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Abstract 

Mapping diversity patterns across environmental gradients may predict how ecosystems will 

respond to climate change in the future. The soil biota, including protists, fungi and micro-

invertebrates, are essential components of terrestrial ecosystems but it is so far not clear how 

these communities will respond to climate change. By analyzing soil and litter samples 

collected from various climates throughout Norway, the study aimed to assess how important 

climate is for structuring soil microeukaryote communities compared to other factors, including 

vegetation and local soil properties. To encompass a wide span of taxa and increase the 

phylogenetic resolution, long-read amplicon sequencing (PacBio HiFi) was applied with 

eukaryote-specific primers to obtain continuous reads spanning a ~4500 bp region of the rDNA 

operon (including parts of SSU and LSU genes, and the full ITS region). Sequencing of 

environmental DNA from soil and litter collected at 90 sites recovered over 13 000 OTUs, 

most of which were Fungi, Cercozoa, Metazoa, Alveolata and Streptophyta. Beta diversity 

analyses show significant differences in soil and litter community structures, in addition to 

strong community groupings by dominant vegetation type at the sampling site. Further, 

community structure groups indirectly along a highland/lowland-gradient. Alpha diversity is 

found to be differentially responsive to environmental variables among substrates and without 

a clear distinction between climatic and local factors. A potential diversity threshold is 

observed in the sequencing data and the application of long-read sequencing as a 

metabarcoding mapping tool is discussed. 

KEY WORDS long-read sequencing; metabarcoding; soil microbiome; eukaryotes; diversity 

drivers; community; bias 

 

1. Introduction 

Organic soil masses make up an essential component of most terrestrial ecosystems and contain 

multitudes of organisms. These organisms come in a diversity of forms and fulfil a wide range 

of functions, both directly in the soil and in the overarching biome. Soil communities interact 

with their respective ecosystems on multiple levels, including cycling of elements such as 

carbon and nitrogen (Zhang et al., 2019; see protist review by Geisen et al., 2018; Jiao et al., 

2018; Philippot et al., 2013). These interactions also extend into the shaping of above-ground 

species distribution patterns (Barberán et al., 2015; Prober et al., 2015; van der Heijden, 

Bardgett & van Straalen, 2008) and contributing to ecosystem multifunctionality (Delgado-
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Baquerizo et al., 2016; Aislabie & Deslippe, 2013). Included in the wide scope of soil 

microbiota we find bacteria, archaea and viruses (Thompson et al., 2017; Jansson, 2022), but 

also a considerable variety of eukaryotes, which include fungi, protists and metazoans (Aslani 

et al., 2021) – and potentially immense volumes of unmapped diversity (Locey & Lennon, 

2016).  

Presently, diversity research remains less extensive in microeukaryotes in comparison to 

prokaryotes (Keeling & del Campo, 2017), followed in turn by a bias towards complex meio-

/macroeukaryote organisms (del Campo et al., 2014). However, estimates on biomass 

distribution on Earth indicate that the biomass, and inherently, abundance, of protists and fungi 

is several times greater than that of all metazoans combined (Bar-On, Phillips & Milo, 2018). 

In addition, when microeukaryote diversity is studied it is often in marine or freshwater 

communities (Burki, Sandin & Jamy, 2021), leaving soil microeukaryote diversity relatively 

understudied and indicated to host large proportions of uncatalogued taxa (Venter et al., 2017). 

Considering the prevalence and ecological relevance of soil-dwelling organisms, among them 

microeukaryotes, there is a persisting need for robust approaches to diversity mapping. Beyond 

descriptive mapping, there is also a call for identifying diversity drivers and their roles in 

shaping community structure. Understanding these diversity patterns in soil microbiomes may 

be highly useful not only in unravelling larger ecosystem dynamics, but also in practical 

applications such as informing sustainable soil management for agriculture. This both to 

preserve overall ecosystem health (Prasad et al., 2021) and with regards to ensuring food 

security (Aguilar-Marcelino et al., 2020; Sessich & Mitter, 2015). Also, and perhaps most 

critically, this understanding is key in assessing soil community responses to anthropogenic 

climate change and pollutants (Cavicchioli et al., 2019; Crowther et al., 2019; Dubey et al., 

2019). In turn, these community responses feed back into ecosystem functions and may reshape 

larger scale cycles (see review by Jansson & Hofmockel, 2019). As such, there are indications 

that including soil microbiota in large-scale carbon and geochemical predictive models may 

increase model accuracy (Wieder, Bonan & Allison, 2013), further incentivizing mapping of 

the prevalence and distribution of soil microorganisms. 

After having taken a back seat to macroscopic organisms for some time, there has been an 

increase in studies on microbiome diversity and ecology in recent decades (see reviews by 

Geisen et al., 2018; and Fierer, 2017). This may be partly due to emerging alternatives to 

traditional diversity mapping, as size, morphology and ecology make many of these organisms 

unsuitable for direct observation approaches or culturing. One method of quantifying taxa 
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richness and composition in soil communities is metabarcoding from environmental samples 

(Burki, Sandin & Jamy, 2021; Semenov, 2021; Procopio et al., 2019; Taberlet et al., 2012, 

Ficetola et al., 2008). This approach frequently reveals novel and sometimes unexpected 

diversity, especially in groups where traditional diversity mapping is challenging (Tragin & 

Vaulot, 2019; López-Escardó et al., 2018; Arroyo et al., 2018). Metabarcoding involves DNA 

isolation and amplification of a short gene region with high variability within the group(s) of 

interest. The resulting sequence data from this region is then clustered into operational 

taxonomic units (OTUs) which can give an overview of diversity and may further be cross-

referenced with sequence databases for taxonomic annotation (see Taberlet et al., 2012; Creer 

et al., 2010). Metabarcoding provides efficient estimates of diversity as well as illumination of 

new or cryptic taxa presence and prevalence within samples (Venter et al., 2017). Commonly 

used regions for this type of sequencing include the ribosomal internal transcribed spacer 

region (ITS; and/or subregions therein) for fungi (Schoch et al., 2012) and the small subunit 

region (SSU; 18S) for other eukaryotes (Francioli et al., 2021). The caveat in using short DNA 

regions across wide taxonomic groups lies in that evolutionary rates and variability of certain 

sites may differ between taxa, possibly confounding outcomes if a single short read is the only 

point of reference (Tedersoo et al., 2021; Tedersoo et al., 2015; Valentini, Pompanon & 

Taberlet, 2009; Nilsson et al., 2008). Furthermore, issues may arise when cross-referencing 

OTUs with sequence databases, as all taxa may not be equally well-represented (Khomich et 

al., 2018; Frenken et al., 2017; Nilsson et al., 2008). These factors may put limitations on the 

phylogenetic informativeness of and taxonomic resolution obtained from short sequence data 

– particularly for organisms where there is little reference data, such as soil microeukaryotes.  

As an alternative to short-read metabarcoding, third-generation long-read sequencing has 

emerged in recent years (spearheaded by PacBio and Oxford Nanopore Technologies). While 

initial approaches produced high error rates, improvements in process and correction pipelines 

now facilitate highly accurate sequencing of thousands of continuous base pairs, allowing 

circumvention of traditional short-read sequence limitations without significantly 

compromising reliability (Dohm et al., 2020). Doing longer reads of continuous whole or 

multiple gene regions is already being applied successfully to phylogeny retrieval and diversity 

estimation (Liem et al., 2021; Ritter et al., 2020; Tedersoo et al., 2020; Jamy et al., 2019; 

Martijn et al., 2019; Heeger et al., 2018). Assessing the strengths of various regions in 

phylogenetic informativeness has indicated that more data (longer reads) can give greater depth 

of classification and phylogenetic resolution when applied to environmental DNA (Pearman, 
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Freed & Silander, 2020; Tedersoo et al., 2020; Jamy et al., 2019; Heeger et al., 2018), rendering 

it particularly superior (theoretically) in questions pertaining to community structure. It may 

also facilitate more accurate taxonomic annotation of a larger proportion of OTUs through 

cross-referencing across different databases covering different regions typically used for 

metabarcoding (Heeger et al., 2018). As such, further investigations into the application of 

long-read sequencing in diversity mapping and phylogenetics could be especially useful in as-

of-yet enigmatic community structures.   

Norway is a country of highly heterogeneous landscapes, with a multitude of elevational and 

latitudinal gradients as well as long stretches of coast associated with relatively warm currents 

and contrasting arctic waters (Ketzler, Römer & Beylich, 2021). In addition, efforts have been 

made to provide high-resolution mapping of nature types, resulting in detailed records of 

ecological and topographical gradients across the country (Halvorsen et al., 2020; Horvath et 

al., 2019; Bakkestuen, Erikstad & Halvorsen, 2008). This setting is ideal for studying diversity 

drivers and patterns, including studies on soil communities. Sampling across Norway allows 

for observation of changes to soil communities along several ecological gradients and 

vegetation types.  

