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Scientific Summary

Echocardiography, the ultrasound imaging of the heart, is the go-to medical
imaging modality when it comes to visualizing the heart. Among all its
advantages and disadvantages, the high temporal resolution of echocardiography
undoubtedly emerges as a valuable strength for visualizing and evaluating the
dynamic behavior of a beating organ as the heart is.

In a world where cardiovascular diseases are the main cause of death, it is of
utmost importance to develop automatic algorithms and methods which help
to improve the quality of treatment offered to patients. The growing and aging
population poses a pressure problem on healthcare systems, therefore automatic
approaches to analyze medical imaging scans, saving clinicians’ time for more
severe cases, is a need.

Relevant work has been made in the field, from using mathematical and
physical models to simulate the heart mechanics and the ultrasound image
acquisition processes, to developing automatic and, each time more accurate,
Deep Learning models. Deep Learning algorithms have shown high accuracy not
only when helping the clinician to deliver a final diagnosis to a patient, but also
when using them for simulation tasks. These kinds of models revealed a great
ability to generate synthetic echocardiography images, with high quality and
variability, which are helpful for researchers and healthcare personnel. These
images are not only a valuable educational resource to train clinicians, but also
a useful asset to train and improve new Deep Learning algorithms, advancing
the state of the art of the echocardiography imaging field.

The development of deep generative models, such as Generative Adversarial
Networks (GANs) and Diffusion Models, has revolutionized the field of medical
image synthesis by enabling the generation of realistic and diverse 2D and 3D
images. These models have overcome challenges associated with limited data
availability, privacy restrictions, and the complexity of capturing the full range
of anatomical and physiological variations in echocardiography.

GANs consist of a generator and a discriminator network engaged in an
adversarial training process. By training the generator network on a large
dataset of real echocardiography images, GANs can generate synthetic images
that closely resemble real patient data. This has facilitated tasks such as data
augmentation, anomaly detection, and echocardiography image synthesis for
clinical use.

Diffusion models, on the other hand, have emerged as powerful tools for
generating high-quality synthetic images by simulating a diffusion process. These
models iteratively refine an initial noise source to generate images that capture the
target image distribution. Diffusion models have shown promising results, better
than GANs, in generating realistic and diverse images. Due to its novelty, these
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type of deep generative models has not so far been applied to echocardiography
images.

Using these synthetically generated images, both 2D and 3D, to develop
consequent downstream Deep Learning models to perform varying tasks, for
example segmentation, showed promising results. The final volume of the heart
can be predicted with higher accuracy when using the synthetic images together
with real ones, to train these models.

The application of deep generative models in echocardiography has several
important implications. Firstly, it offers a solution to the scarcity of labeled
data, which is often a challenge in medical imaging. By generating synthetic
images, these models provide a means to augment training data and improve
the performance of automated algorithms.

Secondly, deep generative models facilitate the exploration of rare or complex
cardiac conditions that may not be adequately represented in the available
datasets, due to its smaller prevalence in society. By generating diverse images
that capture different pathologies and anatomical variations, these models
enhance the understanding and analysis of complex cardiac cases.

Furthermore, the generation of realistic synthetic echocardiography images
enables the development and evaluation of novel image processing techniques
and algorithms. Researchers can test and optimize image analysis algorithms,
evaluate the performance of novel image reconstruction methods, and investigate
the effects of different imaging parameters on diagnostic accuracy.

While deep generative models have demonstrated great potential, there are
challenges and limitations that need to be addressed. These include the need
for large and diverse training datasets, ensuring generalizability across different
patient populations and imaging modalities, and the validation and interpretation
of synthetic images in a clinical setting.

In conclusion, the development of deep generative models, including GANs
and diffusion models, has significantly advanced the field of echocardiography by
enabling the generation of realistic and diverse 2D and 3D images. These models
have the potential to enhance data availability, improve automated analysis, and
facilitate research and development in echocardiography.

In this thesis, both GANs and diffusion models have made significant
contributions to 2D and 3D echocardiography image synthesis. They have helped
overcome data limitations and have provided a means to generate large datasets
with known ground truth information. This has been particularly valuable for
training and evaluating Deep Learning algorithms used in echocardiography
analysis and diagnosis. Furthermore, the clinical interpretation of the synthetic
images revealed the utility and valuable information comprised in them.
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Sammendrag

Ekkokardiografi, ultralydavbildning av hjertet, er den foretrukne metoden for
medisinsk avbildning av hjertet. Med tanke på alle dens fordeler og ulemper,
kommer den høye tidsoppløsningen til ekkokardiografi utvilsomt frem som en
verdifull styrke for å visualisere og evaluere den dynamiske atferden til et hjerte
som slår.

I en verden der hjerte- og karsykdommer er de dominerende dødsårsakene,
er det av aller største betydning å utvikle automatiske algoritmer og metoder
som bidrar til å forbedre kvaliteten på behandlingen som tilbys pasientene. Den
økende og aldrende befolkningen legger et pressproblem på helsevesenet, derfor
er det behov for automatiske metoder for analyse av medisinske avbildninger så
klinikerne kan bruke mer på alvorlige tilfeller.

Det har vært gjort relevant arbeid på dette fagfeltet, fra bruk av matematiske
og fysiske modeller for å simulere hjertemekanismen og avbildningsprosessene for
ultralyd, til utvikling av automatiske og stadig mer nøyaktige dyplæringsmodeller.
Dyplæringsalgoritmer har vist høy nøyaktighet ikke bare når de hjelper klinikeren
med å stille en endelig diagnose for en pasient, men også når de brukes til
simulering. Denne typen modeller har vist seg å være veldig egnet til å generere
syntetiske ekkokardiografiske bilder med høy kvalitet og variasjon, som er nyttige
for forskere og helsepersonell. Disse bildene er en god pedagogisk ressurs
for å trene klinikere, men de er også verdifulle for å trene og forbedre nye
dyplæringsalgoritmer og for å fremme kunnskapsnivået innen ekkokardiografisk
avbildning.

Utviklingen av dype generative modeller, som Generative Adversarial
Networks (GAN) og diffusjonsmodeller, har revolusjonert feltet for syntetisering
av medisinske bilder ved å muliggjøre generering av realistiske og varierte 2D- og
3D-bilder. Disse modellene har løst utfordringer knyttet til begrenset tilgang på
data, personvernrestriksjoner og kompleksiteten ved å fange opp hele spekteret
av anatomiske og fysiologiske variasjoner innen ekkokardiografi.

GAN-er består av et generator- og et diskriminatornettverk som er involvert
i en treningsprosess der de to nettverkene konkurrer mot hverandre. Ved å trene
generatornettverket på et stort datasett med ekte ekkokardiografiske bilder, kan
GAN-er generere syntetiske bilder som ligner på ekte pasientdata. Dette har lagt
til rette for oppgaver som dataaugmentering, anomalideteksjon og syntetisering
av ekkokardiografiske bilder for klinisk bruk.

Diffusjonsmodeller har derimot vist seg å være kraftige verktøy for å generere
syntetiske bilder av høy kvalitet ved å simulere en diffusjonsprosess. Disse
modellene tar utgangspunkt i en støykilde og forbedrer iterativt for å generere
bilder som oppnår den ønskede bildefordelingen. Diffusjonsmodeller har vist
lovende resultater, bedre enn GAN-er, når det gjelder generering av realistiske
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og varierte bilder. Siden dette er en ny metode, har ikke denne typen dype
generative modeller blitt anvendt på ekkokardiografiske bilder tidligere.

Bruken av disse syntetisk genererte bildene, både 2D og 3D, som grunnlag
for å utvikle dyplæringsmodeller som kan utføre ulike oppgaver, for eksempel
segmentering, har vist seg å gi gode resultater. Hjertets volum kan beregnes med
høyere nøyaktighet når de syntetiske bildene brukes sammen med ekte bilder for
å trene disse modellene.

Bruken av dype generative modeller innen ekkokardiografi har flere viktige
følger. For det første løser det problemet med å samle tilstrekkelige mengder
med merkede data, noe som ofte er en utfordring innen medisinsk avbildning.
Ved å generere syntetiske bilder åpner disse modellene for muligheten til å øke
mengden opplæringsdata og forbedre ytelsen til automatiserte algoritmer.

For det andre vil dype generative modeller gjøre det mulig å utforske sjeldne
eller komplekse hjertesykdommer som ofte ikke er tilstrekkelig representert i
tilgjengelige datasett på grunn av lav forekomst i samfunnet. Ved å generere
varierte bilder som inkluderer ulike patologier og anatomiske variasjoner,
forbedrer disse modellene forståelsen og analysen av komplekse tilfeller av
hjertesykdom.

Generering av syntetiske ekkokardiografiske bilder som er realistiske vil også
legge grunnlag for utvikling og evaluering av nye bildebehandlingsteknikker og
-algoritmer. Forskere kan teste og optimalisere bildeanalysealgoritmer, evaluere
ytelsen til nye metoder for bilderekonstruksjon, og undersøke effekten av ulike
bildeparametere på diagnostisk nøyaktighet.

Selv om dype generative modeller har vist stort potensial, så er det
utfordringer og begrensninger som må tas høyde for. Dette inkluderer behovet for
store og varierte treningsdatasett, samt generaliserbarhet på tvers av forskjellige
pasientpopulasjoner og avbildningsmodaliteter, og validering og tolkning av
syntetiske bilder i kliniske situasjoner.

Til oppsummering har utviklingen av dype generative modeller, inkludert
GAN-er og diffusjonsmodeller, bidratt betydelig til å fremme fagfeltet ekkokar-
diografi ved å gjøre det mulig å generere realistiske og varierte 2D- og 3D-bilder.
Disse modellene har potensial til å gjøre data lettere tilgjengelig, forbedre automa-
tisert analyse og legge til rette for forskning og utvikling innen ekkokardiografi.

I denne avhandlingen har både GAN-er og diffusjonsmodeller bidratt betydelig
til syntetisering av 2D- og 3D-ekkokardiografiske bilder. De har bidratt til å
håndtere begrensninger ved data og har gitt mulighet for å generere store datasett
med kjent "ground truth"-informasjon. Dette har vært spesielt verdifullt for
trening og evaluering av dyplæringsalgoritmer som brukes til ekkokardiografisk
analyse og diagnostikk. Videre har den kliniske tolkningen vist hvor nyttige de
syntetiske bildene er, og hvor mye verdifull informasjon som finnes i de.
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Chapter 1

Introduction

1.1 Motivation

According to the most recent numbers from the World Health Organization,
cardiovascular disease are the primary cause of death worldwide accounting for
almost 18 million deaths every year [1]. All the conditions included in this group
severely affect the heart’s capability to deliver the blood through the body in
an efficient manner. Therefore, it is of utmost importance to find and develop
clinical tools that would allow to efficiently and accurately diagnose these cases
in order to provide better treatment to the patients.

Amongst all the cardiac imaging modalities, cardiovascular ultrasound, or
echocardiography, is unequivocally the most commonly used. Only relying on
high frequency sound waves instead of ionizing radiation, echocardiography allows
real-time imaging of the heart offering a complete assessment of this organ’s
anatomical structure and beating function, including the ability to visualize
blood flow. An echocardiographic exam allows to quantify a wide range of clinical
parameters related to the heart’s performance, facilitating a more accurate and
precise diagnosis.

To be able to save clinicians’ time without reducing the quality of patient
care, and at the same time facilitating clinical workflows within each healthcare
system, there is a large need to develop automatic methods and algorithms,
taking advantage of the fast evolving technological developments. As the
global population continues to grow, the demand for more efficient and effective
processes to acquire echocardiography images becomes increasingly critical. One
solution to this challenge is automation, which can be facilitated through the
use of deep learning algorithms. However, in order to build such algorithms, we
need a large and diverse set of data. Obtaining this data can present significant
challenges, including strict privacy and anonymization policies related to medical
data, and requirement of skilled professionals to acquire echocardiography images,
due to the various imaging scanners and diverse patient anatomies. Despite
these hurdles, the need for automation remains pressing, and efforts to overcome
these challenges are essential to continue advancing the capabilities of automatic
methods in healthcare.

Deep learning replicates the behavior of the human brain by using artificial
neural networks, which are inspired by the structure and function of biological
neurons in the brain. These networks consist of layers of interconnected nodes
that receive input signals, process them, and produce output signals. The neural
network is fed with vast amounts of data, and the connections between the nodes
are adjusted based on the patterns and relationships that the network learns
from the data. This process is similar to the way that the human brain forms and

1



1. Introduction

strengthens connections between neurons through repeated exposure to specific
scenarios. Therefore, by using these artificial neural networks, deep learning
algorithms are able to mimic the behavior of the human brain in processing
and learning from data. Deep learning algorithms have been widely adopted
for a range of applications, from image segmentation, which involves identifying
and isolating specific features of interest in an image, to the quantification of
cardiac anatomy and performance metrics in echocardiography exams. Thanks
to their ability to achieve high levels of performance, deep learning algorithms
have become an essential tool for facilitating the analysis of medical imaging
data.

Training deep learning algorithms necessitates vast amounts of data.
Acquiring echocardiography image datasets is complex, and publicly available
image collections are scarce. To overcome this obstacle, one option is to employ
deep learning tools to create images that appear genuine. After all, irony aside,
while deep learning algorithms do require vast amounts of data to train effectively,
they can also be used to generate synthetic data that mimics real-world examples.
This intriguing aspect of deep learning highlights the potential for it to not only
consume data voraciously but also contribute to data creation, opening up new
possibilities for overcoming data sparsity challenges.

Deep generative models have demonstrated remarkable aptitude in generating
synthetic image data in medical imaging [2]. These models can generate images
with considerable accuracy. They are a powerful tool for generating synthetic
medical images that can aid in the training of deep learning algorithms as they
can create high-quality, realistic-looking medical images, even in cases where
data is limited or scarce. This ability is particularly useful in medical fields
where collecting large amounts of data is difficult. Additionally, these generative
models can be used for data augmentation, increasing the diversity and amount
of available data, thereby enhancing the accuracy and robustness of downstream
deep learning models. Overall, deep generative models hold great promise for
improving medical diagnosis, treatment, and research.

Studies demonstrated the capability of deep generative models to generate
data and its utility when developing automatic deep learning methods to perform
clinical tasks [3]. Nonetheless, different imaging domains present varying image
characteristics which increase the complexity of the generative process. This is
particularly evident in the echocardiography domain since these images have
inherent speckle patterns which are difficult to replicate, to mention the most
characteristic aspect. Similar to previous works done on medical image synthesis,
there is room for improvement when trying to synthesize echocardiography
images with relevant clinical information, meant to be used when developing
helpful clinical deep learning algorithms.

1.2 Aims of the project

The main goal of the project was to develop deep generative models to synthesize
large databases of synthetic echocardiography images, both 2D and 3D, and
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to study and explore in further detail the quality and utility of such synthetic
images.

The essential objectives of the project were the following:

• Describe the development of a 3D deep generative model.

• Use the synthetic 3D images to train a segmentation algorithm and prove
their utility in creating more accurate deep learning algorithms.

• Create a more advanced and sophisticated 2D deep generative model and
further explore its working principle, synthetic image quality, and relevant
information present in them.

• Expand the previous 2D model to 3D and compare the 3D synthetic images
with the ones from the first objective.

1.3 Context of the project

This thesis was conducted and completed as a part of the European Union funded
MARie Curie Intelligent UltraSound (MARCIUS) project 1. Being a European
Innovative Training Network, the MARCIUS project is a consortium between
industry and academia which includes several doctoral training programs. The
project combines several research fields, such as cardiac imaging and physiology,
and biomedical engineering, where an in silico simulation platform including
both the generation of virtual patients and associated realistic image data is the
main objective of the project. This thesis focuses on bringing together state of
the art artificial intelligence algorithms to generate echocardiography data.

The work covered in this thesis explores in further detail the creation of
synthetic 2D and 3D echocardiography images and datasets, relying on common
but also on novel deep generative models, to achieve that purpose. It also
explores the utility of such synthetic datasets in the development of automatic
deep learning algorithms, aiming to facilitate clinical analysis of echocardiography
exams, in light of the planned work packages (WPs) shown in Figure 1.1.

This project’s work was essentially conducted at GE Vingmed Ultrasound,
part of GE HealthCare, one of the leading companies when it comes to cardiac
ultrasound imaging. A collaboration with Intelligent Ultrasound, one of the
industrial beneficiaries of the MARCIUS project, led to the application of one
of the proposed approaches described in this thesis in their products. The
University of Oslo was the academic partner throughout the duration of this
industrial PhD program.

1https://www.marcius-project.com/ - Marie Sklodowska-Curie grant agreement No 860745
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Figure 1.1: MARCIUS project overview and working plan, with defined WPs.
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Chapter 2

Background

2.1 The heart

The heart is a muscular organ that plays a vital role in the circulatory system of
the body. Its primary function is to pump blood through the body [4], supplying
oxygen and nutrients to all the organs and tissues while removing waste products
and carbon dioxide. The heart is divided into four chambers, the right and left
atria (LA), and the right and left ventricles (LV). Additionally, the arteries are
responsible for taking the blood away from the heart and the veins bring this
fluid back to it. The LV is the largest and strongest chamber of the heart and
is responsible for pumping oxygenated blood through the aortic valve to the
aorta and then through the whole body. The blood then returns to the heart,
specifically to the right atrium, and this now deoxygenated fluid is pumped to
the lungs, from the right ventricle, where the carbon dioxide is eliminated and
oxygen can enter the blood stream once again. After this oxygenation step,
the blood returns to the LA and from here, passing to the LV, the whole cycle
can start yet again. Between each atrium and ventricle there are valves which
open and close allowing the blood to flow from the atria to the ventricles. The
tricuspid valve allows the blood flow from the right atrium to the right ventricle,
and the mitral valve, also known as bicuspid, lets the blood flow from the LA to
the LV.

