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A weighted random walk approximation to

fractional Brownian motion

Tom Lindstrøm∗

Abstract

We present a random walk approximation to fractional Brownian mo-
tion where the increments of the fractional random walk are defined as a
weighted sum of the past increments of a Bernoulli random walk.
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The purpose of this brief note is to describe a discrete approximation to frac-
tional Brownian motion. The approximation works for all Hurst indices H, but
take slightly different forms for H ≤ 1

2 and H > 1
2 . There are already several

discrete approximations to fractional Brownian motion in the literature (see,
e.g., [11], [1], [3], [10], [4], [2], [5], [8] for this and related topics), and the ad-
vantage of the present approach is that the increments of the fractional random
walk is given as a weighted sum of past increments of an ordinary (Bernoulli)
random walk. This gives an excellent understanding of the dynamics of the
process and is a good starting point for stochastic calculus with respect to frac-
tional Brownian motion. A similar idea is exploited in much greater generality
by Konstantopoulos and Sakhanenko in [5], but they assume that H > 1

2 , while
the present paper is mainly of interest when H < 1

2 .
The discrete approximation is based on Mandelbrot and Van Ness’ [6] moving

frame representation of fractional Brownian motion:

xt = cH

∫ t

−∞

(
(t− r)H− 1

2 − (−r)H− 1
2

+

)
dbr

where the scaling constant cH is given by

cH =
(∫ ∞

0

(
(1 + u)H− 1

2 − uH− 1
2

)2

du +
1

2H

)− 1
2

=

√
Γ(2H + 1) sin(πH)

Γ(H + 1
2 )

(see also [9]). This representation will be used to establish the convergence.
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1 The main theorem

To state the main result, we need some notation. For each natural number N ,
let ∆tN = 1

N and think of

TN = {k∆tN | k ∈ Z}

as a timeline. We let T+
N denote the nonnegative part of T . It is convenient to

use the following convention for sums over elements in TN :

t∑
r=s

f(r) = f(s) + f(s + ∆t) + · · ·+ f(t−∆tN )

Note that the lower limit s is included in the sum, but the upper limit t is not.
We shall also write ∆f(t) = f(t + ∆tN ) − f(t) for the forward increment of f
at t.

For all t ∈ TN , let ωN (t) be independent random variables taking values ±1
with probability 1

2 . We shall write ∆BN (t) =
√

∆tNωN (t) and think of BN as
a Bernoulli random walk approximating Brownian motion. For 0 < H < 1 and
N ∈ N, define a process XH,N : ΩN × T+

N → R by XN,H(0) = 0 and

∆XH,N (s) = KH∆t
H− 1

2
N ∆BN (s) +

s∑
r=−∞

(H − 1
2
)(s− r)H− 3

2 ∆tN∆BN (r)

(using, e.g., Kolmogorov’s one series theorem, see [12], one easily checks that
the sum converges a.s.) where the constant KH is defined by

KH =

 −(H − 1
2 )ζ( 3

2 −H) for H < 1
2

1 for H ≥ 1
2

(as usual, ζ(s) =
∑∞

n=1 n−s when s > 1). Except for the Mandelbrot-Van Ness
scaling factor cH , XH,N will be our random walk approximation to fractional
Brownian motion. For convergence puposes it will be convenient to think of
XH,N as a càdlàg process defined on [0,∞), and we do this simply by assuming
that XH,N is constant between points in TN .

Remark: Note that the increment ∆XH,N (s) is a weighted sum of increments
of the Bernoulli random walk BN — it is a linear combination of the current
coin toss ωN (s) and all previous coin tosses ωN (r), r < s. Observe also that
since limH↑ 1

2
−(H − 1

2 )ζ( 3
2 − H) = lims↓1(s − 1)ζ(s) = 1, the two cases meet

continuously at H = 1
2 . For H > 1

2 , we may actually choose KH as we please
since the term will vanish in the limit (see below), but KH = 1 is the natural
value and probably the one that gives best results in numerical work.

We are now ready to state the main result. Note that when H = 1
2 ,

∆X 1
2 ,N (t) = ∆BN (t) and the theorem just reduces to the classical convergence

of a Bernoulli random walk to Brownian motion.
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Theorem 1 (Main Theorem) For all real numbers H, 0 < H < 1, the pro-
cesses cHXH,N converge weakly in D([0,∞)) to fractional Brownian motion with
Hurst index H.

