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Preface
This thesis is submitted for the degree of Philosophiae Doctor at the University of
Oslo. The research presented here was conducted at the University of Oslo under the
supervision of Professor Andreas Austeng and Professor Roy Edgar Hansen. This work
was funded by the faculty as part of the strategic research initiative MEDIMA.

The thesis is a collection of five papers, presented according to the research
work process order. The main topic of this thesis is how to enhance and detect
point scatterers in an ultrasound image. The papers are preceded by an introduction
providing background information and motivation for the work. It describes the
relation between the papers.
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Chapter 1

Introduction
This thesis addresses image quality enhancement in medical ultrasound with special
focus on detection of point scatterers. In ultrasound images, peaks in the surrounding
background of point targets can often make point detection difficult. Imaging of breast
microcalcifications, kidney stones, microbubbles, and point tracking are example
applications where point detection is important. These applications would greatly
benefit from methods that are able to enhance and detect point scatterers in ultrasound
images.

The improvements in hardware processing power have made it possible to
incorporate software beamforming into medical ultrasound systems, such as the GE
Vingmed Ultrasound Vivid system. With increasing software processing power, we
can apply different advanced methods to reconstruct ultrasound images. We typically
compare such new adaptive beamforming techniques to conventional Delay-and-
Sum (DAS) beamforming, but thorough studies are required to examine their effect.
Post-processing techniques are commonly performed in software. A fair comparison
between post-processing methods also requires a statistical image quality evaluation.
This thesis raises the research questions of how new software methods affect the
statistics of the ultrasound image and how to assess improvement in point detection
performance. Inspired by techniques common in the radar and sonar communities, it
suggests new methods to improve point scatterer detection in ultrasound images.

1.1 ResearchQuestions

The primary research question of this thesis is how to enhance and detect point
scatterers in an ultrasound image. The following questions concretize this research
question:

• How should we measure and evaluate the detection performance of point
scatterers in ultrasound images?

• How do advanced beamforming techniques influence the statistics of an
ultrasound image, and do common ultrasound techniques affect point scatterer
detection?

• Inspired by the wavelet shrinkage method presented in [HV14], can the method
also be applied to medical ultrasound images to enhance point scatterers?

• Can we get inpiration from other methods in radar and sonar imaging to find
new methods that improve point scatterer detection in ultrasound images?

1



1. Introduction

1.2 Claims

This thesis explores various aspects of medical ultrasound techniques and post-
processing image analysis. In this thesis, I explore how to measure the point detection
performance of different methods. I present a strategy for assessing and evaluating
the detection performance of point scatterers in ultrasound images. I determine how
modern beamformers and techniques affect point detection. Inspired by multilook
techniques in radar and sonar, I explore methods that optimize the spatial frequency
spectrum of the ultrasound image. I study if the wavelet coefficient shrinkage method
can enhance point targets in ultrasound. I apply the normalized matched filter (NMF)
technique to ultrasound images using a two-dimensional (2-D) multilook method,
and assess if this can improve point scatterer detection. Finally, this thesis presents
new post-processing methods to improve point detection performance in ultrasound
images.

1.3 Scope

The scope of this thesis is within medical ultrasound and the associated processing
chain, image analysis post-processing, and image quality evaluation.

1.4 Thesis Outline

The background chapters in this thesis present different topics addressed in the papers.
Chapter 2 briefly presents medical ultrasound imaging, from acquisition to software
processing and image evaluation. This chapter introduces the results from Paper I on
how adaptive beamforming techniques influence speckle statistics. Chapter 3 presents
how to evaluate the detection performance of point scatterers, starting out with the
classical binary detection problem. The presented methodology is from Paper II. The
paper demonstrated how common ultrasound techniques such as apodization, speckle
reduction, and adaptive beamformers affect point detection.

Chapter 4 presents the wavelet coefficient shrinkage method applied in Paper III.
This is a method which enhances point scatterers while suppressing speckle back-
ground. Chapter 5 presents the whitening transform, and the effect prewhitening can
have on point detection performance, as studied in Paper IV. Chapter 6 presents how
we can simulate textured ultrasound images and correct for the texture before point
detection. Paper V studies the effect of prewhitening prior to texture correction and
point detection.

Chapter 7 presents the multilook technique applied in Paper IV and Paper V. The
technique is widely used on synthetic aperture radar (SAR) images to reduce speckle.
In this chapter, I present the three new multilook methods called normalized matched
filter weighted (NMFW), multilook coherence factor (MLCF), and multilook coherence
factor weighted (MLCFW), as first presented in Paper IV. Chapter 8 summarizes and
discusses the findings in the papers in relation to the main research question. I
compare the detection performance of the multilook methods with prewhitening and
the original Delay-and-Sum (DAS) image, on both uniform and textured backgrounds.

2



Summary of Publications

Figure 1.1: Outline of the research work process and papers in this thesis

Chapter 9 summarizes the main contributions of the work, discusses the implications,
and suggests further research possibilities.

1.5 Summary of Publications

Figure 1.1 outlines the research work process and papers in this thesis. Here follows a
short summary of each of the papers.

Paper I presents how different adaptive beamformers influence the statistics of the
speckle background in the ultrasound image. Conventional DAS imaging of fully
developed speckle has a Rayleigh amplitude distribution. This publication shows
that some adaptive beamformers alter the speckle statistics. Since the statistical
distribution affects the contrast metrics used to evaluate the beamformers, it is
essential to know how the beamformer alters the speckle statistics. If not, the
alterations of the speckle statistics allow for cherry-picking contrast metrics.
Published in IEEE International Ultrasonics Symposium (IUS), Washington, DC,
2017, pp. 1-4, DOI: 10.1109/ULTSYM.2017.8091875.
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1. Introduction

Paper II presents the effect of common ultrasound techniques on the detection perfor-
mance of point scatterers. The publication presents an overview of the detection
of point scatterers in ultrasound images and suggests strategies for evaluating
and measuring the detection performance. The paper evaluates how common
imaging techniques affect point target detectability using many Field II [Jen+06;
Jen96; JS92] simulations of a point scatterer in speckle background. Different
adaptive beamformers, speckle reduction methods, apodization windows, and
adaptive aperture sizes are studied. The publication discusses how to compare
the performance of the methods and calculate confidence intervals. Published in
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Feb. 2022,
69 (2): 617-628. DOI: 10.1109/TUFFC.2021.3129619.

Paper III presents a wavelet coefficient shrinkage method to enhance point scatterers
in an ultrasound image. The method uses a random block grid to create sublooks
combined with coherence-based wavelet coefficient shrinkage. The algorithm
separates coherent point targets from incoherent background speckle. Field II
ultrasound simulations show how the algorithm retains the point scatterers and
increases their conspicuity. Published in IEEE International Ultrasonics Symposium
(IUS), Washington, DC, 2017, pp. 1-4, DOI: 10.1109/ULTSYM.2017.8092971.

Paper IV presents how optimization in the spatial frequency spectrum can improve
the detectability of point scatterers. An optimized whitening transform can
increase the spatial resolution of the image. The coherent properties of a point
scatterer can be exploited by splitting an image’s frequency spectrum into many
subsets using the multilook technique. The publication studies the effect on the
detection performance using prewhitening, the normalized matched filter (NMF)
multilook technique, and three new multilook methods called NMFW, MLCF,
and MLCFW. Published in IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, June 2022, 69 (6): 2085-2097. DOI: 10.1109/TUFFC.2022.3167923.

Paper V presents how optimization of the spatial frequency spectrum can improve the
detectability of point scatterers in textured ultrasound images. The publication
evaluates the detection performance of prewhitening and the four multilook
methods in Paper IV on ultrasound images with randomly textured backgrounds.
The multilook methods NMF and MLCF are normalized methods that do not
require any texture correction prior to detection analysis. The results show that
texture size affects the optimal number of sublooks for the multilook methods.
Published in Elsevier Ultrasonics, May 2023, volume 131, pages 106968. DOI:
10.1016/j.ultras.2023.106968.
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Chapter 2

Ultrasound Imaging

2.1 Ultrasound Wave Physics

Ultrasound waves are longitudinal pressure waves capable of traveling through solids,
liquids, and gases. The waves are high-frequency sound waves that are above the
human ear’s audible range of up to 20 kHz. Medical ultrasound typically lies in the
frequency range of 1 to 15 MHz [Sza14, ch. 1.8.2], but specialized investigations use
even higher frequencies. Ultrasound imaging is based on the principle of pulse-echo
ranging, where we can estimate the position of an object by measuring the time it
takes for the echoes to return from it. The distance d to the object is

d = ct

2 , (2.1)

where c is the speed of sound in the medium. The total time between transmission of
a pulse and the received echo is t. We divide by a factor of two since the pulse travels
back and forth.