The human heart works in a cyclic way, as earlier described and shown in
Figure 2.1. Each cardiac cycle comprises 2 different phases: ventricular systole
and ventricular diastole. The former is the contraction of the myocardium, the
heart muscle, ejecting the blood to the aorta and then through the arteries, and
the latter is the heart relaxation, when the ventricles have time to fill up again.

Considering the left heart, i.e. LA and LV, its ventricular systole starts when
the mitral valve closes. The pressure inside the LV increases and while it is
higher than the pressure in the aorta it causes the aortic valve to open and the
blood to be ejected. As soon as the aortic pressure becomes higher than the
left ventricular one, the aortic valve closes and the pressure inside the LV keeps
decreasing until it is lower than the one in the left atrium. The diastole then
starts and at this point in time, the mitral valve opens and the blood can pass
from the atrium to the ventricle. When the pressure in this latter cavity becomes
higher than the pressure in the atrium, the LA contracts to let the rest of the
blood pass through, the mitral valve closes and a new cardiac cycle can start
again. At the same time the same cycle happens on the right side of the heart.
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Figure 2.1: Human heart anatomy and blood circulation. Image taken from [4].

2.2 Cardiovascular disease and diagnosis

Worldwide, cardiac diseases or cardiac complications due to other conditions are
the leading cause of death, affecting all levels of society [1]. A common way to
detect them and reach a diagnosis is by imaging the heart and deriving certain
measurements from the acquired images, provided that these reach the desired
quality, both anatomical and temporal.

The heart performs its beating action throughout the whole life of a person,
in a mechanic and rhythmic way. Several factors impact cardiac health such
as stress, drug use, obesity and sedentarism, to name a few [1]. As in all
mechanical systems, its performance can be assessed over time in order to detect
any conditions that might occur. Besides mechanical, the heart also has an
electric conducting system which can also be affected by different pathologies,
constraining its pumping function.

Arrhythmias are a common cardiac condition where the heart shows an
irregular beating pattern and are mainly caused by electrical dysfunctions. On
the other hand, cardiomyopathies are morphological conditions which affect the
heart muscle, the myocardium. This muscle can become thicker or stretched,
either of them impairing the heart contraction and relaxation.

Cardiac imaging represents a great way to diagnose such pathologies, allowing
to analyze the heart’s anatomy. Many imaging modalities exist with different
pros and cons. Besides allowing to visualize the heart, the different imaging
modalities facilitate the estimation of different cardiac performance parameters
which reflect the status of this organ.

Amongst the most relevant parameters, Ejection Fraction reflects the heart’s
capacity to pump blood efficiently. This value expresses how much blood is
pumped out by the heart at each contraction of the myocardium. A small value
suggests some malfunction with the heart, indicating the presence of a possible
cardiomyopathy or even an arrhythmia [5].
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2.3 Ultrasound imaging - Echocardiography

Regarding cardiac imaging, many modalities can and are used in clinical practice
[6], and the clinical scenario is always take into account. Different clinical
needs require the usage of different imaging modalities. Magnetic Resonance
(MR) is the medical imaging modality that provides heart images with the best
anatomical details. Besides providing clinicians with anatomically clear cardiac
images, it does not use any ionizing radiation as magnetic fields are the only
responsible element for the collected imaging signal. However these exams are
time consuming and it is a very expensive imaging modality. The magnets
and coils are expensive, the scanner is not portable and special installations for
cooling and enclosing the magnetic fields are necessary. Computed Tomography
(CT) is less expensive than MR and the images obtained with this modality also
have a very high anatomical quality. Nonetheless, it relies on ionizing radiation,
X-rays in this case, most of the scanners used in clinical sites are not portable
and temporal resolution is usually low [6]. Ultrasound scanning represents the
best compromise between these pros and cons. This imaging modality does
not use any ionizing radiation as very high frequency sound waves are used to
image the body, the scanner is fully portable, it is inexpensive to perform such
examinations and temporal resolution is one of its main strengths [7]. This turns
out to be an important detail when imaging a moving organ like the heart [8].
For these reasons, Ultrasound is the most common choice to visualize the human
heart (Figure 2.2).

Figure 2.2: Ultrasound scan of the heart.

As mentioned, Ultrasound relies on high frequency sound waves, between 2
to 18 megahertz (MHz), which are sent through the body. Sound is a mechanical
wave, which means that it needs a medium to propagate itself, and different
mediums have different mechanical properties which affect the wave propagation
in specific ways. When the ultrasound beam hits a barrier, i.e. passes from a
medium with certain characteristics to another with different ones, it is reflected
but not totally, with a part of it still propagating itself. The reflected wave is
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called echo and is detected by the transducer, which is responsible for both the
emission and the reception of the ultrasound beams. This process is illustrated
in Figure 2.3.

When the heart is the organ being imaged with this modality, it is referred
to as echocardiography, where the reception of different echos, with different
frequencies, generated by the transmission of the ultrasound beam throughout
the different tissues and chambers of the heart can generate an anatomical image
of this organ [9].

Figure 2.3: Ultrasound propagation through different physical barriers. The
blue arrows represent the reflected ultrasound waves, which are detected by the
transducer.

Echocardiography can acquire both 2D and 3D images of the heart together
with temporal information about its contractile condition, where the anatomical
resolution of the latter type of images is inferior. 3D echocardiography scans
make the estimation of ventricles and atria volumes more accurate, comparing
to the more conventional approaches that rely on 2D images [10]. With these
volumes and other parameters, more complex performance parameters can be
estimated such as the ejection fraction or the sphericity index, for example.
However 3D echocardiography images are more challenging to acquire because
the acquisition process takes longer time and special software is required to
reconstruct and analyze the image [11] (Figure 2.4).

Therefore it is not unusual that a current lack of public 3D echocardiography
datasets exists, due to the presented acquisition limitations. Nevertheless, such
imaging modality still holds a high potential to be used as a data source since it
is the main go-to cardiac imaging modality.

2.4 Simulation in Echocardiography

Over the years, the development of simulation methods has played a crucial role in
advancing the field of echocardiography. Before the development of Deep Learning
(DL) and its application to image synthesis, various simulation techniques were
employed to generate synthetic echocardiography data for research, training,
and educational purposes using for example biophysical models. Simulating
ultrasound data is a standard practice for designing new ultrasound systems
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Figure 2.4: Echocardiography acquisition cone and different tilting imaging
planes of the heart.

and validating novel ultrasound image processing techniques, particularly in the
medical field [12], [13].

One of the earliest and more efficient approaches to simulating medical
ultrasound data involved the use of mathematical and physics models. Developed
by [14], Field II relied on linear acoustics to establish a gold standard to simulate
ultrasound transducer fields and ultrasound imaging. This simulator is capable
of calculating the emitted and echoed beams for a large number of different
transducers, with different physical properties, and simulate realistic images of
human tissue. In the linear domain Field II shows strong results but when the
simulations need to be performed in 3D or in more complex domains, other
simulators rise as a more accuracy-time efficient approach [15]. COLE [16] is able
to simulate 2D and 3D images by decomposing complex convolution operations
to a series of sequential 1D convolutions between the emitted ultrasound signal
and the scatters present along each image line, and FUSK [17] applies the Fourier
transform to generate both 2D and 3D ultrasound images.

Physical models comprised physical materials that mimicked the acoustic
properties of cardiac tissues. By manipulating the model and using transducers,
ultrasound-like images can be obtained. Physical models provided a hands-on
learning experience, allowing practitioners to understand ultrasound principles
and practice image interpretation.

With advancements in computer graphics and imaging technology, computer-
based phantoms became popular in echocardiography simulation [18]. These

9



2. Background

simulations use phantoms, mathematical algorithms and computational tech-
niques to generate synthetic ultrasound images. By simulating the interaction
between ultrasound waves and virtual cardiac structures, these phantoms are
even able to generate realistic images with known ground truth information.

The Finite Element Method (FEM) is a numerical technique widely used
in engineering and biomechanics. Despite the inherent complexity linked to
these methods, in the context of echocardiography simulation, FEM models
were employed to simulate the mechanical behavior of the heart. These models
incorporate anatomical data and cardiac mechanics to predict cardiac motion and
generate corresponding ultrasound images, mainly 3D images of the mitral valve
[19], [20]. FEM simulations provide valuable insights into cardiac dynamics and
contribute to the development of advanced echocardiography imaging techniques.
However, due to its complexity levels, these are not as widely used as the physical
models previously described, for example.

Moving towards more automatic image simulation techniques, Image-based
rendering approaches leverage existing echocardiography images or datasets to
generate new synthetic images. By manipulating the acquired images through
geometric transformations, such as rotation, translation, and deformation,
realistic synthetic images can be generated. These techniques allowed researchers
to study image artifacts, test imaging algorithms, and simulate different imaging
scenarios.

Simulation methods in echocardiography prior to DL offered several
advantages. They provide a controlled environment for testing and validating
imaging algorithms, avoiding ethical concerns and variability associated with
clinical data. Simulations allow for the generation of large datasets with ground
truth information, facilitating algorithm training and evaluation. Additionally,
these methods offer educational benefits, enabling researchers and practitioners to
gain hands-on experience without patient involvement. However, these simulation
methods also have limitations. They often rely on simplified assumptions and
mathematical models, which may not capture the full complexity and variability
of real-world echocardiography data. Generating realistic motion and anatomical
variations poses challenges, as does simulating realistic echocardiography image
artifacts and noise. Furthermore, these methods require significant expertise and
computational resources for their implementation, especially when the initial
assumptions become more complex and precise.

The integration of DL has brought significant advancements, enabling more
sophisticated and realistic simulation of echocardiography data, ultimately
enhancing diagnostic accuracy and patient care in this important medical imaging
domain.

2.5 Deep Learning

Within the large Artificial Intelligence (AI) domain, the DL concept is defined
as a set of computational methods that are inspired in the human brain and
by the way this organ works biologically. The working principle behind these
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methods shows an attempt to learn from raw data, performing feature extraction
without any user influence or bias, and make a prediction. DL algorithms reflect
a high independence from the user and from any a priori constraints that would
influence the final outcome of the learning process. Besides this major advantage,
DL methods are more powerful than others in the AI field such as Machine
Learning ones for example, as they represent a more specific subgroup. Their
ability to mimic the human brain behavior makes them ready to deal with
immensely large amounts and different types of data, as is the case of images,
both 2D and 3D. At the cost of dealing with more complex types of data which
can show a large variability amongst them, the computational power and learning
time of DL methods is quite large.

Depending on data availability DL models can be trained under different
scenarios. The most common one is supervised training, where the algorithm
attempts to learn a relationship between the given input and expected output
data. However, the expected output for a certain input is not always known
or available and unsupervised training is as an attempt of the DL model to
detect and learn patterns in the input data that seem relevant, even though
there is no correct or wrong output. In between these two scenarios, there is
also semi-supervised learning whose algorithms are trained on a combination of
data with and without a known output.

In order to replicate human brain behavior, DL relies on Convolutional
Neural Networks (CNNs), amongst other possibilities. As in an individual’s
brain, these are made of neurons which are arranged in layers where all the
necessary calculations to the learning process are performed. CNN layers are
arranged in a way such that neurons belonging to the same layer are not connected
to each other but, instead, are connected to the neurons of the adjacent layer
[21]. This structural organization makes the network more robust when dealing
with more complex data, such as images. The CNN derives its name from its
use of convolutions, a mathematical operation, to extract a multitude of features
from the input image. As it happens in biology, the neurons in the visual cortex
of the brain process limited receptive fields at a time overlapping them to create
a full field with all the visual information. CNNs analyze the input images in
this way as well. The artificial neurons of one layer learn from different small
regions of one image, perform the convolutions, and their results are shared with
the neurons of the following layer, this way reducing the number of parameters
necessary for the model to learn, since it does not have to learn the same features
at every layer.

Supervised training usually reaches the best results provided that enough
data is available to train these models, since the learning process is usually long.
However, large datasets are difficult and expensive to obtain, especially when
the trained DL model focuses on a specific task that requires a certain type of
data.
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2.5.1 Deep Learning in Medical Imaging

Since DL models can closely mimic the human brain behavior, its utility in
healthcare is of relevance. These can facilitate and/or automate several clinical
procedures and workflows (Figure 2.5), saving clinicians’ time which can be
allocated for more important cases or tasks [22]; [23].

It has been proven that some DL models can actually achieve performance
levels very close to the ones reached by humans [24], performing the most
variate tasks such as image classification or segmentation. Going from a more
simple binary classification evaluation of a patient (for example, priority or
not priority) to a more demanding task as the segmentation of an anatomical
structure, quantification of a certain performance metric and consequent patient
evaluation.

Figure 2.5: Deep Learning in medical imaging. Different models can mimic the
brain behavior to analyze different types of medical information and ease the
final diagnosis.

Clinicians also agree [25] that DL not only saves them time, which they can
then dedicate to more complex clinical cases, but also provides a faster diagnosis
to the patient without compromising its quality and accuracy, and sometimes
even increasing the confidence levels.

DL in medical imaging is mostly used to perform segmentation tasks [26],
which provide the clinicians with concrete delineations of the most relevant
structures on an image. These segmentations can facilitate a final diagnosis
by themselves, or are very often used downstream, since a variety of clinical
performance parameters can be estimated from them.

Medical image domain translation is also an area where DL models have
a large influence on [27], [28]. By performing domain translation, it becomes
possible to transform an initial image into another that belongs to a different
domain, i.e. group, and exhibits distinct characteristics compared to the original
one. This is the case for noise reduction (remove unwanted noise from a noisy
image [29]), super-resolution (increase the final image resolution [30]), modality
conversion, and also image synthesis operations.

Image synthesis has two main purposes: data augmentation and generation of
images not acquired due to clinical workflows. The data augmentation purpose
allows to generate plausible images with sufficient variability. Considering that
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the development of DL frameworks requires large and variate datasets, this
image synthesis approach is commonly addressed in order to create synthetic
datasets which can be used for training of CNNs for clinical usage [31]. This
second purpose of image synthesis can be interpreted as modality conversion but
where the final output is not known, i.e. the image from the modality we are
converting to does not exist [32], [33].

2.6 Deep Generative Models

2.6.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) represent a specific subset of DL
models, with a specific architecture, where it is possible to generate new data as
it is needed [34]. These generative models are widely used to create new images
since they are capable of doing so by learning from a given initial dataset.

A GAN is an unsupervised algorithm that has a partially supervised training
process. As mentioned, supervised training requires the output for each input, i.e.
the label, to be known during training, so the model can learn how to generalize,
i.e. make predictions, on new data. GANs, on the other end, do not use labeled
data since their final goal is not to make a prediction but generate new examples
of the input data. During training, when the input data is an image for example,
the GAN generates a fake image and attempts to discriminate if it is indeed fake
or real, like the input images [35]. This way GANs set up a supervised training
scenario to deal with an unsupervised learning task.

GANs are DL generative model architectures made of a generator and a
discriminator. The principle behind this type of models’ training is shown in
Figure 2.6 and is such that the generator tries to create an image similar to the
input ones, feeds it to the discriminator and this tries to distinguish if the image
is indeed real or not. This training loop occurs until the generator can make a
real looking image and the discriminator can be tricked to evaluate such image
as real instead of synthetic. Both the generator and the discriminator are CNNs
and the latter simply performs a binary classification task.

Since there is no labeled data when training a GAN, what this model attempts
to do is generate images such that their probability distribution, pgan, matches
the input dataset one, pdata. To evaluate the similarity between these two
probability distributions a loss function is calculated during each training step.
The discriminator can be seen as a way to measure the generator loss as its
performance depends on the generator output. However, this approach to
calculate the loss assumes a fixed discriminator which can be easily misled by the
generator as the generated images would present very small variations comparing
to one single generated image in time which provided a very small loss value.
This problem is known as mode collapse and happens when there is very little
variance in the generated samples. To fix this issue the loss function has to
depend on the discriminator performance as well, creating an adaptive and
non-static generator loss. The generator, G, randomly generates a sample image,
x, from a noise vector, z, in order to make x = G(z) =⇒ pgan ≈ pdata. On its
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Figure 2.6: Training process of a GAN. The generator synthesizes samples, which
are compared with real ones by the discriminator in order to distinguish between
real and synthetic data.

turn, the discriminator, D, compares the generator output, G(z), with the real
sampled image, x.

The most common way to keep track of the difference between the two
distributions and focus on both losses is by using the minimax loss function. The
minimax loss function reaches its optimum value when the generator minimizes
and the discriminator maximizes it. This function, described by (2.1) can be
broken down in two parts, each of them reflecting the influence of the generator
and the discriminator:

min
G

max
D

L = Ex∼pdata
[log(D(x))] + Ez∼pz

[log(1 − D(G(z)))] (2.1)

During GAN training, the discriminator and generator are trained in
alternating times, in an adaptive and flexible way. During the discriminator
training, the generator is kept constant and the discriminator tries to learn how
to distinguish between real and fake images, recognizing the limitations of the
generator. Vice-versa, the discriminator is kept unchanged while the generator is
training, otherwise this part of the GAN would be trying to achieve an optimal
point that would always be moving, potentially leading to no convergence in the
performance of the GAN model.