To map the soil eukaryote diversity in Norway, long-read sequencing is applied to eDNA from 

soil and litter material from 90 sample sites across the country, producing reads that span 4500 

bp and cover several relevant regions for metabarcoding. The study aims to record the gamma 

diversity of microeukaryotes in litter and soil, and in the process add to the growing library of 

data on the possibilities and pitfalls associated with long-read sequencing in community 

metabarcoding. In addition, the study aims to investigate potential drivers of alpha diversity 

and community structure across two strata of Norwegian soils, focusing on whether climatic 

factors (precipitation, temperature, and seasonality variables) or soil geochemistry and 

vegetation (carbon, nitrogen, and phosphorus content; pH; dominant vegetation and plant 

richness) are better predictors of diversity and composition in the soil biome in the age of global 

change. 
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2. Materials and Methods 

2.1 Sample collection, sample processing and sequencing 

2.1.1 Sample collection 

The collection, processing, and eDNA extraction of sample materials (Materials and Methods 

parts 2.1.1-2.1.3) was conducted as part of a separate study and concluded some time prior to 

the initiation of the current study, however as the project is still ongoing, methods are reiterated 

here in the place of external reference. Sample material was collected in June-October of 2020 

and was part of a project focusing on the fungal class of Archaeorizomycetes, in which DNA 

was extracted from three substrates across 144 sample sites in Norway and Norwegian territory 

(Dr. Ella Thoen, UiO, project ongoing; see Figure 1 for sample sites selected for current study). 

The original set of sample sites was selected to include a diverse scope of nature types across 

a wide geographic range, 

to represent climactic 

gradients, topographical 

variation, and territorial 

extremes in Norway. 

The Nature in Norway 

nature types (NiN) 

(Halvorsen et al., 2020; 

Halvorsen et al., 2009) 

were referenced to select 

sites, and exact plot sites 

were chosen within an 

area by selecting for 

homogenous and easily 

categorised vegetation 

type as well as general 

accessibility.  

 

In each sample site, a 4x4 m 

plot with a 1x1 m grid was 

measured and laid out using 

Figure 1: Map of Norway and Svalbard depicting collection sites for 

the study samples by their respective vegetation types. 
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measuring tape, and soil core samples were extracted centrally from each of the resulting 16 

subplots. A metal cylinder measuring approx. 2.8 cm in diameter was used for coring and the 

depth was relative to where the mineral soil layer started or other non-organic hindrances 

occurred. From the core material, mineral soil was discarded and the litter separated from the 

organic soil. Organic soil was sifted through 5 mm sieves to separate out roots and homogenize 

materials and equipment was cleaned between plots using 70% ethanol and a fire torch. 

Materials from the 16 samples in each site were pooled in their respective substrate categories: 

organic soil, litter, and roots. In addition, aboveground litter was collected from the area 

surrounding the coring location at some sites. For the present master project, only DNA from 

organic soil and litter substrates were studied, and processing of root samples will not be further 

described. All sample material was kept cool and frozen within 24 hours to be kept at -20°C in 

EVOGENE lab freezers at the University of Oslo. 

 

2.1.2 Pre-processing and DNA extraction 

After thawing at room temperature, sample material was handled in Biological Safety Cabinets. 

For the litter material, a sterile scissor was used to cut pieces into smaller fragments of a more 

homogenous size and mixed by hand using sterile gloves. Similarly, organic soil material was 

manually mixed by hand using sterile gloves. A subsample was taken from each of the samples 

and contained in 50 mL Falcon tubes (tubes were filled to approx. 2/3 without a set mass) prior 

to freeze drying for 48 hours in a Labconco FreeZone 2.5 freeze drier (Labconco Corporation, 

Kansas City, MO, USA). Following freeze drying, five 6.2 mm sterile ceramic beads (M.P 

Biomedicals, CA, USA) were added to each sample tube for powdering and homogenizing of 

the material with a Fast Prep-24 beadbeater (M.P Biomedicals) by 3x40 seconds at 4.0 

mills/second.  

DNA extraction was performed using the E.Z.N.A. soil kit, E-Z 96 Disruptor Plate C Plus, and 

E-Z 96 DNA filter Plates (Omega Bio-Tek, GA, USA). 250 mg of freeze-dried, powdered 

sample was loaded into 2 mL Eppendorf tubes, then combined with 725 μL SLX-Mlus buffer 

and 725 μL CTAB. The tubes were then vortexed prior to distribution of 725 μL of the mix 

into the E-Z 96 Disruptor Plate C Plus. A Resch Ball Mill MM301 (Verder Scientific, Haan, 

Germany) at 20 rounds/second for 2.30x2.30 minutes was used for homogenizing. Following 

this, the E-Z 96 Disruptor Plate C Plus, E-Z 96 DNA filter, and E.Z.N.A. soil kit were applied 
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in combination per the manufacturer’s instructions, and the resulting DNA extractions were 

kept at -20°C.  

 

2.1.3 Analysis of soil chemical properties and metadata collection 

Following freeze drying, each sample was subsampled to approx. 5.1 mg (median, soil) and 

3.4 mg (median, litter) for measuring carbon and nitrogen content. Measurements were done 

in-house using a Thermo Finnigan EA 1112 Series Flash Elemental Analyzer (Thermo 

Scientific, Italy). For phosphorus content subsamples of 5.6 mg (median, soil) and 5.2 mg 

(median, litter) were measured on a SEAL AA3 HR AutoAnalyser (Seal Analytical, Germany) 

following the manufacturer’s instructions. 

In addition, subsampled material (500 mg) was suspended in distilled water for pH 

measurements. The diluted sample was vortexed and incubated at room temperature for 

approximately one hour before measuring pH using a Laquatwin-pH-11 (Horiba Scientific, 

Japan) following the manufacturer’s instructions. For two samples, AL077 and AS109, pH 

measurements could not be obtained. 

In addition to these measurements, geographic coordinates and elevation were also recorded, 

along with the NiN-type, dominant vegetation type (simplified into categories: Pine; Spruce; 

Birch; Broad Leaf; Ridge; Alpine Heath; Snowbed; Polar; Mix), and the number of observed 

plant species (plant richness). Climate data for each site was obtained as BioClimatic variables 

to ~1km accuracy/30 seconds from WorldClim v.2 (Fick & Hijmans, 2017, available from 

https://www.worldclim.org/data/worldclim21.html). 

 

2.1.4 Sample selection and mock community assembly 

From the total sample pool of 144 sites x three substrates (n = 432), 90 sample sites and two 

substrates (litter and soil) were selected for the current project (n = 180) (Figure 1). Roots were 

excluded due to the expected bias towards plant and plant-associated microorganisms. Site 

selection was made with the objective of preserving a full representation of nature types within 

forests and alpine habitats and as much geographic and ecological span as possible within a 

90-site frame. Sites that appeared in geographical proximity of each other and also were of 

identical nature types and at similar altitudes were assessed and one (or more) were excluded. 
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This process was done in several rounds wherein geographical and elevational proximity 

became less relevant as the number of clear-cut exclusion candidates was reduced. Most NiN 

nature types were already represented by more than two sites and maintaining a minimum of 

two sites for each nature type was prioritised. No formal parameter bounds were set for 

exclusion, as the initial parameters had to be expanded through several rounds to reduce the 

number of sites sufficiently for this project.  

