sale
will follow these steps: Firstly, the seller(s) hire a real estate agent and an as-
sessor. It is constitutionally mandated that there is an accompanying appraiser

6



report for all homes that are listed as for sale, thus the assessor writes a detailed
condition report and evaluates the status of the unit that is listed as for sale.
Secondly, the real estate agent creates a detailed property description which
contains all information available for the unit, including the condition report.
After these steps, the property can be advertised for sale. Finally, the real estate
agent arranges an open house for potential buyers, who get the opportunity to
view the unit.

2.3.3 Condition reports

Prior to the sale of a real estate property, the sellers hire an assessor, who writes
a detailed appraiser report describing the dwelling’s condition. This appraiser
report consists of a number of checkpoints that are relevant to the unit, and each
checkpoint is scored from 0 to 3. The scores can be described as the following:

• Score 0: Perfect condition and no symptoms of deterioration of condition

• Score 1: Mild symptoms of deterioration of condition

• Score 2: Moderate symptoms of deterioration of condition

• Score 3: Strong symptoms of deterioration of condition, needs to be fixed
immediately

7



3 Data

The data utilized in this thesis has been provided or collected from 4 primary
sources: hjemla.no, Vendu, Unbolt AS, and boligmappa.no. This chapter aims
to provide an explanation of the data acquisition and the extraction of features
from each dataset, along with details on data cleaning and merging all four data
sets to a single comprehensive data set that includes the essential information.
Additionally, we provide a brief overview of data contents and characteristics,
and relevant descriptive statistics.

In Section 3.1, we provide a detailed description of the data set containing
linguistic features extracted from advertisement texts crawled from Finn.no.
Then, three separate data sets containing condition reports with elaborate in-
formation on dwellings, as well as the process of extracting information and
cleaning these data sets prior to conducting our experiments were outlined in
Section 3.3. Later, we explain the methodology used to compute a singular
condition score for each dwelling in Section 3.4. Finally, we define the merging
algorithm we developed to combine all four data sets in Section 3.5. Figure 3.1
and present the final data set that was utilized for feeding our models in the
subsequent sections.

Figure 3.1: Flowchart explaining the order of data cleaning and pre-processing,
as well as how all datasets were merged to achieve the final data set we have used
in our models. The rectangles represent a procedure the datasets undergo. The
parallelograms represent the input and output datasets. A triangle indicates a
merging procedure performed on two or more datasets.

8



3.1 Advertisement texts
A part of the service on Hjemla is to show previous housing advertisements on
Finn.no, one of the most used advertisement websites in Norway (Wikipedia,
2023). We were granted access to Hjemla’s database which has stored informa-
tion about 7.2 million advertisements from Finn, containing the advertisement
texts and advertisement titles, as well as the date of creation and when the
advertisements were edited. They also had a status indicator for each adver-
tisement, stating whether the advertisement is still active (e.g. the dwelling has
not been sold) or inactive (e.g. the dwelling was sold).

In Norway, there are two official written standards of the Norwegian lan-
guage: Bokmål and Nynorsk. Both of them are recognized by the Norwegian
government. While there is no statistics stating the total number of Nynorsk
users in Norway, it is estimated that between 10-15% of the Norwegian popu-
lation utilizes Nynorsk as their written language (Vikør, Jahr, Berg-Nordlie, &
Thorvaldsen, n.d.). Therefore, it is safe to assume that there are some adver-
tisement texts written in Nynorsk present in the data set. After reviewing the
texts briefly, we have also observed that some most commonly used languages on
Finn were other Scandinavian languages such as Danish or Swedish. As a result
of these observations, we have decided to focus on the advertisements written
in Bokmål only, and data cleaning was necessary to filter out advertisements
that are not written in this standard. We performed language detection on the
advertisement texts using polyglot1.

To verify the language detector, we identify a subset of 10,000 advertisement
texts and assess the performance of the detector on this subset. Some of the
findings was that the detector often misclassified the language of texts that are
too short (e.g. the advertisement text only contains the address or the cadas-
tral registry number). We also observed that the language detector struggled
with correctly identifying the language in advertisement texts that contained
special characters (e.g. "é" or "è") that does not exist in the Norwegian alpha-
bet. These were labeled as "unknown language". Around 200 of 10 thousand
advertisements were annotated as Norwegian Nynorsk. A subset of these texts
was manually reviewed to verify the accuracy of the labeling, revealing that the
language detector yielded satisfactory performance.

The language detector was then applied on the full Finn-data. Around
97.24% of advertisements were identified as Norwegian Bokmål. We eliminated
advertisement texts that were written in languages other than Norwegian Bok-
mål from the dataset to ensure that the data used for analysis and processing
specifically pertained to Norwegian text, thus maintaining the integrity and
consistency of the dataset.

The process of cleaning and pre-processing the advertisement data set, dis-
played in Figure 3.1(1P), contained of the following steps:

1. Remove irrelevant rows:

(a) Remove ads that does not belong to a real estate property

(b) Remove rows with no advertisement text.

(c) Apply language detection and only keep Norwegian bokmål.
1Language detection with polyglot: https://polyglot.readthedocs.io/en/latest/

Detection.html

9

https://polyglot.readthedocs.io/en/latest/Detection.html
https://polyglot.readthedocs.io/en/latest/Detection.html


2. For the regression models described in the next chapter, preprocess the
text:

(a) Convert all text to lowercase.

(b) Remove numerical digits from the text.

(c) Remove punctuation marks from the text.

(d) Trim unnecessary whitespace from the text.

(e) Exclude stop-words from the text.

(f) Tokenize the text using whitespace as a delimiter.

We made sure to keep both processed and raw advertisement texts, as the
regression models trained in the next chapter need different types of inputs
features. After performing data cleaning and preprocessing, we obtained a total
of 512,908 relevant rows from the Finn-dataset.

After reviewing many real estate listings on Finn.no, some similarities were
observed among the advertisement texts. Brand-new, almost-perfect homes also
have descriptions indicating how perfect they are. The advertisement texts for
less maintained or highly damaged homes are written in a positive manner as
well, highlighting the dwelling’s good sides, but also endorsing its lacks and flaws
to suggest that there is a "potential" in that home and potential for increasing
the value of it if the necessary renovations are done. Another claim that is often
made about the homes with bad condition is that when someone buys an old
dwelling, they get the opportunity to renovate it and personalize it in their own
way. Below, we present two advertisement texts from Finn, the former belonging
to a house in bad condition, whereas the latter is of a modern apartment from
2021. These texts are not direct quotes from Finn, but text translated from
Norwegian to English. Parts of the advertisement text are left out.

(1) "Detached house with workshop in picturesque surroundings.
(...) The house requires care and renovation but has great po-
tential to become a beautiful home or vacation property (requires
rezoning). (...)"

(2) "Delightful 2-bedroom freehold apartment from 2021 with
a garage space. (...) a tasteful 2-bedroom freehold apartment from
2021, located on the ground floor with an end position. (...) Inside,
there is a refined style, smart solutions, and modern features
such as balanced ventilation and underfloor heating. (...) The bath-
room is timeless with tiled walls (...) Welcome!"

The first advertisement states that the house requires care, but it lies in a
nice area. The second advertisement focuses on the build year of the apartment,
as well as its modern features such as the bathroom being timeless and the
apartment being equipped with smart solutions.

3.2 Sold dwellings
Another service Hjemla provides its users with is to give them information about
sales that has happened in Norway. Users can access details such as the dates

10



of the sales and the corresponding sale prices of the dwellings. For this thesis,
we were granted access to dataset with over 4.9 million rows where each row
contains features about the sale process of a dwelling. Some of the features
present in the dataset are the price the dwelling was sold for and the date of
sale, as well as dwelling-specific features such as the unique matrikkel number.
Unfortunately, not all sales are connected to a corresponding Finn-advertisement
in the advertisement data set we have described in Section 3.1. As shown in
3.1(2P), the sales without an advertisement code were removed before going
forward with the merging process, yielding the final sales dataset with 512,627
observations.

3.3 Condition reports
We have compiled the condition reports in this thesis from three distinct sources
and employed different methods to gather and extract the data from each of
them. Our data acquisition involved crawling data from Vendu, downloading
data through API created by Unbolt AS, and retrieving the documents uploaded
to Boligmappa. The data from the two former sources was in JSON format,
whereas the latter was in PDF format where we needed to utilize PDF parsers
in order to extract the information they contained.

Even if the JSON files containing the data from these sources were built
in different formats, there were similarities in terms of what kind of features
they stored. Both data sources contained condition scores for different rooms
and different aspects of a home. In order to reduce the number of data fea-
tures included, these checkpoints were merged into 6 main categories: Building
framework, roof, bathroom, kitchen, surfaces, and other categories. Table 3.1
shows what checkpoints each category consists of.

Category Checkpoints included in the category

Building framework
Foundation, retaining walls, building plot, walls,
windows, doors, balconies, terraces,
drainage, water pipes, stairs, fireplace, etc.

Roof Roofing, drains and fittings, attic

Bathroom Bathrooms, washrooms, WC

Kitchen Living room and kitchen, dining room

Surfaces Inner walls, wallpapers, floors, cabinets, etc.

Other
Ventilation, water lines, electrical installations
other installations, other rooms with drain,
other moist-exposed room, laundry room

Table 3.1: Contents of the condition reports were merged together into 6 main
categories.

Details about the matrikkel information of units, unit size, and the full
address were extracted in order to achieve a healthy combination of data from
different data sources. The algorithm for combining the datasets consisted of

11



several steps and manual inspection of samples to determine whether there has
been a successful merging process.

3.3.1 Vendu

We have gathered 14142 condition reports, dated between December 2021 and
August 2022, from Vendu. The data was collected using a scraper tool developed
by a colleague for the purpose of this thesis, and the data was collected using
this tool. We have removed 16.85% of the condition reports as these reports
belonged to other types of buildings that are left out of the scope of this thesis,
leaving us with 6207 condition reports on apartment units and 5552 on houses.
Table 3.2 shows the distribution of condition reports across unit types.

Unit type Number of units Percentage (%)

Apartment 6207 43.89
House 5552 39.26
Holiday home 1170 8.27
Other 1192 8.43
Commercial buildings 21 0.15

Total 14142 100

Table 3.2: Number of homes of different unit types in Vendu-data. The data
that is included in this thesis is marked in bold font.

The dataset includes condition reports from each county in Norway, and the
counties with more sales and a greater number of homes are seemed to be more
frequently represented in the data. Table 3.3 shows the distribution of condition
reports across counties.

County nr County Number of units Percentage (%)

3 Oslo 2109 14.01
11 Rogaland 1092 7.72
15 Møre og Romsdal 607 4.29
18 Nordland 711 5.03
30 Viken 2923 20.67
34 Innlandet 1107 7.83
38 Vestfold og Telemark 1210 8.56
42 Agder 818 5.78
46 Vestland 1565 11.07
50 Trøndelag 1387 9.81
54 Troms og Finnmark 591 4.18

N/A Unknown 22 0.16

- All 14142 100

Table 3.3: Distribution of units in the Vendu data set according to the counties
of Norway.

12



Table 3.4 shows the average number of checkpoints per home for each cate-
gory, as well as the average condition score per home for each category. We also
present the total number of units in the Vendu dataset without any checkpoints
from different categories.

Category
Average number
of checkpoints

per home

Average condition
score per home

Number of
units without

checkpoints (%)

Building framework 9.72 1.4298 45 (00.32%)
Roof 1.76 1.5754 5351 (37.84%)
Bathroom 5.83 1.4243 93 (00.66%)
Kitchen 0.97 1.2453 1887 (13.34%)
Basement 0.47 1.8037 8361 (59.12%)
Surfaces 3.86 1.4282 89 (00.63%)
Other 5.86 1.3408 61 (00.43%)

Table 3.4: Statistics deduced from the Vendu data set.

3.3.2 Unbolt AS

The condition reports provided by Unbolt AS were constricted to the Oslo area,
and contained 3089 reports in the period from November 2022 to mid-Februrary
2023. The data was downloaded in JSON format through their API. Most of the
reports belonged to apartment units, whereas 10.8% of the data were condition
reports were on houses, and 1.5% on other building types. This distribution
aligns with Statistics Norway’s data, which reports that approximately 71%
of all dwellings in Oslo are apartment units. Therefore, the skewness in the
distribution of different unit types present in the data set reflects the actual
distribution to some extent.

Condition reports show some variation between houses and apartments. For
instance, conditions reports of apartents do not generally assess the exterior of
the building. This is not the case with the houses. The data collected were
in the form of a list of nested dictionaries, where each dictionary represents
the condition report of a single home. Each dictionary has sub-levels: 1) each
"building" on the plot, 2) each floor in a building, 3) each room on a floor, 4)
each checkpoint of the room. We first extracted the condition score for each
checkpoint, then aggregated the checkpoints into six categories as defined in
Table 3.1. Table 3.5 shows the statistics deduced from the Unbolt data set.

While the data from Unbolt has information on homes in Oslo only, the data
from Vendu covers a much broader area. Both data sets contained condition
scores that belong to other types of buildings, such as commercial buildings or
holiday homes. The buildings that are not classified as apartments or houses
are not considered in the scope of this thesis, and these were removed at the
end of the process of exploring the data sets.

In addition to the condition scores of the checkpoints in the dataset, the
matrikkel information, size of the unit, address, and report conduction date were
also extracted. For the apartments, the floor number was also deduced from the
data. These procedures were performed both on the Vendu dataset and Unbolt
dataset. The extracted features are later used for successfully merging the new

13



Category
Average number
of checkpoints

per home

Average condition
score per home

Number of
units without

checkpoints (%)

Building framework 6.81 1.4751 18 (%0.58)
Roof 0.35 1.4955 2641 (85.5%)
Bathroom 6.10 1.4970 30 (0.97%)
Kitchen 2.07 1.3920 31 (1.00%)
Basement 0.10 1.5367 2789 (90.3%)
Surfaces 1.14 1.4765 27 (0.87%)
Other 3.42 1.4798 25 (0.81%)

Table 3.5: Statistics deduced from the Unbolt data set

homes with the homes in market transactions data and the advertisement data.

3.3.3 Documents from Boligmappa

The third source of condition reports is Boligmappa (BM). Boligmappa is a
company that provides digital solutions to collect and secure documentation
about every building and home in Norway. Boligmappa offers a platform that
allows homeowners to upload and store documents related to their homes, as
well as certified craftworkers to upload documentation about the jobs that they
have fulfilled in specific houses and apartments.

We have been granted access to 7.5 millions of documents in PDF from
Boligmappa’s database. However, the contents of the majority of these docu-
ments are unknown, meaning that not all the documents may contain relevant
information for this paper. These documents are first needed to be converted
into a data format that can be processed with available Python tools. In ad-
dition, the majority of the documents were older than the timespan of the
advertisements in the Finn-data was removed, which yielded us 819,605 doc-
uments, as shown in Figure 3.1(4P). Then, the documents were merged with
the datasets containing the advertisements and sold dwellings to achieve the
relevant documents. As shown in Figure 3.1(2M), the resulting BM-dataset
contained 754,237 observations.

