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Preface

For more than three decades asymmetric information has been an impor-
tant subject for economic research, and on at least two occasions the Bank
of Sweden has awarded its " Prize in Economic Sciences in Memory of Alfred
Nobel” (aka ”The Nobel Prize in Economics”) to researchers working in this
field.! Parts of this research have been devoted to the study of asymmetric
information in financial markets. Over the last 10-15 years, mathematicians
working in the field of finance and stochastics have become increasingly in-
terested in asymmetric information and have developed sophisticated math-
ematical tools to describe and model asymmetric information. Economists
and mathematicians have had quite different approaches to the subject:
Roughly speaking, we may say that economists have been more interested
in how asymmetric information affects the market, while mathematicians
have tended to study under which conditions given asset prices can be sus-
tainable in a market where the agents have different information. Both
”camps”, however, strive to answer the fundamental questions:

Q1 Can informational asymmetries prevail in the market?

Q2 Is it possible to profit from an informational advantage?

This survey note aims at presenting some of the most important contribu-
tions from both mathematics and economics. I have chosen to treat the
following papers in detail:

e R. Radner. Rational expectations equilibrium: generic existence and
the information revealed by prices. Econometrica, 47:655-678, 1979

e A. S. Kyle. Continuous auctions and insider trading. FEconometrica,
53:1315-1335, 1985

e J. Wang. A model of intertemporal asset prices under asymmetric
information. Review of Economic Studies, 60:249-282, 1993

e B. Cornet and L. de Boisdeffre. Arbitrage and price revelation with
asymmetric information and incomplete markets. Journal of Mathe-
matical Economics, 38:393—-410, 2002

e C. Hillairet. Existence of an equilibrium with discontinuous prices,
asymmetric information and non-trivial initial o-fields. Mathematical
Finance, 15:99-117, 2005

! Mirrlees and Vickrey in 1996 and Akerlof, Spence and Stiglitz in 2001



Altogether, these papers give a good overview of the span of the research
field. The reason for choosing these particular works can be summarised as
follows: Radner was among the first to prove that under fairly general con-
ditions rational expectations equilibrium prices are revealing. Kyle’s work
has become a cornerstone for the study of price formation under asymmet-
ric information. Wang’s article goes beyond the questions Q1 and Q2 above
to explain the effects of asymmetric information on the stock prices them-
selves, their volatility and risk premium, and also on the agents’ behaviour.
Cornet and de Boisdeffre’s paper represents an interesting alternative to the
rational expectations models that have been dominating the field. Hillairet’s
paper illustrates the "mathematical finance” approach to asymmetric infor-
mation. But unlike most other contributions in this field, her model is set
in an equilibrium framework.

Before making an attempt to model asymmetric information in financial
markets, there are certain issues that need to be clarified:
e What do we mean by ”asymmetric information”?

o Are some agent(s) better informed than the other agents or are
their information just different?

o Is the agents’ private information available initially or revealed
gradually?

e The time structure of the market - is it a single period, multiperiod or
continuous time market?

e How do we model the sample space generated by the assets’ payoffs:
is it finite, or infinite?

e What are the characteristics of the agents?

o Are they risk-neutral or risk-averse?

o Do they trade to optimise their final wealth or to sustain an
optimal consumption scheme?

The diversity of the selected papers in these respects is illustrated in Table
1. Another important issue is:

e to what extent do the agents extract information from the asset prices?

Radner, Kyle and Wang all assume that the agents are able to use asset
prices and their knowledge about the market to infer something about the
other agents’ information. Cornet and de Boisdeffre assume a weaker form
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single period b X X
time multiperiod, finite o) X 0
horizon continuous, finite X X
continuous, infinite X
information | asymmetric X X | x
structure informed vs. uninformed X b !
private available initially X X X | x
information | revealed gradually 0 b
sample finite b X
space infinite ! X X ' | x
agents’ risk neutral X X
preferences | risk averse X 0 X x | x
N intermediate consumption X X X | x
objective
final wealth X X X

Table 1: The modelling assumptions of the selected papers: x means ”cov-
ered in the original paper”, o means ”covered in subsequent papers” and !

29

means ”’spin-off’ of this survey”.

of rationality and let the agents extract information from prices only by
analysing arbitrage opportunities. Hillairet assumes that no extra informa-
tion can be extracted from the asset prices.

Not surprisingly, the papers provide different answers to the questions Q1
and Q2: Radner’s paper shows that prices in a rational expectations equi-
librium are ”generically” revealing. Hence the answer to both questions is
”generically, no”. In Kyle’s paper informational asymmetries can prevail,
but are diminishing over time. A better informed agent can profit from his
information, and the profit is calculated explicitly. In Wang’s paper, infor-
mational asymmetries are prevailing over time. Though the profits are not
explicitly calculated, it is clear that the informed agents can benefit from
their additionl information. Cornet and de Boisdeffre show that informa-
tional asymmetries can prevail if and only if the market is incomplete?. In
Hillairet’s paper it is proved that the agents’ private information is irrele-
vant, and hence the answer is "no” to both questions.

Roughly speaking, a market is complete if any state-contingent claim to the considered
assets is available on the market.
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The paper is organised as follows: Part I introduces notation, stochastic
processes, preferences and the classical Arrow-Debreu and Radner equilib-
ria. Rational expectations models, including Radner’s paper (Section 3) are
treated in Part II. Part IIT concerns rational expectations models with noise,
in particular Kyle’s model (Section 6) and some of the numerous later contri-
butions using his model. Wang’s paper is also included in this part (Section
9). The concept of arbitrage under asymmetric information is treated in
Part IV, using the ideas of Cornet and de Boisdeffre. Part V presents the
standard approach from mathematical finance, in particular Hillairet’s work
(Section 11). In Part VI I summarise, draw parallells between the models
and point out some directions for future research.

I have strived to present the papers in a uniform manner. The papers by
Kyle, Wang and Hillairet are presented in a form close to the original, though
I let out the multiperiod part of Kyle’s paper and consider a simplified
version of the asset price dynamics in Hillairet’s paper. I present a simplified
version of Radner’s model, but generalised to the case of an infinite sample
space. Hence the main result has to be reformulated to fit the new frame.
The proof of the main result is inspired by, but different from the original.
Cornet and de Boisdeffre’s paper is presented in a framework quite different
from the original, but the main results are the same. The main contributions
of this survey are:

A generalisation of Radner’s main result to the case of an infinite
discrete sample space.

A generalisation of Cornet and de Boisdeffre’s in two directions: From
treating only a subset of the sample space to the whole space, and from
a finite to an infinite sample space. I have also included a discussion
of informed vs. uninformed agents not present in the original paper.

e An extensive, though not complete overview and discussion of subse-
quent works using Kyle’s model.

e Some suggestions for future research projects that may be fruitful.
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I INTRODUCTION

1 Notation and preliminaries
The reader is assumed to have some background in probability and stochas-
tics. Hence the following terms will not be explained

e o-algebras

e (complete) probability spaces

e (right continuous) filtrations

e stopping times

e (local) martingales

e cadlag and caglad processes

e predictable and progressive stochastic processes

e Brownian motion
For explanations and definitions of these terms we refer to [48]. This does not
mean that a reader has to be familiar with all these terms to be able to read

this survey. To highlight the importance of the semimartingale property of
asset prices, the definition of a semimartingale is provided in Appendix B.

1.1 Probability spaces and filtrations

All our analysis will take place in a probability space (2, F, P), which we
assume to be complete. Our time horizon T may be either finite or infinite.
Unless otherwise noted, expectations and ”almost surely” (a.s.) and ”almost
all” statements are taken with respect to the measure P. The probability
measure @ is said to be absolutely continuous with respect to P, denoted
Q << P if Q(F) = 0 whenever P(F) = 0, and equivalent to P, denoted
Q ~ Pif Q(F)=0if and only if P(F)=0.

We use the notation o{random variables/collection of sets} for the o-algebra
generated by some random variables or collection of sets. We will use cali-
graphic letters (F,G etc.) for o-algebras and blackboard bold (F,G etc.)
for filtrations. So that for given T'

F:={F; 0<t<T}.



When we say that (2, F, P) is equipped with the filtration F, we always
assume that Fy contains all the P-null sets of F and that Fp = F.

An F-measurable random variable X belongs to L,(F, P) := L,(Q2, F, P) if

/ | X |PdP(w) < o0.
Q

When there is no ambiguity about the probability measure we say that
X € Ly(F).

1.2 Preferences and utilities

Recall that a binary relation 2~ on some set X is

e complete if for all x,y € X we have x 7~ y or y - = or both, and
e transitive if x 7~ y and y 77 z implies that = - z.
A complete and transitive binary relation is said to be rational. A preference
relation is a rational binary relation. Note that from - we can derive the
e strict preference > such that x > y if x 72 y but y 7 = and
e indifference ~ such that z ~ y if z 77y and y 7 .
An element z € X is said to be maximal for -, if x 77 y for all y € X. We

say that the preference relation is non-satiable if in any neighbourhood of
any point x € X, there is some y such that y > .

A function U : X — R is a utility function representing - if for all x,y € X
w2y Ulx) =2 U(y)

A binary relation can be represented by a utility function only if it is rational.
If X is a set of RY-valued random variables on (2, F), a von Neumann-
Morgenstern utility function can be expressed as

/U(X(w),w)dP(w), Xeax, (1.1)
Q

where U : RY x Q — R and P is a probability measure on (Q,F). In
this framework, we will refer to U as the utility function and assume that
the agents seek to maximise their von Neumann-Morgenstern (or expected)
utility (1.1). For more on preferences and utilities, we refer to [42, Chapter

3 and 6B].
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2 Equilibrium under uncertainty

In this section we present two different notions of equilibrium under uncer-
tainty: The Arrow-Debreu equilibrium is a generalisation of the Walrasian
equilibrium (cf. e.g. [42]) where the traded goods are not the consump-
tion goods themselves, but state-contingent consumption plans giving the
timing of and conditions for the consumption of the goods®. In the Radner
equilibrium model there is no market for consumption plans, but there is
a spot market for all the goods at all times and states and a market for a
certain number of assets with state-contingent prices. We shall see that the
two equilibrium models are related, and under certain conditions equivalent.
We will also discuss briefly these models under asymmetric information.

2.1 The Arrow-Debreu market model

Fix a time horizon T and a probability space (£, F, P) equipped with the
right continuous filtration F. We assume that there are L goods available
for consumption, and that the possible consumption plans constitute some
subset C' of F-progressively measurable, Ri—valued processes

c::{ct; ogth}
giving the instantaneous rates of consumption of the different goods. The
agents are indexed by ¢ = 1,...,I. Agent ¢ is characterised by
e a consumption set ol CC,
e a preference relation =) on C® and

e an F-progressively measurable, L-dimensional endowment process,

el .= {egi); 0<t< T} cCW,

The agents’ consumption sets, preferences and endowments constitute a pure
exchange economy?

&= {(C), (2), ()},

with the shorthand (-®) := (-(U ... .(1))

.

This could be realised by a state contingent forward market (cf. e.g. [23]) for the con-
sumption goods
as opposed to an economy with production



DEFINITION
An Arrow-Debreu equilibrium for the economy £ is an allocation of
consumption plans (¢(?) and a price ¥ : C' — R such that:

e For every 4, ¢!V is maximal for i(i) in the budget set
{c e CD; w(e) < \If(e(i))}. (2.1)

e The market for consumption plans clears, i.e.

