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ABSTRACT

We present the first application of the Cosmoglobe analysis framework by analyzing nine-year WMAP time-ordered observations
that uses similar machinery to that of BeyondPlanck for the Planck Low Frequency Instrument (LFI). We analyzed only the
Q-band (41 GHz) data and report on the low-level analysis process based on uncalibrated time-ordered data to calibrated maps. Most
of the existing BeyondPlanck pipeline may be reused for WMAP analysis with minimal changes to the existing codebase. The main
modification is the implementation of the same preconditioned biconjugate gradient mapmaker used by the WMAP team. Producing a
single WMAP Q1-band sample requires 22 CPU-hrs, which is slightly more than the cost of a Planck 44 GHz sample of 17 CPU-hrs;
this demonstrates that a full end-to-end Bayesian processing of the WMAP data is computationally feasible. In general, our recovered
maps are very similar to the maps released by the WMAP team, although with two notable differences. In terms of temperature,
we find a ∼2 µK quadrupole difference that most likely is caused by different gain modeling, while in polarization we find a distinct
2.5 µK signal that has been previously referred to as poorly measured modes by the WMAP team. In the Cosmoglobe processing, this
pattern arises from temperature-to-polarization leakage from the coupling between the CMB Solar dipole, transmission imbalance, and
sidelobes. No traces of this pattern are found in either the frequency map or TOD residual map, suggesting that the current processing
has succeeded in modeling these poorly measured modes within the assumed parametric model by using Planck information to break
the sky-synchronous degeneracies inherent in the WMAP scanning strategy.
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1. Introduction

Since the discovery of the cosmic microwave background
(CMB; Penzias & Wilson 1965), there have been three gen-
erations of groundbreaking satellite missions to characterize
the spatial and frequency properties of the microwave sky;
the Cosmic Background Explorer (COBE; Smoot et al.
1992; Mather et al. 1994), the Wilkinson Microwave
Anisotropy Probe (WMAP; Bennett et al. 2013), and Planck
(Planck Collaboration I 2020). Current and future experiments
designed to detect primordial gravitational waves due to

inflation (e.g., Kamionkowski & Kovetz 2016, and references
therein) are built on the foundations of these satellite missions.

The field of CMB cosmology has generally followed a
model in which the data from previous experiments are first
complemented, then gradually improved upon and superseded
by those that follow. One example is COBE/DMR, in oper-
ation between 1989 and 1994, which discovered primordial
CMB anisotropies at 31.5, 53, and 90 GHz with a resolution
of 7◦ (Smoot et al. 1992). Together with the COBE/FIRAS
measurement of the CMB blackbody spectrum (Mather et al.
1994), these observations led to the Nobel Prize in Physics in
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2006. While COBE/DMR observations were groundbreaking in
their time, they have rarely been directly used for cosmolog-
ical analysis after the WMAP team released their sky maps
in 2003 (Bennett et al. 2003b), which improved on DMR in
terms of angular resolution and sensitivity by orders of magni-
tude. When the Planck mission released its sky maps in 2013
(Planck Collaboration I 2014), they included higher sensitivity,
finer angular resolution, and wider frequency coverage, pro-
viding tighter constraints on both cosmological parameters and
Galactic physics.

Established data sets remain crucial in the analysis of cur-
rent and future data sets, both for calibration and testing, but
also for breaking degeneracies beyond their original primary
science goals. One prominent example is the WMAP K-band
sky map at 23 GHz (Bennett et al. 2013), which (after Planck)
represents the highest signal-to-noise ratio tracer of polarized
synchrotron emission and is therefore used extensively for fore-
ground modeling. More generally, the five WMAP frequencies
provide essential constraining power for low-frequency CMB
foregrounds and it is only through the combination of Planck
and WMAP observations (and other data sets) that it is possi-
ble to individually constrain the properties of synchrotron, free-
free, and anomalous microwave emission (AME) over the full
sky (e.g., Planck Collaboration X 2016; Andersen et al. 2023).

A second important example is COBE/FIRAS (Mather et al.
1994), which showed that the CMB is well described by
the Planck blackbody radiation law at a temperature of
T = 2.72548 ± 0.00057 K (Fixsen 2009); despite being now
more than 20 years old, this experiment has not yet been
improved upon, and all later CMB experiments rely directly
on this value as a strong prior for calibration purposes (e.g.,
Bennett et al. 2013; Planck Collaboration V 2020; Gjerløw et al.
2023). A third example is the COBE/DIRBE experiment
(Hauser et al. 1998), which still represents a state-of-the-art
approach in terms of submillimeter zodiacal light observations
(Kelsall et al. 1998; Planck Collaboration XIV 2014), due to its
unique combination of frequency and sky coverage. A final
example is the 408 MHz map of Haslam et al. (1982), which is
widely used as a template for Galactic synchrotron emission.
There have been attempts to improve its quality, for instance,
Remazeilles et al. (2015), and despite its noise properties not
being fully characterized, this map is still widely used in fore-
ground studies.

Each of these data sets faces major challenges with regard
to how systematic error correction and uncertainty propagation
are handled. In most cases, data are provided to the public in the
form of processed high-level products (most typically pixelized
sky maps, angular power spectra, or cosmological parameters);
at these levels, it is difficult to assess the impact of instrumental
effects such as calibration, beam and sidelobe errors, and corre-
lated noise. This in turn limits the usefulness of older data sets,
as the systematic error requirements of next-generation experi-
ments are more stringent than those of previous generations. A
major concern is whether direct joint analyses between old and
new data sets may contaminate the latter. For almost any new
experiment, there is a tension between the desire of including
complementary data sets to break degeneracies to which one’s
own experiment is not sensitive, versus the concern of introduc-
ing uncontrolled systematics into the analysis.

Cosmoglobe1 aims to solve this problem by developing a
common analysis platform that is applicable to a wide range
of radio, microwave, and submillimeter experiments; legacy,

1 https://cosmoglobe.uio.no

current, and future. A joint analysis of complementary experi-
ments is essential to break instrumental and astrophysical param-
eter degeneracies. Therefore, as more data sets are added to
this analysis, better cosmological and astrophysical results will
emerge. Enabling and organizing this work is the main goal of
the community-wide and Open Science Cosmoglobe program.

BeyondPlanck represents the first stage of the pro-
cess, in which the Planck Low Frequency Instrument (LFI;
Planck Collaboration VI 2014; Planck Collaboration II 2016,
2020) data are processed within a global Bayesian framework.
This data set was chosen for three reasons; (1) the LFI data vol-
ume is relatively low, allowing for fast debugging; (2) the LFI
instrumental systematics are well understood; and (3) the cur-
rent team members have years of experience working with this
data set.

In this paper, we generalize the same framework to support
WMAP time domain analysis. We note that a full WMAP reanal-
ysis lies outside the scope of the present paper, as this would
require both additional modeling and analysis effort. Rather, the
main goals of the current work are to answer the following prac-
tical questions: First, how much software development effort
is required to generalize the Commander software to support
an entirely new data set. Second, whether a proper end-to-end
Bayesian analysis of the full WMAP data set is technically fea-
sible with currently available computing power and, if so, how
much computational power this would entail. Third, we con-
sider what additional instrument-specific features are required
to perform a full WMAP analysis. These questions are impor-
tant not only for a future WMAP reanalysis itself, but also for
other experiments that may adopt the Commander framework
for their own analysis. In implementing a WMAP pipeline using
Commander, we demonstrate that this Bayesian framework can
be generalized to data sets beyond the one it was explicitly
designed to analyze (Planck LFI).

