
Received: 15 April 2023 Revised: 5 July 2023 Accepted: 2 August 2023

DOI: 10.1002/brb3.3219

OR I G I N A L A RT I C L E

Considerations on brain age predictions from repeatedly
sampled data across time

MaxKorbmacher1,2,3 Meng-YunWang3,4 Rune Eikeland3,4 Ralph Buchert5

Ole A. Andreassen2,6 Thomas Espeseth7,8 Esten Leonardsen2,7

Lars T.Westlye2,7 Ivan I. Maximov1,2 Karsten Specht3,4,9

1Department of Health and Functioning,Western Norway University of Applied Sciences, Bergen, Norway

2Norwegian Centre forMental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway

3MohnMedical Imaging and Visualisation Center (MMIV), Bergen, Norway

4Department of Biological andMedical Psychology, University of Bergen, Bergen, Norway

5Department of Diagnostic and Interventional Radiology andNuclearMedicine, UniversityMedical Center Hamburg-Eppendorf, Hamburg, Germany

6KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway

7Department of Psychology, University of Oslo, Oslo, Norway

8Department of Psychology, Oslo NewUniversity College, Oslo, Norway

9Department of Education, UiT The Arctic University of Norway, Tromsø, Norway

Correspondence

MaxKorbmacher, Department of Health and

Functioning,Western Norway University of

Applied Sciences, Bergen, Norway.

Email: Max.Korbmacher@hvl.no

Funding information

H2020 European Research Council,

Grant/Award Number: 847776; Norges

Forskningsråd, Grant/AwardNumbers:

223273, 276044; Helse Sør-Øst RHF,

Grant/Award Number: 2022080

Abstract

Introduction: Brain age, the estimation of a person’s age from magnetic resonance

imaging (MRI) parameters, has been used as a general indicator of health. The marker

requires however further validation for application in clinical contexts. Here, we show

how brain age predictions perform for the same individual at various time points and

validate our findings with age-matched healthy controls.

Methods: We used densely sampled T1-weighted MRI data from four individuals

(from two densely sampled datasets) to observe how brain age corresponds to age

and is influenced by acquisition and quality parameters. For validation, we used two

cross-sectional datasets. Brain agewas predicted by a pretrained deep learningmodel.

Results: We found small within-subject correlations between age and brain age. We

also found evidence for the influence of field strength on brain age which replicated in

the cross-sectional validation data and inconclusive effects of scan quality.

Conclusion: The absence ofmaturation effects for the age range in the presented sam-

ple, brain age model bias (including training age distribution and field strength), and

model error are potential reasons for small relationships between age and brain age

in densely sampled longitudinal data. Clinical applications of brain age models should

consider of the possibility of apparent biases causedby variation in thedata acquisition

process.
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1 BACKGROUND: WHAT IS BRAIN AGE AND
WHAT IS IT GOOD FOR?

Brain age refers to the estimation of a person’s age from magnetic

resonance imaging (MRI) parameters (Franke & Gaser, 2019). This

has been done using either neural networks on 3D data (Leonardsen

et al., 2022) or tabular data containing region-averaged metrics (Korb-

macher et al., 2023; Vidal-Pineiro et al., 2021). Brain age becomes

particularly interesting when assuming that lifespan changes in the

brain follow normative patterns and that deviations from such pat-

ternsmight be indicative of diseaseor diseasedevelopment (Marquand

et al., 2019; Kaufmann et al., 2019). An elevated predicted compared

with chronological age in adults may be indicative of psychiatric, neu-

rodegenerative, andneurological disorders (Kaufmannet al., 2019) and

poorer health, for example measured by various cardiometabolic risk

factors (Beck et al., 2022; Korbmacher et al., 2022). Hence, brain age

is a promising developing biomarker of general brain health (Franke &

Gaser, 2019).