Zc(i) = Ze(i) a.e. on Q x [0,T7. (2.2)

Note that in this market all trades are settled at time 0. Establishing a
consumption plan ¢ € C' means that an agent knows

Ctiﬂ—>RL

for any ¢ € [0,7T]. Thinking of the w’s as ”states of the economy”, he knows
what he can consume at a certain time in a certain state, but he does not
know in advance which states actually occur.

Under quite general conditions on preferences and consumption sets, one can
show that an Arrow-Debreu equilibrium leads to an allocation of consump-
tion goods that is optimal in the sense that one cannot make some agents
better off without making others worse off. We refer to such allocations as
Pareto optimal (or - efficient):

DEFINITION
An allocation () is feasible for £ if ¢) € C for all i and (2.2)
holds. A feasible allocation is Pareto optimal for £ if there is no feasible
allocation (¢()) such that ¢® =@ ¢ for all 4 and ¢® =@ ¢ for some
i.

THE FIRST WELFARE THEOREM
An Arrow-Debreu equilibrium allocation is Pareto optimal.

For conditions and a proof of this theorem we refer to [23, Chapter 10].

The Arrow-Debreu model relies heavily on the assumption of symmetric
information: Suppose that some agents are better informed than others in
the sense that they can rule out certain states of the economy. Of course
any consumption in these states must have zero cost, otherwise the better
informed agents will profit risklessly from selling their endowments in these



states®. The zero cost, on the other hand, will lead the less informed agents
to seek excess consumption in these states. In both cases the economy will
be brought out of equilibrium. Hence, we can say that this model implicitly
assumes that all the agents have access to the same information.

2.2 The Radner market model

At this market there is no market for consumption plans, but at any time
t there is a spot market, i.e. a market for immediate delivery, for all the
consumption goods at prices given by the F-progressively measurable Ri—
valued spot price process

b= {; 0<t < T}

There is also a market for NV different assets whose (cum dividend) prices
are given by the F-semimartingale

S:={S; 0<t<T}.

A trading strategy or portfolio process is an F-predictable N-dimensional
process
0:={6; 0<t<T}

{/tejdss; ogth}
0

is a finite-variance process. We say that the endowment process e and trad-
ing strategy 6 finance the consumption plan c if

such that

¢ t
6] S; <6y So+ / 0. dS, +/ Y (es — cs)ds, t e 0,77, (2.3a)
0 0

and
1St > 0. (2.3b)

Noting that 6, S; is the time ¢ market value of the portfolio, (2.3a) states that
this value cannot exceed its initial value plus the security trading gains and
the values of the endowments net of consumption. The terminal constraint
(2.3b) states that there cannot be any remaining obligations at time 7. We
can now define a Radner equilibrium for the extended economy

£ = {&, assets}.

5 and, if allowed, even short-sell consumption goods



DEFINITION
The spot and asset prices ¢, S and the trading and consumption plans
((G(i), c(i))) constitute a Radner equilibrium for &£ if:

e For every 1,

o e® and 0% finance ¢ and

o ¢\ is maximal for =9 among the consumption plans in C'(*)
that can be financed by e and some trading strategy.

e The markets for assets and goods clear, i.e.

D00 =0 and Y D =3"cl aconQx[0.7]. (24)

2.3 Connection between Arrow-Debreu and Radner

Consider for simplicity a single period market with L goods available for
consumption. Suppose that C' and all the C(?’s are the sets of ]RJLr—valued
F-measurable random variables whose components belong to La(F) (cf. Sec-
tion 1.1).

Suppose that there is no time 0 market for consumption plans but there is
a complete market for the the good labeled 1, i.e. any claim to the amount
0 € La(F) of this good at time 1 is available at time 0 at a price given by
some linear function ¢ : Ly(F) — R. At time 1, there is a spot market
for all the goods, with spot prices given by the RF-valued F-measurable
random variable ).

As there are no initial endowments, each agent’s time 0 budget constraint
is

p(0) <0 (2.5a)
Having bought the claim 6, agent i’s time 1 budget constraint is
0<y’ (e —¢)+yrb a.s. (2.5b)

Agent i thus seeks the ¢ that is maximal for >~ among the elements in
C for which there exists some 6 € Lo(F) such that (2.5) hold. Thinking of
the first good as "money” and claims to this good as "assets” whose time
0 price is ¢ and time 1 price is the first component of 1, we see that (2.5a)
is (2.3a) evaluated at time 0, while (2.5b) is (2.3b) inserted into (2.3a)
evaluated at time 1. Hence if (2.4) holds, {1, , (0@, c®)} constitutes a
Radner equilibrium.



In this setting we can prove the equivalence between the Arrow-Debreu and
the Radner equilibria as follows: Suppose ¥ and (¢(9) constitute an Arrow-
Debreu equilibrium for {C, (=), (e()} with a strictly positive price of any
consumption of the first good. As ¥ : C — R is a linear functional it has a
Riesz representation, i.e. some ¢ € C such that

U(c)=E[ "¢, ceC.
Noting that ¥ > 0 a.s., we define

) T(e(@) — o(9)
0(1)::¢(Cw6’)7 i=1,...,1
1

and ¢ such that
»(0) = E[0], 0 € Ly(F).

It is easy to verify that given ¢ and 1,

e 0 and ¢ satisfy the Radner budget condition (2.5) for every i,
e the market clears, i.e. (2.4) holds and
e any c € C for which there exists some 6 € Ly(F) such that (2.5) holds
is also in agent i’s budget set.
Hence {1, ¢, (8%, ¢())} constitutes a Radner equilibrium.

Conversely, suppose {1, ¢, (0", ¢())} is a Radner equilibrium with 1; > 0
a.s. and ¢ having the Riesz representation ¢() = E[pf]. Then, with ¥
given by

WTC}
Y1 1

the ¢()’s are in the Arrow-Debreu budget sets (2.1). Moreover if ¢ is in agent
i’s Arrow-Debreu budget set, it is easily verified that (2.5) holds with

U(c) ::E{ ceC,

T () — )
(1 '

Hence ¥ and the (¢(?) form an Arrow-Debreu equilibrium.

9 .=

The equivalence between Arrow-Debreu and Radner equilibria is treated in
more general cases in [24] and [17]. The key idea behind the equivalence
is the use of assets to transfer wealth between the different states of the
economy. It is thus crucial that the asset market allows complete transfer of
wealth between the states of the economy - a property referred to as (asset)



market completeness (cf. e.g. [45] for a definition). Reasoning as in Section
2.1 we see that such a market cannot be in equilibrium unless the agents are
equally well informed. The Radner market can thus be viewed as a way to
circumvent one of the main objections to the Arrow-Debreu market model:
the unrealistic assumption of a state-contingent forward market for all the
goods. The assumption of symmetric information is, however, crucial in a
market that allows complete transfer of wealth across states of the economy.
As the next example shows, informational asymmetries may prevail in mar-
kets with no transfer of wealth across states, but not if the agents are able
to use equilibrium prices to extract information. This will be the subject of
Part II.

EXAMPLE (CF. [42, EXAMPLE 19.H.2])

Consider the probability space (Q, F, P) where F := {0, F, F¢ Q} with
P(F) = % Suppose there are two consumption goods and two agents on
the market with utility function

U(z,y,w) = (xr(w) + 2xpc(w)) Inz +y.

Each agent is supposed to receive the endowment 1 of the first good (as
we are only considering relative spot prices we need not specify the en-
dowment of the second good). Suppose the first agent has full information
and the other agent has no information, i.e. 71 = F and Fy = {0, Q}. If
the spot price of the first good in units of the second good is v the agents
will demand the amounts

E[xr + 2xpc|Fi

¢ )

to maximise their expected utilities. As F; = F the first agent will
demand

i=1,2

XF + 2Xpc
(0

depending on the state, while the second agent will demand

Elxr +2xpc] 3

Y e
Adding the demands, the market clearing price is
7T 1
P = 1 - §XF-

In principle, it is possible to have such a state-dependent price function
without each agent knowing the state. If, however, the second agent
knows the first agent’s endowment and utility function, and knows that
his knowledge is superior, he might use the equilibrium price to infer the
state of the economy.



In the sequel we will consider money as the only good in the market, or
equivalently that there is only one consumption good and that the assets
considered are real assets with prices and dividends in units of the consump-
tion good. We assume that the endowments are given as money and shares
of the risky assets.



II RATIONAL EXPECTATIONS

An equilibrium is only sustainable if the agents’ probability assesments are
not controverted by their observations of the market. As information in
general is asymmetric, sophisticated agents will use their observations of
the other agents’ activities to update their own probability assessments.
The theory of rational expectations is generally attributed to Muth ([44])
and Lucas ([41]). The idea of an equilibrium that is "time consistent” was
already formulated by Hicks in the 30’s (cf. [33] quoted in [50, Section 1]).

3 Revealing Rational Expectations Equilibria

In this section we present the results of [49] concerning the ”generic” exis-
tence of a rational expectations equilibrium that reveals the agents’ private
information. This result is based on an auxiliary proposition which states
that the set of probability that gives the same equilibrium price is ”negli-
gible”; which allows us to conclude that ”generically” two economies which
differ only in the agents’ probability assessments will have different equi-
librium prices. In this section we present Radner’s equilibrium concepts
and the auxiliary proposition in a more general mathematical setting. We
refer to [26] for a more detailed exposition and the proof of the auxiliary
proposition.

Let (Q, F, P) be a complete probability space and assume that F is separa-
ble. The J stocks are traded at time 0 and has the F-measurable R”-valued
time 1 payoff V. We let Fy, denote the o-algebra generated by V and assume
that P(F) > 0 for all non-empty F' € Fy. There are I agents in the market.
Agent i receives an initial endowment € € R, of cash and e®) € Ri of
stocks. The agents’ utility functions are of the form

Upi(time O consumption) + U;(time 1 wealth).

The agents’ time 0 decisions are based on their initial information given by
the o-algebra® G C F. The meet G A\ Fy can be thought of as the agents’
”payoff-relevant” initial information. Given an R”-valued G-measurable as-
set price vector ¢, agent i’s choice of initial consumption ¢ and portfolio of
stocks z must be R- and R”-valued G-measurable random variables satisfying
the budget constraint

c+ qﬁTz < el 4 qﬁTe(i) a.s. (3.1)

Economists tend to prefer the term signal to describe an agent’s information - in our
setting G can thus be thought of as the o-algebra generated by some signal function.

10



Under fairly general assumptions the budget constraint hold with equality,
so that ¢ = e + o (e(’) — z), and the solution to the optimisation problem

eré%>§ {E[Uol- (e(i) +¢' (e — z)) + Ui(VTz)’g} } (3.2)

exists and is unique. Hence, given a G-measurable ¢, z()(¢) : Q@ — R’
solving (3.2) is a G-measurable R”-valued random variable. In equilibrium,
the agents’ demands for stocks must equal the total endowments of stocks

i.e.
Z 20 = Z e a.s., (3.3)

which implies that 3¢ = "¢ as. when the budget constraints (3.1)
hold with equality.

DEFINITION

A full communication equilibrium is a collection {(z("), ¢} of G-
measurable R”-valued random variables such that for any 7, 29 solves
(3.2) and (3.3) holds. A full communications equilibrium is revealing
if the payoff-relevant information revealed by the asset prices equal the
agents initial payoff-relevant information, i.e.

oy NFv =GN\ Fv.

