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1. INTRODUCTION

In cointegrated vector autoregressive models CVAR, or reduced rank VAR models, the parameters of the cointe-
gration vectors and the adjustment parameters have an important role. The adjustment coefficients describe the
speed of convergence toward the equilibrium defined by the cointegration vectors, and are therefore essential in
specifying the error correcting properties of these models. A particular important restriction on the adjustment
parameters is weak exogeneity see Engle et al. (1983). This implies that the distribution factorizes in a conditional
and marginal part such that inference on the parameters of interest can be performed in the conditional part with-
out any loss of information. In the CVAR model weak exogeneity is equivalent to one or several rows in the matrix
of adjustment coefficients, 𝛼, being zero. Tests for this hypothesis have been developed. If the adjustment coeffi-
cients corresponding to particular variables vanish, the error correcting effect of the cointegration vector will not
be present for these particular variables.

Expectations are fundamental in economics. For interpretation, a crucial question is how they are defined
and implemented. There have been several proposals for how this can be done. In the approach introduced by
Muth (1961), which is usually called rational expectations, expectations are essentially the same as predictions of
the relevant economic theory. In the setup of this article this is summarized in the CVAR and the predictions are
the conditional expectations given the available observations at the time.

Consider for example a present value model. In a simplification of an example from Campbell and Shiller (1987)
the value of stocks at the beginning of period t, Yt is expressed as a discounted sum of expected present and future
dividends, Yt = 𝛿

∑∞
j=0𝛿

jEt[yt+j], where yt is the dividend from the period t. Present value models can often be
expressed as a linear combination of observed values and conditional expectations of others. In the example an
implication is the relation St = [𝛿∕(1 − 𝛿)]Et[ΔYt+1] where the spread St equals Yt − [𝛿∕(1 − 𝛿)]yt.
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2 S. JOHANSEN AND A. R. SWENSEN

Such linear combinations of observed values and expectations are typical for the rational expectations we con-
sider. Assuming that the data generating process can be expressed as a CVAR, rational expectations imply that
certain linear restrictions on the coefficients must be satisfied.

In this article, we will consider how one can test simultaneously for linear rational expectations relations of
the type described and that adjustment coefficients satisfy the same restrictions, that is, 𝛼 = A𝜓 where A is a
known matrix and 𝜓 is unknown. Also the case where some of the adjustment coefficients are known in addition
to the restrictions from the exact rational expectation hypothesis, will be considered. In both cases we discuss a
convenient reparameterization. In the first case this leads to a rather general procedure for maximum likelihood
estimation and testing. The second case is more complicated and here we suggest a switching procedure for a
particular case.

The article is a follow up of three related articles dealing with various aspects of the theme: Johansen and
Swensen (1999) where the CVAR contained an unrestricted constant, Johansen and Swensen (2004) where the
constant and trend could be restricted and in particular Johansen and Swensen (2011) where simultaneous tests
for restrictions on the parameters in the cointegration vectors and rational expectations were considered.

We point out that the relations involving the conditional expectations we consider are exact as defined by Hansen
and Sargent (1981, 1991), that is, do not contain additional stochastic terms. To see the problems occurring for
non-exact specifications in VAR models one can consult Boug et al. (2010) or Swensen (2014). An alternative
class of models is focused on the solution of a system involving conditional expectations of future variables and
random errors. The question of existence and uniqueness of the solutions then arises, for more details one can
consult Juselius (2011) and Al-Sadoon (2017).

The organization of the article is as follows. In Section 2 the rational expectation models are explained. In
Section 3 we consider the case where the columns of the matrix of adjustment coefficients belong to a subspace.
In Section 4 the case where parts of the adjustment parameters are known is treated. Section 5 contains some
numerical results and Section 6 an application.

2. THE RESTRICTIONS IMPLIED BY EXACT RATIONAL EXPECTATIONS

This section defines the cointegrated vector autoregressive model as the statistical model which is assumed to
generate the data and formulates the parameter restrictions implied by the exact rational expectation hypothesis.

2.1. The Cointegrated Vector Autoregressive Model

Let the p-dimensional vectors of observations be generated according to the vector autoregressive model

ΔXt = ΠXt−1 +
k∑

i=1

ΓiΔXt−i + 𝜇 + 𝜀t, t = 1, … ,T (1)

where X−k, … ,X0 are fixed and 𝜀1, … , 𝜀T are independent, identically distributed Gaussian vectors, with mean
zero and positive definite covariance matrix Ω. We assume that {Xt}t=1,2,… is I(1) and that Π = 𝛼𝛽

′ where the
p× r matrices 𝛼 and 𝛽 have full column rank r, 0 < r < p. This implies that Xt is non-stationary, ΔXt is stationary,
and that 𝛽′Xt is stationary. It is the stationary relations between non-stationary processes and the interpretation as
long-run relations, that has created the interest in this type of model in economics. Also note that the columns of
𝛼 and Π = 𝛼𝛽′ span the same space. As in Johansen (1996) we define the following models.

(r): The model is defined by (1), where 𝛼 and 𝛽 are p × r matrices and otherwise no further restrictions on
the parameters. The number of identified parameters in the matrix 𝛼𝛽′ is #(𝛼𝛽′) = pr + r(p − r).

1(r): The model is defined by (1) and the restriction 𝛼 = A𝜓, where A is a known p× s matrix of rank s, and 𝜓
is an s× r matrix of parameters, r ≤ s ≤ p. In this case the number of parameters is #(𝛼𝛽′) = sr+ r(p− r).

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
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ADJUSTMENT COEFFICIENTS AND EXACT RATIONAL EXPECTATIONS 3

2(r): The model is defined by (1) and the restriction 𝛼 = (a, a
⊥
𝜙) where a is a known p × m matrix of rank

m > 0, and 𝜙 is a (p−m) × (r−m)matrix of parameters, m ≤ r ≤ p such that 𝛼𝛽′ = a𝛽′1 + a
⊥
𝜙𝛽

′
2. In this

model #(𝛼𝛽′) = mp + (r − m)(2p − r).
All models (r), 1(r), and 2(r) are analyzed in Johansen (1996). It is shown, under the Gaussian assump-

tion, how they can be estimated using the reduced rank technique introduced by Anderson (1951). Furthermore,
likelihood ratio tests can be used to test the submodels1(r) or 2(r) against the general model (r).

In the following, if a is an n × m, 0 < m < n matrix of full rank, a
⊥

is the orthogonal complement, that is an
n × (n − m) matrix of rank n − m such that a′a

⊥
= 0. We use the notation ā = a(a′a)−1 and ā

⊥
= a

⊥
(a′
⊥

a
⊥
)−1.

2.2. The Model for Exact Rational Expectations and Some Examples

The model formulates a set of restrictions on the conditional expectation of Xt+1 given the information t in the
variables up to time t, which, as explained in Johansen and Swensen (2008) can be written in the form

 : The model based exact rational expectations formulates relations for conditional expectations

E[c′ΔXt+1|t] = 𝜏d′Xt +
𝓁∑

i=1

𝜏id
′
iΔXt+1−i + d

𝜇
. (2)

Here Et = E[⋅|t] denotes the conditional expectation in the probabilistic sense of model (1), given the
variables X1, … ,Xt. The matrices c of dimensions p × q, d of dimensions p × n and di of dimensions
p × ni, i = 1, … ,𝓁 are known full rank matrices and 𝜏(q × n), 𝜏i(q × ni), i = 1, … ,𝓁 are parameters.
The elements of the q × 1 vector d

𝜇
are either known or parameters. We assume that n ≤ q and 𝓁 ≤ k.

We give next two examples of exact rational expectations models of the form (2).

Example 1. The variables real consumption, CPt, real labor income, YLt, and real capital income YKt, are funda-
mental in models for aggregate consumption, both for those in the Keynesian tradition and for versions building
on a permanent income hypothesis.

Campbell (1987) studied a permanent income hypothesis for consumption of the form:

CPt = 𝛾[YKt +
𝜌

1 + 𝜌

∞∑

i=0

(
𝜌

1 + 𝜌

)i

Et[YLt+i]]

where 𝜌 is the expected real interest rate and 𝛾 ≤ 1 is a proportionality factor. Current consumption is therefore a
fraction of present and estimated future labor income and present capital income.

Savings is defined as St = (YLt + YKt) − CPt∕𝛾 . Campbell showed that

St − ΔYLt − (1 + 𝜌)St−1 = −𝜌et (3)

where

et =
1

1 + 𝜌

∞∑

i=0

( 1
1 + 𝜌

)i

(Et[YLt+i] − Et−1[YLt+i]).

Then et is a martingale difference, such that Et[et+1] = 0. Using iterated expectations (3) therefore implies

Et[St+1 − ΔYLt+1] − (1 + 𝜌)St = 0.

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12705 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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4 S. JOHANSEN AND A. R. SWENSEN

Expressed by the variables Xt = (CPt,YLt,YKt)′ this can be written

Et[ΔYKt+1 − ΔCPt+1∕𝛾] = −
𝜌

𝛾

CPt + 𝜌(YLt + YKt).