2. Bayesian WMAP analysis with Commander

2.1. BeyondPlanck data model and posterior distribution

The BeyondPlanck framework (BeyondPlanck Collaboration
2023) takes a novel approach to CMB data analysis by adopt-
ing a strictly parametric Bayesian end-to-end formulation. As for
any parametric Bayesian calculation, the first step in implement-
ing the algorithm is writing down an explicit parametric data
model; everything else will then, ideally, follow naturally from
that model. The data model adopted for Planck LFI takes the
form:

dt, j = gt, jPtp, j

[
Bmb

j ssky
j + Bfsl

j ssky
j + B4π

j sorb
t, j

]
+ s1 Hz

t, j + ncorr
t, j + nwt, j,

(1)

where t indexes the observation time, j indexes the detector,
p indexes the pixel, gt, j is a time-dependent gain, Ptp, j is a point-
ing matrix, B includes components of the beam (main beam
Bmb, far sidelobes Bfsl, and full B4π, respectively), ssky

j is the
(time-independent) sky signal, sorb

t, j is the orbital CMB dipole,

sfsl
t, j = Bfsl

j ssky
j is the (orientation-dependent) far sidelobe contri-

bution, s1 Hz
t, j is a contribution from electronic 1 Hz spikes, ncorr

t, j
is the correlated noise, and nwt, j is the white noise. We note that
the 1 Hz spikes are unique to Planck LFI, and are not used in the
WMAP analysis. The parametric sky model ssky(ν, a,β) includes
contributions from CMB, synchrotron, free-free, spinning dust,
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thermal dust, and point source emission. A full description of the
sky model can be found in BeyondPlanck Collaboration (2023).

The data model may be written in a compact vector form:

d = GPBMa + sfsl + sorb + n ≡ stot + n, (2)

where we have now also introduced the diagonal gain matrix
G j = diag(gt, j) and the mixing matrix M to describe bandpass
integration effects,

Mi
j ≡

∫
fi(ν;β) U j(∆bp) τ j(ν; ∆bp) dν. (3)

Here, τ j is the bandpass for each detector with a free parameter
∆bp, U j converts from a brightness-temperature to frequency-sky
map unit integrated over the bandpass (Planck Collaboration IX
2014), fi(ν;β) is the spectral energy distribution (SED) of
component, i, given the generalized SED parameters β, and
n = ncorr + nwn. For LFI, n is often assumed to be Gaussian dis-
tributed with a covariance matrix, N, given by a 1/ f power spec-
tral density (PSD),

P( f ) = σ2[1 + ( f / fknee)α], (4)

where σ is the white noise standard deviation, fknee is the corre-
lated noise knee frequency, and α is the correlated noise spectral
index. In general, we denote the set of all noise PSD parameters
as ξn. For a full discussion of this model, we refer the inter-
ested reader to BeyondPlanck Collaboration (2023) and refer-
ences therein.

Let us now denote the set of all free parameters in
Eqs. (1)–(3) byω, such thatω = {g, ncorr,β, a, . . .}. The Bayesian
approach is to map out the posterior distribution,

P(ω | d) ∝ L(d | ω)P(ω), (5)

using standard Markov chain Monte Carlo (MCMC) sampling
methods, where L(ω) is the likelihood function and P(ω) is the
prior probability of the vector ω. We define the likelihood by
assuming that the noise component in Eq. (2) is Gaussian dis-
tributed, such that:

−2 lnL(ω) = (d − stot(ω))T N−1(ω)(d − stot(ω)) + ln |2πN|. (6)

The priors are in general less well-defined, and in practice we
use both algorithmic and informative priors to ensure a robust
fit; we refer, for example, BeyondPlanck Collaboration (2023)
and Andersen et al. (2023). For the special case of the CMB,
it is common to assume that its fluctuations are isotropic and
Gaussian distributed, with a variance given by the angular power
spectrum, C`; estimating this power spectrum is typically a main
goal for most CMB experiments.

The posterior distribution defined by Eq. (5) is infeasible to
map out directly, due to the sheer number of free parameters and
degeneracies within the model. However, the Gibbs sampling
algorithm (Gelman & Rubin 1992) allows for efficient explo-
ration of the full joint distribution by iterating through all condi-
tional distributions, each of which are simpler to explore than the
full joint distribution. To be specific, the BeyondPlanckGibbs
chain takes the form (BeyondPlanck Collaboration 2023):

g ← P(g | d, ξn,∆bp,β, a,C`), (7)
ncorr ← P(ncorr | d, g, ξn,∆bp,β, a,C`), (8)
ξn ← P(ξn | d, g, ncorr, ∆bp,β, a,C`), (9)

∆bp ← P(∆bp | d, g, ncorr, ξn, β, a,C`), (10)
β ← P(β | d, g, ncorr, ξn,∆bp, C`), (11)
a ← P(a | d, g, ncorr, ξn,∆bp,β, C`), (12)

C` ← P(C` | d, g, ncorr, ξn,∆bp,β, a ), (13)

where← denotes drawing a sample from the conditional distri-
bution on the right. In the Commander framework, CMB analysis
essentially amounts to repeating each of these steps until conver-
gence, which typically requires thousands of iterations.

In this work, we hold the amplitude and SED parameters
a and β fixed, as our goal is to determine the feasiblility of
extending the time-ordered data (TOD) analysis to the WMAP
data set. In a full analysis, we would perform a full Gibbs
chain on all of these parameters jointly, but in this paper we
first fit the sky model using almost the same data combina-
tion as BeyondPlanck Collaboration (2023), namely, Planck LFI
30–70 GHz, Planck HFI 353 (in polarization), and 857 GHz
(in temperature), WMAP9 Ka–V, and Haslam 408 MHz. How-
ever, unlike the main analysis, we additionally include the
WMAP9 K-band data to increase the signal-to-noise ratio for
low-frequency foreground components. We then use this fixed
sky model throughout to calibrate the Q1 data. This yields a sim-
plified Gibbs chain:

g ← P(g | d, ξn,∆bp,β, a,C`), (14)
ncorr ← P(ncorr | d, g, ξn,∆bp,β, a,C`), (15)
ξn ← P(ξn | d, g, ncorr, ∆bp,β, a,C`), (16)

which holds all sky and bandpass parameters fixed throughout.

2.2. Generalization to WMAP

The WMAP mission (Bennett et al. 2013) observed the sky at
K, Ka, Q, V, and W-bands (23, 33, 41, 61, and 94 GHz, respec-
tively) using differential radiometers, from August 10, 2001 to
August 10, 2010. The satellite observed from the second Sun-
Earth Lagrange point with a Lissajous orbit, rotating around its
primary axis with a period of 129 s, and precessing around its
spin axis with a period of one hour, allowing for total coverage
of the sky every six months. This observing strategy allowed for
excellent control of systematic effects that appear in the time
streams (Bennett et al. 2003a).

The WMAP instrument is inherently differential, with each
detector recording the signal difference received in two horns,
labeled A and B. Each radiometer is sensitive to two orthogo-
nal polarization directions, γ and γ + π/2, and each of these are
coupled pairwise with the two horns, such that each radiome-
ter ultimately results in four polarized time streams, which are
treated jointly in a single differencing assembly (DA). WMAP
has ten total DAs, one for both K and Ka, two each for Q and V,
and four for W. In this paper, we consider the DA correspond-
ing to Q1, whose individual time streams are indexed by Q1ij,
where i ∈ {1, 2} labels the detector’s polarization orientation,
and j ∈ {3, 4} labels the sA − sB and sB − sA time streams.

The primary goal of the current paper is to understand what is
required in terms of coding efforts and computational resources
in order to apply the Commander framework as summarized
above to the WMAP data. The first step in that process is to
write down an explicit parametric data model. When one reviews
the descriptions of the WMAP instrument and time-ordered
data provided by Bennett et al. (2003b), Barnes et al. (2003),
Jarosik et al. (2003, 2007), Hinshaw et al. (2003), Page et al.
(2007), and Greason et al. (2012), it becomes clear that the LFI
data model defined in Eq. (1) also applies to WMAP with only
three modifications: two major and one minor. We go on to
address each of these in turn below.

First, while Planck measures the power received from a sin-
gle point on the sky, WMAP records the difference between two
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points in digital units (du),

s = g
[
αA(TA + QA cos 2γA + UA sin 2γA),
−αB(TB + QB cos 2γB + UB sin 2γB)

]
.