However, revealing connections between brain age and structural

and functional brain architecture is needed to fully understand the bio-

logical underpinnings of brain age and its potential clinical implications

(Vidal-Pineiro et al., 2021). Furthermore, large cross-sectional samples

are often used, which could obscure effects of predictive power of

brain age by confounders, in particular, differences in MRI acquisition

(Jirsaraie et al., 2022). Hence, contributions of individual differences

to brain age estimates require a closer examination. With the aim of

assessing the effects of automatedMRI scan quality control (QC) met-

rics onbrain agepredictions,weusedapretraineddeepneural network

model (Leonardsenet al., 2022) to predict brain ages fromdensely sam-

pled T1-weightedMRI data from three individuals (BBSC1–3) scanned

in total NBBSC = 103 times over a 1-year interval (Wang et al., 2022),

and an independent data set including one individual (FTHP1) scanned

NFTHP = 557 times over a 3-year interval. We first observed within-

subject prediction error and correlations between chronological and

predicted age, revealing small, nonsignificant correlations and larger

prediction errors than previously shown in between-subjects analyses.

We then tested associations of QC metrics on brain age using lin-

ear random intercept models showing potential associations between

QC parameters and brain age as well as associations between acqui-

sition parameters and brain age. Finally, we validate the findings in

cross-sectional data and investigate differences in the variability in

predictions between longitudinal and cross-sectional datasets.

2 RESULTS AND DISCUSSION

2.1 Weak correlation between brain age and age

Crude within-subject correlations between age and brain age revealed

differing directionalities of slopes across subjects, with only the FTHP1

correlation being statistically significant (r = 0.38, 95% CI [0.24; 0.51],

p< .001; Figure 1).

This is likely due to the small age range and short interscan inter-

vals, as illustratedbydifferences inmodel-innate error for thedifferent

subjects (Table 1) compared with error statistics across age groups

(MAEtest = 2.47, MAEexternal = 3.90, as presented in Leonardsen et al.,

2022).

Additionally, the ages of BBSC1–3 fall into some of the least rep-

resented parts of the training data age distribution in the underlying

model for the brain age predictions (see Leonardsen et al., 2022) which

might contribute to explaining some of the prediction differences

beyond model error and intraindividual age range across scanning

sessions.

Yet, when using age-matched healthy controls from the cross-

sectional TOP and NCNG samples (seeMaterials and Methods section)

using BBSC and FTHP longitudinal participants’ mean ages ± 5 years

(presented in Table 1), correlations between age and brain age esti-

mates were significant for age matches (representing subsamples of

TOP andNCNG samples; Table 2).

Interestingly, we also find systematically underestimated brain ages

across subjects (Figure 1) with the underestimations being stronger

for a field strength of 3T than 1.5T for FTHP1 (Table 1), and as

compared with age-matched cross-sectional data (Table 2). While lon-

gitudinal brain age predictions were more closely related to age at 3T

MRI (rpartial = 0.38, 95% CI [0.24, 0.51], p < .001) than at 1.5T MRI

(rpartial = 0.06, 95% CI [−0.04, 0.16], p = .239; Figure 2), the prediction

error was smaller at 1.5T (Table 1), with these findings being robust

to exclusions of back-to-back repeat scans acquired in the same ses-

sionwithout repositioning of the head (Supplement 1).When using the

out-of-sample test sets TOP and NCNG cross-sectional data, we find

highly corresponding relationships between age and brain age at 1.5T

(r= 0.98, 95% CI [0.97, 0.98], p < .001) and 3T (r= 0.92, 95% CI [0.91,

0.93], p < .001), but higher prediction error at 3T for age-matched

subjects (Table 2) and overall (Supplement 3).
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F IGURE 1 Intraindividual correlations between brain age and chronological age at 3T for BBSC1–3 and FTHP1. Dot color was gray, with
overlapping dots presented as darker.

TABLE 1 Age, predicted age, brain age gap (BAG), and prediction error by subject and field strength.

Subject Field strength N observations Mean age SD age Mean prediction SD prediction Mean BAG SDBAG MAE RMSE

BBSC1 3T 38 30.66 0.38 28.13 1.25 −2.52 1.20 2.55 2.79

BBSC2 3T 40 28.09 0.38 24.37 0.95 −3.72 1.03 3.72 3.85

BBSC3 3T 25 40.66 0.28 30.87 1.37 −9.79 1.46 9.79 9.89

FTHP1 3T 153 49.86 0.54 45.71 3.70 −4.15 3.52 4.31 5.44

FTHP1 1.5T 394 49.64 0.46 48.39 2.52 −1.25 2.54 2.15 2.83

The presented data refer to the longitudinal, densely sampled data of few individuals.