3.3.3.1 Testing different PDF Parsers in Python

The documents from Boligmappa are in PDF format and they must be converted
into plain text. There are several libraries that can parse PDF data into text
or other formats. In this part, four different libraries were tested on a subset of
998 documents and compared against each other in terms of performance and
error handling. The number of files that were successfully opened, read, and
extracted data from by the PDF parser is considered a success, while the files
that could not be opened by the PDF parser were considered an error.

For the extraction of text from PDF files, we tested 4 open-source parsers.
These parsers were tested and the results are represented in Table 3.6. All PDF
parsers, except PyPDF, performed similarly in terms of error handling, handling
99.8% (996/998) of the documents and extracting their contents. However, a
large variation in performance was observed. The two extrema in terms of

14



processing time were 17 seconds by PyMuPDF, and approximately 20 minutes by
pdfminer. Overall, PyMuPDF has performed best and was therefore chosen to be
the main PDF parser for the rest of this thesis.

Library Total time (s) Time per document (s) Success Error

PyMuPDF 17.01 0.017 996 2
PyPDF 289.93 0.291 987 11
pdfplumber 678.85 0.680 996 2
pdfminer 1170.61 1.173 996 2

Table 3.6: Comparison of online PDF parsing libraries in Python

3.3.3.2 Downloading, parsing, and storing files from Boligmappa

Acquiring and saving the documents, as well as parsing, extracting and storing
the desired information was done on a personal computer. Storing all 2.1 million
PDF files on a computer at the same time would require a large amount of
storage. Instead, the documents were downloaded, parsed with PyMuPDF, and
then deleted in batches.

The initial experiments, done with a sample of 1500 files, using a batch size
of 250 documents per batch yielded the best numbers in terms of effectivity,
resulting in downloading, parsing, and deleting all documents in 10 minutes
and 33 seconds. This gives a processing time of 0.422 seconds per document. If
we had used this algorithm on all ∼ 750, 000 documents, the program would take
almost 4 days to finish. Instead, we parallelized the functions by distributing the
function’s input values across child processes. The functions for downloading
and parsing the documents were parallelized, and a grid search was executed to
find the optimal batch size along with the optimal number of processors. We
decided to parse the documents by iterating through batches of 3000 documents
and used 10 processors both for downloading and parsing. This has resulted in a
processing time of ∼ 0.107 seconds per document, reducing our total estimated
process time for ∼ 750, 000 documents to less than a day. The new features
extracted from the documents are described in Table 3.7.

Feature Data type Acquired from Mean value # None

Text str PyMuPDF - 0
Page count int PyMuPDF 4.25 0
Word count int PyMuPDF 750.29 0
Image count int PyMuPDF 15.38 0

Table 3.7: Features extracted from Boligmappa’s documents

Based on an initial test, we expected there to be thousands of condition
reports in Boligmappa. However, after processing all the documents we found
less than 100. We, therefore, chose to not spend time extracting the condition
reports from the text, as the added value would be minimal.

15



3.4 Condition score
The condition score of a home is determined from the accompanying appraisal
report for that home. However, these reports do not contain a single conclusive
value that describes the condition. Instead, many different aspects of homes
were investigated by the appraiser and given a score between 0 and 3. The con-
dition reports were often conducted in different formats, e.g they had different
numbers of checkpoints for each room in a unit, and not all units had the same
rooms or facilities. The main goal in this thesis is to create a simple regression
model for predicting the condition score of a home, hence the number of features
describing the condition should be reduced to one.

The most intuitive approach for calculating a single value for the condition
score of a home would be computing the average score of all checkpoints in that
home and assigning this value as the true condition score of that home. However,
from a business perspective, not all rooms in a unit have the same importance for
homeowners nor contribute to the housing price equally. In Norway, bathrooms
and kitchens are some of the most expensive interior parts of a home to upgrade.
Apart from the price of renovation, building framework or roofing of the building
an apartment unit lies in may not be considered as the most important aspects
when buying a home. Thus, these aspects that are not the owner’s responsibility
are usually not evaluated in the condition reports. Therefore, we have to take
into account the importance of different aspects of a home according to the unit
type of that home, and weight the aggregated condition score of each category
in a logical way such that the magnitude of these weights corresponds to the
importance of the category. Table 3.8 shows the initial weights used for each
category when computing the aggregated average condition score. During the
computations, the weights are adjusted such that if a unit does not have any
information on a category, the weight of this category is distributed evenly across
the remaining categories. The resulting aggregated condition score was used as
the target variable to be predicted. Figure 3.2 shows the distribution of the
aggregated condition scores across unit types.

Weights

Category Houses Apartments

Building framework 0.16 0.06
Roof 0.16 0.06
Bathroom 0.16 0.35
Kitchen 0.16 0.30
Basement 0.16 0.06
Surfaces 0.19 0.10
Other 0.01 0.01

Table 3.8: The weights of each category in apartments and houses.

Table 3.9 shows the 25th, 50th, 75th percentiles and the average values of the
condition score according to the unit type.

16



Figure 3.2: Distribution of aggregated, weighted condition scores across unit
types.

Unit type 25th 50th 75th Mean

All units 1.12 1.36 1.65 1.39
Apartments 1.06 1.23 1.54 1.30
Houses 1.34 1.56 1.79 1.56

Table 3.9: 25th, 50th and 75th percentiles as well as the average condition score
in all units, apartments and houses.

3.5 Merging datasets
Having 4 different data sources is one of the obstacles of this thesis, as the data
sets are of different formats and contain different information to some extent.
The Matrikkel information (Norwegian real estate registry number) is one of
the tools used in this thesis to identify unique homes. However, the matrikkel
information is incomplete or absent for some units in the data sets. For example,
many of the units were found to have missing lease numbers (festenr) and unit
number "seksjonnr". However, we have other types of information, such as unit
size or floor number, which can help identify the units uniquely and mitigate
this problem. In order overcome this problem, other features, such as the unit
size and the floor number of the unit, were also incorporated into the merging
process.

Merging houses together was more straightforward than merging the apart-
ment. Houses can be uniquely identified even without a unit number. However,
this is not the case for the apartments, making the merging process a more chal-
lenging task. Unfortunately, the majority of the data belonged to apartments,

17



therefore removing apartments from the final data set was not feasible. The
merging algorithm follows the following steps:

1. Prepare data features that were used in merging. This preparation in-
cludes:

• Making sure the common columns in the data have the same data
type

• Editing the columns containing the full address of homes such that
the matching address strings can easily be found, i.e removing blank
spaces, converting the string to lowercase, replacing special charac-
ters.

• Find the number of days since conducting a condition report on the
home and the home is registered as for sale.

2. For all units, identify units with a unit number.

(a) Perform a left join on units with unit number and Virdi units with
unit number using the matrikkel information and the full address.

(b) Sort the rows by the register date, and keep the row with the newest
register date.

(c) Keep the matched homes in a new data frame, and remove these from
the initial datasets.

3. For apartments:

(a) Identify apartments with a missing unit number, perform the left
join on the columns ["kommunenr", "gardsnr", "bruksnr", "adresse",
"bruksareal", "etasje"]. Repeat steps 2(a)-(b).

(b) Then, perform one more left join on the columns ["kommunenr",
"gardsnr", "bruksnr", "adresse", "bruksareal"] and repeat steps 2(a)-
(b).

4. For houses, perform step 3(b) only.

3.6 Oversampling
Upon analyzing Figure 3.2 where the distribution of the condition score of the
observations in the final data set is visualized, we observe that the target variable
has a skewed distribution with many observations around the median value of
the variable, and very few observations towards the minimum and maximum
values of the score. Dealing with a dataset where the target variable has a
skewed distribution is not favorable in any kind of ML task. In an attempt to
address this limitation of our dataset and overcome the problem of imbalanced
data, we applied an oversampling method and acquired a balanced dataset.

An oversampling technique that is commonly used in machine learning is
SMOTE (Synthetic Minority Oversampling Technique) (Chawla, Bowyer, Hall,
& Kegelmeyer, 2002). This algorithm is based on identifying minority classes
and performing resampling by generating synthetic observations from the mi-
nority classes with replacements until the desired number of observations from

18



each minority class is achieved. While this method is commonly used in clas-
sification tasks with imbalanced data, it is not directly applicable to regression
tasks where the target is a continuous variable. In order to create an oversam-
pled dataset, we first need to define boundaries for the target variable, treating
it like a discrete class during the oversampling.

For oversampling purposes, we created an encoded version of the condition
score for each observation in the data set, using the encoding function shown
in Equation 1, where x is the aggregated condition score computed in Section
3.4, and y is the encoded version of x. The encoded version of the condition
score is referred to as the condition score class for the rest of this thesis. Then,
the data set was oversampled according to the encoded condition score before
splitting into training, validation, and test sets. For reproducibility, this split
was kept constant across experiments.

encoder(x) = y =


0, if x < 0.98

1, if 0.98 ≤ x < 1.5

2, if 1.5 ≤ x < 2

3, otherwise

(1)

Table 3.10 shows the distribution of the condition score classes in the train-
ing, validation, and test sets acquired from the original data set obtained after
the merging process. Table 3.10 shows the distribution of the same variable in
the training, validation, and test sets acquired after the data was oversampled.

Encoded score All data Training data Validation data Test data

0 700 430 141 129
1 5861 3491 1147 1223
2 3266 1980 665 621
3 655 388 144 123

Total 10482 6289 2097 2096

Table 3.10: The distribution of the encoded condition score in the original
dataset.

Encoded score All data Training data Validation data Test data

0 5861 3568 1150 1143
1 5861 3540 1162 1159
2 5861 3485 1173 1203
3 5861 3473 1204 1184

Total 23444 14066 4 689 4689

Table 3.11: The distribution of the encoded condition score in oversampled
datasets.

For the rest of this thesis, the data set obtained as a result of the merging
process is referred to as the imbalanced data, and the data set obtained by the
oversampling is referred to as the oversampled data.

19



4 Text-Based prediction of the dwelling condi-
tion

In this chapter, we present and explain the models and NLP techniques em-
ployed in order to accomplish our objective of estimating the condition score of
dwellings based on advertisement text. The models are arranged in ascending
order of complexity, ranging from simpler models to more complex ones. First,
we start by creating two baseline models, approaching the regression task in
a very simple and naive manner without involving any information about the
dwellings. To improve the results acquired by the baseline models, we first in-
troduce the methods for extracting features from the advertisement texts, then
test the most commonly used ML models for regression problems. Finally, we
fine-tune 3 pre-trained large language models for Norwegian.

The data was split into training, test, and validation sets. For reproducibility
and comparability the same split was used across all models. The training
set, which accounted for 60% of the data, was used to train the models. The
validation set, comprising 20% of the data, was utilized for hyperparameter
tuning and early stopping. Lastly, the test set, also representing 20% of the
data, was reserved for final model evaluation to assess its performance and
ability to generalize the results.

4.1 Model evaluation
The metric chosen for the evaluation of the models was the mean absolute error
(MAE). The expression for MAE is shown in Equation 2, where yi is the actual
condition score of the i-th dwelling, ŷi is the predicted condition score of the
same dwelling and N is the number of observations.

MAE =

∑N
i=1|yi − ŷi|

N
(2)

4.2 Naive baseline models
As a reference point for comparing the forthcoming experiments in this chapter,
we first approach the regression task with two baseline models that aim to
establish naive, but simple and fast solutions for the task. Subsequently, we seek
to improve the results achieved by the baseline models. The baseline models
did not utilize any linguistic or numerical features, and were completely based
on randomness or the distribution of the target variable.

The first baseline model, Baselinerandom, assigns a random value between 0
and 3 to each data point as their predicted value, whereas the second baseline
model, Baselinehard, assigns a pre-defined value to all data points. This pre-
defined value was determined by computing the average condition score of the
units in the full data set.

4.3 Bag of Words-based approaches
A natural next step to improve the naive baselines is to use a Bag of Words-based
approach. Firstly, two different methods for extracting features from text are
described. Then, we explain different regression models trained on imbalanced

20



and oversampled datasets with two different input features: The Bag of Words
(BoW) matrix and the Term frequency-inverse document frequency (TF-IDF)
matrix extracted from the advertisement texts. We also discuss the advantages
and disadvantages of different models, give a concise comparison and explain
how the models were tuned and evaluated.

4.3.1 Document representations

In this part, we present two different methods that are commonly used in the
NLP field for representing documents as numerical features. We present the Bag
of Words (BoW) model, and Term frequency-invert document frequency (TF-
IDF), both of which rely on counting the frequency of words in the document.

4.3.1.1 Bag of Words

The Bag of Words model is one of the most commonly used, and simplest meth-
ods used for feature extraction from text. The method consists of extracting
the vocabulary containing all words from the pre-processed texts in the corpus.

The BoW model yields a N × V feature matrix, where N is the number of
documents and V is the size of the vocabulary extracted from these documents.
The value in i-th row and j-th column represents the number of times term j
occurs in document i. If all words were taken into consideration for comput-
ing this matrix, we would end up with a vocabulary containing 21,086 words,
which would result in very sparse matrices as input features to our regression
models. Instead, in order to reduce the number of features fed into the regres-
sion models, we eliminate some features conditionally. We remove words that
have a document frequency strictly greater than a parameter max, and strictly
less than min. With this method, the words that are too common or too rare
are eliminated from the feature matrices. For the rest of this thesis, we refer
to the parameters (min, max) as the term filtering threshold. Table 4.1 shows
the size of the vocabularies achieved with different combinations of (min, max).
As expected, the number of words included in the vocabulary decreases as the
threshold covers a smaller percentage of the documents.

4.3.1.2 Term frequency-inverse document frequency

Term frequency (TF), given in Equation 3, is defined as the relative frequency of
term t within document d, where ft,d is the number of times a term t occurs in
document d, and the denominator is the total number of terms in document d.
Invert document frequency (IDF), given in Equation 4, is the logarithm of the
total number of documents N divided by the number of documents containing
the term t. Finally, TF-IDF is shown in 5.

tf(t, d) =
ft,d∑

t′∈d ft′,d
(3)

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
(4)

tfidf(t, d,D) = tf(t, d) · idf(t,D). (5)

21



Split

min max Vocabulary size

Imbalanced

0.01 0.99 832
0.05 0.95 221
0.10 0.90 109
0.15 0.85 69
0.20 0.80 41
0.25 0.75 28

Oversampled

0.01 0.99 816
0.05 0.95 219
0.10 0.90 106
0.15 0.85 65
0.20 0.80 41
0.25 0.75 27

Table 4.1: Vocabulary size of the input matrices based on different document
frequency splits.