When the proportionality factor 𝛾 and the real interest rate 𝜌 are known, this has the form (2) with c = (−1∕𝛾, 0, 1)′
and d = 𝜌(−1∕𝛾, 1, 1)′ known matrices.

An alternative to the permanent income hypothesis is that consumption is determined by current income as
suggested by Keynes. This can be modeled using a VAR model for (CPt,YLt,YKt)′ of type1(r)with 𝛼 = (1, 0, 0)′
if the reduced rank is 1.

Example 2. In Boug et al. (2017) the following model for inflation dynamics was studied

Δpt = 𝛾f Et[Δpt+1] − 𝜆(pt − 𝛿1ulct − 𝛿2uict) + 𝛾bΔpt−1 + 𝛿0

where pt is the consumer price index and ulct and uict denote unit labor cost and unit import cost, all in logarithms.
Define Xt = (pt, ulct, uict)′, c = (1, 0, 0)′ and d = (1,−𝛿1,−𝛿2)′. Dividing by 𝛾f one gets

Et[Δpt+1] = (𝜆∕𝛾f )(pt − 𝛿1ulct − 𝛿2uict) + (1∕𝛾f )Δpt − (𝛾b∕𝛾f )Δpt−1 − 𝛿0∕𝛾f

which can be expressed as

c′Et[ΔXt+1] = 𝜏d′Xt + 𝜏1d′1ΔXt + 𝜏2d′2ΔXt−1 + 𝜇. (4)

This is of the form (2) with 𝓁 = 2 and c, d, d1 = d2 = e1 are known vectors.
As mentioned in Boug et al. (2017), Aukrust (1977) pointed out that for Norway the direct effect on consumer

prices of a proportionate increase in import prices is around 0.33 percent. A reasonable specification where the
matrix d is known is therefore d = (1,−2∕3,−1∕3).

2.3. Combining the Exact Rational Expectations and the Vector Autoregressive Models

We combine the exact rational expectations and the vector autoregressive models,1(r) and2(r) and express the
exact rational expectations model (2) as restrictions on the coefficients of the statistical model (1). As indicated in
the introduction the arguments are similar to those presented in Johansen and Swensen (2008).

Taking the conditional expectation of c′ΔXt+1 given X1, … ,Xt, we get by using (1),

c′Et[ΔXt+1] = c′𝛼𝛽′Xt +
k∑

i=1

c′ΓiΔXt+1−i + c′𝜇.

Equating this expression to (2) implies that the following conditions must be satisfied

c′𝛼𝛽′ = 𝜏d′, (5)

and

c′Γi = 𝜏id
′
i , i = 1, … ,𝓁, c′Γi = 0, i = 𝓁 + 1, … , k, c′𝜇 = d

𝜇
. (6)

Note that (5) implies that 𝜏d′𝛽
⊥
= 0, so that when n ≤ q we find 𝜏 ′𝜏d′𝛽

⊥
= d′𝛽

⊥
= 0, and hence sp(d) ⊆ sp(𝛽)

and therefore n ≤ r.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12705

 14679892, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12705 by U

niversity O
f O

slo, W
iley O

nline L
ibrary on [18/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ADJUSTMENT COEFFICIENTS AND EXACT RATIONAL EXPECTATIONS 5

So far the restrictions from the exact rational expectations are the same as in Johansen and Swensen (2008).
Whereas the focus there was on models with restrictions on the cointegration vectors defined by 𝛽, we now consider
restrictions on the adjustment parameters in 𝛼. Consider the following two specifications of restriction (5) on 𝛼

𝛼 = A𝜓, c′𝛼𝛽′ = 𝜏d′, and rank(𝛼𝛽′) = r, (7)

and

𝛼 = (a, a
⊥
𝜙), c′𝛼𝛽′ = 𝜏d′, and rank(𝛼𝛽′) = r. (8)

Thus, 𝜓 and 𝜙 describe restrictions on the adjustment coefficients 𝛼 and we can now define two submodels of
1(r) and 2(r) respectively which satisfy the restrictions in .


†
1 (r): The model is a submodel of 1(r) which satisfies the restrictions (6) and (7),

†
2 (r): The model is a submodel of 2(r) which satisfies the restrictions (6) and (8).

When estimating models†
1 (r) and†

2 (r) it is convenient to use a parametrization of freely varying parameters.
Such a parametrization is given for the first model in Section 3 together with an analysis of the estimation problem.
In Section 4 we discuss the model †

2 (r).

3. THE SAME RESTRICTIONS ON ALL 𝛼, THAT IS, †
1 (r)

We first give a representation in terms of freely varying parameters of the matrix 𝛼𝛽′, when restricted by 𝛼 = A𝜓
and c′𝛼𝛽′ = 𝜏d′, see (7). Then the relation between the sp(c) and sp(A)must be taken into account. Here sp(c) and
sp(A) denote the linear subspaces of Rp spanned by the columns of c and A respectively.

3.1. A Reparameterization of †
1 (r)

Following Johansen and Swensen (2008) it is convenient to define the s× o matrix u and (p− q) × o matrix v such
that A′c

⊥
= uv′ where o is equal to the rank of A′c

⊥
. The space Rp has the orthogonal decomposition (c, c

⊥
v, c

⊥
v
⊥
).

Also, when c′
⊥

A ≠ 0,

A = cc′A + c
⊥

c′
⊥

A = cc′A + c
⊥

vu′

so sp(c,A) = sp(c, c
⊥

v) and c
⊥

v
⊥

spans the orthogonal complement of sp(c,A). In particular it follows that if
sp(c) ⊆ sp(A), then sp(A) = sp(c,A) = sp(c, c

⊥
v) such that

sp(c
⊥

v) ⊆ sp(A) and o = s − q (9)

since A and c have rank s and q respectively. One can then prove the following generalization of Proposition 2 in
Johansen and Swensen (1999). The proof can be found in Appendix A.

Proposition 1. Consider the matrixΠ = 𝛼𝛽′ of the model defined in (1). Let c and d be known matrices of full rank
and dimensions p×q and p×n respectively where n ≤ q. Let A be a known p×s matrix such that rank(A′c

⊥
) = o ≤ s

and A′c
⊥
= uv′ for matrix u of rank o and dimension s × o and matrix v of rank o and of dimension (p − q) × o.

Assume A′c
⊥
≠ 0 and consider two sets of restrictions on the parameters of the matrix Π.

The first set of restrictions is formulated as

𝛼 = A𝜓, c′𝛼𝛽′ = 𝜏d′ and rank(𝛼𝛽′) = r, (10)

see (7).

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12705 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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6 S. JOHANSEN AND A. R. SWENSEN

Table I. Summary of the coefficient and parameter matrices and their dimensions, as used in the formulation of the model and
its reparameterization in Proposition 1

Model Reparameterization

Coefficients Ap×s cp×q dp×n us×o v(p−q)×o

Parameters 𝜓s×r 𝛽p×r 𝜏q×n 𝜅o×(r−n) 𝜃o×n 𝜁(p−n)×(r−n)

The second set of restrictions is formulated as

𝛼𝛽
′ = c𝜏d′ + c

⊥
v𝜃d′ + c

⊥
v𝜅𝜁 ′d′

⊥
(11)

where rank(A′c
⊥
) = o ≥ r − n, and there exist matrices 𝜅 and 𝜁 of full rank and dimensions o × (r − n) and

(p − n) × (r − n) respectively and where 𝜃 is o × n.
Then it holds that (10) implies (11), and if further sp(c) ⊆ sp(A) then (11) implies (10).

We summarize the dimensions of the matrices introduced in Table I.

Remark 1. Note that the p × n matrix d contains the known cointegration relations such that r − n is the number
of freely varying cointegration relations. Similarly s is the dimension of the range of 𝛼, so s − r is a measure of
the indeterminacy of the adjustment vectors 𝛼.

Remark 2. From Proposition 1 one gets conditions where a reparameterization using 𝜏, 𝜅, 𝜃 and 𝜁 is possible
instead of 𝛼 = A𝜓 and 𝛽 restricted as described in (10). To be more specific: in (11) 𝛼𝛽′ is expressed by the
parameters 𝜏, 𝜃 and 𝜅𝜁 ′. Conversely, to express 𝜏, 𝜃 and 𝜅𝜁 ′ by 𝛼 = A𝜓 and 𝛽 one can use the following equation
from the proof of Proposition 1

(
c′

c′
⊥

)

A𝜓𝛽′(d, d
⊥
) =

(
𝜏 0

v𝜃 v𝜅𝜁 ′

)

.

Hence 𝜏 = c′A𝜓𝛽′d and 𝜃 = (v′v)−1v′c′
⊥

A𝜓𝛽′d = u′𝜓𝛽′d. Also v𝜅𝜁 ′ = c′
⊥

A𝜓𝛽′d
⊥
= vu′𝜓𝛽′d

⊥
such that

𝜅𝜁
′ = u′𝜓𝛽′d

⊥
after multiplication with v′.

