A weighted random walk approximation to fractional Brownian motion

Tom Lindstrøm*

Abstract

We present a random walk approximation to fractional Brownian motion where the increments of the fractional random walk are defined as a weighted sum of the past increments of a Bernoulli random walk.

Keywords: Fractional Brownian motion, random walks, discrete approximations, weak convergence

AMS Subject Classification (2000): Primary 60F17, 60G15, 60G18

The purpose of this brief note is to describe a discrete approximation to fractional Brownian motion. The approximation works for all Hurst indices H, but take slightly different forms for $H \leq \frac{1}{2}$ and $H>\frac{1}{2}$. There are already several discrete approximations to fractional Brownian motion in the literature (see, e.g., [11], [1], [3], [10], [4], [2], [5], [8] for this and related topics), and the advantage of the present approach is that the increments of the fractional random walk is given as a weighted sum of past increments of an ordinary (Bernoulli) random walk. This gives an excellent understanding of the dynamics of the process and is a good starting point for stochastic calculus with respect to fractional Brownian motion. A similar idea is exploited in much greater generality by Konstantopoulos and Sakhanenko in [5], but they assume that $H>\frac{1}{2}$, while the present paper is mainly of interest when $H<\frac{1}{2}$.

The discrete approximation is based on Mandelbrot and Van Ness' [6] moving frame representation of fractional Brownian motion:

$$
x_{t}=c_{H} \int_{-\infty}^{t}\left((t-r)^{H-\frac{1}{2}}-(-r)_{+}^{H-\frac{1}{2}}\right) d b_{r}
$$

where the scaling constant c_{H} is given by

$$
c_{H}=\left(\int_{0}^{\infty}\left((1+u)^{H-\frac{1}{2}}-u^{H-\frac{1}{2}}\right)^{2} d u+\frac{1}{2 H}\right)^{-\frac{1}{2}}=\frac{\sqrt{\Gamma(2 H+1) \sin (\pi H)}}{\Gamma\left(H+\frac{1}{2}\right)}
$$

(see also [9]). This representation will be used to establish the convergence.

[^0]
1 The main theorem

To state the main result, we need some notation. For each natural number N, let $\Delta t_{N}=\frac{1}{N}$ and think of

$$
T_{N}=\left\{k \Delta t_{N} \mid k \in \mathbb{Z}\right\}
$$

as a timeline. We let T_{N}^{+}denote the nonnegative part of T. It is convenient to use the following convention for sums over elements in T_{N} :

$$
\sum_{r=s}^{t} f(r)=f(s)+f(s+\Delta t)+\cdots+f\left(t-\Delta t_{N}\right)
$$

Note that the lower limit s is included in the sum, but the upper limit t is not. We shall also write $\Delta f(t)=f\left(t+\Delta t_{N}\right)-f(t)$ for the forward increment of f at t.

For all $t \in T_{N}$, let $\omega_{N}(t)$ be independent random variables taking values ± 1 with probability $\frac{1}{2}$. We shall write $\Delta B_{N}(t)=\sqrt{\Delta t_{N}} \omega_{N}(t)$ and think of B_{N} as a Bernoulli random walk approximating Brownian motion. For $0<H<1$ and $N \in \mathbb{N}$, define a process $X_{H, N}: \Omega_{N} \times T_{N}^{+} \rightarrow \mathbb{R}$ by $X_{N, H}(0)=0$ and

$$
\Delta X_{H, N}(s)=K_{H} \Delta t_{N}^{H-\frac{1}{2}} \Delta B_{N}(s)+\sum_{r=-\infty}^{s}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t_{N} \Delta B_{N}(r)
$$

(using, e.g., Kolmogorov's one series theorem, see [12], one easily checks that the sum converges a.s.) where the constant K_{H} is defined by

$$
K_{H}=\left\{\begin{array}{cc}
-\left(H-\frac{1}{2}\right) \zeta\left(\frac{3}{2}-H\right) & \text { for } H<\frac{1}{2} \\
1 & \text { for } H \geq \frac{1}{2}
\end{array}\right.
$$

(as usual, $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$ when $s>1$). Except for the Mandelbrot-Van Ness scaling factor $c_{H}, X_{H, N}$ will be our random walk approximation to fractional Brownian motion. For convergence puposes it will be convenient to think of $X_{H, N}$ as a càdlàg process defined on $[0, \infty)$, and we do this simply by assuming that $X_{H, N}$ is constant between points in T_{N}.

