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After having observed a deviation from backward induction, a player might deem the 
opponent prone to deviate from backward induction again, making it worthwhile to deviate 
themself. Such reaction might make the deviation by the opponent worthwhile in the 
first place—which is the backward induction paradox. This argument against backward 
induction cannot be made in games where all players choose only once on each path. 
While strategic-form perfect equilibrium yields backward induction in games where players 
choose only once on each path but not necessarily otherwise, no existing non-equilibrium 
concept captures the backward induction paradox by having these properties. To provide 
such a concept, we define and epistemically characterize the concept of independently 
permissible strategies. Since beliefs are modeled by non-Archimedean probabilities, meaning 
that some opponent choices might be assigned subjective probability zero without 
being deemed subjectively impossible, special attention is paid to the formalization of 
stochastically independent beliefs.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

After having observed a deviation from backward induction in a finite extensive game, like the centipede game or the 
finitely repeated prisoners’ dilemma, a player might deem the opponent prone to deviate from backward induction again. If 
the player believes with sufficient subjective probability in this possibility, it might be worthwhile for the player to deviate 
from backward induction themself. In turn, such reaction, if predicted, can provide a reason for the opponent to deviate 
from backward induction in the first place. This is the backward induction paradox as introduced by Basu (1988) and Reny 
(1985, 1988) and discussed by, among others, Binmore (1987, Section 3), Pettit and Sugden (1989), and Sobel (1993); see 
also Luce and Raiffa (1957, pp. 80–81) for an early illustration of a related point and Mas-Colell et al. (1995, p. 282) for a 
textbook treatment.

As pointed out by Dufwenberg and Van Essen (2018, p. 126), this argument against backward induction cannot be made 
in games where all players choose only once on each path. Strategic-form perfect equilibrium captures this by yielding back-
ward induction in perfect information games where all players choose only once on each path, but not necessarily in games 
where some player chooses more than once on some path. Indeed, Selten (1975) ensures that his concept of extensive-form 
perfect equilibrium leads to backward induction by applying strategic-form perfect equilibrium to the agent-strategic form, 
where each player chooses only once. However, backward induction is not an equilibrium concept but a procedure that 
corresponds to increasing levels of reasoning. Moreover, in the games of Figs. 1 and 2 that we will subsequently use to 
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Fig. 1. A centipede game and its corresponding strategic form.

illustrate the backward induction paradox, Nash equilibrium and all its refinements lead to the backward induction outcome, 
independently of whether some player chooses more than once on some path.

Therefore, to offer an epistemic foundation of the backward induction paradox, we provide a non-equilibrium concept, 
supported by epistemic modeling, that yields the backward induction strategies in perfect information games where all 
players choose only once on each path, but not necessarily the backward induction outcome in games where some player 
chooses more than once on some path. To the best of our knowledge, no previously existing epistemic model solves the 
backward induction paradox in the sense of yielding such a non-equilibrium concept. In particular, the Dekel-Fudenberg Pro-
cedure (Dekel and Fudenberg, 1990)—which consists of one round of elimination of weakly dominated strategies, followed 
by subsequent rounds of elimination of strictly dominated strategies—does not even yield backward induction outcomes 
in perfect information games where all players choose only once on each path, while sequential/quasi-perfect/proper ratio-
nalizability (Dekel et al., 1999, 2002; Schuhmacher, 1999; Asheim and Perea, 2005) always yield the backward induction 
strategies.1 Moreover, extensive form rationalizability (Pearce, 1984) leads to the backward induction outcome in perfect in-
formation games with no relevant payoff ties, independently of whether some player chooses more than once on some path 
(Battigalli, 1997, Thm. 4; Battigalli and Siniscalchi, 2002, Prop. 8).

We define a refinement of the Dekel-Fudenberg Procedure, called the Independent Permissibility Procedure. This procedure 
requires that players have stochastically independent beliefs about the strategy choices of their opponents, and it determines, 
for each player, a set of independently permissible strategies. As will be illustrated in the game of Fig. 2 in Section 2, with 
such uncorrelated beliefs a player cannot infer anything about the future play of other players by observing the past play of 
different players.2 However, the stochastic independence only concerns “inter-player” inference, not “intra-player” inference, 
meaning that players can learn about the behavior of opponents, if these opponents are to choose more than once on 
some path. The concept of independently permissible strategies formalizes the backward induction paradox, since it has the 
feature that, for each player, only the backward induction strategy is independently permissible in games without relevant 
payoff ties if all players choose only once on each path, while profiles of independently permissible strategies might lead to 
outcomes incompatible with backward induction otherwise. Furthermore, we provide an epistemic characterization for the 
concept of independently permissible strategies based on common belief of rationality (maximizing expected payoffs given 
the beliefs about the strategy choices of the opponents), caution (taking into account all strategies of the opponents), and 
stochastic independence (player i cannot learn anything about the behavior of opponent j by observing the play of different 
opponent j′).

The paper is organized as follows: Section 2 presents the backward induction paradox as well as intuitions for our 
results in more detail, while the subsequent Section 3 introduces perfect information games. Section 4 specifies the formal 
meaning of stochastic independence in a context where beliefs are modeled by non-Archimedean probabilities, in the sense 
that some opponent choices might be assigned subjective probability zero without being deemed subjectively impossible. 
Section 5 defines the concept of independently permissible strategies and shows how this concept solves the backward 
induction paradox, and Section 6 provides its epistemic characterization. Section 7 contains concluding discussion.

2. Backward induction paradox

The backward induction paradox can be illustrated in a version of Rosenthal’s (1981) centipede game, as depicted in 
Fig. 1. In this game, the backward induction procedure entails that player 1 chooses D at this player’s second decision node, 
inducing player 2 to choose d and player 1 to choose Out at their first decision node. However, if player 1 deviates from 
backward induction by choosing In, then player 2 weakly prefers c to d if, conditional on being asked to play, this player 
believes that player 1 will deviate from backward induction also at their second decision node, by choosing C , with at least 
probability 1

3 . Moreover, player 1 weakly prefers In to Out if this player believes that player 2 will react to being asked to 
play by choosing c with at least probability 1

3 .
In a game with similar features, namely the finitely repeated prisoners’ dilemma, Pettit and Sugden (1989) argue that 

the backward induction solution, where players choose defect in all rounds, is intuitively implausible. Rather players might 
choose cooperate to signal a willingness to do so also in the future, leading players to adopt a tit-for-tat strategy for a while. 
Indeed, Kreps et al. (1982) demonstrate how such behavior can be rational when one player can possibly be committed to a 

1 The latter property is also shared by common belief in future rationality (Perea, 2014; see also Asheim, 2002), characterized by a backward dominance 
procedure, and backward rationalizability (Perea, 2014; Penta, 2015) as well as the null MACA (Greenberg et al., 2009) characterized by Luo and Wang (2022).