Remark 3. The number of parameters in the matrix Π restricted as in Model H†
1(r) ∶ Π = A𝜓𝛽′ and by (7):

c′Π = c′A𝜓𝛽′ = 𝜏d′, can be found from the representation (11) in Proposition 1. The number is given by

#𝜏q×n + #𝜃o×n + #𝜅o×(r−n)𝜁
′
(r−n)×(p−n) = qn + on + (r − n)(p − r + o),

which for sp(c) ⊆ sp(A), where o = s − q, reduces to sr + (r − n)(p − r − q).

The case when A′c
⊥
= 0 represents a particular case. An important example is when the matrices A and c are

equal, A = c. In Proposition 2 the situation is described. Details of the proof, using arguments similar to those
used to prove Proposition 1, can be found in Appendix B.

Proposition 2. Assume A′c
⊥
= 0. Then the following statements are equivalent.

c′A𝜓𝛽′ = 𝜏d′ (12)

and

A𝜓𝛽′ = c𝜏d′. (13)

In both cases r = rank(A𝜓𝛽′) = n.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12705
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ADJUSTMENT COEFFICIENTS AND EXACT RATIONAL EXPECTATIONS 7

Remark 4. If Xt = (X′
1t,X

′
2t)
′ of dimensions q and p− q and A = (I, 0)′, sp(c) ⊂ sp(A) means that the elements in

the lower rows of a matrix c belonging to sp(c) are equal to 0. Generally, let c = (c′1, c
′
2)
′ where c1 and c2 are s× q

and (p − s) × q matrices respectively. Then c′A = (c′1, c
′
2)A = c′1 such that the restriction c′A𝜓𝛽′ = 𝜏d′ does not

involve c2 which represents the part of c not in sp(A). Thus, the restrictions on Π = A𝜓𝛽′ only involve c1, whereas
the restrictions c′Γi = 𝜏id

′
i involve both c1 and c2.

In the following section, we consider estimating and testing where we assume sp(c) ⊆ sp(A). Then the results
simplify and a likelihood ratio test can be found.

3.2. Estimating and Testing Model †
1 (r) when sp(c) ⊆ sp(A)

We now show how estimation of †
1 (r) defined in Section 2.2 can be performed by reduced rank regression and

regression under the assumption that sp(c) ⊆ sp(A). Then o = s − q, see (9). Two cases need to be distinguished.
First consider the case where rank(A′c

⊥
) = o < r−n. The restricted model can then be estimated by first translat-

ing it by premultiplying the model (1) with (c, c
⊥
)′ and incorporating the restrictions. Then one can reparameterize

by conditioning c′
⊥
ΔXt on c′ΔXt and the past. The conditional equation can be estimated by a combination of

reduced rank and ordinary least squares (OLS) regressions, and the parameters in marginal equation for c′ΔXt can
be estimated by OLS regressions. Details can be found in Appendix D.

Next consider the case where o ≥ r−n. Then a more elaborate argument is needed. The matrix 𝛼𝛽′ can according
to Proposition 1 be reparameterized as

𝛼𝛽
′ = c𝜏d′ + c

⊥
v𝜃d′ + c

⊥
v𝜅𝜁 ′d′

⊥
, (14)

and c′Γi, i = 1 … , k, 𝜇 are restricted as

c′Γi = 𝜏id
′
i , i = 1, … ,𝓁, c′Γi = 0, i = 𝓁 + 1, … , k, c′𝜇 = d

𝜇
, (15)

where the parameters to be estimated are 𝜏, 𝜃, 𝜅, 𝜁 , 𝜏i, i = 1, … ,𝓁, d
𝜇
. Remark that it follows from Proposition 1

that rank(A′c
⊥
) = o ≥ r − n when c′A𝜓𝛽′ = 𝜏d′ and rank(A𝜓𝛽′) = r.

To avoid a complicated notation we assume that k = 𝓁 = 1 when describing the estimation procedure in this
case. This is not a serious restriction and we denote Γ1 = Γ. The extension to k = 𝓁 > 1 presents no problem, and
the case 1 ≤ 𝓁 < k corresponds to d𝓁+1 = · · · = dk = 0.

We first define the three processes X∗
1t, X∗

2t, X∗
3t, by

X∗
t =

⎛
⎜
⎜
⎜
⎝

X∗
1t

X∗
2t

X∗
3t

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

v′c′
⊥

Xt

v′
⊥

c′
⊥

Xt

c′Xt

⎞
⎟
⎟
⎟
⎠

= GXt, (16)

of dimensions (s−q, p−s, q) respectively. Define 𝛼∗,Γ∗, 𝜇∗ and 𝜀∗t similarly, that is, 𝛼∗ = (𝛼∗′1 , 𝛼
∗′
2 , 𝛼

∗′
3 )

′ = G𝛼,Γ∗ =
GΓ, 𝜇∗ = G𝜇 and 𝜀∗t = G𝜀t and Σ = GΩG′. The equations then become

ΔX∗
t = 𝛼

∗
𝛽
′Xt−1 + Γ∗ΔXt−1 + 𝜇∗ + 𝜀∗t . (17)

We next want the conditional equations and define 𝜀∗∗t = K𝜀∗t where

K =
⎛
⎜
⎜
⎜
⎝

Is−q −𝜔12.3 −𝜔13.2

0 Ip−s −𝜔2.3

0 0 Iq

⎞
⎟
⎟
⎟
⎠

(18)

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12705 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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8 S. JOHANSEN AND A. R. SWENSEN

with 𝜔12.3 = Σ12.3Σ−1
22.3, 𝜔13.2 = Σ13.2Σ−1

33.2 and 𝜔2.3 = Σ23Σ−1
33 . Then 𝜀∗∗1t , 𝜀

∗∗
2t , 𝜀

∗
3t are independent. In particular

𝜀
∗∗
3t = c′𝜀t. Furthermore, we find the equation for ΔX∗

1t given (ΔX∗
2t,ΔX∗

3t), the equation for ΔX∗
2t given ΔX∗

3t and
the equation for ΔX∗

3t by premultiplying (17) by the matrix K.
For the situation where 𝜏 is known we can summarize the estimation procedure in the following proposition.

More details can be found in Appendix C.

Proposition 3. Estimation of the model †
1 (r) when rank(A′c

⊥
) > r − n and sp(c) ⊆ sp(A) can be conducted in

three steps when 𝜏 is known:

1. By reduced rank regression of ΔX∗
1t on d′

⊥
Xt−1 corrected for the regressors

1,ΔX∗
2t,ΔX∗

3t, d
′Xt−1,ΔXt−1, … ,ΔXt−k find estimates for

𝜇
∗
1 − 𝜔12.3𝜇

∗
2 − 𝜔13.2d

𝜇
, 𝜔12.3, 𝜔13.2, (𝜃 − 𝜔13.2𝜏), 𝜅, 𝜁 , (v

′ − 𝜔12.3v′
⊥
)c′
⊥
Γi − 𝜔13.2𝜏id

′
i , i = 1, … , k and Σ11.23.

2. For fixed value of 𝜏 introduce the variable Y∗t = ΔX∗
3t − 𝜏d′Xt−1 and find the system

ΔX∗
2t = 𝜇

∗
2 − 𝜔2.3d

𝜇
+ 𝜔2.3Y∗t +

𝓁∑

i=1

(v′
⊥

c′
⊥
Γi − 𝜔2.3𝜏id

′
i )ΔXt−i +

k∑

i=𝓁+1

v′
⊥

c′
⊥
ΓiΔXt−i + 𝜀∗∗2t ,

Y∗t = d
𝜇
+

𝓁∑

i=1

𝜏id
′
iΔXt−i + 𝜀∗∗3t .

3. This system can be estimated by OLS regression. From the equation for ΔX∗
2t a regression gives estimates for

𝜇
∗
2 − 𝜔2.3d

𝜇
, 𝜔2.3, (v′

⊥
c′
⊥
Γi − 𝜔2.3𝜏id

′
i ), i = 1, … ,𝓁, v′

⊥
c′
⊥
Γi, i = 𝓁 + 1 … , k, Σ22.3. From the equation for Y∗t ,

regression gives the estimates d̂
𝜇
, 𝜏1, … , 𝜏𝓁 , Σ̂33 depending on 𝜏.

4. Finally, the maximal value of the likelihood, apart from constants, is

L−2∕T
max (𝜏) = |Σ̂11.23||Σ̂22.3||Σ̂33|∕|c′c||v

′c′
⊥

c
⊥

v||v′
⊥

c′
⊥

c
⊥

v
⊥
|.

Remark 5. We can therefore calculate the maximized likelihood for the three equations for a given 𝜏 and maximize
with respect to 𝜏 by a general maximization algorithm if the parameter 𝜏 is not known.

Remark 6. The case r − n = 0, which means that the rational expectation hypothesis specifies all cointegrating
relations, needs a special comment. Then 𝜅𝜁 ′ = 0 and the last term in (14) disappears. If also A′c

⊥
= 0, it follows

from the proof of Proposition 2 that A𝜓𝛽′ = c𝜏d′. By the eqvivalence in Proposition 2 this means that the condition
c′A𝜓𝛽′ = 𝜏d′ is always satisfied and there is nothing to estimate in the reduced rank matrix Π = 𝛼𝛽

′. When
A′c

⊥
≠ 0 and r−n = 0 the parameters can be estimated by OLS. For the case where A = I and n = q see Johansen

and Swensen (1999) where the procedure is written out in detail.