Remark: Note that the increment $\Delta X_{H, N}(s)$ is a weighted sum of increments of the Bernoulli random walk B_{N} - it is a linear combination of the current coin toss $\omega_{N}(s)$ and all previous coin tosses $\omega_{N}(r), r<s$. Observe also that since $\lim _{H \uparrow \frac{1}{2}}-\left(H-\frac{1}{2}\right) \zeta\left(\frac{3}{2}-H\right)=\lim _{s \downarrow 1}(s-1) \zeta(s)=1$, the two cases meet continuously at $H=\frac{1}{2}$. For $H>\frac{1}{2}$, we may actually choose K_{H} as we please since the term will vanish in the limit (see below), but $K_{H}=1$ is the natural value and probably the one that gives best results in numerical work.

We are now ready to state the main result. Note that when $H=\frac{1}{2}$, $\Delta X_{\frac{1}{2}, N}(t)=\Delta B_{N}(t)$ and the theorem just reduces to the classical convergence of a Bernoulli random walk to Brownian motion.

Theorem 1 (Main Theorem) For all real numbers $H, 0<H<1$, the processes $c_{H} X_{H, N}$ converge weakly in $D([0, \infty))$ to fractional Brownian motion with Hurst index H.

Notation: In the rest of the paper, we drop the notational dependence on N and H, and write simply $X, B, T, \Delta t$ for $X_{H, N}, B_{N}, T_{N}, \Delta t_{N}$ etc. when no confusion can arise.

As we are interested in understanding the dynamics of fractional Brownian motion, we have defined X by specifying its increments $\Delta X(s)$. To prove the main theorem, we need an expression for $X(t)$. This is just a small calculation:

$$
X(t)=\sum_{s=0}^{t} \Delta X(s)=\sum_{s=0}^{t} K_{H} \Delta t^{H-\frac{1}{2}} \Delta B_{s}+\sum_{s=0}^{t} \sum_{r=-\infty}^{s}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t \Delta B_{r}
$$

Changing the order of summation, we have

$$
\begin{gathered}
X(t)=K_{H} \Delta t^{H-\frac{1}{2}} B_{t}+\sum_{r=0}^{t} \sum_{s=r+\Delta t}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t \Delta B_{r} \\
+\sum_{r=-\infty}^{0} \sum_{s=0}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t \Delta B_{r}
\end{gathered}
$$

where $B_{t}=\sum_{r=0}^{t} \Delta B_{r}$ is a random walk converging to Brownian motion. Observe that when $H>\frac{1}{2}$, the first term $K_{H} \Delta t^{H-\frac{1}{2}} B_{t}$ vanishes when $N \rightarrow \infty$ (this is why the choice of K_{H} is irrelevant in this case), but when $H<\frac{1}{2}$, the term explodes. In this case we have a delicate balance between two terms going to infinity, and a correct choice of K_{H} is crucial.

The idea is now to simplify the expression for X by replacing the sums $\sum\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t$ by the corresponding integrals $\int\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} d s$, and then performing the integration. This works nicely for $H>\frac{1}{2}$, but when $H<\frac{1}{2}$, one of the integrals diverges, and we have to be more careful. Put crudely, it is the divergence of this integral that will cancel the divergence of the term $K_{H} \Delta t^{H-\frac{1}{2}} B_{t}$.

We are ready to prove the main theorem, and start with the simplest case.