Notation: In the rest of the paper, we drop the notational dependence on N
and H, and write simply X, B, T , ∆t for XH,N , BN , TN , ∆tN etc. when no
confusion can arise.

As we are interested in understanding the dynamics of fractional Brownian
motion, we have defined X by specifying its increments ∆X(s). To prove the
main theorem, we need an expression for X(t). This is just a small calculation:

X(t) =
t∑

s=0

∆X(s) =
t∑

s=0

KH∆tH−
1
2 ∆Bs +

t∑
s=0

s∑
r=−∞

(H − 1
2
)(s− r)H− 3

2 ∆t∆Br

Changing the order of summation, we have

X(t) = KH∆tH−
1
2 Bt +

t∑
r=0

t∑
s=r+∆t

(H − 1
2
)(s− r)H− 3

2 ∆t∆Br

+
0∑

r=−∞

t∑
s=0

(H − 1
2
)(s− r)H− 3

2 ∆t∆Br

where Bt =
∑t

r=0 ∆Br is a random walk converging to Brownian motion. Ob-
serve that when H > 1

2 , the first term KH∆tH−
1
2 Bt vanishes when N → ∞

(this is why the choice of KH is irrelevant in this case), but when H < 1
2 , the

term explodes. In this case we have a delicate balance between two terms going
to infinity, and a correct choice of KH is crucial.

The idea is now to simplify the expression for X by replacing the sums∑
(H− 1

2 )(s− r)H− 3
2 ∆t by the corresponding integrals

∫
(H− 1

2 )(s− r)H− 3
2 ds,

and then performing the integration. This works nicely for H > 1
2 , but when

H < 1
2 , one of the integrals diverges, and we have to be more careful. Put

crudely, it is the divergence of this integral that will cancel the divergence of
the term KH∆tH−

1
2 Bt.

We are ready to prove the main theorem, and start with the simplest case.

2 The case H > 1
2

We start from the expression

X(t) = ∆tH−
1
2 Bt +

t∑
r=0

t∑
s=r+∆t

(H − 1
2
)(s− r)H− 3

2 ∆t∆Br+
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+
0∑

r=−∞

t∑
s=0

(H − 1
2
)(s− r)H− 3

2 ∆t∆Br

above (remember that KH = 1 in this case). Since H > 1
2 , we have no problem

with convergence, and if we let εN (r, t) be the error term:

εN (r, t) :=
t∑

s=r+∆t

(H − 1
2
)(s− r)H− 3

2 ∆t−
∫ t

r+∆t

(H − 1
2
)(s− r)H− 3

2 ds,

we get

t∑
s=r+∆t

(H − 1
2
)(s− r)H− 3

2 ∆t =
∫ t

r+∆t

(H − 1
2
)(s− r)H− 3

2 ds + εN (r, t) =

= (t− r)H− 1
2 −∆tH−

1
2 + εN (r, t)

Similarly, with

δN (r, t) :=
t∑

s=0

(H − 1
2
)(s− r)H− 3

2 ∆t−
∫ t

0

(H − 1
2
)(s− r)H− 3

2 ds,

we get

t∑
s=0

(H − 1
2
)(s− r)H− 3

2 ∆t =
∫ t

0

(H − 1
2
)(s− r)H− 3

2 ds + δN (r, t) =

= (t− r)H− 1
2 − (−r)H− 1

2 + δN (r, t)

This means that

X(t) =
t∑

r=0

(
(t− r)H− 1

2 + εN (r)
)

∆Br+

+
0∑

r=−∞

(
(t− r)H− 1

2 − (−r)H− 1
2 + δN (r)

)
∆Br =

=
t∑

r=−∞

(
(t− r)H− 1

2 − (−r)H− 1
2

+

)
∆Br +

t∑
r=0

εN (r, t)∆Br +
0∑

r=−∞
δN (r, t)∆Br

We want to prove that X converges weakly to fractional Brownian motion.
According to Theorem 1 in [5], it suffices to show that E(c2

HX(t)2) → t2H .
This follows immediately from the Mandelbrot-Van Ness representation and
the following lemma.