Remark 7. Another possibility in addition to the one described in Remark 5 for estimating the equations for
ΔX∗

2t,ΔX∗
3t when 𝜏 is unknown is a constrained regression. Notice that the model

ΔX∗
2t =

k∑

i=1

Γ∗2iΔX∗
t−i + 𝜇

∗
2 + 𝜀

∗
2t,

ΔX∗
3t = 𝜏d′Xt−1 +

𝓁∑

i=1

Γ∗3iΔX∗
t−i + 𝜇

∗
3 + 𝜀

∗
3t.

with the restriction (15) is linear in the conditional mean and hence can be estimated by generalized least squares
for fixed variance matrix. For fixed linear parameters the variance can be estimated from the residuals, such

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12705
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ADJUSTMENT COEFFICIENTS AND EXACT RATIONAL EXPECTATIONS 9

that an iteration procedure can be defined. This is an example of a coordinate search method, see for example,
Nocedal and Wright (2006). The model is a special case of seemingly unrelated regressions, SUR. In Oberhofer
and Kmenta (1974) it is shown that for such models the sequence has a limit point which is a solution of the like-
lihood equations. In general, for iterative methods for maximization there is no guarantee that they will converge
toward the global maximum if there are several local maxima. Drton and Richardson (2004) contains a discussion
of multi modularity of the likelihood in bivariate SUR models.

Let the residual from this fit be R23,t and let S23 =
1

T

∑T
t=1R23,tR

′
23,t. Then the maximal value of the likelihood,

apart from constants, can be expressed as

L−2∕T
max = |Σ̂11.23||S23|∕|c′c||v

′c′
⊥

c
⊥

v||v′
⊥

c′
⊥

c
⊥

v
⊥
|.

Remark 8. For the case where all elements in the matrix d
𝜇

are known a small modification is necessary in the
equation for the variable ΔX∗

3,t. Instead of regressing ΔX∗
3,t − 𝜏d′Xt−1 on d′1ΔX∗

t−1, … , d′𝓁ΔX∗
t−𝓁 and 1, regress

ΔX∗
3,t − 𝜏d′Xt−1 − d

𝜇
on d′1ΔX∗

t−1, … , d′𝓁ΔX∗
t−𝓁 only. In particular, if d

𝜇
= 0 the response is ΔX∗

3,t − 𝜏d′Xt−1 and
the regressor 1 is dropped.

Remark 9. There is an interesting modification of the estimation procedure described above. If the coefficient
−𝜔2.3𝜏 of d′Xt−1 in the equation forΔX∗

2t in the proof of Proposition 3 is replaced by a freely varying parameter the
new system will contain (p−s)n extra parameters. It will, however, have a structure so that the expanded parameter
set can be estimated by OLS regressions.

4. SOME 𝛼 ASSUMED KNOWN, THAT IS, †
2 (r)

We consider the situation where the freely varying parameters of the matrix 𝛼𝛽′ are restricted by 𝛼 = (a, a
⊥
𝜙)

such that c′𝛼𝛽′ = c′(a𝛽′1 + a
⊥
𝜙𝛽

′
2) = 𝜏d′ where a and c are known p × m and p × q matrices respectively, both of

full rank, see (8). The matrices 𝜙, 𝛽1 and 𝛽2 have dimensions (p − m) × (r − m), p × m and p × (r − m). We start
with two special cases. Thereafter we show how a more general model can be estimated by combining the reults.

4.1. Estimating Some Special Cases of the Model †
2 (r)

Case 1: c′a = 0, 0 < m ≤ r − n and 𝛽1 known.
Then it is possible to apply Proposition 1. The constraints on the matrix Π are now

c′Π = c′𝛼𝛽′ = c′(a𝛽′1 + a
⊥
𝜙𝛽

′
2) = 𝜏d′ or c′𝛼𝛽′ = c′a

⊥
𝜙𝛽

′
2 = 𝜏d′

such that the model can be written

ΔXt − a𝛽′1Xt−1 = a
⊥
𝜙𝛽

′
2Xt−1 +

k∑

i=1

ΓiΔXt−i + 𝜇 + 𝜀t

with constraints c′a
⊥
𝜙𝛽

′
2 = 𝜏d′ and (6).

These are analogous to the restrictions (6) and (7) with rank(a
⊥
𝜙𝛽

′
2) = r1 equal to r−m and the known p×(p−m)

matrix a
⊥

corresponding to A. In addition c′a = 0 is equivalent to sp(c) ⊆ sp(a
⊥
). Also, we deal only with the

situations where 0 < m ≤ r − n. The case where r − m = n, that is, m = r − n, is special as noted in Remark 6.
In particular since sp(d) ⊆ sp(𝛽2), as explained after equation (6), and rank sp(𝛽2) = r − m = n = rank(d),
sp(d) = sp(𝛽2) such that 𝛽2 is known up to a normalization in this case.

But there are also two other distinct cases depending on the value of rank(a′
⊥

c
⊥
). If rank(a′

⊥
c
⊥
) < r1 − n =

r−m− n, the argument based on the conditional equation of c′
⊥
ΔXt given c′ΔXt and the past must be applied, see

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12705 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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10 S. JOHANSEN AND A. R. SWENSEN

Appendix D. If rank(a′
⊥

c
⊥
) ≥ r1 − n > 0, the conditions of Proposition 1 are satisfied, and the parameters can be

estimated as described in Proposition 3.
In all cases the estimation can be done either by first keeping 𝜏 fixed and then using a general optimizing

algorithm to find the maximizing value of 𝜏 or using the SUR procedure described in Remark 7.

Case 2: 0 < m = r, 𝛼 = a.
Then all adjustment parameters are known. After premultiplying the model (1) with (c, c

⊥
)′ and incorporating

the restrictions, the parameters of the coefficient of the level do not have a multiplicative structure. The reason is
that the parameters in 𝛽 are the only unknowns. A direct application of Proposition 3 is therefore not possible, and
a small modification of the arguments used there is necessary. The details can be found in Appendix E.

4.2. Estimating the Model †
2 (r) When c′a = 0 and 0 < m ≤ r − n

Now, consider the situation where c′(a𝛽′1 + a
⊥
𝜙𝛽

′
2) = 𝜏d′, c′a = 0 and 0 < m ≤ r − n. Then the model with the

restrictions imposed can be written

c′
⊥
ΔXt = c′

⊥
a𝛽′1Xt−1 + c′

⊥
a
⊥
𝜙𝛽

′
2Xt−1 +

k∑

i=1

c′
⊥
ΓiΔXt−i + c′

⊥
𝜇 + c′

⊥
𝜀t,

c′ΔXt = 𝜏d′Xt−1 +
𝓁∑

i=1

𝜏id
′
iΔXt−i + c′𝜇 + c′𝜀t,

where the parameters to be estimated are 𝛽1, 𝜙, 𝛽2, c
′
⊥
Γi, i = 1, … , k, 𝜏, 𝜏i, i = 1, … ,𝓁, 𝜇 and Ω.

The model is unidentified if rank(c′
⊥

a) < m and rank(c′
⊥

a) > m is not possible since the matrix a has rank m.
Hence rank(c′

⊥
a) = m if we assume that the model is identified. We then propose the following iterative procedure

for estimating the parameters by switching between Step 1 and Step 2.
Consider first the situation where rank(a′

⊥
c
⊥
) ≥ r1 − n. Assume first that 𝜏 is fixed and known.

Step 1. Keep 𝜙 and 𝛽2 fixed. Writing the model

c′
⊥
(ΔXt − a

⊥
𝜙𝛽

′
2Xt−1) = c′

⊥
a𝛽′1Xt−1 +

k∑

i=1

c′
⊥
ΓiΔXt−i + c′

⊥
𝜇 + c′

⊥
𝜀t,

c′ΔXt − 𝜏d′Xt−1 −
𝓁∑

i=1

𝜏id
′
iΔXt−i = c′𝜇 + c′𝜀t

estimate the parameters 𝛽1, c′
⊥
Γi, i = 1, … , k, 𝜏i, i = 1, … ,𝓁, 𝜇 and Σ as described in Case 2 in the previous

subsection.
Step 2. Keep 𝛽1 fixed. Remember that rank(a

⊥
𝜙𝛽

′
2) = r1 = r − m and c′a = 0 and write the model

c′
⊥
(ΔXt − a𝛽′1Xt−1) = c′

⊥
a
⊥
𝜙𝛽

′
2Xt−1 +

k∑

i=1

c′
⊥
ΓiΔXt−i + c′

⊥
𝜇 + c′

⊥
𝜀t,

c′ΔXt − 𝜏d′Xt−1 −
𝓁∑

i=1

𝜏id
′
iΔXt−i = c′𝜇 + c′𝜀t.