Pulse-echo ranging has been used in many applications throughout the years.
Some of the papers in this thesis are inspired by techniques from the sonar and radar
communities. Sonar is an acronym for sound navigation and ranging. It can for example
be used to navigate, measure distances (ranging), and detect objects. Active sonar
is pulse-echo ranging applied underwater, while passive sonar listens to acoustic
sound. Sonar was developed during World War I as a method for warships to detect
submarines [Sza14, ch. 1.1.2]. During World War II, pulse-echo ranging applied to
electromagnetic waves became radar, an acronym for radio detection and ranging
[CGM95, ch. 1]. The development of medical ultrasound follows the development of
sonar and radar. Today, we use ultrasound in medical applications as well as in other
fields such as the construction industry and the oil, gas, and maritime sectors. For
example, ultrasound can be used for non-destructive testing of a material’s quality,
detection of erosion or sand in wellbores, counting fish, and monitoring babies in
the womb. Prenatal ultrasound evaluates the baby’s growth and development and
is a classic example of medical ultrasound. Figure 2.1 shows two sonograms of a
ten-week-old and six-month-old fetus. Ultrasound is especially beneficial for fetal
imaging as it is non-invasive, low in cost, and has widespread availability. Ultrasound
is a useful way of examining many of the body’s internal organs, such as the abdomen
or the heart. A high skill level is needed to obtain good diagnostic images with medical
ultrasound.

If we approximate the medium as lossless , the propagation of sound waves is
described by the lossless wave equation [Hol19, ch. 1]

∇2u = 1
c2

∂2u

∂t2 . (2.2)

5



2. Ultrasound Imaging

Figure 2.1: Two fetal ultrasound images. The top image shows my eldest daughter as a
six-month-old fetus. The baby’s gestational age can be estimated by measuring the
head circumference. The bottom image shows my youngest as a ten-week-old fetus.
Notice how the contrast of the baby’s nose and head is especially distinct because of
the boundary with the amniotic fluid. Even at this early stage, measuring the distance
between the crown and rump provides a very good estimate of the due date.

Here u(x, y, z, t) is the displacement vector associated with the compression and
expansion of the acoustic wave, and ∇2 = ∂2

∂x2 + ∂2

∂y2 + d2

∂z2 is the Laplacian operator.
A solution to the wave equation (2.2) is a time-harmonic plane wave with propagation
speed c,

u(x, t) = Aei(ωt−kxx−kyy−kzz) = Aei(ωt−kx). (2.3)

Here k is the wave vector, |k| is the wavenumber, and ω is the angular frequency. The
amplitude remains constant throughtout the propagation in a lossless medium. In the
lossless case, the dispersion relation is simply [Hol19, ch. 1]

k = ω

c
= 2πf

c
= 2π

λ
, (2.4)

6



Ultrasound Wave Physics

where f is the frequency and λ is the wavelength.
Attenuation is the reduction in wave intensity as the wave travels through a

medium [Cob07, ch. 1.8]. Waves with higher frequencies experience a higher amount
of attenuation. Some of the beam is absorbed or scattered by the medium through
which it travels. The amount of absorption depends on the type of medium. Bone is
an example of a strong absorber, while water absorbs very little.

The viscous wave equation includes an extra term to model viscous loss [Hol19,
ch. 1]

∇2u − 1
c2

∂2u

∂t2 + τ
∂

∂t
∇2u = 0. (2.5)

The time constant τ characterizes the viscous loss, which causes a frequency-dependent
attenuation. An attenuating wave is characterized by a complex wavenumber, where
the real part represents the propagation and phase velocity and the imaginary part
represents the attenuation [Hol19, ch. 2.3.1].

The amplitude attenuation depends on frequency, temperature, and pressure. The
attenuation in soft tissue has a frequency-dependence with a power-law exponent
in the range from 1 to 2 [Cob07, ch. 1.8.1] [NH13]. An ultrasound beam with a
higher frequency has better resolution but cannot penetrate as far into the medium.
Ultrasound imaging is thereby a trade-off between resolution and penetration.

Acoustic impedance describes how much the medium opposes the flow of the
sound wave. The acoustic impedance Z of a medium is given by [Sza14, ch. 1.2]

Z = ρc, (2.6)

where ρ is the density and c is the speed of sound in the medium. In typical soft tissue,
the sound speed is 1540 m/s and the density is 1060 kgm−3.

When an ultrasound beam meets a boundary, it can be reflected or transmitted.
Refraction involves a change in the wave direction as it passes from one medium
to another. Snell’s law describes the relationship between the transmitted wave’s
direction θt and the angle of incidence θi at a distinct boundary [Cob07, p. 52],

sin θt

sin θi
= c1

c2
. (2.7)

Here c1 and c2 are the sound speeds in the first and second medium.
The difference in impedance across the boundary decides how much of the wave is

reflected. The reflection coefficient R describes how much of the intensity is reflected
compared to the incident intensity,

R = (Z2 − Z1)2

(Z2 + Z1)2 = (ρ2c2 − ρ1c1)2

(ρ2c2 + ρ1c1)2 . (2.8)

The reflection coefficient for a soft tissue/muscle interface is small, whereas a bone/soft
tissue interface reflects around 40 %. Since bone is such a strong reflector, ultrasound
imaging through bone can be difficult. Any boundary with air results in almost 100 %
reflection, so we cannot use ultrasound to image beyond air gaps such as the lungs.
Figure 2.1 shows a songoram where the image quality of the body structures under
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study improves due to a distinct fluid boundary. In general, only a tiny part of the
transmitted ultrasound signal will be reflected or scattered back to the probe.

Scattering is when the wave energy is redirected by a scattering object or structure,
mostly along paths different from the incident wave. The scattered energy can be
subsequently absorbed, and multiple scattering can occur [Cob07, p. 70]. Most echoes
from ultrasound imaging arise from scattering. There are three types of scattering, and
they depend on the size of the scattering object compared to the sound wavelength
[Sza14, ch. 8.2]. Specular scattering occurs when the object is much larger than
the wavelength. Diffractive scattering occurs when the size is comparable to the
wavelength. Diffusive or Rayleigh scattering occurs when the object is much smaller
than the wavelength. Diffusive scattering has important implications in ultrasound
imaging since many small scatterers cause multiple scattering and create a granular
pattern called speckle.

2.2 The Ultrasound Probe

Piezoelectric crystals are capable of converting mechanical energy into electrical
energy through the piezoelectric effect [Cob07, ch 6.1]. Ultrasound is both generated
and detected through oscillations in piezoelectric crystals. An ultrasound transmitter
applies an alternating voltage to make the crystal vibrate and emit a pressure wave.
An ultrasound receiver monitors the piezoelectric voltage developed across the crystal
when it vibrates due to returning echos. In medical ultrasound, the waves are
transmitted into the body using a probe consisting of an array of piezoelectric elements.

The ultrasound probe can have different array designs. Arrays of individual
elements can be both focused and steered. This concept is used in ultrasound, radar,
and sonar imaging. The development of ultrasound array has benefited from advances
in the radar and sonar fields. During World War II, developing one-dimensional (1-D)
and two-dimensional (2-D) antenna array designs was especially important for radar
and communication systems. In this thesis, I present methods that use the array design
to enhance the point targets.

A modern 1-D ultrasound transducer typically has a linear, phased, or convex
array. A 2-D ultrasound array is used for 3-D imaging. Figure 2.2 shows the GE Vivid
E95 ultrasound scanner (GE Vingmed Ultrasound) equipped with a linear and phased
probe and two bottles of ultrasound gel. The ultrasound gel minimizes the immediate
reflection caused by air between the patient and the transducer.

2.2.1 Linear probe

Most of the ultrasound images used in this thesis were imaged with a linear probe. This
section will go through howwe get the mathematical expression for the beampattern of
a linear array. The beampattern determines the amplitude and phase of the beamformed
signal when the wavefield consists of a single plane (far-field) wave [JD93, ch. 4.2.1].
The beampattern is essential in further discussions on resolution.

8
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Figure 2.2: The GE Vivid E95 ultrasound scanner from GE Vingmed Ultrasound. A
phased probe is placed in a holder to the left, and a linear probe is in a holder to the
right behind a bottle of ultrasound gel.

A continuous linear aperture has an aperture function that is nonzero only along
the finite length D of the array,

w(x) =
{

1, if |x| < D
2

0, otherwise.
(2.9)

Because the linear aperture lies along the x-axis, its aperture smoothing function
depends only on kx, the x-component of the wavenumber [JD93, ch. 3.1.1]

W (k) = sin(kxD/2)
kx/2 . (2.10)
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W (k) is calculated by the Fourier transform of theweighting sequencew. The resulting
sinc-function has mainlobe of height D. The mainlobe width is 4π/D, and the infinite
number of sidelobes have decreasing amplitude. If the incoming wave has an incident
angle θ with respect to the broadside of the array, kx = −k sin θ [JD93, p. 32].