2 The case $H>\frac{1}{2}$

We start from the expression

$$
X(t)=\Delta t^{H-\frac{1}{2}} B_{t}+\sum_{r=0}^{t} \sum_{s=r+\Delta t}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t \Delta B_{r}+
$$

$$
+\sum_{r=-\infty}^{0} \sum_{s=0}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t \Delta B_{r}
$$

above (remember that $K_{H}=1$ in this case). Since $H>\frac{1}{2}$, we have no problem with convergence, and if we let $\epsilon_{N}(r, t)$ be the error term:

$$
\epsilon_{N}(r, t):=\sum_{s=r+\Delta t}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t-\int_{r+\Delta t}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} d s
$$

we get

$$
\begin{gathered}
\sum_{s=r+\Delta t}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t=\int_{r+\Delta t}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} d s+\epsilon_{N}(r, t)= \\
=(t-r)^{H-\frac{1}{2}}-\Delta t^{H-\frac{1}{2}}+\epsilon_{N}(r, t)
\end{gathered}
$$

Similarly, with

$$
\delta_{N}(r, t):=\sum_{s=0}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t-\int_{0}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} d s
$$

we get

$$
\begin{gathered}
\sum_{s=0}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t=\int_{0}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} d s+\delta_{N}(r, t)= \\
=(t-r)^{H-\frac{1}{2}}-(-r)^{H-\frac{1}{2}}+\delta_{N}(r, t)
\end{gathered}
$$

This means that

$$
\begin{gathered}
X(t)=\sum_{r=0}^{t}\left((t-r)^{H-\frac{1}{2}}+\epsilon_{N}(r)\right) \Delta B_{r}+ \\
+\sum_{r=-\infty}^{0}\left((t-r)^{H-\frac{1}{2}}-(-r)^{H-\frac{1}{2}}+\delta_{N}(r)\right) \Delta B_{r}= \\
=\sum_{r=-\infty}^{t}\left((t-r)^{H-\frac{1}{2}}-(-r)_{+}^{H-\frac{1}{2}}\right) \Delta B_{r}+\sum_{r=0}^{t} \epsilon_{N}(r, t) \Delta B_{r}+\sum_{r=-\infty}^{0} \delta_{N}(r, t) \Delta B_{r}
\end{gathered}
$$

We want to prove that X converges weakly to fractional Brownian motion.
According to Theorem 1 in [5], it suffices to show that $E\left(c_{H}^{2} X(t)^{2}\right) \rightarrow t^{2 H}$. This follows immediately from the Mandelbrot-Van Ness representation and the following lemma.

Lemma 2 For $\frac{1}{2}<H<1$:
(i) $E\left(\left(\sum_{r=0}^{t} \epsilon_{N}(r, t) \Delta B_{r}\right)^{2}\right) \leq\left(H-\frac{1}{2}\right)^{2} t \Delta t^{2 H-1}$
(ii) $E\left(\left(\sum_{r=-\infty}^{0} \delta_{N}(r, t) \Delta B_{r}\right)^{2}\right) \leq\left(H-\frac{1}{2}\right)^{2} \zeta(3-2 H) \Delta t^{2 H}$

Proof: (i) We first observe that

$$
\epsilon_{N}(r, t)=\sum_{s=r+\Delta t}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t-\int_{r+\Delta t}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} d s>0
$$

since $\sum_{s=r+\Delta t}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t$ is an upper Riemann sum for the integral. Since $\sum_{s=r+2 \Delta t}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t$ is a lower Riemann sum, we also have

$$
0 \leq \epsilon_{N}(r, t) \leq\left(H-\frac{1}{2}\right) \Delta t^{H-\frac{3}{2}} \Delta t=\left(H-\frac{1}{2}\right) \Delta t^{H-\frac{1}{2}}
$$

Thus

$$
\begin{aligned}
& E\left(\left(\sum_{r=0}^{t} \epsilon_{N}(r, t) \Delta B_{r}\right)^{2}\right)=\sum_{r=0}^{t} \epsilon_{N}(r, t)^{2} \Delta t \leq \\
\leq & \sum_{r=0}^{t}\left(H-\frac{1}{2}\right)^{2} \Delta t^{2 H-1} \Delta t \leq\left(H-\frac{1}{2}\right)^{2} t \Delta t^{2 H-1}
\end{aligned}
$$