2 In the terminology of Stalnaker (1998), the beliefs of the player about the behavior of two different opponents are epistemically independent.
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Fig. 2. A centipede game where all players choose only once on each path.

tit-for-tat strategy. This is related to Kreps and Wilson (1982) and Milgrom and Roberts (1982) who show that players might 
use initial behavior to acquire a reputation for being ‘tough’ in Selten’s (1978) finitely repeated chain-store game, leading to 
a different outcome than that predicted by backward induction in that game.

Reny (1988, 1992b, 1993) and Bicchieri (1989) relate the backward induction paradox to the impossibility of common 
knowledge of rationality in perfect information games.3 So, even if the players initially assign subjective probability zero to 
the event that their opponents do not choose best replies to their beliefs given their payoffs—in contrast to the assumptions 
made in the papers by Kreps, Milgrom, Roberts, and Wilson—the analysis must still allow for such irrationality to be deemed 
subjectively possible. In the following decades, a series of papers, including Reny (1992a), Aumann (1995), Ben-Porath 
(1997), Stalnaker (1998), Battigalli and Siniscalchi (2002), Asheim (2002), Asheim and Dufwenberg (2003a,b), Brandenburger 
(2007), Perea (2007, 2008, 2014), Brandenburger et al. (2008), Arieli and Aumann (2015), and Battigalli and De Vito (2021), 
have considered epistemic conditions that lead only to outcomes consistent with backward induction and those that permit 
also other outcomes. However, their predictions in perfect information games appear not to depend on whether players 
choose more than once.

The Independent Permissibility Procedure, introduced here, yields a prediction which does depend on whether players 
choose more than once. To illustrate how, consider the centipede game of Fig. 2, which is a version of the centipede game 
of Fig. 1 where the two agents of player 1 at the first and last decision nodes of the game have been divided into two 
separate players, 1 and 3, who however have the same payoffs as a function of the outcomes. In this game, the backward 
induction procedure entails that player 3 chooses D , inducing player 2 to choose d and player 1 to choose Out. Since 
D weakly dominates C , only D is a best reply for player 3 to a belief where all opponent strategy profiles are deemed 
subjectively possible. This implies that C is eliminated in the first round of the Independent Permissibility Procedure, while 
no strategy is eliminated for players 1 and 2. Turn now to round 2 and player 2. Any belief for player 2 that (i) satisfies 
that all opponent strategy profiles are deemed subjectively possible, (ii) assigns subjective probability 1 to player 1 and 3 
choosing (Out, D) or (In, D), and (iii) is stochastically independent, has the property that the belief of player 2 over the 
strategies of player 3 conditional on the choice by player 1 assigns subjective probability 1 to D independently of whether 
player 1 has chosen Out or In. Hence, c is eliminated in the second round of the Independent Permissibility Procedure, while 
no strategy is eliminated for player 1. Hence, in the third round, player 1 must assign subjective probability 1 to players 2 
and 3 choosing (d, D), implying that In is eliminated. In contrast, the elimination stops after the first round if stochastically 
independent beliefs are not imposed or if the same player chooses at the first and last decision nodes, since then player 2 
need not assign subjective probability 1 to the choice of D at the last decision node, conditional on the choice of In at the 
first decision node. This will be explained in more detail in Section 5.

3. Perfect information games

A finite extensive game form of almost perfect information with I players and M stages can be described as follows. 
This description facilitates the proofs while encompassing all game forms associated with both finite perfect information 
games and finitely repeated games. The sets of histories are determined inductively: The set of histories at the beginning 
of the first stage 1 is H1 = {∅}. Let Hm denote the set of histories at the beginning of stage m ∈ {1, 2, . . . , M}. At every 
h ∈ Hm , let, for each player i ∈ I := {1, 2, . . . , I}, i’s nonempty and finite action set be denoted Ai(h), where i is inactive at 
h if Ai(h) is a singleton. Write A(h) := A1(h) × A2(h) × · · · × AI (h). The set of histories at the beginning of stage m + 1 is 
Hm+1 := {

(h,a) | h ∈ Hm and a ∈ A(h)
}

. This concludes the induction. Let, for each player i ∈ I ,

Hi :=
{

h ∈
⋃M

m=1
Hm | Ai(h) is not a singleton

}

denote the set of histories at which player i makes an action choice; Hi is assumed to be nonempty. Then H := ⋃I
i=1 Hi

is the set of subtrees, and Z := H M+1 is the set of outcomes. For every outcome z = (a1, a2, . . . , aM) ∈ Z , let H(z) := {∅} ∪
{a1} ∪ {(a1, a2)} ∪ · · · ∪ {(a1, a2, . . . , aM−1)} denote the path leading to z, consisting of the set of histories which precede z. 
For every h ∈ H1 ∪ H2 ∪ · · · ∪ H M , let Z(h) := {z ∈ Z | h ∈ H(z)} denote the set of outcomes which succeed h.

Let, for each player i ∈ I , υi : Z →R denote i’s Bernoulli utility function. The combination of the extensive form and the 
vector (υ1, υ2, . . . , υI ) of utility functions is an extensive game � with I players. An extensive game � has the property that 
all players choose only once on each path if, for every z ∈ Z and each player i ∈ I , Hi ∩ H(z) contains at most one element. A 

3 See also Basu (1990) for a related analysis.
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pure strategy for player i is a function si that assigns an action in Ai(h) to any h ∈ Hi . Let Si denote player i’s finite set of 
pure strategies, and write S := S1 × S2 × · · · × S I and S−i := S1 × · · · × Si−1 × Si+1 × · · · × S I . Let z : S → Z map strategy 
profiles into outcomes.4 Let, for each player i ∈ I , ui = υi ◦ z denote i’s payoff function. Then G = (

(Si)i∈I , (ui)i∈I
)

is the 
strategic game derived from �. For every h ∈ H1 ∪ H2 ∪ · · · ∪ H M , let z|h : S → Z(h) map strategy profiles into outcomes 
conditional on h.