The linear probes used in ultrasound imaging are not continuous but consist of
many sensor elements. The discrete aperture smoothing function can be used to
calculate the beampattern. A linear aperture with M uniform sensor elements has the
discrete aperture smoothing function [JD93, p. 88]

W (k) ≡
M−1∑
m=0

wmejkxxm = sin(kxMd/2)
sin(kxd/2) , (2.11)

where the sensor position for element m is xm = md. The element weight is wm and
the pitch or distance between the point elements is d. The derivation assumes point
elements. If the elements have a width, the element’s aperture smoothing function
will be multiplied with the array’s aperture smoothing function. The distance between
the elements and not the element width affect the beampattern’s mainlobe the most.
Unlike the case of a continuous linear aperture, the aperture smoothing function for
the linear array is a periodic sinc-function of kx. It is illustrated in Figure 2.3. The
spectrum has period kx = 2π/d. Each period of W (k) consists of a mainlobe and a
number of smaller amplitude peaks called sidelobes. The mainlobe height W (0) for a
linear array with uniform element weighting equals the number of sensor elements in
the array, M . The first zero of W (k) occurs at 2π/Md, so the mainlobe width is 4π

Md .

Figure 2.3: The magnitude of the discrete aperture smoothing function |W (k)| for a
linear array with M = 10 sensor point elements. The spectrum’s period is 2π/d. The
”secondary” mainlobes not located at the origin are called grating lobes. The sidelobes
are the small amplitude peaks between the mainlobe and the grating lobes. The visible
region is −2π/λ ≤ kx ≤ 2π/λ. The first zero of W (k) occurs at 2π/Md.
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The beampattern’s width is often used to characterize the spatial resolution, as
discussed in Section 2.3. In ultrasound imaging, we first transmit a pulse and then
receive the reflected signal. The two-way beampattern is a product of the beampattern
in each direction. Assuming the full array is used for both transmit and receive, the
two-way beampattern is [JD93, ch. 3.1.1]

W (k)two-way = W (k)transmitW (k)receive = W (k)2
one-way. (2.12)

The linear array used in Paper II, Paper IV, and Paper V was the Verasonics L11-4v
transducer (Verasonics Ltd). It consists of 128 elements with an element height of 5
mm. The pitch, or distance between the center of the elements, is 0.30 mm. The kerf,
or gap between the elements, is 0.03 mm. The width of the elements is then simply
the difference between the pitch and the kerf, i.e., 0.27 mm. The aperture size of the
probe is 38.1 mm. The L11-5v is a mid-to-high-frequency, linear broadband array. If
we use a 5.13 MHz center frequency f0 at 1540 m/s sound speed, we get λ pitch since
the wavelength λ = c/f0 = 0.3 mm. The bandwidth of the transmitted pulse was 65
% of the center frequency f0.

Figure 2.4 shows an image of a linear probe and a breast phantom with applied
ultrasound gel. The GE 9L is a linear array ultrasound transducer probe from GE
Healthcare. The GE 9L probe has a frequency range of 2.5 to 8.0 MHz. It is used for
vascular, abdomen, neonatal, pediatric, obstetrics, and gynecology applications.

Figure 2.4: The GE 9L is a linear array ultrasound transducer. It is shown together
with a tissue-mimicking breast phantom (CIRS M073), applied with ultrasound gel.
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2.2.2 Phased and 3-D imaging probes

The phased probe shown in Figure 2.2 is a GE 4V-D probe with a bandwidth of 1.5 to 4
MHz. The size of the probe is smaller than the linear probe, which gives a lower image
resolution. Since the probe is used for cardiography, its size must be small enough to fit
between the ribs. The cardiac probe has a lower center frequency than the linear probe
GE 9L since the beam must penetrate deep enough to image the heart. By transmitting
several focused beams at specific steered angles, we can obtain a sector scan of the
heart.

The GE 6VT-D probe from GE Vingmed Ultrasound is a 4-D volume cardiac probe
(3-D + time) with a center frequency of 5 MHz. It is designed for transesophageal
echocardiography (TEE) and must be small enough to go inside the esophagus. The
frequency bandwidth is 3 to 8 MHz. The probe was used to image the breast phantom
in Figure 2.4. The probe is too tiny to be optimal for breast imaging, but we wished to
obtain 3-D data to test the wavelet shrinkage method presented in Paper III.

2.3 Spatial Resolution

Spatial resolution is important for the image quality and the detectability of point
scatterers. There are many different definitions of resolution. A common definition in
several fields of study is using the full width half maximum (FWHM) of the beampattern
mainlobe, corresponding to −6 in dB-scale [Sza14, p. 230]. The angular resolution can
be approximated depending on the array geometry and the applied apodization. The−6
dB angular resolution of the discrete Fourier transform (DFT) of a rectangular window
is given by F. Harris in [Har78] as approximately 1.21 bins, where a bin corresponds to
the fundamental frequency resolution. For a linear array with rectangular apodization,
we correspondingly get

θ-6 dB ≈ 1.21λ

D
. (2.13)

Here D is the probe size and λ is the wavelength. A large array corresponds to high
resolution. The −6 dB lateral spatial resolution x-6 dB at a certain depth z can be found
by small angle approximation as

x-6 dB = θ-6 dBz = 1.21λ

D
z. (2.14)

In ultrasound imaging, we first transmit a pulse and then receive the reflected
signal. We are therefore actually interested in the two-way lateral resolution. Taking
the square root of the one-way beampattern reduces the mainlobe width such that
the −6 dB width of the two-way beampattern equals the −3 dB width of the one-way
beampattern. The −6 dB angular two-way resolution is [Rin19, App. A]

θ-6 dB two-way =
θ-6 dB one-way√

2
≈ 1.21λ√

2D
. (2.15)

The lateral resolution in an ultrasound image at depth z is thereby

xres = 1.21λz√
2D

. (2.16)
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The ratio between imaging depth z and size of the active aperture D∗ is termed
F-number or f#,

f# = z

D∗ . (2.17)

We can ensure uniform resolution by having a constant f#. A constant f# ensures a
range-independent beamwidth by increasing the active aperture with increasing range
z [Sza14, p. 381]. Since the physical aperture has finite size, pixels close to the edges
will be illuminated by an active aperture of smaller size. Inserting a constant f# into
(2.16), we can express the -6 dB lateral resolution as

xres = 1.21√
2

λf#. (2.18)

We can also calculate the resolution in the elevation direction, yres. For a 1-D array,
it depends on the element height. For a 2-D array, it depends on the size of the array
of sensor elements in the elevation direction.

The axial resolution zres depends on the transmitted pulse bandwidth B and speed
of sound c [Cob07, ch. 8.3.1],

zres = c

2B
. (2.19)

A large pulse bandwidth corresponds to high spatial resolution.

2.4 Apodization

In medical ultrasound, applying an apodization window is standard practice for
reducing sidelobe levels [Sza14, p. 178] [JD93, p. 322]. A rectangular apodization means
that each element on the aperture is used and weighed equally. Windowing is always a
trade-off between resolution and contrast [Har78]. The choice of apodization window
influences the spatial resolution. A nonuniform window suppresses some elements at
the edges of the aperture and effectively reduces the active aperture size. Apodization
on linear arrays is accomplished by exciting the individual elements with different
voltage amplitudes [Sza14, p. 178]. For a linear array with Hamming apodization, the
−6 dB angular resolution is [Har78]

θ-6 dB, Hamming ≈ 1.81λ

D
. (2.20)

In Paper II, we applied three different apodization methods to study the effect on
detection: rectangular, Hamming only on transmit, and Hamming on both transmit
and receive. Transmit apodization is applied over the elements when transmitting the
ultrasound wave.

2.5 Spatial Frequency Limits

Paper III, Paper IV, and Paper V apply techniques to the ultrasound image in the
spatial frequency domain. The spatial frequency support for an ultrasound imaging
system is defined by the finite aperture size and the bandlimited pulse. It is centered
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on 2k0 = 4πf0/c [AT00, ch. 3]. In Figure 2.5, the imaging pulse is bandpass filtered
(fL ≤ f ≤ fH ) and demodulated by kD ≈ 2k0. The Point Spread Function (PSF) is
the response of an ultrasound system to a point source and describes the system’s
image quality.

To discuss and illustrate the spatial frequency limits, we consider a linear array
with a point scatterer placed in the center of the image scene. The PSF is the system’s
impulse response, and its shape resembles a slice cut of a circular arc, as illustrated
in Figure 2.5. The PSF is horizontally symmetric when the point scatterer is located
in the center, but asymmetric when the point is located to the side [Che+20]. The
support region is bounded by the aperture function in the kx direction. The lateral
width increases linearly with increasing frequency. In Figure 2.5, the spectrum has
been demodulated and normalized such that

max κz = kH − kD

kD
= 2π

c

fH − fD

fD
. (2.21)

Figure 2.5: The frequency spectrum of a point scatterer is shown with a 40 dB dynamic
range. The spatial frequencies are normalized by the estimated center frequency kD

(≈ 2k0). The spatial frequency limits are shown in red. The critical angle and frequency
bandwidth define the limits. The critical angle α is 16o. The point scatterer is located
in the center of the image scene and is imaged using a linear array with constant f#.