Once again, in order to reduce the number of features fed into the regression
models, we eliminate some features with the same method used while computing
the BoW-matrix in Section 4.3.1.1. Since the same documents were used to
compute these two matrices, they contain the same number of words in their
vocabularies for the same term filtering threshold.

4.3.2 Regression models

There are four different classes of regression models used in this thesis:

• Simple linear regression model (LinReg)

• Linear regression model with L1 regularization (LASSO)

• Stochastic Gradient Descent regression model (SGD) and

• Gradient boosting regression model (CatBoost)

All four models were trained on imbalanced and oversampled datasets with two
different document representations as input features. In this section, we explain
the different models and present the tuned parameters for each model.

4.3.2.1 Linear regression

Linear regression is often considered as one of the simplest methods for predict-
ing a continuous variable in ML. A linear regression model assumes that the
relationship between the target variable and the input vectors is linear (Hastie,
Tibshirani, & Friedman, 2001). It is denoted as shown in Equation 6, where
X is the input vector, p is the number of input features, and βj ’s and β0 are
unknown coefficients.

22



f(X) = β0 +

p∑
j=1

Xjβj (6)

The linear regression models in this thesis aim to achieve the coefficient
vector β̂ = (β0, . . . , βp) that minimizes the residual sum of squares (RSS), com-
puted as shown in Equation 7, where N is the number of observations, and yi
and f(xi) for i ∈ {1, . . . , N} are the corresponding target and estimated values,
respectively.

RSS(β) =

N∑
i=1

(yi − f(xi))
2
=

N∑
i=1

yi − β0 −
p∑

j=1

Xjβj

2

(7)

Linear regression analysis is often easy to conduct and interpret. It does
not require parameter tuning and is not computationally demanding. However,
a linear regression model might lead to two unsatisfactory outcomes. Firstly,
ordinary least square estimates often produce results with low bias and high
variance, yielding poor prediction accuracy. Secondly, it is difficult to interpret
the resulting feature coefficients when dealing with data with a high number of
predictors (Tibshirani, 1996).

Table 5.2 and Table 5.3 show the MAE acquired by the linear regression
model with BoW and TF-IDF matrices as input features, respectively.

4.3.2.2 Lasso regression

To address the drawbacks of the linear regression model, (Tibshirani, 1996) pro-
posed a shrinkage method, namely Lasso (Least absolute shrinkage and selection
operator) regression, that can automatically set some of the feature coefficients
to zero, which may help to increase the interpretability of the model while re-
ducing the variance. Lasso regression, similarly to the linear regression, aims to
minimize the RSS with the additional Lasso penalty

∑p
1|βj |, where the amount

of penalization is controlled by a tuning parameter. The optimal Lasso regres-
sion coefficients β̂ that minimizes the penalized RSS are computed by solving
Equation 8,

β̂lasso = argmax
β

1

2

N∑
i=1

yi − β0 −
p∑

j=1

Xjβj

2

+ λ

p∑
j=1

|βj |

 (8)

where λ is the tuning parameter that controls the amount of shrinkage ap-
plied to the coefficient estimates β̂ (Hastie et al., 2001). Lasso can shrink the
coefficients until the coefficients are exactly 0, which provides a natural subset
selection and feature elimination which can address the limitations of the normal
linear regression (Tibshirani, 1996). The optimal value of the tuning parameter
often depends on the dataset and the objectives of the analysis. While larger
values of the tuning parameter result in setting most of the features coefficients
to zero, providing sparsity and achieving higher interpretability. Conversely,
setting smaller values for λ has minimal effect on the model, resulting in fewer
coefficients being set to zero.

23



The tuning parameter λ chosen for this task was 0.01, which is small enough
to keep most of the input features while still eliminating the least needed ones,
providing us with a natural subset selection. The resulting MAEs by the Lasso
regression models are presented in Table 5.2 and Table 5.3.

4.3.2.3 Stochastic Gradient Descent Regressor

Gradient Descent, (GD) (Cauchy, 1847) and Stochastic Gradient Descent, (SGD)
(Robbins & Monro, 1951) are iterative optimization methods that are often used
for speeding up the process of determining the optimal regression coefficients,
βj ’s, which minimizes the loss function in a regression task.

The GD algorithm starts with guessing initial values for the β’s, and iter-
atively updating the coefficients in the direction that minimizes the loss. The
iterations stop when the gradient of the loss function is close to zero. The mag-
nitude of the updates of the coefficients is regularized by a learning rate. During
this process, all observations in the data set are taken into consideration, which
might slow down the process when there is a large number of observations to
consider.

The SGD is a faster variant of the GD, where we start with randomly deter-
mined initial coefficients and a randomly selected subset of observations from
the full data set. Then, the coefficients are updated according to the subset.
Iteratively, new subsets are selected and the coefficients are updated until the
gradient of the loss function is sufficiently close to 0. This procedure is advan-
tageous when solving regression problems with larger datasets, as the subset
selection eases the computations needed to find the optimal coefficients. It is
often found that the SGD is more accurate than a linear regression model, which
motivates us to train the SGD regression model.

We have trained SGD regression models with a learning rate of 0.0001 on
BoW and TF-IDF matrices, in combination with six different term filtering
thresholds. The results were presented in Table 5.2 and Table 5.3.

4.3.2.4 Gradient boosting

Gradient boosting is a more recently developed machine learning technique that
can be used in regression and classification tasks (Friedman, 2002). The gradient
boosting regression model is of the stronger regression models in ML, where the
combination of weak learners results in a powerful learner. The model is built as
an ensemble of many predictive models that are in fact weak learners, which are
often decision trees. The training process consists of training the decision trees
one by one, where each decision tree corrects the error made by the previous
tree. The gradient boosting model has the following additive form;

F (x) = y =

M∑
m=0

βmh(x;am) (9)

where M is the total number of iterations, x are the explanatory variables, y
are the predicted values, the functions h(x;a) are the weak learners, the βm’s are
the coefficients minimizing the previously determined loss function. One starts
with an initial guess F0(x), and continues to update the model coefficients for
m = 1, . . . ,M steps (Friedman, 2002).

24



A gradient boosting model has many hyperparameters that may have signif-
icant effects on the model performance. For example, the contribution of each
new tree to the prediction of the older trees is regularized by a learning rate.
The number of levels allowed in a decision tree is also an important aspect of
the model. Gradient boosting trained with shallower trees may improve the in-
terpretability of the model while avoiding overfitting, whereas deeper trees may
capture more complex signals from the data.

Compared to simpler regression models, gradient boosting models often yield
better prediction accuracy. Another advantage of the gradient boosting model
is that it can handle various types of feature variables, including numerical,
categorical, and binary variables. Because of their predictive power and flexi-
bility with input data, gradient boosting models are favorable ML models for
regression. However, because of the complexity of the models, training gradient
boosting models is often time-consuming and the results might be difficult to
interpret in contrast to other regression models, for instance, linear regression
model. Additionally, there are many hyperparameters that require parameter
tuning in order to achieve optimal results with a gradient boosting model.

There are many online tools used for building gradient boosting methods.
The tool used in this thesis was CatBoost (Dorogush, Ershov, & Gulin, 2018),
an open-source Python library. We have trained a CatBoost Regressor with
1000 decision trees of depth 5, and a learning rate of 0.1. We also chose to make
use of the built-in early stopping function that comes with this library and
made the training procedure halt if the evaluation loss increases in more than
100 iterations in a row. The CatBoost Regressor models with the parameter
values mentioned were trained on BoW and TF-IDF matrices, in combination
with six different term filtering thresholds. The results were presented in Table
5.2 and Table 5.3. Similar to the linear, Lasso, and SGD regression models, the
model on the BoW input features and term filtering threshold of (0.01, 0.99)
yielded the lowest MAE among the models trained on the same input features.
For both types of input features, CatBoost has given the best performances
with (0.01, 0.99) threshold, resulting in MAEs of 0.2429 and 0.2437 for BoW
and TF-IDF, respectively.

4.3.3 Grid-search for tuning the gradient boosting model

Since we have observed that the CatBoost regressor was the best-performing
model amongst the regressors with BoW-based input features discussed in this
thesis, we concluded to conduct a grid-search to find the optimal values of
some of the model parameters. The parameters tuned in this part were the
learning rate, which corresponds to the rate at which the contribution of each
tree is shrunk, the depth indicating how deep the decision trees will be, and
the number of iterations which corresponds to the maximum number of trees
in the model. We conducted a grid-search testing the following values for these
parameters:

• Learning rate ∈ {0.1, 0.05, 0.01, 0.005, 0.001}

• Depth ∈ {4, 5, 6, 7, 8}

• Iterations ∈ {2000, 3000, 4000}

25



Encoded score All data Training data Validation data Test data

0 5861 3568 1150 1143
1 5861 3540 1162 1159
2 5861 3485 1173 1203
3 5861 3473 1204 1184

Total 23444 14066 4 689 4689

Table 4.2: The distribution of the encoded condition score in oversampled
datasets.

The parameter search was conducted on models trained on both input ma-
trices and the term filtering threshold was kept constant at (0.01, 0.99). Tables
5.5 and 5.6 show the results obtained by the models which were trained on
BoW and TF-IDF input matrices, respectively. Unfortunately, parameter tun-
ing had minimal effects on the model performance of the CatBoost regressors.
The most optimal model found through the grid search was the CatBoost re-
gressor trained on the BoW input matrix with 4000 decision trees with a depth
of 8 and a learning rate of 0.01, which yielded an MAE of 0.2396, only slightly
better than the former model with an MAE 0.2429. In addition, the MAE was
improved by 0.0033, whereas the time taken to train the parameter-tuned model
was approximately 4.5 times slower than the former model. While the results
are discussed in detail in the next chapter, we concluded that there is not a need
for additional parameter tuning for the CatBoost models.

4.3.3.1 Regression models with oversampled data

The majority of the dataset (55,9%) belonged to class 1, meaning that most of
the observations in our data have a condition score that is more than or equal to
0.98 and less than 1.5. Observations from classes 0, 2, and 3 were oversampled
from the final dataset in order to achieve the same amount of data that belongs
to class 1, resulting in 5861 observations from each class and a total number of
23,444 observations. Table 4.2 shows the distribution of the encoded condition
score after oversampling across the training, validation, and test datasets.

After achieving a balanced data set, the BoW and TF-IDF matrices were
extracted from the documents in the oversampled data. Table 4.1 shows the
sizes of the vocabularies in the matrices computed with different term filtering
thresholds. Then, the same regressors were trained on the oversampled dataset
with BoW and TF-IDF as input matrices, where the model parameters were
chosen to be those which yielded the best model performances for each combi-
nation of regressor and input matrix. The results are presented in the tables
5.7 and 5.8, and are discussed further in the next chapter.

4.4 Pre-trained BERT-based approaches
Large language models (LLMs) are currently considered one of the most ad-
vanced NLP models available. These models employ state-of-the-art neural net-
work architectures and incorporate sophisticated training techniques, enabling
them to achieve exceptional performance across a broad spectrum of NLP tasks.

26



These models have numerous practical applications and can be adapted to many
downstream tasks with ease, including the applications providing chatbots or
virtual assistants, language translation, sentiment analysis, and text summa-
rization, among others.

Most of the pre-trained large language models (LLMs) currently available
are built by utilizing the transformer architecture. In recent years, there has
been some revolutionary achievement in the field of NLP due to the still ongo-
ing developments of transformer-based language models, such as the Generative
Pre-trained Transformers (GPT) (Radford et al., 2018) and Bidirectional En-
coder Representations from Transformers (BERT) (Devlin et al., 2018). Both
models have been pre-trained on an extensive size of unlabeled text dataset in an
unsupervised manner, then fine-tuned on labeled data from downstream tasks.
In this chapter, we will focus on BERT-based models to address our objective.

The BERT model was pre-trained on a corpus containing approximately
3,300 million tokens using two unsupervised tasks, masked language modeling
(MLM), and next sentence prediction (NSP). In the MLM task, some of the
tokens in the input sentence were randomly masked where the objective of the
model was to correctly predict the original token based on the context of the
sentence. This gives BERT the ability to understand the relationship between
words. In the NSP task, the model’s objective is to determine the predicted
sentence is the actual consecutive sentence or a random one. With the NSP
task, BERT understands sentence relationships and text flow. The fine-tuning of
BERT involves initializing a pre-trained BERT model with the initial parameters
and adapting it to specific tasks.

The model architecture of BERT consists of several elements. These are
model parameters, transformer layers, hidden layers, and attention heads. The
model parameters are the weights that can be learned by the model, the trans-
former layers are transformer blocks, the hidden layers are the layers with math-
ematical functions applied on model weights, and the attention heads are the
size of the transformer blocks in the transformer layers. The BERTBASE model
consists of 110 million model parameters, 12 layers, 768 hidden layers, and 12
attention heads per transformer block, whereas the BERTLARGE model has 340
million parameters, 24 transformer layers, 1024 hidden layers, and 16 attention
heads per transformer block.

The original BERT model was pre-trained on an English-only corpus, which
restricts its applicability to the corpus in this thesis. Luckily, there are many
other multilingual or Norwegian-specific BERT-based models available.

4.4.1 Available Pre-trained BERT-based models for Norwegian

For some time, Google’s multilingual BERT model (mBERT) was the only
model that can be used for various NLP tasks on Norwegian text. This model
was pre-trained on a large corpus that contains text from Wikipedia in around
100 languages as an unsupervised MLM task. At first, 21% of the data were
in English2. The less frequently represented languages were oversampled before
the training procedure, whereas frequently represented languages were under-
sampled. Even though they have demonstrated that mBERT had a satisfying
performance for many languages, it performed somewhat worse for the languages

2The distribution of languages in the corpus used to pre-train mBERT is described in this
GitHub repository: https://github.com/google-research/bert/blob/master/multilingual.md)

27



that are frequently represented in their corpus. This indicated that language
models specific to a language might perform better than multilingual ones.

Instead of the multilingual models, 3 pre-trained BERT models, that are
specifically trained on a Norwegian corpus, were tested in this thesis. These
models were NorBERT and NorBERT2 (Kutuzov, Barnes, Velldal, Øvrelid, &
Oepen, 2021), models developed by the Language Technology Group (LTG) at
the University of Oslo, and NB-BERTBASE (Kummervold, De la Rosa, Wetjen,
& Brygfjeld, 2021), developed by the National Library of Norway. All three
models were trained by feeding them raw Norwegian text, meaning that pre-
processing of text was not necessary for these models.