Lemma 2 For 1
2 < H < 1:

(i) E
(
(
∑t

r=0 εN (r, t)∆Br)2
)
≤ (H − 1

2 )2t∆t2H−1
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(ii) E
(
(
∑0

r=−∞ δN (r, t)∆Br)2
)
≤ (H − 1

2 )2ζ(3− 2H)∆t2H

Proof: (i) We first observe that

εN (r, t) =
t∑

s=r+∆t

(H − 1
2
)(s− r)H− 3

2 ∆t−
∫ t

r+∆t

(H − 1
2
)(s− r)H− 3

2 ds > 0

since
∑t

s=r+∆t(H − 1
2 )(s− r)H− 3

2 ∆t is an upper Riemann sum for the integral.
Since

∑t
s=r+2∆t(H − 1

2 )(s− r)H− 3
2 ∆t is a lower Riemann sum, we also have

0 ≤ εN (r, t) ≤ (H − 1
2
)∆tH−

3
2 ∆t = (H − 1

2
)∆tH−

1
2

Thus

E

(
(

t∑
r=0

εN (r, t)∆Br)2
)

=
t∑

r=0

εN (r, t)2∆t ≤

≤
t∑

r=0

(H − 1
2
)2∆t2H−1∆t ≤ (H − 1

2
)2t∆t2H−1

(ii) Using approximating Riemann sums as in part (i), we see that

0 ≤ δN (r, t) ≤ (H − 1
2
)(−r)H− 3

2 ∆t,

and thus

E

(
(

0∑
r=−∞

δN (r, t)∆Br)2
)

=
0∑
−∞

δN (r, t)2∆t ≤
0∑

r=−∞
(H − 1

2
)2(−r)2H−3∆t3

Letting r = −k∆t, we get

E

(
(

0∑
r=−∞

δN (r, t)∆Br)2
)
≤

∞∑
k=0

(H − 1
2
)2k2H−3∆t2H =

= (H − 1
2
)2ζ(3− 2H)∆t2H

This completes the proof of the lemma (and also the proof of the Main Theorem
for the case H > 1

2 ). �

3 The case H < 1
2

Again we start from the expression

X(t) = KH∆tH−
1
2 Bt +

t∑
r=0

t∑
s=r+∆t

(H − 1
2
)(s− r)H− 3

2 ∆t∆Br+
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+
0∑

r=−∞

t∑
s=0

(H − 1
2
)(s− r)H− 3

2 ∆t∆Br

In this case, one of the integrals we worked with above diverges, and we have
to be more careful. Let us start with a closer look at the term

∑t
s=r+∆t(H −

1
2 )(s− r)H− 3

2 ∆t. We obviously have

t∑
s=r+∆t

(H − 1
2
)(s− r)H− 3

2 ∆t =

∞∑
s=r+∆t

(H − 1
2
)(s− r)H− 3

2 ∆t−
∞∑

s=t

(H − 1
2
)(s− r)H− 3

2 ∆t

and if we let r = N∆t, s = k∆t, we get

∞∑
s=r+∆t

(H − 1
2
)(s− r)H− 3

2 ∆t =
∞∑

k=N+1

(H − 1
2
)(k∆t−N∆t)H− 3

2 ∆t

= (H − 1
2
)∆tH−

1
2

∞∑
k=N+1

(k −N)H− 3
2 = (H − 1

2
)∆tH−

1
2

∞∑
n=1

nH− 3
2

= (H − 1
2
)∆tH−

1
2 ζ(

3
2
−H) = −KH∆tH−

1
2

Substituting this into the expression for X(t), we get

X(t) =
t∑

r=0

∞∑
s=t

−(H − 1
2
)(s− r)H− 3

2 ∆t∆Br

+
0∑

r=∞

t∑
s=0

(H − 1
2
)(s− r)H− 3

2 ∆t∆Br

The two sums in this expression have less dangerous limits than the one we just
got rid of, and can be approximated by integrals. If we let

ε̃N (r, t) :=
∞∑

s=t

−(H − 1
2
)(s− r)H− 3

2 ∆t−
∫ ∞

t

−(H − 1
2
)(s− r)H− 3

2 ds,

we get (remember that H < 1
2 ):

∞∑
s=t

−(H − 1
2
)(s− r)H− 3

2 ∆t =
∫ ∞

t

−(H − 1
2
)(s− r)H− 3

2 ds + ε̃N (r, t)

=
[
−(s− r)H− 1

2

]s=∞
s=t

+ ε̃N (r, t) = (t− r)H− 1
2 + ε̃N (r, t)
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Similarly, if we let

δ̃N (r, t) :=
t∑

s=0

−(H − 1
2
)(s− r)H− 3

2 ∆t−
∫ t

0

−(H − 1
2
)(s− r)H− 3

2 ds,

we get

t∑
s=0

(H − 1
2
)(s− r)H− 3

2 ∆t =
∫ t

0

(H − 1
2
)(s− r)H− 3

2 ds− δ̃N (r, t)

