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A weighted random walk approximation to
fractional Brownian motion
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Abstract
We present a random walk approximation to fractional Brownian mo-
tion where the increments of the fractional random walk are defined as a
weighted sum of the past increments of a Bernoulli random walk.
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The purpose of this brief note is to describe a discrete approximation to frac-
tional Brownian motion. The approximation works for all Hurst indices H, but
take slightly different forms for H < % and H > % There are already several
discrete approximations to fractional Brownian motion in the literature (see,
e.g., [11], [1], [3], [10], [4], [2], [5], [8] for this and related topics), and the ad-
vantage of the present approach is that the increments of the fractional random
walk is given as a weighted sum of past increments of an ordinary (Bernoulli)
random walk. This gives an excellent understanding of the dynamics of the
process and is a good starting point for stochastic calculus with respect to frac-
tional Brownian motion. A similar idea is exploited in much greater generality
by Konstantopoulos and Sakhanenko in [5], but they assume that H > %, while
the present paper is mainly of interest when H < %

The discrete approximation is based on Mandelbrot and Van Ness’ [6] moving
frame representation of fractional Brownian motion:

Ty = cCH /t ((t — r)H*% - (—r)f*%) db,

— 00

where the scaling constant cy is given by

cg = (/OOO ((1 +U)H_% —uH_%)2 du + 1)_é _ \/F(2f‘(;:_)zl;1(ﬂ'H)

(see also [9]). This representation will be used to establish the convergence.
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1 The main theorem

To state the main result, we need some notation. For each natural number N,
let Aty = % and think of

TNZ{kAtN | kGZ}

as a timeline. We let ng denote the nonnegative part of T'. It is convenient to
use the following convention for sums over elements in Th:

t
S Fr) = f(s)+ f(s+ AL+ + f(t— Aty)

Note that the lower limit s is included in the sum, but the upper limit ¢ is not.

We shall also write Af(t) = f(t + Atn) — f(t) for the forward increment of f

at t.

For all t € T, let wy(t) be independent random variables taking values +1
with probability 3. We shall write ABy(t) = /Atywy(t) and think of By as
a Bernoulli random walk approximating Brownian motion. For 0 < H < 1 and
N €N, define a process X n : 0y X T; — R by Xn g(0) =0 and

_1 > 1
AXHJ\/‘(S) = KHAtg éABN(S) + Z (H — 5)(5 — T)H_%AtNABN(T)

r=—00

(using, e.g., Kolmogorov’s one series theorem, see [12], one easily checks that
the sum converges a.s.) where the constant Ky is defined by

—(H-3)(3-H) forH<

[N

Ky =
1 for H >

N[

(as usual, ¢(s) =Y .-, n~° when s > 1). Except for the Mandelbrot-Van Ness
scaling factor cy, Xg v will be our random walk approximation to fractional
Brownian motion. For convergence puposes it will be convenient to think of
Xu,n as a cadlag process defined on [0, 00), and we do this simply by assuming
that X g n is constant between points in Tx.

Remark: Note that the increment AXy n(s) is a weighted sum of increments
of the Bernoulli random walk By — it is a linear combination of the current
coin toss wy(s) and all previous coin tosses wy(r), r < s. Observe also that
since limp 1 —(H — 1)¢(2 = H) = lim,)1(s — 1){(s) = 1, the two cases meet
continuously at H = % For H > %, we may actually choose Ky as we please
since the term will vanish in the limit (see below), but Ky = 1 is the natural
value and probably the one that gives best results in numerical work.

We are now ready to state the main result. Note that when H = %,

AX, n(t) = ABy(t) and the theorem just reduces to the classical convergence
of a Bernoulli random walk to Brownian motion.



Theorem 1 (Main Theorem) For all real numbers H, 0 < H < 1, the pro-
cesses cy X N converge weakly in D([0,00)) to fractional Brownian motion with
Hurst index H.