Conditional GANs rely on a condition to synthesize images [36], creating a
variation of the traditional GAN model. In conditional GANs both the generator
and discriminator’s performance is subjected to extra information, which makes
the generative process more specific. During the generator training and adding to
the noise vector z previously described, it also receives a condition image y. This
way, this deep generative model attempts to model the conditional probability
pgan(z|y). The influence of this condition also affects the discriminator training
and it is reflected on the new loss function, as shown in (2.2):
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min
G

max
D

L = Ex∼pdata
[log(D(x|y))] + Ez∼pz

[log(1 − D(G(z|y)))] (2.2)

The training datasets used to train GANs can be of two different types:
paired or unpaired [37]. Conditional GANs rely on paired training datasets, i.e.
the mapping function between the model’s output and the input exists and is
possible to predict.

The pix2pix model [32] is a type of conditional GAN specifically designed for
image-to-image translation tasks. It was introduced as an effective framework for
learning the mapping between input and output images. The training process
involves a generator and a discriminator that engage in an adversarial game. The
generator takes an input image and tries to transform it into an output image
that resembles the target image. The discriminator, on the other hand, aims to
distinguish between the generated output images and real target images being
trained to classify them. It provides feedback to the generator by indicating
the quality of the generated images and guiding the generator to produce more
realistic outputs. As previously described, during training the generator is
trained to minimize the difference between the generated output image and the
target image. This is achieved through an adversarial loss, which encourages
the generated images to be indistinguishable from the real target images (2.2).
Additionally, a pixel-wise L1 loss (2.3) is commonly used to ensure that the
generated images accurately match the target images at a pixel level.

L1 = 1
N

N∑
i=1

(xi − zi)2 (2.3)

The adversarial training of the pix2pix model allows it to learn to generate
high-quality and visually coherent output images that closely resemble the target
images. It has been widely used in various domains, including computer vision,
graphics, and image editing. Its versatility and effectiveness make it a powerful
tool for tasks that require translating images from one domain to another,
opening up possibilities for applications in areas such as medical image synthesis,
style transfer, and data augmentation.

However, the existence of these paired datasets is limited. To deal with
unpaired datasets, when the mapping between the input and output does not
exist, a different type of GAN is used, the cycle GAN (CycleGAN). CycleGANs
are trained in an unsupervised fashion [38], combining adversarial training with
a cyclic loss function based on auto-encoders [39]. These models train two pairs
of generator and discriminator, one for each training dataset, since these are not
related. During training, the generated image from the first generator is used as
input to the second generator, whose output should match the initial image (the
input to the first generator). The cycle loss quantifies the difference between
the image synthesized by the second generator and the original one. The same
reverse process also occurs.

Both types of GANs can be used to synthesize new images and perform
domain translation, regardless of the use of paired or unpaired training datasets.
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As mentioned, GANs synthesize high quality image samples but suffer from
lack of variability. In order to address this downside and generate high-quality
and diverse images by capturing the fine-grained details and variability in the
data, [40] presented a Vector Quantized Generative Adversarial Network (VQ-
GAN). This generative network combines elements of both GANs and vector
quantization, a compression technique used to represent data points using a
predefined set of representative vectors called a codebook or dictionary. It is
commonly used to reduce the dimensionality of data while preserving important
features. By using vector quantization, the original image dataset can be
efficiently represented using a smaller number of vectors from the codebook,
reducing the memory or storage requirements.

Figure 2.7: Vector quantization operation. The codebook is generated from
the image features extracted by the GAN generator. The larger it is, the more
variable the synthetic images will be.

In the VQ-GAN the generator takes random noise as input and produces
an image. However, instead of directly generating pixel values, it generates a
feature map of visual parts of the images. The vector quantization operation
then transforms these image features into the codebook, in a similar way as a
clustering algorithm would do, i.e. grouping the features in a predefined set
of vectors that represent different image characteristics. During training, the
VQ-GAN incorporates a quantization loss that encourages the generated codes
to match the nearest neighbor vectors in the codebook. This loss promotes
the generation of diverse and representative codes, ensuring that the generated
images capture the essential characteristics of the training data. Then, as in
an adversarial training scenario, to enforce the generated images’ realism, the
discriminator evaluates the quality of the generated images and provides feedback
to the generator.

The combination of the quantization loss and the adversarial training enables
the VQ-GAN to generate realistic and diverse images. By leveraging the discrete
codes and the codebook, it captures both local and global features of the images,
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allowing for fine-grained control over the generated content. The quality of the
generated images depends on the size and quality of the codebook. A larger
codebook can better represent the data, but it also requires more memory and
computational resources. Designing an optimal codebook involves striking a
balance between representation accuracy and efficiency.

2.6.2 Denoising Diffusion Models

Denoising Diffusion Models (DDMs) [41] are also part of the Deep Generative
models’ group and its application appeared very recently [42], outperforming
GANs [43]. These models work in a destructive way, as they take an image
sample and progressively add noise to it, corrupting its initial information, until
the model ends up having an image made of pure Gaussian noise. The training
process of a diffusion model aims to recover the original image starting from this
noisy input image, by learning the reverse denoising process across a sufficiently
large number of steps. Once the model is trained, it is possible to generate any
number of image samples just by inputting a random noisy image.

Figure 2.8: Training process of a DDM. The model progressively adds Gaussian
noise to the input sample and reverses the process in order to recover the initial
input.

DDMs are latent variable models [44]. A statistical latent variable model
maps observable variables to a latent space made of latent variables, that can
only be deduced from the initial observable ones. This is where the noisy images,
obtained after destroying the training samples, lay.

Figure 2.8 shows the training procedure of a DDM. The forward process
consists of iteratively adding Gaussian noise to the input training image,
x0 ∼ q(x0), during a sufficiently large number of steps, T , until a sample xT , a
latent variable, is obtained belonging to a Gaussian distribution z ∼ N (0, I),
the latent space. This process creates a Markov chain which is reversed during
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the reverse diffusion process [45]. During this process, each reverse step relies
on a neural network to provide estimates for µ and/or Σ. These parameters
describe the data distribution of the generated images, pθ(xt), whose optimal
values should be the closest as possible to the training dataset distribution’s.
Due to the iterative nature of this reverse process, the DDMs sampling time is
consequently long.

Therefore, the loss function used by such models is based on the Kullback-
Leibler (KL) divergence between two normal distributions and can be minimized
in order to find the set of parameters that provide the smallest divergence
between both distributions, as shown in (2.4) [46]:

min
θ

L = min
θ

∑
t>=1

Eq(xt) [DKL(q(xt−1|xt)||pθ(xt−1|xt))] (2.4)

where DKL represents the KL divergence, E denotes the mathematical
expectation, and pθ the neural network estimate for the generated samples
distribution parameters.

This way, DDMs do not require any type of adversarial training. i.e. paired
datasets, to generate high quality image samples, not rising image variablity
issues as the ones described in Section 2.6.1, common to occur when training
GANs.

2.6.3 Adversarial Diffusion Models

Both GANs and DDMs have strengths and weaknesses. On the one hand GANs
can sample high quality synthetic images in a relatively fast time interval, on
the other hand, the diversity of the generated samples is not large. Oppositely,
DDMs generate high quality images with a lot more variability, at the cost of
needing a larger time window to do so.

Combining the strengths of these two deep generative models [46], the
adversarial diffusion models are capable of generating widely diverse and high
quality image samples, with a small sampling time. These more robust models
use a DDM in combination with a GAN, creating adversarial diffusion models.

The forward diffusion step is performed in the same way, i.e. from the analysis
of the input images adding noise until the creation of the latent space, but the
reverse denoising process uses a conditional GAN, instead of a regular CNN,
to learn the statistical parameters associated with the probability distribution
implicit on the training dataset. The conditioning, y, of the sampling process is
done during the reverse denoising step [47] and can be applied via class labels,
text, or images, for example. During each denoising step, the model attempts
to predict the statistical distribution parameters, including the conditioning
information [48], pθ(xt|y). At the same time, and in order to save time during
training and reduce the sampling time, using a GAN during the reverse process
allows only one or very few denoising steps to be learned.

Ozbey et al. [49] showed that these adversarial diffusion models can be
trained using a guide image, at each denoising step, to help the model learn the
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reverse diffusion process, this way increasing the anatomical information and
quality of the generated images.

Depending on the type of neural network used to learn the reverse diffusion
process, i.e. a CNN or a GAN, DDMs are also capable of generating new images
and perform domain translation operations.

2.6.4 Deep Generative Models in Medical Imaging and
Echocardiography

The application of deep generative models such as GANs and DDMs represents
a large field of research in medical imaging. In [50] the authors described how
GANs have been widely used to generate realistic medical images. A large part of
these developments result from using these DL techniques on imaging modalities
other than echocardiography, since these modalities have a less challenging
acquisition process.

However, recently Gilbert et al. [51] developed a pipeline to generate 2D
echocardiography images with corresponding anatomical labels, relying on a GAN
to perform unpaired image translation [38]. Generating 3D echocardiography
images presents different challenges, due to the image acquisition process
technicalities addressed on Section 2.3. Using deep generative models to
synthesize such type of images is therefore more demanding and did not previously
set any reproducible results, yet.

More recently, the usability of DDMs brought an alternative to GANs. Due
to the generated samples quality and diversity, its usage in medical imaging
is recent. From image reconstruction [52], to segmentation [53], these models
showed great potential. Its ability to generate medical images has been explored
in [49], both for 2D images [54] and 3D [55], and [56], where 3D + time cardiac
MR images were synthesized. Similarly to what happens with GANs, these
models’ capacity to generate echocardiography images, of any dimensionality,
has not been fully explored though.

2.7 Summary of Papers

This thesis comprises three scientific papers focused on both 2D or 3D
echocardiography image generation, using deep generative models, and their
impact on clinical use. Figure 2.9 gives an overview of the MARCIUS project,
and shows how the papers written on this thesis contribute to the overall project.

Paper I focuses on the creation of a data augmentation tool based on a 3D
GAN to synthesize 3D echocardiography images, also showing the utility
of generated images to train DL segmentation algorithms.

Paper II demonstrates how adversarial DDMs can be a more efficient approach to
generate medical image data, specifically for 2D echocardiography images.
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Paper III further investigates the performance of a 3D DDM combined with
a particular type of 3D GAN, responsible for extracting the real image
characteristics. Synthetic 3D echocardiography image samples, generated
by the diffusion model are further analyzed and validated by experienced
users.

Figure 2.9: Summary of written papers in light of the PhD project overview.

2.7.1 Paper I: A Data Augmentation Pipeline to Generate Synthetic
Labeled Datasets of 3D Echocardiography Images Using a
GAN

Cristiana Tiago, Andrew Gilbert, Ahmed Salem Beela, Svein Arne Aase, Sten
Roar Snare, Jurica Sprem, and Kristin McLeod, IEEE Access, 2022.

In this scientific paper, we designed an automatic pipeline to generate 3D
echocardiography images with corresponding anatomical masks, using a 3D
GAN. These images were then used to train a 3D segmentation DL algorithm.

Privacy concerns related to the usage of medical data, together with the lack
of publicly available echocardiography images datasets, and the large requirement
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of data to develop DL models, creates the need for a tool which can generate
synthetic medical images with relevant clinical information associated with them.
The proposed pipeline allows to generate 3D echocardiographic images with
corresponding ground truth labels, this way alleviating the need to acquire the
images and the subsequent laborious and error-prone manual labeling process.

We constructed a 3D GAN model, named 3D Pix2pix, based on the original
2D version of a paired GAN. As mentioned in Section 2.6.1, a paired GAN
learns how to generate images belonging to either of two imaging domains. We
trained our 3D deep generative model on a initial dataset which included detailed
anatomical segmentations of the heart as ground truth label sources, provided
by a cardiologist. This dataset was combined with a second one made up of the
corresponding real 3D echocardiography scan images. At inference time, i.e. after
training and fine-tuning the model, and to generate the synthetic 3D dataset,
high resolution anatomical models from CT were used as the ground truth label
image, for which the GAN generated the corresponding echocardiography image.

The synthetic images were created and then post-processed in order to increase
their quality. Their qualitative analysis revealed that there is a good delineation
of the main structures of the heart, namely the LV, LA, and myocardium
(MYO), closely following the anatomical labels extracted from the anatomical
models. A further analysis of the obtained results was made after using these
synthetic datasets to train a 3D segmentation model, where the previously
enumerated cardiac structures were detected. Several datasets with different
percentages of synthetic images mixed with real ones were created and the
volume similarity between the original and the segmented volumes showed that
including synthetically generated images in the training datasets improves the
final segmentation quality.

Therefore, the results demonstrate the creation of a 3D GAN model and
its utility as an automatic tool to perform data augmentation, and also the
applicability of such images to train DL algorithms, tackling the current lack of
public 3D echocardiography datasets.

2.7.2 Paper II: A Domain Translation Framework with an
Adversarial Denoising Diffusion Model to Generate Synthetic
Datasets of Echocardiography Images

Cristiana Tiago, Sten Roar Snare, Jurica Sprem, and Kristin McLeod, IEEE
Access, 2023.

The second paper describes the work we conducted on generating 2D echocar-
diography images using adversarial DDMs, and using this novel deep generative
model to perform medical image domain translation.

As addressed in Section 2.5.1, domain translation is a common DL application
in the medical image field. This operation can also be considered as a data
augmentation technique, as it is capable of creating new images belonging to
different domains but still relevant for clinical application. It also favors time
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saving in clinical workflows, since certain patient images can be generated from
a set of previously acquired ones.

We used deep generative models as a resource to translate images from one
domain to another, exploring the image synthesis capabilities of DDMs when
used together with a GAN. We constructed an adversarial DDM which is capable
of generating varying and high quality echocardiography images with a quick
sampling time. In the proposed generative model, the GAN is responsible for
learning the reverse denoising diffusion process working on a paired fashion,
where guide images, anatomical masks in this case, are used to guide this learning
process. These guide images ensure that the most relevant anatomical structures
of each echocardiography image were kept and represented on the generated
image samples.

Besides exploring this image augmentation capability of DDMs, several
domain translation operations allowed to create different echocardiography
images datasets, with different vendors and image acquisition characteristics.
The obtained results proved that adversarial DDMs are indeed capable of
generating highly variable image samples (in opposition to GANs), keeping
the anatomical structures present on the guide image on the synthetic sample.
These synthetically generated images also show high quality and the sampling
duration is shortened when we use a GAN to learn the reverse diffusion process.

The proposed method showed high generalization ability, introducing a
framework to create 2D echocardiography images suitable to be used for clinical
research purposes.

2.7.3 Paper III: Denoising Diffusion Model for 3D
Echocardiography Image Generation: Image Usability and
Clinical Relevance

Cristiana Tiago, Sten Roar Snare, Kristin McLeod, and Jurica Sprem, submit-
ted to IEEE Open Journal of Engineering in Medicine and Biology, 2023.

In paper III we combined two deep generative models to synthesise 3D echocar-
diography images. First, a 3D Vector Quantized (VQ) GAN was trained
to capture the features inherent to the training dataset, and a following 3D
DDM was used to actually generate the synthetic images, based on the image
characteristics previoulsly learned by the VQ-GAN.

3D echocardiography image datasets are challenging to acquire, as explained
previously, and getting permission to access medical images of different patients
is a complicated process. Medical image synthesis has been proving to be a good
asset to tackle these problems, as there are several methods that can generate
synthetic medical images with a very high realism level.

Following the work we previously conducted, in this third paper we took
another step in generating echocardiography image datasets using deep generative
models. Similarly to paper I, we synthesized 3D echocardiography image samples
(3 spatial dimensions), using a 3D diffusion model, similarly to paper II. However,
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in paper III, the diffusion model is trained on the results obtained from a
previously trained 3D VQ-GAN. In this work, the VQ-GAN is trained on a
real 3D echocardiography dataset and generates a latent space where the image
characteristics are encoded. Then, the 3D DDM attempts to generate realistic
and variate 3D echocardiography volumes, based on this VQ-GAN encoded
latent space.

After training the generative model, a synthetic dataset was created and it
was evaluated by experienced clinicians and sonographers regarding it image
realism, anatomical correctness, and frame consistency. The synthetic images
were also compared with a synthetic dataset generated via a 3D GAN (the one
presented in paper I).

Finally, the results showed that the proposed image synthesis model, 3D
VQ-GAN and DDM, is able to generate 3D echocardiography images with a very
high realism level and relevant anatomical information. This diffusion model
also proved to be better than a 3D GAN at synthesizing such type of image
samples. The 3D DDM revealed itself as a good tool to perform variate and
realistic medical image synthesis, particularly on 3D echocardiography.
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Chapter 3

Discussion

3.1 Data for Deep Learning

To achieve the best results, DL models need to be trained on large amounts of high
quality medical images. The quality of training images is critical in DL, as it can
significantly impact the model’s accuracy and performance. Additionally, most
of times, the images should be annotated by expert clinicians to provide accurate
and consistent labels for the DL model to learn from (supervised learning). By
using high quality training images, the DL model can learn to recognize complex
patterns and features in the data, leading to improved performance in various
clinical tasks.