NorBERT is one of the first monolingual LLMs for Norwegian and was re-
leased by the LTG in 2021. The model was pre-trained on a corpus that consisted
of around 2 billion word tokens and 203 million Norwegian sentences gathered
from the Norwegian Newspaper Corpus and Norwegian Wikipedia. A second
version, NorBERT2, was released in February 2022. It was trained from scratch
on a completely new, larger corpus that contained around 15 billion word tokens
and 1 billion sentences. The NB-BERTBASE model by the National Library of
Norway was pre-trained on a corpus built from text from many different sources.
Some of these resources, among many others, were the Norwegian Wikipedia,
Norwegian books, and government reports. All three models have shown that
monolingual models tend to perform better than multilingual models for many
downstream tasks. Therefore, we have decided to not include multilingual mod-
els in this thesis.

To the best of our knowledge, there is no academic research that has been
conducted using pre-trained BERT-based models for regression analysis. This
gap in the literature highlights an opportunity for further investigation and
experimentation, particularly given the potential benefits of the BERT-based
models’ powerful natural language processing capabilities for other downstream
tasks. In the following sections, we will fine-tune the models by incorporating a
regression layer on top of the pre-trained layers. Furthermore, we will investigate
the effect of combining different model parameters, such as the learning rate and
batch size, and examine the adaptability of BERT-based models to a regression
task.

4.4.2 Finding the optimal parameters

Some aspects of the model, like the model architecture and the early stopping
criteria, and some training parameters, such as the loss function and the opti-
mizer, were kept constant across all models in order to simplify comparing the
results. Model architecture and the early stopping criteria are described later
in this section. If the early stopping criteria is not met, the model was allowed
to be trained for 200 epochs at most. The loss criterion chosen for this task was
mean squared error loss (MSE), one of the most commonly used loss functions
in regression tasks. The computation of the MSE loss is given in Equation 10,
where N is the batch size, y denotes the target and ŷ denotes the predictions in
each batch. AdamW optimizer (Loshchilov & Hutter, 2019) was chosen as the
main optimizer. Keeping the loss function and the optimizer constant, a range
of learning rates and batch sizes were examined for each model. We started
first by testing 5 different batch sizes for finding the optimal one that yields the
minimum mean absolute error for each model while keeping the learning rate

28



constant at 0.001. After determining the best batch size for each model, we
kept this parameter constant and ran the models with different learning rates.

L = mean({l1, . . . , lN}⊤), ln = (yn − ŷn)
2 (10)

Model architecture

The pre-trained BERT-based models that were fine-tuned in this thesis were
utilized both in their frozen and unfrozen states. The BERT-based models con-
sist of a single linear regression layer on top of the pre-trained BERT model.
First, the inputs from the test set is fed into the BERT model in batches of size
B to obtain contextualized representations. Then, the output from BERT was
fed into a linear layer, where a linear transformation was applied to the contex-
tualized representations in order to achieve a (B × 1) vector which represents
the predictions for the batch. Then, these predictions were sewed together to
obtain the predictions for the full test set.

In a frozen model, the model parameters are kept constant, and the contex-
tualized word embeddings obtained by the pre-training process are directly fed
into the regression layer, where a simple linear regression model is trained. In
the unfrozen model, however, the model parameters in all layers are updated
during the fine-tuning, and the updated version of the word embeddings is fed
into the regression layer. The most important part of this method is that the
model is allowed to learn more context from the input text (e.g. the adver-
tisement texts advertisements) instead of predicting values based on the final
version of the pre-trained model, and the model parameters are adjusted specif-
ically for our task. Fine-tuning an unfrozen model is a more computationally
expensive method, and it is easier for an unfrozen model to start overfitting as
the model might start memorizing the characteristics of the training set when
the model parameters are updated according to this set.

Early stopping criteria

When training machine learning models, we usually aim to create a model that
performs well on new, unseen data. That is, the model is expected to have the
ability to generalize well on unseen data. The opposite of this phenomenon is
over-fitting, where the model starts to memorize the properties of the data we
use during training instead of learning new information from it. Large language
models with a very high number of parameters like BERT are especially prone
to overfitting when the training data is not sufficiently large (Lee, Lee, & Kang,
2021). Early stopping is one of the methods that can be used to prevent this
undesirable behavior of the ML model. While there is no universally optimal
early-stopping method for all ML models, there are several approaches in the
literature that have been demonstrated to work well.

One may choose to halt the training process as soon as the validation error
in the current epoch is higher than the validation error in the previous epoch.
This method may result in stopping the training too early, as we may have
reached a local minimum instead of the global minimum. Instead, (Prechelt,
2002) suggested different early-stopping techniques for training multi-layer per-
ceptrons: 1) Stopping the training as soon as the validation loss exceeds some
pre-set value, 2) stopping if the validation error increases in s successive epochs.

29



Figure 4.1: Mean training and validation errors for each epoch during training
of NorBERT2 with and without early stopping. The learning rate in these
experiments was 0.001 and the batch size chosen was 256. The test error yielded
with and without early stopping were 0.2764 and 0.2737 respectively.

Then, these techniques are evaluated in terms of training time, efficiency, ef-
fectiveness, robustness, and the trade-off between test error and training time
across 12 different problems and 24 different model architectures. The third
method has been demonstrated to have the best trade-off between test error
and the time taken to train the models. Prechelt has also concluded that mod-
els with slower early stopping criteria, e.g. a criterion that makes it harder for
the model to stop the training process, tend to gain more generalization. Based
on the findings of this paper, a method similar to Prechelt’s third suggestion
was adapted to the training process in this thesis.

For the experiments in this thesis, an early stopping function was imple-
mented in order to avoid over-fitting and accelerate the experimenting process.
Across all models, the fine-tuning is stopped if the validation error does not
improve for more than s, a pre-set number, epochs in a row. That is, if a
new lowest error is not found for a defined number of epochs, the fine-tuning
will halt. The pre-set value chosen in this thesis was 3. In order to determine
whether the adoption of s = 3 demonstrates favorable performance in terms
of training time and testing error, NorBERT2 was fine-tuned with and without
early stopping. The batch size chosen for this experiment was 256, whereas the
learning rate was set to 0.001.

Table 4.3 shows the number of epochs and time taken to train these two
models, as well as the minimum validation error and the testing error acquired.
NorBERT2 without early stopping was ∼ 6.4 times slower than NorBERT2 with
early stopping, only to perform 0.9768% better in terms of testing error. The
validation and training errors through epochs for both models are plotted in

30



# Epochs Min. val. error Test error Time (s)

NorBERT2, early 34 0.2928 0.2764 7387
NorBERT2, 200 200 0.2885 0.2737 47429

Table 4.3: Comparison of NorBERT2 with and without early stopping. The
number of epochs for the training, minimum validation error acquired during
training, the MAE on the test set and the total training time for each model is
presented. The best result for each metric is written in bold font.

Figure 4.1. It is observed that the validation error stops improving around the
30th epoch and converges after this point. These results indicate that with
the chosen early stopping criteria and s = 3, we achieve an optimal trade-off
between the time taken to train a model and the test error, using much less
time to train the model while preserving the model performance. For the rest
of this thesis, the early stopping criterion has been kept constant, with s = 3.

Batch size and maximum sentence length

The batch size (batch_size) and maximum sentence length (max_len) allowed
while fine-tuning BERT-models are parameters that can impact both the speed
of the fine-tuning process, and the performance of the models. Intuitively, the
greater the batch size and maximum sentence length are, the more represen-
tative each batch is of the training data. Increasing the maximum sentence
length allows us to keep the sentences fed into the models as long as possible,
keeping much of the information contained preserved. With large batch sizes,
the models are expected to be fine-tuned much quicker. However, combining
large batch sizes with large maximum sentence lengths would also require more
powerful memory resources. Therefore, we chose to test these two hyperpa-
rameters simultaneously and aim to strike a balanced trade-off between model
performances and resources needed to fine-tune.

In order to determine the optimal pairing of batch size and the maximum
number of tokens for each pre-trained model, we have trained the models with
various values for the hyperparameters in question, while keeping the learning
rate and the early stopping criterion constant. The learning rate chosen for
these experiments were 0.001, as this is the default learning rate of the AdamW
optimizer. The early stopping criterion was set to halt the fine-tuning process
if the validation error worsens for more than 3 epochs in a row. The batch sizes
tested were 64, 128, 256, 320, and 512, and the maximum sentence lengths were
{128, 256, 512}. All experiments were conducted on the Nvidia T4, with the
exception of combining batch size of 320 together with maximum sentence length
of 256. For this case, we needed to increase the available memory resources,
switched to the Nvidia A10G. The only experiment we decided to not go forward
with was combining a batch size of 512 with maximum sentence length of 512
due to memory limitations.

The results are shown in Table 5.10. While we were not able to fine-tune
models with a batch size of 512 and maximum sentence length of 512 with the
Nvidia T4 or A10G, we did also observe that while fine-tuning with a maximum
sentence length of 512, the batch size has little to no effect on the model per-

31



formances. Therefore, we decided that upgrading to a bigger GPU to test this
combination of hyperparameters is not needed in this case.

Based on this mini-experiment, the (batch_size, max_len) combinations
that achieved the best performance for NorBERT, NorBERT2 , and NB-BERTBASE
were (128, 512), (64, 128) and (256, 215), respectively, yielding MAE’s of 0.2858,
0.2737 and 0.2689. The optimal values for these hyperparameters determined
in this experiment were also reused in the next part, where we determine the
optimal learning rate for fine-tuning the pre-trained models.

Learning rate

After determining the optimal batch size for the pre-trained models, a range of
learning rates was evaluated through experimentation. Learning rates chosen
for this task were {0.0001, 0.0005, 0.001, 0.005, 0.01}. Batch sizes were set to
be the optimal ones acquired from earlier experiments, while the loss function,
optimizer and the early stopping criterion were kept constant. The results
obtained by the models are presented in Table 5.11.

4.4.3 Improving the model performance: Oversampling and unfreez-
ing

While parameter optimization has a notable impact on the performance of the
models, the effect is not significant as the resulting performance gains are of-
ten modest. Furthermore, the MAE’s from each model are quite close in terms
of magnitude. Overall, the BERT models performed slightly better than the
Baselinehard model, and was outperformed by the best-performing linear re-
gression model. This suggests that, while parameter search can play a role in
optimizing the model performance, we must consider different approaches in
order to improve the models.

The presence of highly imbalanced data is an additional concern that has
been acknowledged but not yet resolved. Our target variable, the home standard
takes values between 0 and 3. However, as discussed in the previous chapters
and shown in, 3.2, the distribution of this variable is very skewed. Specifically,
most of the observations of the target variable lie between 1 to 2, with limited
observations falling outside of this range. Figure 5.5 shows the distribution of
the predicted condition score within the test set only for our best-resulting frozen
models, together with the actual values. We observe that even the most optimal
models we have fine-tuned struggle to predict values outside a certain range. To
address this problem, we first fine-tune the models on the oversampled data
with the previously determined optimal hyperparameters. Then, we unfreeze
the models and fine-tune them on imbalanced and oversampled data.

Oversampling

The oversampling technique employed on the dataset for training regressors on
balanced data was utilized once more to fine-tune the BERT-based models using
oversampled data. The continous condition scores in the dataset were encoded
to discrete classes according to the encoding function given in Equation 1, and
the minority classes were resampled with replacement until a sufficient amout
of data from the minority classes were achieved.

32



For this task, we have fine-tuned our three frozen models on the balanced
dataset using the optimal hyperparameters determined in the previous section.
We have fine-tuned NorBERT2 (batch size 128, maximum length 512, learning
rate 0.0005), NorBERT2 (batch size 64, maximum length 128, learning rate
0.001), and NB-BERTBASE (batch size 256, maximum length 512, learning rate
0.005) on the oversampled data set. The results are presented in Table 5.13.

Unfreezing the models

Until now, all models were fine-tuned in their frozen state, where the learnable
model parameters were fixed and not updated during fine-tuning. Utilizing
frozen models with constant parameters limits the extent to which a model can
learn. The results obtained align with this statement, as we observed that the
frozen pre-trained models have only demonstrated slightly improved results than
our baseline models. We have also observed that imbalanced data was not the
cause of poor outcomes of the frozen models, as the oversampled frozen models
performed worse than the models fine-tuned on imbalanced data. Surprisingly,
despite the complexity of BERT, the frozen models did not seem to capture any
additional signals in the data set that is different than the signals captured by
simpler linear regression models.

We fine-tuned the BERT-based models in their unfrozen states and allowed
the models to adjust their learnable model parameters according to the training
set. The models were fine-tuned with two different (batch_size, max_len)
combinations, as well as various values of the learning rate. The models are
fine-tuned with the imbalanced and oversampled data sets, and the results are
presented in Tables 5.14, 5.15, 5.17 and 5.18.

33



5 Results and analysis

The results acquired from our models in Chapter 4 are presented in this chapter.
We first discuss the results from our baseline models as well as the differences
between those. Then, we present the mean absolute errors obtained by 4 dif-
ferent regression models, trained on two different feature representations and
different term filtering thresholds. Later, we discuss how these models behave
under parameter tuning and with oversampled data sets. We explore the pre-
dicting abilities of our models, both in terms of their predictive power on the full
data set and on dwellings with a condition score from specific ranges. We inves-
tigate whether some models are better at learning signals from advertisement
texts of dwellings with a condition score that can be considered as an outlier,
or whether some models perform best with dwellings with condition scores that
are approximately equal to the average. We continue with similar methods to
analyze the results acquired by three pre-trained BERT models for Norwegian.
Finally, we compare the BoW-based approaches and BERT-based approaches.

5.1 Naive baseline models
We have created two baseline models as reference points for the rest of the
models. These models were the Baselinerandom which assigns a randomized
value between 0 and 3 to the observations in the test set as their predicted
condition score, and Baselinehard which computes the average condition score of
all units in the dataset and assigns this value to all observations in the test set.
The MAE acquired by Baselinerandom and Baselinehard were 0.8308 and 0.3161,
respectively and the results are shown in Table 5.1.

Model MAE

Baselinerandom 0.8308
Baselinehard 0.3161

Table 5.1: MAEs acquired by the baseline models. We observe that an assisted
baseline performs much better than the baseline that randomly guesses the
condition score.

Randomly guessing the score in the Baselinerandom model yielded the worst
result among the baseline models. With this method, we picked a random value
between 0 and 3 while predicting a rather imbalanced target which mostly lies
between 1.12 and 1.65, the 25th and 75th percentiles of the target variable in
the full dataset. However, due to the randomness in this model, the probability
of the model predicting a condition score outside of the range [1.12, 1.65] is the
same as the probability of predicting a score that lies in that range. For this
reason, the model might predict values outside of the range more often than the
actual frequency of the occurrence of the outlier values. This model might have
performed better on a balanced dataset where the distribution of the target
variable is not skewed and indicates that the skewness of the target variable is
an important characteristic of the data.