Estimate the parameters 𝜙, 𝛽2 (when they are unknown, i.e., a′
⊥

c
⊥
≠ 0), c′

⊥
Γi, i = 1, … , k, 𝜏i, i = 1, … ,𝓁, 𝜇

and Σ as described in Case 1 in the previous subsection.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12705
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ADJUSTMENT COEFFICIENTS AND EXACT RATIONAL EXPECTATIONS 11

The value of the likelihood increases for each iteration even though convergence toward a global maximum,
or even convergence, cannot be guaranteed. Also convergence, when it occurs, can be slow. But such coordinate
search methods can still be useful, see Nocedal and Wright (2006), page 230.

If 𝛽1, �̂�, 𝛽2,
̂c′
⊥
Γi, i = 1, … , k, �̂�, 𝜏1, … , 𝜏𝓁 and Σ̂ are the maximum likelihood estimates when 𝜏 is fixed and

Rt =

(
c′
⊥
ΔXt − c′

⊥
a𝛽1Xt−1 − c′

⊥
a
⊥
�̂�𝛽

′
2Xt−1 −

∑k
i=1
̂c′
⊥
ΓiΔXt−i − c′

⊥
�̂�

c′ΔXt − 𝜏d′Xt−1 −
∑𝓁

i=1𝜏 id
′
iΔXt−i − c′�̂�

)

, t = 1 … ,T

are the residuals, the maximal value of the likelihood is

L−2∕T
max (𝜏) =

|
|
|
|
|
|

T∑

t=1

RtR
′
t

|
|
|
|
|
|

/
|c′c ||c′

⊥
c
⊥
|.

For unknown 𝜏 we can find the maximum likelihood estimators using a general numerical optimization procedure.
Another possibility is to insert a SUR step to estimate an unknown 𝜏 in the conditional distributions described in
Case 1 and Case 2 in the previous subsection.

Now consider the other situation, where rank(a′
⊥

c
⊥
) < r1 − n. One can proceed as follows. In Step 1 one can as

before apply the method described in Case 2 in the previous subsection and in more detail in Appendix E. In Step
2 the matrix c′

⊥
a
⊥
𝜙𝛽

′
2 has reduced rank, and the method described in Appendix D can be used.

Remark 10. The number of parameters in the matrix Π satisfying †
2 (r) ∶ Π = a𝛽′1 + a

⊥
𝜙𝛽

′
2 and the restriction

c′(a𝛽′1 + a
⊥
𝜙𝛽

′
2) = 𝜏d′, 𝜏 unknown can be found counting the parameters estimated by the recursive procedure.

Remember rank(c′
⊥

a) = m in an identified model and that c′a = 0 and 0 < m are assumed. First, 𝛽1 in Step 1
contains p ⋅ rank(c′

⊥
a) = pm parameters. Second, in Step 2 we have to consider the two cases.

If rank(a′
⊥

c
⊥
) ≥ r1 − n, the results from Section 3.2 can be applied. Then rank(a

⊥
𝜙𝛽

′
2) = r1 = r − m and it

follows from Remark 3 that the number of parameters in a
⊥
𝜙𝛽

′
2 satisfying c′a

⊥
𝜙𝛽

′
2 = 𝜏d′ is (p−m)(r −m) + (r −

m − n)(p − r + m − q). We have used that s corresponds to p − m. and that the rank of 𝜙𝛽′2 is r − m.
If o = rank(a′

⊥
c
⊥
) < r1−n the matrix c′

⊥
a
⊥
𝜙𝛽

′
2 of dimension (p−q)×p and rank o contains (p−q)o+o(p−o) =

o(2p − q − o) parameters.

5. SOME NUMERICAL RESULTS

To get an impression of the small sample distribution we carried out a simulation study. 1000 replications of the
following 27 CVAR(1) time series were simulated

ΔXt = fj ⋅ 𝛼𝛽
′ + 𝜀t, t = 1, … ,T ,

where X0 = 0, T = 50,100, 200 and fj = 1.0 + j ⋅ 0.03, j = 0, … , 8. The rank 1 reduced rank matrix is 𝛼𝛽′ =
c𝜏d′ + c

⊥
v𝜃d′ where, inspired by Example 1, c′ = (−1, 0, 0), d′ = (−1, 1, 1) and 𝜏 = 0.99. The vector v = (1 0)′

and parameter 𝜃 is taken as 𝜃 = −2.0. Note in particular that sp(c) is contained in sp(A) where A′ =
(

1 0 0
0 1 0

)
.

Then A′c
⊥
=
(

0
1

)
(1 0) = uv′.

Also the 27 specifications satisfy the I(1) requirement, and the moduli of the roots of the determinant of the
characteristic polynomial are all larger or equal to one.

To each replication a test of the rational expectation hypothesis described in Proposition 3 was applied with the
matrices c and A as specified above. Likelihood ratio tests with level 0.05 were performed against two alternatives.
In one no restrictions except reduced rank 1 were imposed. The test has 4 degrees of freedom. In the other also

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12705 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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12 S. JOHANSEN AND A. R. SWENSEN

Table II. Probability of rejection, null hypothesis rational expectation, alternative only reduced rank 1

Values of f

1.0 1.03 1.06 1.09 1.12 1.15 1.18 1.21 1.24

T = 50 0.06 0.09 0.09 0.14 0.19 0.27 0.38 0.49 0.65
T = 100 0.06 0.08 0.12 0.19 0.36 0.55 0.71 0.86 0.94
T = 200 0.06 0.09 0.19 0.37 0.67 0.86 0.95 0.99 1.00

Table III. Probability of rejection, null hypothesis rational expectation, alternative reduced rank 1 and weak exogeneity of last
element

Values of f

1.0 1.03 1.06 1.09 1.12 1.15 1.18 1.21 1.24

T = 50 0.06 0.09 0.10 0.17 0.21 0.29 0.42 0.55 0.70
T = 100 0.06 0.08 0.14 0.26 0.38 0.58 0.78 0.90 0.96
T = 200 0.05 0.10 0.22 0.41 0.72 0.89 0.97 1.00 1.00

weak exogeneity of the form 𝛼 = A𝜓 was imposed. This test has 3 degrees of freedom. The result of the tests are
displayed in Tables II and III. The matrix 𝛼𝛽′ was generated by f0 = 1.0, which represents the null hypothesis
whereas f1, … , f8 represent alternatives. They describe sensitivity of the tests to increasing values of the adjustment
coefficients. The first column shows the size of the tests and the remaining columns the power. One can see that
the size properties are satisfactory in both cases. As fj increases, the power or the probability of rejection increases.
Under the alternatives the power for both test are increasing in T, that is, the tests are consistent. Also the power
is larger in for the case where weak exogeneity, 𝛼 = A𝜓 is imposed.

The simulations and the calculation of the two likelihood ratio statistics were carried out using the software
package R, R Core Team (2020). The calculations only take a few seconds on a laptop.

6. AN APPLICATION

We consider the inflation model discussed in Example 2. In Boug et al. (2017) a data set covering the period
1982:1-2005:4 was analyzed. A reduced rank vector autoregressive model with three lags, that is, k = 2, an
unrestricted constant, seasonal dummies and five impulse dummies was fitted to the time series. The inclusion of
the non-stochastic dummies makes this model a bit different from those treated earlier in this article. Equation (2)
now implies restrictions on the dummies. In the application below we regress on the dummies, which means that
these restrictions are dropped and only coefficients on stochastic terms are considered. Thus, the null hypothesis
will be larger than specified in (2) for a model containing dummies.

Rank equal to 1 was found to yield a satisfactory fit, the cointegration vector was estimated as

pt = 0.649ulct + 0.340uict, 2 log Lmax((r)) = 2536.72

and a test that the coefficients are proportional to (1,−2∕3,−1∕3)′ was accepted with a p-value of 0.93. The
adjustment parameters are �̂� = (−0.056, 0.175, 0.143)′. Table II shows the result of testing that 𝛼3 = 0, that is
whether uict is weakly exogenous for 𝛼1, 𝛼2 and 𝛽. The p-value is 0.10. We can therefore turn to testing the model

†
1 (1) against the model 1(1) using the results from Section 3. We then assume that the matrix d is equal to

d = (1,−2∕3,−1∕3)′. As explained in Example 2 this is an interesting case. At the end of this section we point
out how the situation where d contains unknown parameters can be treated.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12705
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ADJUSTMENT COEFFICIENTS AND EXACT RATIONAL EXPECTATIONS 13

We estimate the model †
1 (1) under the assumption 𝛼3 = 0 in addition to satisfying the exact rational

expectations hypothesis defined in (4). Then

A =
⎛
⎜
⎜
⎜
⎝

1 0

0 1

0 0

⎞
⎟
⎟
⎟
⎠

and c = (1, 0, 0)′ such that sp(c) ⊆ sp(A). Also

A′c
⊥
=

(
0 0

1 0

)

=

(
0

1

)

(1, 0) = uv′.

Thus v′c′
⊥
= (0, 1, 0) = e′2 and v′

⊥
c′
⊥
= (0, 0, 1) = e′3 such that G = (e2, e3, e1)′.