BAG, brain age gap;MAE, mean absolute error; RMSE, root mean squared error. BAG is calculated as the difference between predicted age and age.

TABLE 2 Correlations between age-matching cross-sectional subsamples’ ages and brain age estimates.

Matched

subject

Field

strength Nsubjects

Pearson’s r
[95%CI]* Mean age

SD

age

Mean

prediction

SD

prediction

Mean

BAG SDBAG MAE RMSE

BBSC1 3T 279 0.56 [0.47, 0.64] 30.64 2.74 28.34 4.10 −2.30 3.42 3.33 4.12

BBSC2 3T 269 0.62 [0.54, 0.69] 28.81 2.83 26.75 3.96 −2.05 3.13 3.02 3.74

BBSC3 3T 248 0.44 [0.34, 0.54] 40.71 2.95 37.86 5.21 −2.85 4.71 4.52 5.50

FTHP1 3T 113 0.71 [0.60, 0.79] 48.60 3.04 44.68 5.93 −3.91 4.34 4.59 5.84

FTHP1 1.5T 49 0.79 [0.65, 0.88] 49.61 3.22 51.98 4.40 2.38 2.71 2.91 3.58

Matched subject refers to the longitudinally sample subjects presented in Table 1. Mean ages for the respective subjects with an interval of five years were

used to sample from the cross-sectional validation set consisting of 3T and 1.5T data from TOP andNCNG samples. BAG, brain age gap;MAE, mean absolute

error; RMSE, root mean squared error. BAG is calculated as the difference between predicted age and age.

*All p< .001.

This emphasizes the importance of treating predictions for age

groups which are underrepresented in the training sample and dif-

ferences in field strength with care. In that sense, the observed

within-subjects variability associated with acquisition- or scanner-

specific effects might be used to estimate the minimum size of true

within-subject changes (e.g., due to disease) to be detected with

a given power. Previous findings outlined the influence of scanner

site on brain age predictions and scan quality (Jirsaraie et al., 2022;

Leonardsen et al., 2022) indicated by the Euler number (Rosen et al.,

2018). Lower quality scans lead to lower prediction errors. We hence

hypothesize that there might be additional reasons for inaccuracies

in brain age predictions caused by factors beyond the characteris-

 21579032, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/brb3.3219 by N

orw
egian Institute O

f Public H
ealth, W

iley O
nline L

ibrary on [07/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 8 KORBMACHER ET AL.

F IGURE 2 Intraindividual correlations between brain age and chronological age at 1.5T and 3T for FTHP1. Dot color was gray, with
overlapping dots presented darker.

tics of the brain age model, in particular scan quality and acquisition

parameters.

2.2 Scan quality and acquisition: possible reasons
for inaccurate brain age predictions?

We used linear random intercept models at the participant level

to examine associations of individual QC metrics (see Figure 3;

Materials and Methods) and brain age, while controlling for age in

BBSC1–3. Entropy-focus criterion (EFC, βstd = −0.489, pHolm < .001)

and the foreground–background energy ratio (FBER, βstd = 0.456,

pHolm < .001) were significant predictors of brain age. In a separate

analysis of FTHP1, scanned at different sites using different scanning

parameters,we included scanner site, field strength, and slice thickness

as random factors, rendering none of the QC metrics significant after

correcting for multiple testing (pHolm = 1).

Follow-up analyses in FTHP1 focused on examining acquisition

parameters. We observed individual fixed effects of field strength,

manufacturer, and slice thickness in one model each, while keeping

scanner site and the other acquisition parameters as random effects at

the level of the intercept, revealing only significant associations of field

strength (β=−1.141, pHolm < .001) with brain age.