Notation: In the rest of the paper, we drop the notational dependence on N
and H, and write simply X, B, T, At for Xy n, By, TN, Aty etc. when no
confusion can arise.

As we are interested in understanding the dynamics of fractional Brownian
motion, we have defined X by specifying its increments AX(s). To prove the
main theorem, we need an expression for X (¢). This is just a small calculation:

X(t)=Y AX(s) = zt:KHAtH*%ABs + i Z (H — %)(3 — )T 2 AtAB,
s=0

s=0 s=0r=—o0

Changing the order of summation, we have

t t
1 1 3
X(t)=KyAti—2B § § H->)(s—r " 2AtAB
(1) At t+r:05:r+At( 2)(5 r) tAB,

0 t
£ S H - s -0 iAAB,

r=—o00 s=0

where By = Zi:o AB, is a random walk converging to Brownian motion. Ob-
serve that when H > %, the first term KHAtH_%Bt vanishes when N — oo
(this is why the choice of K is irrelevant in this case), but when H < %, the
term explodes. In this case we have a delicate balance between two terms going
to infinity, and a correct choice of Ky is crucial.

The idea is now to simplify the expression for X by replacing the sums
S(H—3)(s— r)H=3 At by the corresponding integrals J(H=3)(s— =3 ds,
and then performing the integration. This works nicely for H > %, but when
H < %, one of the integrals diverges, and we have to be more careful. Put
crudely, it is the divergence of this integral that will cancel the divergence of
the term KHAtH_%Bt.

We are ready to prove the main theorem, and start with the simplest case.

2 The case H>%

We start from the expression

t t
1 1 3
X(t)=At" =B H->)(s—r)""2AtAB
Ot X et



0ot
1 _3
Y Y - s - iAAB,
r=—o00 s=0
above (remember that Ky = 1 in this case). Since H > %, we have no problem
with convergence, and if we let ex(r,t) be the error term:

t t
1 : 1
en(r,t) := E (H—i)(s—r)H_%At—/ (H—g)(s—r)H_% ds,
s=r+At r+At

we get

> (==t iae= [ - P — 0 dsen(rnt) =

This means that

+ 30 (=8 = ()3 4 on(r)) AB, =

t 0
> ((t—r)H*%7(7r)f_§>ABT+ZeN(r,t)ABT+ 3" on(r)AB,

T=—00 r=0 T=—00

We want to prove that X converges weakly to fractional Brownian motion.
According to Theorem 1 in [5], it suffices to show that E(c% X (t)?) — t2H.
This follows immediately from the Mandelbrot-Van Ness representation and

the following lemma.

Lemma 2 For % < H<1:

(i) £ ((Zizo en(r, t)ABr)Q) < (H — 1)2eapi—
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(i) E ((zr,_wa (r,t)ABT)2> < (H - 1)2¢(3 — 2H)A#2H
Proof: (i) We first observe that
N(rt) = Z (Hf%)(sfr)Hngtf/ (H—%)(S—T)Hfg ds >0

s=r+At r+At

since Zi:TJFAt(H (s — 7)H=3 At is an upper Riemann sum for the integral.

Since Zi=r+2At( Ds—r) H=3 At is a lower Riemann sum, we also have
1 H-3 1 -1
0<en(rt) < (Hfi)At 2At:(H—§)At 3

Thus

E ((zt: en(r, t)ABT)2> = zt:eN(r, t)2At <

r=0
¢
< APHIAL < (H - Dy2apt—
(i) Using approximating Riemann sums as in part (i), we see that

0<on(rt) < (H- %)(fr)H*%At,

and thus

Sn(r,t)AB,) Sn(r,t)2At < 2H=3 A3
£((3 antmnan) =3 > 1~ 3

r=—00 r=—00

Letting r = —kAt, we get

0 oo
( > on(rt)AB,) > <> (H = )PP ACT =
k=0

T=—00

=(H - %)24(3 —2H)At*H

This completes the proof of the lemma (and also the proof of the Main Theorem
for the case H > 1). O