The receiving angle is the angle between the depth z and the lateral distance from
the origin x. The critical angle is the largest probe-to-object angle the system can
image. The aperture defines it with xmax = D/2. We can define the limits of the lateral
spatial frequency kx using the critical angle. For the PSF shown in Figure 2.5, I applied
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an adaptive aperture setting using constant f# to ensure uniform image resolution.
With equal transmit and receive aperture D∗, the critical angle α is [Gol+21][Den+13]

α = atan
(

D∗/2
z

)
= atan

(
1

2f#

)
. (2.22)

Reducing the f# increases the width of the frequency response in the kx-direction.
Figure 7.2 illustrates the critical angle α and the normalized spatial frequency limits
κx and κz . The lower limit for κz is

min κz = kL cos(α) − kD

kD
. (2.23)

The limits for the normalized lateral spatial frequency kx are

−kH sin(α)
kD

< κx <
kH sin(α)

kD
. (2.24)

2.6 Pulse-Echo Transmission and Scan Types

Since ultrasound imaging uses pulse-echo ranging, the next wave cannot be transmitted
before the probe has received the first wave. The time between transmits must be
larger than the two-way travel time for the deepest pixel position in the image. Several
transmitted beams construct each final ultrasound image, affecting the imaging frame
rate. Common imaging modalities in ultrasound are Focused Imaging (FI), Plane
Wave Imaging (PW), Diverging Wave Imaging (DW), and Synthetic Transmit Aperture
Imaging (STAI).

Focused imaging is a common ultrasound scan where the transmission converges
towards a focal point and expands afterward. Figure 2.6 illustrates how one transmit
corresponds to an axial scan line and how several scan lines can be created by shifting
the location of the focal point. Figure 2.6 illustrates a focused linear and sector scan. It
is worth mentioning that software techniques such as multiple line acquisition (MLA)
and retrospective beamforming (RTB) can improve the image quality by synthetically
recreating a focus in overlapping transmit regions and coherently compounding them.
However, we will not go further into the details here.

Figure 2.6 illustrates a plane wave fired at two different angles. We can create an
angled plane wave by applying specific transmit delays to the elements according to
the wanted angle. In 2009, Montaldo et al. [Mon+09] achieved high-quality images by
coherently compounding many plane wave images. They showed that a high frame
rate is possible using plane wave transmits. A plane wave illuminates a large area
and reduces the required number of transmits to produce an acceptable image quality.
Denarie et al. discuss the required number of plane waves to cover the critical angle
α and achieve equivalence with conventional imaging in [Den+13]. In Paper III, a
Coherently Compounded Plane Wave (CPWC) ultrasound image was acquired with
the Verasonics Vantage system using a linear probe (Philips L7-4, 128 elements, 75
angles, 5.2 MHz, f# = 1.75).

A diverging sector scan grows with depth and yields a resolution that decreases
with increasing depth. The virtual source for a diverging wave lies before the aperture.
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Figure 2.6: Schematic of a focused linear scan, a plane wave scan, and a focused sector
scan.

Figure 2.7: Schematic of synthetic transmit aperture imaging.

We acquired synthetic transmit aperture datasets to get images with uniform
resolution for all pixels in Paper I - Paper V. STA imaging creates images with
high spatial resolution since we for each transmit fire from one specific element
and receive on the entire array, as illustrated in Figure 2.7. After transmitting from
every consecutive element, we synthesize focus at every pixel. A drawback of STA
imaging is that transmitting from a single element limits the beam energy and makes
second harmonic imaging and imaging of moving structures more challenging.
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2.7 Tissue-mimicking Phantoms

Figure 2.8: The tissue-mimicking phantom 054GS from CIRS embedded with several
cysts and wire targets.

Figure 2.9: The Multi-Modality Breast Biopsy and Sonographic Trainer M073 from
CIRS. The phantom accurately mimics the heterogeneous appearance of breast tissue
under ultrasound, mammography, andMRI. It has cystic and dense lesions with 100-300
micron microcalcifications.
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The background of much of this Ph.D. work is that point scatterers, such as kidney
stones or microcalcifications in breasts, are often obscured by background speckle.
Figure 2.8 shows the tissue-mimicking phantom 054GS from CIRS. The phantom was
used in Paper III and Paper V. It is embedded with hyperechoic and anechoic cysts
and several wire targets that appear as point scatterers in the final ultrasound image.
We can test spatial resolution or contrast using such phantoms.

Figure 2.9 shows a tissue-mimicking breast phantom embedded with cysts with
microcalcifications. Microcalcifications are tiny calcium deposits within the breast
tissue, and they appear as small white spots on a mammogram or an ultrasound image.
They are usually benign, but specific patterns can signify cancer. A 3-D ultrasound
image of the breast phantom is analyzed for probable locations of microcalcifications
in Section 4.7.

Figure 2.10: X-ray image or mammogram of the breast phantom.

Figures 2.10 – 2.12 illustrate the differences in image quality between Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), and ultrasound imaging.
Microcalcifications appear as small white spots on a mammogram, an X-ray picture
of the breast. Figure 2.10 shows a mammogram of the breast phantom. I obtained a
3-D Magnetic Resonance Imaging (MRI) scan of the phantom, and Figure 2.11 shows a
slice near the center of the breast. Figure 2.12 shows an ultrasound image of the same
phantom. I also imaged the phantom with the tiny transesophageal 4-D probe (3-D +
time), shown in Figure 2.13. This 3-D image is analyzed further in Section 4.7.
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Figure 2.11: MRI slice of the breast phantom with clearly visible cysts, as indicated
with the yellow arrows. The small microcalcifications within the cysts can be seen if
studied closely.
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Figure 2.12: An ultrasound image of the breast phantom imaged using the linear
2-D probe GE 11L. We see a hyperechoic cyst and an anechoic cyst, as indicated by
the yellow arrows. The red arrow indicates a possible microcalcification inside the
hyperechoic cyst.

Figure 2.13: An ultrasound image of the breast phantom imaged using a GE 6VT-D
ultrasound transducer. The yellow arrow shows the location of a cyst. This is a 4-D
volume cardiac transesophageal transducer and thus not ideal for breast imaging.
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2.8 The Conventional Beamformer

In this section, I describe how the received ultrasound signal is converted to the
final image. We start with the channel data received by each probe element. We
convert the data to an analytical signal, demodulate it, and combine the signals using
a beamformer. This thesis uses methods that analyze the data at different stages in the
image processing chain.

2.8.1 Channel Data

The probe elements record the reflected ultrasound signals. Figure 2.14 shows the
signal received from one element. The received data is commonly referred to as radio
frequency (RF) channel data. According to the Nyquist sampling theorem, we must
sample the data at a frequency at least twice the highest frequency to avoid unwanted
aliasing [MI11, p. 340]. Figure 2.15 shows the frequency spectrum of the channel data
example.

Figure 2.14: The received signal from a single probe element, normalized by its
maximum value.

A Hilbert transform can be used to convert the channel data to a complex, analytical
signal [MI11, p. 542]. The final image displayed on a medical ultrasound machine is the
envelope of the received signal, i.e., simply the magnitude of the analytical signal. The
Ultrasound Toolbox (USTB) [Rod+17] is an open software processing framework for
ultrasound signals and was extensively used in this Ph.D. project. It uses the analytical
signal throughout the beamforming and detects the envelope after beamforming.

2.8.2 IQ-Channel Data

Since the received channel data is bandlimited, we want to demodulate it. Demodula-
tion is a common approach because it enables decimation, i.e., reducing the number
of samples [MI11, ch. 6.6]. The original RF-channel data is centered around a center
frequency f0. By multiplying the data with a complex sinusoidal carrier signal of
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Figure 2.15: The frequency spectrum of the channel data. The center frequency is
around 5 MHz.

frequency fdemod, we can move the frequency spectrum correspondingly [MI11, p. 181].
If fdemod ≈ f0, the new spectrum is centered around the origin. Low-pass filtering the
resulting spectrum ensures we only retain the frequencies within the valid bandwidth.
The resulting spectrum is asymmetrical and thereby complex. We now have what
is known as the In-phase Quadrature (IQ) signal. Many of the methods in this Ph.D.
thesis use IQ-data instead of RF-data as input.