An extensive game � is of perfect information if {H1, H2, . . . H I } is a partition of H ; that is, there is no history at which 
two players choose actions simultaneously. In a perfect information game �, let p : H → I determine the player who 
chooses at each h ∈ H . Following Battigalli (1997, p. 48), say that an extensive game � has no relevant payoff ties if, for 
each player i ∈ I and all s−i ∈ S−i , υi(z(s′

i, s−i)) 	= υi(z(s′′
i , s−i)) whenever s′

i , s′′
i ∈ Si lead to different outcomes; that is, 

z(s′
i, s−i) 	= z(s′′

i , s−i). In a perfect information game � with no relevant payoff ties, the procedure of backward induction
determines a unique strategy profile s∗ through the following inductive procedure: If h ∈ H ∩ H M , then s∗

p(h)
(h) is the 

unique action that maximizes υp(h)(h, a) over all a ∈ Ap(h) , implying that z|h(s∗) determines an outcome conditional on 
every h ∈ H M . Assume that s∗ has been determined for all h ∈ H ∩ (

Hm+1 ∪ · · · ∪ H M
)
, where m ∈ {1, 2, . . . , M −1}, implying 

that z|h(s∗) determines an outcome conditional on every h ∈ Hm+1. If h ∈ H ∩ Hm , then s∗
p(h)

(h) is the unique action that 
maximizes υp(h)(z|(h,a)(s∗)) over all a ∈ Ap(h) . This concludes the induction.

4. Independent non-Archimedean probabilities

Analysis of extensive games in the strategic form is facilitated by applying beliefs about opponent behavior where 
certain actions are deemed subjectively possible although assigned subjective probability zero. This requires so-called 
non-Archimedean subjective probabilities. Moreover, our foundation of the backward induction paradox requires that such 
non-Archimedean subjective probabilities be stochastically independent. This section concerns the modeling of stochastically 
independent non-Archimedean subjective probabilities.

Consider a finite set X . Following Blume et al. (1991a), a lexicographic probability system (LPS) λ on X is a vector 
(μ1, μ2, . . . , μL), where μ� , for � = 1, 2, . . . , L, are probability (non-negative one-sum) distributions on X . The support 
of μ1, suppμ1, is the set of elements in X that are assigned positive subjective probability, while the support of λ, 
suppλ = suppμ1 ∪ suppμ2 ∪ · · · ∪ suppμL , is the set of elements in X that are deemed subjectively possible.

In the context of a finite strategic game G = (
(Si)i∈I , (ui)i∈I

)
, player i’s payoff function ui combined with an LPS λi =

(μ1
i , μ

2
i , . . . , μ

L
i ) on S−i , as a representation of player i’s belief about opponent behavior, determines player i’s preferences 

over his own strategies si ∈ Si as follows: si is weakly preferred to s′
i given the beliefs λi if and only if

(
�1

ui
(si),�

2
ui

(si), . . . ,�
L
ui

(si)
)
�L

(
�1

ui
(s′

i),�
2
ui

(s′
i), . . . ,�

L
ui

(s′
i)
)

,

where ��
ui

(si) denotes 
∑

s−i∈S−i
μ�

i (s−i)ui(si, s−i) for � ∈ {1, 2, . . . , L}, and where �L is defined by, for a, b ∈ RL , a �L b if 
and only if (i) a� = b� for all � ∈ {1, 2, . . . , L} or (ii) there exists � ∈ {1, 2, . . . , L} such that a�′ = b�′ for all �′ ∈ {1, 2, . . . , � −1}
and a� > b� . Say that si is a best reply to λi if, for all s′

i ∈ Si , si is weakly preferred to s′
i given the beliefs λi . Define i’s best 

reply correspondence βi from the set of LPSs on S−i to 2S−i\{∅} as follows: For every LPS λi on S−i ,

βi(λi) := {si ∈ Si | si is a best reply to λi} .

To define stochastic independence we impose strong independence in the sense of Blume et al. (1991a, Def. 7.1; 1991b, 
Sect. 3.3). This version of stochastic independence “requires there to be an equivalent F -valued probability measure that is 
a product measure” (Blume et al., 1991b, p. 90), where F is “a non-Archimedean ordered field . . . which is a strict extension 
of the real number field R” (Blume et al., 1991a, p. 72), with the notion of ‘a non-Archimedean ordered field’ not being 
explained in detail and the concept of ‘equivalence’ only being implicitly defined. Therefore, to expound their definition, we 
introduce the notions of non-standard numbers and non-standard probabilities and refer to literature which analyzes these 
notions. An infinitesimal ε is a positive number with the property that ε < a for every positive real number a ∈R. Following 
Robertson (1973), Hammond (1994), Govindan and Klumpp (2002), and Halpern (2010), let R(ε) be the smallest field that 
includes all real numbers and the infinitesimal ε. As shown by Meier and Perea (2020, Sect. 5.1), every finite non-standard 
number a ∈R(ε) can uniquely be written as a = a1 + a2ε + a3ε

2 + · · · , where a� ∈R for every � ∈N . Let st(a) := a1 denote 
the standard part of a, which is the real number “closest” to a.

Consider a finite set X . A non-standard probability distribution (NPD) on X is a function ν : X →R(ε) such that ν(x) ≥ 0
for all x ∈ X and 

∑
x∈X ν(x) = 1. Following Halpern (2010, Def. 4.1 and Lemma A.7), say that an NPD ν on X is equivalent

to an LPS λ = (μ1, μ2, . . . , μL) on X if, for all x ∈ X ,

4 A pure strategy si ∈ Si can be viewed as an act on S−i that assigns z(si , s−i) ∈ Z to any s−i ∈ S−i . The set of pure strategies Si is partitioned into 
equivalent classes of acts since a pure strategy si also determines actions in subtrees which si prevents from being reached. Each such equivalent class 
corresponds to a plan of action in the sense of Rubinstein (1991). As there is no need here to differentiate between identical acts, the concept of a plan of 
action suffices. Indeed, in the example of Fig. 1, we list only the players’ plans of actions. The sets of strategies and plans of action coincide if all players 
choose only once on each path.
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ν(x) =
∑L

�=1
ν̃(�)μ�(x) ,

where ν̃ : {1, . . . , L} →R(ε) is an NPD on {1, 2, . . . , L} with the properties that

st
( ν̃(�+1)

ν̃(�)

) = 0

for � ∈ {1, 2, . . . , L − 1} and ν̃(L) > 0. To illustrate, let λ = (μ1, μ2, μ3) be an LPS on X . Then ν̃ equal to (1 − ε − ε2, ε, ε2)

or (1 − ε, ε − ε2, ε2) or (1 − 2ε2, 2(ε2 − 3ε3), 6ε3) are examples of NPDs on {1, 2, 3} that can be used to aggregate the LPS 
λ into an equivalent NPD ν .