Suppose the agents come to the market with different information G, ...,Gr
and consider the pooled information given by the join G, defined as the
smallest o-algebra containing all the G;’s, i.e.

G:=Va.

We could proceed naively and define a "no communications equilibrium”
as a collection {(2()), ¢} of G-measurable R’-valued random variables such
that 2" solves (3.2) with G replaced by G; for each agent and (3.3) holds. But
then we neglect the fact that a sophisticated trader could use the equilibrium
prices to extract information about the other agents’ information. This new
information could in turn lead him to altering his demand for certain stocks.
But if the total market demand changes significantly, the price vector is no
more an equilibrium price vector. For a given R”-valued G-measurable asset
price vector ¢, consider in stead the optimisation problem

max {E [UOZ- (€ 4+ 6T (D = 2)) + U(VT2)|G: V o{gb}] } (3.4)

J
z€R+

11



DEFINITION
A rational expectations equilibrium is a collection {(z()), ¢} of G-

measurable R7-valued random variables such that for any 7, 2 solves
(3.4) and (3.3) holds.

Clearly, a revealing full communications equilibrium is also a rational ex-
pectations equilibrium.

In the sequel, we shall deal with o-algebras only indirectly via their con-
ditional probabilities, or more precisely their conditional probabilities re-
stricted to Fy . Let P(-|G) denote a regular version of the conditional proba-
bility (cf. Appendix A). This measure is absolutely continuous with respect
to P which implies that the restriction of P(-|G) to Fy is absolutely contin-
uous with respect to the restriction P|r, on (2, Fy). We let P denote the
set of probability measures on (€2, Fy/) that are absolutely continuous with
respect to P|r,. Fix some ¢ € RY, pu € P and consider

max {Uol- (e(i) +q' (" — Q) +/

mas i Ui(VTC)du}. (3.5)

We say that ¢ € RY is an equilibrium price for p if the collection (¢ (i)) of
solutions to (3.5) satisfies

SO =3,

The collection {(2()), ¢} of G-measurable R’-valued random variables is
a full communication equilibrium if and only if for any ¢ and almost all
w, 2 (w) solves (3.5) with ¢ = ¢(w) and pu = P|£, (-|G)(w), and (3.3) holds
(cf. [26, Lemma 3.1]).

Different probability measures with a common equilibrium price are said
to be confounding. A full communications equilibrium is revealing if the
conditional probability measures corresponding to different sets in G A\ Fy
are non-confounding (cf. [26, Lemma 3.1]).

EXAMPLE
Suppose that J =2, F = o{F, F5, F3}, P(Fy)>0,k=1,...,3 and
T
2 1], wen,
T
Vi =1[1 2| , wem,

3 3 T

Suppose that each agent’s utility functions and endowments coincide, i.e.
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Uy =U; =U and € = ¢, e = ¢, given by
U(x) =2/, x>0,

4 T

=—,e=|1 1| .
e=Se=[1 1
In this case ¢ = [1 1}T is a (no-trade) equilibrium price for any prob-
ability measure p with pu(Fy) = p(Fz). Hence any couple of probability
measures assigning the same probability to F} and F5 is confounding.

As the example shows, one cannot in general rule out the occurence of
confounding probability measures. It is possible, however, to show that the
set of confounding measures is negligible. In Radner’s finite dimensional
case, P is the unit simplex of dimensionality determined by the number
of "states”. The auxiliary proposition states that the set of confounding
couples is negligible in the sense that its closure has zero Lebesgue measure
in P2,

In a topological space a set is referred to as meagre if it can be expressed
as a countable union of nowhere dense sets, i.e. sets for which the interior
of the closure is empty. The complement of a meagre set is referred to as
a residual set. A topological space is a Baire space if any residual set is
dense. A property is said to hold generically in a Baire space if it holds
on a residual subset. Any countable intersection of residual sets in a Baire
space is in turn a residual set (cf. e.g. [43, Lemma 48.1]). Consequently,
countable selections of generic properties hold simultaneously on a residual
set and are thus generic. According to the Baire category theorem (cf. e.g.
[43, Theorem 48.2]), any complete metric space, like P equipped with the
metric

d(p, ') = sup{|u(F) — ' (F)|; F € Fv}

(cf. [26, Lemma 3.2]), is a Baire space. Moreover, as the set P, of probability
measures that are equivalent to P is a residual subset of P (cf. [26, Lemma
3.3]), we may without loss of genericity restrict our analysis to this set.

We make the following assumptions regarding the agents’ utility functions
and endowments, the final payoffs and the possible equilibria:

ASSUMPTIONS
For every agent i,
1. Uy;, U; are twice continuously differentiable, strictly increasing and
strictly concave, and U/;(c) — oo and U/(¢) — oo as ¢ — 0

2. Denoting é® := [¢®) e T]|T we have that
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o ¢ € RI\{0} for every i and

e the sum has only strictly positive components, denoted
S e kY,

3. V is bounded from above and away from zero below, in all compo-
nents a.s.

4. None of the assets are redundant, i.e. there is no non-zero z € R’
such that
Vie=0 a.s.

5. In equilibrium there is no collection (z) € (R”)! such that

S vTEOUv ) =1 a.s.

Assumption 5 may seem odd as an a priori assumption about the properties
of an equilibrium. For a justification of this point, see [49, Appendix].
Radner also assumed that the market is incomplete. In the present setting
this does not seem to be necessary - it is of course the case when F is infinite.

These assumptions ensure that any equilibrium price must be strictly posi-
tive in all components and that each agent must exhaust his budget. More-
over, for any u € Py and ¢ € RiJr, there is a solution to (3.5), and this
solution is a continuous function of x and ¢ in the vicinity of any equilib-
rium.

THE AUXILIARY PROPOSITION
Under the above assumptions, the set of confounding couples in P%? is
meagre.

The proposition is proved in three steps:
e For any q € Ri 4 the set P(q) of probability measures for which ¢ is
an equilibrium price is a meagre subset of P (cf. [26, Lemma 4.1]).

e For any u € P4, there is a countable number of equilibrium prices (cf.
[26, Lemma 4.2]).

e These assertions imply the Auxiliary Proposition

In the first step we consider an increasing sequence of closed sets of probabil-
ity measures whose union is P4 and prove that their intersections with P(q)
are closed and have empty interior. Hence P(q) is contained in a count-
able union of meagre sets and is meagre itself. For the second step it is
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sufficient to prove that the set of equilibrium prices is closed and that any
perturbation of the asset prices will bring the economy out of equilibrium.
Closedness follows from the continuity of the agents’ demands as functions
of ¢q. Analysing the demand functions’ sensitivity to price changes we see
that equilibrium-preserving price perturbations would violate Assumption
5. The proposition is proved considering an increasing sequence of sets of
confounding couples whose common equilibrium price is bounded, such that
the union of the sets is the sets of confounding couples in 73%2. The previ-
ous two steps and the continuity of the agent’s demands near an equilibrium
ensure that these sets are meagre. The set of confounding couples is thus
contained in a countable union of meagre sets and meagre itself.

As the proof also entails existence of an equilibrium for a generic conditional
probability, we state, with a slight abuse of terms”:

COROLLARY

Generically, full communications equilibria are revealing, and for a generic
market with asymmetrically informed agents there exist a rational expec-
tations equilibrium that reveals the agents’ payoff relevant information.

4 Related results

Radner’s paper has inspired several other authors treating the existence
and indeterminacy of fully revealing, non-revealing and partially revealing
rational expectations equilibria in both single- and multiperiod markets with
nominal or real assets. For an overview see [21].

Grossman ([31]) refers to the full communications equilibrium based on the
agents’ pooled information as an artificial fully-informed economy equilib-
rium. Unlike Radner, Grossman studies a complete market (with produc-
tion). Assuming that the agents are non-satiable and that the utility func-
tions are twice continuously differentiable and strictly concave, he is able
to prove that an artificial fully-informed economy equilibrium based on the
agents’ pooled information corresponds to a rational expectations equilib-
rium where each agent only uses his own information and the prices. Further
he proves the existence of a rational expectations equilibrium that cannot
be Pareto dominated by a central planner with access to the agents’ pooled
information.

These results suggest that the equilibrium prices reveal all the agents’ private
information. But if information is only available at a cost, it will not pay for
any agent to acquire that information, because it is immediately perceived by
the market. This paradox is treated by Grossman and Stiglitz in [32], where
the authors also suggest that the presence of noise changes the situation -
an idea we will pursue in the next part.

7 j.e. letting the market inherit the term ”generic” from the conditional probabilities
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THE EFFICIENT MARKET HYPOTHESIS

The results in this part support the strongest form of the efficient markef
hypothesis. This hypothesis, saying that stock prices reflect the relevant
information available in the market was formulated by Fama (cf. e.g. [27])
about 40 years ago, and has been heavily discussed since (cf. e.g. [13] for|
an overview). We distinguish between three forms of market efficiency:

e A market is weakly efficient if the asset prices reflect all information
contained in stock data, like historical prices and trading volumes.

e In a semi-strongly efficient market the asset prices reflect all publicly
available information like general information about firms and indus-
tries, in addition to the stock data.

e In a strongly efficient market the asset prices reflect all existing infor-
mation - both public and private.

Originally, Fama used the terms weak, semi-strong and strong to describe
different types of tests for market efficiency. The various versions of the
efficient market hypothesis rules out the possibility of earning an excessive
expected profit by utilising the different types of information: stock data,
publicly available information or private information. We have to stress that
the efficient market hypothesis only rules out excessive expected profits: it
is still possible to outperform the market, even year after year. As the
calculations in [13] suggest, the efficient market hypothesis leaves plenty ofl
room for a Soros, but under the same assumptions the reader can easily
werify that a very rich Metsualem is highly unlikely.
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III RATIONAL EXPECTATIONS AND NOISE

As we have seen, the theory of rational expectations equilibria relies heavily
on the agents’ ability to extract information from asset prices. In this part
we study how noise in the market can impair the information content of the
asset prices.

5 Noise traders

In Kyle’s seminal paper [40] the noise has the form of ”"uninformed noise
traders who trade randomly” (p. 1315, emphasis added). He starts out with
a simple single-period model where the insider knows the future value of a
stock. The market, represented by a market maker, is aware of the presence
of an insider, but cannot discern his trades from those of the noise traders.
Trade takes place in two steps:

e The insider and noise traders place their orders (i.e. bids and offers)
independently.

e The market maker observes the total order and determines the price
of the stock, so that the market clears.

As the market maker is risk-neutral, the market-clearing price is the ex-
pected value of the stock, given the information revealed by the total order.