(ii) Using approximating Riemann sums as in part (i), we see that

$$
0 \leq \delta_{N}(r, t) \leq\left(H-\frac{1}{2}\right)(-r)^{H-\frac{3}{2}} \Delta t,
$$

and thus

$$
E\left(\left(\sum_{r=-\infty}^{0} \delta_{N}(r, t) \Delta B_{r}\right)^{2}\right)=\sum_{-\infty}^{0} \delta_{N}(r, t)^{2} \Delta t \leq \sum_{r=-\infty}^{0}\left(H-\frac{1}{2}\right)^{2}(-r)^{2 H-3} \Delta t^{3}
$$

Letting $r=-k \Delta t$, we get

$$
\begin{gathered}
E\left(\left(\sum_{r=-\infty}^{0} \delta_{N}(r, t) \Delta B_{r}\right)^{2}\right) \leq \sum_{k=0}^{\infty}\left(H-\frac{1}{2}\right)^{2} k^{2 H-3} \Delta t^{2 H}= \\
=\left(H-\frac{1}{2}\right)^{2} \zeta(3-2 H) \Delta t^{2 H}
\end{gathered}
$$

This completes the proof of the lemma (and also the proof of the Main Theorem for the case $H>\frac{1}{2}$).

3 The case $H<\frac{1}{2}$

Again we start from the expression

$$
X(t)=K_{H} \Delta t^{H-\frac{1}{2}} B_{t}+\sum_{r=0}^{t} \sum_{s=r+\Delta t}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t \Delta B_{r}+
$$

$$
+\sum_{r=-\infty}^{0} \sum_{s=0}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t \Delta B_{r}
$$

In this case, one of the integrals we worked with above diverges, and we have to be more careful. Let us start with a closer look at the term $\sum_{s=r+\Delta t}^{t}(H-$ $\left.\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t$. We obviously have

$$
\begin{gathered}
\sum_{s=r+\Delta t}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t= \\
\sum_{s=r+\Delta t}^{\infty}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t-\sum_{s=t}^{\infty}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t
\end{gathered}
$$

and if we let $r=N \Delta t, s=k \Delta t$, we get

$$
\begin{gathered}
\sum_{s=r+\Delta t}^{\infty}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t=\sum_{k=N+1}^{\infty}\left(H-\frac{1}{2}\right)(k \Delta t-N \Delta t)^{H-\frac{3}{2}} \Delta t \\
=\left(H-\frac{1}{2}\right) \Delta t^{H-\frac{1}{2}} \sum_{k=N+1}^{\infty}(k-N)^{H-\frac{3}{2}}=\left(H-\frac{1}{2}\right) \Delta t^{H-\frac{1}{2}} \sum_{n=1}^{\infty} n^{H-\frac{3}{2}} \\
=\left(H-\frac{1}{2}\right) \Delta t^{H-\frac{1}{2}} \zeta\left(\frac{3}{2}-H\right)=-K_{H} \Delta t^{H-\frac{1}{2}}
\end{gathered}
$$

Substituting this into the expression for $X(t)$, we get

$$
\begin{aligned}
X(t) & =\sum_{r=0}^{t} \sum_{s=t}^{\infty}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t \Delta B_{r} \\
& +\sum_{r=\infty}^{0} \sum_{s=0}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t \Delta B_{r}
\end{aligned}
$$

The two sums in this expression have less dangerous limits than the one we just got rid of, and can be approximated by integrals. If we let

$$
\tilde{\epsilon}_{N}(r, t):=\sum_{s=t}^{\infty}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t-\int_{t}^{\infty}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} d s
$$

we get (remember that $H<\frac{1}{2}$):

$$
\begin{gathered}
\sum_{s=t}^{\infty}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t=\int_{t}^{\infty}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} d s+\tilde{\epsilon}_{N}(r, t) \\
=\left[-(s-r)^{H-\frac{1}{2}}\right]_{s=t}^{s=\infty}+\tilde{\epsilon}_{N}(r, t)=(t-r)^{H-\frac{1}{2}}+\tilde{\epsilon}_{N}(r, t)
\end{gathered}
$$