In addition, a mock community was compiled from DNA extracted from three organisms: 

Serpula similis (Fungus), Pleurotus ostreatus (Fungus), and Prymnesium parvum 

(Haptophyte). Mock species were chosen based on low likelihood of occurring naturally in any 

of the sample material, as well as availability at the time of the project. DNA was extracted 

from tissue from cultures and, in the case of P. parvum, directly from organisms in-culture. For 

DNA isolation, tissues were placed in separate 2 ml Eppendorf tubes with 600 μL of 2% CTAB 

and 1-2 2 mm tungsten carbide beads, then ground in a Qiagen Tissuelyser II (Qiagen, 

Valencia, CA, USA) at 20 Hz for 2x1 minute. Following 10 minutes in a -80 °C freezer, the 

mixture was then incubated at 65 °C for approx. 40 minutes. After a brief cooling period, 600 

μL of chloroform was added and the resulting mixture was centrifuged for 15 minutes at 13200 

rpm. 400 μL from the resulting topmost layer were transferred to fresh tubes prefilled with 400 

μL of chilled isopropanol and left to precipitate in a 4 °C refrigerator for 10+ minutes. Mixtures 

were then centrifuged for another 10 minutes at 13200 rpm before pouring out the top layer of 

isopropanol. 300 μL of 70-75% ethanol was then added before vortexing and centrifuging for 

2 minutes at full speed. Again, the top layer of ethanol was poured out and the remaining liquid 

was left on an incubator plate to evaporate under the cover of sterile tissue. Sample DNA was 

then rehydrated with 60 μL of Milli-Q H2O, and then the DNA concentration was measured 

using Qubit 4 fluorometer (Thermo Scientific, Waltham, MA, USA) following the 

manufacturer protocol. DNA from each sample was then combined into one suspension at 

concentrations corresponding to a 12:5:2 ratio for P. parvum, P. ostreatus and S. similis, 

respectively. All tissues/specimens for the mock community were contributed from in-house 

cultures (see acknowledgements). Suspended DNA and the final mock community were stored 

at -20 °C until further use. 
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2.1.5 PCR and Sequencing 

Following site selection, corresponding litter and soil sample DNA suspensions were collated 

into new working catalogues prior to amplification (n = 180). A total of eight randomly chosen 

replicates from the collected samples and two mock community representative samples were 

also included (total sample, replicate and mock n = 190). General eukaryote primers 3nDF 

(forward, Cavalier-Smith et al., 2009, forward) and 21R (Schwelm et al., 2016, reverse) were 

used as these have previously been used successfully for long-read sequencing of eukaryotes 

(Jamy et al., 2019). Primers were tagged to be sample-specific, with each tag combination 

being used twice: once in each library, set up and contained to separate plates. For the PCR, 

Phusion Plus DNA Polymerase (Thermo Scientific, Waltham, MA, USA) was used in master 

mixes of various compositions (see Table S1 in Supplementary Materials for further details). 

The master mix base consisted of 4x μL Phusion Plus Buffer, 2 μL dNTP, 0.2 μL Phusion Plus 

Polymerase and then the remaining volumes varying between 1-3 μL BSA, 0-1 μL MgCl2 and 

nuclease-free H2O to reach 20 μL total. DNA input was of varying concentration but at a 

volume of 2 μl/sample (see Table S2 in Supplementary Materials for further details). The cycle 

program consisted of denaturation at 98°C for 30s, followed by 25 cycles of 98°C for 10s; 

annealing at 60°C for 30s; and elongation at 72°C for 5 mins. Final elongation was at 72°C for 

5 mins and then products were held at 10°C until further use. PCR products were checked using 

agarose gel electrophoresis on 1% Agarose gels (see Table S3 in Supplementary Materials for 

detailed set-up). If agarose gel bands were of unsatisfactory quality, samples were run again 

with tweaked PCR protocols - namely by diluting sample input, increasing proportions of BSA 

and introducing MgCl2. Most samples amplified well under similar PCR regimes, however for 

those that consistently amplified poorly more approaches were tested on a reduced number of 

samples exclusively. As a result, final products for sequencing were collected from several 

various PCR runs into new composite plates (Table S1 in Supplementary Materials). Bovine 

serum albumin (BSA) was utilised throughout the PCR variations as this has been shown to 

mediate some inhibitor effects associated with the soil source material (Kreader, 1996). In the 

latter stages of PCRs, Magnesium chloride (MgCl2, Thermo Scientific, Waltham, USA) was 

also introduced to further facilitate amplification (as per the manufacturer’s suggestion in-

protocol; Koblízková, Dolezel and Macas, 1998). PCR products were cleaned and quantified 

at the Norwegian Centre for Sequencing (NCS) using AMPure BP beads system (Beckman 

Coulter, Indianapolis, IN, USA) and Qubit fluorometry (Thermo Scientific, Waltham, MA, 

USA) for product concentration measurement. Following this, volumes for equimolar pooling 
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were calculated based on product concentration measurements made at NCS, and products 

were pooled into two libraries which were then resubmitted to the NCS for sequencing. Each 

library was sequenced on one 8M SMRT cell on Sequel IIe instrument using Sequel IIe Binding 

kit 2.2 and Sequencing chemistry v2.0. Loading was performed by diffusion loading, with a 

movie time of 30 hours. CCS sequences were generated using Sequel IIe onboard analysis 

SMRT Link (11.0.0.146107). 

 

2.2 Bioinformatics and statistical analyses 

2.2.1 Demultiplexing, filtering, and denoising 

Sequence data was returned in two separate files, which were demultiplexed and trimmed (min 

length 2000 bp, maximum error rate 0) separately using a linked adapter approach in cutadapt 

(Martin, 2011). Following this, the sequences were filtered (min 2500 bp, max 7500 bp, maxEE 

4 and minQ 3) using the dada2 package (Callahan et al., 2016) in R v.4.2.1 (R Core Team, 

2021). dada2 was further used for initial dereplication of sequences, denoising, and sample 

inference.  

Chimeric detection was performed in VSEARCH (Rognes et al., 2016) using uchime_denovo 

with adjusted parameters (abskew 1.5, dn 0.7, minh 0.5 and xn 4.0) to minimize false negatives 

(at the expense of increased false positives). Only non-chimeric category sequences were 

exported from this step (rejecting both chimeras and borderline sequences). The dada2 

removeBimeraDenovo chimera detection tool was also tested and returned similar statistics in 

chimera detection (see Results), however as the borderline chimera feature is lacking it was 

decided to move forward with the most conservative approach of excluding both chimeras and 

borderlines as flagged by the adjusted uchime_denovo. 

 

2.2.2 Clustering and OTU curation 

Finally, the sequence data was clustered at 97% similarity using vsearch_cluster in VSEARCH. 

For preliminary taxonomic annotation, centroids were queried against the Protist Ribosomal 

Database (PR2 v. 4.14.0; Guillou et al., 2013) using BLAST+ v.2.13.0 (Camacho et al., 2009), 

retaining maximum 20 hits per query which were then sorted by bit score, e-value, and per 

identity match percent, retaining only the top hit for each successful query. Those hits were 
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then further filtered to discard Archaea hits, hits with a per-identity match of < 85%, alignment 

length of < 200 bp and/or match start in query sequence after the initial 10 bp. Sequences which 

could not be successfully matched to PR2 database entries using this approach were excluded 

from further analysis, with the intention of utilizing successful hits as a proxy for definite 

eukaryote sequences. This was done as part of a consistently conservative approach to 

eliminate as much potential noise as possible from the dataset. Finally, the unclustered 

sequences of individual samples were mapped against cluster centroids using usearch_global 

(id 0.97) in VSEARCH. 

A separate annotation round was made where queries returned from PR2 as the major groupings 

Fungi, Streptophyta or Metazoa were rerun using BLAST+ against databases UNITE (Fungi; 

UNITE v. 16.10.2022; Abarenkov et al., 2022; Nilsson et al., 2018) and NCBI (Streptophyta 

and Metazoa; NCBI v.2.2022; Wheeler et al., 2007). Hits from all three databases were filtered 

to the same quality threshold as previously described, then those query sequences that remained 

without appropriate quality hits were run through all three databases in parallel using BLAST+. 

The resulting hits were combined, quality filtered again and then sorted by bit-score, e-value 

and per-identity match to retain only the best hit for each query prior to being joined to the first 

level of hits.  

 

2.2.3 Phylogenetic inference 

A reference library was assembled from SILVA SSU and LSU databases (release 138.1; 

Pruesse et al., 2007) by retrieving and concatenating all SSU and LSU sequences which could 

reliably be attributed to the same genome and were also relevant to our database annotated 

data. This was determined by matching accession numbers and inspecting region coordinates 

to indicate that results were a) of the same origin and b) from the correct region. In addition, 7 

external sequences were retrieved for Amoebazoa (NCBI Assembly) and two for 

Archaeorhizomyces (NCBI; one continuous SSU-ITS-LSU sequence from A. finlayi and one 

sequence concatenated from the SSU and LSU sequence for A. borealis). Reference sequences 

were concatenated and aligned in Geneious (Geneious Prime version 2022.2, Biomatters; 

Available from https://www.geneious.com) using the MAFFT v7.490 plugin (Katoh & 

Standley, 2013). Sequence alignment and simple tree visualizations were reviewed and the 

sequence selection modified to eliminate non-eukaryotic, lacking or irrelevant reference 

https://www.geneious.com/
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sequences, resulting in a total of 274 reference sequences which were subsequently joined to 

the centroids.  

The combined full sequence library was then aligned using MAFFT v7.470 and a maximum 

likelihood tree assembled in FastTree v.2.1.11 (Price, Dehal & Arkin, 2010) with the general 

time-reversible model specified. The resulting tree and alignment were inspected for 

topographical errors with respect to reference sequences as well as sequence anomalies in the 

sample sequence data. In addition, alignment length was reduced by removing 99%, 75% and 

50% gaps sequentially in Geneious to improve alignments and it was also decided to exclude 

the ITS regions as they are difficult to align due to frequent hypervariability. From these, new 

alignments and trees were produced with the previously described approach and inspected to 

find that the 50% gap removal along with ITS exclusion gave the best-resolved phylogeny. The 

final tree is composed of 246 reference sequences and 13 062 sample centroid sequences.  