(17)

In this equation, {T,Q,U} are the Stokes parameters seen by
each horn, and αA/B is a horn transmission coefficient that quan-
tifies the transmission of the optics and waveguide components,
which may be slightly different between the two sides. Following
Hinshaw et al. (2003), the transmission coefficients are written
in terms of horn imbalance parameters xim that explicitly param-
eterize the difference between the A and B horn transmissions,

xim =
αA − αB

αA + αB
. (18)

The overall normalization is absorbed into the gain, so that the
data model becomes:

s = g
[
(1 + xim)(TA + QA cos 2γA + UA sin 2γA),
−(1 − xim)(TB + QB cos 2γB + UB sin 2γB)

]
.

(19)

Equation (19) may now be implemented in the LFI data
model in Eq. (1) by redefining the pointing matrix, such that a
single row reads

Ptp =



0
...
0

(1 + xim)
(1 + xim) cos 2γA
(1 + xim) sin 2γA

0
...
0

−(1 − xim)
−(1 − xim) cos 2γB
−(1 − xim) sin 2γB

0
...
0



T

. (20)

Therefore, the fact that WMAP records differential pointing,
whereas Planck records the signal from a single point in the sky.
This implies that the WMAP pointing matrix has twice as many
entries as for LFI and that there is also an additional uncertain
parameter per radiometer that needs to be sampled for WMAP,
the transmission imbalance parameter. In terms of implemen-
tation, this also means that the most important generalization
required for Bayesian analysis of WMAP is the implementa-
tion of a mapmaker for differential data. This task has already
been addressed by the WMAP team, who showed that a stabi-
lized biconjugate gradient method works well for this problem
(Jarosik et al. 2011). The main recoding effort done in this paper
is thus to reimplement this method in Commander, as discussed
in Sect. 3.3.

The second main difference between WMAP and LFI as
defined by Eq. (1) lies in the noise model. While the LFI noise is
close to white at high temporal frequencies and can be described
well with a 1/ f model (or, at least, as a sum of a 1/ f model
and a subdominant Gaussian peak; see Ihle et al. 2023), the
WMAP noise is in general colored close to the Nyquist fre-
quency, typically exhibiting a very slight power increase at the
highest frequencies. This does have some important sampling

technical implications for the noise PSD Gibbs step, as defined
in Eq. (9) and discussed by Ihle et al. (2023). The current LFI
implementation assumes that the noise is white at the sampling
frequency and explicitly uses this to break a degeneracy between
the correlated and white noise components. At the same time, the
amplitude of this WMAP colored high-frequency noise is very
modest, and as shown in Sect. 4, a standard 1/ f model does fit
reasonably well. Furthermore, a suboptimal noise model will
result in slightly suboptimal uncertainties, but not biases. There-
fore, this is a minor issue for the purposes of the current paper,
which is aimed at assessing the overall applicability of the
Bayesian approach for WMAP; low-level noise modeling issues
do not affect this approach. We also note that we need to gen-
eralize the current noise model to allow for analysis of Planck
HFI and other bolometer experiments. An expansion of the
Commander noise model has therefore been left for a future
work. The third and final difference between LFI and WMAP
are electronic 1 Hz spikes, which are not relevant for WMAP.
This term is therefore omitted in the following WMAP analysis.

All other parameters and sampling steps in Eqs. (1)–(13) are
identical between LFI and WMAP. Since the two experiments
cover roughly the same frequency range and angular scales, no
new astrophysical components need to be added to the sky model
(with the possible exception of HCN and other line emission
at W-band, as discussed by Planck Collaboration X 2016), and
the required low-level algorithms for sidelobe convolution and
orbital dipole generation are identical between the two experi-
ments. Thus, WMAP is an excellent example of the benefits of
joint analysis within a single computational framework; nearly
all of the existing computer code is directly reusable.

3. Algorithmic details

In this section, we consider in greater detail the four specific
algorithmic changes that are necessary for WMAP processing
within the Commander framework, namely: (1) handling of com-
pressed TODs; (2) transmission imbalance sampling; (3) map-
making with differential data; and (4) noise modeling, which
are all summarized in Sects. 3.1–3.4. In addition, we review
the Commander approach to sidelobe corrections in Sect. 3.5.
We summarize the algorithmic differences between WMAP and
Cosmoglobe in Sect. 3.6.

3.1. Data compression

The full nine-year WMAP data set2 spans 626 GB, which has rep-
resented a major challenge with respect to optimal mapmaking
using all available data in 2013, simply due to computer hard-
ware limitations. In practice, this was overcome by processing
each year of observations separately, and then creating a noise-
weighted average of the maps. During mapmaking, the TOD were
processed in one hour or daily chunks (Bennett et al. 2013).

Today, we circumvent these data volume issues two different
ways within Commander. First, having access to large-memory
compute nodes with 1.5 TB of RAM greatly alleviates hardware
based concerns. This is further improved by storing the TOD in
a compressed format in RAM, not only on disk. Specifically, as
described by Galloway et al. (2023a), the current pipeline uses
Huffman compression to store the TOD, which reduces the num-
ber of bits per stored number according to the frequency of that

2 https://lambda.gsfc.nasa.gov/product/map/dr5/tod_
uncal_get.cfm
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Fig. 1. Sample of WMAP TOD. This Q113 datastream was recorded on
July 7, 2003. At this resolution, the discreteness of the digital units is
apparent, a property which makes these data highly compressible.

same number. This technique is particularly powerful for the
WMAP data, as illustrated in Fig. 1. The most striking feature
of this data stream is its discreteness, imposed by the analog-to-
digital converter; while the data are delivered in terms of 32-bit
integers, typically only 50 of those are encountered in any given
data segment. Therefore, relabeling the relevant integers with
shorter bit strings yields a significant reduction in data volume.
We find that the entire WMAP TOD only requires 186 GB of
disk storage after Huffman compression, at which point they may
be stored in RAM even on inexpensive modern compute nodes3.

While WMAP used either one or 24 h chunk sizes for their
TOD processing (Bennett et al. 2013), we adopted one week
periods for our processing. This choice is informed by the
extremely low levels of correlated noise in the WMAP data,
with fknee . 1 mHz for half of the radiometers (Jarosik et al.
2003), corresponding to 20 min or more in the time domain. With
one week time chunks, it is easier to disentangle white and corre-
lated noise and the processing is less sensitive to Fourier-filtering
edge effects and aliasing.

3.2. Gain and imbalance sampling

For the purposes of gain sampling, as symbolically defined by
Eq. (7), we can simplify the global parametric model in Eq. (1)
to:

dt, j = gt, jstot
t, j + ncorr

t, j + nwn
t, j , (21)

where stot
t, j is the full beam-convolved sky signal in time domain

for radiometer j. For WMAP, this model may be generalized to
differential data with imbalance parameters xim as:

dt, j = gt, j[(1 + xim, j)stot,A
t, j − (1 − xim, j)stot,B

t, j ] + ncorr
t, j + nwn

t, j . (22)

To sample gt, j, we adopt the standard BeyondPlanck proce-
dure without modification and define gt, j = g0 + ∆g j + δgt, j.
Here, g0 denotes the time-independent absolute calibration for
the entire DA, ∆g j represents the time-independent offset from
g0 for the radiometer j, and δgt, j represents the time-dependent
fluctuations around the mean for radiometer, j. Each of these
three terms is sampled conditionally using its own tuned algo-
rithm. Specifically, g0 is sampled using the orbital CMB dipole

3 http://sdc.uio.no/vol/cosmoglobe-data/WMAP/TODs/

only as a calibration source, ∆g j is sampled using the full astro-
physical sky model, including the Solar dipole, and δgt, j is sam-
pled using an optimal Wiener filter algorithm that weights time-
variable fluctuations according to their relative signal-to-noise
ratio. For full details, we refer to Gjerløw et al. (2023).

From Eq. (22), we see that xim, j plays a role that is similar to
g0 + ∆g j. However, unlike those parameters, it applies to pairs
of time streams, and for the Q1 DA we estimate the transmis-
sion imbalance for Q11 using time streams Q113 and Q114, and
the transmission imbalance for Q12 using time streams Q123
and Q124.