2.8.3 The Delay-and-Sum (DAS) Beamformer

Beamforming converts the recorded channel data into an image containing the
combined estimate of all the received reflections. We calculate delays to adjust for the
wave’s travel time to and from each pixel position in the tissue to each probe sensor.
The beamformer then combines the delayed signals. Paper I and Paper II study the
effect of different beamformers. The Delay-and-Sum (DAS) beamformer coherently
combines the pixel values received by all elements from all transmits. Paper II presents
the DAS beamformer as follows:

“ Conventional DAS consists of applying a delay and an amplitude weight to the
output of each sensor, then summing the resulting signals [JD93, ch. 4.1]. DAS for
image pixel [z, x] is defined as

SDAS[z, x] =
M−1∑
m=0

wmym[z, x], (2.25)

where M is the number of elements, ym[z, x] is the delayed signal received at element
m, and wm is a predefined weight. DAS is the oldest and simplest array signal
processing algorithm but remains a powerful approach today [JD93, ch. 4.1].
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2.9 Adaptive Beamforming

Paper I presents how different adaptive beamformers affect the speckle statistics of
an ultrasound image. Paper II studies how different adaptive beamformers affect
point detection performance. Since the papers introduce the theory for the different
beamformers, I introduce them here as presented in the papers. The USTB [Rod+17]
implements all six adaptive beamformers presented here.

“ 2.9.1 Capon’s Minimum Variance (MV)

Capon’s Minimum Variance (MV) [Cap69] calculates for each pixel a data dependent
set of weights www = [w0, w1, . . . , wM ′−1]T that minimizes power while maintaining
unity gain in the steering direction [SAH07]. To calculate the weights, the spatial
covariance matrix needs to be estimated for each pixel. To do this, we apply spatial
averaging with subarrays yyyl[z, x] = [yl, yl+1, . . . , yl+L−1]T , l ∈ [0, M ′ − L − 1],
where M ′ is the length of the active receive aperture and L = M ′/2. We apply time
averaging with 1.5λ range (λ being the wavelength), a diagonal loading factor of
1/100, and the steering vector as a vector of ones [SAH09]. The MV weights are used
in (2.25) and the final image becomes

SMV[z, x] = 1
M ′ − L + 1

M ′−L∑
l=0

wwwH [z, x] yyyl[z, x]. (2.26)

MV can achieve low sidelobe levels and a narrow beamwidth, increasing the spatial
resolution of closely spaced point scatterers. See [SAH09] for a discussion on the
parameters.

2.9.2 Mallart-Fink Coherence Factor (CF)

The Coherence Factor (CF) calculates the ratio between coherent and incoherent energy
across the aperture [MF94]

CF[z, x] = |
∑

ym[z, x]|2

M
∑

|ym[z, x]|2
. (2.27)

It has the potential to give increased contrast and resolution when applied as an
adaptive weight to the DAS image [LL03]

SCF = SDAS[z, x] CF. (2.28)

2.9.3 Camacho-Fritsch Phase Coherence Factor (PCF)

The Phase Coherence Factor (PCF) [CPF09b] calculates for each pixel an adaptive
weight based on the phase of the receive data. It is a method proposed to improve
resolution [CPF09a]

PCF[z, x] = max
{

0, 1 − γ∗

σ0
f [z, x]

}
, (2.29)
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where γ∗ is a parameter provided to adjust the sensitivity of PCF to out-of-focus signals
[CPF09b], and σ0 = π/

√
3 is the STD of a uniform distribution between −π and π

[Rod+17]. The function f [z, x] calculates the minimum STD of the instantaneous
phase across the aperture. PCF is applied as an adaptive weight to the DAS image

SPCF = SDAS[z, x] PCF. (2.30)

Paper II”2.9.4 Generalized Coherence Factor (GCF)

“ The Generalized Coherence Factor (GCF) beamformer is an extension of CF which
utilizes the Fourier-spectrum over the receive aperture of the delayed channel data
[LL03]. The GCF is calculated as the ratio between the energy in a small angular sector
around the direction of interest divided by the total energy of the Fourier-spectrum.

Paper I”Li and Li introduced the GCF in [LL03]. It can be expressed as

GCF[z, x] =

∣∣∣∑p<M0
Yp[z, x]

∣∣∣2
M
∑M/2−1

p=−M/2 |Yp[z, x]|2
, (2.31)

where Yp is the M -point frequency spectrum over the aperture of the received channel
data ym. The spatial frequency index p lies in the range p ∈ [− M

2 , M
2 − 1]. The low

frequency region is specified by the cutoff frequency M0 and M0 ∈ [0, M
2 − 1]. In

Paper I, we used 11 out of a total of 128 Fourier coefficients. The GCF simplifies to CF
if M0 = 0. GCF is applied as an adaptive weight to the DAS image

SGCF = SDAS[z, x] GCF. (2.32)

2.9.5 Eigenspace Based Minimum Variance (EBMV)

“ The Eigenspace Based Minimum Variance (EBMV) beamformer is an extension
of the MV beamformer which utilizes the eigenstructure of the covariance matrix
to enhance performance [AM10]. The covariance matrix is eigendecomposed into a
signal and noise subspace, and the conventional MV weights are projected onto the
signal subspace.

Paper I”Asl and Mahloojifar applied the EBMV beamformer to medical ultrasound in [AM10].
The signal subspace EEES consists of the eigenvectors corresponding to the largest
eigenvalues,

EEES = [vvv1, vvv2, ..., vvvNum], (2.33)
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where Num is the number of eigenvectors that demonstrate the signal subspace. We
find the EBMV weights using the MV weights wwwMV [AM10]

wwwEBMV = EEESEEEH
S wwwMV. (2.34)

In a similar fashion to the MV image, given by (2.26), we calculate the final EBMV
image as

SEBMV[z, x] = 1
M ′ − L + 1

M ′−L∑
l=0

wwwH
EBMV[z, x] yyyl[z, x]. (2.35)

2.9.6 Delay-Multiply-And-Sum (DMAS)

“ TheDelay-Multiply-And-Sum (DMAS) [Mat+15]multiplies the delayed RF-signals
using a "signed" square root. The sum of these signals is band-pass filtered around
an "artificial second harmonic" signal before conventional envelope detection and
log-compression of the signal results in the final image. It is not obvious that this
is a "coherence based beamformer". However, it has been shown that "The DMAS
enhances signal coherence and can be seen as an intermediate solution between the
DAS beamformer and the coherence factor method" [Pri+17].

Paper I”DMAS is also termed Filtered-DMAS (F-DMAS). Findings in [PRA18] show that the
difference in image amplitude between DAS and F-DMAS can be partly explained by
how signal coherence influences the beamformers. The nonlinear operation involves
a pairwise multiplication and a square root before summation, and the final DMAS
image is [PRA18]

SDMAS =
M−1∑
q=0

M∑
r=q+1

sign(yqyr)
√

|yqyr|. (2.36)

2.10 Probability Distribution Functions (PDF)

The PDF describes the statistics of a distribution. In this section, I present three PDFs
as background material for Paper I and Paper II. We use the PDF when estimating the
probability of false alarm and detection, as discussed further in Chapter 3.

2.10.1 The Rayleigh Distribution

The Rayleigh PDF is important in ultrasound because it describes the speckle
background. Conventional DAS beamforming gives speckle background with an
amplitude Rayleigh distribution [Wag+83]. The Rayleigh PDF is obtained as the PDF
of two normally distributed sequences with combined amplitude A =

√
x2

1 + x2
2.
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2. Ultrasound Imaging

Here x1 and x2 are independent variables with mean µ = 0 and variance σ2, so
x1 ∼ N (0, σ2) and x2 ∼ N (0, σ2)[Kay98, ch.2.2.6].

p(A)Rayleigh =
{

A
σ2 exp(− A2

2σ2 ) if A > 0
0 if A < 0.

(2.37)

Fig. 2.16 shows the PDF for a Rayleigh random variable with σ2 = 1. σ is called the
scale parameter of the Rayleigh distribution. The mean and variance of a Rayleigh

Figure 2.16: PDF for Rayleigh random variable A with σ2 = 1.

distribution is
E(A) =

√
πσ2/2 (2.38)

Var(A) = (2 − π/2)σ2 (2.39)
The signal-to-noise ratio ( SNR) is commonly used in ultrasound to characterize imaging
statistics

SNR = E(A)√
Var(A)

. (2.40)

By inserting (2.38) and (2.39) into (2.40), we see that the theoretical Rayleigh distribution
has SNR =

√
π/2

2−π/2 ≈ 1.91.
The right-tail probability is the probability of exceeding a given value γ. To get

the expression for the probability, we integrate the PDF

Pr{A > γ} =
∫ ∞

γ

p(A)dA = exp
(

−γ2

2σ2

)
(2.41)

Following [Kay98, ch.2.2.6], the right-tail probability can also be written using the
noncentral chi-squared PDF with two degrees of freedom (χ2

2) by substituting the
Rayleigh distributed amplitude A with a χ2

2-distributed variable b as A =
√

σ2b to get

Pr{A >
√

γ∗} =Pr{A/
√

σ2 >
√

γ∗/σ2} = Pr{
√

b >
√

γ∗/σ2}
= Pr{b > γ∗/σ2} = Qχ2

2
(γ∗/σ2)

(2.42)
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The function Q(x) is the complementary cumulative distribution function. Since
Qχ2

2
(t) = exp(t/2), we can rewrite (2.42) as

Pr{A > γ} = Qχ2
2

(
γ2

σ2

)
= exp

(
−γ2

2σ2

)
. (2.43)

2.10.2 The Negative Exponential Distribution

Ultrasound images are often shown in decibel (dB) scale. Squaring the amplitude of
the signal changes the distribution. Intensity, i.e., the squared amplitude i = A2 has a
negative exponential distribution [Abr19, p. 261] [OQ98, p. 88][Cob07, p. 502]. The
PDF for negative exponential random variable i is

p(i)neg. exp. =
{

1
β exp(− i

β ) if i > 0
0 if i < 0.