To annotate the phylogenetic tree, taxonomic annotations obtained through the multi-database 

approach (described in Materials & Methods part 2.2.2) were applied. The final tree was 

visualized using Interactive Tree of Life (iTOL v. 6.7.4, Letunic & Bork, 2021). Rough clades 

were outlined manually where possible following a visual inspection of tree topology and a 

consensus judgement based on the majority and placement of database-sourced taxonomic 

annotations and the curated reference sequences to delineate some larger groups in the 

eukaryote tree of life. To produce an estimate of the level of confidence that all assigned clade 

members were indeed coherent with a monophyletic clade, all OTUs within the presented 

clades were checked for proportion of “correctly” annotated OTUs (“correctly” indicating 

adherence to the overall clade annotation). In addition, the top 15 most overall abundant taxa 

(relative abundance from raw data) were calculated to phylum-equivalent rank in R v.4.2.2 

using R package fantaxtic’s top_taxa function and visualized using plot_nested_bar from the 

same package. This was repeated for the top 15 most abundant taxa in litter and soil separately. 

  

2.2.4 Statistical analyses 

All statistical analyses were performed in R v.4.2.2 (R Core Team, 2021) and employed the 

following packages: vegan (Oksanen et al., 2022); geosphere (Hijmans, 2022); agricolae (de 

Mendiburu, 2021); psych (Revelle, 2023); FSA (Ogle, Doll, Wheeler & Dinno, 2023). Data 

handling was done using packages phyloseq (McMurdie & Holmes, 2013) and tidyverse 

(Wickham et al., 2019). Data was further curated and visualized using ggplot2 (Wickham, 



16 
 

2016); corrplot (Wei & Simko, 2021) and fantaxtic (Teunisse, 2023). Map visualizations were 

produced with additional packages maps (Becker et al., 2022) and cowplot (Wilke, 2020). 

Packages gt (Iannone et al., 2023) and gtsummary (Sjoberg et al., 2021) were utilized for 

producing tables. 

Prior to analysis, all numeric metadata variables were zero-skewness transformed and ranged 

(0-1) according to Økland, Økland & Rydgren (2001), except for those whose distribution 

could not be improved towards normality through this approach. For those variables, a simple 

ranging was performed using the function decostand from the R package vegan with method 

= “range” (applies to the % carbon content in the samples (C) and mean temperature of 

warmest quarter (°C, bio_10), respectively). Longitude and latitude were included both as zero-

skewness transformed ranged variables and as coordinates, separately. In addition to the 

originally collected sample chemical properties, the carbon to nitrogen ratio in each sample 

was also calculated (C:N) and included. Metadata range summaries and transformations can be 

found in Table S4 in Supplementary Materials. 

Out of the 19 available BIOCLIM 

variables, a subset of 10 was 

selected following correlation 

analyses in the form of a 

Pearson’s product-moment 

correlation visualization, which 

indicated collinearity among 

several of the variables, and 

Principal Component Analysis 

(PCA) visualization. Those 

BIOCLIM variables that shared 

similar directionality and distance 

vectors in the PCA were assessed 

and a representative for a given 

cluster was selected, primarily 

prioritized by the simplicity of the variable (i.e. as close to direct observational climate data as 

possible). Final metadata selection can be viewed in Table 1 and correlational visualizations 

can be found in Supplementary Materials Figures S1 and S2. 

Table 1: Environmental variables included in final analyses. 
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In the mock community samples, the three original input species were recovered successfully 

(according to PR2, NCBI and UNITE annotation) – P. ostreatus was not returned as a good 

match in any of the databases, however as all but one of the high-abundance centroids could 

be confidently annotated as either S. similis or P. parvum, this may be due to poor coverage as 

the best hit for the remaining centroid was limited to class level Agaricomycetes. In addition, 

two OTUs annotated as Leotiomycetes were retrieved - however the collective abundances 

were 2 and 5 reads and so they are likely artefacts of annotation or filtering approaches. Aside 

from this, no unexpected OTUs were retrieved.  

Sample replicates were subset and assessed for discordance. Non-metric multidimensional 

scaling (NMDS) plots were produced for visual inspection of sample/replicate dissimilarity 

distances using metaMDS from vegan and resulting ordination plots. PERMANOVAs were 

applied to test for dissimilarity between the original samples (as a whole) and the replicates (as 

a whole) (adonis2 from vegan, Bray-Curtis distance and 9999 permutations) – while not 

speaking to the pairwise similarity, this was considered sufficient when viewed together with 

the NMDS plot. Sample replicates and their counterparts were examined for significant 

differences in community structure and were not found to be significantly dissimilar 

(PERMANOVA, r2 = 0.014, p = 0.96) and so were considered satisfactorily non-indicative of 

major amplification or bioinformatic issues.  

For the statistical analyses, mock community and replicate samples were excluded. As the 

resulting dataset was large and skewed but also contained a considerable amount of zero counts, 

it was decided to work with the data without any initial transformation and instead apply non-

parametric analyses. For analyses, the dataset was processed 1) as a whole, without the 

exclusion of library size outliers and otherwise indicated outliers or subsetting, for initial alpha 

and beta diversity mapping; 2) as a whole, excluding outliers; 3) as subsets of substrate types, 

excluding outliers. Outliers were determined from library size (> 40 000 reads in a sample) and 

from initial NMDS ordinations no further outliers were indicated. When filtering to exclude 

size outliers (samples with > 40 000 reads), eight samples were excluded – four litter samples 

(AL060, AL061, AL092 and AL112) and four soil samples (AS050, AS079, AS108 and 

AS128). In addition to replicate and mock exclusions, two samples were lost to poor 

amplification (AL107 and AS116) along with one replicate (AL002-REP) which was lost due 

to a traceable and isolated error during PCR product pooling.    
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For alpha diversity indices, observed richness of OTUs, Chao1 richness estimates, Shannon-

Wiener Diversity Index and Evenness scores were calculated for each sample. Chao1 Richness 

estimates and observed richness corresponded exactly; Shannon Diversity Index takes into 

account evenness; so Chao1 and Shannon Diversity Index scores were selected as alpha 

diversity representatives for analyses into environmental variable correlations. As Shapiro-

Wilks normality tests and Kolmogorov-Smirnov normality tests almost exclusively indicated 

non-normal distribution of all alpha diversity indices, several transformation alternatives were 

applied in an attempt to approach normality (log; log10; sqrt). However, as normality could 

not be satisfactorily and consistently asserted statistically and visually (distribution histograms) 

by any of these approaches, non-parametric analyses were applied to alpha diversity indices as 

well.  

To investigate if alpha diversity indices vary with categorical metadata, Kruskal-Wallis rank 

sum tests were applied to each categorical variable independently. Significant results (p < 0.05) 

were followed by post hoc pairwise testing using Dunn’s Kruskal-Wallis multiple comparison 

tests with Bonferroni adjustments. Continuous variable correlations were assessed by applying 

Kendall’s rank correlation (tau) to each variable independently. In addition, Generalized linear 

models (GLMs) were set up with alpha diversity indices as response variables using glm() and 

default specifications. 

For beta diversity analysis, the dataset was filtered to exclude OTUs that occurred in < 2 

samples and total-transformed using vegan’s decostand and method = “total” to yield a relative 

abundance table. The function adonis2 in the package vegan was used to perform 

PERMANOVAs on Bray-Curtis distance matrix with 9999 permutations, assessing each 

categorical and continuous variable independently. NMDS was performed using metaMDS in 

vegan with Bray-Curtis distance matrix, two dimensions, and a maximum of 250 tries and 

visually inspected for fit using stressplot() and goodness(), also from vegan. The resulting 

ordination was used to quantify correlation vectors by applying envfit with 9999 permutations.  

To investigate the effects of geographic distance between sample sites, a Mantel statistic test 

was performed using mantel() with 9999 permutations from vegan with Spearman’s rank 

correlation and Bray-Curtis distance matrix; the geographic distance was calculated using 

distm() and function distHaversine from the GeoSphere package and non-transformed 

coordinates. 
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3. Results 

3.1 Data characteristics 

A total of 7 881 289 HiFi sequences across two libraries with a mean number of CCS passes 

of 19-20, a Q45-Q46 median quality score and an average read length of 4443-4448 bp was 

returned from PacBio Sequel IIe sequencing at the Norwegian Sequencing Centre. Following 

demultiplexing by strict tag matching, the total number of reads was reduced to 5 838 735. 