The insider faces a dilemma: If the stock is incorrectly priced, he wants to
trade large volumes to profit more, on the other hand he knows that the more
he trades, the more the stock price wil move toward its ” correct” value, which
reduces his profit. Being aware of how his actions influence the stock price,
the insider will place his bid or offer to maximise his profits. This strategic
behaviour is what distinguishes Kyle’s model from the models of rational
expectations equilibria. Being aware of the insider’s strategic behaviour, the
market maker is able to interpret the total order as a noisy observation of
the stock’s true value, and revise his expectations. This combination of the
insider trading optimally and the market maker responding rationally forms
an equilibrium. An equilibrium where one agent acts optimally while the
other is merely rational, may seem awkward - for an explanation see [40,
comment following the definition on page 1318]. This idea is then extended
to multiperiod and continuous time markets.
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Apparently, the "noise traders” play the role of ”useful idiots”® for the
informed agent, allowing him to ”hide” his trades and earn a profit. In
some sense they need not be irrational at all: they just assume that the stock
prices are ”correct” in the sense that they reflect the market information, i.e.
they assume the efficient market hypothesis. For a more thorough treatment
of noise traders, see [22] and the references therein. Glosten and Milgrom
[30] introduced a similar class of agents who trade for liquidity reasons, thus
noise traders are also referred to as liquidity traders. An early attempt at
describing these agents and their role is found in [7].

6 The Kyle model

In the single-period Kyle model we consider a market with a zero-interest
bank account and a stock with time 1 payoff V' ~ N(vg,0). At time 0,
the insider, knowing V| places his order X = X (V). Simultaneously and
independently, the noise traders place their orders Z ~ N(0,0,). The market
maker observes the total orders Y = X + Z and sets a price P = P(Y).

DEFINITION
X is optimal for the insider if it maximises

E[(V-P)X|V]=E|(V-PX+2)X|V]=(V-EPX+2)X,

while P is rational if
P =E[V|Y].

A couple (X, P) such that X is optimal given P and P is rational given
X is an equilibrium.

If we restrict ourselves to linear strategies, i.e.
X =B(V — ), P =9+ )Y,

where 8 and A are constants, the unique equilibrium is

o, o

2 (V — ), w0+ oY) (6.1)
The insider’s expected profit in this case is
1 lo, 9
E[(V —v)X] = 390z E[(V —wv)X|V] = 5?(‘/ —vp)°. (6.2)

To measure the extent to which the insider shares his knowledge with the
market, we compare the pre-trade variance o to the post-trade variance

1
var[V|P] = 502.

8 to our knowledge, neither Kyle nor Lenin used this term
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Hence we may say that the insider ”shares one half of his information”. In
[51] the insider is allowed to condition his order on Z, in this case
X=P(V-w) -tz P=w+ly
= — —vn) — — = i
20 0/ 9 0 o
while the expected profit is as in (6.2). As var[V|P] is still 02, the ”infor-
mativeness of prices” is as in Kyle’s model

Kyle takes his ideas further to a multiperiod market and obtains a difference
equations scheme characterising the equilibrium. By letting the intertrade
periods go to zero, he obtains a continuous trade equilibrium where

(o vV — .Pt V- Pt

dx, = = dt dP, =
I T L

dt + 2 dz,. (6.3)
Oz

The asset price process thus forms a Brownian bridge from vy to V with
respect to the insider’s information and a Brownian motion with respect to
the market information (cf. [39, Problem 5.6.11]). The total order process
appears like a Brownian motion with respect to the market information.

Kyle’s market model can be described as semi-strongly efficient because the
equilibrium prices reflect both the market orders (the "stock data”) and
the probabilistic properties of the asset’s payoff (public information), but it
is clearly not strongly efficient, since the insider’s information is not fully
revealed.

7 Continuous-time trading

In [5], Back elaborates Kyle’s continuous time model in a more mathemat-
ically stringent manner. In Back’s model, the final asset value V is not
necessarily normally distributed, but has the distribution function £ and
support Iy,. Before the trade starts, the insider gets to know V. The price
of the asset at time ¢, P; is based on the total orders received up to time ¢t
according to a pricing rule H,

P = H(1.Y,).

It is assumed that H € C2((0,1),R) is continuous in ¢ on [0, 1], and strictly
monotone in y on [0, 1], and

E[H?*(1,Z1)] < oo, E[/l H2(t, Zy)dt| < oo.

Denote by F() (the completion of) the filtrations generated by the processes
Y, P, Z. Due to the monotonicity of H, observing P is equivalent to observing
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Y, and hence F¥ = F”. We denote the informed agent’s information by F!,
for him observing Y is equivalent to observing Z, hence

Fl=FP\ o{VY=FY \Vo{V} =FZ\ o{V}, 0<t<Il.
The market maker’s information is
FM = FY.

An admissible trading strategy for the insider is an F/-semimartingale, such
that Xg = 0 and for any pricing rule H,

T
E[/ H2(t,Xt+Zt)dt] < .
0

DEFINITION
Given a trading strategy X, a pricing rule H is rational if

H(t,X;+ Z,) =E[V|IFM]  o0<t<1.

A trading strategy is optimal if it maximises the expected post announce-
ment final wealth of the insider,

E[/DJ](v—Pt_)dXt— P, X11| 7.

where the subscript on f is used to explicitly include the endpoints in
the integration and the bracket process is as defined in e.g. [48]. An
equilibrium is a couple (H, X) such that X is optimal given H and H
is rational given X.

Denoting the insider’s expected profit on the investments made in (¢, 7]
provided he follows an optimal trading strategy by J(¢,Y;, V) and his time
t rate of investment by « (i.e. dX; = adt) and using It calculus, we obtain
the Hamilton-Jacobi-Bellman equation
1
mea]]%{ {Jt(ta Y, U) + O‘Jy(ta Y, U) + iagjyy(tv Y, U) + Oé(’U - H(ta y))} = 0
(e
on (0,1) x R x Iy (7.1a)

Observing that the insider can make a profit on investments made at time
1 if and only if H(1,Y}) # V, the boundary condition is

J(,y,v) > J(1,H (1,0),v) =0  Vvely, Vy#H '(1,v), (7.1b)

(inverse with respect to the second variable). A solution to (7.1) is suffi-
ciently smooth if J € CY*2 on (0,T) x R x Iy and J, J, are continuous from
the left at the endpoint 1.
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CHARACTERISATION OF AN EQUILIBRIUM IN THE CONTINUOUS TIME
KYLE/BACK MODEL
If a sufficiently smooth solution to (7.1) exists, then

e the insider’s expected profit cannot exceed J(V,0,0),

e this expected profit is attained if and only if the trading strategy has
continuous paths, zero martingale part and ensures that H(1,Y7) =
V a.s. and

e any equilibrium trading strategy must be inconspicuous, i.e. such
that Y is a Brownian motion with instantaneous variance o2 with
respect to its own filtration.

Let h = F~! o N. where N, is the cummulative N(0,0,)-distribution.
Then (H, X) given by

Hit,y) = Elh(y + 71 — 7)) (7.22)
t =101y _ t =101 _
Xe=(1- t)/o h(lai)s)zzsds :/0 th_)SYSdS (7.2b)

is an equilibrium. The pricing rule (7.2a) is the only one for which there
exists a sufficiently smooth solution to (7.1).

Suppose (H, X) is an equilibrium and H is such that there exists a suffi-
ciently smooth solution to (7.1), then

dP; = Hy(t,Y;)dY;. (7.3)
Y is a FM_Brownian motion with instantaneous variance o, and
{H(t, Z); 0<t<1}

is an Fl-martingale.  Further, if F has a density function and
E[H,(1,2,)] < oo, then

{Hy(t,Z;); 0 <t <1}
is an F/-martingale and
{H,(t,Yy); 0<t<1}

is an FM_-martingale.
[5, LEMMA 2 AND 5, THEOREM 1, 2 AND 3]

Back considers the two special cases of normally and log-normally dis-

21



tributed random variables. Not surprisingly, if V ~ N(vg,02), H(t,y) =
vo + 2y, and (7.2) and (7.3) correspond to (6.3). The total amount of
insider trade in this case is

O (Y ) — Z,
Xt:(lt)/ Vv =2,
0

(1-s)?
- %(V—vo)t—(l—t) /Ot ({(f_df;zds
:%(V—vo)t—(l—t) /Ot[uiydzu (7:4)
:(;Z(V—vo)t—anL(l—t)/ot ff“u
— ZE(V-w) =21, t—l,

cf. [45, Exercise 5.11]. If, on the other hand InV ~ N(a, 0?),
H(t,y) = e+ Evti-00°

and
o

X Vo1
7 ln—+faaz)dt, ap, = 2 pay;.

X, = (0(1 —t) P2

Oz
. . 1,2
The insider’s expected profits in the two cases are oo, and o,0e*T27 .

8 Further developments

8.1 Insiders observing the value process

8.1.1 Multiperiod case

Suppose that the values Vp, . . ., Viy are anounced publicly at times {¢g,...,tx}
with 0 =typ < t; < ... <ty =1 and that the insider gets to know V,, at time
tn_1. For simplicity we only consider the case where V,, ~ N(V,,_1,02At,)
where At,, :=t, — t,—1. In this case, for any ¢ € (¢,,—1, t,],

H(t,y) = E[h(y + Z, — Z4)],

t
Xy = X,y + (th — t)/ ﬁdé’-
n

tn—1

Proceeding as in (7.4) we see that the amount of insider trading in each
period is

g
AXH = th - th—l = ;Z(Vn - Vn_l) - (Ztn - Ztn—l)'
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The insider’s expected total profit is

Z oo, At, = 00,.

As this profit is independent of the number and sizes of time intervals, it is
tempting to conclude that it also holds when the At,’s approach zero. But
as the ”limiting” trading strategy

dX, = ZZdv, - dz, (8.1)
g

is a martingale, this is not the case. In fact the expected profit following
the strategy (8.1) is 0.

8.1.2 Observing a Gaussian martingale

In his PhD thesis [53], Wu studied the Kyle/Back model in the case where
the insider observes the value process, or equivalently observes some signal

process
S = {St; OStSl},

with V' = h(S1). S is assumed to be a continuous, square-integrable centered
Gaussian martingale independent of the noise trade, which is a standard
Brownian motion (i.e. o, = 1). It is further assumed that

var(Sy) =1, (8.2a)
1 1
var(St) —t = Lloc([ov 1)) (82b)
and
t U
———d <t<1. 2
/0 ar(Sy) — )2 u < 00, 0<t< (8.2¢)
PROPOSITION

Under the above assumptions, (H, X) with H given by (7.2a) and

t

s_Y:s

Xt:/ Y o 0<i<t
o var(Ss) —s

is an equilibrium.
[53, PROPOSTITION 4.2]

Note that a standard Brownian motion does not satisfy (8.2). It is proved
([53, Proposition 2.3] and [29, Proposition 5.1]) that in this case an incon-
spicuous insider trading strategy with zero martingale part cannot have the
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property that H(1,Y;) =V a.s. Relaxing the latter condition does not help
(cf. [53, Example 4.3]).

Another approach could be to relax the condition that an equilibrium trading
strategy has to be such that the total demand is a Brownian motion with
instantaneous variance o, with respect to the market maker’s information.
We are then, however, not in a situation where there is a solution to (7.1).
To justify that there might be equilibria where this is not the case, note
that in the derivation of (7.1) it is assumed that the insider’s strategy at
time ¢ is of the form dX; = adt. Attempts at establishing and solving the
Hamilton-Jacobi-Bellman equation under more general conditions have thus
far not been succesful. From an economical point of view, the requirement
that the insider’s strategy is inconspicuous seem unnecessary strict: Even if
the total order process differs from the ”pure” noise trade, it may still be
impossible to detect the insider’s order process. In this line of reasoning it is
interesting to note that in the single period equilibrium (6.1), Y ~ N(0, 20;)
which means that Y and Z do not agree in law.