After taking the restrictions into account the equations from Section 3.2 become

v′c′
⊥
ΔXt = 𝜃d′Xt−1 + v′c′

⊥
Γ1ΔXt−1 + v′c′

⊥
Γ2ΔXt−2 + v′c′

⊥
ΦDt + v′c′

⊥
𝜀t,

v′
⊥

c′
⊥
ΔXt = v′

⊥
c′
⊥
Γ1ΔXt−1 + v′

⊥
c′
⊥
Γ2ΔXt−2 + v′

⊥
c′
⊥
ΦDt + v′

⊥
c′
⊥
𝜀t,

c′ΔXt = 𝜏d′Xt−1 + 𝜏1d′1Xt−1 + 𝜏2d′2Xt−2 + c′ΦDt + c′𝜀t

and the conditional equations become

v′c′
⊥
ΔXt = Δulct = 𝜔12.3Δuict + 𝜔13.2Δpt

+ (𝜃 − 𝜔13.2𝜏)d′Xt−1 −
2∑

i=1

(𝜔13.2𝜏id
′
i − e′2Γi)ΔXt−i + e′2ΦDt + 𝜀∗∗1t ,

v′
⊥

c′
⊥
ΔXt = Δuict = 𝜔2.3(Δpt − 𝜏d′Xt−1)

−
2∑

i=1

(𝜔13.2𝜏id
′
i − e′3Γi)ΔXt−i + e′3ΦDt + 𝜀∗∗2t ,

c′ΔXt = Δpt = 𝜏d′Xt−1 +
2∑

i=1

𝜏id
′
iΔXt−i + e′1ΦDt + 𝜀∗∗3t .

When 𝜏 is known, the system can be estimated by first regressing Δulct on Δuict, Δpt, d′Xt−1, Δulct−i, i = 1, 2,
Δuict−i, i = 1, 2,Δpt−i, i = 1, 2 and Dt, then regressingΔuict onΔpt−𝜏d′Xt−1,Δulct−i, i = 1, 2,Δuict−i, i = 1, 2,
Δpt−i, i = 1, 2, and Dt and finally by regressing Δpt − 𝜏d′Xt−1 on d′1ΔXt−1, d

′
2ΔXt−2,Dt.

The number of parameters in the reduced rank VAR model is 3 + 2 + 18 = 23 in addition to the coeffi-
cients of constants and dummies. The corresponding number after imposing the restrictions is 1 + 12 + 2 =
15. The appropriate degrees of freedom is therefore 23 − 15 = 8 when 𝜏 is known and 7 when it must
be estimated. When 𝜏 is unknown the maximum likelihood estimates can be obtained from the profile likeli-
hood. Alternatively the approach based on generalized least squares can be used to find the maximal value of
the likelihood.

The maximal values of 2 log likelihood from fitting the models are displayed in Table IV when d is fixed as
d = (1,−2∕3,−1∕3)′. As mentioned, this is a sensible value of d and an interesting choice. We also noted that the
p-value of the hypothesis that 𝛼3 = 0 is 0.10. The further hypothesis imposing in addition rational expectations,
that is (4), is also not rejected. The maximum likelihood estimate for 𝜏 is denoted by 𝜏. Ignoring the cross equation
restrictions, as pointed out in Remark 9, implies that 𝜏 is estimated by regression from the marginal equation for

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12705 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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14 S. JOHANSEN AND A. R. SWENSEN

Table IV. Summary of tests of 𝛼3 = 0 and the restriction (4) for †
1 (1) with d′ = (1,−2∕3,−1∕3)′ fixed. LR is the likelihood

ratio

Model 2 log Lmax(Model) −2 log LR df p-value 𝜏 𝜏

(1) 2536.72 – – – – –
1(1) 2534.06 2.66 1 0.10 – –

†
1 (1) 2531.03 3.03 6 0.81 −0.048 −0.051

Figure 1. Profile likelihood of 𝛿 when 𝛼3 = 0. A 95% confidence interval is indicated

ΔX3,t. As one can see this estimate, denoted by 𝜏, is numerically quite similar to the result when the cross equation
restrictions are taken into account. The estimated standard error is 0.013 such that an approximate 95% confidence
interval is (−0.076,−0.026).

Up to now the matrices c and d have been considered as fixed. Often they contain unknown parameters. To
deal with these parameters we suggest treating them first as known quantities. Then the likelihood can be found,
as function of these variables from the results in Sections 3 and 4. The maximum of the function will correspond
to the maximum likelihood estimate, and the maximum can be found by using a general purpose maximization
algorithm. For the situation where d = (1,−𝛿,−(1 − 𝛿))′ the profile likelihood is shown in Figure 1 using the
procedure optimize in the software package R, R Core Team (2020). The maximum likelihood estimate of 𝛿
corresponds to the maximizing value. This is 2531.06 such that the test statistics for testing simultaneously the
rational expectations, that is (4), and the linear restrictions on the adjustment parameters, that is 𝛼3 = 0, against
(1) is 5.66 with 6 degrees of freedom which corresponds to a p-value 0.46. The maximum likelihood estimate
for 𝛿 is 𝛿 = 0.66. with a 95% confidence interval for 𝛿 is (0.48,0.81).

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12705
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ADJUSTMENT COEFFICIENTS AND EXACT RATIONAL EXPECTATIONS 15

7. CONCLUSION

The theme of this article has been to analyze cointegrated vector autoregressive models with restrictions on the
adjustment parameters and in addition restrictions from exact rational expectations imposed. We considered esti-
mation and testing in such models where the adjustment parameters satisfied the same restrictions, that is 𝛼 = A𝜓 ,
and also for some special cases the situation where some of the adjustment parameters were known.
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APPENDIX A: PROOF OF PROPOSITION 1

Proof that (10) implies (11). Premultiplying 𝛼𝛽′ = A𝜓𝛽′ by (c, c
⊥
)′ and postmultiplying by (d, d

⊥
) we find using

c′𝛼𝛽′ = 𝜏d′ that
(

c′

c′
⊥

)

𝛼𝛽
′(d, d

⊥
) =

(
𝜏d′d 𝜏d′d

⊥

c′
⊥
𝛼𝛽

′d c′
⊥
𝛼𝛽

′d
⊥

)

=

(
𝜏 0

c′
⊥
𝛼𝛽

′d c′
⊥
𝛼𝛽

′d
⊥

)

.

Next use c′
⊥

A = vu′ to simplify the entries c′
⊥
𝛼𝛽

′d and c′
⊥
𝛼𝛽

′d
⊥

. First c′
⊥
𝛼𝛽

′d = c′
⊥

A𝜓𝛽′d = vu′𝜓𝛽′d = v𝜃 for

𝜃 = u′𝜓𝛽′d. Furthermore, let 𝜈 = 𝜓𝛽′d
⊥

such that

c′
⊥
𝛼𝛽

′d
⊥
= c′

⊥
A𝜓𝛽′d

⊥
= vu′𝜈.

Then
(

c′

c′
⊥

)

A𝜓𝛽′(d, d
⊥
) =

(
𝜏 0

v𝜃 vu′𝜈

)

.

Since the matrix 𝛼𝛽′ has rank r and 𝜏 has rank n, the matrix vu′𝜈 must have rank r − n ≥ 0. Also r − n =
rank(vu′𝜈) ≤ rank(vu′) = rank(c′

⊥
A) = o.

We apply Sylvester’s inequality, see Horn and Johnson (2013) p. 13, to the (p−q)×o matrix v and the o×(p−n)
matrix u′𝜈 and find

rank(v) + rank(u′𝜈) − o ≤ rank(vu′𝜈) ≤ min(rank(v), rank(u′𝜈)).

Because rank(v) = o, this shows that rank(u′𝜈) ≤ rank(vu′𝜈). The reverse inequality is obvious so we find
rank(u′𝜈) = rank(vu′𝜈) = r − n.

Then, since o ≥ r − n there exists matrices 𝜅 and 𝜁 of full rank and dimensions o× (r − n) and (p− n) × (r − n)
respectively such that that u′𝜈 = 𝜅𝜁 ′ and

A𝜓𝛽′ = (c, c
⊥
)

(
𝜏 0

v𝜃 v𝜅𝜁 ′

)(
d′

d′
⊥

)

= c𝜏d′ + c
⊥

v𝜃d′ + c
⊥

v𝜅𝜁 ′d′
⊥
.

Proof that (11) implies (10). Sylvester’s inequality applied to the (p − q) × o matrix v and the o × (r − n) matrix
𝜅 gives

rank(v) + rank(𝜅) − o ≤ rank(v𝜅) ≤ min(rank(v), rank(𝜅)),

or

o + (r − n) − o ≤ rank(v𝜅) ≤ min(o, r − n) = r − n

such that the equality holds and rank(v𝜅) = r − n. The last inequality follows from the assumption that r − n ≤ o.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12705
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ADJUSTMENT COEFFICIENTS AND EXACT RATIONAL EXPECTATIONS 17

The relation
(

c′

c′
⊥

)

𝛼𝛽
′(d, d

⊥
) =

(
c′

c′
⊥

)

(c𝜏d′ + c
⊥

v𝜃d′ + c
⊥

v𝜅𝜁 ′d′
⊥
)(d, d

⊥
) =

(
𝜏 0

v𝜃 v𝜅𝜁 ′

)

shows that 𝛼𝛽′ has rank r because 𝜏 has rank n and v𝜅𝜁 ′ has rank r − n. This follows from an application of
Sylvester’s inequality since rank(v𝜅) = r − n and

rank(v𝜅) + rank(𝜁 ′) − (r − n) = (r − n) + (r − n) − (r − n) ≤ rank(v𝜅𝜁 ′) ≤ (r − n).