The diversity of training images is also important in DL in healthcare, as it
ensures that the DL model can generalize and make accurate predictions on new
unseen data. The use of a diverse set of training images can help the DL model
learn to recognize variations in echocardiography images, such as differences
in patient anatomies, imaging acquisition protocols, and disease presentations.
Therefore, the selection of training images should include a wide range of medical
conditions, patient populations, and image acquisition settings.

For this reason, it is critical to invest in the acquisition and preparation of a
representative set of training images to ensure the success of DL in healthcare.
Since data holds an important role in DL, the successful findings from paper I
support this assumption by proving that synthetic data does indeed improve
the performance of DL algorithms. Furthermore, this data can be generated
from deep generative models such as GANs and DDMs, as described in all the 3
papers collected in this thesis.

3.2 Medical Image Synthesis and Clinical Relevance of
Synthetic Images

Medical image synthesis is a rapidly growing field that has immense potential
in clinical applications. It involves generating artificial medical images that
closely resemble real ones, using DL techniques [57] such as GANs and, more
recently, DDMs. One important aspect of medical image synthesis is ensuring
clinical relevance: the generated images must accurately represent the anatomical
structures being studied, and should also be realistic enough to aid in the
diagnosis and treatment of patients. By producing high quality medical images,
this technology has the potential to improve the way new deep learning algorithms
are implemented and utilized.

Synthetic medical data generated using deep learning algorithms has several
benefits for medical research and healthcare applications. It allows researchers
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to generate large datasets with varied characteristics and complexities that can
be used to develop and train DL models. This helps overcome the problem of
data scarcity that is often faced in medical DL research due to privacy concerns
and the difficulty of collecting and annotating large amounts of data. These
problems are particularly evident in the echocardiography imaging domain, as
there are no public databases of 3D echocardiography datasets and only few
exist for 2D images.

Synthetic images can be used to augment existing datasets, thereby improving
the accuracy and generalization of DL models. Image synthesis can be used to
address the issue of data imbalance that is common in medical datasets. This is
because synthetic data can be generated to address specific data gaps, thereby
improving the performance of DL models on underrepresented classes.

Creating a data generation tool capable of generate data that is not easily
obtainable through traditional methods, is of great utility. For instance, domain
translation operations can be used to generate medical images with different
modalities or resolutions, which can be used to train DL models for improved
image analysis and diagnosis.

Clinicians and sonographers can be trained on these large and variate synthetic
datasets, which provide them a diverse range of training scenarios to practice
on [58], regardless of their expertise level. Deep generative models proved to be
a reliable and efficient tool when it comes to generating realistic looking data,
capable of misleading the trained eye of several observers, with clinical relevance.
Additionally, synthetic medical images can be manipulated to simulate different
diseases or to demonstrate the effects of various treatments in time, allowing
clinicians to gain a deeper understanding of medical concepts.

3.3 Synthetic Images Quality

High quality medical images are characterized by their sharpness, contrast, and
spatial resolution, which allow clinicians to visualize and accurately diagnose
pathological changes in the body. The synthesized images should have minimal
noise, artifact, and distortion, ensuring that the anatomical structures are clearly
visible and distinguishable from the surrounding tissue. In addition, good quality
medical images should also be reproducible, meaning that they can be reliably
acquired and interpreted across different image viewing platforms. Overall, good
quality medical images play an indirect but crucial role in the diagnosis and
treatment of various medical conditions. These widely variate synthetic datasets
improve the performance of downstream DL algorithms used to facilitate the
final diagnoses and patient outcomes.

The main results of papers II and III support these statements. Both 2D and
3D echocardiography synthetic images proved to have high quality, accurately
representing the heart’s anatomy and speckle patterns.
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3.4 DDMs VS GANs

While GANs are faster and require less computation power, DDMs are more
robust to different types of noise, making them better suited for medical image
synthesis [59] where image quality and accuracy are of utmost importance.

Both models present viable options to create a data augmentation tool,
however a DDM brings more advantages to echocardiography image synthesis,
as stated in papers I and III, since the detail and quality of the synthetic images
is more relevant than the image sample generation time.

Echocardiography is an essential tool in the diagnosis and treatment of many
cardiac conditions, and the quality of medical images is highly relevant. In recent
years, diffusion models have emerged as a powerful technique for generating high
quality medical images. These models utilize complex mathematical algorithms to
model the diffusion of molecules within biological tissue, providing a detailed and
accurate representation of the tissue’s structure. The result is echocardiography
images with exceptional clarity, contrast, spatial and temporal resolution, which
can aid in the detection of abnormalities and guide treatment decisions. The
quality of the generated image samples with diffusion models has the potential
to significantly enhance the accuracy of diagnoses, making them a valuable tool
in healthcare.

Figure 3.1: Deep generative models (GAN and DDM) can be used to synthesize
high quality echocardiography images, both 2D and 3D. These images can be
then used to train and improve DL algorithms.

3.5 Limitations

Despite the promising results presented, there are possible limitations to the
work presented through this thesis. Mainly, these include access to real medical
data, computational resources, and use of synthetic data to different tasks.

Firstly, to train any DL model a large amount of training data is necessary,
and deep generative models are no exception. The quality of data used for
training significantly influences the final outcome of the model. It is known that
access to large quantities of variable echocardiography images is constrained
by the data privacy limitations imposed that apply to the use of real patients’
medical data. In the first place, to train the GANs and the DDMs introduced
earlier it is necessary to obtain real 2D and 3D echocardiography images, since
the trained model is only as good at predicting new images as the images present
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in the training dataset. This way, the variability present in training dataset is a
limitation to the results possible to obtain.

To extend the application of these models and reduce the effect of this
limitation, the development of more generative models is needed, so that the
lack of plausible synthetic data can no longer be an issue.

Secondly, to train such generative models with improved levels of reliability,
large computational resources are necessary. Using large datasets, dealing with
3D images, and requiring fine tuning of the final models can take long periods of
time, with this time decreasing if the computer processors become sufficiently
powerful. The access to such resources is, therefore, a limitation to training and
obtaining the best generative model as possible. However, attempting different
training strategies offers a solution to this.

Finally, another limitation is linked to the downstream application of the
synthetic images. The type of images generated by the models might not
be suitable for all the possible image analysis applications. As an example,
the images synthesized by the model described in Paper II can be used for
segmentation of the LV, LA, and myocardium, but they might not be very useful
if the structures intended to segment are the mitral valve leaflets or papillary
muscles. Thus, it is important to initially define the application case and then
generate synthetic images accordingly.

3.6 Future Work

The benefits of synthetic medical data and DL are numerous and varied, as
discussed in this section and presented in the research papers included in this
thesis. These technologies have the potential to revolutionize medical research
and healthcare by providing healthcare professionals with the tools to make
more accurate and personalized diagnoses and treatment plans, and by enabling
researchers to develop and test new medical technologies and interventions in a
safe and ethical manner.

Synthetic medical data can be used to simulate complex medical conditions
and procedures, providing healthcare professionals with the opportunity to
train and practice in a risk-free environment. This reduces the risk of
errors and complications during real medical procedures, which can have
serious consequences for patients. This opens the door to generate not only
echocardiography images linked to normal subjects but also generate such type
of images where different health conditions could be present.

Furthermore, the application of these deep generative models can also be
of great utility when it comes to generate different types of images [60], with
characteristics linked to other imaging modalities and also different human
organs. Future work can aim to create a publicly available large dataset of
medical images from different imaging modalities, vendors, organs and health
conditions, opening the door to create a large and diverse public repository
suitable to be used for research and move healthcare systems forward.
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Chapter 4

Conclusion

This thesis is a compilation of three research papers focused on addressing
the topic of medical image synthesis using deep generative models. The work
presented throughout the thesis proves the relevance of the topic applied to
cardiac ultrasound imaging. The work presented in this thesis shows the
advances made on creating different deep generative model architectures capable
of synthesizing realistic 2D and 3D echocardiography images.

The ability to generate synthetic medical images has significant clinical
relevance, particularly in the field of cardiology. Accurate and timely diagnosis
of heart disease is critical to ensuring optimal patient outcomes, and synthetic
medical images can provide clinicians with valuable insights that may be difficult
or impossible to obtain through other means.

4.1 3D Generative Adversarial Network to synthesize
echocardiography images and train 3D segmentation
models

In conclusion, paper I focuses on extending a two dimensional GAN model to
three dimensions and use it to generate different 3D echocardiography volumes,
associated with anatomical annotations of the heart structures. These images
proved to be clinically relevant and meaningful as they showed to be a good
data augmentation resource to train DL models.

4.2 2D Denoising Diffusion Model to synthesize
echocardiography images

Secondly, paper II covers the usage of a different and more efficient and accurate
generative model. It describes the application of an adversarial diffusion model
to generate 2D echocardiography images, which proved its performance by
generating realistic images with variate image domain characteristics. The
results obtained on medical image synthesis using deep generative models opened
up exciting new possibilities for generating synthetic medical images, specifically
2D and 3D echocardiography images. These synthetic images offer a range of
benefits, including increased data availability, improved data quality, reduced
reliance on sometimes cumbersome imaging protocols, and no privacy issues
linked to the data.
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4.3 Clinical usability of synthetic echocardiography images
generated with a 3D Denoising Diffusion Model

Finally, paper III shows the usability of a 3D DDM to synthesize 3D heart
volumes, offering a comparison to the results from the first paper. Furthermore,
the use of advanced and novel deep generative models in image synthesis has the
potential to revolutionize the field of medical imaging by enabling researchers to
generate high quality synthetic images on demand, tailored to the specific needs
of study groups. This could have significant implications for the diagnosis and
treatment of a wide range of medical conditions.

Overall, however, the potential benefits of image synthesis using deep
generative models are enormous [61], and this technology is likely to play an
increasingly important role in the field of medical imaging in the years to come.
As researchers continue to explore the possibilities of synthetic medical images,
it is clear that this field holds enormous promise for improving patient outcomes
and advancing our understanding of the human body.

30



Bibliography

[1] Organization, W. H., Cardiovascular diseases (CVDs), en.
[2] Garcea, F., Serra, A., Lamberti, F., and Morra, L., “Data augmentation for

medical imaging: A systematic literature review,” Computers in Biology
and Medicine, vol. 152, p. 106 391, Jan. 2023.

[3] Uzunova, H., Wilms, M., Forkert, N. D., Handels, H., and Ehrhardt,
J., “A systematic comparison of generative models for medical images,”
International Journal of Computer Assisted Radiology and Surgery, vol. 17,
no. 7, pp. 1213–1224, Jul. 2022.

[4] OpenStax, 19.1 heart anatomy - anatomy and physiology |openstax.
[5] Association, A. H., Ejection fraction heart failure measurement.
[6] Rehman, R., Yelamanchili, V. S., and Makaryus, A. N., “Cardiac imaging,”

in Treasure Island (FL): StatPearls Publishing, 2022.
[7] Hasegawa, H., “Very high frame rate ultrasound for medical diagnostic

imaging,” AIP Conference Proceedings, vol. 2173, no. 1, Nov. 2019.
[8] Omar, A. M. S., Bansal, M., and Sengupta, P. P., “Advances in

echocardiographic imaging in heart failure with reduced and preserved
ejection fraction,” Circulation Research, vol. 119, no. 2, pp. 357–374, Jul.
2016.

[9] Klibanov, A. L. and Hossack, J. A., “Ultrasound in radiology: From
anatomic, functional, molecular imaging to drug delivery and image-guided
therapy,” Investigative radiology, vol. 50, no. 9, pp. 657–670, Sep. 2015.

[10] Subramani, S., “Comparison between 2d and 3d echocardiography for
quantitative assessment of mitral regurgitation: Current status,” Annals
of Cardiac Anaesthesia, vol. 25, no. 2, pp. 198–199, 2022.

[11] Turton, E. W. and Ender, J., “Role of 3d echocardiography in cardiac
surgery: Strengths and limitations,” Current Anesthesiology Reports, vol. 7,
no. 3, pp. 291–298, 2017.

[12] Platts, D. G., Humphries, J., Burstow, D. J., Anderson, B., Forshaw,
T., and Scalia, G. M., “The use of computerised simulators for training
of transthoracic and transoesophageal echocardiography. the future of
echocardiographic training?” Heart, Lung & Circulation, vol. 21, no. 5,
pp. 267–274, May 2012.

[13] Biswas, M., Patel, R., German, C., et al., “Simulation-based training in
echocardiography,” Echocardiography (Mount Kisco, N.Y.), vol. 33, no. 10,
pp. 1581–1588, Oct. 2016.

31



Bibliography

[14] Jensen, J. A., “A model for the propagation and scattering of ultrasound
in tissue,” The Journal of the Acoustical Society of America, vol. 89, no. 1,
pp. 182–190, Jan. 1991.

[15] Gao, H., Hergum, T., Torp, H., and D’hooge, J., “Comparison of the
performance of different tools for fast simulation of ultrasound data,”
IEEE Ultrasonics Symposium, vol. 52, no. 5, pp. 573–577, Jul. 2012.

[16] Gao, H., Choi, H. F., Claus, P., et al., “A fast convolution-based
methodology to simulate 2-d/3-d cardiac ultrasound images,” IEEE
transactions on ultrasonics, ferroelectrics, and frequency control, vol. 56,
no. 2, pp. 404–409, Feb. 2009.

[17] Hergum, T., Crosby, J., Langhammer, M. J., and Torp, H., “The effect
of including fiber orientation in simulated 3d ultrasound images of the
heart,” ISSN: 1051-0117, Oct. 2006, pp. 1991–1994.

[18] Yao, C., Simpson, J., Schaeffter, T., and Penney, G., “Multi-view 3d
echocardiography compounding based on feature consistency,” Physics in
medicine and biology, vol. 56, pp. 6109–28, Sep. 2011.

[19] Votta, E., Caiani, E., Veronesi, F., Soncini, M., Montevecchi, F., and
Redaelli, A., “Mitral valve finite-element modelling from ultrasound data:
A pilot study for a new approach to understand mitral function and clinical
scenarios,” Philosophical transactions. Series A, Mathematical, physical,
and engineering sciences, vol. 366, pp. 3411–34, Jul. 2008.

[20] Verhey, J. F., Nathan, N. S., Rienhoff, O., Kikinis, R., Rakebrandt, F., and
D’Ambra, M. N., “Finite-element-method (fem) model generation of time-
resolved 3d echocardiographic geometry data for mitral-valve volumetry,”
Biomedical Engineering Online, vol. 5, p. 17, Mar. 2006.

[21] Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning. MIT Press,
2016.

[22] Gandhi, V. C. and Gandhi, P. P., “A survey - insights of ml and dl in health
domain,” in 2022 International Conference on Sustainable Computing and
Data Communication Systems (ICSCDS), Apr. 2022, pp. 239–246.

[23] Scheetz, J., Rothschild, P., McGuinness, M., et al., “A survey of clinicians
on the use of artificial intelligence in ophthalmology, dermatology, radiology
and radiation oncology,” Scientific Reports, vol. 11, no. 1, p. 5193, Mar.
2021.

[24] Asch, F. M., Poilvert, N., Abraham, T., et al., “Automated echocardio-
graphic quantification of left ventricular ejection fraction without volume
measurements using a machine learning algorithm mimicking a human
expert,” Circulation: Cardiovascular Imaging, vol. 12, no. 9, Sep. 2019.

[25] Shorten, C. and Khoshgoftaar, T. M., “A survey on image data augmenta-
tion for deep learning,” Journal of Big Data, vol. 6, no. 1, Jul. 2019.

[26] Zhang, D., Lin, Y., Chen, H., et al., Deep learning for medical image
segmentation: Tricks, challenges and future directions, arXiv:2209.10307
[cs], Sep. 2022.

32



Bibliography

[27] Kaji, S. and Kida, S., “Overview of image-to-image translation by use of
deep neural networks: Denoising, super-resolution, modality conversion, and
reconstruction in medical imaging,” Radiological Physics and Technology,
vol. 12, no. 3, pp. 235–248, Sep. 2019.

[28] Uzunova, H., Ehrhardt, J., and Handels, H., “Memory-efficient gan-based
domain translation of high resolution 3d medical images,” Computerized
Medical Imaging and Graphics, vol. 86, Dec. 2020.

[29] Yang, Q., Yan, P., Zhang, Y., et al., “Low-dose ct image denoising using a
generative adversarial network with wasserstein distance and perceptual
loss,” IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1348–1357,
Jun. 2018.

[30] Güngör, A., Askin, B., Soydan, D. A., Saritas, E. U., Top, C. B., and Çukur,
T., “Transms: Transformers for super-resolution calibration in magnetic
particle imaging,” IEEE Transactions on Medical Imaging, vol. 41, no. 12,
pp. 3562–3574, Dec. 2022.

[31] Lustermans, D. R. P. R. M., Amirrajab, S., Veta, M., Breeuwer, M., and
Scannell, C. M., “Optimized automated cardiac mr scar quantification with
gan-based data augmentation,” arXiv:2109.12940 [cs, eess], Sep. 2021.

[32] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A., “Image-to-image translation
with conditional adversarial networks,” arXiv:1611.07004 [cs], Nov. 2018.

[33] Huo, Y., Xu, Z., Moon, H., et al., “Synseg-net: Synthetic segmentation
without target modality ground truth,” IEEE Transactions on Medical
Imaging, vol. 38, no. 4, pp. 1016–1025, Apr. 2019.

[34] Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al., “Generative adversarial
networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, Oct.
2020.