(2.44)

Here β is the mean value E(i). If we compare with (2.38), it is clear that β = 2σ2. Fig.
2.17 shows the PDF for a negative exponential random variable with β = 2.

Figure 2.17: PDF for negative exponential random variable i with β = 2.

The right-tail probability of the PDF in (2.44) is

Pr{i > γ} = Qχ2
2

(
− γ

β

)
= exp

(
− γ

β

)
, (2.45)

2.10.3 The Rician Distribution

The Rician PDF is important in Paper II when we add a point scatterer to the speckle
background. The Rician PDF is the PDF of two normally distributed sequences with
combined amplitude A =

√
x2

1 + x2
2. Here x1 and x2 are independent variables with
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2. Ultrasound Imaging

different mean values but variance σ2, so x1 ∼ N (µ1, σ2) and x2 ∼ N (µ2, σ2)[Kay98,
ch.2.2.6].

p(A)Rician =
{

A
σ2 exp

(
− (A2+α2)

2σ2

)
I0
(

αA
σ2

)
if A > 0

0 if A < 0,
(2.46)

where I0(u) is the modified Bessel function of the first kind and zeroth order, and
α2 = µ2

1 + µ2
2. If α2 = 0, the PDF reduces back to Rayleigh. Fig. 2.18 shows the PDF

for a Rician random variable with σ2 = 1 and varying values of α2.

Figure 2.18: PDF for Rician random variable A with σ2 = 1.

The right-tail probability can be shown to be related to that of the noncentral χ2

random variable and must be evaluated numerically [Kay98, ch.2.2.7].

Pr{A >
√

γ′} =Pr

{√
x2

1 + x2
2

σ2 >

√
γ′

σ2

}
= Pr

{
x2

1 + x2
2

σ2 >
γ

′

σ2

}

= Qχ
′2
2 (τ)

(
γ

′

σ2

)
,

or

Pr{A > γ} = Qχ
′2
2 (τ)

(
γ2

σ2

)
,

(2.47)

where τ = (µ2
1 + µ2

2)/σ2. Appendix 2D in [Kay98] lists the MATLAB program
Qchipr2.m. It determines the right-tail probability of a Rician random variable and was
used to create theoretical estimates in Paper II.

28



Point Signal to Speckle Noise Ratio

2.11 Point Signal to Speckle Noise Ratio

As a measure of a point scatterer’s intensity relative to the speckle background in
Paper II, Paper IV, and Paper V, we calculate the point’s SNR metric as

point SNR = 10 log10

(
ip

is

)
, (2.48)

where ip is the point scatterer intensity, and is is the average intensity of the speckle
background without the point scatterer present.

2.12 Contrast Metrics

Claiming that one imaging method is better than another can be tricky. This thesis
discusses howmethods can be compared statistically. Contrast metrics are often used to
describe the image quality. In Paper I, we discuss contrast metrics when benchmarking
adaptive beamformers. In 1983, Smith et al. [Smi+83] developed a statistical model
for image quality by connecting contrast and lesion detection. Lesion detectability
using contrast is now well established in medical ultrasound [Dah+11; IH94; LPW04;
Rod+20; SW84; Zem+05]. The most common contrast metrics are contrast ratio (CR)
and contrast-to-noise ratio (CNR). CR is defined as [HTu+92]

CR = 20 log10

(
µ1

µ2

)
, (2.49)

where µ1 and µ2 are the mean intensity values of two speckle regions. It is often given
in logarithmic dB-scale. CNR weights the intensity difference between the two regions
with the average variance [PF83]

CNR = |µ1 − µ2|√
(σ2

1 + σ2
2)/2

, (2.50)

where µ1 is the mean intensity value and σ2
1 is the variance of region 1.

In [Rod+20], the generalized CNR metric (gCNR) is introduced. It is a contrast
metric for lesion detectability that is resistant to dynamic range alterations. It can be
used on all kinds of images, regardless of compression, scale, or output units [Rod+20].

2.13 Speckle Statistics of Adaptive Beamformers

Conventional DAS beamforming produces a speckle background with an amplitude
Rayleigh distribution [Wag+83][Bur78] [OQ98, p. 88] [Kay98, p. 30]. The SNR ≈ 1.91
and the PDF is shown in Figure 2.16. Since speckle has a Rayleigh PDF in amplitude, the
imaginary and real parts of the speckle signal have normal Gaussian distributions. The
speckle pattern is considered well developed if the number of scatterers per resolution
cell is larger than ten [Wag+83] [Rin19, ch. 2.9].

In Paper I, we show that certain adaptive beamformers alter the statistics of the
speckle background. We simulated ultrasound image scenes with two speckle regions
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with 0 and −30 dB intensity. We created horizontal and vertical phantom orientations
to see if the orientation of the boundary line had any influence on the results. Paper I
presents figures of the measured PDFs of the seven beamformers for each speckle
region. The SNR value for each beamformer indicates if there is a deviation from
conventional DAS with SNR ≈ 1.91.

Table 2.1: Summary of findings on speckle statistics of adaptive beamformers

High intensity speckle region Low intensity speckle region
Rayleigh Non-Rayleigh Rayleigh Non-Rayleigh

DAS, MV, EBMV
and GCF

CF, PCF, and
DMAS

DAS and MV EBMV, CF, PCF,
GCF and DMAS

Vertical boundary orientation Horizontal boundary orientation
Speckle statistics for each region within
the same image are similar.

EBMV, CF, GCF, PCF have increased
variance for the low intensity region.
DMAS has a deformed PDF with a 2nd
peak at low intensity.

Table 2.1 summarizes the observed findings of how the adaptive beamformers alter
the speckle statistics. The results show that the beamformers alter the statistics of the
low and high intensity regions differently. The results also show that the beamformers
alter the statistics of the two regions differently depending on the boundary orientation.

2.14 Speckle Reduction

Speckle reduction or noise suppression is often applied on medical ultrasound images
to improve contrast [Sza14, ch. 8.4.6]. It can improve the contrast between grayscale
tissue areas but simultaneously reduce the resolution of the point scatterer. In Paper II,
we analyzed the effect of common denoising filters on the detection of point scatterers.
We studied the following filters: Wiener [GW10, ch. 5.8], non-local means [BCM05],
bilateral [TM98], anisotropic diffusion [PM90], and simple block averaging. Short
descriptions of the different filters and the parameters we used can be found in Paper II.
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Chapter 3

Detection of a Point Scatterer in
Speckle
Detection of a point scatterer in speckle can be viewed as a classical binary detection
problem [Abr19; EG05; Kay13; Kay98; Lev08]. This section presents the background
theory for howwe canmeasure and evaluate point detection performance in ultrasound
images. In Paper II, we present an overview and framework for the detection of
point scatterers in ultrasound images. In the paper, we discuss how to measure
detection performance and calculate confidence intervals. The detection strategy
and methodology presented in Paper II is relevant for Paper IV and Paper V. I
therefore include the relevant background material in this section and reuse some of
the formulations from Paper II.

3.1 Binary Detection Problem and the Likelihood Ratio Test

The objective is to decide between two possible scenarios; speckle background with or
without a point signal present. We apply a binary hypothesis test to decide if I have
speckle (hypothesis H0) or signal + speckle (hypothesis H1) [TRL15].{

H0 : ξ = ξw

H1 : ξ = ξa + ξw.
(3.1)

where ξ is the received signal, ξw is the signal from the speckle background, and ξa is
the signal from the point scatterer.