Filtering, denoising, chimera exclusion and data curation reduced the post-demultiplexing total 

read count by 34.1% and the per-sample average read retention in analysis-ready samples was 

65.7%. Chimera formation rate was seemingly low in the sample data: 0.61% of unique 

sequences were flagged as chimeras and 12.66% as borderline category (uchime_denovo with 

adjustments). Both chimera-flagged and borderline sequences were excluded, amounting to a 

total of 8.13% of read abundance. The chimeric formation rate was considerably greater in the 

mock communities compared to rates observed in the environmental samples. Depending on 

chimeric detection approach (removeBimeradenovo in dada2 or uchime_denovo) in 

VSEARCH) chimeric rates in the mock community samples averaged at 59-86% (unique 

sequences; 7-11.5% abundance; not including borderline categories). 

Figure 2: Species accumulation curves for samples, focused on the most common range of 

plateaus (100-500 OTUs across 10 000-40 000 reads). The inlay shows the curves for size 

outliers. 



20 
 

The final dataset used for statistical analysis contained 3 695 632 reads across 13 129 OTUs 

and 178 samples (outliers included; mock community samples and replicates excluded). 

Species accumulation curves were largely similar across samples and appeared to all plateau 

irrespective of sample size (Figure 2). 

Read distribution in the overall dataset was moderately skewed, with considerable overlap 

between OTU commonality and total OTU abundance: the 10% most common OTUs also held 

78.8% of total read abundance. Read distribution was also skewed between samples with a few 

samples containing considerably higher overall read counts than the majority: the 10% most 

abundant samples accounted for 26.6% of total reads. There was a significant correlation 

between sample read abundance (library size) and number of OTUs observed (Kendall’s rank 

correlation on outlier-excluded data, τ = 0.158, p < 0.01) and most samples fall in a middle 

range of 100-500 OTUs per sample (Figure 3). A considerable proportion of total OTUs 

occurred only once (i.e. in their respective sample and no others): 49.4% (6483) of OTUs but 

only 3.5% of total reads. The per-sample prevalence of unique OTUs was variable but low, 

with an average of 8.7% per sample.  

 

3.2 Phylogeny and taxonomic composition 

Overall OTU richness is described from the phylogenetic tree, with delimited groups checked 

against database annotations to give an estimate of annotation accuracy relative to phylogenetic 

Figure 3: Histogram depicting frequency of OTU distribution across samples. 
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placement. 96.87% of the OTUs, distributed across 14 groups, were checked for phylogeny-

annotation coherence - the remaining OTUs were primarily scattered in smaller, 

paraphyletically placed groups and so were not assessed against any major retrievable groups. 

The assessed groups were found to have an average coherence (match percent) of 93.17% (min. 

70,59%; max. 100%) between taxonomic annotation and phylogenetic placement. The five 

most diverse groups were: Cercozoa (~3158 OTUs; 99.97% annotation match); Ascomycota 

(~2682 OTUs; 98.14% annotation match); Basidiomycota (~1430 OTUs; 97.48% annotation 

match); Non-Dikarya Fungi (~1418 OTUs; 70.59% annotation match); and Metazoa (~1353 

OTUs; 87.58% annotation match). Together, these groups made up 76.9% of the overall 

observed richness (Figure 4).  

Abundance data is tied to the taxonomic annotation and so is, as demonstrated by the varying 

annotation-phylogeny cohesion, somewhat inaccurate. Working from a phylum-level rank 

equivalent and conglomerating relative abundance distribution in groups to match the groups 

mapped in the phylogeny, the 15 most abundant phyla-level groups investigated made up 96% 

of total abundance. This approach does leave some uncertainties as it is only based on phylum-

level conglomerate abundance, however the distribution of the remaining 4% is unlikely to 

cause major shifts in the observed abundance scheme. Fungi dominated the relative read 

abundance with Ascomycota alone providing 33.8%. Then followed by Streptophyta (16%) 

and Basidiomycota (15.5%); Cercozoa (8.2%), Metazoa (8%), Alveolata (6.8%), and lastly 

non-Dikarya fungi (6.2%) and Chlorophyta (0.9%). Uncultured fungi were also in this range 

(0.7%), however as this annotation is not phylogenetically placeable it was included in the 

other category in some visualizations. When top taxa are extracted for soil and litter separately, 

distribution of relative read abundance differs between the substrates (Figure 4).  
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3.3 Alpha diversity trends in soil eukaryotes 

OTU richness and library size (sample read abundance) correlated positively (full dataset, 

Kendall’s rank correlation, τ = 0.21, p < 0.001) and also when outlier samples were excluded 

(τ = 0.16, p < 0.01) (Figure 5). Shannon diversity index score also correlated positively with 

library size (τ = 0.16, p < 0.01; outliers excluded, τ = 0.14, p < 0.01), whereas evenness scores 

did not correlate significantly with or without outliers.  

Figure 4: Phylogenetic tree from total OTUs, with major groups indicated by color and poorly 

supported nodes marked red. An inlay is provided for long-branch scale depiction, as well as stacked 

barcharts for distribution of relative read abundance in substrates separately. 
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Percent unique OTUs correlated positively with Shannon Diversity index scores (τ = 0.36, p < 

0.001; outliers excluded, τ = 0.24, p < 0.001) and with Chao1 richness estimates (τ = 0.26, p < 

0.001; outliers excluded, τ = 0.35, p < 0.001). Evenness score did not correlate significantly 

with percent unique OTUs, with or without outliers. Library size and percent unique OTUs in 

library correlated positively only when outliers are included (τ = 0.13, p < 0.05). 

Alpha diversity indices correlated moderately among themselves: Shannon Diversity index 

score and Evenness score correlated positively (τ = 0.40, p < 0.001; outliers excluded, τ = 0.42, 

p < 0.001), as do Shannon Diversity scores and Chao1 Richness estimates (τ = 0.51, p < 0.001, 

outliers excluded, τ = 0.52, p < 0.001). Evenness and richness estimates did not correlate 

significantly with or without outliers. 

Figure 5: Correlation plot for Chao1 Richness Estimates and library size (sample read 

abundance); outliers excluded. Note that the regression line is illustrative and only 

representative in direction, not slope. 
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For alpha diversity indices and environmental variables, analyses were made on data where the 

previously described outliers were excluded. Tables containing further Kendall’s correlation 

and GLM output details can be found in Supplementary Materials Tables S5 through S9. When 

assessing both sample substrate types together, richness was found to not vary significantly 

with substrate or vegetation type. Out of the continuous variables, only pH (τ = 0.11, p < 0.05) 

correlated with richness estimates. No significant differences could be retrieved for Shannon 

Diversity Index scores between categorical factors either, however diversity correlated 

negatively with carbon-to-nitrogen ratio (τ = -0.20, p < 0.001) and positively with pH (τ = 0.13, 

p < 0.05). Generalized linear models (GLMs) with diversity as the response variable gave 

carbon-to-nitrogen 

ratio (coef. = -1.5) and 

pH (coef. = -1.6) as 

significant predictors, 

while models for 

richness gave the Polar 

vegetation type (coef. = 

-496).  

Following initial 

analyses of all samples 

together, substrates 

were subset and 

analysed separately. 

Between Kendall’s 

rank correlation tests 

and GLMs, alpha 

diversity indices did 

not consistently 

correlate to the same 

variables across 

substrates (Figures 6 and 7; 

table 2). When both 

substrates were analysed 

together, significant 

Figure 6: Significant correlations (Kendall’s rank correlation tau) 

between Chao1 Richness Estimates (y-axis) and environmental 

variables; soil. Note that regression lines are illustrative for 

directionality, please see tau for slope indication. 
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correlations were majorly reflective of those observed also in soil. Vegetation type was not 

found to be a significant predictor of richness in either substrate and only between Broad leaf 

and Pine vegetation types for soil diversity (Kruskal-Wallis rank sum test, χ² = 18.228, p < 

0.05; Dunn’s test, Bonferroni adjusted p < 0.05). GLMs did not indicate vegetation types as 

significant predictors of diversity in either substrate and for richness, only the Polar vegetation 

type was significant and only in soil (coef. = -726, p < 0.05).  

Soil richness further 

correlated positively 

with pH (τ = 0.18); 

negatively with carbon-

to-nitrogen ratio (τ = -

0.16); mean diurnal 

temperature range (τ = -

0.20); isothermality (τ = 

-0.17) and precipitation 

seasonality (τ = -0.15) 

(Figure 6). Soil pH (coef. 