Premultiplying the expression in (11) by c′ and A′
⊥

, implies that

c′𝛼𝛽′ = c′c𝜏d′ = 𝜏d′,

A′
⊥
𝛼𝛽

′ = A′
⊥
(c𝜏d′ + c

⊥
v𝜃d′ + c

⊥
v𝜅𝜁 ′d′

⊥
).

But the assumption sp(c) ⊆ sp(A) implies A′
⊥

c𝜏d′ = 0. The assumption also implies sp(c
⊥

v) ⊆ sp(A), see (9), such
that A′

⊥
c
⊥

v = 0 and A′
⊥
𝛼𝛽

′ = 0. Therefore the space spanned by the columns of 𝛼𝛽′ is contained in sp(A), that is
𝛼 = A𝜓 .

APPENDIX B: THE CASE A′c
⊥
= 0.

Proof that (12) implies (13). Assume c′A𝜓𝛽′ = 𝜏d′. Then, using that A′c
⊥
= 0,

(
c′

c′
⊥

)

A𝜓𝛽′(d, d
⊥
) =

(
c′A𝜓𝛽′

0

)

(d, d
⊥
) =

(
c′A𝜓𝛽′d c′A𝜓𝛽′d

⊥

0 0

)

=

(
𝜏 0

0 0

)

.

Hence, rank(A𝜓𝛽′) = n.
Also,

A𝜓𝛽′ = (c, c
⊥
)

(
𝜏 0

0 0

)(
d′

d′
⊥

)

= c𝜏d′,

which is (13).
Proof that (13) implies (12). Assume A𝜓𝛽′ = c𝜏d′. Multiplying with c′, c′A𝜓𝛽′ = 𝜏d′, which is (12). Also

(
c′

c′
⊥

)

A𝜓𝛽′(d, d
⊥
) =

(
c′

c′
⊥

)

c𝜏d′(d, d
⊥
) =

(
𝜏 0

0 0

)

,

and rank(A𝜓𝛽′) is therefore n.

APPENDIX C: PROOF OF PROPOSITION 3

In matrix notation the transformed equations can be written

KGΔXt = KG𝛼𝛽′Xt−1 + KGΓΔXt−1 + KG𝜇 + KG𝜀t.

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12705 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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18 S. JOHANSEN AND A. R. SWENSEN

We now introduce the restrictions. Under (14), 𝛼𝛽′ = c𝜏d′ + c
⊥

v(𝜃d′ + 𝜅𝜁 ′d′
⊥
). We find

⎛
⎜
⎜
⎜
⎝

v′c′
⊥

v′
⊥

c′
⊥

c′

⎞
⎟
⎟
⎟
⎠

𝛼𝛽
′ =

⎛
⎜
⎜
⎜
⎝

v′c′
⊥

v′
⊥

c′
⊥

c′

⎞
⎟
⎟
⎟
⎠

[(c𝜏 + c
⊥

v𝜃)d′ + c
⊥

v𝜅𝜁 ′d′
⊥
]

=
⎛
⎜
⎜
⎜
⎝

𝜃

0

𝜏

⎞
⎟
⎟
⎟
⎠

d′ +
⎛
⎜
⎜
⎜
⎝

𝜅𝜁
′

0

0

⎞
⎟
⎟
⎟
⎠

d′
⊥
.

After premultiplication by the matrix KG defined in (16) and (18)

KG𝛼𝛽′ =
⎛
⎜
⎜
⎜
⎝

𝛼
∗∗
1

𝛼
∗∗
2

𝛼
∗
3

⎞
⎟
⎟
⎟
⎠

𝛽
′ =

⎛
⎜
⎜
⎜
⎝

𝜃 − 𝜔13.2𝜏

−𝜔2.3𝜏

𝜏

⎞
⎟
⎟
⎟
⎠

d′ +
⎛
⎜
⎜
⎜
⎝

𝜅𝜁
′

0

0

⎞
⎟
⎟
⎟
⎠

d′
⊥
.

Similarly, since c′Γ = 𝜏1d′1,

KGΓ =
⎛
⎜
⎜
⎜
⎝

Γ∗∗1

Γ∗∗2

Γ∗3

⎞
⎟
⎟
⎟
⎠

= K

⎛
⎜
⎜
⎜
⎝

v′c′
⊥

v′
⊥

c′
⊥

c′

⎞
⎟
⎟
⎟
⎠

Γ =
⎛
⎜
⎜
⎜
⎝

(v′ − 𝜔12.3v′
⊥
)c′
⊥
Γ − 𝜔13.2𝜏1d′1

v′
⊥

c′
⊥
Γ − 𝜔2⋅3𝜏1d′1
𝜏1d′1

⎞
⎟
⎟
⎟
⎠

.

The conditional equations, when the restrictions are taken into account, are therefore

ΔX∗
1t = 𝜇

∗
1 − 𝜔12.3𝜇

∗
2 − 𝜔13.2d

𝜇
+ 𝜔12.3ΔX∗

2t + 𝜔13.2ΔX∗
3t + (𝜃 − 𝜔13.2𝜏)d′Xt−1 + 𝜅𝜁 ′d′⊥Xt−1

+ ((v′ − 𝜔12.3v′
⊥
)c′
⊥
Γ − 𝜔13.2𝜏1d′1)ΔXt−1 + 𝜀∗∗1t ,

ΔX∗
2t = 𝜇

∗
2 − 𝜔2.3d

𝜇
+ 𝜔2.3ΔX∗

3t − 𝜔2.3𝜏d′Xt−1

+ (v′
⊥

c′
⊥
Γ − 𝜔2.3𝜏1d′1)ΔXt−1 + 𝜀∗∗2t ,

ΔX∗
3t = d

𝜇
+ 𝜏d′Xt−1 + 𝜏1d′1ΔXt−1 + 𝜀∗∗3t .

The first equation describes the conditional distribution of X∗
1t given X∗

2t, X∗
3t and the past, the second equation

describes the distribution of X∗
2t given X∗

3t and the past and the last equation is the marginal one for the variable
X∗

3t = c′Xt.
The coefficients of the regressors in the three equations are

1{𝜇∗1 − 𝜔12.3𝜇
∗
2 − 𝜔13.2d

𝜇
, 𝜔12.3, 𝜔13.2, (𝜃 − 𝜔13.2𝜏), 𝜅𝜁 ′, (v

′ − 𝜔12.3v′
⊥
)c′
⊥
Γ − 𝜔13.2𝜏1d′1},

{𝜇∗2 − 𝜔2.3d
𝜇
, 𝜔2.3,−𝜔2.3𝜏, v

′
⊥

c′
⊥
Γ − 𝜔2.3𝜏1d′1},

{d
𝜇
, 𝜏, 𝜏1}.

If ci(R) denotes the coefficient of regressor R in equation i, i = 1, 2, 3, then we see that 𝜏 appears in the three
coefficients

c1(d′Xt−1) = 𝜃 − 𝜔13.2𝜏, c2(d′Xt−1) = −𝜔2.3𝜏, and c3(d′Xt−1) = 𝜏.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
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ADJUSTMENT COEFFICIENTS AND EXACT RATIONAL EXPECTATIONS 19

We can reparameterize the first equation, introducing 𝜃∗ = 𝜃−𝜔13.2𝜏, but there is a constraint among the regression
coefficients in equations for ΔX∗

2t and ΔX∗
3t, given by

c2(d′Xt−1) = −𝜔2.3𝜏 = −c2(ΔX∗
3t)c3(d′Xt−1).

This constraint is not satisfied by the estimates of the unconstrained regression coefficients, so the regression
coefficients are not variation free, but will have to be estimated by a constrained regression.

Another solution is as follows: We choose a value for 𝜏, and define the regressor Rt−1 = 𝜏d′Xt−1, then the
equations for ΔX∗

2t and ΔX∗
3t become

ΔX∗
2t = 𝜇

∗
2 − 𝜔2.3d

𝜇
+ 𝜔2.3(ΔX∗

3t − Rt−1) + (v′⊥c′
⊥
Γ − 𝜔2.3𝜏1d′1)ΔXt−1 + 𝜀∗∗2t ,

ΔX∗
3t − Rt−1 = d

𝜇
+ 𝜏1d′1ΔXt−1 + 𝜀∗∗3t .