For validation, we replicate this finding in healthy controls from the

TOP and NCNG (see Materials and Methods section). We found dif-

ferences in BAG at different field strengths (β = −3.547, p < .001),

with MeanBAG-1.5T = 1.357 ± 3.285 and MeanBAG-3T = −2.19 ± 4.06

using the entire out-of-sample test data, with this difference being

attenuated when regressing out age (β = −5.318, p < .001). When

age-matching FTHP1 and including only the N = 162 partici-

pants aged 50 ± 5 years (N = 49 scanned at 1.5T), the effect

of field strength appears stronger (β = −6.294, p < .001), with

MeanBAG-1.5T = 2.38 ± 2.71 and MeanBAG-3T = −3.92 ± 4.35, yet

smallerwhen regressingout theage-effect (β=−1.942,p< .001). In the

case of age-matching, also correlations between age and brain age are

stronger at 1.5T compared with 3T (Table 2). This was also true when

using the entire cross-sectional data (combining TOP andNCNG data),

yet correlations between age and brain age were more similar at 1.5T

(r= 0.98, 95% CI [0.97, 0.98], p < .001) and 3T (r= 0.92, 95% CI [0.91,

0.93], p= .004).

While our findings indicate an association between QC parameters

EFC and FBER and brain age in all BBSC subjects when controlling for

age and constant scanning parameters and scanner site, no QC param-

eters were significantly associated with brain age after adjustments

for multiple comparisons in FTHP1. Based on that, one could specu-

late that scan quality impacts brain age predictions when participant

ages are sampled from under-represented age groups within the pre-

diction model. For example, Jirsaraie et al. (2022) showed that neural

networks’ reliability of brain age predictions was lowest at the ends

of the age distributions across scanning sites, and predictions were

less consistent when image quality was low. Furthermore, QC metrics

might be sensitive to individual differences, and vary across scanner

sites. FTHP1 results also suggest a strong effect of field strength on

brain age. This indicates overall that brain age estimates are poten-

tially dependent on intraindividual variables in addition to acquisition

parameters and other scanner site-specific covariates. While we can-

not generalize from the obtained single-subject results (FTHP1) on

field strength, the additional analyses on external datasets support the

effect of field strength congruent with Jirsaraie et al.’s (2022) find-

ings of lower prediction errors at 1.5T compared with 3T. This was

expressed in our analyses as generally higher brain age estimates at

1.5T compared with 3T, and higher prediction errors at 3T in both

cross-sectional and longitudinal data. Finally, we show that prediction

error in longitudinal data can be much higher than anticipated from

cross-sectional estimates, without the presence of mental or physical

disorder (see BBSC3 in Table 1; compare Tables 2 and Supplement 3).
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F IGURE 3 Standardized quality control metrics at 3T per subject. For an overview of scan quality control metrics at 1.5T (only applicable for
FTHP1), see Supplement 2.

A potential approach for future brain age modelling could be to

employ multiple, more specific models which are better tuned to indi-

vidual differences, developmental trajectories, and scan quality. Such

models could for example be trained on data with a smaller age range

and a single field strength. Dependent on these parameters, brain

age predictions can then be made by a model selected based on the

available scan and group the individual belongs to.

3 CONCLUSION

Variability in brain age predictions complicate the metric’s clinical

usage, for example, as a (pre-) diagnostic tool. We presented small

correlations between age and brain age when repeatedly sampling T1-

weighted MRI data from the same individual in a short period of time

(1–3 years). Reasons might lay in the absence of maturation effects for

the age range in the presented sample, brain age model bias (includ-

ing a bimodal or trimodal age training distribution) and model error.

While limited, our results suggest an influence of field strength and

mixed evidence for scan quality on brain age. Individual differences and

the processing of such in the brain age model, might lead to variabil-

ity in associations between brain age and QC metrics. The presented

testing of an established brain age model on multiple single-subject

short-timespan retesting data is a stricter test than the usual use-case

and does not invalidate MRI group differences. However, intraindivid-

ual differences contributing to brain age require further attention in

order to advance brain age as a clinical tool.