[35] Arjovsky, M. and Bottou, L., Towards principled methods for training
generative adversarial networks, arXiv:1701.04862 [cs, stat], Jan. 2017.

[36] Mirza, M. and Osindero, S., Conditional generative adversarial nets,
arXiv:1411.1784 [cs, stat], Nov. 2014.

[37] Abu-Srhan, A., Almallahi, I., Abushariah, M. A. M., Mahafza, W., and
Al-Kadi, O. S., “Paired-unpaired unsupervised attention guided gan with
transfer learning for bidirectional brain mr-ct synthesis,” Computers in
Biology and Medicine, vol. 136, p. 104 763, Sep. 2021.

[38] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A., “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” arXiv:1703.10593
[cs], Aug. 2020.

[39] Kingma, D. P. and Welling, M., Auto-encoding variational bayes,
arXiv:1312.6114 [cs, stat], Dec. 2022.

[40] Esser, P., Rombach, R., and Ommer, B., Taming transformers for high-
resolution image synthesis, Jun. 2021.

33



Bibliography

[41] Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Ganguli,
S., Deep unsupervised learning using nonequilibrium thermodynamics,
arXiv:1503.03585 [cond-mat, q-bio, stat], Nov. 2015.

[42] Nichol, A. and Dhariwal, P., Improved denoising diffusion probabilistic
models, arXiv:2102.09672 [cs, stat], Feb. 2021.

[43] Dhariwal, P. and Nichol, A., Diffusion models beat gans on image synthesis,
arXiv:2105.05233 [cs, stat], Jun. 2021.

[44] Dodge, Y., The Oxford Dictionary of Statistical Terms. Oxford University
Press, 2003.

[45] Ho, J., Jain, A., and Abbeel, P., “Denoising diffusion probabilistic models,”
in Proceedings of the 34th International Conference on Neural Information
Processing Systems, ser. NIPS’20, Red Hook, NY, USA: Curran Associates
Inc., Dec. 2020, pp. 6840–6851.

[46] Xiao, Z., Kreis, K., and Vahdat, A., Tackling the generative learning
trilemma with denoising diffusion gans, arXiv:2112.07804 [cs, stat], Apr.
2022.

[47] Nichol, A., Dhariwal, P., Ramesh, A., et al., Glide: Towards photore-
alistic image generation and editing with text-guided diffusion models,
arXiv:2112.10741 [cs], Mar. 2022.

[48] Karagiannakos, S., Deep Learning in Production. Leanpub, Nov. 2021.
[49] Özbey, M., Dalmaz, O., Dar, S. U., et al., Unsupervised medical image

translation with adversarial diffusion models, arXiv:2207.08208 [cs, eess],
Oct. 2022.

[50] Kazeminia, S., Baur, C., Kuijper, A., et al., Gans for medical image
analysis, arXiv:1809.06222 [cs, stat], Oct. 2019.

[51] Gilbert, A., Marciniak, M., Rodero, C., Lamata, P., Samset, E., and Mcleod,
K., “Generating synthetic labeled data from existing anatomical models:
An example with echocardiography segmentation,” IEEE Transactions on
Medical Imaging, vol. 40, no. 10, pp. 2783–2794, Oct. 2021.

[52] Güngör, A., Dar, S. U., Öztürk, Ş., et al., Adaptive diffusion priors for
accelerated mri reconstruction, arXiv:2207.05876 [cs, eess], Nov. 2022.

[53] Pinaya, W. H. L., Graham, M. S., Gray, R., et al., Fast unsuper-
vised brain anomaly detection and segmentation with diffusion models,
arXiv:2206.03461 [cs, eess, q-bio], Jun. 2022.

[54] Pinaya, W. H. L., Tudosiu, P.-D., Dafflon, J., et al., “Brain imaging
generation with latent diffusion models,” Mukhopadhyay, A., Oksuz, I.,
Engelhardt, S., Zhu, D., and Yuan, Y., Eds., ser. Lecture Notes in Computer
Science, Springer Nature Switzerland, 2022, pp. 117–126.

[55] Dorjsembe, Z., Odonchimed, S., and Xiao, F., “Three-dimensional medical
image synthesis with denoising diffusion probabilistic models,” Jun. 2022.

34



Bibliography

[56] Kim, B. and Ye, J. C., “Diffusion deformable model for 4d temporal medical
image generation,” in Medical Image Computing and Computer Assisted
Intervention – MICCAI 2022, Wang, L., Dou, Q., Fletcher, P. T., Speidel,
S., and Li, S., Eds., ser. Lecture Notes in Computer Science, Springer
Nature Switzerland, 2022, pp. 539–548.

[57] Shokraei Fard, A., Reutens, D. C., and Vegh, V., “From cnns to gans
for cross-modality medical image estimation,” Computers in Biology and
Medicine, vol. 146, p. 105 556, Jul. 2022.

[58] Duong, M. T., Rauschecker, A. M., Rudie, J. D., et al., “Artificial
intelligence for precision education in radiology,” The British Journal
of Radiology, vol. 92, no. 1103, Nov. 2019.

[59] Khader, F., Mueller-Franzes, G., Arasteh, S. T., et al., Medical diffusion:
Denoising diffusion probabilistic models for 3d medical image generation,
arXiv:2211.03364 [cs, eess], Jan. 2023.

[60] Yu, B., Wang, Y., Wang, L., Shen, D., and Zhou, L., “Medical image
synthesis via deep learning,” Advances in Experimental Medicine and
Biology, vol. 1213, pp. 23–44, 2020.

[61] Svoboda, D. and Burgos, N., “Chapter 1 - introduction to medical and
biomedical image synthesis,” in Biomedical Image Synthesis and Simulation,
ser. The MICCAI Society book Series, Burgos, N. and Svoboda, D., Eds.,
Academic Press, Jan. 2022, pp. 1–3.

35





Papers





Paper I

A Data Augmentation Pipeline to
Generate Synthetic Labeled
Datasets of 3D Echocardiography
Images Using a GAN

Cristiana Tiago, Andrew Gilbert, Ahmed Salem Beela, Svein
Arne Aase, Sten Roar Snare, Jurica Sprem, Kristin McLeod
Published in IEEE Access, 16 September 2022, volume 10, pp. 98803–98815.
DOI: 10.1109/ACCESS.2022.3207177.

I

Abstract

Due to privacy issues and limited amount of publicly available labeled
datasets in the domain of medical imaging, we propose an image generation
pipeline to synthesize 3D echocardiographic images with corresponding
ground truth labels, to alleviate the need for data collection and for
laborious and error-prone human labeling of images for subsequent
Deep Learning (DL) tasks. The proposed method utilizes detailed
anatomical segmentations of the heart as ground truth label sources.
This initial dataset is combined with a second dataset made up of real
3D echocardiographic images to train a Generative Adversarial Network
(GAN) to synthesize realistic 3D cardiovascular Ultrasound images paired
with ground truth labels. To generate the synthetic 3D dataset, the trained
GAN uses high resolution anatomical models from Computed Tomography
(CT) as input. A qualitative analysis of the synthesized images showed
that the main structures of the heart are well delineated and closely follow
the labels obtained from the anatomical models. To assess the usability of
these synthetic images for DL tasks, segmentation algorithms were trained
to delineate the left ventricle, left atrium, and myocardium. A quantitative
analysis of the 3D segmentations given by the models trained with the
synthetic images indicated the potential use of this GAN approach to
generate 3D synthetic data, use the data to train DL models for different
clinical tasks, and therefore tackle the problem of scarcity of 3D labeled
echocardiography datasets.

This work was supported by the European Union’s Horizon 2020 Research and Innovation
Programme through the Marie-Skłodowska Curie Grant under Agreement 860745.
The code is publicly available in: https://github.com/CristianaTiago/3D-echo-generation
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I.1 Introduction

Medical imaging plays a crucial role in optimizing treatment pathways. Saving
time when it comes to diagnosis and treatment planning enables the clinicians
to focus on more complicated cases.

Many modalities are used to image the heart, such as Computed Tomography
(CT), Magnetic Resonance (MR), and Ultrasound imaging, enabling several
structural and functional parameters related to the organ’s performance to be
estimated. Such parameters are the basis of clinical guidelines for diagnosis and
treatment planning.

Echocardiography is the specific use of ultrasound to image the heart. This
imaging modality is widely used given its advantages of being portable, relatively
low-cost, and the fact that the use of ionizing radiation is not required.

Deep Learning (DL), and specifically Convolutional Neural Networks (CNNs),
have become extensively applied in medical image analysis because they facilitate
the automation of many tedious clinical tasks and workflows such as estimation
of ejection fraction, for example. These algorithms are capable of approaching
human-level performance [1], thus potentially saving clinicians’ time without
decreasing the quality of care for patients. In fact, clinicians agree that using
DL algorithms in the clinical workflow also improves patient access to disease
diagnoses, increasing the final diagnosis confidence levels [2]. DL models can
be developed to perform numerous medical tasks such as image classification,
segmentation and even region/structure detection [3].

Echocardiography images can be acquired both in 2D and 3D. Time can also
be taken into account, generating videos. 3D echocardiography images can be
more difficult to assess than 2D images. However, for some specific application
cases, 3D image acquisition brings great advantages since it can offer more
accurate and reproducible measurements. One such case is ventricle and atrium
volumes [4]. Amongst the causes of lack of annotated 3D echocardiography
datasets are the higher complexity to acquire 3D echocardiography images and
the fact that 3D is still not part of all echocardiography routine exams. Also, even
when 3D images are recorded, delineating the structures in them is a challenging,
time consuming, and user dependent task. Taken together and adding the fact
that privacy regulations to access medical data are becoming stricter, these
can explain why there is a lack of publicly available datasets of such type of
images. Therefore, having an approach able to address this image scarcity is
necessary. This current lack of 3D medical data and the great need of high
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quality annotated data required by the DL models impacts the development of
such algorithms and therefore the scientific and technological development of the
3D medical imaging field. Synthetic generation of labeled 3D echocardiography
images is a DL based approach that provides a solution for this problem.

Synthetic data can help in the development of DL models for image analysis
[5] and accurate labeling of these images. Furthermore, this approach works
as a data augmentation strategy by generating additional data. It is known
that creating datasets with a combination of real and synthetic images and use
them to train algorithms that tackle medical challenges represents a successful
solution to the image scarcity [6] problem. Such type of synthetic images even
increase the heterogeneity present on these datasets, facilitating a more efficient
performance of the trained models as they are exposed to a larger variety of
images.

Generative Adversarial Networks (GANs) are specific DL architectures that
create models capable of generating medical images closely resembling real images
acquired from patients. These deep generative models rely on a generator and
a discriminator. While the straightforward GAN discriminator distinguishes
between real and fake, i.e., generated, images, the generator not only attempts
to deceive the discriminator but also tries to minimize the difference between
the generated image and the ground truth.

The generated synthetic images can even be associated with labels facilitating
the acquisition of large labeled datasets, eliminating the need for manual
annotation, and therefore the variabilities associated with the observer [7],
which largely influences the final output [8]. 3D heart models are a great source
of anatomical labels since they capture accurate information about the organ’s
structures [9]. Different types of models can be used for this purpose, such
as animated models, biophysical models, or even anatomical models obtained
from different imaging modalities [10], [11]. Recently, CT models were used as
label sources to generate 2D echocardiography [12] and cardiac MR images [13],
proving the utility of GANs for this task.

Developing a pipeline to generate synthetic data using GANs to create labeled
datasets addresses the immense need for the large volume of data that DL
algorithms require during training to perform an image analysis task, eliminates
the need to acquire the images from subjects, and saves time of experienced
professionals when annotating them, as the anatomical labels can be extracted
from anatomical models. Usually, when developing such generative models,
imaging artifacts are present and visible on the synthetically generated images.
This widely common GAN performance drawback is addressed by applying
some image post-processing operations [14] on the synthetically generated 3D
echocardiography images.

In practice synthetic images can be used to train DL models because they
represent a good data augmentation strategy [15]. For instance, 3D medical
image segmentation is the most common example of a medical task to which DL
can turn out to be a good application. Labeled datasets made of real images
combined with synthetic ones, which even include the respective anatomical
labels, become the training dataset for 3D DL models, addressing the problem
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of sparse 3D medical data availability [16].

I.1.1 State of the Art

DL has become widely used in medical imaging due to its potential in image
segmentation, classification, reconstruction, and synthesis across all imaging
modalities. Image synthesis has been a research topic for a few decades now,
where some of the more conventional approaches use human-defined rules and
assumptions like shape priors, for example [17]. Also, these image synthesis
techniques depend on the imaging modality being considered to perform certain
tasks. To tackle these shortcomings, CNNs are now becoming a widely used
approach for image synthesis across many medical imaging modalities.

Many reasons motivate medical image generation, both 2D and 3D. Generative
algorithms can perform domain translation, with a large applicability when
converting images from one imaging modality to a different one, as Uzunova et
al. [18] showed in their work converting 3D MR and CT brain images. GANs
can also be used to generate a ground truth for a given input, as these DL
models can be trained in a cyclic way, as is the case of the CycleGAN [19], for
example. Additionally, generation of synthetic data used for DL algorithms
also motivates the application and development of GAN architectures. Several
research groups were able to generate medical images using this methodology
as a data augmentation tool, even though most of them were developed under
a 2D scenario and focused on a few imaging modalities, mainly MRI and CT.
These imaging modalities raise less challenges when compared with Ultrasound
due to the nature of the physics behind the acquisition process.

Ultrasound images have an inherent and characteristic speckle pattern and
their quality is largely influenced by the scanner, the sonographer, and the
patient anatomy. When it comes to generating 3D Ultrasound images a few more
challenges arise, with the speckle pattern having to be consistent throughout
the whole volume being the main one. The anatomical information present in
the generated volume also has to hold this consistency feature.

Huo et al. [20] trained a 2D GAN model, SynSegNet, on CT images and
unpaired MR labels using a CycleGAN. Similarly, Gilbert et al. [12] proposed an
approach to synthesize labeled 2D echocardiography images, using anatomical
models and a CycleGAN as well. The CycleGAN was proposed by Zhu et al.
[19] and works under an unpaired scenario: the images from one training domain
do not have to be related with the images belonging to the other domain. This
GAN learns how to map the images from one to another and vice-versa. The
paired version of this GAN is called Pix2pix. Isola et al. [21] proposed this
image synthesis method which generates images from one domain to the other,
and vice-versa, however the images belonging to the training domains are paired.

As mentioned, 3D echocardiographic data is sparser, but these images can
be generated using GANs, and then used to train new algorithms. Both Gilbert
et al. [12] and Amirrajab et al. [22] investigated the potential use of GAN
synthesized datasets to train CNNs to segment different cardiac structures on
different imaging modalities, but these methods were limited to 2D.
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Hu et al. [23] attempted to generate 2D fetal Ultrasound scan images
at certain 3D spatial locations. They concluded that common GAN training
problems such as mode collapse occur. Abbasi-Sureshjani et al. [24] developed a
method to generate 3D labeled Cardiac MR images relying on CT anatomical
models to obtain labels for the synthesized images, using a SPADE GAN [25].
More recently, Cirillo et al. [26] adapted the original Pix2pix model to generate
3D brain tumor segmentations.

When dealing with medical images, U-Net [27] is a widely used CNN model to
perform image segmentation, for example, since it provides accurate delineation
of several structures on these images. More recently, Isensee et al. [28] proposed
nnU-Net (“no new net”), which automatically adapts to any new datasets and
enables accurate segmentations. nnU-Net can be trained on a 3D scenario and
optimizes its performance to new unseen datasets and different segmentation
tasks, requiring no human intervention.

Existing work to address the challenges of automatic image recognition,
segmentation, and tracking in echocardiography has been mostly focused on
2D imaging. In particular, recent work indicates the potential for applying DL
approaches to accurately perform measurements in echocardiography images.
Alsharqi et al. [29] and Østvik et al. [30] used a DL algorithm to segment the
myocardium in 2D echocardiographic images, from which the regional motion,
and from this the strain, were measured. They showed that motion estimation
using CNNs is applicable to echocardiography, even when the networks are
trained with synthetic data. This work supports the hypothesis that similar
approaches could also work for 3D synthetic data.

A large amount of work has been carried out on medical imaging generation
and it still represents a challenge for the research community. To the best
of our knowledge, the challenge of synthesizing 3D echocardiography images
using GANs did not produce any reproducible results, therefore we propose a
framework able to address this need.

I.1.2 Contributions

We propose an approach for synthesizing 3D echocardiography images paired
with corresponding anatomical labels suitable as input for training DL image
analysis tasks. Thus, the main contributions of the proposed pipeline beyond
the state of the art include:

1. The extension of Gilbert et al. [12] work from 2D to 3D, adapting it from an
unpaired to a paired framework (3D Pix2pix) and proposing an automatic
pipeline to generate any number of 3D echocardiography images, tackling
the lack of public 3D echocardiography datasets and corresponding labels.

2. The creation of a blueprint of heart models and post-processing methods
for optimal generation of 3D synthetic data, creating a generic data
augmentation tool, this way addressing the lack of 3D data generation
works in echocardiography, since it significantly varies from 2D.
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3. The demonstration of the usability of these synthetic datasets for training
segmentation models that achieve high performance when applied to real
images.