= -561), metres above 

sea level (coef. = -487) 

were indicated 

separately as significant 

soil richness predictors 

from GLMs. Litter 

richness did not correlate 

significantly with any 

continuous variables or 

yield significant 

predictors from the 

GLM.  Litter diversity, 

however, correlated 

positively with nitrogen content (τ = 0.23) and negatively with latitude (τ = -0.19), and the 

GLM returned pH (coef. = -3.1), along with metres above sea level (coef. = 2) as significant 

diversity predictors (Figure 7). Soil diversity correlated negatively with carbon content (τ = -

Figure 7: Significant correlations (Kendall’s rank correlation tau) between 

Shannon Diversity index scores (y-axis) and environmental variables; 

Litter (top) and soil. Note that regression lines are illustrative for 

directionality, please see tau for slope indication. 
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0.22), carbon-to-nitrogen ratio (τ = -0.29) and precipitation seasonality (τ = -0.15); and 

positively with pH (τ = 0.22). GLMs conversely returned carbon content (coef. = -2.3) and pH 

(coef. = -2.8) as significant diversity predictors in soil.   

 

Library size (sample read abundance) and percent unique OTUs were often present as 

significant correlators or predictors, however as these were indicated to vary directly with 

richness (see earlier results on alpha diversity indices intercorrelations) they may be ignored 

from further inference. 

 

 

 

Table 2: Generalized linear model output for Chao1 Richness Estimates (top) and Shannon 

Diversity Index (bottom) – only significant predictors displayed, further details can be found in 

Tables S8 and S9 in Supplementary Materials. 
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3.4 Beta diversity trends in soil eukaryotes 

In analysing beta diversity, NMDS ordinations with significant (p < 0.05) variable vectors 

indicate differing community structure responsivities between litter and soil (Figure 8). 

Ordinations also indicate grouping of community structure by vegetation type and further by 

Figure 8: NMDS ordination plots for samples by vegetation types for A) Both substrates together, 

with t-type ellipses for vegetation types; B) Litter samples with significant (p < 0.05) 

environmental variables fitted; and C) Soil samples with significant (p < 0.05) environmental 

variables fitted. 
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forest and alpine vegetation types. PERMANOVAs indicate that all factors were significant to 

community structure when analysing both substrates together and in litter separately, while all 

except plant richness were significant for litter communities (p < 0.05) (see Table S10 in 

Supplementary Materials for full output summaries). It should be noted, however, that most of 

the significant R2 statistics are minute (R2 <0.03-0.08>) and so their true significance should 

be interpreted with caution (Figure 9). The only variable that appears to emerge as a truly 

significant factor when substrates are considered separately is the dominant vegetation type (R2 

= 0.24 in litter samples; R2 = 0.21 in soil). When viewed together, the substrate does appear to 

also play a considerable part in community structure (R2 = 0.07) while sample site effects are 

by far the greatest contributor to overall community dissimilarity (R2 = 0.62). 

There was a significant correlation with geographic location on community structure when 

substrates were considered together (Mantel statistic based on Spearman’s rank correlation rho, 

r = 0.1185, p < 0.05) as well as in litter (r = 0.17, p < 0.05) and soil (r = 0.17, p < 0.05) 

separately.   

 

 

 

Figure 9: Significant R2 statistics from individual-variable PERMANOVAs, note the 

scaling of Sample Site effects. 
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4. Discussion 

In brief, a large diversity of OTUs is recovered but data characteristics may indicate that the 

observed diversity is presenting a subset of true diversity. Despite this, there are consistent 

variations between soil and litter in alpha diversity correlations and in community structure. 

The structure also varies with vegetation type, however the uncertainties associated with 

abundance signal limit the ecological inferences that can be made from these structural 

variations. Ultimately, long-read sequencing provides a solid and highly informative dataset, 

however some caveats must be discussed in light of the above results. 

 

4.1 Long-read sequence data 

The first and perhaps most crucial item of discussion following the results is the relationship 

between observed species accumulation curves and the positive richness-library size 

correlation. While the latter may be an indication of insufficient sequencing depth (see Figure 

5), the species accumulation curves imply satisfactory sequencing in that despite variations in 

library size (and some severe size outliers), most sample curves still appear to reach a plateau 

(see Figure 2). As such, one should consider the possibility that the current dataset is comprised 

of only a subset of the true community diversity and that this subset is a result of community 

structure properties or other biological factors highlighting limitations to current eDNA 

metabarcoding approaches. If so, there might be an incentive to assess more deeply the 

suitability of long-read metabarcoding as a community mapping tool and increase knowledge 

on biases introduced through broad-scale taxa mapping. That being said, if this diversity 

selection phenomenon is real it could also be a result of unknown selective processes in pre-

sequencing protocols. Investigations into whether methodological processes might be causative 

are ongoing as the DNA used for this study has also been used in a parallel short-read 18S-

based study with separate protocols (Ella Thoen et al., in preparation) – if these samples exhibit 

similar plateauing it would be indicative of sample processing or DNA isolation related 

selection, whereas otherwise the amplification steps should be considered. There are instances 

of primer choice resulting in differential richness measures in metabarcoding, as recorded in 

common COI primers (Hajibabaei, Porter, Wright & Rudar, 2019). As this study employs 

primers previously used in long read sequencing of eukaryotes (Jamy et al., 2019) where such 

a diversity subsetting does not appear to have been an issue, one might consider primer choice 

less likely to be causal here (though still possible). DNA extraction protocol has also been 
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found to have significant impacts on recovery of community structure in soil (Dopheide et al., 

2017; Santos et al., 2017). It remains, though, that a likely source of this selection bias - if it is 

protocol-related - is the amplification process. As the PCR approaches in this study were not 

designed for a methodological study, unfortunately the application of differing PCR 

approaches is non-random and the statistical power in the skewed distribution of final treatment 

groups too poor to retrospectively gain any insight on this matter. In addition to the protocols 

themselves, there may be factors in the samples which inhibit or limit amplification of certain 

groups, as overall PCR inhibition in soil- litter derived eDNA is well-documented (see review 

by Alaeddini, 2012) – whether these inhibitors could selectively interact with amplification 

processes is a more controversial question. Another aspect to consider is the availability of 

reagents during PCR and if the increase in amplicon length could be affecting the rate of 

expenditure or saturation to limit amplification. If this potential phenomenon of selective 

amplification is related to the amplification of long amplicons specifically, the implications for 

long-read sequencing in diversity mapping and particularly beta diversity are considerable.  

Another interesting and amplification related find was that detected chimeric rates were very 

low throughout the sample data. Several approaches were tested for chimeric detection, 

however none yielded greater rates than the use of adjusted uchime_denovo which was 

ultimately utilized. In contrast to the 0.61% (13.27% including borderlines) rate observed in 

this study, Heeger et al. (2018) report a chimera formation rate of 16 % from similar PCR 

conditions in long-read sequence data from eDNA. Furthermore, the chimera prevalence was 

unexpectedly high (59-86 %) in the mock community samples in comparison to environmental 

samples. The main issue considered was confidence in the detection of multi-parent chimeras 

(or “grand-parent”). While some time was invested in testing for the most appropriate chimera 

detection protocol, it is still possible that this vast discrepancy between expected prevalence, 

mocks and collected samples is due to some volume of undetected chimeras in the collected 

sample data. However, the overall data resolution and phylogenetic signal retained in the study 

are not indicative of an excess of chimeras. And though no formal tests were conducted to 

assess intra-sample phylogenetic diversity, one might expect environmental samples to be 

fairly phylogenetically heterogenous in comparison to both mock and amplicons from narrow 

taxa-targeted samples. Applying broadly targeting primers might result in a lower chimeric 

formation rate than what could be expected from amplification of more selectively 

phylogenetically linked taxa. In short read amplification, community complexity is associated 

with increased chimera formation, however similarity between parental sequences is also an 
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apparent prerequisite for chimera formation, and as such the above theory may hold yet (Aas, 

Davey & Kauserud, 2016). There are also the differing extraction methods and 

concentration/compositional aspects to consider with regards to the discrepancy between mock 

and environmental samples.  

Continuing through the long-read data curation process, a brief mention of the use of PR2 

database hits as a filtering tool is due. As an additional denoising step, sequences that could 

not be matched to any PR2 database entry were excluded on the basis that they may not be 

eukaryote sequences. There are alternatives to this approach, such as Barrnap’s eukaryote 

detection function (https://github.com/tseemann/barrnap). Still, the conservative approach 

taken throughout data curation, along with the overall study aims, allowed for the more 

exclusive PR2-matching strategy. However, any exclusion of sequences at this stage in data 

curation – that is, after all major filtering, de-noising and chimera removal – runs the risk of 

excluding true diversity. Especially in poorly mapped communities, “dark taxa” may be 

numerous and could affect community structure (Kortmann et al., 2022; Zamkovaya et al., 

2021), as well as simply being diversity worth mapping on its own. For further investigations 

into the unmapped taxa of soil communities in this study, one approach could be to align the 

discarded sequences with the established reference library and work from there to establish 

phylogenetic placement likelihoods and hypothesize ecological functionalities.  