To sample xim, we follow Hinshaw et al. (2003) and define
the following differential (d) and common-mode (c) signals:

sd = stot,A − stot,B, (23)

sc = stot,A + stot,B, (24)

such that

dt, j = gt, j[sd
t, j + xim, jsc

t, j] + ncorr
t, j + nwn

t, j . (25)

If we now form the residual rt, j ≡ dt, j − gt, jsd
t, j and define

T ≡ gt, jsc
t, j, the equation for the residual becomes:

r = Txim + ncorr + nwn. (26)

Since we assume the noise is Gaussian distributed with covari-
ance, N, and both T and sc are conditionally fixed, the appro-
priate conditional distribution for xim, j is also a Gaussian.
We can therefore follow the standard procedure outlined in
Appendix A.2 of BeyondPlanck Collaboration (2023), and sam-
ple xim through the following equation:

(TT N−1T)xim = TT N−1r + TT N−1/2η, (27)

where η ∼ N(0, I) is a vector of standard Gaussian random vari-
ates. This may be written explicitly as:

xim, j =

∑
i,t,t′ [gi,t sc

i,c,t]N
−1
tt′ ri,t′∑

i,t,t′ [gi,t sc
i,t,c]N

−1
tt′ [gi,t′ sc

i,t′ ,c]
+

∑
i,t,t′ [gi,t sc

i,c,t]N
−1/2
tt′ ηt′∑

i,t,t′ [gi,t sc
i,t,c]N

−1
tt′ [gi,t′ sc

i,t′ ,c]
,

where i corresponds to the data streams for radiometer pair j.

3.3. Mapmaking

While most instrumental parameters are sampled in the time
domain in the Bayesian framework, astrophysical parameters are
still sampled in terms of pixelized sky maps. We therefore need
to compute coadded maps for each DA. The starting point of this
process is the calibrated residual,

rt, j =
dt, j − ncorr

t, j

gt, j
− (sorb

t, j + sfsl
t, j + δsleak

t, j ), (28)

where we condition on all instrumental parameters, including g,
ncorr, ξn, and xim. In this expression, we have also defined:

δsleak
t, j = Ptp, jBpp′, j

(
s′sky

jp −
〈
s′sky

jp

〉)
, (29)

which is the difference between the sky signal seen by radiome-
ter j and the same averaged over all radiometers in the given
DA. This term accounts for spurious bandpass leakage effects
without solving for a spurious map per pixel, as discussed by
Svalheim et al. (2023).
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Inserting Eq. (28) into the data model in Eq. (1), we find

rt, j = Ptp, js jp + nt, j (30)
= (1 + xim, j)[TpA + PpA (γA,t)],
− (1 − xim, j)[TpB + PpB (γB,t)] + nt, j, (31)

where we denote the total polarized signal as PpA/B (γA/B,t) =
QpA/B,t cos 2γA/B,t + UpA/B,t sin 2γA/B,t. Following Jarosik et al.
(2011), we combine these calibrated data into an “intensity” time
stream, dt, and a “polarization” time stream, pt,

dt =
1
4

(d13,t + d14,t + d23,t + d24,t) (32)

= TpA − TpB + x̄im[TpA + TpB ],
+ δxim[PpA (γA) + PpB (γB)], (33)

pt =
1
4

(d13,t + d14,t − d23,t − d24,t) (34)

= PpA (γA) − PpB (γB) + x̄im[PpA (γA) + PpB (γB)]
+ δxim[TpA + TpB ], (35)

where x̄im = (xim,1 + xim,2)/2 and δxim = (xim,1 − xim,2)/2. This
formalism approximately splits the data streams into intensity-
only and polarization-only, except for terms proportional to δxim,
which is a factor of .10−3. This term must be specifically
accounted for in the polarization time stream, since δxim[TpA +
TpB ] has a non-negligible amplitude compared to PpA − PpB .

Because two pointings contribute to a single observation, we
cannot solve for the underlying sky map pixel-by-pixel as is the
case with Planck. However, the more general maximum likeli-
hood mapmaking equation

PT N−1Pm = PT N−1d, (36)

still applies and the only real difference is the structure of the
pointing matrix P, as already discussed above.

There is an additional complication that arises due to differ-
ences in horn A and horn B and the different pixel shapes that
are being binned. Differences between the data and the model
become exacerbated when one horn is observing a bright source
and the other is not. For this reason, we follow the WMAP team’s
procedure of asymmetric masking. This entails using a pointing
matrix Pam that masks pixel B when pixel A observes a bright
spot and pixel B is observing a relatively faint point, and vice
versa. We used the same processing mask that is used for LFI
to define these bright spots. This gives the modified mapmaking
equation:

PT
amN−1Pm = PT

amN−1d. (37)

This form of the mapmaking equation gives an unbiased estimate
of the map, while the pixel space covariance matrix is slightly
larger due to the data cuts in the asymmetric masking. To solve
this equation, we follow Jarosik et al. (2011) and use the stabi-
lized biconjugate gradient method (BiCG-STAB; van der Vorst
1992; Barrett et al. 1994) to solve for this map. We note that we
cannot use the usual conjugate gradient algorithm because the
matrix PT

amN−1P is not symmetric.
Solving Eq. (37) requires iterating over every observation in

the TOD and is currently the costliest step in the WMAP analy-
sis pipeline. This typically takes about 20 BiCG iterations, each
taking roughly 11 s of wall time or 12 CPU-mins, for a total of
about 4 CPU-hrs per sky map. We note that in Table 1, the aver-
age time for mapmaking is listed as 6 CPU-hrs. This larger num-
ber includes the creation of auxiliary maps (e.g., correlated noise

and residual maps) every tenth iteration. The larger figure of
6 CPU-hrs also takes into account the additional variation in the
number of samples to reach convergence for a given Gibbs sam-
ple. There are several ways to optimize this technique, including
using a good initial guess for the map or a well-chosen precon-
ditioner. Although it is not yet implemented in our code, we note
that Jarosik et al. (2011) derived the inverse pixel-pixel noise
covariance:

Σ−1 = (PT N−1Pam)(PT
amN−1Pam)−1(PT

amN−1P) (38)

and use the central term PT
amN−1Pam evaluated at Nside = 16 as a

source for the off-diagonal terms in the preconditioner.

3.4. Noise modeling

Next, we consider the temporal noise model. The WMAP
radiometers have remarkably white noise, with fknee rang-
ing from 0.1–40 mHz, with typical values around 1 mHz
(Jarosik et al. 2003). For comparison, the LFI time-ordered data
have knee frequencies ranging from 5–200 mHz, with typical
values in the 50 mHz region (Ihle et al. 2023). Such long stabil-
ity periods require more careful analysis in order to characterize
the small deviations from white noise in the WMAP data. The
WMAP team’s approach was based on a third-order polynomial
fit to the two-point temporal correlation function:

N(∆t) =


AC ∆t = 1,

3∑
n=0

an[log10(|∆t|)]n 1 < |∆t| < ∆tmax,

0 |∆t| ≥ ∆tmax,

(39)

where AC and an are parameters that were fit to the autocor-
relation data, ∆t is in units of samples, and ∆tmax corresponds
to the time lag where the fit crosses zero, typically ∼600 s
(Jarosik et al. 2007). We convert the parametric noise autocor-
relation function4 to a time-domain power spectrum by tak-

ing the Fourier transform, P( f ) =
[
F [N(∆t)]

]−1
. In contrast,

the current LFI-based BeyondPlanck noise model is primar-
ily based on a standard 1/ f power spectrum density, follow-
ing Planck Collaboration VI (2014), and Planck Collaboration II
(2016, 2020), given in Eq. (4).