I.2 Methodology

The proposed pipeline is summarized in Fig. 1 and described in the following
sections. Section II-A describes the preprocessing stage of annotation of the
GAN training images to create anatomical labels for these. The training and
inference stages are addressed in Section II-B describing how the GAN model
was trained and used to synthesize 3D echocardiography images from CT-based
anatomical labels and how different post-processing approaches, as described
in Section II-C, were applied to these synthetic images. Next, on Section II-D,
details regarding the creation of several synthetic datasets used to train 3D
segmentation models are given, followed by Section II-E where the influence of
adding real images to the synthetic datasets to train segmentation models is
assessed.

Figure I.1: 3D echocardiography image generation pipeline and inference results.
Step 1: during the preprocessing stage, a set of 15 3D heart volumes were labeled
by a cardiologist and anatomical labels for the LV, LA and MYO were generated.
To train the 3D Pix2pix GAN model, the anatomical labels are paired together
with the corresponding real 3D images. Step 2: at inference time, the GAN
model generates one 3D image. An example obtained during this stage is shown.
The proposed method is able to generate physiologically realistic images, giving
correct structural features and image details. Step 3: to show the utility of
the synthetic datasets, 3D segmentation models were trained using these GAN
generated images (black arrow), but other DL tasks can be addressed.
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I.2.1 Data Collection

To train the 3D image synthetization model, an annotated dataset was needed
since this GAN set up works under a supervised scenario where two sets of
images are used for training: a set containing real 3D echocardiography images
and a second set with the correspondent anatomical labels manually performed
by a cardiologist (see Fig.1, training stage).

To create the dataset of real 3D echocardiography images, these were acquired
during one time point of the cardiac cycle of normal subjects, end-diastole in
this work, when the left ventricle (LV) volume is at its largest value. Using
GE Vivid Ultrasound scanners 15 heart volumes were acquired. The second
set of images was made up of the anatomical labels corresponding to each of
the 3D real images included in the set previously described. Each anatomical
label image contains the label for the LV, left atrium (LA), and the myocardium
(MYO).

To annotate the 3D echocardiography images a certified member of the
American National Board of Echocardiography cardiologist, with more than
10 years of experience, used the V7 annotation tool [31] and contoured the
three aforementioned structures (Fig. 1, preprocessing stage) on each of the
volumes. These contours were then post-processed, applying a spline function
to the contour points and resampling it, in order to generate gray scale labeled
images. All the 3D images present on each training dataset were sized to 256 ×
256 × 32.

I.2.2 3D GAN Training

The Pix2pix model was proposed by Isola et al. [21] as a solution to image-to-
image translation across different imaging domains. This model is capable of
generating an output image for each input image by learning a cyclic mapping
function across both training domains. The Pix2pix model works as a conditional
paired GAN: given two training domains containing paired images, it learns how
to generate new instances of each domain. The loss function was kept the same
as presented in the original work – a combination of conditional GAN loss and
the L1 distance. This way it is conditioning the GAN performance, assuring the
information on the generated output image matches the information provided
by the input.

This original work was constructed under a 2D scenario, but in this proposed
work an extension to 3D was performed by changing the original architecture of
the Pix2pix model.

We considered different architectures for the GAN generator and a 3D U-Net
[32] was used to create a 3D version of the Pix2pix model. The discriminator
architecture was kept the same, replacing only 2D layers with the correspondent
3D ones. During training of the GAN, data augmentation operations, including
blurring and rotation, were performed on the fly, increasing the amount of 3D
volumes used without the memory burden of having to save these. The 3D
Pix2pix model used here was built using PyTorch [33] and its training was
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performed over 200 epochs accounting for the images size and computational
memory constraints, considering an initial learning rate of 0.0002 and the Adam
optimizer.

At inference time, a common problem among image synthesis is the presence
of checkerboard artifacts on the generated images. To tackle this problem,
which decreases the quality of the synthesized images, we changed the generator
architecture as suggested in [34] by replacing the transposed convolutions in the
upsampling layers of the 3D U-Net with linear upsampling ones.

In order to generate synthetic echocardiography images for each of the
inference cases, i.e., 3D CT-based heart models, the generator part of the
GAN, which translates images from the anatomical labels domain to the
echocardiography looking images domain, was used. Anatomical models of
the heart [35] obtained from CT were used to create the inference gray scale
labeled images, containing anatomical information about the LV, LA, and MYO.
The main objective of this work was then accomplished by using the GAN as a
data augmentation tool to generate synthetic datasets of 3D echocardiography
images of size 256 × 256 × 32 from these inference images, augmenting the
quantity of 3D echocardiographic image data.

I.2.3 Synthetic Data Post-processing

During the post-processing stage of the synthetic images generated by the GAN,
two different algorithms were experimented. The synthesized images were (a)
filtered using the discrete wavelet transform, following Yadav et al. [36] work
and (b) masked with an Ultrasound cone. The wavelet denoising operation uses
wavelets that localize features in the data, preserving important image features
while removing unwanted noise, such as checkerboard artifacts. An image mask
representing the Ultrasound cone shape was applied to all synthesized images in
order to match true Ultrasound data.

I.2.4 3D Segmentation

The GAN pipeline was able to generate labeled instances of 3D echocardiography
images, as the model is capable of performing paired domain translation
operations. To investigate the utility of the synthetic images, four 3D
segmentation models were trained using the generated synthetic images as
training set.

The trained model architecture for the 3D segmentation task was the 3D nnU-
Net [28]. This network architecture was proposed as a self-adapting framework
for medical image segmentation. This DL model adapts its training scheme,
such as the loss function or slight variations on the model architecture, to the
dataset being used and to the segmentation task being performed. It automates
necessary adaptations to the dataset such as preprocessing, patch and batch size,
and inference settings without the need of user intervention.

To train the first of four 3D segmentation models, MSynthetic, described in this
section, a labeled dataset made of 27 synthetically generated 3D echocardiography
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images (256 × 256 × 32), DSynthetic, was used. This dataset was obtained from
the proposed 3D GAN pipeline at inference time, using anatomical labels from
27 CT 3D anatomical models.

To evaluate the effect of the post-processing operations on the synthesized
images, three other datasets were created –– DW avelet, DCone, and DW aveletCone

—- and three additional segmentation models were trained using these – MW avelet,
MCone, and MW aveletCone, respectively (Fig. 2). DW avelet was made of the
original synthetic images from the DSynthetic dataset but where the wavelet
denoising post-processing algorithm was applied, and DCone, was composed by
the original synthetic images with the cone reshaping post-processing operation.
Finally, a fourth dataset where both post-processing transformations –– wavelet
denoising and cone reshaping — were applied to the original synthetic images,
DW aveletCone, was created. All four datasets contained 27 3D echocardiography
images with corresponding anatomical labels for the LV, LA and MYO.

All four 3D segmentation models, MSynthetic, MW avelet, MCone, and
MW aveletCone, using nnU-Net, were trained on a 5-fold cross validation scenario
during 800 epochs. The initial learning rate was 0.01 and the segmentation
models were also built using PyTorch [33]. The loss function was a combination
of dice and cross-entropy losses, as described in the original work by Isensee et
al. [28].

Dice scores were used to assess the quality of the segmentations. This score
measures the overlap between the predicted segmentation and the ground truth
label extracted from the CT anatomical models. For each segmented structure
the Dice score obtained at validation time is a value between 0 and 1, where the
latter represents a perfect overlap between the prediction and the ground truth.

I.2.5 Real Data Combined with Synthetic – Data Augmentation

In their work, Lustermans et al. [16] showed that adding real data to GAN-
generated synthetic datasets can help improve DL models train.

To facilitate a clearer analysis of the influence of using synthetic data to train
DL models and the utility of this GAN as a data augmentation tool, three other
segmentation models were trained on the datasets DReal, D17Real10Augmented,
and D17Real20Augmented. DReal contained 17 real 3D echocardiography volumes
acquired with GE Vivid Ultrasound scanners and labeled by a cardiologist.

D17Real10Augmented and D17Real20Augmented were made up of the same 17
real volumes just described together with 10 and 20 synthetic GAN-generated
3D echocardiography images, respectively. Thus allowing to assess the influence
of using such type of images during DL models training (Fig. 2).

The 3D segmentation models trained on these datasets were MReal,
M17Real10Augmented, and M17Real20Augmented, respectively. All models used the
nnU-Net architecture implemented with Pytorch. Similar to the ones described
on Section II-D, they were trained for 800 epochs on a 5-fold cross validation
scenario, with the same learning rate and loss function.

At inference time, a test set including real 3D echocardiography images was
segmented by the three aforementioned models. To compare the segmentation
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Figure I.2: Overview of all the created datasets and trained models in this work.
The generative model, 3D Pix2pix, was trained in order to be used to generate
synthetic 3D echocardiography datasets. This dataset, DSynthetic, was post-
processed applying different transformations and 3 other datasets were created

—- DW avelet, DCone, and DW aveletCone. A fifth dataset completely made of real
images, DReal, was created and to it, synthetic images from DSynthetic were
added creating D17Real10Augmented and D17Real20Augmented. All these 7 datasets
were used to train 7 3D segmentation models —- MSynthetic, MW avelet, MCone,
MW aveletCone, MReal, M17Real10Augmented, and M17Real20Augmented.

results with the ones obtained from a cardiologist, Dice scores and Volume
Similarity (VS) were calculated and used as comparison metrics. VS is calculated
as the size of the segmented structures and is of high relevance in a 3D scenario
since Dice score presents some limitations. Similarly to the Dice score, this
evaluation metric takes values between 0 and 1 but is not overlap-based. Instead,
it is a volume based parameter where the absolute volume of a region in one
segmentation is compared with the corresponding region volume in the other
segmentation [37].

I.3 Results

This work’s results are presented as follows: Section III-A focuses on the GAN
training, architectural modifications performed on the 3D Pix2pix model and
their influence on the synthesized images. In Section III-B the influence of
post-processing the synthetic images is shown. Finally, Sections III-C and III-D
show the segmentation predictions from several models trained on different 3D
echocardiography datasets (Fig. 2), as described in Sections II-C and II-D.

I.3.1 GAN Architecture and Training

The chosen GAN architecture influenced the final results. 3D U-Net was chosen
as the generator architecture due to its good performance in the medical image
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domain. The model was trained on a NVIDIA GeForce RTX 2080 Ti GPU and
training took five days.

After applying the architectural changes described in Section II-B to remove
the checkerboard artifacts, it seemed like these became less visible or even
disappeared. However, this correction created some unwanted blurring on the
generated images (Fig. 3), therefore the deconvolution layers were used instead
of upsampling, and the synthesized images were post-processed to remove the
checkerboard artifacts.

Figure I.3: Influence of architectural changes on the GAN generator to remove
checkerboard artifacts. At inference time, a 3D anatomical model was used to
extract the anatomical labels. The first column shows 2 different slices of this
volume at different rotation angles. The middle column shows that synthesizing
images using a GAN with upsampling layers smoothens the checkerboard artifacts
but introduces blurring, which is not visible on the images when using a GAN
with deconvolution layers (right column). Deconvolution layers are preferred to
upsampling ones.

I.3.2 Synthetic Data Post-processing

After training the 3D GAN model and generating synthetic images corresponding
to the input anatomical models, as described in Section II-C, the obtained
3D echocardiography images were post-processed in order to remove the
aforementioned checkerboard artifacts.

The cone edges were slightly wavy in some cases and checkerboard artifacts
were sometimes present. The post-processing experiment, where different
transformations were applied to the synthesized images, showed that applying
these can give a more realistic aspect to the GAN-generated images, ensuring
that the anatomical information remained intact.
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Performing these operations allowed to give a more realistic look to the
generated echocardiography images (Fig. 4).

Figure I.4: 3D Pix2pix model inference results and post-processing step. At
inference time, the anatomical labels were extracted from a 3D heart model.
The first column shows 3 different rotation planes of this volume at different
rotation angles. After generating the correspondent synthetic ultrasound image
(second column) for this inference case, it was post-processed applying a wavelet
denoising transformation to eliminate the checkerboard artifacts (third column)
and also a cone reshaping step to smooth the wavy edges of the ultrasound cone
(fourth column). Post-processing operations give a more realistic look to the
synthesized images as indicated by the enlarged areas framed in red and green
(wavelet denoise) and the white arrows (cone reshape).

I.3.3 Segmentation from Synthetic Datasets

Anatomical models were used in order to synthesize 27 3D echocardiography
images. These were then used to create the synthetic datasets that were used to
train 3D segmentation algorithms, as described in section II-D. Post-processing
operations were performed on these images to create the DW avelet, DCone,
and DW aveletCone datasets. Table 1 shows the average Dice scores (average ±
standard deviation) of each segmented structure (LV, LA, and MYO) for each
trained model — MSynthetic, MW avelet, MCone, and MW aveletCone, obtained
from the validation dataset. Training took around five days for each fold using a
NVIDIA GeForce RTX 2080 GPU, for all epochs. The complete table with all
the Dice scores obtained for each training fold of each model can be found in
Appendix — Table 5.

Adding to the Dice scores and to sustain the usability of synthetic images
to train segmentation algorithms, Fig. 5 shows the 3D segmentation for an
inference 3D echocardiography image acquired from a real subject. Each trained
segmentation model was tested on real cases, at inference time.
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Table I.1: Average validation dice scores (average ± standard deviation) of each
segmented structure (LV, LA, and MYO) for each trained model on completely
synthetic datasets – MSynthetic, MW avelet, MCone, and MW aveletCone. The best
scores are highlighted.

Models
MSynthetic MW avelet MCone MW aveletCone

LV 0.926 ± 0.006 0.927 ± 0.005 0.926 ± 0.006 0.924 ± 0.008
LA 0.818 ± 0.011 0.816 ± 0.010 0.816 ± 0.021 0.814 ± 0.016

MYO 0.808 ± 0.016 0.808 ± 0.017 0.803 ± 0.018 0.801 ± 0.023

I.3.4 Segmentation from Combined Datasets

In Table 2 one can see the average Dice scores (average ± standard deviation),
obtained at validation time, of each segmented structure (LV, LA, and MYO)
for each trained model on the combined datasets: MReal, M17Real10Augmented,
and M17Real20Augmented. In Appendix – Table 4 the complete table with all the
Dice scores for each trained fold of all three models can be found.

Fig. 6 shows the predicted segmentations given by these trained models, next
to the ground truth segmentation provided by a cardiologist. The models were
tested on a test set made of 3D echocardiography images from real subjects.

To compare the output segmentation from the DL models, the Dice scores
and VS were calculated based on the predicted segmentations and the anatomical
labels from a cardiologist and the results are in Table 3.

Table I.2: Average validation dice scores (average ± standard deviation) of each
segmented structure (LV, LA, and MYO) for each trained model on combined
datasets – MReal, M17Real10Augmented, and M17Real20Augmented. The best scores
are highlighted.

Models
MReal M17Real10Augmented M17Real20Augmented

LV 0.938 ± 0.008 0.928 ± 0.006 0.927 ± 0.007
LA 0.862 ± 0.023 0.830 ± 0.016 0.826 ± 0.017

MYO 0.724 ± 0.028 0.767 ± 0.027 0.763 ± 0.025

I.4 Discussion

In this work we built a pipeline to generate synthetic 3D labeled echocardiography
images using a GAN model. These realistic-looking synthetic datasets were used
to train 3D DL models to segment the LV, LA, and MYO.

Moreover, combined datasets including synthetic and real 3D images were
created, with the VS metric supporting that generated 3D echocardiography
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Table I.3: Average test set dice scores (average ± standard deviation) of each
segmented structure (LV, LA, and MYO) and Volume Similarity of the segmented
volume for the MReal, M17Real10Augmented, and M17Real20Augmented models. The
best scores are highlighted.

Models
MReal M17Real10Augmented M17Real20Augmented

Dice score
LV 0.924 ± 0.019 0.929 ± 0.020 0.922 ± 0.017
LA 0.876 ± 0.021 0.874 ± 0.020 0.867 ± 0.022

MYO 0.666 ± 0.041 0.708 ± 0.053 0.680 ± 0.063
Volume Similarity

Heart Volume 0.831 ± 0.038 0.844 ± 0.047 0.836 ± 0.041

Figure I.5: Inference segmentation results from each trained model on synthetic
datasets. On the left is shown a schematic representation of the heart and 2
cutting planes correspondent to a real 3D echocardiography image from the
test set: the 4-chamber (CH), with blue frame, and the 2-CH, with red frame.
On the right, the LV, LA, and MYO segmentation results provided by each
of the 4 segmentation models: a) MSynthetic, b) MW avelet, c) MCone, and d)
MW aveletCone follow. A qualitative analysis of the segmentation results from
each of the models, shows that the one where the training data was not post-
processed, MSynthetic, gives the best output due to a smoother segmentation of
the relevant structures.
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Figure I.6: Inference segmentation results from the trained models on augmented
datasets with synthetic images. On the left is shown a schematic representation
of the heart and 2 cutting planes correspondent to a real 3D echocardiography
image from the test set: the 4-CH, with blue frame, and the 2-CH, with red
frame. On the right, the LV, LA, and MYO segmentation results provided by
the following 3 segmentation models: a) MReal, b) M17Real10Augmented, and c)
M17Real20Augmented, follow. To allow comparison and measure the Dice score
and VS, d) shows the ground truth segmentation performed by a cardiologist. A
qualitative analysis of the segmentation results from each of the models, shows
that combining synthetic with real data improves the segmentation output due
to a more accurate segmentation of the relevant structures.

images can be used to train 5 DL models, as data augmentation. Segmentation
tasks were considered to exemplify the utility of the synthesized data, however
the pipeline is generic and could be applied to generate other imaging data
and train any DL tasks with anatomical labels as input, as further discussed in
this section. A brief discussion on future applications and modifications of this
approach is also presented.