=
[
(s− r)H− 1

2

]s=t

s=0
− δ̃N (r, t) = (t− r)H− 1

2 − (−r)H− 1
2 − δ̃N (r, t)

We thus have

X(t) =
t∑

r=0

(
(t− r)H− 1

2 + ε̃N (r, t)
)

∆Br+

+
0∑

r=−∞

(
(t− r)H− 1

2 − (−r)H− 1
2 − δ̃N (r, t)

)
∆Br

=
t∑

r=−∞

(
(t− r)H− 1

2 − (−r)H− 1
2

+

)
∆Br+

+
t∑

r=0

ε̃N (r, t)∆Br −
0∑

r=−∞
δ̃N (r, t)∆Br

To prove that cHX converges weakly to fractional Brownian motion, we can
now longer use Theorem 1 of [5] as in the previous case since this theorem
requires that H > 1

2 . However, the first term in the expression above obviously
converges weakly to ∫ t

r=−∞

(
(t− r)H− 1

2 − (−r)H− 1
2

+

)
dbr,

and the next lemma shows that error terms go uniformly to zero. Using the
Mandelbrot-Van Ness representation, we then get the Main Theorem for H < 1

2 .

Lemma 3 For each H, 0 < H < 1
2 , there is a constant KH ∈ R+ (independent

of N and t) such that∣∣∣∣∣X(t)−
t∑

r=−∞

(
(t− r)H− 1

2 − (−r)H− 1
2

+

)
∆Br

∣∣∣∣∣ ≤ KH∆tH

Proof: It clearly suffices to show that there are constants CH , DH ∈ R+ (inde-
pendent of N and t) such that∣∣∣∣∣

t∑
r=0

ε̃N (r, t)∆Br

∣∣∣∣∣ ≤ CH∆tH and

∣∣∣∣∣
0∑

r=−∞
δ̃N (r)∆Br

∣∣∣∣∣ ≤ DH∆tH
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We begin with the ε̃N -case. By definition

ε̃N (r, t) =
∞∑

s=t

−(H − 1
2
)(s− r)H− 3

2 ∆t−
∫ ∞

t

−(H − 1
2
)(s− r)H− 3

2 ds

Since
∑∞

s=t−(H − 1
2 )(s − r)H− 3

2 ∆t is an upper Riemann sum for the integral∫∞
t
−(H − 1

2 )(s − r)H− 3
2 ds, and

∑∞
s=t+∆t−(H − 1

2 )(s − r)H− 3
2 ∆t is a lower

Riemann sum, we have

0 ≤ ε̃N (r, t) ≤ −(H − 1
2
)(t− r)H− 3

2 ∆t

Hence (remember that |∆Br| = ∆t
1
2 )∣∣∣∣∣

t∑
r=0

ε̃N (r, t)∆Br

∣∣∣∣∣ ≤
t∑

r=0

−(H − 1
2
)(t− r)H− 3

2 ∆t
3
2

If we let t = K∆t, r = k∆t, we can rewrite the last sum as

K−1∑
k=0

−(H − 1
2
)(K − k)H− 3

2 ∆tH ≤ −(H − 1
2
)ζ(

3
2
−H)∆tH

This completes the ε̃N -part of the argument.
Turning to the term

∑0
r=−∞ δ̃N (r)∆Br, we first observe that by definition

δ̃N (r) =
t∑

s=0

−(H − 1
2
)(s− r)H− 3

2 ∆t−
∫ t

0

−(H − 1
2
)(s− r)H− 3

2 ds

Again,
∑t

s=0−(H − 1
2 )(s− r)H− 3

2 ∆t is an upper Riemann sum, and we easily
see that

0 ≤ δ̃N (r) ≤ −(H − 1
2
)(−r)H− 3

2 ∆t

Letting r = −k∆t, we get

E

∣∣∣∣∣
0∑

r=−∞
δ̃N (r)∆Br

∣∣∣∣∣ ≤
0∑

r=−∞
−(H − 1

2
)(−r)H− 3

2 ∆t
3
2 ≤

≤ −(H − 1
2
)∆tH

∞∑
k=0

kH− 3
2 = −(H − 1

2
)ζ(

3
2
−H)∆tH

This proves the lemma (and hence the Main Theorem for the remaining case
H < 1

2 ). �
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