Figure 2 shows a comparison of these two noise models
in power spectrum domain, compared with one week of Q123
data. Here, we see two main differences. First, the longer sta-
tionarity period of one week adopted here allows us to model
noise correlations on much longer time scales than the one hour
period adopted by WMAP. Second, we see in the inset that the
actual WMAP noise spectrum increases at high frequencies, and
this is supported by the polynomial-based WMAP approach, but
not by the more constrained 1/ f noise model. Furthermore, as
described by Ihle et al. (2023), the current noise sampler effec-
tively uses the highest frequencies for estimating the white noise
level to break a strong degeneracy between fknee and σ0. While
this works well for LFI, it is not a good approximation for
WMAP; the 1/ f model overestimates the noise levels at frequen-
cies f > 0.1 mHz. The recoding effort required to eliminate this
bias is easy to describe but nontrivial to implement; essentially,
the noise model needs to be augmented with a component pro-
portional to f and the noise PSD sampler needs to fit σ0 jointly
with the other parameters, not as a special case.

4 https://lambda.gsfc.nasa.gov/product/wmap/dr5/tod_
filters_info.html
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Fig. 2. Power spectrum for Q123’s week 156, with WMAP’s optimal
time-domain filter plotted above. The inset highlights the high fre-
quency region and the need for a non-flat noise model, as originally
implemented by the WMAP team.

However, since the main purpose of the current machinery is
to perform joint analysis of many different experiments, it is also
necessary to make sure that the new implementation supports
other important near-term data sets, and most importantly Planck
HFI, which also has strongly colored noise at high frequency.
Generalization of the Commander framework to support arbitrary
colored noise models will therefore be addressed separately in a
future publication. As far as the current work is concerned, the
main impact of this shortcoming will be biased time-domain χ2

statistics and slightly overestimated map level uncertainties at
intermediate frequencies.

3.5. Sidelobe corrections

The last algorithmic step considered in this paper is far sidelobe
corrections. This formalism is identical to the BeyondPlanck
LFI analysis, as described by Galloway et al. (2023b), and we
therefore only give a brief review of the main points here. For
a discussion of the corresponding WMAP implementation, we
refer to Barnes et al. (2003).

The emission received by a single beam, b(n̂), pointing
toward the direction n̂ = (ϑ, ϕ), with a rotation angle ψ may
be written as the following convolution,

c(ϑ, ϕ, ψ) ≡
∫

4π
s(n̂)b

(
n̂′(ϑ, ϕ) − n̂, ψ

)
dΩn̂, (40)

where s denotes the unpolarized sky signal. As shown by
Wandelt & Górski (2001) and Prézeau & Reinecke (2010), this
expression may be efficiently computed in harmonic space
through the use of fast recurrence relations for the Wigner
d-symbols, or, as shown by Galloway et al. (2023b), in terms of
spin-weighted spherical harmonics. The main advantage of the
latter is the possibility of using highly optimized spherical har-
monics libraries for the computationally expensive parts.

In general, b is a full-sky function with a harmonic band-
width defined by the main beam. However, this is a large and
complicated object, and its structure is typically not well charac-
terized outside the main beam. As a result, it is common practice
to divide the full beam into (at least) two components, namely, a

-0
.5

0
0.

5
g

[4
π
/Ω

]

Sidelobe

Fig. 3. WMAP Q1-band sidelobe map, given in units of relative gain,
4π steradians divided by beam solid angle.

main beam and far sidelobes. The former is treated at full angu-
lar resolution, but limited spatially to just a few degrees around
the central axis, while the latter is approximated with a lower
resolution grid, but with full 4π coverage (except for the main
beam region, which is nulled).

Figure 3 shows the far sidelobe response of the WMAP Q1
radiometer, as estimated by Barnes et al. (2003). In this plot,
positive and negative pixels correspond to the A and B sides,
respectively. The high resolution regions are measured directly
from data, using, for instance, Moon observations, while the low-
resolution regions are estimated by model ray tracing and labo-
ratory measurements. The circular holes correspond to the main
beam cutouts.

Following Barnes et al. (2003), we partitioned this map into
A and B sides according to positive and negative pixels. To con-
struct the actual sidelobe correction for a given radiometer, we
then evaluated Eq. (40) separately for the A and B side radiome-
ters, taking care to evaluate s separately for each detector. That
is, the mixing matrices in Eq. (3) are integrated with respect
to the bandpass of each individual radiometer. This accounts
for possible intensity-to-polarization leakage arising from band-
pass differences, which is relevant for the polarized sidelobe
corrections.

The issue of spurious polarized signal arising from sidelobes
and bandpass differences is treated in Barnes et al. (2003). Given
a sidelobe model for two detectors with orthogonal polarization,
sfsl

1 and sfsl
2 ,

sfsl
j = Bfsl

j M j a, (41)

the polarized contribution to the sidelobe signal is

sfsl,pol
t = [sfsl

1A,t − sfsl
1B,t] − [sfsl

2A,t − sfsl
2B,t]. (42)

Given an unpolarized sky, an ideal differential radiometer with
identical bandpasses and identical horn transmissions would
yield no polarized far sidelobe pickup. Barnes et al. (2003)
explicitly models the effect of bandpass mismatch on the spu-
rious polarization signal and constrains its amplitude to be
.0.4 µK for one year of Q-band data. An additional effect
of transmission imbalance can induce a spurious polarization
signal:

sfsl,pol
t = [(1 + xim,1)sfsl

1A,t − (1 − xim,1)sfsl
1B,t]

− [(1 + xim,2)sfsl
2A,t − (1 − xim,2)sfsl

2B,t]

= [sfsl
1A,t − sfsl

1B,t] − [sfsl
2A,t − sfsl

2B,t]

+ xim,1[sfsl
1A,t + sfsl

1B,t] − xim,2[sfsl
2A,t + sfsl

2B,t].

(43)
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Fig. 4. Estimates of WMAP Q1-band polarized sidelobe pickup. We note the differing dynamic ranges for each panel. Top: Commander estimate
of the polarized sidelobe pickup, taking into account only the bandpass differences between each channel. Bottom: Commander estimate of the
polarized sidelobe pickup, taking into account only the transmission imbalance parameters.
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Fig. 5. Official WMAP Q-band imbalance template. We note that the units are arbitrary, as this is an eigenmode to be downweighted in the
low-resolution likelihood analysis.

This spurious polarization effect persists when there is no
radiometer bandpass mismatch and in this case induces a polar-
ized signal 2(xim,1 − xim,2)(sfsl

A,t + sfsl
B,t). In Bennett et al. (2013),

Q11 and Q12 have transmission imbalance parameters of:

xWMAP
im,1 = −0.00013 ± 0.00046, (44)

xWMAP
im,2 = 0.00414 ± 0.00025, (45)

whereas our analysis has values of

xCommim,1 = 0.00215 ± 0.00026, (46)

xCommim,2 = 0.00552 ± 0.00025. (47)

The difference between the imbalance parameters xim,1 − xim,2
is consistent between both treatments, suggesting that the
imbalance-induced sidelobe polarization signal is also present

in the WMAP timestreams. The effect of transmission imbal-
ance on sidelobes is not mentioned in Barnes et al. (2003). This
accounts for the main difference between the polarized sidelobe
estimate in this work and that of Barnes et al. (2003).

Figure 4 shows the Q1-band temperature-to-polarization
leakage sidelobe signal separately for bandpass mismatch (top
row) and transmission imbalance (bottom row). Here, we see that
the transmission imbalance contribution is about one order of
magnitude larger than the bandpass mismatch contribution and it
has a very distinct morphology. This morphology is very similar
to the imbalance modes described in Sect. 3.5.1 of Jarosik et al.
(2007), which we reproduce in Fig. 5.

The similarity between the imbalance mode and the polar-
ized sidelobe signal is worth exploring in further detail. The
two signals come from different effects. The imbalance tem-
plate was generated by evaluating the mapmaking procedure
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assuming a 10% increase and a 10% decrease in the two imbal-
ance parameters, and is thus generated by small deviations from
the true underlying imbalance parameters. Conversely, the polar-
ized sidelobe signal persists even if the imbalance parameters are
estimated, as long as x1 , x2.