I.4.1 3D Pix2pix GAN – Qualitative Analysis

The pipeline synthesizes 3D echocardiographic datasets with corresponding labels
delineating different structures in the images.

After training the 3D Pix2pix GAN model, a qualitative analysis of the
synthesized images indicated that the main structures of the heart were well
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delineated in the generated images (Fig. 1, inference stage). Moreover, image
details such as the cone, noise, and speckle patterns are also present and are
continuous throughout each volume.

I.4.2 Post-processing and 3D Segmentation – Synthetic Datasets

To evaluate the utilization of synthetic images for research purposes and the
extent to which the post-processing transformations affected the final results,
four segmentation models were trained using four different datasets, as described
earlier in Section III-C.

Despite the very small differences in the Dice scores shown in Table 1 and
in Appendix – Table 5, the inference segmentations (Fig. 5) support the idea
that the model trained on the dataset whose images were not post-processed,
MSynthetic, provided the best segmentation prediction.

The results regarding the influence of the post-processing step on the
synthetically generated images supported the fact that applying a wavelet
denoising transformation or cone reshaping, or even both transformations
together, to these, in order to make the synthetic images look even more realistic,
does not necessarily lead to better results when segmenting the LV, LA, and
MYO (Fig. 5). This result shows some dependence on the DL task being
performed. We segmented large volumes of the 3D image, comparing to its
whole content. For this reason, the subtle differences in the voxels intensities
that create the checkerboard artifacts do not seem to affect the prediction of the
segmentation model.

To create the used synthetic datasets, CT acquired 3D anatomical models of
the heart were used to extract the anatomical labels and create the input cases to
the 3D GAN. The segmentation results and the echocardiography-looking aspect
of the synthetic images pointed towards the generalization of this pipeline, as
it can synthesize 3D echocardiography images, having as labels source different
types of 3D models of the heart. The methodology to generate synthetic datasets
can be generalized to other modalities, diseases, organs, as well as structures
within the same organ (sub-regions of the heart, for example).

Shin et al. [5] and Shorten and Khoshgoftaar [38] showed that GANs can be
widely used to perform data augmentation of medical image datasets. The work
from these authors, together with the presented results, encourage the main
contributions of this work stating that GANs can be used to generate synthetic
images with labels, working as a data augmentation strategy, and tackling the
concern of scarcity of 3D echocardiography labeled datasets, especially if there
are underrepresented data samples within the available real datasets.

I.4.3 3D Segmentation – Combined Datasets

Further results on the usage of synthetic datasets were explored and presented in
Section III-D. Here, three datasets made of GAN generated and real 3D images
were used to train more segmentation models and further evaluate the influence
of the presence of real data in these datasets, as demonstrated in [16].
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Fig. 6 a), b), and c) showed the anatomical segmentations of the LV,
LA, and MYO predicted by the best trained fold of each model – MReal,
M17Real10Augmented, and M17Real20Augmented. From the qualitative analysis,
the segmentations delineate well the anatomical structures in consideration
throughout the whole volume. At the same time, and similarly to what was
discussed on Section IV-B, the average Dice scores presented in Table 2 led to
the conclusion that having a dataset of real images combined with synthetic
ones leads to more accurate final segmentations.

From the obtained results is also possible to assess the influence of using
combined datasets with different percentages of synthetic data. Table 2 and
Table 3 show that adding synthetic data to the initial real dataset improves
the 3D segmentation of real 3D echocardiography images. They also show that
adding larger amounts of synthetic data does not improve the results to a large
extent.

Fig. 6 d) showed the ground truth inference case segmentation performed by
a cardiologist. From these ground truth segmentations available for all the cases
in the test set, the Dice scores and the VS in Table 3 were calculated.

Given the 3D nature of the task and due to the Dice metric limitations, the
VS was additionally calculated and used as comparison metric. In particular,
M17Real10Augmented showed to perform better at segmenting when the Dice score
was considered as performance metric. On the other hand, M17Real20Augmented

performed better in terms of VS metric. These results showed that the models
trained on the combined datasets, i.e., with real and synthetic images, provided
more accurate segmentation outputs (the 3D volume), relatively to the model
trained with only real data, MReal. The results support the previous work done
by [16], confirming that including synthetic data on datasets made of real data
improves and helps the final outcome of the DL models.

Additionally, this result reinforces that the proposed pipeline, relying on a
3D GAN model, can be used as a data augmentation tool. This framework arises
as a solution to the lack of publicly available medical labeled datasets.

I.4.4 Further Applications

The presented pipeline has the potential to be further explored. As the demand
for medical images is increasing, the proposed approach can be extended to
synthesize images from other imaging modalities other than Ultrasound, such as
MR or CT. It can also generate images where other organs are represented or
even fetuses [13].

Another extension of this work would be to use different types of 3D
models from which ground truth anatomical labels could be extracted. Besides
anatomical models, animated or biophysical models represent other options that
can be considered. The usage of anatomical models of pathological hearts are
another possible extension, in order to generate pathological 3D echocardiography
scans. Depending on the type of 3D model being considered, different annotations
can be extracted, increasing the amount of clinically relevant tasks where these
synthetic datasets can be used.

55



I. A Data Augmentation Pipeline to Generate Synthetic Labeled Datasets of 3D
Echocardiography Images Using a GAN

The generated 3D echocardiography images illustrated a heart volume during
one time step of the whole cardiac cycle (end-diastole). It would be of great
interest to generate 3D images of the heart during other cardiac cycle events and
even to generate a beating volume throughout time, as high temporal resolution
is one of the main strengths of Ultrasound imaging. On the other hand, a
limitation to the Ultrasound images generation is that different scanning probe
combinations lead to the acquisition of images with different quality levels. This
large variability makes the GAN learning process more complex.

In this work we explored, to an extent, the effects that architectural changes
of the GAN model have on the final synthesized images. We used different
architectures for the GAN generator but more 3D CNNs exist and are showing
up every day. These can be used to train the generative models, since DL
strategies are becoming extremely common to use as medical image synthesis
and analysis tools. Once the images were synthesized, we used wavelet denoising
and an in-house developed algorithm to fix the Ultrasound cone edges. However,
there are other denoising transformations and cone reshaping algorithms that
can be experimented to post-process the images.

We trained several DL models to perform 3D segmentation to show that
synthesized images can be used as input to train DL models. Nevertheless, the
pipeline is generic and could be applied to other DL tasks that automatically
assign anatomical labels to images, e.g., structure/feature recognition or
automatic structural measurements. Furthermore, the GAN-generated labeled
datasets are not only useful as input to train DL models but also could be used
to train researchers and clinicians on image analysis.

Finally, during this pipeline development, computational memory constraints
were present, mainly due to the large size of 3D volumes, complicating the
process of developing a framework adapted to these. Future work will include
study strategies to overcome these limitations.

I.5 Conclusion

An automatic data augmentation pipeline to create 3D echocardiography images
and corresponding anatomical labels using a 3D GAN model was proposed. DL
models are becoming widely used in clinical workflows and large volumes of
medical data is a fundamental requirement to develop such algorithms with high
accuracy. Generating synthetic data that could be used for the purpose of training
DL models is of utmost importance since this generative model can become
a widely used tool to address the existent lack of publicly available data and
increasing challenges with moving data due to privacy regulations. Furthermore,
the proposed methodology not only generates synthetic 3D echocardiography
images but also associates labels to these synthetic images, eliminating the need
for experienced professionals to do so, and without adding potential bias in the
labels.

The proposed GAN model shows a generalization component since it can
generate synthetic echocardiography images using 3D anatomical models of the

56



Conclusion

heart obtained for imaging modalities other than from Ultrasound.
The obtained results in this work indicate that synthetic datasets made up of

GAN-generated 3D echocardiography images, and respective labels, are a good
data augmentation resource to train and develop DL models that can be used to
perform different medical tasks in the cardiac imaging domain, such as heart
segmentation, where real patients’ data is analyzed.

Appendix
See Table 4 and Table 5.

Table I.4: Validation dice scores of each segmented structure (LV, LA, and MYO)
for each trained model on combined datasets -— MReal, M17Real10Augmented,
and M17Real20Augmented. The higher the score, the better the agreement between
the model prediction and the ground truth segmentation. The best training fold
of each model is highlighted.

Models
MReal M17Real10Augmented M17Real20Augmented

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
LV 0.933 0.932 0.950 0.930 0.943 0.924 0.929 0.919 0.938 0.930 0.917 0.928 0.935 0.934 0.923
LA 0.837 0.869 0.873 0.837 0.896 0.830 0.841 0.820 0.808 0.853 0.831 0.841 0.838 0.829 0.793

MYO 0.710 0.699 0.766 0.697 0.750 0.745 0.745 0.779 0.815 0.753 0.715 0.771 0.766 0.780 0.785

Table I.5: Validation dice scores of each segmented structure (LV, LA, and MYO)
for each trained model on completely synthetic datasets – MSynthetic, MW avelet,
MCone, and MW aveletCone. The higher the score, the better the agreement
between the model prediction and the ground truth segmentation. The best
training fold of each model is highlighted.

Models
MSynthetic MW avelet MCone MW aveletCone

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
LV 0.924 0.930 0.924 0.918 0.934 0.927 0.930 0.923 0.919 0.934 0.926 0.930 0.921 0.918 0.933 0.928 0.928 0.914 0.914 0.935
LA 0.833 0.831 0.809 0.810 0.807 0.821 0.831 0.806 0.815 0.805 0.837 0.842 0.805 0.811 0.787 0.834 0.832 0.803 0.793 0.807

MYO 0.824 0.822 0.794 0.784 0.816 0.829 0.822 0.791 0.785 0.814 0.824 0.819 0.783 0.780 0.809 0.828 0.813 0.775 0.773 0.816
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IIAbstract

Currently, medical image domain translation operations show a high
demand from researchers and clinicians. Amongst other capabilities, this
task allows the generation of new medical images with sufficiently high
image quality, making them clinically relevant. Deep Learning (DL)
architectures, most specifically deep generative models, are widely used to
generate and translate images from one domain to another. The proposed
framework relies on an adversarial Denoising Diffusion Model (DDM)
to synthesize echocardiography images and perform domain translation.
Contrary to Generative Adversarial Networks (GANs), DDMs are able
to generate high quality image samples with a large diversity. If a DDM
is combined with a GAN, this ability to generate new data is completed
at an even faster sampling time. In this work we trained an adversarial
DDM combined with a GAN to learn the reverse denoising process, relying
on a guide image, making sure relevant anatomical structures of each
echocardiography image were kept and represented on the generated image
samples. For several domain translation operations, the results verified
that such generative model was able to synthesize high quality image
samples: MSE: 11.50 ± 3.69, PSNR (dB): 30.48 ± 0.09, SSIM: 0.47 ±
0.03. The proposed method showed high generalization ability, introducing
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a framework to create echocardiography images suitable to be used for
clinical research purposes.
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II.1 Introduction

Echocardiography is the application of ultrasound imaging to the heart. This
imaging modality is the most frequently used to image this organ, because
it carries several advantages: there’s a relative low cost and the equipment
is portable, in comparison with Computed Tomography (CT) and Magnetic
Resonance (MR). Ultrasound imaging also has the benefit of not using any
ionizing radiation, this way not being harmful to the patient.

One other big advantage of echocardiography is its temporal resolution. When
investigating cardiac motion, this modality still holds an advantage over others.
Its wide usage in clinical practice and workflows make echocardiography a first
port of call to detect pathological cases and assess the anatomy and function of
the heart.

To optimize treatment pathways and spare clinicians’ time to go over more
severe cases, DL in healthcare has been proving its utility during the past years
[1]. Besides these mentioned advantages, DL helps clinicians to reach the final
diagnosis quicker without compromising the confidence level of it [2], reaching
human-level performance [3].

In fact, DL has many and varied applications in the medical imaging domain.
Image classification, anatomical structures segmentation and even detection of
regions of interest are some of the most common usages of these mathematical
methods. However, more recently other applications have been gaining terrain
such as image generation [4] and image domain translation/adaptation [5], which
help extend the usability in this domain, where there are increasing challenges
in collecting sufficient and variable datasets.

DL algorithms learn functions and patterns from data, either from time series
or images. Even though with echocardiography being such a widely used cardiac
imaging modality, the access to medical image data became more complicated
due to all the current anonymization and privacy regulations. Consequently,
there is a current need for medical data specially to train DL algorithms.

Several studies, including [6] and [7] showed that synthetically generated
images have a positive influence in the research and development of DL algorithms.
Adding synthetic data to datasets made of real images adds variety to these
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medical image datasets and presents a solution to data scarcity, a very real
phenomenon existent in the medical DL field.

Generating synthetic data using deep generative models [8] provides a solution
for this issue. Deep generative models are a subset of DL architectures trained to
synthesize data. Within this group of neural networks, current methods include
Variational Autoencoders and GANs. More recently, DDMs are also found under
this category.

A GAN is a generative model based on a generator and a discriminator,
where the former attempts to deceive the latter by minimizing the difference
between the synthetically generated images and the real ones.

Diffusion models, similarly to all deep generative models, attempt to learn,
by approximation, the probability distribution function representative of some
training dataset. Particularly for these models, making them distinct from the
rest, the generative procedure is based on the destruction of the input image
by adding Gaussian noise to it, during a large enough number of steps, and
consequently learn how to reverse these steps [9]. This way, it is possible to
generate a synthetic image simply by denoising an initial randomly noisy input
image. These models provide high fidelity/quality synthetic samples.

Creating a data augmentation tool to generate realistic echocardiography
images is of need as it provides a solution to the scarcity of medical data.

II.1.1 State of the Art

Several image synthesis approaches are in practice today, with the choice of
approach depending on the type of image being generated. When it comes to
medical image synthesis, the choice of the imaging modality has a large impact
on the selected models used to generate these images.

Most of the recent results and approaches adopt DL models to perform
domain translation, with GANs being widely used since they can generate
high quality samples, with a high level of realism [10], across several medical
imaging modalities such as MRI [11] - [12], CT [13], and Ultrasound, namely
echocardiography [14] - [15], with a fast sampling time. In a GAN, the generator
tries to synthesize a sample that matches the target domain, which has an
inherent data distribution function. The discriminator compares this synthesized
image with the ones from the training dataset in order to distinguish them.

Echocardiography raises more challenges, when compared with other imaging
modalities, due to the physics behind the acquisition and image reconstruction
processes. Particularly [14] and [15] focused on generating 3D and 2D
echocardiography, respectively. This type of medical image has inherent
characteristics that strongly influence the final acquired image, namely the
speckle pattern, the scanner functional characteristics, the patient’s anatomy,
and the sonographer’s skills. Nevertheless, both works use GANs to synthesize
the images, but the former considers a supervised GAN training and the latter
an unsupervised approach.

However, GANs do not have a large diversity in the type of images they can
generate, often leading the discriminator to converge too soon in training or
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to mode collapse [16]. This phenomenon is very common when training GANs
which drives the model to generate image samples with less quality and very
little or even no variability at all.

DDMs, on the other hand, are capable of generating samples with a large
variability without compromising its high quality [17]. These models were initially
introduced by [18] in order to save time when sampling data from a training
dataset, without having to learn a great number of training steps and parameters.
These models destroy the input data distribution during a sufficiently large
number of time steps and then use a neural network to learn how to reverse this
process, restructuring the data.

In recent years, Ho et al. [9] and Song et al. [19] attempted to show an
equivalence relationship between DDMs and score based generative models, which
attribute a score to probability distributions based on the likelihood of data
[20]. The work on training DDMs, based on original statistical physics theory,
showed good results both in terms of synthetic image variability [21] and also of
sample quality. Dhariwal and Nicol [17] demonstrated that DDMs are capable
of outperforming GANs in terms of generated image quality. Furthermore, Nicol
and Dhariwal [22] also showed that DDMs generate images with high likelihood
values when such models are trained on datasets with a wide variety of images,
what brings more complexity to the training dataset probability distribution.

To tackle the longer sampling time inherent to DDMs, both [22] and [23]
presented contributions in terms of accelerating the forward diffusion process
and adding noise to the input image over less steps. This way reducing the
complexity of learning the reverse diffusion process and allowing to denoise image
samples in a faster way, without compromising the image quality.

DDMs’ application to medical image generation is yet not fully explored
mainly due to its larger sampling time [9]. More recently, Xiao et al. [24]
proposed to merge DDMs with GANs, in an attempt to make use of both
generative models’ strengths and tackle their individual weaknesses. This group
proposed a denoising diffusion GAN, using a conditional GAN to model larger
denoising steps during the reverse diffusion process.

Following the learning of conditional diffusion processes, Özbey et al. [25]
proposed an adversarial diffusion model, SynDiff, where images from a source
domain are used during training to guide the denoising diffusion process. This
group applied such a model to perform medical image translation between brain
MRI T1 and T2 weighted images. They were able to generate images of each
domain, having an image from the other domain as a guide during the reverse
diffusion process.

Taking the application of DDMs to extra dimensions, Kim and Ye [26] added
a deformation module to the diffusion one and attempted to generate temporal
volume images (3D + time) cardiac MRI images.