3 The case H<%

Again we start from the expression

1 1 3
_ H-1 _ - _ -3
X(t) = KyAt B; + TE:O _E+At(H 2)(s T) AtAB,+



0 t
+ 3 Z(Hf%)(sfr)H*%AtABr

r=—o00 s=0
In this case, one of the integrals we worked with above diverges, and we have
to be more careful. Let us start with a closer look at the term Zi=r+At(H —

(s — rYH=3 At. We obviously have

t

S (- ) -0 iar=

s=r+At
i (H — 1)(s — )AL — i(H - 1)(s — ) A3 At
s=r+At 2 s=t 2

and if we let r = NAt, s = kAt, we get

> 1 s = 1 s
S (H-S)s—m2At= Y (H-3)(kAt— NA)T 2 At
2 2
s=r+At k=N+1
_ 1 H-3 - H-% _ 1 H-1 = H-3
= (H - 3)At > (k-N) = (H - 5)At don
k=N+1 n=1

1
—(H - §)AtH—%g(g CH) = —Kp At}

Substituting this into the expression for X (¢), we get

X(t)=3>—H- %)(s —r)HI-3AtAB,

0 t
F30 S H - s -0 EAB,

r=o00 s=0

The two sums in this expression have less dangerous limits than the one we just
got rid of, and can be approximated by integrals. If we let
En(r,t) = i —(H - 1)(5 — )3 AL — /OO —(H — 1)(s — =2 gs

Y * 2 . 2 k)

s=t

)

we get (remember that H < §):

(]2
L
=
|
2
w
|
3
=
¢
I

/too —(H ~ %)(s — )73 ds+ én(r,t)

=) bt = (- 1)



Similarly, if we let

t

s=0

we get

To prove that ¢y X converges weakly to fractional Brownian motion, we can
now longer use Theorem 1 of [5] as in the previous case since this theorem
requires that H > % However, the first term in the expression above obviously
converges weakly to

[ (et et

and the next lemma shows that error terms go uniformly to zero. Using the
Mandelbrot-Van Ness representation, we then get the Main Theorem for H < %

Lemma 3 Foreach H,0 < H < %, there is a constant Ky € Ry (independent
of N and t) such that

|X(t) - zt: ((t —r)f-s (—r)f_%) AB,| < KyAt!

r=—00

Proof: Tt clearly suffices to show that there are constants Cy, Dy € Ry (inde-
pendent of N and t) such that

t

Z gN(T, t)ABT

r=0

0
Z SN(T)ABT SDHAtH

T=—00

< CyAt?  and




We begin with the éy-case. By definition

en(rt) = 30— = g)ls =" Aa0 = [ 1 = g6 =" s

s=t

Since Z:o ‘ —(H-3%)(s— r)H=2 At is an upper Riemann sum for the integral
s D(s —7r)H~% ds, and > pias —(H = $)(s — rH=2 At is a lower
Rlemann sum we have

1
0<én(rt)<—(H- §>(t_T>H_%At

Hence (remember that |AB,| = At?)

¢
Z H—f (t—r)H-
r=0

If we let t = KAt, r = kAt, we can rewrite the last sum as

t

Z (r,t)AB,

r=0

At3

Nlw

=

" - D R < (- e -
0

ES
I

This completes the €x- part of the argument.
Turning to the term .0 On (r)AB,., we first observe that by definition

r=—00

Fo(r) = 3~ = g)lo = Har = [Tt = )= n)

s=0

Again, Zi:o —(H - 3)(s— r)H =2 At is an upper Riemann sum, and we easily

see that
1

0.< o (r) < —(H = 5)(=r)""2 At
Letting r = —kAt, we get
o, . 0 1 s s
T;m On(r)AB,| < T:ZOO —(H - 5)(—7«)H—§At§ <
3
H H-3 _ YT H
At § K% = —(H 2)4(2 H)At

This proves the lemma (and hence the Main Theorem for the remaining case
H<3). O
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