In the context of a finite strategic game G = (
(Si)i∈I , (ui)i∈I

)
, player i’s payoff function ui , combined with an NPD νi on 

S−i determines player i’s preferences over his own strategies si ∈ Si as follows: si is weakly preferred to s′
i given the beliefs 

νi if and only if
∑

s−i∈S−i
νi(s−i)ui(si, s−i) ≥

∑
s−i∈S−i

νi(s−i)ui(s′
i, s−i) .

Say that si is a best reply to νi if, for all s′
i ∈ Si , si is weakly preferred to s′

i given the beliefs νi . If the NPD νi on S−i is 
equivalent to the LPS λi on S−i , then the set of best replies coincide:

βi(λi) = {si ∈ Si | si is a best reply to νi} .

In fact, as argued by Halpern (2010, footnote 5), this statement holds if we consider the best reply correspondence βi and 
the set of best replies as a function of the NPS νi for every possible payoff function ui on Si × S−i .

An NPD νi on S−i is a product distribution if there exist NPDs ν j
i on S j for j ∈ I \ {i} such that

νi(s−i) =
∏

j∈I\{i}ν
j

i (s j)

for all s−i ∈ S−i . An LPS λi on S−i is said to be strongly independent if there exists an equivalent NPD on S−i that is a 
product distribution. This concludes our elucidation of the independence concept defined by Blume et al. (1991a, Def. 7.1; 
1991b, Sect. 3.3).

5. Independent permissibility

The Dekel-Fudenberg Procedure (Dekel and Fudenberg, 1990) eliminates, in the first round, all weakly dominated strategies 
for all players and, in subsequent rounds, all strictly dominated strategies for all players, until the procedure reaches a round 
in which no further elimination is possible. Following Brandenburger (1992) and Catonini and De Vito (2020), we state in 
the first subsection an equivalent definition—which we will refer to as the Permissibility Procedure—where the eliminated 
strategies in each round are those that can never be best replies to beliefs where only strategies that are still uneliminated 
are assigned positive subjective probabilities, but where all opponent strategy profiles are deemed subjectively possible. 
We then define the Independent Permissibility Procedure by imposing the additional requirement that beliefs are strongly 
independent. In the second subsection we establish three results showing how the Independent Permissibility Procedure 
can be used to interpret the backward induction paradox, while the Permissibility Procedure (and, thus, the equivalent 
Dekel-Fudenberg Procedure) cannot.

5.1. Definitions

Consider first the correspondence ac
i : {S ′

−i ⊆ S−i | S ′
−i is a Cartesian product} → 2Si defined as follows (where super-

script c indicates that beliefs are allowed to be correlated):

ac
i (S ′

−i) := {si ∈ Si | there exists an LPS λi = (μ1
i , . . . ,μ

L
i ) on S−i with

suppμ1
i ⊆ S ′

−i and suppλi = S−i such that si is a best response to λi}
for all non-empty Cartesian products S ′

−i , and ac
i (∅) := ∅. By Brandenburger (1992, Prop. 2) and Catonini and De Vito (2020, 

Props. 3 and 5), the following procedure is equivalent to the Dekel-Fudenberg Procedure.

Definition 1 (The Permissibility Procedure). Consider the sequence defined by, for all players i ∈ I , S0
i = Si and, for every 

k ≥ 1, Sk
i = ac

i

(
Sk−1

1 × · · · × Sk−1
i−1 × Sk−1

i+1 × · · · × Sk−1
I

)
. A strategy si for player i is permissible if si ∈ P c

i := ⋂∞
k=1 Sk

i .

In particular, for each player i ∈ I , S1
i = ac

i (S−i) is the set of i’s admissible strategies, that is, not weakly dominated (Blume 
et al., 1991a, Thm. 4.2), while, for every k > 1, Sk

i = ac
i (Sk−1

−i ) is the subset of S1
i that are not strictly dominated on Sk−1

−i
(Pearce, 1984, Lemma 3, generalized to I-player games where beliefs are allowed to be correlated). Brandenburger (1992)
introduced the term permissible for strategies surviving this procedure; hence, the notation P c .
i
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Consider next the correspondence ai : {S ′
−i ⊆ S−i | S ′

−i is a Cartesian product} → 2Si defined as follows:

ai(S ′
−i) := {si ∈ Si | there exists a strongly independent LPS λi = (μ1

i , . . . ,μ
L
i ) on S−i with

suppμ1
i ⊆ S ′

−i and suppλi = S−i such that si is a best response to λi}
for all non-empty Cartesian products S ′

−i , and ai(∅) := ∅. This correspondence can be used to state the following definition.

Definition 2 (The Independent Permissibility Procedure). Consider the sequence defined by, for all players i ∈ I , S0
i = Si and, 

for every k ≥ 1, Sk
i = ai

(
Sk−1

1 × · · · × Sk−1
i−1 × Sk−1

i+1 × · · · × Sk−1
I

)
. A strategy si for player i is independently permissible if 

si ∈ Pi := ⋂∞
k=1 Sk

i .

5.2. Results

We start our analysis of permissible and independently permissible strategies by noting the following helpful result, 
writing P c

−i := P c
1 × · · · × P c

i−1 × P c
i+1 × · · · × P c

I and P−i := P1 × · · · × Pi−1 × Pi+1 × · · · × P I .

Lemma 1.

(a) For each player i ∈ I , ∅ 	= Pi ⊆ P c
i ⊆ Si .

(b) For each player i ∈ I , P c
i = ac

i (P c
−i) and Pi = ai(P−i).

Proof. For all i ∈ I , ac
i and ai are monotone: if S ′

−i and S ′′
−i are Cartesian products satisfying ∅ 	= S ′

−i ⊆ S ′′
−i ⊆ S−i , then 

∅ 	= ac
i (S ′

−i) ⊆ ac
i (S ′′

−i) ⊆ ac
i (S−i) and ∅ 	= ai(S ′

−i) ⊆ ai(S ′′
−i) ⊆ ai(S−i). Hence, since S is finite, both procedures converge in 

a finite number of rounds to non-empty sets of strategies P c
i and Pi , respectively, satisfying P c

i = ac
i (P c

−i) and Pi = ai(P−i), 
for all players i ∈ I . Since, for any Cartesian product S ′

−i ⊆ Si , ai(S ′
−i) ⊆ ac

i (S ′
−i), a strategy that is independently permissible 

is also permissible, while the converse need not hold. �
We first show that the Independent Permissibility Procedure determines the profile of backward induction strategies in 

perfect information games with no relevant payoff ties where all players choose only once on each path.