8.1.3 Time varying noise trade

In [6] Back and Pedersen study the above problem in a market with time-
varying noise trade,

dZ, = B,dW?,
where W) is a Brownian motion and 3 a deterministic, strictly positive
and continuous function. The signal process is given by Sy ~ N (0, 0(2)) and

ds; = o, dW,?,

where W) is a Brownian motion independent of W) and ¢ a deterministic
and continuous function. It is assumed that there exist some € > 0 such that
for any ¢t € (0,1),

ftl oldu

1
ft ﬂﬁdu
o3 + fol oZdu

fol ﬁﬁdu

For notational convenience we assume that

1 1
/ FPdu = ol + / o2du.
0 0

> (1+¢) (8.3)
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THEOREM
Define

1
5 / (82 — 02)du,
t

g5
=B~

dXt = tht

H(t,y) := /00 h(z)n(t,y, x)dx

— 00

Aty) = efyH(a )

where 7(t,y,-) is the density function corresponding to N(y, ftl B2du).
Then (H, X) is an equilibrium. The equilibrium price P evolves as

dP; = \(t,Y;)dYy.
If h is continuously differentiable and satisfies E[h/(S1)] < oo then
{At.Y;); 0<t <1}

is a martingale with respect to the market makers’ information.
CF. [6, THEOREM]

8.2 Risk averse insiders

In Cho’s paper ([12]) the insider is allowed to be risk-averse with a utility
function of the form
u(z) = vyel® (8.4)

with v < 0. The setting is quite similar to that in [5], but the prices are
allowed to depend on the whole trading history in the sense that P, =

H(t, &), where
t
&= [ A,
0

and X is a smooth, deterministic and strictly positive function of time. The
regularity conditions on H are as in Section 7. The insider’s trading strat-
egy is assumed to be of the form dX; = aydt where a is F/-adapted. An
equilibrium in this economy is a triplet ((H*,\*),a*) such that the price
given by (H*, \*) is rational and o maximises

E[u(/ol (V = B (&) eudt) |,

25



where

t
s, / N (dZs + avsds).
0

If the insider is risk neutral A\* is proved to be constant, so that the results
coincide with those of [5]. If the insider is risk-averse with utility function
of the form (8.4) an equilibrium can only exist if V' is normally distributed
(cf. [12, Proposition 3]).

PROPOSITION
Suppose V ~ N (vg, 02). Define

H*(tvg) = Yo +£7

fm 34 (2% 0%
lop 2 2
. Al
P e (1 —t) + 1
af == ;*/(1 _Pi)
1

Then ((H*, \*),a™) is an equilibrium.
[12, PROPOSITION 4]

The reader can easily verify that this equilibrium converges to the risk neu-
tral equilibrium when v — 0.

8.3 Insiders knowing the default time

In [11] Campi and Ceti study a defaultable zero-coupon bond with maturity
one and face value one. The insider knows in advance the default time 7
of the bond, the other agents in the market only observe the default when
it happens. The insider’s optimal trading strategy is such that 1 4 the
total order process is a Bessel bridge from 1 to 0 whose length equals the
default time of the bond. In this setting, the presence of an insider makes
the default time predictable with respect to the market information.

8.4 A forward calculus approach

In the papers [5], [12] and [11] special measures are taken to ensure that
the price process is a semimartingale: The insider’s trading strategy is a
semimartingale with respect to both his own and the market’s information,
hence the total order process is also a semimartingale. The regularity of the
pricing rule ensures that the price is also a semimartingale. As discussed
in Appendix B, the semimartingale property is crucial for using stochastic
calculus to evaluate the insider’s profit. In [1], Aase, Bjuland and ksendal
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are able to do without the semimartingale assumption, by using techniques
of forward integration. Without any other a priori assumptions on the price
process than rationality and time continuity, they derive the results of [5] in
the case where V' is normally distributed. Their results are actually slightly
more general, because they also allow time varying noise trade.

9 Dividends and underlying information

9.1 The market

Wang ([52]) studies an economy consisting of a riskless bank account with
constant rate r > 0 and a dividend-paying stock. Dividends are paid at the
rate D, given by the process

dDy = (11, — kDy)dt + opdB>,

where k > 0 and op are constants and B®) a standard Brownian motion.
The state variable II follows a mean-reverting Ornstein-Uhlenbeck process

dHt = an(ﬁ — Ht)dt + UndBt(H)7

where arp > 0, IT and oy are constants and B is a standard Brownian
motion, independent of B(P).

The theoretical possibility of negative dividends is a drawback of this model:
we may either think of the stock as an ”unlimited libaility” asset as in [52] or
accept that ”"the model breaks down as prices and dividends approach zero”
as in the related paper [10]. Another approach is to replace the infinite time
horizon in the current model by a stochastic default time,

7 := inf{t > 0; D; <O0}.

Hopefully, a planned follow-up paper of [11] treating the case where infor-
mation regarding the default time is revealed gradually to the insider, will
provide valuable insights for this approach.

A fraction «y of the agents in the market are uninformed agents who only ob-
serve D, whereas the remaining informed agents also observe II. In addition
all the agents observe the asset price process S, i.e. we have

]:t(i) = U{DS, IIs, Ss; 0< s < t},
F = o{Dy, Si; 0< s < t}.

All the agents have the same utility function

u(z,t) = —e P77
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where p > 0 is a constant.

The total amount of risky equity (i.e. the number of stocks on the market)
is 1 + © where O is given by the Ornstein-Uhlenbeck process

d0; = —aeOdt + oodB®

where ag > 0 and og are constants and B (©) is a standard Brownian motion,
independent of B®) and B, To see the link to the Kyle /Back model, one
can think of —© as the noise trade.

Given the stock price S the instantaneous excess return on a stock is
dgt = (Dt — ’I"St)dt + dSt

If an agent’s portfolio of stocks is X and his consumption rate is ¢, his total
wealth W satisfies
th = (TWt — Ct)dt + Xtdgt.

The agents are assumed to maximise their expected infinite lifetime utility

E[/too —e*PS*Csds\ft"q. (9.1)

The price S is an equilibrium price if the agents’ optimal portfolios sum up
to 1+ 0.

9.2 The asset price

THEOREM
In the case where all the agents are informed (i.e. v = 0) the price, S,
is a function of the state variables D,II, ©,

S*=® +p;+p50,

where

o
o, = E[/ e_TSDsds‘Dt, Ht:| = ¢ +ppD: + prlly
t

anpll 1 DI
(b = 71_[7 p*D =, pikl = D 9
r r+k r 4+ amn
po = —((ppop)* + (phon)?),  Po < 0.

[52, THEOREM 3.1]

Under asymmetric information the stock price will clearly depend on the
state variables D,1I,© and the uninformed traders’ estimates of the latter,
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denoted by * = E [-|.7-"t(u)]. Because the stock price is assumed to reveal some
linear combination of II and © to the uninformed agents, we only need to
take one of these estimates, say II into account (cf. [52, Lemma 4.1]). Denot-
ing the estimation error A := Il — II, the proposed form of the equilibrium
price is
S=2+po+peO+paA
= ¢+po+ppD + pull + pe® + pall,

where pr = pj; — pa, and po, pe, pa are constants to be determined. De-
noting A := prll 4+ pe® and noting that the informed agents can deduce ©
from S, we have

fti) = U{Ds, s, B 0<s < t}a

]:t(u) = O‘{Ds, Ag; 0<s5< t}.
The ”rational expectations” problem of the uninformed agents amounts to

estimating IT and © from observations of D and A. This is a standard
filtering problem for the process

dil;] _ [anll —an 0 ] [IL 0 on O
e K A 1 K i

where B := [B(P) BID BO)]T with the observation process

dD; 0 1 0 Ht} [—k 0} [Dt}
= _ | dt + dt + dt+
[dl\t] [pnanﬂ} [—pnan —peae] [Gt 0 0] [A¢

|:O’D 0 0

} iB,
0 pnon pece

From standard filtering theory (cf. [37] and [52, Appendix A]%)

dri; ar(IT — T1;)
A= Y at
[dGJ [ —aeOy *
[hHD hm] [ dD; — (ﬂﬂ— kDy)dt ] ©2)
hep hea] |dAy — pran(Il — IL;)dt + peae©dt] ’ ’
where
{hHD hHA:| ‘: % %(U% — z(an — ae))
hep hen| " |~z 50 Uilpe (phi(an — ae)z + (peoe)?)
with

ox == (peoe)® + (pnon)?

9 beware of a few misprints
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and

2
9D ( 2 2
T = —an(peoe)” —ae(paomn) +
7+ (an — ooy | npere) —colpnon)

(peUHUG))Q)'

UA\/(aHp906)2 + (aepnomn)? + oD

The estimation error A is an Ornstein-Uhlenbeck process
dAt = —aAAtdt + bAdBt,

where apn = arr + hrip + (ae — amr) hiia and ba is a 3-dimensional row vector
that can be calculated based on (9.2) and the dynamics of D, II, © and A.
For the excess return on a stock we have

dS; = (eg + €O + eaA)dt + bsdBy,

where eg 1= —rpg, eo = —(r + ag)pe, ea = —(r + an)pa and bg is
a 3-dimensional row vector that can be calculated based on (9.2) and the
dynamics of D, II, © and A.

9.3 The agents’ optimisation problems

Both the informed and the uninformed agents now face the optimisation
problem of choosing the amount of stocks X and consumption rate ¢ that
maximise (9.1). Because the agents’ expectations of the excess return differ:

E[dS|F] = (e + e0® + eaA)dt
while
E[dS|F ™) = (eg + e0O)dt,

the agents will have different perceptions of the wealth dynamics. Hence,
the informed and uninformed agents’ optimisation problems must be solved
separately. Denoting the optimal value of (9.1) by J we have

JO = JOW,0,A,t) and J® = JO (W, 8, 1).

Solving the optimisation problems for the informed and uninformed agents
(cf. [52, Appendix B]) and denoting ¥ =[1 © A]" and ¥ = [1 O]T we
get

A?:MV—%MV%UMJ_mn

X0 = fOg0
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where v and v(®) are 3 x 3- and 2 x 2-dimensional symmetric matrices and
f@ and f® are 3- and 2-dimensional row vectors (cf. [52, Appendix B]).

The market-clearing condition
1-7)XD 47x® =110
i.e.

Q=N+ 170+ [78) (A + £570) = 1+ 0

is then used to find the values of the coefficients pg, pe, pa. No analytical
solutions are given, but in general we have that

Po <0, pe <0, 0<pa<pr.

9.4 The effect of asymmetric information

As Wang points out, the factor v measures both the degree of uncertainty
in the market and the degree of asymmetric information. When a market
parameter depends on v it can be related to the degree of uncertainty in
the market, the degree of asymmetry or both. To "isolate” the effect of
asymmetric information he studies what happens near the extrema v = 0
(all the agents are informed) and v = 1 (all the agents are uninformed). The
price in the case v =1 is

S* = (¢p+py") +ppD + pill + pg

where py* and pg are determined by the market-clearing condition in the
case v = 1.

According to ”conventional wisdom” rational and better-informed agents
should stabilise prices. Denoting the instantaneous variance of the stock
price by og (i.e. og :=||bg]|), it is proved that

Og*x > OG*.