4 MATERIALS AND METHODS

4.1 Participants

We used two datasets for the analyses which had received ethics

approval with all participants consenting formally previously (Opfer

et al., 2022; Wang et al., 2022, 2023). The first dataset was the

Bergen Breakfast Scanning Club (BBSC) dataset (Wang et al., 2022,

2023), including three male subjects (BBSC2:start-ageBBSC2 = 27,

BBSC1:start-ageBBSC1 = 30, and BBSC3:start-ageBBSC3 = 40) who

were scanned over the period of circa 1 year with a summer break in

the middle of the scanning period (Wang et al., 2022). This resulted

in a total number of NBBSC = 103 scans, relatively equally distributed

across subjects (NBBSC1 = 38, NBBSC2 = 40, NBBSC3 = 25). The sec-

ond dataset was the frequently travelling human phantom (FTHP)MRI

dataset (Opfer et al., 2022), including one male subject (FTHP1:start-

ageFTHP =48)with 157 imaging sessions at 116 locations, resulting in a

total ofNFTHP=557MRIvolumes.Of these,weexcludedN=6volumes

basedonerrors in the processing pipeline, resulting in a final sample for

themain analyses ofNFTHP = 551. ForQC (Supplement 1), we removed

another NFTHP = 25 volumes which were repeat-sequences run at the
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same scanner and time without changing head position or acquisition

parameters, resulting in a final sample for the supplemental analyses of

NFTHP = 526.

Finally, as additional validation data, we selected healthy controls

from two of the cross-sectional out-of-sample test datasets described

in Leonardsen et al. (2022): locally collected data (TOP; Tønnesen et al.,

2018) and the Norwegian Cognitive NeuroGenetics sample (NCNG;

Espeseth et al., 2012), as these provided most MRI scans on healthy

controls. Together these datasets include a total of N = 209 scans of

healthy controls at 1.5T (Meanage = 54.66± 15.51), andN= 856 scans

of healthy controls at 3T (Meanage = 32.93± 10.55).

4.2 Image acquisition and preprocessing

T1-weighted volumes of BBSC1–3 were acquired with a spin echo

sequence (TE = 2.95 ms, TR = 6.88 ms, FA = 12◦, TI = 450, 188

slices, slice thickness = 1mm, in-plane resolution = 1 mm × 1 mm,

FOV = 256mm, isotropic voxel size = 1 mm3) at a 3T GE sys-

tem with 32-channel head coil (see Wang et al., 2022, 2023).

T1-weighted volumes of FTHP1 were acquired at different scan-

ners with various different scanning parameters (see Opfer et al.,

2022 or https://www.kaggle.com/datasets/ukeppendorf/frequently-

traveling-human-phantom-fthp-dataset). All imaging sites involved in

the scanning of FTHP1 were informed that the scan was acquired

for the purpose of MRI-based volumetry. Furthermore, all FTHP sites

were asked to use acquisition parameters in accordance with the

ADNI recommendations for magnetization prepared rapid gradient-

echo (MP-RAGE)MRI for volumetric analyses. Thus, the range of FTHP

acquisition parameters is representative of MRI-based volumetry in

everyday clinical routine at nonacademic sites. However, the scan qual-

ity might be higher than during average clinical assessments, as only

few scans were affected by motion artifacts (relatively young healthy

subject). TOP data (Tønnesen et al., 2018) including only healthy con-

trols were acquired at 3T on a GE 3T Signa HDxT (TR = 7.8 ms,

TE = 2.956 ms, FA = 12◦; one subset with HNS coil, one subset

with 8HRBRAIN coil), and a GE 3T Discovery GE750 (TR = 8.16 ms,

TE = 3.18 ms, FA = 12◦). NCNG data (Espeseth et al., 2012) were

acquired at a 1.5T Siemens Avanto scanner using two 3D MP-RAGE

T1-weighted sequences (TR = 2400 ms, TE = 3.61 ms, TI = 1000 ms,

FA= 8◦, with 160 sagittal slices (1.3× 1.3× 1.2mm)).