Similarly, if we let

$$
\tilde{\delta}_{N}(r, t):=\sum_{s=0}^{t}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t-\int_{0}^{t}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} d s
$$

we get

$$
\begin{aligned}
& \sum_{s=0}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t=\int_{0}^{t}\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} d s-\tilde{\delta}_{N}(r, t) \\
& =\left[(s-r)^{H-\frac{1}{2}}\right]_{s=0}^{s=t}-\tilde{\delta}_{N}(r, t)=(t-r)^{H-\frac{1}{2}}-(-r)^{H-\frac{1}{2}}-\tilde{\delta}_{N}(r, t)
\end{aligned}
$$

We thus have

$$
\begin{gathered}
X(t)=\sum_{r=0}^{t}\left((t-r)^{H-\frac{1}{2}}+\tilde{\epsilon}_{N}(r, t)\right) \Delta B_{r}+ \\
+\sum_{r=-\infty}^{0}\left((t-r)^{H-\frac{1}{2}}-(-r)^{H-\frac{1}{2}}-\tilde{\delta}_{N}(r, t)\right) \Delta B_{r} \\
=\sum_{r=-\infty}^{t}\left((t-r)^{H-\frac{1}{2}}-(-r)_{+}^{H-\frac{1}{2}}\right) \Delta B_{r}+ \\
+\sum_{r=0}^{t} \tilde{\epsilon}_{N}(r, t) \Delta B_{r}-\sum_{r=-\infty}^{0} \tilde{\delta}_{N}(r, t) \Delta B_{r}
\end{gathered}
$$

To prove that $c_{H} X$ converges weakly to fractional Brownian motion, we can now longer use Theorem 1 of [5] as in the previous case since this theorem requires that $H>\frac{1}{2}$. However, the first term in the expression above obviously converges weakly to

$$
\int_{r=-\infty}^{t}\left((t-r)^{H-\frac{1}{2}}-(-r)_{+}^{H-\frac{1}{2}}\right) d b_{r}
$$

and the next lemma shows that error terms go uniformly to zero. Using the Mandelbrot-Van Ness representation, we then get the Main Theorem for $H<\frac{1}{2}$.

Lemma 3 For each $H, 0<H<\frac{1}{2}$, there is a constant $K_{H} \in \mathbb{R}_{+}$(independent of N and t) such that

$$
\left|X(t)-\sum_{r=-\infty}^{t}\left((t-r)^{H-\frac{1}{2}}-(-r)_{+}^{H-\frac{1}{2}}\right) \Delta B_{r}\right| \leq K_{H} \Delta t^{H}
$$

Proof: It clearly suffices to show that there are constants $C_{H}, D_{H} \in \mathbb{R}_{+}$(independent of N and t) such that

$$
\left|\sum_{r=0}^{t} \tilde{\epsilon}_{N}(r, t) \Delta B_{r}\right| \leq C_{H} \Delta t^{H} \quad \text { and } \quad\left|\sum_{r=-\infty}^{0} \tilde{\delta}_{N}(r) \Delta B_{r}\right| \leq D_{H} \Delta t^{H}
$$

We begin with the $\tilde{\epsilon}_{N}$-case. By definition

$$
\tilde{\epsilon}_{N}(r, t)=\sum_{s=t}^{\infty}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t-\int_{t}^{\infty}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} d s
$$

Since $\sum_{s=t}^{\infty}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t$ is an upper Riemann sum for the integral $\int_{t}^{\infty}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} d s$, and $\sum_{s=t+\Delta t}^{\infty}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t$ is a lower Riemann sum, we have

$$
0 \leq \tilde{\epsilon}_{N}(r, t) \leq-\left(H-\frac{1}{2}\right)(t-r)^{H-\frac{3}{2}} \Delta t
$$

Hence (remember that $\left|\Delta B_{r}\right|=\Delta t^{\frac{1}{2}}$)

$$
\left|\sum_{r=0}^{t} \tilde{\epsilon}_{N}(r, t) \Delta B_{r}\right| \leq \sum_{r=0}^{t}-\left(H-\frac{1}{2}\right)(t-r)^{H-\frac{3}{2}} \Delta t^{\frac{3}{2}}
$$