Proposition 1. In any perfect information game � with no relevant payoff ties and the property that all players choose only once 
on each path, for each player i ∈ I , there is a unique independently permissible strategy, and this strategy is the player’s backward 
induction strategy.

Proof. Assume that � is a perfect information game with no relevant payoff ties and the property that all players choose 
only once on each path. The backward induction procedure has M stages where, for each stage k ∈ {1, 2, . . . , M} and ev-
ery z ∈ Z , the backward induction action s∗

p(h)
(h) taken at h ∈ H satisfying h ∈ H(z) ∩ H M−k+1 is the unique action that 

maximizes υp(h)(z|(h,a)(s∗)) over all a ∈ Ap(h) . The strategy of proof is to show that, for all k ∈ {1, 2, . . . , M} and every 
z ∈ Z , sp(h)(h) = s∗

p(h)
(h) at h ∈ H satisfying h ∈ H(z) ∩ (

H M−k+1 ∪ · · · ∪ H M
)

if sp(h) survives k stages of the Independent 
Permissibility Procedure. We prove this by induction.

We initiate the induction by first showing that, for every z ∈ Z , the action sp(h)(h) taken at h ∈ H satisfying h ∈ H(z) ∩ H M

equals s∗
p(h)

(h) if sp(h) survives stage 1 of the Independent Permissibility Procedure. This follows since (i) s∗
p(h)

(h) is the 
unique action that maximizes υp(h)(h, a) over all a ∈ A(h), and (ii) the fact that p(h) chooses only once on H(z), implying 
that h is deemed subjectively possible by p(h) for any LPS λp(h) on S−p(h) satisfying suppλp(h) = S−p(h) .

We next show that, for every z ∈ Z , the action sp(h)(h) taken at h ∈ H satisfying h ∈ H(z) ∩ H M−k equals s∗
p(h)

(h) if sp(h)

survives stage k + 1 of the Independent Permissibility Procedure, provided that, for k ∈ {1, 2, . . . , M − 1} and for every z ∈ Z , 
sp(h′)(h′) = s∗

p(h′)(h
′) at all h′ ∈ H satisfying h′ ∈ H(z) ∩ (

H M−k+1 ∪ · · · ∪ H M
)

if sp(h′) survives stage k of the Independent 
Permissibility Procedure. Hence, assume that, for k ∈ {1, 2, . . . , M − 1} and for every z ∈ Z , sp(h′)(h′) = s∗

p(h′)(h
′) at all h′ ∈ H

satisfying h′ ∈ H(z) ∩(
H M−k+1 ∪· · ·∪ H M

)
if sp(h′) survives stage k of the Independent Permissibility Procedure, and consider 

h ∈ H satisfying h ∈ H(z) ∩ H M−k for some z ∈ Z . Let λp(h) = (μ1
p(h)

, . . . , μL
p(h)

) on S−p(h) be a strongly independent LPS on 
S−p(h) with suppμ1

p(h)
⊆ Sk

−p(h)
and suppλp(h) = S−p(h) , where Sk

−p(h)
is the Cartesian product of opponent strategies that 

survive k rounds of the Independent Permissibility Procedure. Since λp(h) is strongly independent, there exists an equivalent 
NPD νp(h) on S−p(h) which satisfies that νp(h)(s−p(h)) = ∏

j∈I\{p(h)}ν
j
p(h)

(s j), where ν j
p(h)

are NPDs on S j for j ∈ I \ {p(h)}. 
Since, for every z′ ∈ Z(h) and any h′ ∈ H ∩ H(z′), p(h′) choose only once on H(z′), it follows from suppμ1

p(h)
⊆ Sk

−p(h)
that, 

for each h′ ∈ H satisfying h′ ∈ H(z′) ∩ (
H M−k+1 ∪ · · · ∪ H M

)
, p(h) assigns subjective probability 1 to p(h′) acting according 

to backward induction at h′:
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st
(
ν

p(h′)
p(h)

(
S∗

p(h′)(h
′)
)) = 1 , where S∗

p(h′)(h
′) := {sp(h′) ∈ S p(h′) | sp(h′)(h

′) = s∗
p(h′)(h

′)} .

Hence, sp(h)(h) = s∗
p(h)

(h) if sp(h) is a best reply to λp(h) since (i) s∗
p(h)

(h) is the unique action that maximizes 
υp(h)(z|(h,a)(s∗)) over all a ∈ Ap(h) , and (ii) the fact that p(h) chooses only once on H(z), implying that h is deemed 
subjectively possible by p(h) for any LPS λi on S−i satisfying suppλi = S−i . This concludes the induction as the inductive 
step holds for every z ∈ Z .

Since, by Lemma 1(a), for each i ∈ I , Pi 	= ∅, it follows that Pi = {s∗
i } for each i ∈ I . �

Proposition 1 can be illustrated by the centipede game of Fig. 2, the version of the centipede game of Fig. 1 with three 
separate players. As explained at the end of Section 2, the Independent Permissibility Procedure leads to the following 
rounds of elimination in this game:

S1
1 = a1(S2 × S3) = S1 S1

2 = a2(S1 × S3) = S2 S1
3 = a3(S1 × S2) = {D}

S2
1 = a1(S2 × {D}) = S1 S2

2 = a2(S1 × {D}) = {d} S2
3 = a3(S1 × S2) = {D}

S3
1 = a1({d} × {D}) = {Out} S3

2 = a2(S1 × {D}) = {d} S3
3 = a3(S1 × {d}) = {D}

· · · · · · · · ·
Sk

1 = a1({d} × {D}) = {Out} Sk
2 = a2({Out} × {D}) = {d} Sk

3 = a3({Out} × {d}) = {D}
· · · · · · · · ·

Hence, in the game of Fig. 2, the eliminations according to the Independent Permissibility Procedure correspond to the 
backward induction procedure. Note that the Independent Permissibility Procedure might eliminate faster than the backward 
induction procedure. This is indeed the case if, in the game of Fig. 2, player 1’s payoff of Out would have been 6 instead 
of 2, causing In to be eliminated already in the first round. However, in any case, for a perfect information game with 
no relevant payoff ties and the property that all players choose only once, only the backward induction strategies survive 
the procedure. We next show that this is not the case for the Permissibility Procedure (and, thus, the equivalent Dekel-
Fudenberg Procedure).

Proposition 2. There exists a perfect information game � with no relevant payoff ties and the property that all players choose only 
once on each path, where an outcome other than the backward induction outcome can be reached even if all players choose permissible 
strategies.