 

4.2 Phylogenetic diversity and abundance signal 

While diversity analyses may be considered with some care, the recovered phylogenetic 

topology can be said to stand apart and the observed diversity discussed. Several large groups 

are delimited fairly cleanly, with no major conflicts to current hypotheses of the eukaryote tree, 

except for perhaps the placement of Microsporidia outside of Fungi (Burki et al., 2020). It 

should be noted that several deep nodes are poorly supported, however this is to be expected 

from this level of phylogenetic signal and the use of a single DNA-locus. The branches 

associated with OTUs annotated as Amoebozoa, Discoba and Microsporidia are somewhat 

entangled and Microsporidia branches are considerably extended relative to the overall tree. In 

broad terms, the distribution of diversity can be described in three groups: Fungi, Cercozoans 

and the rest. The rest are dominated by Alveolata, then almost evenly dispersed across the 

remaining Stramenopiles, Amoebozoa, Discoba, Streptophyta, Chlorophyta and finally some 

minor straggler groups (ex. Apusozoa). Cercozoa make up another rough third of the observed 
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diversity and then lastly Fungi. Fungi are, when viewed together, the major diversity 

contributors, with Ascomycota leading the charge. Basidiomycota follow suite, however with 

regards to non-Dikarya/early diverging fungi the annotation and thus diversity distribution is a 

little less clear. The non-Dikarya branches only had 70.59 % of OTUs annotated as Fungi 

without being Basidiomycota or Ascomycota. Out of the remaining OTUs, approximately half 

were a mix of non-Fungi annotations and the other half were annotated as Basidiomycota. This 

discrepancy between annotation and phylogeny could be caused by an issue with the 

phylogenetic inference approach but could also be highlighting a database coverage issue for 

non-Dikarya fungi. The latter is perhaps more likely as this group holds many cryptic taxa and 

as-of-yet unresolved lineage relationships (Voigt et al., 2021). The annotation approach may 

be an important factor regardless – even if poor coverage is the issue, had the annotation been 

done by extracting OTUs by phylogenetic affiliation and accepting lower quality matches in 

databases, a closer lineage match might have taken precedence over out-of-group better 

matches that might be matching to regions less relevant for delimitation in the original group.  

Keeping in mind that the described group delineations are approximate and not necessarily 

made to comparable rank levels, for further uses of this annotation approach a more rigorous 

and detailed topology investigation may be required. This in turn evokes another set of 

considerations for future phylogenetic inference in diverse organisms, such as whether the 

chosen clustering similarity level is reflective of true inter-taxon variation or even if the same 

clustering level is appropriate across groups. For instance, this issue has been raised with 

regards to obstacles in studying prokaryotes by applying methods and concepts from eukaryote 

mapping (Lara, Singer & Geisen, 2022), however issues regarding species concepts and lineage 

separation are relevant for untangling microeukaryote diversity as well. Increasing the volume 

of per-individual genetic information may be one path towards a more holistic species concept 

– and long-read sequencing a step on that path. In addition to some of the already discussed 

issues, some experimentation may also be due in other aspects of phylogenetic inference 

approaches. In initial alignment efforts, the high variability of certain regions and the 

considerable span of data even in conserved regions caused highly spaced alignments upwards 

of 300 000 bp. Following removal of 50% absence gaps alignment length became more 

manageable and pairwise match percentage was increased. Due to the hypervariability 

frequently observed in the ITS regions, the forced alignment of these further exacerbated good 

quality alignments overall. Excluding the ITS regions from alignments improved alignments 

and as clustering was done on full-length sequence data there was no change to OTU diversity. 
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This approach was successful, however the usefulness of commonly applied alignment and 

trimming principles and perhaps even tree-generating models might not be suited for use with 

long-read sequence data off the cuff, similarly to several other aspects of the long read data 

curation.  

Moving to the relationship between observed diversity and observed abundance, some groups 

are disproportionately abundant relative to the observed diversity of taxa. The per-sample 

abundance distribution varies, however visual representations indicate that most samples 

generally follow a broadly similar distribution of abundance with somewhat consistent levels 

of separation between litter and soil (Figure 10). Despite this differentiation between litter and 

soil, Streptophyta is consistently and strongly represented in opposition to the low diversity 

observed. In the same vein, Cercozoans appear to be underrepresented in relative abundance 

compared to their wide phylogenetic diversity. Relative abundance is, however, relative, and 

so disproportionate shifts in one group do not indicate a likewise decrease in the remaining 

groups. And in addition to the previously discussed issues with a possible diversity threshold 

in the data and its inherent ties to abundance distributions, there is a suite of other confounding 

factors at play which may render the observed abundance signals unviable. For one there are 

the morphological scale differences in the target organisms – while some are macroscopic, 

complex, and come in large tissue chunks (ex. Streptophyta, Arthropoda, some Fungi), a 

considerable proportion is expected to be microscopic, unicellular and not necessarily clustered 

together. The effects of these differences can be exacerbated through behavior as larger 

organisms may move around more relative to their size and randomize their sample prevalence 

(Zinger et al., 2019). In addition, operon copy numbers have been found to be highly variable 

among organisms and could further inflate relative abundance prevalence (Prokopowich, 

Gregory & Crease, 2003). Despite homogenizing efforts, this may still result in 

overrepresentation of larger organisms through greater overall physical tissue and genetic 

presence in a sample. As read data is not controlled against individual organism contribution 

potential, all sequences are essentially given equal weight irrespective of how many read copies 

that can be expected to originate from one individual – which when viewed as relative 

abundance proportions can be inaccurate. This may be mediated somewhat by separating and 

analysing abundance data based on expected source contributions, e.g. unicellular taxa 

separately. 

However, there are also other processes of taphonomy/environmental stochasticity to consider 

when working from eDNA and targeting organisms with different morphologies and ecologies. 
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Individual and DNA degradation may vary and interact with climate factors and collection site 

topography, resulting in read abundances that are not representative of the community they are 

collected from (see review by Harrison, Sunday & Rogers, 2019; Barnes & Turner, 2016). In 

addition, differential temporal turnover has been indicated for some soil organism groups 

(Martinović at al., 2021), which in combination with slow degradation of genetic material may 

misrepresent community structures (Carini et al., 2016). Soil communities also exhibit high 

spatial heterogeneity across small scales, both vertically and horizontally (Fiore-Donno et al., 

2022; Štursová, Bárta, Šantrůčková and Baldrian, 2016). Relic DNA and intrasite 

heterogeneity is more relevant to the issue of separating out the active community composition 

and accurately placing it relative to its environment than it is to taphonomic processes but is 

equally important in the context of the approaches in this study.  

Figure 10: Per-sample relative abundance distribution based on the 15 most abundant phyla-level taxa; sorted 

by vegetation type along the horizontal axis and displaying substrates separately. Note that the phylum legend 

order within supergroups corresponds to stack order and not phylogenetic groupings. 
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In addition to the above issues, another and more general point may be made about the 

inference of community-habitat interactions when considerable chunks of the trophic chain in 

question are left out. In the case of this study, for instance, eukaryotes are targeted and the aim 

is to uncover potential trends and their relationship to the observed community composition. 

However, without including bacteria, archaea and other groups that contribute to trophic 

networks in soil, any finds and hypotheses on structural variation may in fact be describing 

effects on other trophic layers and the resulting cascade into the studied groups. Proportions of 

trophic groups have been found to shift with temperature in soil communities (Dahl et al., 2023) 

and the structure of trophic links themselves may also be responsive to external factors (Xiong 

et al., 2021). Considering that the diversity of non-eukaryotes in soil is indicated to be 

overwhelming relative to its eukaryote neighbors (Hudson et al., 2015), the trickle-

down/trickle-up effects from these groups through trophic linkage should perhaps not be 

underestimated.  

 

4.3 Diversity trends 

In light of all this, including the potential issue of the data representing only a diversity subset, 

investigations into diversity drivers and factors shaping community structure may ultimately 

be describing incomplete systems. However, as some overarching trends can be hypothesized 

from the results, these will be discussed. The most prominent trend that can be retrieved from 

the data is that vegetation type is a strong predictor of community structure, both in soil and in 

litter. And while vegetation type is relevant to both substrates, separate NMDS plots appear to 

indicate that community structure in litter samples varies more homogenously across 

vegetation types and that, comparatively, soil samples display more intravariation in 

community structure between vegetation types. When plotted together, overall intervariation 

among soil samples becomes apparently lower than that observed for litter, however. In 

addition to the vegetation type groupings, the clustering of vegetation types generally align to 

form two supergroups: highland/alpine and lowland/forest. Keeping in mind that 

PERMANOVAs indicate very low explanatory power for all significant factors with the 

exception of vegetation type, substrate and site, the fitted NMDS vectors for significant 

environmental variables appear to further attenuate the highland/lowland supergrouping, at 

least in soil. Temperature and precipitation (climatic) factors group towards lowland/forest 

types while latitude, elevation and some soil edaphic factors group towards highland/alpine 
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types. In litter, similar trends can be observed, however overall scatter of factor directionality 

is greater and may indicate a more heterogeneous response in community structure. This falls 

somewhat in line with observed correlations in alpha diversity indices - however as only soil 

diversity was found to vary with vegetation type, and only significantly in one pair, the 

relationship between diversity, richness and community structure indicates that they are not 

responsive to the same processes.  