However, og is not a monotonically increasing function of v. To see this,
note that with v = 1, the uninformed agents are able to observe ©. Intro-
ducing a small fraction of informed investors in this market, will provide the
uninformed agents with more information about II and hence reduce the
uncertainty about future cash flows and accordingly the instantaneous price
variability (measured by og). On the other hand, an increase in the asset
price caused by a decrease in © will (rationally) be interpreted as partially
caused by an increase in II, which will cause a further increase in the asset
price, meaning an increased instantaneous price variability. The net effect
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of introducing informed agents in the market is the off-set of these forces. It
is proved that for a high level of noise trade (i.e. high og) the latter force
can dominate, as illustrated in [52, Figure 2].

The unconditional expected excess return on the stock is eg = —rpg. From
the theorem on page 28 we have that this entity is independent of og when
~ = 0, this is also proved to be the case when v = 1. Hence under symmet-
ric information, the excess return on the stock demanded by the investors is
independent of the level of noise trade. Under asymmetric information, an
increased level of noise trade increases the uninformed agents’ uncertainty
about future cash flows and accordingly increases the demanded excess re-
turn on the stock. It is proved that pj* < pj, which means that eg* > eg.

Wang also shows how asymmetric information can lead to negative serial
correlation of asset returns. Further, it is proved that for certain parameters,
the uninformed agents will (rationally) behave like trend chasers. Both these
results agree with empirical studies.
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IV NO ARBITRAGE UNDER ASYMMETRIC INFORMATION

As an alternative to the theory of rational expectations, Cornet and de
Boisdeffre ([14]) assume that the agents extract information from asset prices
only by analysing arbitrage opportunities. Contrary to rational expectations
models the agents need no a priori knowledge of the other agents’ preferences
or behaviour.

The scope of [14] is firstly to extend the concept of arbitrage to the case
of asymmetric information and secondly to study how no-arbitrage prices
reveal information. In the follow-up paper [15], the authors study how agents
can extract information by successively ruling out ”arbitrage states” i.e.
states in which an arbitrage opportunity would give a strictly positive payoff.
The existence of a no-arbitrage equilibrium in a market with asymmetric
information is dealt with in [18]. Extensions to the multiperiod case are
studied in [3]. All these papers are limited to a finite dimensional state
space, and the agents’ information are represented by subsets of the state
space (sub-trees in the multiperiod case).

This part provides a summary of the results in [25] where the ideas from [14]
are used in a more mathematically profound analysis of a financial market.
For proofs of the results, we refer to [25].

10 Information and arbitrage

Consider the complete probability space (2, F, P) where F. The J assets
in the economy are traded at time 0 and gives the F-measurable R”-valued
payoff V' at some later time T > 0. We assume that F is separable and
generated by V. A portfolio is a (possibly random) J-dimensional vector
whose components denote the holdings of the assets. The payoff of the
portfolio z is the random variable VT z. A price function is an F-measurable
R’-valued random variable.

ASSUMPTION
V is bounded and there exist some z* € R’ such that V'z* > 0 a.s. and

% is integrable.

The portfolio z* has the interpretation of a riskless portfolio, and will be
used as a numéraire in our version of the Fundamental Theorem of Asset
Pricing (page 35).
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An agent’s information will be represented by a g-algebra G C F. We assume
all o-algebras to be completed. For any o-algebra G C F we let P(:|G)
denote a regular version of the conditional probability (cf. Appendix A).

An information structure is a collection (H;) := (Hi, ..., Hs) of o-algebras
representing the agents’ information. The agents’ pooled information is given
by the join, H, defined as the smallest o-algebra containing all the H,’s, i.e.

ﬂ = \/Hla

while their common information is given by the meet, H, defined as the
largest o-algebra contained in all the H;’s, i.e.

H = \H;.

The information structure (H;) is symmetric if all the H;’s coincide. The
information structure (G;) is a refinement of (H;) if H; C G; for all 4, we also
say that (H;) is coarser than (G;). Clearly for any refinement (G;), H C G.
The refinement is self-attainable if H = G.

10.1 Arbitrage

DEFINITION
Given the price function ¢, a vector z € R’ is a ¢-arbitrage for the
o-algebra G C F at w if

p(w) 2 <0, V'2>0P(|G)(w)-as. and P(V'z>0|G)(w) > 0.
(10.1)
The price function ¢ is a no-arbitrage price function for G and G is
¢-arbitrage-free if at almost all w there are no ¢-arbitrages for G. The
set of no-arbitrage price functions for G is denoted ®(G).

Note that we do not assume that the price function is G-measurable. This
may seem odd when thinking of G as the agent’s information: clearly the
agent will observe the asset prices. But as the asset prices can depend on
information that is not available to the agent we cannot assume that the
asset price as a mapping ¢ : Q@ — R’ is G-measurable. If, however, the price
function is G-measurable, the above property of no-arbitrage coincides with
the standard definition, namely that there is no G-measurable RY-valued
random variable £ such that

p'e<0, V¢ >0P-as. and P(V'z>0)>0.
For a proof, see [16, Lemma 2.3].

The following theorem is a version of the Fundamental Theorem of Asset
Pricing (cf. e.g. [28, Theorem 1.6]):
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THE FUNDAMENTAL THEOREM OF ASSET PRICING FOR A GENERAL PRICE
FUNCTION
The price function ¢ is a no-arbitrage price function for G if and only if
for almost all w there exist some probability measure P(®) ~ P on (Q, F)
such that

m _ g© [v‘T/z 6] (). (10.2)

[25, THEOREM 2.1]

An immediate consequence is that for every o-algebra G, there exist some
G-measurable no-arbitrage price function, with E[V|G] as a trivial example.
Absence of arbitrage can also be defined for information structures:

DEFINITION

The price function ¢ is a common no-arbitrage price function for
(H;) and (H;) is ¢-arbitrage-free if all the H;’s are ¢-arbitrage-free.
The set of common no-arbitrage price functions for (H;) is denoted

O((H)) = [ ®(Ha). (10.3)

(H;) is arbitrage-free if there exist some common no-arbitrage price
function, i.e. ®.((H;)) # 0.

Clearly the Fundamental Theorem of Asset Pricing ensures that the sets on
the right hand side in (10.3) are non-empty, but there intersection can be
empty. Hence a symmetric information structure is arbitrage-free, whereas
an asymmetric information structure may fail to be so.

AN 7ASYMMETRIC INFORMATION VERSION” OF THE FUNDAMENTAL THEOREM
OF ASSET PRICING

The price function ¢ is a common no-arbitrage price function for (H;)
if and only if for almost all w, there exist some collection of measures
PO . PU) ~ P such that

IRCC) T [V‘T/z*mi} @), i=1,...,I.

[25, COROLLARY 2.1.3]

It would be natural to assume that the asset prices are based on the agents’
pooled information only, i.e. ¢ is H-measurable. As the following result
shows, this does not affect the existence of common no-arbitrage price func-
tions.
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PROPOSITION

If there exists some common no-arbitrage price function for (H;), there
exists some H-measurable common no-arbitrage price function for (H;).
[25, PROPOSITION 2.1]

EXAMPLE
Suppose that I = 2, J = 3, F is generated by the partition Fi, ..., Fy of
Q,

(r T
10 (ﬂ . we R,
} w € Fy,
V(w) :=
o 0 1} w € P,
o 1 0} . weFy,

and the information structure is H; := o{F4} and Hs := o{F3}. Now, if
w € FY, G(w,H1) = FY, which means that in the first agent’s view

e the payoff of the first asset can be -1,0 or 1, all with positive prob-
ability,

e the second asset’s payoff is almost surely non-negative and almost
surely higher than or equal to the payoff of the first asset, and
moreover there is a positive probability that the payoff is strictly
positive and strictly higher than the payoff of the first asset, and

e the third asset’s payoff is almost surely non-negative and strictly
positive with positive probability.

The reader can now easily verify that any no-arbitrage price for H; must
be such that the price of the second asset is strictly positive and strictly
higher than the price of the first asset, and that the price of the third
asset is strictly positive on F 40 . Clearly, if w € Fy, the first agent knows
that the payoff of the second asset is 1 and of the other assets 0, which
means that any no-arbitrage price for H; must be such that the price of
the second asset is strictly positive and the prices of the other assets are
0 on Fy. Hence

(I)(Hl):{[pl p2 p3}TxF40+[0 ¢ 0] xm;

p1 < p2, p2 >0, p3 >0, q2>0}.

The same reasoning for the second agent yields

(I)(HQ):{[pl P2 O]TXF30+[0 0 a3] Xryi p1 <P, p2 >0, Q3>0}-

Hence

D.((Hi, H2)) = 0.
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We now equip every agent ¢ with a strictly increasing utility function U; :
R — R and consider the economy

E:={V,(Hs), (Ui)}.

This is a simplification of the economy considered in [14, Section 2.4] which
includes consumption goods, spot prices and endowments.

DEFINITION

A collection {(2()), ¢}, where () : Q — R’ is F-measurable for all i
and ¢ is a price function, constitutes a no-arbitrage equilibrium for
the economy €& if:

e For all i and almost all w, 2()(w) solves

maxE[Ui(VTz)\Hi] (w) subject to ¢(w) 'z < 0. (10.4)

z€RJ

o 5 200 =0,

Observing that if ¢ & ®.((H;)), then for at least one F' € F and one agent
i, there exists some arbitrage opportunity such that (10.4) has no solution,
it is easy to prove:

PROPOSITION

If there is a solution to (10.4) for every agent, then ¢ € ®.((H;)).

An alternative approach to arbitrage, not dealing explicitly with asset prices,
is the following:

DEFINITION
An allocation (2()) € (R”)! is a future arbitrage opportunity for (G;)
at w if

> 20 =0, (10.5a)
V29D >0 P(|H;)(w)-as. (10.5b)

foralli=1,...,1 and

P(VT29) > 0[H;)(w) >0 (10.5¢)

for some j € {1,...,I}.

A practical interpretation of a future arbitrage is a redistribution of assets
(10.5a) such that each agent would almost surely not loose on his extra
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assets (10.5b) and at least one agent perceives a potential profit on his extra
assets (10.5¢). In this respect a future arbitrage can be regarded as a form of
Pareto improvement (cf. page 4). Recalling that the First Welfare Theorem
rules out the possibility of Pareto improvements in equilibrium the following
result is not surprising.

PRrROPOSITION

The information structure (H;) is arbitrage-free if and only if at almost
all w there are no future arbitrage opportunities for (H;).

[25, PROPOSITION 2.2]

EXAMPLE (CONTINUED FROM PACE 36)

The allocation
PR [O 0 1] = 22

is a future arbitrage opportunity on F} U F5. While
M i=1-1 1 0] = -2
is a future arbitrage opportunity on Fj3.

10.2 Arbitrage-free refinements

As symmetric information structures are arbitrage-free, the agents can find
a no-arbitrage price by sharing their information. We say that given the
information structure (H;), the pooled refinement where G; = H for all
i is an arbitrage-free and self-attainable refinement of (H;). But as the
following example shows, the agents do not necessarily have to share all
their information to to reach an arbitrage-free refinement.

EXAMPLE (CONTINUED FROM PACE 36)
The information structure (Gy,G2) given by

Gi1 :=H1\ He = o{F3, Fu},
Go :=Ha = o{F3},

is clearly a self-attainable refinement of (H;, Ha). Proceeding as before,
we find that

o(G1) = { [p1 P2 O]TXF1UF2 +[0 0 Q3]TXF3 +[0 7 O]TXF4;
p1 <p2, p2 >0, g3 >0, 7"2>0}.