If we let $t=K \Delta t, r=k \Delta t$, we can rewrite the last sum as

$$
\sum_{k=0}^{K-1}-\left(H-\frac{1}{2}\right)(K-k)^{H-\frac{3}{2}} \Delta t^{H} \leq-\left(H-\frac{1}{2}\right) \zeta\left(\frac{3}{2}-H\right) \Delta t^{H}
$$

This completes the $\tilde{\epsilon}_{N}$-part of the argument.
Turning to the term $\sum_{r=-\infty}^{0} \tilde{\delta}_{N}(r) \Delta B_{r}$, we first observe that by definition

$$
\tilde{\delta}_{N}(r)=\sum_{s=0}^{t}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t-\int_{0}^{t}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} d s
$$

Again, $\sum_{s=0}^{t}-\left(H-\frac{1}{2}\right)(s-r)^{H-\frac{3}{2}} \Delta t$ is an upper Riemann sum, and we easily see that

$$
0 \leq \tilde{\delta}_{N}(r) \leq-\left(H-\frac{1}{2}\right)(-r)^{H-\frac{3}{2}} \Delta t
$$

Letting $r=-k \Delta t$, we get

$$
\begin{aligned}
& E\left|\sum_{r=-\infty}^{0} \tilde{\delta}_{N}(r) \Delta B_{r}\right| \leq \sum_{r=-\infty}^{0}-\left(H-\frac{1}{2}\right)(-r)^{H-\frac{3}{2}} \Delta t^{\frac{3}{2}} \leq \\
& \leq-\left(H-\frac{1}{2}\right) \Delta t^{H} \sum_{k=0}^{\infty} k^{H-\frac{3}{2}}=-\left(H-\frac{1}{2}\right) \zeta\left(\frac{3}{2}-H\right) \Delta t^{H}
\end{aligned}
$$

This proves the lemma (and hence the Main Theorem for the remaining case $H<\frac{1}{2}$).

References

[1] N.J. Cutland, P.E. Kopp, and W. Willinger: Stock price returns and the Joseph effect: a fractional version of the Black-Scholes model, Progress in Prob. 36 (1995), 327-351
[2] F. Biagini, M. Campanino, and S. Fuschini: Discrete approximation of stochastic integrals with respect to fractional Brownian motion of Hurst index $H>\frac{1}{2}$, Preprint 2007 (revised), University of Bologna
[3] A. Dasgupta: Fractional Brownian motion: its properties and applications to stochastic integration, Ph.D. thesis, University of North Carolina, 1997
[4] C. Klüppelberg and Chr. Kühn: Fractional Brownian motion as a weak limit of Poisson shot noise processes - with applications to finance, Stoch. Proc. Appl. 113 (2004), 335-351
[5] T. Konstantopoulos and A. Sakhanenko: Convergence and convergence rate to fractional Brownian motion for weighted random sums, Siberian Elec. Math. Reports, 1 (2004), 47-63
[6] B.B. Mandelbrot and J.W. Van Ness: Fractional Brownian motion, fractional noise and applications, SIAM Reviews, 10 (1968), 422-437
[7] Yu. Mishura and G. Shevchenko: The rate of convergence of Euler approximations for solutions of stochastic differential equations driven by fractional Brownian motion, Preprint 2007 (arXiv:0705.1773v1)
[8] A. Neuenkirch: Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion, Preprint 2007 (arXiv:0706.2636v1)
[9] G. Samorodnitsky and M.S. Taqqu: Stable non-gaussian random processes, Chapman \& Hall, New York, 1994
[10] T. Sottinen: Fractional Brownian motion, random walks and binary market models, Finance and Stochastics, 5 (2001), 343-355
[11] M.S. Taqqu: Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrsch. Verw. Geb. 31 (1975), 287-302
[12] S.R.S. Varadhan: Probability Theory, Courant Lectures in Mathematics 7, Amer. Math. Soc., Providence, 2001

[^0]: * Centre of Mathematics for Applications and Department of Mathematics, PO Box 1053 Blindern, N-0316 Oslo, Norway. e-mail:lindstro@math.uio.no