Assigning the average condition score of the full dataset as the predicted
score for the observations in the test set in the Baselinehard model resulted in

34



a much lower MAE than the first baseline. The condition score assigned to the
observations in the test set was 1.39, and the MAE achieved with this model was
0.3161, which has created a better reference point for the forthcoming models
in this thesis. Due to the skewness of the distribution of the target variable
and the values of the variable being concentrated around the mean value, the
probability of an observation having a condition score close to the average is
greater than it having a score further from the average. Hence, this baseline
model is evidently good at predicting most of the dwellings in this set, which
aligns with the model’s performance being better than the first baseline model.

5.2 Regression models
We have trained four different regression models on the imbalanced and over-
sampled dataset, where the input features were the BoW and TF-IDF matrices
computed with 6 distinct term filtering threshold. The regression models trained
were a simple linear regression model, a Lasso regression model, a Stochastic
Gradient Descent (SGD) regression model and a gradient boosting regression
model from the CatBoost online Python library. The tuning parameter, α,
in the Lasso regression models was set to 0.01 across all models. The SGD
regression models were trained with a learning rate of 0.0001, and the initial
gradient boosting models were trained with a tree depth of 5, maximum number
of decision trees of 1000 and learning rate of 0.1.

In this section, we outline the models’ performances in terms of MAE, present
the distribution graphs of the actual and predicted values of the target variable
for the most optimal version of each regression model, and explore their predic-
tive power for dwellings with a condition score that is a member of 4 discrete
classes that were computed with the encoding function denoted in Equation 1.
The latter was done by computing the Pearson correlation coefficient between
the actual values and the predicted values of the target variable for all obser-
vations in the test set. Additionally, we divide the actual values into 4 discrete
classes using the encoding function given in Equation 1, and present the corre-
lation coefficients between the predicted and actual values of the target variable
for dwellings with condition scores from different condition score classes.

5.2.1 Regression on imbalanced data

When trained on the imbalanced data set, all four regression models had similar
performances in terms of the prediction error and the correlation between the
predicted and actual values of all dwellings in the test set.

Table 5.2 and Table 5.3 show the MAE acquired by the models trained on
the imbalanced data set with the BoW and TF-IDF input matrices, respectively.
Additionally, the tables show the impact of the term filtering threshold on the
performance regression models. In general, choosing a less strict term filtering
threshold has resulted in higher model performance and lower MAE across all
regression models. The inclusion of a higher number of words in the computation
of the input matrices might have protected most of the information contained in
the text, which allows the models to have more to learn from the input features.
This is the case for most of the regression models, with the exclusion of Lasso
which has performed better with a term filtering threshold of (0.2, 0.8) on the
TF-IDF matrix.

35



Term filtering threshold (min, max)

Models (0.01, 0.99) (0.05, 0.95) (0.1, 0.9) (0.15, 0.85) (0.2, 0.8) (0.25, 0.75)

LinReg 0.2553 0.2597 0.2661 0.2732 0.2802 0.2943
LASSO 0.2703 0.2730 0.2761 0.2811 0.2845 0.2971
SGD 0.2500 0.2599 0.2657 0.2725 0.2796 0.2931
CatBoost 0.2429 0.2578 0.2606 0.2699 0.2780 0.2929

Table 5.2: MAE acquired by different regression models trained on imbalanced
dataset with Bag of Words as input features. The best result for each model is
written in bold font.

Term filtering threshold (min, max)

Models (0.01, 0.99) (0.05, 0.95) (0.1, 0.9) (0.15, 0.85) (0.2, 0.8) (0.25, 0.75)

LinReg 0.2527 0.2551 0.2632 0.2703 0.2777 0.2926
LASSO 0.3076 0.3076 0.3045 0.3017 0.2999 0.3056
SGD 0.2699 0.2708 0.2749 0.2807 0.2854 0.2969
CatBoost 0.2437 0.2538 0.2665 0.2740 0.2878 0.2975

Table 5.3: MAE acquired by different regression models trained on imbalanced
dataset with TF-IDF as input features. The best result for each model is written
in bold font.

We have also observed that the models have behaved differently based on the
input matrix fed into them. For the simple linear regression and Lasso models,
feeding the model with the BoW input matrix has yielded better results, whereas
the SGD regression model had better performance with the TF-IDF matrix
regardless of the term filtering threshold chosen. The CatBoost regression model
achieved lower MAE’s with the TF-IDF input matrix for most of the term
filtering thresholds, except when using the least strict term filtering threshold,
namely (0.01, 0.99).

Overall, the best-performing models trained on imbalanced datasets with
two different input matrices were the same. CatBoost regression model has
achieved an MAE of 0.2437 with the term filtering threshold of (0.01, 0.99)
when trained on the TF-IDF input matrix, and an MAE of 0.2429 when trained
on the BoW input matrix with the same threshold. The latter was the best-
performing among the models trained on the imbalanced data set.

In order to examine the predictive power of the models for the test set, we
have visualized the distributions of the predictions of the models against the dis-
tribution of the actual target values. The visualization of the distributions was
carried out using Kernel density estimation (KDE) plots. Figures 5.1 and 5.2
show the distribution of the actual values and predictions of the best-performing
model from each regression model type, where the features fed into the models
are the BoW input matrix and TF-IDF matrix, respectively. We observe that
all four models trained on both input feature matrices struggled to estimate the
condition of dwellings with very high or very low scores. Most predictions lay
around 1.3-1.4. Considering that the median condition score for the full data
set was 1.36, most of the models appear to have predicted values around the

36



Figure 5.1: Kernel density estimation plots for the distribution of the actual
target values versus the predictions made by the regression models trained on
the imbalanced dataset using the BoW input matrix.

median. With the exception of the Lasso regression model, most of the mod-
els were able to have somewhat small and large predictions. The Lasso model,
however, had the worst performance across all linear regression models, both in
terms of MAE and also in terms of the variation between its predictions. Due to
very little variation in their predictions, the regression models have performed
only slightly better than the Baselinehard model, which yielded an MAE of
0.3161, while the best-performing regression model (CatBoost regression model
trained on BoW-matrix with the least strict term filtering threshold) performed
only slightly better than this baseline, indicating a performance improvement
of 0.073.

For further examination of the predictive power of the models, we conduct
a correlation analysis and investigate the relationship between the predictions
made by models and the actual values of the target variable. Table 5.4 shows
the Pearson correlation coefficients between the predicted and actual values of
the target variable for the imbalanced models. In addition to the correlation
coefficients between actual and predicted values of the target variable for all
observations in the test set, as well as the correlation between the actual values
from different condition score classes. The correlation coefficients are computed
from the predictions of the best-performing models for each combination of
regression model type and input matrix type.

We observe that the correlation coefficients acquired for the observations in
the full test set across the models are very similar in terms of the magnitude
and direction of the correlation. The gradient boosting model had the highest
correlation coefficient between the values it predicted and the actual values of
the target variable for both input matrix types, with correlation coefficients

37



Figure 5.2: Kernel density estimation plots for the distribution of the actual
target values versus the predictions made by the regression models trained on
the imbalanced dataset using the TF-IDF input matrix.

of 0.5937 and 0.5840 for the BoW matrix and TF-IDF matrix, respectively.
The Lasso regression model, on the other hand, had the smallest correlation
coefficient among all models, indicating that the predictions made by the Lasso
model are less related to the actual values than the rest of the models. This
finding aligns with the MAEs obtained with the models, where the gradient
boosting model yielded the smallest error and Lasso had the greatest.

The correlation coefficients between the actual values that belong to the four
discrete classes and their predictions separately, however, are much lower than
the correlation coefficients between the actual and predicted values for the full
test set. All models, regardless of the input matrix, had the highest correlation
between the predicted and actual values of observations with a condition score
that belongs to the condition score class 1, i.e. the condition score lies between
0.98 and 1.5. Considering that the models mostly predict around the median
condition score of the total data set, and the median value lies in the interval
defining the condition score class, this finding is only logical and consistent.

All models, regardless of the input matrix, had the least correlation coeffi-
cient for the observations with a condition score from class 3. This indicates,
once again, that the models struggled with predicting the condition score of the
badly maintained homes based on their advertisement text. Two extremes in
predicting the condition score of these homes were the Lasso regression model
(trained on the BoW matrix), and the SGD regression model (trained on the
TF-IDF matrix), both of which yielded a negative correlation coefficient for this
condition score class. The negative correlation coefficient means that the pre-
dictions and actual values are negatively proportional to each other, and these
two models performed extremely poor on these dwellings.

38



Overall, the magnitude of the correlation coefficients is considered to indi-
cate a moderate to weak correlation between the predictions and the actual
values and suggests that the predictive power of the linear regression models is
insufficient for this task.

Input type
BoW TF-IDF

CS Class 0 1 2 3 All 0 1 2 3 All

LinReg 0.2816 0.3593 0.2192 0.1324 0.5643 0.2730 0.3687 0.2250 0.1132 0.5688
LASSO 0.1166 0.3367 0.1415 -0.0602 0.4535 0.1056 0.1883 0.0797 0.0153 0.2772
SGD 0.2879 0.3723 0.2319 0.1530 0.5706 0.0934 0.4075 0.1449 -0.0181 0.5157
CatBoost 0.2552 0.3784 0.2651 0.1867 0.5937 0.2799 0.3682 0.2589 0.1056 0.5840

Table 5.4: Correlation coefficients indicating the correlation beween the actual
and predicted values of the target variable. The predictions were acquired by
the regression models trained on the BoW and TF-IDF input matrices extracted
from the imbalanced data set.

5.2.2 Grid-search for the gradient boosting model

Since we have acquired the lowest MAEs with the CatBoost model, it was
decided to perform a grid search on this model to investigate the impact of
the model parameters on the MAE obtained by the model and to determine
whether a better-performing gradient boosting model can be trained on the
imbalanced data set. The hyperparameters considered in this grid-search were
the learning rate of the model with values of 0.1, 0.05, 0.01, 0.005, 0.001, the
depth of the decision trees with values of 4, 5, 6, 7, and 8, and the number of
trees in the model with the values of 2000, 3000, and 4000. The grid-search was
conducted on models utilizing the BoW input matrix as well as the TF-IDF
input matrix, and the term filtering threshold was kept constant. Overall, 150
different CatBoost regression models were trained. The results of the grid-search
experiment are presented in Table 5.5 and 5.6.

We have observed for larger learning rates, the impact of the depth and
number of iterations were minimal. For learning rates of 0.1 and 0.05, the
worst-performing gradient-boosting model was the one trained on TF-IDF in-
put matrix with parameter values 4, 4000 and 0.1 for the depth, number of
iterations, and learning rate, whereas the best-performing model was the one
trained on the BoW input matrix with parameter values 8, 2000 and 0.05. The
difference between the MAEs obtained by these models were only 0.0087, in-
dicating that the parameter selection has very little effect of the performance
when the learning rate is large. For learning rates that are smaller than 0.01, it
was observed that the models performed worse as the learning rate decreased.
With some exceptions, the learning rate of 0.01 was observed to be the optimal
learning rate for most of the models.

For the models trained with the same (iterations, learning rate) combina-
tions, the depth of the model was found to have a positive impact on the model.
In general, the models where building a deeper tree is possible had better model
performances. For the models that were trained with a learning rate of 0.01, the

39



Learning rate

Depth Iterations 0.1 0.05 0.01 0.005 0.001

4
2000 0.2463 0.2438 0.2460 0.2489 0.2678
3000 0.2487 0.2444 0.2446 0.2468 0.2614
4000 0.2499 0.2455 0.2438 0.2458 0.2575

5
2000 0.2453 0.2422 0.2449 0.2475 0.2656
3000 0.2470 0.2431 0.2434 0.2457 0.2594
4000 0.2483 0.2443 0.2426 0.2448 0.2555

6
2000 0.2443 0.2423 0.2440 0.2467 0.2642
3000 0.2456 0.2433 0.2425 0.2449 0.2579
4000 0.2460 0.2436 0.2418 0.2542 0.2439

7
2000 0.2438 0.2415 0.2431 0.2459 0.2631
3000 0.2444 0.2419 0.2411 0.2441 0.2569
4000 0.2450 0.2426 0.2402 0.2428 0.2533

8
2000 0.2445 0.2408 0.2417 0.2448 0.2623
3000 0.2446 0.2407 0.2402 0.2429 0.2561
4000 0.2450 0.2411 0.2396 0.2416 0.2524

Table 5.5: Results of grid-search experiment conducted on the CatBoost regres-
sion model where the model was fed with BoW input matrix.

Learning rate

Depth Iterations 0.1 0.05 0.01 0.005 0.001

4
2000 0.2474 0.2442 0.2452 0.2485 0.2680
3000 0.2487 0.2455 0.2444 0.2462 0.2615
4000 0.2504 0.2465 0.2440 0.2450 0.2576

5
2000 0.2459 0.2427 0.2442 0.2469 0.2659
3000 0.2475 0.2440 0.2432 0.2448 0.2594
4000 0.2485 0.2455 0.2428 0.2437 0.2556

6
2000 0.2458 0.2431 0.2435 0.2460 0.2460
3000 0.2476 0.2446 0.2422 0.2442 0.2580
4000 0.2485 0.2457 0.2417 0.2430 0.2543

7
2000 0.2474 0.2419 0.2426 0.2450 0.2632
3000 0.2485 0.2435 0.2413 0.2434 0.2569
4000 0.2492 0.2445 0.2410 0.2423 0.2532

8
2000 0.2447 0.2417 0.2420 0.2446 0.2624
3000 0.2451 0.2429 0.2409 0.2427 0.2561
4000 0.2451 0.2434 0.2401 0.2416 0.2523

Table 5.6: Results of grid-search experiment conducted on the CatBoost regres-
sion model where the model was fed with TF-IDF input matrix.

40



most optimal results were always obtained by the models with the deepest trees.
While the decrease in terms of MAE is still very small, it can be concluded that
the error made by the model is negatively proportional to the depth of the trees
in the model.

For most of the models trained with the same (depth, learning rate) com-
binations, the performance of the models was often proportional to the total
number of decision trees present in the model. This indicates that as the num-
ber of weak learners in a model increases, a performance gain was achieved by
the ensemble model built on the weak learners.

The best-performing gradient boosting models in the parameter search ex-
periment for the different input feature matrices had the same model parameters.
For both input matrices, we achieved the smallest MAE when the parameters
were set to 8, 4000, and 0.01 for the tree depth, number of trees, and learning
rate. With these parameters, the MAEs acquired were 0.2396 and 0.2401 for the
models trained on the BoW input matrix and the TF-IDF input matrix, respec-
tively. The former was the best-performing model throughout the grid-search
experiment we conducted. It is noteworthy that the gradient boosting models
trained on the imbalanced dataset with the BoW input matrix have most of
the time better performance than the models trained with the TF-IDF input
matrix, regardless of the model parameters.

The grid-search experiment conducted has shown that the performance of
the gradient boosting regression models is directly proportional to the tree depth
and the number of trees present in the model. However, the relationship between
the model performance and the learning rate is somewhat unclear. We have
observed that the model performance worsens for any learning rate that is larger
and smaller than 0.01, and this finding is consistent for most of the models.
We have demonstrated that while parameter tuning is an important part of
the gradient boosting model which is a highly parameter-sensitive model, the
impacts of the parameter choices have been minimal for our case.