Proof. Consider the game of Fig. 2, which is a perfect information game with no relevant payoff ties and the prop-
erty that all players choose only once. Since D weakly dominates C , only D is a best reply for player 3 to an LPS 
where all opponent strategy profiles are deemed subjectively possible. Hence, S1

3 = ac
3(S1 × S2) = {D}, implying that C

is eliminated in the first round of the Permissibility Procedure, while no strategy is eliminated for players 1 and 2. 
The Permissibility Procedure allows no further elimination. In particular, c is best reply for player 2 to an LPS λ2 over 
S1 × S3 = {(Out, D), (Out, C), (In, D), (In, C)} given by λ2 = ((1, 0, 0, 0), (0, 13 , 13 , 13 )) since the LPS λ2|{In} conditional on 
the choice of In by player 1 assigns subjective probability 1

2 to player 3 choosing C . Note that the LPS λ2 for player 
2 satisfies that all opponent strategy profiles are deemed subjectively possible and assigns subjective probability 1 to 
S1

1 × S1
3 = {(Out, D), (In, D)}, but it is not strongly independent. Hence, in addition to the backward induction outcome 

Out, also the outcomes (In, d) and (In, c, D) can be reached even if all players choose permissible strategies. �
Proposition 3. There exists a perfect information game � with no relevant payoff ties, where an outcome other than the backward 
induction outcome can be reached even if all players choose independently permissible strategies. Such a game necessarily involves 
some player choosing more than once on some path.

Proof. Consider the game of Fig. 1, which is a perfect information game with no relevant payoff ties. Since InD weakly dom-
inates InC , InC cannot be a best reply for player 1 to an LPS where all opponent strategy profiles are deemed subjectively 
possible. Hence, S1

1 = a1(S2) = {Out, InD}, implying that InC is eliminated in the first round of the Independent Permissi-
bility Procedure, while no strategy is eliminated for player 2. The Independent Permissibility Procedure allows no further 
elimination. In particular, c is best reply for player 2 to an LPS λ2 over S1 = {Out, InD, InC} given by λ2 = ((1, 0, 0), ( 1

3 , 13 , 13 ))

since the LPS λ2|{InD, InC} conditional on the choice of In by player 1 assigns subjective probability 1
2 to player 1 choosing 

InC . Note that the LPS λ2 for player 2 satisfies that all opponent strategy profiles are deemed subjectively possible and as-
signs subjective probability 1 to S1

1 = {Out, InD}. It is also trivially strongly independent as the game has only two players. 
Hence, in addition to the backward induction outcome Out, also the outcomes (In, d) and (In, c, D) can be reached even if 
both players choose independently permissible strategies. �
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6. Epistemic characterizations

The epistemic analysis builds on the concept of player types, where a type of a player is characterized by an LPS over 
the others’ strategies and types.

6.1. Definitions

For each i ∈ I , let Ti denote player i’s non-empty and finite type space. The state space is defined by 
 := S × T , where 
T := T1 × · · · × T I . For each player i ∈ I , write 
i := Si × Ti and 
−i := 
1 × · · · × 
i−1 × 
i+1 × · · · × 
I . To each type 
ti ∈ Ti of every player i is associated an LPS λi(ti) =

(
μ1

i (ti), μ2
i (ti), . . . , μ

L(ti)

i (ti)
)

on 
−i . For each player i, we thus have 
the player’s strategy set Si , type space Ti and a mapping λi that to each of i’s types ti assigns an LPS λi(ti) over the strategy 
choices and types of i’s opponents. The structure 

(
(Si)i∈I , (Ti)i∈I , (λi)i∈I

)
is called an S-based interactive belief structure.

For each i ∈ I , let si(ω) and ti(ω) denote i’s strategy and type in state ω ∈ 
. In other words, si : 
 → Si is the projection 
of the state space to i’s strategy set, assigning to each state ω ∈ 
 the strategy si = si(ω) that i uses in that state. Likewise, 
ti : 
 → Ti is the projection of the state space to i’s type space. For each player i ∈ I , define the belief operator Bi : 2
 → 2


by

Bi(E) := {
ω ∈ 
 | μ1

i (ti(ω))
(

E(si(ω), ti(ω))
) = 1

}
,

where, for any ωi ∈ 
i , E(ωi) denotes {ω−i ∈ 
−i | (ωi, ω−i) ∈ E}. For an event E ⊆ 
 that concerns the strategy choices 
and types of i’s opponents, in the sense that E = 
i × (

proj 
−i
E
)
, it follows that ω ∈ Bi(E) if and only if ti(ω) assigns 

subjective probability 1 to the strategy choices and types of i’s opponents being in proj 
−i
E . Hence, for such events, Bi

corresponds to ‘belief’ in Asheim and Dufwenberg (2003a) and Asheim and Søvik (2005), ‘belief at level 0’ in Brandenburger 
et al. (2008), ‘primary belief’ in Perea (2012), and ‘weak belief’ in Halpern (2010) and Catonini and De Vito (2020).5 As 
discussed by Catonini and De Vito (2020, Section 2.2), Bi captures the idea that proj 
−i

E is deemed ‘infinitely more likely’ 
than its complement. For an event E ⊆ 
 that concerns i’s own strategy-type pair, in the sense that E = (

proj 
i
E
) × 
−i , 

the belief operator Bi satisfies Bi(E) = E , implying that each player i always believes their own strategy-type pair. It follows 
from this feature, which is due to Hu (2007), that the operator Bi satisfies both positive (Bi(E) ⊆ Bi(Bi(E))) and negative 
(¬Bi(E) ⊆ Bi(¬Bi(E)) introspection. It also satisfies Bi(∅) = ∅, Bi(
) = 
, Bi(E ′) ⊆ Bi(E ′′) if E ′ ⊆ E ′′ (monotonicity), and 
Bi(E ′) ∩ Bi(E ′′) ⊆ Bi(E ′ ∩ E ′′) for all E ′ , E ′′ ⊆ 
 (conjunction). Say that, at ω ∈ 
, there is mutual belief of E ⊆ 
 if ω ∈ B(E), 
where B(E) := B1(E) ∩ · · · ∩ B I (E). Say that, at ω ∈ 
, there is common belief of E ⊆ 
 if ω ∈ CB(E), where CB(E) :=
B(E) ∩ B(B(E)) ∩ B(B(B(E))) ∩ . . ..

We connect types with the payoff functions by, for each player i ∈ I , defining i’s choice correspondence Si : Ti → 2Si as 
follows: For each of i’s types ti ∈ Ti ,

Si(ti) := βi(margS−i
λi(ti))

consists of i’s best replies when player i is of type ti . For each player i ∈ I , write [rati] for the event that player i uses a 
best reply:

[rati] := {
ω ∈ 
 | si(ω) ∈ Si(ti(ω))

}
.