This can be partially explained by the total convolution for-
malism described in Galloway et al. (2023b). Assuming that we
are convolving a beam with spherical harmonic representation
b`mb with a sky signal s`ms dominated by the ` = 1 mode, i.e.,
the Solar dipole, the signal as a function of beam orientation is
given by:

c(ϑ, ϕ, ψ) =

√
4π

2` + 1

∑
ms,mb

s`ms b`−mb ·−mb Y`ms (ϑ, ϕ)eimbψ. (48)

This means that the sidelobe pickup will mainly be determined
by the ` = 1 modes of the beam, hence, adding a large contri-
bution that is modulated by the boresight angle ψ. Conversely,
incorrect imbalance templates for a pencil beam will induce
extra signal pickup from the Solar dipole that depends only on
the orientation of the spacecraft. Essentially, the signals look so
similar because they are both dominated by observing the Solar
dipole with similar orientations. At the same time, this explains
the small differences between the two effects. The two signals
are masked in the timestream at different times, since the pro-
cessing mask depends on the pointing of the main beam. This
explains why the signal is not straight along the prime meridian
in the sidelobe imbalance signal and why the notches above and
below the Galactic anticenter in U are of opposite signs between
the two maps.

The main differences between the Commander and the
WMAP sidelobe modeling presented by Barnes et al. (2003),
are the following: (1) Barnes et al. (2003) used a smaller tran-
sition radius between main beam and sidelobe of 2◦.2 than
the final nine-year WMAP and the current analysis, both
of which use 5◦.0 (Hill et al. 2009; Bennett et al. 2013). This
causes a significant reduction of pickup that in later releases
is included in the main beam. (2) Barnes et al. (2003) gener-
ated sidelobe templates using the first-year scan pattern con-
volved with the first-year estimate of the sky map, whereas our
analysis uses the full nine-year scan strategy convolved with
the parametric sky model ssky(ν, a,β), which has been fit to
the WMAP9+Haslam+LFI+Planck 353/857 GHz sky maps. 3)
Barnes et al. (2003) explicitly took into account the polarized
sidelobe pickup from polarized sky signal using the full antenna
gain G(n) and the polarization direction perpendicular to the sky,
P(n). Only the gain amplitude is reported on LAMBDA5, so
we are unable to account for the intrinsically polarized pickup
of the sidelobes. 4) Temperature-to-polarization leakage from
transmission imbalance is included in the Commandermodel, but
is not mentioned by Barnes et al. (2003).

From the individual radiometer sidelobe corrections, we
form an effective correction per DA in the time domain, sfsl

t, j,
weighting each timestream by the respective transmission imbal-
ance factors, as outlined in Eq. (25). This function is then sub-
tracted from the calibrated TOD residual in Eq. (28) prior to
mapmaking. Alternatively, the entire residual may be replaced
by sfsl

t, j, in which case the resulting map will be an image of the
net sidelobe correction in the map domain. Both variations are
considered in the next section.

5 https://lambda.gsfc.nasa.gov/product/map/dr5/
farsidelobe_get.cfm

As a consistency check, we developed an alternate python
pipeline for simulating sidelobe timestreams and mapmak-
ing6. We used the ducc7 implementation of totalconvolver
(Wandelt & Górski 2001; Prézeau & Reinecke 2010) to simu-
late the WMAP sidelobe contribution from a pure Solar dipole
reported by Jarosik et al. (2011), with amplitude 3355 µK and
direction (l, b) = (263◦.99, 48◦.26) and the two horns’ orienta-
tions. We use the transmission imbalance parameters reported
in Bennett et al. (2013) to simulate observed timestreams, then
bin the maps at Nside = 16 and solve for the output map exactly
using the scipy sparse linear algebra package (Virtanen et al.
2020). This python implementation of the mapmaker and sim-
ulated timestreams reproduces a low resolution version of maps
obtained using Commander’s iterative solver.

3.6. Differences between the Cosmoglobe and WMAP
pipelines

Although our goal is not a reproduction of the WMAP mapmak-
ing pipeline, we have in general attempted to follow the WMAP
team’s approach. There are some algorithmic differences that
can result in different frequency maps derived from the same
time-ordered data. The differences we are aware of include the
following.

Calibration. The WMAP team developed a physical model
for the gain of the instrument as a function of housekeep-
ing parameters. These parameters were fit to the hourly gain
estimates using the CMB dipole as a calibration source. The
nine-year best-fit parameters are given in Appendix A of
Greason et al. (2012). In contrast, the Commander framework
calibrates the time-ordered data on a weekly cadence by com-
paring directly to the expected sky amplitude, and most impor-
tantly to the orbital and Solar CMB dipoles; for full details, see
Gjerløw et al. (2023). The Commander approach makes fewer
assumptions regarding the physical origin of gain fluctuations,
but stronger assumptions regarding their stability in time.

Transmission imbalance. As discussed by Jarosik et al.
(2003, 2007), the WMAP team derived transmission imbalance
parameters using ten precession periods at a time and estimated
a corresponding uncertainty through the variation during the
mission. This quantity is also dependent on the treatment of
low-frequency noise, thus, the original algorithm solved for a
cubic polynomial in each period while fitting for the transmis-
sion imbalance coefficients. The resulting transmission imbal-
ance templates were projected out from low-resolution noise
covariance matrices to account for their effect on cosmologi-
cal parameters. In contrast, the current analysis assumes a con-
stant imbalance parameter for the entire mission, but allows it to
vary in each Gibbs iteration, and thereby marginalizing over this
parameter directly in the data model in a way that is fully anal-
ogous to the gain (Gjerløw et al. 2023). We applied no explicit
postproduction corrections to any data product for transmission
imbalance.

Baseline evaluation. The raw WMAP data have a large off-
set from zero. This is treated explicitly as a time-varying con-
stant within each stationary period in the official pipeline, but as
an offset in the correlated noise component in the Commander
framework. In the picture where baseline and correlated noise
are treated as separate terms, there is a correlation between gain,

6 https://github.com/Cosmoglobe/Commander/blob/wmap/
commander3/todscripts/wmap/sl_conv.py
7 https://gitlab.mpcdf.mpg.de/mtr/ducc
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baseline, and 1/ f noise, as discussed in Hinshaw et al. (2003).
To address this, the WMAP team applied a whitening filter using
an estimate of the 1/ f noise spectrum, and iteratively solved for
the baseline. In contrast, we fit a linear baseline per weeklong
scan in the Commander pipeline, and residual baseline fluctua-
tions are absorbed by the ncorr sampling (Ihle et al. 2023).

Solar dipole. While the WMAP team subtracted an
estimate of the Solar dipole from the time-ordered data
before mapmaking, resulting in dipole-free frequency maps
(Hinshaw et al. 2003), Commander retains it for calibra-
tion and component separation purposes, following Planck
DR4 (Planck Collaboration Int LVII 2020; Gjerløw et al. 2023;
Andersen et al. 2023).

Mapmaking. The WMAP team accounted for correlated
noise weighting by estimating a two-point correlation function
in time-domain and used this to pre-whiten the TOD prior to
mapmaking. In contrast, we assumed a 1/ f noise model and
sampled correlated noise explicitly as a stochastic field in time-
domain (Ihle et al. 2023). We note again that this noise PSD
model will be generalized in the future to fully capture the tem-
poral behaviour of the WMAP noise, as discussed in Sect. 3.4.

Bandpass corrections. The WMAP team suppressed
temperature-to-polarization leakage from bandpass differences
between radiometers by solving for a spurious map, S , per
radiometer. In contrast, we use a parametric foreground model to
subtract these bandpass effects in time-domain (Svalheim et al.
2023). The main advantage of the latter is that it requires
fewer free parameters and therefore results in a lower degree of
white noise, while the main disadvantage is a stronger sensitiv-
ity to the foreground model. We find that the two approaches
perform similarly.

4. Results

We are now ready to present the results obtained by applying
the methods outlined in Sects. 2 and 3 to the WMAP Q1-band
data. We have made all data, code, and parameter files required
to perform this analysis publicly available in the Commander
source code8.