5.2.3 Regression on balanced data

Table 5.7 and Table 5.8 show the MAE acquired by the models trained on the
oversampled data set with the BoW and TF-IDF input matrices, respectively.
The effect of the term filtering threshold was similar to the results achieved by
the models trained on the imbalanced data set, where the least strict threshold
yielded the best results in general. The overall observation in terms of the
model performances was that most of the regression models have responded
negatively to the oversampling of the dataset, and performed worse when the
dataset was balanced. Only the CatBoost regression model has achieved better
results when trained on the oversampled data set, improving the MAEs from
0.2429 to 0.2041 for the best-resulting BoW model, and from 0.2437 to 0.1835
for the best-resulting TF-IDF model. The latter was the best-performing among
the models trained on the balanced data set.

41



Split (min, max)

Models (0.01, 0.99) (0.05, 0.95) (0.1, 0.9) (0.15, 0.85) (0.2, 0.8) (0.25, 0.75)

LinReg 0.3225 0.3664 0.4118 0.4361 0.4538 0.4860
LASSO 0.3850 0.3948 0.4247 0.4415 0.4572 0.4884
SGD 0.3208 0.3663 0.4126 0.4385 0.4560 0.4870
CatBoost 0.2041 0.2161 0.2458 0.2684 0.2886 0.3261

Table 5.7: MAE acquired by different regression models trained on the over-
sampled dataset with Bag of Words as input features for different term filtering
thresholds. The only significant result was acquired by the CatBoost regression
model with the threshold (0.01, 0.99)

Split (min, max)

Models (0.01, 0.99) (0.05, 0.95) (0.1, 0.9) (0.15, 0.85) (0.2, 0.8) (0.25, 0.75)

LinReg 0.3166 0.3586 0.4045 0.4297 0.4455 0.4790
LASSO 0.5082 0.4925 0.4745 0.4702 0.4743 0.5023
SGD 0.3433 0.3690 0.4081 0.4313 0.4478 0.4799
CatBoost 0.1835 0.1871 0.1991 0.2093 0.2315 0.2535

Table 5.8: MAE acquired by different regression models trained on oversampled
dataset with TF-IDF as input features for different term filtering thresholds.
The only significant result was acquired by the CatBoost regression model with
the threshold (0.01, 0.99).

The visualization of the distribution of predictions made by the models
trained on the oversampled dataset versus the distribution of actual values is
presented in Figures 5.3 and 5.4 using the Kernel density estimation method.
Compared to the previous figures presenting the distribution of the predictions
of the models trained on the imbalanced data set, the distributions of the pre-
dictions acquired by the models trained on the oversampled data appear to fit
the distribution of the actual values much better in this case. We also observe
that for most of the models, with the exception of the Lasso model, the models
were able to make predictions that are closer to 0 and to 3. Overall, the models
demonstrate an increased variability in their predicted outcomes.

The results of the correlation analysis for the regression models trained on the
oversampled data using the BoW and TF-IDF input matrices are presented in
Table 5.9. Despite the decrease in model performances for most of the regression
models, the correlation coefficients of the majority of the models for most of the
condition score classes have increased, indicating a stronger correlation between
the predictions and the actual values for the oversampled dataset.

The foremost finding in the result is that the correlation coefficients for the
gradient boosting model have increased, both for the coefficient representing
the relation between the predictions and actual values of the target variable for
all observations in the dataset and for the condition score classes separately.
The correlation coefficients of 0.9144 (BoW) and 0.9223 (TF-IDF) between the
overall predictions and actual values reveal a strong correlation and reflect the

42



Figure 5.3: Kernel density estimation plots for the distribution of the actual
target values versus the predictions made by the regression models trained on
the oversampled dataset using the BoW input matrix.

Figure 5.4: Kernel density estimation plots for the distribution of the actual
target values versus the predictions made by the regression models trained on
the oversampled dataset using the TF-IDF input matrix.

43



increase in the model performances for the gradient boosting models when the
data is oversampled. The results show that gradient boosting has strong pre-
dictive capabilities for the extreme values of the condition score, as the con-
dition score classes 0 and 3 have higher correlation coefficients than the other
classes. While the new correlation coefficients for the gradient boosting models
are promising, there still is a moderate to small correlation between the actual
and predicted values of the observations with a condition score that belongs
to the condition score class 1, and 2. This indicates that when trained on the
oversampled data set, the gradient boosting models gain performance and can
predict more accurately for the well-maintained and badly maintained dwellings,
but still struggle to identify moderately maintained dwellings and separate them
from the rest.

Another important aspect of the results of the correlation analysis is that
almost all models, except for the Lasso regression model when trained with the
TF-IDF input matrix, have acquired higher correlation coefficients for the ob-
servations from condition score 0, which implies that the models trained on over-
sampled data are better at predicting the condition score of the well-maintained
dwellings based on their advertisement text. The models that have gotten es-
pecially stronger at predicting the condition score of well-maintained dwellings
as a result of the oversampling are the linear regression model and the SGD
regression model. The correlation coefficients for the condition score class 0
have increased from 0.2816 to 0.5006 for the linear regression model, and from
0.2879 to 0.4861 for the SGD regression model when the models were trained
with the BoW input matrix.

Overall, compared to the results of the correlation analysis on the models
trained with an imbalanced dataset, most of the models demonstrated a better
performance at predicting the condition score of the well-maintained homes from
the condition score class 0. For the rest of the condition score classes, there is
little to no increase in the correlation coefficients between the predictions and
the target for the majority of the models, indicating that encounting challenges
when predicting for moderately maintained and badly maintained homes is a
commonality across the models.

Input type
BoW TF-IDF

CS Class 0 1 2 3 All 0 1 2 3 All

LinReg 0.5006 0.3381 0.2281 0.2218 0.7792 0.5048 0.3521 0.2340 0.2588 0.7910
LASSO 0.2185 0.3645 0.1599 0.0399 0.6555 0.0841 0.2877 0.0682 -0.0228 0.4551
SGD 0.4861 0.3508 0.2330 0.2099 0.7791 0.3029 0.4271 0.2182 0.0826 0.7451
CatBoost 0.8801 0.3929 0.2938 0.6800 0.9144 0.9480 0.3739 0.2921 0.7709 0.9283

Table 5.9: Correlation coefficients indicating the correlation beween the actual
and predicted values of the target variable. The predictions were acquired by
the regression models trained on the BoW and TF-IDF input matrices extracted
from the oversampled data set.

44



5.3 BERT-based models
We have fine-tuned three pre-trained BERT-based models that are specifically
trained on Norwegian text. First, we have fine-tuned the models at their frozen
state and investigated the impact of different hyperparameters on the model per-
formance. These hyperparameters were the maximum sentence length allowed
during the fine-tuning, batch size, and learning rate. Then, we proceeded to
further fine-tune the models on the oversampled data using the optimal param-
eters determined. Finally, we have fine-tuned the same models in their unfrozen
states, with and without oversampling.

In this section, we present results obtained from fine-tuning the BERT-based
models in terms of MAE, show distribution plots comparing the distribution of
the actual values of the target variable againtst the predictions made by the
models, and show the correlation between the predictions and actual values for
dwellings with condition scores that lies in the different condition score classes.

5.3.1 Frozen pre-trained BERT-based models on imbalanced data

Table 5.10 show the MAE’s produced by the three pre-trained BERT-based
models fine-tuned in their frozen states with 14 different combinations of (batch
size, maximum sentence length) pairs.

Our findings indicate that there is very little correlation between the hyper-
parameter choice and the error made by the model, as most of the MAEs lie
very close to each other in magnitude, and there is no clear pattern between the
error and the variable choice. It was assumed in the previous chapter that the
larger the batch size and maximum sentence length are, the more information
each batch contains during fine-tuning. Hence, the obtained results deviates
from the hypothesized trends.

For different values of the maximum sentence length, we observe that the
NB-BERTBASE model seemed to most of the time yield the least amount of
error, whereas NorBERT had the poorest performance. The only exception
was NorBERT2, which yielded a lower MAE than the NB-BERTBASE model
when the maximum sentence length was set to 128. Regardless of the maximum
sentence length, NorBERT has yielded the best MAE when the batch size was
128. For the other models, the optimal value of the batch size varied with the
maximum sentence length. The best-performing model achieved in this part of
the thesis was the NB-BERTBASE model fine-tuned on a batch size of 256 and
a maximum sentence length of 512, which yielded an MAE of 0.2689.

45



Batch size

Max length=512 64 128 256 320 512

NorBERT 0.2910 0.2858 0.2911 0.2901† -
NorBERT2 0.2771 0.2882 0.2824 0.2815† -
NB-BERTBASE 0.2721 0.2748 0.2689 0.2772† -

Batch size

Max length=256 64 128 256 320 512

NorBERT 0.2927 0.2876 0.2968 0.2911 0.2946
NorBERT2 0.2761 0.2879 0.2845 0.2804 0.2878
NB-BERTBASE 0.2756 0.2700 0.2715 0.2797 0.2796

Batch size

Max length=128 64 128 256 320 512

NorBERT 0.2877 0.2864 0.2913 0.2915 0.2961
NorBERT2 0.2737 0.2797 0.2738 0.2763 0.2823
NB-BERTBASE 0.2767 0.2777 0.2755 0.2787 0.2809

Table 5.10: Mean absolute errors acquired by 3 pre-trained BERT models for
different batch sizes. The best result for each model is written in bold font.

Keeping the optimal hyperparameter values for the batch size and the max-
imum sentence length, the models were fine-tuned on the imbalanced data set
with different learning rates. The results are presented in Table 5.11. Once
again, the results did not establish a distinct pattern explaining the impact of
the learning rate on the model performances. Overall, we were unable to detect
a relationship between the learning rate and the error made, as all three models
had different values as their optimal learning rate, and the MAEs acquired with
the other learning rate did not have an increasing nor decreasing trend with
the increasing values of the learning rate. The model with the lowest MAE was
NB-BERTBASE, fine-tuned with a batch size of 256, maximum sentence length
of 512 and learning rate of 0.005, and yielded an MAE of 0.2643.

In general, the frozen pre-trained BERT-based models fine-tuned on the
imbalanced data set performed worse than the linear regression models. The
optimal BERT-based model in its frozen state performed apporximately 1.1
times worse than the best-performing regression model, namely the gradient
boosting model trained on the imbalanced data set using the BoW input matrix
with the least strict term filtering threshold, a learning rate of 0.01, a tree depth
of 8 and 4000 trees which yielded an MAE of 0.2396.

46



Learning rate

BS ML 0.0001 0.0005 0.001 0.005 0.01

NorBERT 128 512 0.3039 0.2842 0.2858 0.3277 0.2986
NorBERT2 64 128 0.2814 0.2898 0.2737 0.3163 1.6189
NB-BERTBASE 256 512 0.3029 0.2786 0.2689 0.2643 0.2662

Table 5.11: Mean absolute errors acquired by 3 frozen pre-trained BERT models
for different learning rates. The batch sizes (BS) for norbert, norbert2, and
nb-bert-base are 128, 64 and 256, whereas the maximum sentence lengths (ML)
are 512, 128 and 512, respectively. The best result for each model is written in
bold font.

We have investigated the correlation between the actual values of the tar-
get variable and the values predicted by the frozen BERT-based models. The
results are presented in 5.12. The correlation coefficients between the actual
values of the observations in the test set and the predictions of all three mod-
els indicate moderate correlation. The correlation computed according to the
condition score class is even weaker, with some of the models yielding negative
values for the coefficients. In fact, all three models yielded negative correlation
coefficients for observations with a condition score from the condition score class
3. The correlation coefficients align with the poor performances the models have
previously demonstrated.

Additionally, we have plotted the distributions of the predicted and actual
variables for the optimal models fine-tuned using each model type, as shown
in 5.5. In a recurring fashion, the models fine-tuned on imbalanced data have
failed to make good predictions on dwellings that are well-maintained or of bad
standard.

These findings shows that despite the classification power of the BERT mod-
els that has been demonstrated in literature, frozen BERT-based models fine-
tuned on imbalanced data fall short in effectively carrying out a regression task.

Model params CS Class

Model name BS ML LR 0 1 2 3 All

NorBERT 128 512 0.0005 -0.0299 0.2342 0.0932 -0.2287 0.3247
NorBERT2 64 128 0.001 0.0104 0.2427 0.1142 -0.0516 0.3587
NB-BERTBASE 256 512 0.005 0.0317 0.3196 0.1267 -0.0643 0.4562

Table 5.12: Correlation coefficients indicating the correlation beween the actual
and predicted values of the target variable. The predictions were acquired by
the frozen BERT-based models fine-tuned on the imbalanced data set.

47



Figure 5.5: Kernel density estimation plots for the distribution of the actual
target values versus the predictions made by the frozen BERT-based models
fine-tuned on the imbalanced dataset.

5.3.2 Frozen pre-trained BERT-based models on oversampled data

The models were fine-tuned in their frozen state on the oversampled data using
the optimal parameters determined in the previous section. The results are pre-
sented in 5.13. The results obtained in this part was similar to the results we
have acquired from the regression models trained on the oversampled data. All
three models have responded negatively to the oversampling, where the MAEs
were as high as 0.43. The model that yielded the lowest error in this case was the
NorBERT2 model fine-tuned with a batch size of 64, maximum sentence length
of 128 and learning rate of 0.001, and obtained an MAE of 0.4089. Repeatedly,
this result was approximately 2.23 times worse than the best-performing regres-
sion model trained on the imbalanced data set, namely the gradient boosting
regression model fed with the TF-IDF input matrix computed with the least
strict term filtering threshold.

Model BS ML LR MAE

NorBERT 128 512 0.0005 0.4294
NorBERT2 64 128 0.001 0.4089
NB-BERTBASE 256 512 0.005 0.4192

Table 5.13: Mean absolute errors acquired by frozen pre-trained BERT models
fine-tuned on oversampled data set with the optimal values of batch size, max-
imum sentence length and learning rate found in Section 4.4.2.

In general, we have observed that the pre-trained BERT-based models have

48



performed much worse than the simpler regression models, and it was chal-
lenging to observe a relationship between the varying hypreparameters and the
results. This observed phenomenon might be the result of the frozen nature of
the models, where all 110 million learnable model parameters are always kept
constant during the fine-tuning. This aspect of the frozen models is discussed
further in the next chapter.