One may interpret [rati] as the event that i is rational: if ω ∈ [rati], then si(ω) is a best reply to margS−i
λi(ti(ω)). For each 

player i ∈ I , write [caui] for the event that player i has beliefs with full support on the strategy profiles of the others:

[caui] := {
ω ∈ 
 | supp

(
margS−i

λi(ti(ω))
) = S−i

}
.

One may interpret [caui] as the event that i is cautious. For each player i ∈ I , write [indi] for the event that player i has 
stochastically independent beliefs about the strategy choices of the others:

[indi] := {
ω ∈ 
 | margS−i

λi(ti(ω)) is strongly independent
}
.

Write [rat] := [rat1] ∩ · · · ∩ [ratI ], [cau] := [cau1] ∩ · · · ∩ [cauI ], and [ind] := [ind1] ∩ · · · ∩ [indI ] for the events that all players, 
respectively, are rational, are cautious, and have stochastically independent belief about the strategy choices of the others.

5 The term ‘weak belief’ is useful for differentiating this notion of belief from the notion called ‘Savage belief’ by Morris (1997) and ‘certain belief’ by 
Asheim and Dufwenberg (2003a), Asheim and Søvik (2005), Halpern (2010), and Catonini and De Vito (2020). The two notions differ if some vector of 
opponent strategy-type pairs is deemed subjectively possible although assigned subjective probability zero.
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6.2. Results

We can now state the following characterization results.

Proposition 4. For each player i ∈ I and any strategy si ∈ Si for i, si is permissible if and only if there exists an S-based interactive 
belief structure 

(
(Si)i∈I , (Ti)i∈I , (λi)i∈I

)
such that si = si(ω) for some ω ∈ CB ([rat] ∩ [cau]).

The proof is deleted, as the result is well-known, and its proof—which also can be obtained by removing the indepen-
dence requirement from the proof of the following Proposition 5—has been established by Catonini and De Vito (2020, 
Thm. 1) in the more general case where type spaces are allowed to be infinite.6 The game of Fig. 2 can be used to illus-
trate the epistemic characterization of permissible strategies in Proposition 4, by letting T1 = {tOut

1 , tIn
1 }, T2 = {td

2, t
c
2}, and 

T3 = {t D
3 }, where λ1(tOut

1 ) = (μ1
1(t

Out
1 ), μ2

1(t
Out
1 ), μ3

1(t
Out
1 )) and λ1(tIn

1 ) = (μ1
1(t

In
1 ), μ2

1(t
In
1 )) are given by:

μ1
1(t

Out
1 )((d, td

2), (D, t D
3 )) = 1 ,

μ2
1(t

Out
1 )((d, td

2), (C, t D
3 )) = μ2

1(t
Out
1 )((c, td

2), (D, t D
3 )) = 1

2 ,

μ3
1(t

Out
1 )((c, td

2), (C, t D
3 )) = 1 ,

μ1
1(t

In
1 )((d, td

2), (D, t D
3 )) = μ1

1(t
In
1 )((c, tc

2), (D, t D
3 )) = 1

2 ,

μ2
1(t

In
1 )((d, td

2), (C, t D
3 )) = μ2

1(t
In
1 )((c, tc

2), (C, t D
3 )) = 1

2 ,

where λ2(td
2) = (μ1

2(t
d
2), μ

2
2(t

d
2), μ

3
2(t

d
2)) and λ2(tc

2) = (μ1
2(t

c
2), μ

2
2(t

c
2)) are given by:

μ1
2(t

d
2)((Out, tOut

1 ), (D, t D
3 )) = 1 ,

μ2
2(t

d
2)((Out, tOut

1 ), (C, t D
3 )) = μ2

2(t
d
2)((In, tOut

1 ), (D, t D
3 )) = 1

2 ,

μ3
2(t

d
2)((In, tOut

1 ), (C, t D
3 )) = 1 ,

μ1
2(t

c
2)((Out, tOut

1 ), (D, t D
3 )) = 1 ,

μ2
2(t

c
2)((Out, tOut

1 ), (C, t D
3 )) = μ2

2(t
c
2)((In, tIn

1 ), (D, t D
3 )) = μ2

2(t
c
2)((In, tIn

1 ), (C, t D
3 )) = 1

3 ,

and where λ3(t D
3 ) = (μ1

3(t
D
3 ), μ2

3(t
D
3 ), μ3

3(t
D
3 )) is given by:

μ1
3(t

D
3 )((Out, tOut

1 ), (d, td
2)) = 1 ,

μ2
3(t

D
3 )((Out, tOut

1 ), (c, td
2)) = μ2

3(t
D
3 )((In, tOut

1 ), (d, td
2)) = 1

2 ,

μ3
3(t

D
3 )((In, tOut

1 ), (c, td
2)) = 1 .

Then, for each state in {(Out, tOut
1 ), (In, tIn

1 )} × {(d, td
2), (c, tc

2)} × {(D, t D
3 )}, there is common belief of rationality and caution, 

since S1(tOut
1 ) = {Out}, S1(tIn

1 ) = {In}, S2(td
2) = {d}, S2(tc

2) = {c}, and S3(t D
3 ) = {D}. This corresponds to the fact that Out and 

In for player 1, d and c for player 2, and D for player 3 are permissible.

Proposition 5. For each player i ∈ I and any strategy si ∈ Si for i, si is independently permissible if and only if there exists an S-based 
interactive belief structure 

(
(Si)i∈I , (Ti)i∈I , (λi)i∈I

)
such that si = si(ω) for some ω ∈ CB ([rat] ∩ [cau] ∩ [ind]).

Proof. Part 1: For each player i ∈ I and any strategy si ∈ Pi (that is, si is independently permissible), there exists an S-based inter-
active belief structure 

(
(Si)i∈I , (Ti)i∈I , (λi)i∈I

)
such that si = si(ω) for some ω ∈ CB ([rat] ∩ [cau] ∩ [ind]). For each i ∈ I and 

any si ∈ Pi , let tsi
i denote a type of i for which si ∈ Si(t

si
i ), supp

(
margS−i

μ1
i (t

si
i )

) ⊆ P−i , supp
(
margS−i

λi(t
si
i )

) = S−i , and 
margS−i

λi(t
si
i ) is strongly independent. By Lemma 1, such types exist since, for each i, Pi 	= ∅ and Pi = ai(P−i). Further-

more, assume that, for all (s−i, t−i) ∈ 
−i , μ1
i (t

si
i )(s−i, t−i) > 0 only if, for all j 	= i and s j ∈ P j , t j = t

s j

j . Write, for each i ∈ I , 
Ti := {ti = tsi

i | si ∈ Pi}. The definitions of [rat], [cau], and [ind] imply

{(s1, . . . , sI , t1, . . . , tI ) | for all i ∈ I , si ∈ Pi and ti = tsi
i } ⊆ CB ([rat] ∩ [cau] ∩ [ind]) .