As
®(G2) = ©(Hz2) D ©(G1),

we have that

®.((G1,G2)) = ©(G1).
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PROPOSITION

For any information structure there exists a unique coarsest refinement
that is arbitrage-free. Moreover, this refinement is self-attainable. [25,
PROPOSITION 3.1]

If the agents have to share all their information to reach an arbitrage-free
information structure, i.e. the pooled refinement is the coarsest arbitrage-
free refinement, we say that the information structure is fully revealing. As
we shall see, the revealing properties of an information structure is linked
to market completeness.

DEFINITION

A contingent F-claim is a nonnegative and finite-valued random vari-
able X on (2,F,P). Such a claim is attainable for the c-algebra
G C F if there exists some G-measurable portfolio z such that

Vie=X a.s. (10.6)

We say that the market {(Q2, F, P), V} is complete for G if every con-
tingent F-claim is attainable for G.

EXAMPLE
Suppose that I =2, J =2, F is generated by the partition {Fy, Fs, F3}
of Q) and

-
10|, wen,
T
V(w) = @ 4, we Ry, (10.7)
[1 1]T, w € F3.
Suppose G := o{F}, then as

1 1
VT |:O:| XFy = XFi» VT |: 1 :| XFlc = XFy and ‘/T |:0:| XFlc = XFy

the market is complete for G. Proceeding similarly, the reader can easily
verify that this market is complete for any o-algebra generated by any
one of the sets.

PrRoOPOSITION
The following are equivalent

e The market {(2, F, P), V'} is complete for G.

e Any arbitrage-free information structure (G;) with G; 2 G for all 4
is symmetric.

39



Consequently, an information structure (H;) is fully revealing if the mar-
ket is complete for the agents’ common information.
[25, PROPOSITION 3.2, COROLLARY 3.2.1]

The following example shows that an information structure need not be fully
revealing even if the market is complete for every agent.

EXAMPLE
Suppose I =2, J =2, F is generated by the partition {Fy, ..., Fy} of Q,

(T 1T
1 0| , weF,
= T
2 0| , welkly,
V(w):z - 1T
0 1| , we k3,
- :T
1 1| , weFy,

and that the information structure is given by H; := o{F; U F3} and
Ho := o{Fy U F3}. Proceeding as in the example on page 39, the reader
can easily verify that the market is complete for each agent’s information.
But the common information is the trivial o-algebra for which the market
is not complete. Any price vector ¢ with ¢1 > ¢2 > 0 a.s. belongs to
®.(H1,Hs). Hence the information structure is not fully revealing.

10.3 Information revealed by prices

As previously indicated one way the agents can share their information is
via prices:

PROPOSITION

Suppose that ¢ € ®(F’) for some F' C F, then for any o-algebra H C F’
there is a wunique coarsest o-algebra G O H such that ¢ € ®(G). This
o-algebra is referred to as the o-algebra revealed by ¢ and denoted by
S(p, H).

[25, PROPOSITION 4.1]

The observation that a price function that is not a common no-arbitrage
price function for an information structure might still be a common no-
arbitrage price function for some refinement of the information structure
motivates the following:
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DEFINITION

The H-measurable function ¢ : @ — R is a no-arbitrage price func-
tion for (H;), denoted ¢ € ®y((H;)) if ¢ is a common no-arbitrage price
function for some self-attainable refinement of (H;).

Clearly, ®o((H;)) # 0. We also have that
¢ € P(H) = ¢ € Po((Hy))-

The reverse implication holds if the market is complete for the common
information. But it does not hold in general. As pointed out in the previous
example, any price ¢ with ¢1 > ¢ > 0 a.s. is a common no-arbitrage
price for (Hi,Hs) but is not necessarily a no-arbitrage price for the pooled
information H = F.

PropoOSITION
Given some information structure (H;) and price function ¢ the following
are equivalent

* ¢ € Po((Hi))
e S(¢,H;) exists and S(p, H;) CH foralli=1,...,1.

e (S(¢,H;)) is the coarsest self-attainable refinement of (H;) that is
¢-arbitrage-free.

[25, PROPOSITION 4.2]

These observations motivate the following:

DEFINITION

The refinement (S(¢,H;)) is referred to as the refinement revealed
by ¢. A self-attainable arbitrage-free refinement (G;) of (H;) is price-
revealable if there is some price function ¢ € ®y((H;)) such that for
every i, G; = S(¢p, H;).

As the following example shows, not all self-attainable arbitrage-free refine-
ments are price-revealable, but the coarsest arbitrage-free refinement is (cf.
[25, Proposition 4.3]).

EXAMPLE
Suppose I =2, J =2 and F and V are as in the example on page 40,
and consider the information structure

(O’{Fl}, O'{Fl U FQ)})
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The coarsest arbitrage free refinement of this information structure is
(o{F1, F2},0{F1 U F)}).

The pooled refinement is not price revealable, because there is no price
that will enable agent 2 to distinguish between F; and F5.

In [25, Section 5|we study how the refinements are revealed to the agents
as they successively ”arbitrage sets”, i.e. elements in F where a perceived
arbitrage opportunity would give a strictly positive payoff. Similarly the
coarsest arbitrage-free refinement (cf. Proposition on page 39) can be ob-
tained as the agents analyse sets where a future arbitrage opportunity would
give a strictly positive payoff.
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V ENLARGEMENT OF FILTRATIONS

As indicated in the preface, the standard approach of mathematical finance
to problems of asymmetric information is very different from the approaches
discussed in the previous parts. Mathematicians have normally taken the
price process as given and modelled the agents as price takers following
some optimal strategy given their information and preferences. One of the
earliest attempts at such models is found in [46]. In a standard problem of
insider trading, the public information is given by some filtration F satisfying
the usual hypotheses while the insider is assumed to have access to some
larger filtration G. The price process of the assets is given as a vector-
valued semimartingale with respect to F. As pointed out in Appendix B,
the semimartingale property of the asset prices is crucial for the stochastic
integral (and hence the value process of a trading strategy) to be well-defined
in the framework of It6 calculus. A process that is a semimartingale with
respect to a certain filtration is not necessarily a semimartingale with respect
to a larger filtration. The main developments in the field result from using
one of the following approaches to the semimartingale issue:

e Assuming that the enlarged filtrations satisfy certain conditions (e.g.
Jacod’s Hypothesis H’ [36]) which ensure that the semimartingale
property of the price processes is preserved. Without possibility or
aim to be complete we refer to the seminal paper by [46] and the more
recent [35]. This is also the approach followed in Hillairet’s work ([34])
that will be treated in Section 11.

e Applying another framework of stochastic calculus to give meaning to
the stochastic integral. One example is forward calculus, cf. e.g. [8],
[20] and [1] (treated in Section 8.4).

e Observing that certain requirements on a ”reasonable” price process,
like local boundedness and a ”"no free lunch with vanishing risk”-
condition ([19, Definition 2.8]) for trading strategies that are G-predictable
and satisfies certain other regularity requirements (cf. [19] or [4]), im-
ply that the price process is a G-semimartingale. For more on this
approach, see [4].

The price process obtained via forward calculus in [1] (see Section 8.4) is
indeed a semimartingale. In [8], the authors calculate the expected (log-
arithmic) utility increment of an insider using forward calculus and show
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that if the expected utility is finite, the price process is a semimartingale.
In this respect we can say (cf. [4, Section 1]) that the authors use an extrin-
stc approach to prove that the price process is a semimartingale, whereas
the third approach above is to prove that the semimartingale property is
intrinsic for any ”reasonable” price process.

11 Existence of an equilibrium

Following up the idea in [47], Hillairet [34] uses enlargement of filtration
techniques to study equilibrium prices in a market with asymmetric infor-
mation. The article describes a market with a multiple of risky assets whose
price dynamics are given by jump diffusions, but for the sake of notational
simplicity we restrict ourselves to the case of a single risky asset whose price
follows a geometric Brownian motion.

11.1 The information structure

Fix some time horizon 7" and a complete probability space (€2, F, P) equipped
with the filtration F, which we assume to be the completion of the filtration
generated by the Brownian motion B. The I agents are characterised by
their information given by the filtrations G, ..., GU). We assume that
agent ¢’s information is of the form

¢ = FVo{L}, teloT)

where L; is an F-measurable random variable!%. The agents’ common in-
formation is denoted by G, i.e.

G =AG",  telo,T)

The following assumption is made to ensure that any F-semimartingale is
also a G()-semimartingale (cf [2, Corollary 2.6 (1)]).

DECOUPLING ASSUMPTION

For all 4, there exist some probability measure Q% ~ P under which
o{L;} and F; are independent for all ¢ € [0,T]. Further, it is assumed
that Q% is identical to P on F.

[34, ASSUMPTION 2.2, REMARK 2.3]

For a justification of the term ”decoupling”, see [2, Lemma 2.4]. The as-
sumption is sufficient for the following theorem to hold.

104 slight simplification of Hillairet’s approach
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A MARTINGALE REPRESENTATION THEOREM
For any local (G, Q%)-martingale M there exists some G*)-predictable

¢ such that [! vdB, € Li(G”, Q) for all t € [0, T) and

t
M, = M, +/ 1sdBs, t€0,T7.
0

[34, THEOREM 2.4]

The following assumption is crucial to establish both the existence of an
equilibrium and its revealing properties (cf. Lemma on page 48).

CONDITIONAL INDEPENDENCE ASSUMPTION
The o-algebras Q't(l), cee gt(” are conditionally independent given G, for
all t € [0,T].

[34, ASSUMPTION 5.2]

11.2 The economy

At the market there is one riskless asset (bank account) and a risky asset
(stock). The interest rate of the bank account is given by an F-predictable
and bounded stochastic process . The dynamics of the stock price is given
by

dS; = St(btdt + O'tdBt), te [O,T],

where b and o are F-predictable stochastic processes that are sufficiently
regular for a solution to exist.

Agent i is assumed to receive endowments at the F-predictable!!, nonnega-
tive and uniformly bounded rate

e® = (e 0<t < T},
The sum e of all the agents’ endowment rates is given by
t t
c=eot [mdst [ ndB., e,
0 0
where eq is a constant and p and 7 are F-progressive processes such that e

is bounded away from zero below. In addition, each agent is endowed with
the initial wealth Wéz) € Ll(g(()l)).

11t seems unnecessary to require all the endowments to be F-predictable. To solve the
agents’ optimisation problems in Section 11.4 it suffices that e'? is G(¥-predictable for
every i. Clearly the argument preceding the Lemma on page 48 requires the sum of the
endowments to be F-predictable for an equilibrium to exist.
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Each agent has some utility function U® : [0,T] x (0,00) — R such that
the partial derivatives Ut(i)7 Ut(ci), Ug) , UC(Z?; exist and are contiunuous on
[0,T] x (0,00). Further for every t € [0,T], U®(t,-) is strictly increasing
and strictly concave, and

UD(t,¢) == 0 and U (¢, ¢) N .