Returning to PERMANOVA results, in both substrates together vegetation type was only 

surpassed by site effects. Site effects are a catch-all factor as they encompass all site 

characteristics and makes further inferences more or less redundant without highly extensive 

metadata records. One thing that can be extrapolated from this, however, is that inter-site 

variation is high. In light of the observed overlap in taxa commonality and abundance, this 

could align with the concept of a “core” composition of highly abundant and more generalist 

taxa with a smaller, more nebulous network of locally adaptive taxa (Malard et al., 2022; 

Barberán et al., 2012). This also coheres with the high proportion of unique OTUs found overall 

and the relatively low per-sample proportions. Running community structure analyses where 

only taxa below a global abundance threshold are included could shed some light on how 

dynamics shift between the less frequent taxa. 

Site effects may also be inherently tied to geographical properties, and Mantel tests on both 

substrates found that geographic coordinate position of the sample site was significant to the 

structural placement of both litter and soil. As with site effects, spatial distance, too, is a rather 

opaque factor from which not much can be gleamed without relating to changes in elevation, 

latitude or longitude. However, geographic structural variation could also indicate some 

inherent level of spatial dispersal effect on community composition. And as Mantel r statistics 

were similar between substrates, this would then likely be pervasive through both litter and 

soil. In terms of geography in relation to vegetation, the vegetation type categories are not 

indicative of elevation as much as they are a product of elevation and latitude – and likely in a 

non-linear fashion as well if one takes into account the topography of Norway. Still, the 

findings correspond with the general idea that elevation is not a strictly linear predictor of 

richness or community structuring in terrestrial microbiomes (Wang et al., 2022; Adamczyk et 

al., 2019). 

No formal analysis was done to determine significant taxa variation between vegetation types. 

However, from visualizations of relative abundance per sample, some generalized trends may 
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be described (Figure 10). In litter samples, relative abundances of Streptophyta are highest 

towards the highland/alpine vegetation types and decrease to minimal presence across the 

lowland/forest types. A similar trend can be seen in soil, however the decline in abundance is 

less pronounced and overall abundance of Streptophyta is lower. In litter, the downwards shift 

in Streptophyta abundances is accompanied by increasing Ascomycota and to some extent 

Basidiomycota prevalence, while other major groups shift more stochastically. Conversely, in 

soil, the moderate decline in Streptophyta corresponds with some uptick in Cercozoa, Alveolata 

and low-abundance taxa (categorized as Other in visualizations). Across soil samples, relative 

abundance distributions are more even among major groups compared to litter samples, with 

Dikarya fungi making up less of the relative abundance. From this, a small leap can be made 

to infer that soil communities might be more homogenous and/or stable systems compared to 

litter communities. Continuing with this hypothesis, this could be due to a relative isolation 

from environmental stochasticity through physical and chemical buffer systems such as 

biocrusts and small-scale chemical buffering from organisms (Weber et al., 2022; Gutiérrez & 

Jones, 2006). However, as microbial communities have been found to change in response to 

extreme geochemical and climatic fluxes (Kato et al., 2015; Stenuit & Agathos, 2015; Beyens 

et al., 2008), this hypothesis only holds under the assumption that the stress on the buffer 

systems and taxa remains stable and low. Still, these trends, along with significant indicators 

of differing community structures between litter and soil, come together to create a general 

picture of ground microbiomes as vertically stratified, at least with regards to microeukaryote 

taxa.  

With regards to alpha diversity indices, relevant variable correlations appear to differ between 

litter and soil consistently, indicating that alpha diversity is shaped by different mechanisms in 

the two substrates. And while soil edaphic factors often correlate with alpha diversity indices, 

there are instances of both temperature and precipitation correlations too (Figures 6 and 7; 

Table 2). The general absence of strong correlations across both substrates and to vegetation 

types in alpha diversity indices suggests that community structure varies independently of 

overall richness or diversity and that neither is a very relevant factor in the mechanisms 

deciding community structural properties. Alternatively, the alpha diversity of functional 

groups in a community could be correlating strongly with certain environmental gradients or 

groupings – but it would depend on the group prevalence and the compositional structure of 

the community whether that response was observable by alpha diversity indices. Furthermore, 

the wide geographical scatter of collection sites presents another opportunity for differential 
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interactions between variables and alpha diversity – nematode diversity, for instance, has been 

found to correlate differentially to variables along a latitudinal gradient (Shao et al., 2023). 

This further follows on top of the overall correlational relationships between variables 

themselves (see Figures S1 and S2 in supplementary material). 

That being said, some interesting correlations were still discovered. pH was perhaps the most 

frequently occurring correlational relationship, both in richness and diversity, but not always 

in both substrates. In soil richness and soil diversity, Kendall’s rank correlations against pH 

gave a significant positive coefficient - however in GLMs these coefficient estimates were 

given as negative. This is an interesting discrepancy at first glance but might turn out to be an 

artefact of sample outliers. The GLM for soil richness also gives vegetation type Polar as a 

significant predictor, i.e. samples from Svalbard collection sites. As Kruskal-Wallis tests did 

not indicate Polar samples as significantly differing from others in richness, and the soil Polar 

pool is very small (n = 2), there might be aspects to GLM calculations that are inflating or 

skewing the significance of variables in this particular model and indicative that excluding the 

Svalbard samples from the GLM might have been a pertinent move. Following this line of 

investigation, it might also be a good idea to assess alpha diversity trends by vegetation types 

separately for more robust insight into factors shaping alpha diversity. 

 

5. Concluding remarks 

The study finds that long-read sequencing is a strong tool for metabarcoding, but that there is 

still room for streamlining molecular and bioinformatic processes to gain the most out of this 

approach. A vast diversity of soil eukaryotes were recovered from soil and litter samples, 

however alpha diversity responsivity to environmental factors remains somewhat enigmatic. 

Community structure appears to vary significantly and consistently with vegetation type and 

potentially along an eco-elevational gradient as well. Further analyses into the collinearity of 

vegetation types and other factors are still needed to give a full picture of this structural trend. 

No clear distinction could be made between the scales at which climatic factors and soil 

properties interact with alpha diversity and a more holistic analysis approach may be required 

to untangle interactive effects between variables.  
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Supplementary Materials 

1. PCR details 

 

 

 

 

  

Table S1: Overview of reagent composition variations applied to samples for PCR.  
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Table S2: Compositional template for PCR master mixes and primers 

Table S3: Agarose gel set-up for checking quantity and size of amplicon products after PCR. 
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2. Metadata statistics  

 

 

  

Table S4: Summary of metadata variable statistics, including raw and transformed ranges and the 

transformation formulas applied. 
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3. Metadata correlation visualizations 

 

 

 

 

 

 

 

 

 

  

Figure S1: Correlation plot for all continuous environmental metadata variables as given by 

corr.test() from psych (Revelle, 2023) and default settings and visualizing with corrplot() from 

corrplot (Wei & Simko, 2021); showing significant correlations (p < 0.05) and giving the correlation 

coefficient’s directionality by color. Short names are explained in Table S4. 

Figure S2: Principal Component Analysis visualization for interrelations between all continuous 

environmental metadata variables, produced by prcomp() from the stats base package. Short names 

are explained in Table S4.  
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4. Alpha Diversity statistical analysis summaries (Kendall’s rank correlations and 

GLMs) 

 

 

 

 

 

Table S5: Summary table for Kendall’s rank correlation tests on alpha diversity indices amongst themselves and 

in relation to data characteristics (Sample read abundance; % unique OTUs in sample). 

Table S6: Summary table for Kendall’s rank correlation tests with Shannon Diversity Index scores and 

continuous environmental variables. 
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Table S7: Summary table for Kendall’s rank correlation tests with Chao1 Richness estimates and 

continuous environmental variables. 
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Table S8: Summary table for Generalized linear models with Shannon Diversity Index scores as response 

variable against all environmental and data characteristic variables. 
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Table S9: Summary table for Generalized linear models with Chao1 Richness estimates as response 

variable against all environmental and data characteristic variables  
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5. Beta diversity statistical analysis summaries (PERMANOVAs) 

Table S10: Summary table for PERMANOVA outputs on Bray-Curtis distance matrices 