We emphasize that the results presented below are a simpli-
fied version of the more complete Gibbs sampling problem. Sim-
ilar to the WMAP9 analysis, we calibrate the raw data to a fixed
signal and adjust the gain parameters and noise model while
correcting for known instrumental effects. Our analysis differs
from the WMAP9 processing in that we calibrate to the total
sky model rather than just the orbital dipole. The analysis choice
to enforce a single sky model across all sky maps is the primary
advantage of the Commandermethod, by design reducing degen-
eracies due to observing strategy. A complete Commander anal-
ysis, jointly analyzing the time-ordered data of both Planck LFI
and WMAP, while fitting for the sky parameters, will fully lever-
age the power of this method.

4.1. Computational resources

The first main goal of the current paper is to quantify the com-
putational resources that will be required for a future full end-
to-end WMAP analysis. Most of our efforts have been spent on
implementing the main new analysis steps, rather than optimiz-
ing for speed. Examples of known optimizations left for future

8 https://github.com/Cosmoglobe/Commander/tree/wmap

Table 1. Computational resources for end-to-end WMAP Q1-band
processing.

Item Cost Percentage

Data volume
Uncompressed volume 76 GB
Compressed volume 14 GB

Processing time (cost per run)
TOD initialization/IO time 0.3 h
Other initialization 2.2 h

Processing time (cost per sample)
Data decompression 0.8 h 3.5 %
TOD projection (P operation) 1.1 h 4.9 %
Sidelobe precomputation 0.2 h 0.4 %
Sidelobe interpolation 6.4 h 29.4 %
Orbital dipole 1.4 h 6.4 %
Gain sampling 1.0 h 4.6 %
Transmission imbalance sampling 0.3 h 1.2 %
Correlated noise sampling 1.8 h 8.2 %
Correlated noise PSD sampling 0.4 h 2.0 %
Map making 6.0 h 27.3 %
Sum of other TOD steps 2.1 h 9.8 %
Total cost per sample 21.8 h 100.0 %

Notes. The values are given in total CPU-hours averaged over 100 sam-
ples. Wall time is obtained by dividing by ncores = 64. The auxiliary
maps are computed every tenth run, contributing to a higher average
runtime.

work include using optimal lengths for fast Fourier transform
evaluations (Galloway et al. 2023a), implementing a more effec-
tive preconditioner for mapmaking (Bennett et al. 2013) and
improving load balancing for parallelization. With these caveats
in mind, in Table 1, we summarize the computational expenses
required to run the Q1-band analysis on a computer system with
64 AMD EPYC3 7543 2.8 GHz cores, using the Intel Parallel
Studio XE 20.0.4.912 Fortran compiler. The processing times
listed include the integrated time including each parallel core.
To obtain the cost in wall time, the cost must be divided by the
number of cores used, in this case 64.

The total cost per full Gibbs sample is 22 CPU-hrs, which
is comparable to the Planck LFI 44 GHz channel cost of
17 CPU-hrs (Galloway et al. 2023a). This is despite the fact
that the compressed Q-band data volume is only 8% of the
44 GHz and all time-domain operations are correspondingly
faster. The explanation is the more expensive differential map-
maker; approximately a quarter of the total WMAP analysis
time is spent in the mapmaking procedure, evaluating the matrix
operation PT

amN−1P. For comparison, map binning for the LFI
44 GHz channel accounts for less than 3% of its total run time.
Thus, the differential mapmaking procedure is the main addi-
tional step in the WMAP analysis and all other processing steps
scale with O(N log N), due to the use of FFTs in the calibra-
tion steps. Better preconditioning is a priority for optimizing the
current code. Based on a conservative O(N log N) scaling, we
expect the cost for each band to be 20, 20, 30, 40, and 72 CPU hrs
for each K, Ka, Q, V, and W DA, respectively.

The memory requirement for storing the Q1-band data is
only 14 GB, reduction of the uncompressed 76 GB data by a fac-
tor of four. The full WMAP data volume only corresponds to
20% of the LFI data volume, which can be considered an incre-
mental increase. Based both on memory and CPU requirements,
we conclude that a future Bayesian end-to-end WMAP analysis
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Fig. 6. Q1-band temperature results. Top panel: Commander Q1-band
temperature map. Second panel: corresponding official WMAP sky
map. Third panel: straight difference between Commander and WMAP.
Fourth panel: single Commander TOD residual sample. Bottom panel:
single Commander correlated noise sample.

is well within the reach of current computer systems, both as a
standalone analysis and as a joint WMAP–LFI analysis.

WMAP T Sidelobe
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Comm T Sidelobe

Fig. 7. Temperature sidelobe predictions. Top: WMAP estimate of
the temperature sidelobe correction; reproduction from Barnes et al.
(2003). Bottom: Commander estimate of the temperature sidelobe cor-
rection, after an overall dipole is removed.

4.2. Temperature map quality assessment

We now turn to the quality of the maps, starting with the
temperature component. The top panel in Fig. 6 shows the
Commander-derived Q1-band sky map (after subtracting the
Solar CMB dipole), the second panel shows the corresponding
official WMAP9 sky map (Bennett et al. 2013), and the third
panel shows their difference. Overall, we see that the two maps
are consistent at the ∼2.5 µK level with several systematic fea-
tures, of which the most salient is a quadrupole aligned with the
Solar dipole.

This signal does not appear in either the Commander TOD
residual map (created by binning d − stot − ncorr into a sky
map; fourth panel in Fig. 6), or the correlated noise map (bot-
tom panel). Together, these two maps act as a “trash can” in the
Commander processing framework in the sense that they high-
light any signal in the raw data that cannot be accommodated by
any of the other components. The main structure in the residual
and ncorr maps is correlated with the Galactic plane, indicating an
inadequate sky model. An improved sky model will be obtained
during a future joint TOD analysis between the Planck LFI data
and the WMAP K–V-band data. With the K-band map included
(as opposed to being excluded as in BeyondPlanck Collaboration
2023), there will also be an opportunity to improve the low-
frequency foreground model by, for example, including a more
sophisticated synchrotron model than a simple power law.

We have two hypotheses for the source of the quadrupo-
lar difference between the WMAP and Cosmoglobe map.
One potential explanation is the 1.2 µK kinematic quadrupole,
which is not removed in the WMAP analysis (Jarosik et al.
2007; Larson et al. 2015) but is indeed in the BeyondPlanck
framework (BeyondPlanck Collaboration 2023). Another poten-
tial contributor to the residual is different treatments of the Solar
dipole. The WMAP estimate of the Solar dipole 3.359±0.008 mK
(Hinshaw et al. 2009), is removed directly in the timestream
rather than projecting to the map space and removing, as in the
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Fig. 8. Q1-band polarization maps. Top: Commander Q1-band polarization map, smoothed to 2◦ FWHM. Middle: corresponding official WMAP
Q1-band sky map, also smoothed to 2◦ FWHM. Bottom: Commander solution minus WMAP solution, smoothed to 10◦ FWHM.

Commander framework. Our Q1-band amplitude of 3.358 mK is
consistent with the official WMAP results, although we note that
since the sky signal is fixed, this is an incomplete comparison.

We reproduce the Q-band intensity sidelobe in Fig. 7, and
compare with the dipole-subtracted sidelobe prediction in the
bottom panel. The amplitude and morphology of the two com-
putations are very similar, except for the holes in point sources
around the Galactic plane. This is due to both the different
amounts of data used in the two, one, and nine years, respec-
tively, and to the different sidelobe cutoff radii in both sidelobe
maps, 2◦.2 and 5◦.0, respectively9.

4.3. Polarization map quality assessment

We now turn our attention to the polarization sky maps. As
in Fig. 6, for the temperature, the top panel of Fig. 8 shows

9 The initial version of this work had a difference between the WMAP
final sky map and the sky map in this reanalysis that was morpholog-
ically identical to the WMAP sidelobe as computed by Barnes et al.
(2003). We have since determined that we oriented the beam incorrectly.
We have corrected this by rotating by 135◦ before convolving with the
sky model.

the Commander Q1-band Stokes Q and U maps; the middle
panel shows the corresponding official WMAP sky map; and the
bottom panel shows their difference. We see that the Galactic
plane is in this case almost perfectly consistent between the two
pipelines, but there is also a distinct large-scale pattern present
at high Galactic latitudes with a morphology similar to the sig-
nal that the WMAP team identified as poorly measured modes
in the mapmaking procedure, which can be seen in the WMAP
official imbalance templates shown in Fig. 5. This structure was
identified in Sect. 3.5.1 of Jarosik et al. (2007) as the coupling
of the dipole signal with small errors in the transmission imbal-
ance parameters. However, as discussed in Sect. 3.5, a major
novel result from the current analysis is that a nearly identical
morphology may be reproduced deterministically in terms of
temperature-to-polarization leakage arising from the three-way
coupling between the CMB Solar dipole, transmission imbal-
ance, and sidelobe pickup.