The Neyman-Pearson theorem states that the probability of detection (PD) is
maximized for a given probability of false alarm (PFA) by using the Likelihood Ratio
Test (LRT) [Kay98, ch. 3.3]

L(t) = p(ξ; H1)
p(ξ; H0) > γ, (3.2)

where p is the PDF for observation ξ for the test case with or without a signal present.
The threshold γ can be found by integrating the PDF of hypothesis H0 to the chosen
PFA value [Kay98, p. 30]

PFA =
∫ ∞

γ

p(ξ; H0)dξ. (3.3)

The proof can be found in [Kay98, App. 3A]. The LRT is the optimal detector for a
known signal in noise when the PDFs of both hypothesis are known. However, in
our case we wish to detect a signal with unknown amplitude, phase and position in
speckle background of unknown level. We can assume the shape of the PDFs to be
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3. Detection of a Point Scatterer in Speckle

known, but with unknown parameters. The generalized likelihood ratio test (GLRT)
replaces the unknown parameters by their maximum likelihood estimates (MLEs)
before performing hypothesis testing as in (7.7) [Kay98, ch. 6]. We will return to GLRT
in Chapter 7.

To illustrate the detection theory, we consider ideal one-dimensional (1-D)
sequences of a point scatterer with a random position in speckle. The speckle sequence
is constructed as a complex sum of two normally distributed sequences. We add a
point scatterer to the sequence with a chosen point SNR value and test many different
point positions. As discussed in Paper II, the probability distribution of an ideal point
in additive white Gaussian noise in complex sequences is statistically equivalent to
an ideal point in a critically sampled, fully developed speckle scene. We estimate
expressions for the detection probabilities using the ideal 1-D case. In the 1-D study,
the mean speckle background intensity is = 2 as we set the scale parameter to σ2 = 1.

The PFA is estimated on images containing only speckle, while PD is estimated
on images containing one point scatter in speckle. To get PFA and PD, we count the
number of detections and false alarms above a certain threshold γ. We get the final
probabilities by comparing the respective numbers to the total number of realizations.

3.2 Probability of False Alarm

We return to the probability distributions presented in Section 2.10.1 and Section 2.10.2
and borrow some text from Paper II. The PDF for speckle in an ultrasound image
is Rayleigh distributed in amplitude A [Bur78] [OQ98, p. 88] [Kay98, p. 30]. When
presented with an ultrasound image, we assume that the most likely point target
candidate is the point scatterer with the highest intensity. To find point target
candidates, we apply a threshold on the intensity image [OQ98, ch. 10]. Intensity
i = A2 has a negative exponential PDF [Abr19, p. 261] [OQ98, p. 88][Cob07, p. 502].
The expression for PFA is thus given by (2.45), with γ as the intensity threshold and β
as the mean speckle intensity value is = β.

In Paper II, we suggest using the detection strategy that selects the maximum
value within a search window for both false alarms and detections. Figure 3.1 from
Paper II presents the theoretical PFA(γ)max for a speckle sequence of varying length
or window size. Since we pick the maximum within the window, the number of false
alarms increases with increasing window size.

“ The maximum value of speckle increases with the number of independent pixels
N considered. This increases or inflates the PFA for a given threshold. Following
[EG05, ch. 2.11], the probability is such that Pr{imax ≤ γ} = (Pr{i ≤ γ})N . The
PFA for the maximum of N random independent variables then becomes [EG05, ch.
2.11], [Kay98, p. 283], [Abr19, p. 587]

PFA(γ)max = 1−(1−PFA(γ))N = 1−(1−exp (−γ/β))N . (3.4)

Paper II, slightly altered”32



Probability of Detection

Figure 3.1: Theoretical PFA(γ)max for a speckle sequence of varying length versus
threshold values. The maximum value of a speckle sequence increases with sequence
length. The theoretical mean value β is 2 since the scale parameter is set to σ2 = 1.
Figure borrowed from Paper II.

3.3 Probability of Detection

When a signal from a point scatterer is added to a speckle background, we get the
Rician PDF presented in (2.46) [Kay98, p. 31], [OQ98, p. 113].

“ The theoretical PD for threshold γ can be estimated as [Kay98, p. 283]

PD(γ) ≈ Qχ
′2
2 (τ)

(
2γ

β

)
, (3.5)

where Qχ
′2
2 (τ) is the right-tail probability or complementary cumulative distribution

function related to a noncentral χ2 variable. It must be evaluated numerically [Kay98,
App. 2-D] [Kay13, ch. 6.4]. PD is estimated using τ = 2ip

β , and it is therefore dependent
on point SNR. By combining (2.45) with (3.5), PD can be expressed in terms of PFA as

PD(γ) ≈ Qχ
′2
2 (τ)

(
2ln 1

PFA(γ)

)
. (3.6)

Paper II, slightly altered”In [Kay98, App. 2-D], Steven Kay presents a program to compute the right-
tail probability of a central or noncentral chi-squared PDF. The MATLAB function
Qchipr2.m computes Qχ′2

ν (τ), and inserting ν = 2 gives the numerical estimate needed
in 3.6. In [Kay98, ch.7.8], Kay derives the theoretical expressions for PD and PFA for
active sonar/radar detection using the GLRT for the detection of a sinusoid of unknown
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amplitude, phase, frequency, and time of arrival in white Gaussian noise. Kay finds
that the optimal detector evaluates the Fourier transform of the sequence and finds
the maximum frequency bin. ”In essence we "pick the peak" of the spectrogram and
compare it to a threshold” [Kay98, p.280]. Picking the maximum frequency bin is
similar to picking the maximum intensity value in an image as the most likely point
candidate.

We wish to pick the maximum within the search window for both false alarms and
true positives. We therefore combine (3.4) with (3.5) to get PD given by PFA(γ)max as

PD(γ) ≈ Qχ
′2
2 (τ)

(
−2ln

(
1 − (1 − PFA(γ)max)

1
N

))
. (3.7)

Finally, the PD of the maximum value can be found as [Abr19, p. 588]

PD(γ)max = 1 − (1 − PD(γ))(1 − PFA(γ)max)(1− 1
N ). (3.8)

Figure 3.2: Theoretical PD(γ)max vs. threshold values and varying sequence length.
Point SNR is 12 dB. The mean speckle intensity value β = 2. PD(γ)max finds the
maximum intensity point within the sequence. N = 1 signifies PD calculated using
known true point position only, N = 7 corresponds to a ±3 pixel search window, and
N = 500 signifies picking the maximum out of 500 pixels. PD(γ)true max additionally
checks if the found maximum has correct position, and for weak point scatterers it
will not converge to 1. Figure borrowed from Paper II.

3.4 Evaluation of Detection Performance

3.4.1 Receiver Operating Characteristics (ROC) and Area Under the
Curve (AUC)

A Receiver Operating Characteristics (ROC) curve displays detection performance.
The ROC curve compares PD to PFA for a given threshold γ. If we increase γ, we
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lower PFA, but then PD will also decrease. All points on the ROC curve should satisfy
PD ≥ PFA [Lev08, ch. 2.4.2] [Kay98, p. 74]. We present the detection performance of
methods using ROC curves in Paper II, Paper IV, and Paper V. Since high PFA values is
not of much practical interest, we show the ROC curves for PFA values up to 0.1

We also present detection performance results by tabulating Area Under the Curve
(AUC) [Abr19, p. 315] values. AUC for a diagonal line with PD = PFA is 0.5. We
also tabulate PD for a chosen PFA value, which is another way to compare detection
performance [Kay13, ch. 7.3.2]. When testing the detection performance of different
methods, the SNR-range where PD varies greatly is the most interesting to analyze.
In Figure 3.3 from Paper II, we see that measured PD values vary the most in the
SNR-range of [8, 14] dB.

Figure 3.3: The PD increases with point SNR. PD is shown for five PFA values. Figure
borrowed from Paper II.

3.4.2 Number of Required Realizations and Confidence Interval for
the AUC

The number of realizations R affect the accuracy of the measured results [Kay98, p.
37]. In Paper II, we discuss how to plot confidence intervals for the ROC curves, and
how to compute confidence intervals for the AUC.

“ If the true probability is small, for example PFA = 0.1%, only one in a thousand
realizations is expected to exceed the threshold. In such a case, R must be much larger
than a thousand to ensure an accurate probability estimate. As presented in [Kay98, p.
37], if we wish to have a relative absolute error ϵ for probability P for 100(1−b)% of
the time, then the required number of realizations Rreq is

Rreq ≥ (Q−1(b/2))2 (1 − P )
ϵ2P

. (3.9)
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Here Q−1(b/2) is the inverse right-tail probability function of a standard normal
distribution evaluated at b/2. For very small values such as PFA = 10−3, a 10%
relative accuracy for 80% of the time requires R = 164070 and it can be difficult or
impractical to get enough data. On the other hand, if we wish to analyze a probability
of P = 0.05 for 80% of the time and have R = 6500, we get an error of ϵ = 7%.
Confidence intervals for the ROC curve can be plotted by calculating the relative error
for both PFA and PD at each threshold value using (3.9). The coefficient of variation of
the estimated probability P , i.e. the ratio of the standard deviation (STD) to the mean
of the estimate, is a similar quantity used to express Rreq [Abr19, p. 314].