6 The apparent difference between the formulations of Catonini and De Vito (2020, Thm. 1) and our Proposition 4 is removed by observing that, by 
the feature of Bi introduced by Hu (2007), ω ∈ Bi ([rati ] ∩ [caui ]) implies that si(ω) is a best reply to margS−i

λi(ti(ω)) where margS−i
λi(ti(ω))

)
has full 

support. Therefore, we need not intersect with the event that i is rational, as Catonini and De Vito (2020, p. 162) do when recursively defining Rm
i . Börgers 

(1994), with a later formalization by Hu (2007), showed a similar characterization of permissible strategies in the standard subjective expected utility 
framework by using the concept of p-belief.
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Hence, for each player i ∈ I and any strategy si ∈ Pi , 
(
(Si)i∈I , (Ti)i∈I , (λi)i∈I

)
has the property that si = si(ω) for some 

ω ∈ CB ([rat] ∩ [cau] ∩ [ind]).
Part 2: For each player i ∈ I , if si = si(ω) for some ω ∈ CB ([rat] ∩ [cau] ∩ [ind]), where 

(
(Si)i∈I , (Ti)i∈I , (λi)i∈I

)
is an S-based 

interactive belief structure, then si ∈ Pi . If, for i ∈ I , si = si(ω) for some ω ∈ [rat] ∩ [cau] ∩ [ind], then si ∈ ai(S−i). Let, for all 
i ∈ I ,

S ′
i = {si ∈ Si | si = si(ω) for some ω ∈ Bk−1([rat] ∩ [cau] ∩ [ind]), where k ∈N}.

Then if, for i ∈ I , si = si(ω) for some ω ∈ Bk([rat] ∩ [cau] ∩ [ind]), then si ∈ ai(S ′
−i). It now follows from the definition of Pi

that si ∈ Pi if si = si(ω) for some ω ∈ CB ([rat] ∩ [cau ∩ [ind]). �
The game of Fig. 2 can also be used to illustrate the epistemic characterization of independently permissible strategies 

in Proposition 5, by noting that there is common belief of rationality, caution, and stochastically independent beliefs in 
the state 

(
(Out, tOut

1 ), (d, td
2), (D, t D

3 )
)
, where the types tOut

1 , td
2, and t D

3 are defined as above. In particular, margS−1
λ1(tOut

1 ), 
margS−2

λ2(td
2), and margS−3

λ3(t D
3 ) are strongly independent, since by aggregating the three levels of these LPSs by the NPS 

ν̃ , where ν̃(1) = (1 −ε)2, ν̃(2) = 2(ε−ε2), and ν̃(3) = ε2, it follows that the aggregated NPSs are product distributions. This 
corresponds to the fact that Out for player 1, d for player 2, and D for player 3 are independently permissible. In contrast, 
margS−2

λ2(tc
2), where tc

2 is defined as above, is not strongly independent, reflecting that c for player 2 and In for player 1 
are not independently permissible.

Combined with Propositions 1–3, these results imply that stochastically independent beliefs are an essential ingredient 
in an epistemic characterization of the backward induction paradox.

7. Discussion

Requiring that beliefs about opponents’ choices are stochastically independent in games with more than two players was 
the traditional view in game theory, as reflected by equilibrium concepts (like Nash equilibrium and strategic-form perfect 
equilibrium) and non-equilibrium concepts (like rationalizability as originally defined by Bernheim, 1984, and Pearce, 1984). 
Over the years, however, this view has been challenged with the argument that players can have stochastically dependent 
beliefs about the choices of opponents even though the opponents choose independently. Moreover, allowing for correlated 
beliefs leads to the strategies that are never best replies being exactly those that are dominated.

The Dekel-Fudenberg Procedure is uncontroversial, as the equivalent Permissibility Procedure eliminates only those 
strategies that cannot be chosen if rationality and caution are commonly believed, leading to the concept of permissible 
strategies. This concept entails no specific alternative theory of opponent behavior for a player who, in a perfect informa-
tion game, has observed an opponent choice which they deem not to be rational. The backward induction paradox, per se, 
does not provide any guidance on what alternative paths be followed in such a circumstance. For this reason, one might 
argue that it is acceptable that the solution concept proposed in this paper uses the concept of permissible strategies as its 
point of departure.

The question of whether stochastic independence of beliefs about opponents’ choices should also be imposed, leading to 
the concept of independently permissible strategies, might be made subject to empirical analysis by designing experiments 
which compare games like those depicted in Figs. 1 and 2 as different treatments. We are not aware of any such experi-
ments,7 and answering this question is beyond the scope of the present paper. Its purpose has been to point out that this 
refinement of the concept of permissible strategies can be used to interpret the backward induction paradox (as shown by 
Proposition 1 and 3), and that its epistemic characterization (Proposition 5) thereby yields an epistemic foundation of this 
paradox.

Instead of using the concept of permissible strategies as our point of departure, we could have used other concepts 
that always yield backward induction in 2-player games where all players choose only once on each path, but which might 
lead to outcomes incompatible with backward induction otherwise. The concept of fully permissible sets as defined and 
epistemically characterized by Asheim and Dufwenberg (2003a) for 2-player games and applied to extensive games in 
Asheim and Dufwenberg (2003b) does have these properties. The concept essentially yields the same prediction as the 
concept of permissible strategies in the game of Fig. 1, while being more restrictive by yielding the backward induction 
outcome in the game of Reny (1992a, Fig. 1). Asheim and Perea (2019, Def. 9) generalize this concept to games with 
more than two players without imposing stochastically independent beliefs. If instead stochastic independence is imposed 
when generalizing fully permissible sets to such games, this concept would yield an alternative interpretation and epistemic 
foundation of the backward induction paradox.

7 The experimental results of Dufwenberg and Van Essen (2018) show that backward induction might not obtain even if each player chooses only once, 
in games where the backward induction strategy for each player depends on whether there is an even or odd number of remaining players. This can be 
interpreted as a test of the common belief assumption rather than the assumption that beliefs are stochastically independent.
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