In this proposed work, we applied such deep generative models to generate
echocardiography images. To keep a wide variety in the generated samples
and decreasing the sampling time, without compromising the image quality, we
propose a data augmentation tool based on a DDM and a GAN. The proposed
adversarial diffusion model generates synthetic echocardiography images and
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uses a GAN to learn the denoising process, whose performance is conditioned
by anatomical masks of the heart. This way, these gray level masks guide the
reverse diffusion process in order to maintain the anatomical information on the
synthetic image. To the best of our knowledge, no previous work has presented
reproducible results when it comes to generate such images using DDMs.

II.1.2 Summary of Contributions

We propose a data augmentation method to synthetically generate echocardiog-
raphy images, using anatomical masks of the heart to guide the model during
the image synthesis. These images are possible to use for research purposes in
the medical image domain, such as the development of DL analysis tasks.

In summary and beyond the current state of the art, the main contributions
of the proposed approach are:

1. The training of an adversarial diffusion model based on a DDM and a
GAN, to generate synthetic echocardiography images.

2. The association of anatomical masks of the heart to the synthetically
generated echocardiography image samples. This way, we tackle the lack
of publicly available datasets, with labels, of echocardiography images.

3. The generation of echocardiography datasets belonging to different domains,
such as from different scanners, using the proposed method to perform
image domain translation.

II.2 Methodology

Fig. 1 illustrates the proposed approach. It is described in further detail in the
following sections. Section II-A covers all the data collection and pre-processing
steps, and Section II-B describes in further detail the working principle of the
DDM and GAN behind the proposed adversarial diffusion model. Section II-C
focuses on the creation of different image datasets and in Section II-D the image
quality comparison metrics considered in this study are described.

II.2.1 Data Collection

The proposed adversarial diffusion model was trained on an already existing
dataset of echocardiography images.

The CAMUS dataset, proposed by Leclerc et al. [27], includes 2D apical
two and four chamber images, acquired at end-diastole (ED) and end-systole
(ES) time instances of the cardiac cycle, with poor, good, and medium image
quality levels. All images were acquired with a GE Vivid E95 ultrasound scanner.
For our work, we selected only ED apical four chamber (4 CH) images with
all levels of image quality, resulting in 450 images, resized to 256 x 256 pixels.
All the images have associated anatomical masks for the Left Ventricle (LV),
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Figure II.1: Proposed pipeline to generate synthetic echocardiography images
from a DDM and a GAN. Forward diffusion process: during this stage, the DDM
module progressively adds Gaussian noise to the training image, x0, belonging to
the training dataset with a distribution q(x), until a noisy image, xt, is obtained
after t time steps. This process creates a latent space, z, with a Gaussian
distribution. The reverse diffusion process relies on a GAN to learn the reverse
distribution, pθ(xt), and generate synthetic images, x′

0, in a conditional fashion.

Myocardium (MYO), and Left Atrium (LA). The dataset was split to train and
validation sets by 90% and 10%, respectively.

Five other datasets were used for inference, to perform domain translation.
All these were made of 256 x 256 apical 4CH images and included anatomical
masks with the same structures considered in the CAMUS dataset. Table I
summarizes all the considered datasets in this work.

First, the EchoNet-Dynamic dataset presented by Ouyang et al. [28], was
used. This dataset contains more than ten thousand labeled echocardiogram
videos. For the task of generating synthetic echocardiography images, only the
ED frames of the echocardiographic videos were used. The anatomical masks
associated with this dataset only showed the LV area. We then added the MYO
and LA areas to them.

A second dataset was also made up of ED frames extracted from 3D (3
spatial dimensions) echocardiography images, acquired with different GE Vivid
ultrasound scanners.

Two other datasets were also created using another two handheld GE
ultrasound scanners: the Vscan Extend and the Vscan Air. The former is
a pocket-sized scanner, and the latter is used to image the heart using a wireless
probe and displaying the image on a smartphone. We created the anatomical
labels for the second, third and fourth datasets.
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A fifth dataset included ED frames extracted from 2D + time (2D + t)
images, all of them acquired with GE Vivid ultrasound scanners, different from
the GE Vivid E95. This one was previously labeled by a cardiologist.

Table II.1: Summary of all used datasets in this work.
Dataset Origin Acquisition scanner Labels Original image size Final image size Stage
CAMUS Publicly available GE Vivid E95 LA, LV, and MYO Variable

256 x 256

DDM Training

Vscan GE Healthcare GE Vscan Extend * 416 x 240 Inference (domain
translation)

Vscan Air GE Healthcare GE Vscan Air * 2040 x 1024 Inference (domain
translation)

EchoNet Publicly available Multiple Philips and
Siemens scanners LV 112 x 112 Inference (domain

translation)

2D + t GE Healthcare Multiple GE Vivid
models (except E95) * 1016 x 708 Inference (domain

translation)

3D (spatial) GE Healthcare Multiple GE Vivid
models (except E95) * Variable Inference (domain

translation)
* Labels for the LA, LV, and MYO were created for these datasets.

II.2.2 Adversarial Diffusion Model Training

The mathematical reasoning behind diffusion models was initially proposed by
Sohl-Dickstein et al. [18]. This group showed that it is possible to reconstruct a
noisy image in order to generate a sample belonging to a certain dataset with a
defined probability distribution function. The denoising principle behind shows
that these generative models offer higher quality and more variate image samples
than others.

By themselves, DDMs are known to be based on unconditional diffusion
processes applied during a large number of steps. However, the proposed
adversarial diffusion model performs the reverse diffusion process in a conditional
fashion. In order to synthesize image samples with similar statistical properties
as the training dataset, the adversarial model uses images from a second domain
to guide, i.e. condition, the reverse denoising algorithm. Furthermore, our
adversarial DDM learns a faster reverse diffusion process which has a large step
size instead of several small denoising instants. As represented on Fig. 1, the
CAMUS dataset described on the previous section was used to train the proposed
adversarial diffusion model. During the forward process of the training, an image
x0 is sampled from the training dataset with a probability distribution q(x) and
Gaussian noise is added to the image sample over T time steps. This process
creates a Markov chain with a pre-defined variance βt, defining the forward data
distribution as:

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI) (II.1)

However, since the adversarial scenario allows the definition of a large step
size, reducing the total number of denoising steps to be learned, the forward
process can be re-written as:

q(xt|xt−k) = N (xt;
√

1 − βtxt−k, βtI) (II.2)

where k is the step size and k >> 1, as defined in [25].
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On the other hand, the reverse denoising process is also a Markov chain
approximated by a Gaussian distribution pθ(x0:T ), where θ are the predicted
parameters of the reverse diffusion probability distribution, estimated by the
GAN:

pθ(xt−k|xt) = N (xt−k; µθ(xt, t), σt
2I) (II.3)

The training process of our adversarial DDM aims to minimize the difference
between the conditional GAN predicted probability distribution pθ, and the
original training distribution q(x):

min
θ

L = min
θ

∑
t>=1

Eq(xt) [D(q(xt−k|xt)||pθ(xt−k|xt))] (II.4)

where D represents the Kullback-Leibler divergence used in this loss function
[9].

In the proposed architecture x′
0 is reconstructed by the generator of the GAN

from the latent space z, where the feature information about the training data
is encoded, and which follows a normal distribution.

Associated with the echocardiography images from the CAMUS dataset,
there are anatomical masks which were used to guide the denoising process.
This way, the GAN performance is conditioned when estimating the denoising
distribution pθ.

Given a source image y to guide the reverse diffusion process, the generator
G attempts to estimate pθ(xt−k|xt, y) by synthesizing x′

t−k such that x′
t−k ∼

pθ(xt−k|xt, y). The discriminator D(x′
t−k, xt, t) distinguishes between samples

from either the real probability distribution, q(x), or the predicted pθ(x).

II.2.3 Domain Translation - Inference

Domain translation allows to transform images from a domain A to a domain B,
so that the generated, i.e. domain-translated, images have similar characteristics
to the ones belonging to the initial domain [29]. This operation learns how to do
such translation by analyzing the probability distribution of the initial dataset
and iteratively compare it with the statistical distribution of the target domain
[30].

After training the adversarial diffusion model using the CAMUS dataset,
at inference time, the datasets described on Section II-A were considered as
input to the trained model. These inference steps allowed to perform domain
translation and create synthetic datasets with characteristics similar to CAMUS.

II.2.4 Image Quality Comparison Metrics

To evaluate the quality of the generated image samples from all different
synthesized datasets described before, several image quality metrics were
calculated and compared.
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The most commonly used image quality estimator is the Mean Squared Error
(MSE), which quantifies the difference between two different images, measuring
the differences pixel by pixel. If the synthetic image is similar to the ground
truth one, then this error will be low.

The Peak Signal-to-Noise (PSNR) ratio takes into account the signal from
the original image and the noise, i.e. error, of the generated sample. This
metric is presented in dB and [31] considers values around and above 30 dB as
representing good quality synthetic image samples.

Both these metrics are pixel based. To evaluate the quality of generated
images using a method more similar to the human visual system, the Structural
Similarity Method (SSIM) [32] was considered. SSIM takes into account the
preserved and changed edges information between the original image and the
generated one, and also the texture differences. This index takes values between
0 and 1, with higher values reflecting a larger image similarity.

Specifically created to measure the performance of GANs, the Fréchet
Inception Distance (FID) was defined by Heusel et al. [33] to evaluate the
quality of the generated samples from different datasets. Contrary to the already
described metrics, the FID score does not directly compare generated and real
images, but it measures the distance between the statistical distribution of
synthetic and real datasets [34]. The lower this score is, the smaller the difference
between the datasets.

II.3 Results

The training parameters and training time of the proposed adversarial diffusion
models are described in Section III-A, and Section III-B details the results of
the domain translation operation, together with the image quality comparison
metrics obtained.

II.3.1 Adversarial Diffusion Model Training

The proposed adversarial DDM was trained during 500 epochs and for a total
of four diffusion steps. The upper and lower bounds for the variance of the
predicted distribution were kept the same as in [25]. The model was built using
PyTorch [35] and it was trained on a computer equipped with four NVIDIA
GeForce RTX 2080 GPUs (multiple GPU training). Training took approximately
forty hours.

Fig. 2 gives an overview of the training results during the validation steps.
It shows a generated sample with similar characteristics to the images in the
training dataset, and keeping the anatomical information present in the guide
image.

II.3.2 Domain Translation - Comparison Metrics

After training the adversarial diffusion model, it was used to perform domain
translation operations. For each of the five previously created datasets with
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Figure II.2: Adversarial diffusion model training results. For the validation image
shown on the left, the image on the right is the generated sample, outputted by
the trained model.

different image characteristics, a synthetic dataset with properties similar to
CAMUS was generated.

Fig. 3 shows the best generated image sample from each of the domain
translation operations performed.

The FID score, in Table II, gives the overview of the complete dataset quality,
instead of comparing individual image samples. Fig. 4 shows examples of the
worst, median, and best generated images, in terms of the PSNR value, after
the domain translation operation.

Table III lists the image comparison metrics calculated between the generated
sample and the ground truth image, for each test image belonging to the inference
datasets.

Table II.2: FID scores for each original inference dataset (before domain
translation) and each synthetic dataset (after domain translation), compared
with the training CAMUS dataset.The best scores are highlighted.

Inference Datasets (before domain translation) Synthetic Datasets (after domain translation)
Vscan Vscan Air EchoNet 2D + t 3D (spatial) Vscan Vscan Air EchoNet 2D + t 3D (spatial)

FID 279.53 332.73 260.42 189.55 61.08 70.18 81.22 60.17 79.28 50.87

Table II.3: Comparison metrics (average ± standard deviation) for the domain
translation operations. MSE, PSNR (dB), and SSIM were calculated for all the
images in the 5 inference datasets. The best scores are highlighted.

Metrics
MSE PSNR (dB) SSIM

Vscan 18.27 ± 9.26 30.09 ± 0.12 0.37 ± 0.01
Vscan Air 30.60 ± 7.79 28.94 ± 0.30 0.18 ± 0.03
EchoNet 22.39 ± 5.41 29.65 ± 0.20 0.31 ± 0.02
2D + t 11.95 ± 7.21 30.48 ± 0.13 0.40 ± 0.01

3D (spatial) 11.50 ± 3.69 30.48 ± 0.09 0.47 ± 0.03
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Figure II.3: Domain translation results. Best generated image from each of the
inference datasets. All the synthetic images show characteristics of the CAMUS
dataset and keep the anatomical information present in the guide image (white
area – LV, dark gray area – LA, light gray area – MYO).
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Figure II.4: Worst, median, and best synthesized image from each of the inference
datasets, in terms of PSNR. The worst images are not totally discrepant from
the best ones.
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II.4 Discussion

The proposed adversarial diffusion model architecture, based on a DDM and a
GAN, proved to be able to produce a wide variety of generated image samples
with a fast sampling time. In fact, training such a complex model took less than
two days. This result was expected since diffusion models were conceived to
learn less training parameters, in comparison to other deep generative models
such as GANs, making the training lighter and faster without compromising the
final output quality.

None of the generated image samples required post-processing operations,
for example to fix the cone shape [14] or remove unwanted noise, in opposition
to what has been reported when generating images with other deep generative
models, where these operations are often required. DDMs hold this advantage
of generating more visually accurate image samples without requiring additional
post-processing steps [17]. On the contrary to what happens with GANs, the
image samples generated via the adversarial DDM show no artifacts.

After collecting data from five different echocardiography datasets with
different image characteristics amongst them, the trained model was then used
to perform different tasks of image domain translation.

In terms of image acquisition, the echocardiography scans acquired with the
Vscan Air (Fig. 3) are substantially different from the images one would get if
the GE Vivid E95 would be used, due to the nature of the ultrasound probe used
by the former scanner. This dataset characteristic is supported by the results on
Table II, where the FID score, for the Vscan Air dataset is the highest amongst
all the inference datasets, when compared to CAMUS, reflecting this difference.

From Table II it is also visible that the inference dataset containing 2D apical
4CH echocardiography images extracted from 3D scans (where the 3 spatial
dimensions were considered), 3D (spatial), is the most similar dataset to the
CAMUS dataset, amongst all the five inference datasets, as it holds the lowest
FID score. Consequent manual inspection confirmed that these datasets are
visually the most similar.

Five domain translation operations were performed and shown in this work.
During each of these, the trained adversarial diffusion model generated an image
sample corresponding to each image in the considered dataset. The generated
images were then compared to the ground truth and the MSE, PSNR, and SSIM
were calculated (Table III).

The 3D (spatial) dataset showed the best results for all these three metrics.
The high value of the PSNR indicates that the information present in the original
inference images is preserved and visible on the synthetic images generated with
the adversarial diffusion model.

The SSIM value for the Vscan Air dataset holds the lowest value reinforcing
the conclusion described earlier, stating that this dataset images belong to a
domain which is the most different from the CAMUS images domain. On the
other hand, a PSNR close to 30 dB reflects that the domain translation operation
was still able to synthesize images with meaningful information encoded on them.
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After the domain translation operations, the FID score was calculated for
each of the synthetic datasets (Table II). The 3D (spatial) synthetic dataset is
still the one registering the lowest FID value amongst all the synthetic datasets.
The difference between the FID scores obtained before and after the domain
translation operations are indicative of the generalization ability of the proposed
adversarial diffusion model. Table II shows a significant decrease in all datasets
FID scores, after domain translation. The scores represent a smaller difference
between the probability distribution of each synthetic dataset and the CAMUS.
The EchoNet synthetic dataset has a smaller FID score than the 2D + t, even
though, before domain translation, the opposite scenario, i.e. smaller FID for
the 2D + t dataset, was verified.

The adversarial DDM trained was able to generate variate samples, closely
depicting the LA, LV, and MYO, present on apical 4CH echocardiography images
(Fig. 4). The images considered as worst, in terms of PSNR, still illustrate these
structures and are not completely divergent from the best ones.

Presented results described and discussed in this section support the initial
premises; namely that diffusion models are lighter and quicker to train and are
able to generate high quality image samples. Creating an adversarial diffusion
model, by using a GAN to learn the reverse diffusion process, brings the advantage
of generating images with a small sampling time. The developed approach can
be used to generate synthetic datasets of echocardiography image samples and
also improve the quality of lower-resolution ones. This way, the adversarial DDM
is a resource to generate images belonging to different image domains, helping
in the development of DL models that perform equally well irrespective of the
imaging scanner/vendor.

To the best of our knowledge, diffusion models were not yet used to
generate clinically relevant echocardiography images, nor used to perform
domain translation operations between substantially different medical image
datasets. Our work demonstrated that such tasks are possible and the generated
echocardiography images have high quality and include meaningful anatomical
information, since anatomical masks were used to guide the reverse diffusion
process.

In the future, the influence of the type of guide image used during the
adversarial learning process will be further explored. Also, the analysis of the
synthetic images in the clinical scenario will be assessed, by working closely with
clinical end-users.

II.5 Conclusion

A domain translation framework based on an adversarial diffusion model was
proposed, in order to generate synthetic datasets of echocardiography images. In
the medical scenario, DL approaches outperform other methods for some tasks,
including medical image generation and domain translation operations. These
DL methods, however, require a large amount of data during their training and
development.
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Conclusion

The proposed framework relies on the usage of state of the art models and
methods to both generate echocardiography images and also perform domain
translation. These tasks allow to create a large amount of variate medical
image data with clinical relevance which can be used for research and learning
methodologies.

Furthermore, the proposed model showed a great generalization capacity,
being able to synthesize echocardiography images with a large variability.
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