In particular, Fig. 4 shows the polarized sidelobe predicted
by Commander, using the model described in Sect. 3.5. We
note that the amplitude of the polarized sidelobe predicted by
Commander is an order of magnitude smaller than the large
scale feature difference feature. The amplitude difference may be
caused by the sidelobe itself or the magnitude of the transmission
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Fig. 9. Difference maps between WMAP K-band and WMAP (top row) and Commander (bottom row) Q1-band, designed to reduce polarized
synchrotron emission. The K-band map has been scaled by a factor of 0.17 to account for the different central frequencies of the two frequency
channels.
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Fig. 10. Q1-band polarized deviations from the data model. Top row: Commander correlated noise sample for the Q1 channel in polarization
smoothed with 5 deg FWHM. Bottom row: corresponding TOD residual sample, also smoothed with a 5 deg FWHM beam.

imbalance factors. This implies that the polarized sidelobe as
described here can at best only partially explain the difference
between the Commander and WMAP9 maps.

Next, we want to understand whether the residual pattern
in the bottom panel of Fig. 8 is present in the Commander

or WMAP maps, or both. To this aim, Fig. 9 shows differ-
ences between the WMAP K-band channel and the WMAP
(top) and Commander (bottom) Q1-band maps, in which polar-
ized synchrotron emission is greatly suppressed. In both cases,
the K-band map has been scaled with a factor of 0.17 prior to
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Fig. 11. Half-difference maps (Q1 −Q2)/2, smoothed to 5◦. Top row: WMAP half-difference map. Bottom row: Commander half-difference map.

subtraction, to account for the different central frequencies of
the two channels, equivalent to assuming a synchrotron spec-
tral index of βs = −3.1. In these plots, we see that the sidelobe
pattern is present in the official WMAP Q1-band map, while
it is much weaker in the Commander map. This implies that
Commander is able to remove the imbalance modes accurately
without the need of a post-production modification.

The only possible location for the imbalance modes in the
Commander data model is in the correlated noise, which we dis-
play a map of, along with the TOD residuals in Fig. 10. Here, we
see large-scale structures with a similar amplitude to the imbal-
ance modes in WMAP. The imbalance mode and polarized side-
lobe are accounted for in the correlated noise component for
Commander, resulting in broad features modulated by the scan-
ning strategy. Ideally, this should look like stochastic, “stripy”
noise (see, e.g., Basyrov et al. 2023, for an LFI example), but
this map is both systematic and inconsistent with the 1/ f corre-
lated noise model. The reason for why this signal does not end up
in the actual frequency sky map is that we assume the sky model
to be defined by the Planck- and LFI-based BeyondPlanck
model, which provides the necessary leverage to extract the cur-
rent signal. We could find no compelling evidence for the imbal-
ance modes being present in the correlated noise map at the
2.5 µK. However, preliminary runs of the other DAs have have
this signature in the correlated noise level at a higher level, so
we do not yet rule out the imbalance modes being absorbed into
the Q1 DA’s correlated noise.

As a final test of our method, we directly compared the polar-
ized Q1 and Q2-band data. The two DAs have overlapping band-
passes, with effective frequencies of 40.72 GHz and 40.51 GHz,
respectively (Bennett et al. 2013). Several other instrumental
properties, such as the knee frequencies, gain, and beam orien-
tation, vary between the two DAs. Properly treated, the maps
derived from these DAs should be consistent with each other,

save for instrumental noise fluctuations. At the same time, the
consistency of the WMAP-processed Q DAs compared with the
Commander-processed Q DAs highlights the differences between
our two approaches.

Figure 11 shows the polarized half-difference maps,
(Q1 − Q2)/2, for the Q and U Stokes parameters. As expected,
the WMAP half-difference maps are visually dominated by the
poorly measured imbalance modes. As explained in Jarosik et al.
(2007), this is mainly a large-scale phenomenon that is down-
weighted in the low-resolution likelihood analysis. Conversely,
the Commander half-difference maps are consistent at the 2.5 µK
level without any post-processing. This agreement is partially
due to conditioning the data on the sky model, so that corre-
lated noise accounts for the deviations from the sky model. Ide-
ally, the WMAP approach of downweighting imbalance modes
in the likelihood should be mathematically equivalent to the
Commander approach of drawing random samples of these
modes to marginalize over them.

5. Summary and conclusions

This paper has two main goals. The first goal is to assess whether
a full Bayesian end-to-end BeyondPlanck-style analysis of the
WMAP data is technically feasible and, if so, how expensive it
would be. Based on the results presented here, we can conclude
affirmatively, as the current computational cost is 44 CPU-hrs per
full Q1-band Gibbs sample. This is comparable to the cost of the
Planck LFI 44 GHz channel and is thus well within the reach
of current computers. Furthermore, this estimate is an upper
limit, as the current WMAP module has not yet been heavily
optimized and, in particular, a new BiCG-STAB preconditioner
may result in a significant speedup. We have also found that
the amount of recoding effort required to generalize the existing
Commander machinery to a new data set is fully manageable;
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in this specific case, it corresponds to O(1) postdoc years,
starting from no working knowledge of either the WMAP or
Commander pipelines.

The second goal was to assess the quality of the maps
and whether the current code is ready for production work. In
this case, we conclude with a tentatively positive answer. The
remaining work either consists of optimization (e.g., better pre-
conditioning in mapmaking, sidelobe interpolation speedups)
or improving suboptimal data treatment (e.g., proper baseline
fitting, expanded PSD model). Indeed, our preliminary work
comparing the WMAP Q1 and Q2 sky maps suggests that the
software is quickly reaching a level of maturity at which a joint
Planck LFI/WMAP analysis may be performed.

Considering the new results presented in this paper, side-
lobe contamination in general has taken on a new impor-
tance with respect to the publicly available WMAP large-
scale polarization data. Although the polarized sidelobe pat-
tern is morphologically very similar to the imbalance modes,
its contribution is not explicitly undergoing marginalization in
the low-resolution covariance matrices used for low-` CMB
likelihood estimation (Hinshaw et al. 2013); therefore, it can
directly bias estimates of, for instance, the reionization opti-
cal depth derived from WMAP polarization data, at a level of
O(0.5 µK). The potential sidelobe contamination is an impor-
tant issue for future joint analyses of WMAP and Planck
data, which currently use pre-pixelized sky maps as in the
BeyondPlanck analysis; a nonnegligible fraction of the
Planck–WMAP residuals reported by Planck Collaboration IV
(2020) and BeyondPlanck Collaboration (2023) may be due to
this specific issue.

We argue that the main takeaway from this work is another
illustration of the importance of joint multi-experiment analysis.
As amply illustrated through both the WMAP and Planck anal-
ysis efforts, any given experiment has blind spots to which it is
not sensitive. These blind spots lead to unconstrained modes in
the frequency maps, which, in turn, may bias both astrophysical
and cosmological conclusions. We argue that the optimal solu-
tion to this problem is not primarily more clever algorithms (even
though such can certainly can help), but rather adding more data.
Whenever a given degeneracy limits the data analysis, whether it
is foreground uncertainties caused by a limited frequency range
or unconstrained map modes caused by the scanning strategy,
the best solution is to bring in more data to break the degen-
eracy. This is the goal of the Cosmoglobe project; to jointly
analyze the world’s best data. This paper is an important step
in that direction, aiming to combine the world’s two best CMB
satellite data sets within one joint framework.
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