5.3.3 Unfrozen pre-trained BERT-based models on imbalanced data

The pre-trained BERT-based models were fine-tuned on the imbalanced data
in their unfrozen states, and a similar hyperparameter search was conducted
on these models. Fine-tuning unfrozen BERT-based models is a resource-
demanding process, where several millions model parameters are updated dur-
ing the fine-tuning which the requires more memory than simply fine-tuning a
frozen model. Due to the demanding nature of the unfrozen models compared
to the frozen models, and the limitations with the computational resources,
the only batch size and maximum sentence length combinations examined were
(256, 64) and (128, 128), and the results are shown in Table 5.14 and 5.15.
Eight variations of the learning rate was also utilized and the impacts of the
hyperparameter choices were investigated simultaneously.

The results have demonstrated that for learning rates higher than 5× 10−5,
most of the models tend to predict the same value for all observations in the
test set. For instance, the models yielding an MAE of 1.6189 have predicted the
value 3 for all observations, whereas the models with an MAE of 1.3811 have
predicted 1. This may indicate that the learning rate was too large, and that
the model stops learning as a local minima is reached. For the majority of the
models, a learning rate of 1× 10−5 yielded the least MAEs.

Batch size=256 Learning rate

Max length=64 0.005 0.001 0.0005 0.0001

NorBERT 1.3811 1.3811 0.3058 0.2796
NorBERT2 1.3811 1.6189 1.6189 1.6189
NB-BERTBASE 1.3811 1.6189 1.6189 0.2616

oversample=False Learning rate

freeze=False 5e-5 1e-5 5e-6 1e-6

NorBERT 0.2472 0.2535 0.2577 0.2955
NorBERT2 1.6172 0.2468 0.2498 0.2552
NB-BERTBASE 0.2513 0.2419 0.2445 0.2724

Table 5.14: MAE acquired by unfrozen pre-trained BERT models, fine-tuned
with a batch size of 256, maximum sentence length of 64 and various learning
rates. The best result for each model is written in bold font.

We have observed that the models fine-tuned with a batch size of 256 and
maximum sentence length of 64, regardless of the learning rate, have produced
smaller MAEs whenever the learning rate was greater than 0.0001. This conveys
that the batch size was more determinative on the model performance than the

49



maximum sentence length, and choosing larger batch sizes may result in smaller
errors. This also indicates that batches containing larger amounts of information
tend to yield better results.

Batch size=128 Learning rate

Max length=128 0.005 0.001 0.0005 0.0001

NorBERT 0.3071 1.3811 1.3811 0.3379
NorBERT2 1.3811 1.6189 1.6189 1.6189
NB-BERTBASE 1.3811 1.3811 1.3811 0.2581

oversample=False Learning rate

freeze=False 5e-5 1e-5 5e-6 1e-6

NorBERT 0.3091 0.2538 0.2497 0.2849
NorBERT2 1.6189 0.2796 0.2455 0.2410
NB-BERTBASE 0.2875 0.2689 0.2454 0.2517

Table 5.15: MAE acquired by unfrozen pre-trained BERT models, fine-tuned
with a batch size of 128, maximum sentence length of 128 and various learning
rates. The best result for each model is written in bold font.

A correlation analysis was conducted on the predictions produced by the
best-performing unfrozen BERT-based models fine-tuned on the imbalanced
data. The results are presented in Table 5.16. Unfreezing the models has re-
sulted in much higher correlation coefficients for observations from all condition
score classes, and for the overall correlation between the predictions and the
actual values of the condition score of all observations in the test set. The mag-
nitude of the coefficients are similar across all three models for all classes and for
the overall results. This demostrates that utilizing the BERT-based models in
their unfrozen state is indeed a method that yields higher model performances.
All three models had the highest correlation coefficient for the observations from
the condition score class 1, which is similar to the results obtained with the sim-
pler regression methods. This finding implicates that the models trained on the
imbalanced dataset mostly predict values around the average condition score of
the full data set, which lies in the condition score class 1.

Model params CS Class

Model name BS ML LR 0 1 2 3 All

NorBERT 256 64 5e-5 0.3105 0.4432 0.2144 0.1227 0.5998
NorBERT2 256 64 1e-5 0.2993 0.4359 0.2711 0.1671 0.6112
NB-BERTBASE 256 64 1e-5 0.3720 0.4067 0.2418 0.2273 0.6218

Table 5.16: Correlation coefficients indicating the correlation between the actual
and predicted values of the target variable. The predictions were acquired by
the unfrozen BERT-based models fine-tuned on the imbalanced data set.

The distribution of the actual values of the target variable against the distri-
bution of the predictions made by the unfrozen models are displayed in Figure

50



Figure 5.6: Kernel density estimation plots for the distribution of the actual
target values versus the predictions made by the unfrozen BERT-based models
fine-tuned on the imbalanced dataset.

5.6. The plots reveal that the distributions of the predictions made by the un-
frozen models cover a larger range within the range of the condition scores than
the frozen models. This phenomenon explains the lower MAEs acquired by the
models, indicating that the unfrozen models capable of predicting the extreme
values of the condition score, namely values closer to 0 or 3.

5.3.4 Unfrozen pre-trained BERT-based models on oversampled data

The experiments conducted with the unfrozen models fine-tuned on the imbal-
anced data were replicated on the unfrozen models fine-tuned on the oversam-
pled data. The results are shown in Tables 5.17 and 5.18 for the unfrozen models
fine-tuned with batch size/maximum sentence length combinations of (256, 64)
and (128, 128).

Surprisingly, the results acquired from these experiments has demonstrated
a different impact of the batch size on the MAEs produced by the model. In
this case, we observed that the majority of the models fine-tuned with a the
smaller batch size, regardless of the learning rate, yielded smaller errors than
the models fine-tuned with the larger batch size. While this is unexpected, it
might indicate that with a balanced dataset, the amount of information required
in each batch during the fine-tuning of the model may be reduced and optimal
model performances can still be achieved. For the different choices of the learn-
ing rate, the results do not convey a clear pattern indicating the relationship
between the learning rate and the MAEs. However, the unfrozen models fine-
tuned with smaller learning rates continued to predict the same value for every
observation in the test set, which yielded very large MAEs and poor model per-

51



forances. This phenomenon shows that unfrozen models learn better when they
are fine-tuned with smaller learning rates.

Models fine-tuned in this section have also yielded the smallest errors across
all models trained or fine-tuned in the scope of this thesis. The unfrozen
NorBERT2 model fine-tuned on the oversampled data with the batch size and
maximum sentence length of 128, and a learning rate of 1× 10−5 resulted in an
MAE of 0.1578, making it the strongest regression model we have achieved in
this thesis.

Batch size=256 Learning rate

Max length=64 0.005 0.001 0.0005 0.0001

NorBERT 1.4416 1.4416 1.4416 0.1979
NorBERT2 1.4416 1.5584 1.5584 1.5584
NB-BERTBASE 1.4416 1.5584 1.5584 0.1846

oversample=True Learning rate

freeze=False 5e-5 1e-5 5e-6 1e-6

NorBERT 0.1841 0.1934 0.2329 0.3470
NorBERT2 1.5584 0.1715 0.1728 0.2599
NB-BERTBASE 0.1933 0.1723 0.1712 0.2956

Table 5.17: MAE acquired by unfrozen pre-trained BERT models, fine-tuned
on the oversampled data set with a batch size of 256, maximum sentence length
of 64 and various learning rates. The best result for each model is written in
bold font.

Batch size=128 Learning rate

Max length=128 0.005 0.001 0.0005 0.0001

NorBERT 0.5351 0.5293 0.5305 0.2008
NorBERT2 1.4416 1.5584 1.5584 1.5584
NB-BERTBASE 1.4416 1.4416 1.5584 0.2917

oversample=True Learning rate

freeze=False 5e-5 1e-5 5e-6 1e-6

NorBERT 0.2033 0.2038 0.2167 0.3185
NorBERT2 1.5584 0.1578 0.1590 0.2155
NB-BERTBASE 0.1689 0.2194 0.1657 0.2577

Table 5.18: MAE acquired by unfrozen pre-trained BERT models, fine-tuned
on the oversampled data with a batch size of 128, maximum sentence length of
128 and various learning rates. The best result for each model is written in bold
font.

Table 5.19 shows the results of the correlation analysis conducted on the
best-performing versions of the three pre-trained unfrozen BERT-based models
in this thesis. The results of the analysis also suggests that the performance

52



gain of the unfrozen models due to the oversampling is phenomenal. All three
models demonstrated very strong correlations between the predictions and the
actual values of the target in all observations, and the observations from the
condition score classes 0 and 3. This shows that the predictive power of the
BERT-based models are highly dependent on whether the model parameters are
updated during the training, and the skewness of the target variable. Similar
to the other models in this thesis trained or fine-tuned on the oversampled data
set, the correlation coefficients acquired by the predictions on dwellings from
condition scores 1 and 2 indicate that the biggest struggle of the oversampled
models is to identify between moderately maintained dwellings in the test set
and make good predictions for these observations.

Model params CS Class

Model name BS ML LR 0 1 2 3 All

NorBERT 256 64 5e-5 0.9708 0.4023 0.3139 0.8726 0.9486
NorBERT2 128 128 1e-5 0.9607 0.4282 0.3893 0.9224 0.9548
NB-BERTBASE 128 128 5e-6 0.9586 0.4477 0.3165 0.8751 0.9457

Table 5.19: Correlation coefficients indicating the correlation between the actual
and predicted values of the target variable. The predictions were acquired by
the frozen BERT-based models fine-tuned on the oversampled data set.

The distribution of the actual values of the target variable against the dis-
tribution of the predictions made by the unfrozen models fine-tuned on the
oversampled data are shown in Figure 5.7. We observe that the distribution
plots of the actual and predicted values align with with each other in harmony
for the observations with a condition score values away from the median in both
directions, whereas the plots slightly diverge from each other for condition score
values around the median. The distribution graphs provide empirical evidence
that supports the previous observations deduced from the MAEs yielded by the
models and the results of the correlation analysis.

53



Figure 5.7: Kernel density estimation plots for the distribution of the actual
target values versus the predictions made by the unfrozen BERT-based models
fine-tuned on the oversampled dataset.

54



6 Discussion

In this thesis, we have conducted a text-based regression analysis to predict the
condition score of dwellings based on the textual features extracted from their
advertisement texts. The data used in this thesis was collected from 5 different
sources, underwent a cleaning process, and were merged with a complex merging
procedure. We have employed BoW-based models trained on BoW and TF-IDF
input matrices, and three pre-trained BERT-based models for Norwegian that
are publicly available. In this chapter, we discuss the results obtained from
these models, evaluate the model behaviors and performances under different
conditions, define the advantages and disadvantages of different models, and
propose methods to enhance the model performances.

One of the challenges faced in this thesis was combining the datasets from
5 distinct sources, where the data was contained in various formats. Many
observations had to be discarded in each data set during the merge process in
order to ensure a high quality data set. We did not include the condition report
of a dwelling unless we were confident that a corresponding advertisement text
for the dwelling exists in our datasets. Moreover, most of the condition reports
were dated from the same time period. With more data, we might have obtained
a dataset with a less skewed target variable, which could have been helpful for
achieving models with better performances.

To address the skewed distribution of the target variable, we created an over-
sampled version of the dataset and trained the models on this set. The oversam-
pling method used in this thesis to generate synthetic data was an adaptation of
the SMOTE method that is commonly used in imbalanced classification tasks.
We have adapted this method to our experiments by encoding the continuous
condition scores to discrete condition score classes according to a pre-defined en-
coder function. There are other methods in literature developed for addressing
the skewness of the target variable in a regression task that have demonstrated
promising results, such as SMOTER (Smote for Regression) (Torgo, Ribeiro,
Pfahringer, & Branco, 2013) and SMOTER with Gaussian noise (SMOGN)
(Branco, Torgo, & Ribeiro, 2017). The oversampling method chosen for this
thesis, however, was created specifically for the aim of this thesis and did not
follow an established procedure. Additionally, the intervals defining the range
of each condition score class were set manually. It would be advisable to address
the problem of having an imbalanced target with methods that has less impact
from the potential bias in the intervals.

For the BoW-based models trained on the imbalanced data set, we have
investigated the impact of the hyperparameters of the models on the model
performance, as well as how the models behaved under oversampling. The
findings show that for the majority of the models trained in this exploration,
choosing a less strict term filtering threshold and computing the BoW-based
matrices on larger vocabularies yielded smaller MAEs and improved the model
performances. This indicates that training the models with a larger number
of input features may have helped preserve the information contained in the
advertisement text and resulted in performance gain, regardless of the type of
the input feature matrix.

The results obtained from the BoW-based models we trained on the over-
sampled data set showed that the oversampling procedure has resulted in perfor-

55



mance loss for most of the regression model types. The only exception was the
gradient boosting regression model, which in fact gained performance due to the
oversampling and yielded some of the best results across all models trained on
the imbalanced data. This finding implies that the signals hidden in the textual
features are not strong enough for the simpler regression models to capture, but
are sufficient for the gradient boosting model.

The MAEs exhibited by the BoW-based models trained both on the imbal-
anced data and oversampled data have shown that in general, the least strict
term filtering threshold yields the least error across the models. One may assume
that allowing all words in the corpus in the computation of the input matrices
and removing the term filtering parameters would result in high performance
gains and a decrease in the MAEs obtained. However, owing to memory limi-
tations, training the BoW-based models on input matrices computed from the
entire vocabulary was not possible for this thesis.

Another limitation of the BoW-based models was that the input features fed
into these models were the BoW and TF-IDF matrices, two feature extraction
methods of which computations purely rely on the frequency of word occurrences
in the documents, rather than the actual context hidden in the sentences. In
addition, we have removed numerical digits from the texts, which may have
resulted in information loss as the tokens representing a year (e.g. the build
year of a house) were not considered. This decision could potentially account
for the BoW-based models’ performances.

Based on the analysis of the results obtained from the frozen fine-tuning of
the pre-trained BERT-based models on imbalanced data, we have deduced that
the choice of the hyperparameters like the batch size and maximum sentence
length had little to no effect on the model performance. In fact, the frozen mod-
els performed often worse than the BoW-based models trained on imbalanced
data. This prompted us to question the fitness of the BERT-based models in
the context of regression, as the BERT models, despite being seen as power-
ful, state-of-the-art models, failed to compete with the results obtained by the
BoW-based models trained on the imbalanced data. This was also the case
for the fine-tuning results of the BERT-based models on the oversampled data.
Even though the frozen model performances did not meet our expectations, the
outcomes may be the result of the model parameters not being updated during
the fine-tuning.

When the BERT-based models were fine-tuned in their unfrozen states, how-
ever, the resulting MAEs were slightly less than the errors made by the BoW-
based models. This outcome support that the models are able to learn more
from the input data if the model parameters are updated during fine-tuning. As
opposed to the regression models, the BERT-based models responded well when
fine-tuned on the oversampled data set. NorBERT2 yielded the best-performing
model with an MAE of 0.1578. This value was the lowest error achieved in the
coverage of this thesis.