In these equations, the parameters 𝜇∗2 − 𝜔2.3d
𝜇
, 𝜔2.3, and v′

⊥
c′
⊥
Γ − 𝜔2.3𝜏1d′1 can be estimated by unconstrained

regression in the equation for ΔX∗
2t and d

𝜇
and 𝜏1 in the equation for ΔX∗

3t − Rt−1.
The value of the likelihood can now be computed as a function of 𝜏. If 𝜏 is unknown an estimator can be found

using a general maximization procedure.

APPENDIX D: DETAILS OF rank(A′c
⊥
) < r − n AND sp(c) ⊆ sp(A) OF SECTION 3.2

The model multipying (1) by (c
⊥
, c)′ and using the restrictions 𝛼𝛽′ = A𝜓𝛽′ = 𝜈u′𝜓𝛽′ and c′𝛼𝛽′ = c′A𝜓𝛽′ = 𝜏d1,

can be written

c′
⊥
ΔXt = vu′𝜓𝛽′Xt−1 +

k∑

i=1

c′
⊥
ΓiΔXt−i + c′

⊥
𝜇 + c′

⊥
𝜀t,

c′ΔXt = 𝜏d′Xt−1 +
𝓁∑

i=1

𝜏id
′
iΔXt−i + c′𝜇 + c′𝜀t.

The conditional equation, conditioning on c′ΔXt and the past, of c′
⊥
ΔXt and the marginal equation of c′ΔXt are

c′
⊥
ΔXt = vu′𝜓𝛽′Xt−1 +

𝓁∑

i=1

(c′
⊥
Γi − 𝜔c

⊥
⋅c𝜏id

′
i )ΔXt−i +

k∑

i=𝓁+1

c′
⊥
ΓiΔXt−i (D1)

− 𝜔c
⊥
⋅c(c′ΔXt − 𝜏d′Xt−1 − c′𝜇) + c′

⊥
𝜇 + c′

⊥
𝜀t − 𝜔c

⊥
⋅cc

′
𝜀t,

c′ΔXt = 𝜏d′Xt−1 +
𝓁∑

i=1

𝜏id
′
iΔXt−i + c′𝜇 + c′𝜀t (D2)

where 𝜔c
⊥
⋅c = E(c′

⊥
𝜀t𝜀

′
tc)[E(c

′
𝜀t𝜀

′
tc)]

−1 and 𝜔cc = E(c′𝜀t𝜀
′
tc).

The coefficient matrix vu′𝜓𝛽′ in (D1) has dimension (p − q) × p and rank o. Since sp(c) ⊆ sp(A) such that
o = s − q ≤ p − q, the matrix vu′𝜓𝛽′ has reduced rank. But the coefficient −𝜔c

⊥
.c𝜏d′ represents a cross

equation restriction as a product of 𝜔c
⊥
.c from the equation for c′

⊥
ΔXt, and 𝜏 from the equation for c′ΔXt. Hence

by keeping 𝜏 fixed (D1) can be estimated by a combination of reduced rank and ordinary OLS regressions.
The parameters in (D2) can be estimated by OLS regressions. One can then optimize over 𝜏 as explained in
Proposition 3.

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
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20 S. JOHANSEN AND A. R. SWENSEN

APPENDIX E: CASE 2 OF SECTION 4.1

When 0 < m = r, 𝛼 = a all adjustment parameters are known. The transformed model with the restrictions
incorporated is

c′
⊥
ΔXt = c′

⊥
a𝛽′Xt−1 +

k∑

i=1

c′
⊥
ΓiΔXt−i + c′

⊥
𝜇 + c′

⊥
𝜀t,

c′ΔXt = 𝜏d′Xt−1 +
𝓁∑

i=1

𝜏id
′
iΔXt−i + c′𝜇 + c′𝜀t.

The only parameters of the matrix Π are the elements of 𝛽. When r > rank(c′
⊥

a) the model is not identified
since the elements of 𝛽 cannot be distinguished. The possibility r < rank(c′

⊥
a) is impossible since rank(c′

⊥
a) ≤

rank(a) = m = r. Therefore, for identified models v2 = c′
⊥

a has dimensions (p − q) × r and full rank r. Note also
that r = m = rank(c′

⊥
a) ≤ min(rank(c′

⊥
), rank(a)) = min(p − q, r) ≤ p − q.

The restricted model, by multiplying the equation for c′
⊥
ΔXt with (𝜈2, 𝜈2⊥)′, can be decomposed into three parts

v′2c′
⊥
ΔXt = 𝛽′Xt−1 +

k∑

i=1

v′2c′
⊥
ΓiΔXt−i + v′2c′

⊥
𝜇 + v′2c′

⊥
𝜀t,

v′2⊥c′
⊥
ΔXt =

k∑

i=1

v′2⊥c′
⊥
ΓiΔXt−i + v′2⊥c′

⊥
𝜇 + v′2⊥c′

⊥
𝜀t,

c′ΔXt = 𝜏d′Xt−1 +
𝓁∑

i=1

𝜏id
′
iΔXt−i + c′𝜇 + c′𝜀t.

Define the parameters as in Section 3.2 and premultiply (𝛽′, 0, d𝜏 ′)′ with the matrix K, see (18), to get

K

⎛
⎜
⎜
⎜
⎝

𝛽

0

𝜏d′

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

𝛽
′ − 𝜔13.2𝜏d′

−𝜔2.3𝜏d′

𝜏d′

⎞
⎟
⎟
⎟
⎠

.

The conditional equations of (ΔX′
t c⊥v2,ΔX′

t c⊥v2⊥,ΔX′
t c)

′ are therefore after also taking the restrictions on
Γ1, … ,Γ𝓁 into account given by

v′2c′
⊥
ΔXt = 𝜇∗1 + 𝜔12.3(ΔX∗

2t − 𝜇
∗
2) + 𝜔13.2(ΔX∗

3t − 𝜇
∗
3) + (𝛽

′ − 𝜔13.2𝜏)d′Xt−1

+
k∑

i=1

(v2
′ − 𝜔12.3v′2⊥)c

′
⊥
ΓiΔXt−i −

𝓁∑

i=1

𝜔13.2𝜏idiΔXt−i + 𝜀∗∗1t ,

v′2⊥c′
⊥
ΔXt = 𝜇∗2 + 𝜔2.3(ΔX∗

3t − 𝜇
∗
3 − 𝜏d′Xt−1

−
𝓁∑

i=1

𝜏id
′
iΔXt−i) +

k∑

i=1

v′2⊥c′
⊥
ΓΔXt−i + 𝜀∗∗2t ,

c′ΔXt = 𝜇∗3 + 𝜏d′Xt−1 +
𝓁∑

i=1

𝜏id
′
iΔXt−i + 𝜀∗∗3t .
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ADJUSTMENT COEFFICIENTS AND EXACT RATIONAL EXPECTATIONS 21

where 𝜇∗ = (c
⊥

v2, c⊥v2⊥, c)′𝜇. The parameters in the equation for v′2c′
⊥
ΔXt, using 𝛽′ − 𝜔13.2𝜏d′ as coefficient of

Xt−1, are variation independent of the parameters in the equations for v′2⊥c′
⊥
ΔXt and c′ΔXt. But the coefficient

−𝜔2.3𝜏d′ represents cross equation restrictions among the regression coefficients in the equations for v′2⊥c′
⊥
ΔXt

and c′ΔXt as a product of 𝜔2.3 from the equation for v′2⊥c′
⊥
ΔXt, and 𝜏 from the equation for c′ΔXt. Arguing as in

Section 3.2 one can first assume that 𝜏 are known, introduce the variable c′ΔXt − 𝜏d′Xt−1, estimate by ordinary
least squares and finally optimize over 𝜏.

An alternative procedure is also in this case to estimate 𝜏 using the SUR procedure of Remark 7.

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12705 Journal of Time Series Analysis published by John Wiley & Sons Ltd.

 14679892, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12705 by U

niversity O
f O

slo, W
iley O

nline L
ibrary on [18/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	HYPERTARGET {SECTION*.1{}Adjustment coefficients and exact rational expectations in cointegrated vector autoregressive models}
	1 INTRODUCTION
	2 THE RESTRICTIONS IMPLIED BY EXACT RATIONAL EXPECTATIONS
	2.1 The Cointegrated Vector Autoregressive Model
	2.2 The Model for Exact Rational Expectations and Some Examples
	2.3 Combining the Exact Rational Expectations and the Vector Autoregressive Models

	3 THE SAME RESTRICTIONS ON ALL [[math]], THAT IS, [[math]]
	3.1 A Reparameterization of [[math]]
	3.2 Estimating and Testing Model [[math]] when [[math]]

	4 SOME [[math]] ASSUMED KNOWN, THAT IS, [[math]]
	4.1 Estimating Some Special Cases of the Model [[math]]
	4.2 Estimating the Model [[math]] When [[math]] and [[math]]

	5 SOME NUMERICAL RESULTS
	6 AN APPLICATION
	7 CONCLUSION

	
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	References
	APPENDIX A: Proof of Proposition 1
	APPENDIX B: THE CASE [[math]].
	APPENDIX C: Proof of Proposition 3
	APPENDIX D: DETAILS OF [[math]] AND [[math]] OF SECTION 3.2
	APPENDIX E: Case 2 of Section 4.1