Before prediction, the volumes were automatically processed using

Freesurfer version 5.3 (Fischl, 2012) and FSL version 6.0 (Jenkinson

et al., 2012; Smith et al., 2004), both being widely used open-source

software packages (see for overview of advantages and disadvantages

compared with other packages: Man et al., 2015) which were vali-

dated in clinical andnonclinical samples (Clerxet al., 2015; Fischl, 2012;

Jenkinson et al., 2012; Smith et al., 2004). The processing procedure

included skull-stripping as part of Freesurfer’s recon-all pipeline, lin-

early orienting to MNI152 space (6 degrees of freedom) using FSL’s

linear registration, and excess border removal. While linear registra-

tion in FSL is sensitive to atrophy and high levels of noise (Dadar

et al., 2018), this does not apply for the current quality controlled

data including only healthy controls. As Freesurfer’s skull stripping

algorithm can include errors (Falkovskiy et al., 2016; Waters et al.,

2019), the images were manually checked for accuracy. A step-by-step

processing tutorial including necessary code can be found at https://

github.com/estenhl/pyment-public.

4.3 Brain age estimation

We applied a fully convolutional neural network (Gong et al., 2021;

Peng et al., 2021) trained on 53,542 minimally processed MRI T1-

weighted whole-brain images from individuals aged 3–95 years col-

lected at a variety of scanning sites (both 1.5 and 3T field strength)

(SFCN-reg detailed in Leonardsen et al., 2022) to estimate partici-

pants’ ages directly from theMRI using Python v3.9.13. Themodel was

tested in both clinical and nonclinical samples (Leonardsen et al., 2022)

and presented high accuracy and test–retest reliability compared with

other brain agemodels (Dörfel et al., 2023).

4.4 QC metrics

QC metrics were extracted for each T1-weighted volume by using

the automated MRIQC tool version 22.0.6 (Esteban et al., 2017). Of

these metrics, we used those which are calculated for the whole brain

or volume, being (1) noise measures: contrast-to-noise ratio, signal-

to-noise ratio, coefficient of joint variation of gray and white matter,

(2) measures based on information theory EFC and foreground–

background energy ratio (FBER), (3) white-matter to maximum inten-

sity (WM2MAX), and (4) other measures: full-width half-maximum

(FWHM).

4.5 Statistical analyses

All statistical analyses were conducted using R (v4.1.2). First, correla-

tions of brain age with chronological age and additionally commonly

used error metrics for brain age predictions (mean absolute error and

root mean squared error) were assessed on a participant level.We fur-

ther investigated associations between brain age and age in FTHP1

(from the Frequently Travelling Human Phantom dataset) when par-

tialling out scanner site and field strength, as these were expected to

influence prediction accuracy.

Further analyses focused on associations between QC metrics and

brain age as well as acquisition parameters and brain age. We decided

to observe each single independent variable of interest in a dedi-

catedmodel, as model diagnostics indicated potential multicollinearity

in models including multiple QC metrics. Furthermore, random effect

models were chosen due to the possibility to account for variances

being dependent on different grouping variables, such as ID, scanner

site, field strength, and slice thickness.

Hence, linear random intercept models at the participant level were

used to examine associations of individual QC metrics and brain age,
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while controlling for age in the BBSC dataset, by running onemodel for

each QC metric. Similarly, for dataset 2, we predicted each QC metric

as a fixed effect in addition to the fixed effect of age in a single model.

However, we used different random effects, namely, scanner site, field

strength, and slice thickness, as dataset 2 contained only FTHP1.

We also examined single individual acquisition parameters in the

FTHP dataset (including only one subject FTHP1) as fixed effects in

addition to the fixed age effect. The acquisition parameters of inter-

est were field strength, manufacturer, and slice thickness. Acquisition

parameters not used as fixed effects were used as random effect at

the level of the intercept in addition to scanner site. All p-values were

adjusted formultiple testing usingHolmcorrection,markedwith pHolm.

Standardized β-values (βstd) for predictorswere used for comparability

across β-weights by scaling QCmetrics for each subject individually.

Finally, as a validation step, we estimated brain ages for healthy con-

trols in NCNG and TOP datasets and correlated the estimates with age

for the entire sample, subjects whichwere age-matched to the longitu-

dinal, densely sampled individuals mean age± 5 years. This provided a

baseline understanding for differences in inter and intra subject brain

age variability. In a second step, brain age gap (BAG) was examined by

field strength and scanner site in the validation sample.
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