For any t € [0,7] I()(t,-) denotes the inverse of Ul (t,-)

11.3 Finding an equivalent martingale measure

There are no arbitrage opportunities for agent 7 if there exists some proba-
bility measure P ~ P such that the discounted asset price S = G~ [ rads
is a (G(i),P(i))—local martingale. Under the Decoupling Assumption, the
density process Z() defined by

29 = By, [dg; \gt(“}

is a positive (G, Q%)-local martingale. Hence, by Theorem 2.4 there exist
some G®-predictable process p( such that

dz\ = 79 )\ aB,.
Denote 6 := b%, and define Y by the Doléans-Dade exponential (see e.g.
43) t
V(= [+ ) aB, s,

We can now define the deflator () := Y (D¢~ J7sds - Agsuming that Y@ is a
((G(i), P)-martingale (cf. [34, Assumption 3.3]'2), the discounted asset price

~

S is a local martingale with respect to G(?) and the probability measure P()
defined by ‘ A

PO(A):= EY x4,  AegW.
11.4 The agents’ trading and consumption strategies

If
w::{meRJ;Ogth}

denotes the amount agent ¢ has invested in the stock and

c:i={c; 0<t<T}

12Tn our simplified version some sufficient conditions for this to hold true are the Kazamaki
and Novikov conditions given in [45, Remark following Exercise 4.4].
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his consumption rate, his wealth is governed by
AW = WD dt + my(by — ro)dt + 01dBy + () — ¢1)dt.

A portfolio/consumption pair (7, c) is admissible for agent i if ¢ and § are
G®-predictable,

T
/ (ct + (mpoy)?)dt < o0 P-as.
0

and the corresponding wealth process is bounded from below and satisfies
W}i) >0 P-a.s.

Agent ¢ chooses a portfolio/consumption pair among the admissible ones to

maximise
T )
E[/ U@)(t,ct)dt}gé”]
0

The following theorem is the ”non-trivial initial information”-version of [38,
Theorem 9.4]:

THEOREM ‘
Suppose that there exist some géz)—measurable random variable A such
that

r . ) ) ) ) )
B| /0 GG - ehat|g | = wi. AL

In that case, there exist a unique solution to agent i’s optimisation prob-
lem, where the optimal consumption rate is

D = 10y, telo,T)

[34, THEOREM 4.4]

The existence and uniqueness of A is ensured by the following (cf. [34,
Proposition 4.5]) for any = € R

T N . . . .
B| / (102 ") — eyt g <00, Paas.
0
and

B| /0 et g + W) >0, Pas.
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11.5 Equilibrium

13

Clearly, in equilibrium*°® we must have that

S =6l =, tel0T), (11.2)

i.e., fixing some ¢

Zc(j) =€ — cy), te[0,7T). (11.3)
J#
Note that (11.2) implies that the corresponding optimal portfolio processes
satisfy

Sal=0,  telo,T],
(cf. [34, proof of Lemma 5.11] or [38, Theorem 9.2]).

The left-hand side of (11.3) is Qt_i) =V, Qt(j)—measurable, ie.

Fr, = a{ chj); 0<s< t} C gt(""),
J#

while the right-hand side is gt(i)—measurable, i.e.
Fr = a{e(s) - cgi); 0<s< t} - Qt(i).

By the conditional independence between Qt(i) and Qt(fi) given G; we have
that for any A € Fr, = Fgr:

ElxalGi] = El(x4)%IG] = EIE[xalG1E[xa16"11G\] = E[xa|GElx4|G:).

Hence, P(A|G;) is either 0 or 1. As G; contains all P-null sets, we have that
A € G;. Thus, both sides of (11.3) are G;-measurable:

LEMMA

Under the assumption of conditional independence, in order to achieve
an equilibrium each agent’s consumption process must be adapted to the
filtration G.

[34, LEMMA 5.4]

If we also assume that each agent’s initial wealth is Gp-measurable, it is (cf.
[34, Proposition 4.2]) possible to find a portfolio process such that (7%, ¢(?))
would be admissible for agent ¢ if he only had access to the information G.
Hence, each agent’s optimal consumption is also G-optimal.

13 Hillairet refers to this notion of equilibrium as an Arrow-Debreu equilibrium, this is not
consistent with our previous definition of an Arrow-Debreu equilibrium.

48



Hillairet also proves the existence of such a "revealing equilibrium”. It is
assumed that the common information is of the form

G=FVoi{l},  tel0,T],

where L is some F-measurable random variable that satisfies the decoupling
assumption and that Gy and gt(’) are conditionally independent given G; for
all i and t € [0, T]. One can then proceed as in Section 11.3 to find an equiv-
alent martingale measure for the common information. It is also assumed
that (11.1) has a Gp-measurable solution for all i. Introducing a represen-
tative agent as in [38], it is proved that the existence of an equilibrium is
equivalent to the existence of a solution to this agent’s optimisation problem
([34, Proposition 5.9]). Finally, under some extra assumptions regarding the
relation between the representative agent’s utility function and the parame-
ters r and b, the existence of an equilibrium is established ([34, Proposition
5.14]).
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VI CONCLUSIONS

We have seen that both economical rational expectations models and models
from mathematical finance support the idea of strong market efficiency.

Critics of the rational expectations approach often say that it ”demands
too much” concerning the agents’ ability to observe market activity and
draw the right conclusions. The approaches by Kyle and Wang on one hand
and Cornet and de Boisdeffre on the other, take this criticism into account.
Adding noise to the model limits the agents’ ability to observe the market
activity. But when there is no noise in the market, both Kyle’s and Wang’s
models result in fully revealing equilibria. Analysing and ruling out arbitrage
opportunities entails a much weaker form of rationality than assumed in the
theory of rational expectations. In this sense one may think of Cornet and
de Boisdeffres appoach as one of "not irrational” expectations.

As seen in Kyle’s paper and the subsequent ones and in Wang’s paper:
Agents with different information have different perceptions of the price dy-
namics. Apart from the semimartingale property, it is not clear how the
agents in Hillairet’s model perceive the asset price dynamics. The price tak-
ing assumption however, rules out arbitrage opportunities like the Brownian
bridge price process in Kyle’s paper.

In principle, the core difference between the approach of Cornet and de
Boisdeffre and the traditional no-arbitrage models in mathematical finance
is that the latter models only consider the case where the price is adapted to
the information of the least informed agents. An extension of Cornet and de
Boisdeffre’s work to the continuous time case, could probably benefit from
the results from the mathematical finance approaches.
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APPENDIX

A Conditional probability

From [9, Section 33] we present some facts about conditional probability.
Given the probability space (2, F, P). Let G be a o-algebra G C F. For
any ' € F, the random variable P(F'|G) is a version of the conditional
probability of F'if it is G-measurable, integrable and satisfies

/GP(F|Q)(w)dP(w) —P(FNG), Geg.

There will in general be many such random variables, but any two of them
are equal with probability 1.

THEOREM
For any version of P(:|G),

P@IG) =0, P(QIG) =1, as.,
P(F|G) €0,1], F e€F, a.s.,
and if [, Fy, ... is a countable sequence of disjoint sets in F, then

P(UFn\g) :ZP(Fn\g), a.s.

[9, THEOREM 33.2]

If G is generated by a finite partition G1,...,GxN one can always define
conditional probability as follows: for any F € F,

P(F), weGy, P(G,)=0,

P(F|G)(w) = {P(FﬂGn)

(A1)
PG W€ Gn, P(Gy) > 0.

In this case, P(:|G)(w) is a probability measure on (2, F) for any w. For more
general o-algebras this is not always the case. But the above theorem ensures
that for any wg such that P(G) > 0 for any G € G containing wy, P(:|G)(wo)
is a probability measure on (£, F). Moreover, the proof of the theorem also
entails that P(:|G)(wp) is absolutely continuous with respect to P. Further,
we have that for any F € F,

P(F|G) = Elxrl|9] a.s.
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B Semimartingales

This presentation of semimartingales is based entirely upon [48, Parts IT and
ITI]. Suppose that the probability space (€2, F, P) is complete and equipped
with the right continuous filtration F. A simple predictable process is a
process with representation

n
Hy = Hoxi=0 + Z Hixte(r, 1141)> (B.1)
i=1
where 0 = T1 < ... < T,11 < o is a finite sequence of F-stopping times
and H; € Fr;, i = 1,...,n. We denote the set of such processes by S,
this set topologised by uniform convergence in (¢,w) by S, and the set
of finite-valued random variables topologised by convergence in probability
by L°. For any stochastic process X we may define the linear mapping
Ix:S,—1L°

n
Ix(H) = HoXo+ Y  Hi(Xr,., — X1,).
=1

Denote by X (7) the process X stopped at the stopping time 7.

DEFINITION

X is an F-semimartingale if it is adapted to F and continuous from
the right with left-hand limits, and the mapping Iy : S, — LU is
continuous for any ¢t € R.

Denote the space of cadlag!® F-adapted processes by I, and the space of
caglad F-adapted processes by L. and S topologised by uniform convergence
on compacts in probability by S,.,. The definition of a semimartingale and
the fact that S is dense in L under the topology of uniform convergence on
compacts in probability justifies the following:

DEFINITION

For H € S with the representation (B.1) the stochastic integral of H
with respect to the semimartingale X is given by the continuous
mapping Jx : Sucp - ]Ducp

Jx(H) := HpXo + ZHi(X(Ti+1) _ X(Ti)).

=1

The extension of Jx as a mapping Ly, — Dy is called the stochastic
integral and written

Jx(H) = / HdX,.

4 Recall that cadlag (chglad) processes are continuous from the right (left) and has left-
(right-) hand limits
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Roughly speaking one may say that a semimartingale is a stochastic process
that can serve as an integrator for stocastic processes in L. A process of
the form (B.1) can be interpreted as a trading strategy starting with the
portfolio Hy and buying H; assets at each time T; and keeping them until
time Tj41. Strategies of this form are referred to as buy and hold strategies.
Given the price process X the strategy given by (B.1) is self-financing if

H' Xy, =H'Xr, i=1,...,n
The wealth generated by the strategy (B.1) is
W= H' X, =Wo+ Y (H X1, - H' | Xr,_,)
i<t
=Wo+ Z i— lXT H;_ lX )
i<t
=Wo + Z Hinl(XTi - X1,_,).
T; <t
Now, if X is a semimartingale we may extend this idea to trading strategies
Y € L. The self-financing condition is now

dW; = Y,"dX,
(with the It6 interpretation) and the wealth generated by Y is

t
Wy =Wy -l—/ YsdXs.
0

Hence, the semimartingale property of prices enables us to give a mathe-
matically tractable expression of the wealth generated by a fairly wide range
of trading strategies. In the case of symmetric information it is proved that
a price process that is "reasonable” i.e. locally bounded and satisfying the
"no free lunch with vanishing risk”-condition ([19, Definition 2.8]) is a semi-
martingale ([19, Theorem 7.2]). Further, it is proved that if there exists
some strictly concave and strictly increasing utility function U such that

e U(x) — oo as x — oo and

e the supremum of the expected utility of the final value of a self-
financing trading strategy whose wealth process is bounded from be-
low, is finite,

then the price process is a semimartingale (cf. [4, Corollary 1.8] or [8] for a
similar result).

Semimartingality is a property that is preserved by stochastic integration,
ie. Jy(H) is itself a semimartingale (cf. e.g. [48, Part II, Theorem 19]).
The economical interpretation of this property is that we may regard the
set of self-financing trading strategies in L., as investment opportunities
or assets themselves whose prices are given by the wealth they generate.
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