Because of the limited computational resources, the BERT-based models
were not fine-tuned with batch sizes and maximum sentence lengths larger than
256 and 128, respectively.

During the time scope of this thesis, the LTG at the University of Oslo
has published a new version of their NorBERT models, namely the NorBERT3
(Samuel et al., 2023). The limited time frame of this thesis and prioritization
of other key aspects have prevented us from exploring their new model. The

56



NorBERT3 model was pre-trained on a corpus yielding 25 billion word tokens,
which is 12.5 larger than the number of tokens in the corpus used to train the
first NorBERT model, and 1.6 times larger than the corpus of NorBERT2.
The new model was also shown to outperform the older versions in various
downstream tasks. Considering the large size of its training corpus and the
promising performance it offers, it would have been beneficial to conduct ex-
periments using the NorBERT3 model and compare the results to the other
pre-trained BERT-based models for Norwegian.

Despite the limitations of the BoW-based models, the unexpected behavior of
the frozen BERT-based models, and other constraints regarding computational
resources, we successfully achieved our objective of predicting the condition
score of dwellings based on the advertisement text. Even though there exists
scope for refinements in order to further optimize the models, this thesis has
shown that text-based regression analysis with BoW-based and BERT-based
approaches is a viable and promising downstream task.

57



7 Conclusion

The aim of this thesis was to predict the condition score of dwellings in the
real estate market in Norway. We approached the problem by creating increas-
ingly complex regression models. We conducted hyperparameter tuning and
oversampling as an attempt to improve the model performances.

First, we created a labeled training data set by collecting data from five
different sources. Three of these sources contained detailed condition reports on
dwellings in Norway, conducted by a certified assessor. The reports consisted
of a number of checkpoints that are relevant to the units, and each checkpoint
was score scores from 0 to 3, 0 indicating perfect condition. We computed an
aggregated condition score for each dwelling, and the resulting score was used
as the target variable to be predicted by the models. Then, we obtained text
features for each dwelling, extracted from the textual content of their respective
listing advertisements. Finally, we trained BoW-based models and fine-tuned
three BERT-based models that were specifically trained on Norwegian text and
are considered one of the state-of-the-art methods for NLP tasks. The models
were trained on imbalanced and oversampled versions of the training data.

Surprisingly, the BERT-based models did not perform as well as expected, as
these models and the models trained with BoW-approaches on the imbalanced
data had similar performances in terms of MAEs obtained. Among the models
explored in this thesis, the gradient boosting regression model and the unfrozen
NB-BERTBASE model, both trained on the oversampled data set, stood out
with noteworthy results, yielding mean absolute errors of 0.1835 and 0.1578
respectively.

Estimating the real estate condition score was, to the best of our knowledge,
was a task that has never been studied before. This thesis can potentially
contribute to the advancement of knowledge in the real estate market, and the
results can be used in further research when it comes to linking home quality
with price.

58



References

Branco, P., Torgo, L., & Ribeiro, R. P. (2017). SMOGN: a pre-processing
approach for imbalanced regression. In First international workshop on
learning with imbalanced domains: Theory and applications (pp. 36–50).

Cauchy, A. (1847). Méthode générale pour la résolution des systemes
d’équations simultanées. Comp. Rend. Sci. Paris, 25 (1847), 536–538.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002).
SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research, 16 , 321–357.

CONQUAS, Singapore Building and Construction Authority. (n.d.). Retrieved
from https://www1.bca.gov.sg/buildsg/quality/conquas

Dereli, N., & Saraclar, M. (2019, July). Convolutional Neural Networks for
Financial Text Regression. In Proceedings of the 57th annual meeting of
the association for computational linguistics: Student research workshop
(pp. 331–337). Florence, Italy: Association for Computational Linguistics.
Retrieved from https://aclanthology.org/P19-2046 doi: 10.18653/
v1/P19-2046

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-
training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 .

Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: gradient boosting
with categorical features support. arXiv preprint arXiv:1810.11363 .

Dreyer, C. V. (2018, October). Finanskrisen på norsk. Retrieved
from https://eiendomnorge.no/blogg/finanskrisen-pa-norsk
-article599-923.html

Eiendom Norge. (2023). Boligprisutvikling. Retrieved from https://
eiendomnorge.no/boligprisstatistikk/statistikkbank/

Eitrheim, , & Erlandsen, S. K. (2004). Norges bank occasional papers no. 35. In
(chap. Chapter 9 – House price indices for Norway 1819–2003). Addison-
Wesley. Retrieved from https://www.norges-bank.no/globalassets/
upload/hms/pdf/hmsi_chapter9.pdf?v=03/09/2017122524&ft=.pdf

Eurostat. (2023). Distribution of population by tenure status, type of household
and income group - eu-silc survey. Retrieved from https://ec.europa
.eu/eurostat/web/products-datasets/-/ilc_lvho02

Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics
& data analysis, 38 (4), 367–378.

Goldberg, Y. (2017). Neural Network Methods for Natural Language Pro-
cessing (Vol. 37). San Rafael, CA: Morgan & Claypool. doi: 10.2200/
S00762ED1V01Y201703HLT037

Hangaard, S. (2020, Oct). The Norwegian property market in Covid19-
Times. Retrieved from https://svw.no/artikler/the-norwegian
-property-market-in-covid19-times

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical
Learning. New York, NY, USA: Springer New York Inc.

Kogan, S., Levin, D., Routledge, B. R., Sagi, J. S., & Smith, N. A. (2009).
Predicting risk from financial reports with regression. In Proceedings of
human language technologies: the 2009 annual conference of the north

59

https://www1.bca.gov.sg/buildsg/quality/conquas
https://aclanthology.org/P19-2046
https://eiendomnorge.no/blogg/finanskrisen-pa-norsk-article599-923.html
https://eiendomnorge.no/blogg/finanskrisen-pa-norsk-article599-923.html
https://eiendomnorge.no/boligprisstatistikk/statistikkbank/
https://eiendomnorge.no/boligprisstatistikk/statistikkbank/
https://www.norges-bank.no/globalassets/upload/hms/pdf/hmsi_chapter9.pdf?v=03/09/2017122524&ft=.pdf
https://www.norges-bank.no/globalassets/upload/hms/pdf/hmsi_chapter9.pdf?v=03/09/2017122524&ft=.pdf
https://ec.europa.eu/eurostat/web/products-datasets/-/ilc_lvho02
https://ec.europa.eu/eurostat/web/products-datasets/-/ilc_lvho02
https://svw.no/artikler/the-norwegian-property-market-in-covid19-times
https://svw.no/artikler/the-norwegian-property-market-in-covid19-times


american chapter of the association for computational linguistics (pp. 272–
280).

Kummervold, P. E., De la Rosa, J., Wetjen, F., & Brygfjeld, S. A. (2021).
Operationalizing a National Digital Library: The Case for a Norwegian
Transformer Model. In Proceedings of the 23rd nordic conference on com-
putational linguistics (nodalida) (pp. 20–29). Reykjavik, Iceland (On-
line): Linköping University Electronic Press, Sweden. Retrieved from
https://aclanthology.org/2021.nodalida-main.3

Kutuzov, A., Barnes, J., Velldal, E., Øvrelid, L., & Oepen, S. (2021, May 31–
2 June). Large-Scale Contextualised Language Modelling for Norwegian.
In Proceedings of the 23rd nordic conference on computational linguistics
(nodalida) (pp. 30–40). Reykjavik, Iceland (Online): Linköping University
Electronic Press, Sweden. Retrieved from https://aclanthology.org/
2021.nodalida-main.4

Lee, H. D., Lee, S., & Kang, U. (2021). Auber: automated [bert] regularization.
Plos one, 16 (6), e0253241.

Loshchilov, I., & Hutter, F. (2019). Decoupled Weight Decay Regularization.
Mamre, M. O., & Sommervoll, D. E. (2022). Coming of Age: Renovation

Premiums in Housing Markets. The Journal of Real Estate Finance and
Economics, 1–36.

Mathur, S. (2019). House price impacts of construction quality and level of
maintenance on a regional housing market: Evidence from King County,
Washington. Housing and Society , 46 (2), 57–80.

Nguyen, D., Smith, N. A., & Rose, C. (2011). Author age prediction from
text using linear regression. In Proceedings of the 5th acl-hlt workshop on
language technology for cultural heritage, social sciences, and humanities
(pp. 115–123).

Nordic Journal of Housing Research. (2021). Eierlinja og sosialdemokratiske
likhetsidealer. Tidsskrift for boligforskning , 4 (1), 4-6. Retrieved from
https://www.idunn.no/doi/abs/10.18261/issn.2535-5988-2021-01
-01 doi: 10.18261/issn.2535-5988-2021-01-01

Ooi, J. T., Le, T. T., & Lee, N.-J. (2014). The impact of construction quality
on house prices. Journal of Housing Economics, 26 , 126–138.

Oust, S. W. J. E., Are; Westgaard, & Yemane, N. K. (2021). Assessing the
explanatory power of dwelling condition in automated valuation models
within real estate (Unpublished master’s thesis). NTNU.

Prechelt, L. (2002). Early stopping-but when? In Neural networks: Tricks of
the trade (pp. 55–69). Springer.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving
language understanding by generative pre-training (Tech. Rep.). OpenAI.

Robbins, H., & Monro, S. (1951). A Stochastic Approximation Method.
The Annals of Mathematical Statistics, 22 (3), 400 – 407. Retrieved
from https://doi.org/10.1214/aoms/1177729586 doi: 10.1214/aoms/
1177729586

Samuel, D., Kutuzov, A., Touileb, S., Velldal, E., Øvrelid, L., Rønningstad, E.,
. . . Palatkina, A. S. (2023). NorBench – A Benchmark for Norwegian Lan-
guage Models. In The 24rd nordic conference on computational linguistics.
Retrieved from https://openreview.net/forum?id=WgxNONkAbz

Statistics Norway. (2012). Households’ income and wealth, 2012. Retrieved

60

https://aclanthology.org/2021.nodalida-main.3
https://aclanthology.org/2021.nodalida-main.4
https://aclanthology.org/2021.nodalida-main.4
https://www.idunn.no/doi/abs/10.18261/issn.2535-5988-2021-01-01
https://www.idunn.no/doi/abs/10.18261/issn.2535-5988-2021-01-01
https://doi.org/10.1214/aoms/1177729586
https://openreview.net/forum?id=WgxNONkAbz


from https://www.ssb.no/en/inntekt-og-forbruk/statistikker/
ifformue/aar

Statistics Norway. (2023a). Housing conditions, register-based. Re-
trieved from https://www.ssb.no/en/bygg-bolig-og-eiendom/bolig
-og-boforhold/statistikk/boforhold-registerbasert

Statistics Norway. (2023b). Konsumprisindeksen. Retrieved from https://
www.ssb.no/statbank/table/03013

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological), 58 (1), 267–
288.

Torgo, L., Ribeiro, R. P., Pfahringer, B., & Branco, P. (2013). Smote for
regression. In Progress in artificial intelligence: 16th portuguese conference
on artificial intelligence, epia 2013, angra do heroísmo, azores, portugal,
september 9-12, 2013. proceedings 16 (pp. 378–389).

Vikør, L. S., Jahr, E. H., Berg-Nordlie, M., & Thorvaldsen, B. (n.d.). Språk i
Norge.

Wikipedia. (2023). Finn.no. Retrieved from https://no.wikipedia.org/
wiki/Finn.no

Wilhelmsson, M. (2008). House price depreciation rates and level of mainte-
nance. Journal of Housing Economics, 17 (1), 88–101.

61

https://www.ssb.no/en/inntekt-og-forbruk/statistikker/ifformue/aar
https://www.ssb.no/en/inntekt-og-forbruk/statistikker/ifformue/aar
https://www.ssb.no/en/bygg-bolig-og-eiendom/bolig-og-boforhold/statistikk/boforhold-registerbasert
https://www.ssb.no/en/bygg-bolig-og-eiendom/bolig-og-boforhold/statistikk/boforhold-registerbasert
https://www.ssb.no/statbank/table/03013
https://www.ssb.no/statbank/table/03013
https://no.wikipedia.org/wiki/Finn.no
https://no.wikipedia.org/wiki/Finn.no


A Code repository

The Python code utilized to conduct the experiments in thesis is available on a
GitHub repository3.

The repository is divided into several folders.

• dataset/ contains functions related to reading data from different files,
dividing the data into training, validation and test sets.

• process/ contains code for preprocessing, cleaning and merging datasets,
as well as computing the condition scores from the reports.

• models/ contains the code used for training regression models and BERT-
based models.

• parameters/ contains additional files containing preset values, e.g. the
weights used for computing the aggregated condition scores, and column
names used to standardized the data across four data sets can be found
here.

B Computational resources

The computational environment in this thesis was provided by Huggingface
Spaces. Most of the experiments conducted in this thesis were performed on a
cloud computing environment. The Nvidia T4 medium includes 16 GB of GPU
memory, along with 8 virtual CPU and 30 GB of RAM. This environment was
chosen for the trade-off it provides between the computational capabilities and
cost. By utilizing a standardized and consistent computing platform, variability
that can arise from using different computation environments is eliminated.
Hence, it is ensured that results obtained in this study are comparable to each
other. While the memory provided by Nvidia T4 was sufficient for most of the
models trained in this thesis, models that require greater storage space were
also trained for testing purposes. Whenever this was needed, we switched to
the large Nvidia A10G GPU with 24 GB of GPU memory, 12 virtual CPUs and
142 GB of RAM. The results acquired in the latter have been marked with a
dagger† throughout this thesis.

3https://github.com/AlvaTechnologies/condition-score-estimator

62

https://github.com/AlvaTechnologies/condition-score-estimator

	Introduction
	Background
	Previous work on dwelling quality
	Previous work on using NLP for regression
	Real estate in Norway
	Matrikkelen
	Purchasing real estate
	Condition reports


	Data
	Advertisement texts
	Sold dwellings
	Condition reports
	Vendu
	Unbolt AS
	Documents from Boligmappa

	Condition score
	Merging datasets
	Oversampling

	Text-Based prediction of the dwelling condition
	Model evaluation
	Naive baseline models
	Bag of Words-based approaches
	Document representations
	Regression models
	Grid-search for tuning the gradient boosting model

	Pre-trained BERT-based approaches
	Available Pre-trained BERT-based models for Norwegian
	Finding the optimal parameters
	Improving the model performance: Oversampling and unfreezing


	Results and analysis
	Naive baseline models
	Regression models
	Regression on imbalanced data
	Grid-search for the gradient boosting model
	Regression on balanced data

	BERT-based models
	Frozen pre-trained BERT-based models on imbalanced data
	Frozen pre-trained BERT-based models on oversampled data
	Unfrozen pre-trained BERT-based models on imbalanced data
	Unfrozen pre-trained BERT-based models on oversampled data


	Discussion
	Conclusion
	References
	Code repository
	Computational resources