As presented by Hanley and McNeil [HM82], we can compute the confidence
interval for the AUC. For large samples, the distribution of AUC is approximately
normal. A 100(1 − b)% confidence interval for sample AUC-value θ may be computed
using the standard error (SE) as follows

θ ± Q−1(b/2) SE(θ), (3.10)

where

SE(θ) =

√
θ(1−θ) + (Rp−1)(Q1−θ2) + (Rs−1)(Q2−θ2)

RsRp
.

It is worth noting that SE(θ) is inversely proportional to
√

R. Quadrupling R only
reduces SE(θ) by a factor of two. SE(θ) is small for high θ values close to 1. The number
of realizations with and without a point scatterer present is Rp and Rs respectively.
Q1 and Q2 are distribution-specific quantities expressed as functions of θ and give a
conservative estimate of SE(θ) [HM82].

Q1 = θ

2 − θ
, Q2 = 2θ2

1 + θ
. (3.11)

Paper II”3.4.3 Choice of Point Target Detection Strategy

In Paper II, we discuss the pros and cons of five different detection strategies (A-E).
Figure 3.4 presents theoretical ROC curves for the five strategies. The strategies were
applied to a random vector of length 500 with a randomly positioned point scatterer
with 12 dB SNR.

As discussed in Paper II, strategy C resembles a realistic, practical approach the
most and gives valid ROC curves. We chose to use this strategy for the detection
studies in Paper II, Paper IV, and Paper V. The strategy evaluates a search window
around the known point location and picks the maximum value for both false alarm
and detection. Figure 3.2 shows how PD for a small search window only slightly
deviates from PD at the known point position. Strategy C applied a ±3 pixel search
window for the 1-D study, corresponding to N = 7 independent pixels. Increasing the
number of pixels in the search window inflates PFA, as shown in Figure 3.1. However,
with a search window we can evaluate how a method affects the speckle background
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Figure 3.4: ROC curves for the different strategies for calculating point detection
performance. Figure borrowed from Paper II.

and corresponding false alarms. In the 2-D study, the size of the search window was
twice the −6 dB spatial resolution for the original DAS image. As discussed in Paper II,
the probability of detecting the true point target as the maximum is high within such
a small window. A window also counteracts the possible slight shift in pixel location
caused scalloping loss or other imaging effects. The chosen size affects the possible
separability of detected point scatterers.

3.5 Practical Detection Performance in Ultrasound Images

In Paper II, we list several factors in practical ultrasound imaging that affect the
detection probabilities. The publication evaluates how common imaging techniques
affect the detection performance of point scatterers.

“ The theoretical formulae for detection performance in this section are for ideal
signals in additive white Gaussian noise in complex sequences. This is statistically
equivalent to ideal points in fully developed speckle. In practical ultrasound imaging,
there are several factors that potentially affect detection:

• Additive noise on channel data. The effect of noise causes the SNR to vary with
depth.

• Finite probe size causes targets positioned far off-center not to be as well
represented as centered point targets.

• The spatial resolution is determined by the aperture size and transmitted pulse
bandwidth. It typically varies for depth and angle, and oversampling is common.
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• Scalloping loss can cause a reduction in amplitude and leakage in energy to
nearby pixels.

• Apodization changes resolution and reduces side lobes.

• Speckle reduction methods are often applied on ultrasound images and alter the
statistics.

• Advanced beamforming methods alter both the speckle statistics [Hve+17] and
the point-plus-speckle statistics.

Paper II, slightly altered”3.6 Numerical Experiments to Measure Point Detection

In Paper II ,Paper IV, and Paper V, we use many simulated images to experimentally
measure the detection performance. The flow chart below summarizes the applied
methodology in the papers. The approach is to measure the detection performance
independent of knowledge of the PDFs to directly compare how they affect the point
detectability. Applying a search window lets us evaluate and compare how the imaging
method affects the speckle background and corresponding false alarms.

Figure 3.5: The flow chart of the applied detection methodology in this thesis.

The goal of the detection study is distinct from imaging. The results are not
intended for visual assessment but rather to determine and evaluate the statistical
detection performance of the suggested method. We need full-scale Monte Carlo
simulations to get statistical results. To sufficiently evaluate the suggested method
in Paper IV and Paper V, we create and analyze 28431 realizations for PD and PFA
calculation. Since we require many images with specific point SNR and known point
location, we need to use simulations. Fortunately, the Field II software beamformer
produces ultrasound images with representative characteristics.
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Chapter 4

The Wavelet Coefficient Shrinkage
Method
The wavelet coefficient shrinkage method was used to find buried mines and large
boulders on the seabed using sonar in [HV14]. On a sonar image, the mines appear as
tiny dots on a sizeable speckled background of the seabed. In Paper III, we investigated
if the method could be applied to ultrasound images to enhance point scatterers and
suppress speckle background. This chapter presents the proposed algorithm in Paper III
that uses shrinkage of incoherent wavelet coefficients. We categorize the algorithm
into five steps. Figure 4.1 shows a flowchart of the algorithm.

Figure 4.1: Flowchart of the wavelet coefficient shrinkage algorithm in Paper III.
We first create two complementary looks and subsequently decompose them into
wavelet coefficients. The algorithm then estimates the coherence between the wavelet
transforms. An average estimate of the coherence is found by averaging p realizations.
This estimate is further thresholded before multiplication with the wavelet transform
of the original image. The final image is created after applying the inverse wavelet
transform.

4.1 Step 1: Create complementary looks

The algorithm starts by partitioning the image’s frequency spectrum to create looks. It
creates two complementary random block grids to create a pair of looks. The following
steps summarize the method:

• Take the 2-D Fourier transform of the image
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4. The Wavelet Coefficient Shrinkage Method

• Create a random 2-D block grid and its inverse block grid.

• Multiply the Fourier image with each block grid.

• Take the inverse Fourier transform and end up with two images or looks.

The idea is that point scatterers are spread over all frequencies so that the points will
be persistent in both looks. On the other hand, Speckle has ideally low coherence or
similarity between the looks. The blocks in the 2-D grid are randomly assigned to
either of the two sets, see Figure 4.2. We chose the size of the blocks so that we preserve
the point target information over several blocks, whereas the speckle background is
correlated on amuch smaller scale than the block size [HV14]. Themethod is illustrated
in Figure 4.3. It shows an example of the partitioning of the frequency spectrum due
to multiplication with a block grid pair. Figure 4.4 shows the complementary looks of
an actual ultrasound image.

Figure 4.2: Two complementary random block grids.

Figure 4.3: We create the complementary looks by first applying a 2-D Fourier transform
to the original image. We then multiply the frequency spectrum with each of the
2-D random block grids. Applying the inverse Fourier transform again produces
complementary looks.
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Step 2: Wavelet transform of looks

Figure 4.4: An example of two complementary looks. The original image is of a tissue-
mimicking phantom and includes a cyst and several point scatterers. The image quality
of the looks is degraded compared to the original image, but the point scatterers are
included in both looks.

4.2 Step 2: Wavelet transform of looks

Figure 4.5: Illustration of the 2-D discrete wavelet transform. It decomposes an image
into four coefficient images per decomposition level. The algorithm divides the image
into high and low frequency bands. The algorithm also downsamples in horizontal
and vertical directions to extend the wavelet transform to 2-D. The output is three
detail images sensitive to vertical, horizontal, and diagonal frequencies. The low-pass
filtered band is further downsampled to produce the three detail images of the next
scale level.

Wavelet analysis can be used to compress or denoise an image while preserving
the resolution. This is why standard image compression methods such as JPEG use
wavelets. The target information can be described using a few wavelet coefficients,
whereas noise is more evenly distributed [HV14]. Fourier analysis divides a signal into
sine waves of various frequencies. A wavelet is a wave-like oscillation localized in
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4. The Wavelet Coefficient Shrinkage Method

time. Wavelet analysis divides a signal into shifted and scaled versions of the mother
wavelet. In Paper III, we performed the multilevel 2-D wavelet decomposition using a
symmetric biorthogonal wavelet base. We used the built-in functions wavedec2 and
waverec2 in MATLAB with the bior mother wavelet. The scale defines how stretched
or squished the wavelet is.

The wavelet transform decomposes an image into high and low frequencies and
scale. The scale corresponds to the number of levels in the transform. The algorithm
also downsamples the input in horizontal and vertical directions to extend the wavelet
transform to 2-D. We create three detail images from the high-pass filtered image
where each image describes local directional changes in the image. The output is
denoted as the high-high (HH), high-low (HL), and low-high (LH) bands. The LH, HL,
and HH bands are sensitive to vertical, horizontal, and diagonal frequencies at each
scale. The low-pass filtered image is further downscaled and yields what is known
as an approximation image. We can further high-pass filter the approximation image
to produce the three smaller detail images of the next level. Figure 4.5 illustrates the
process.

4.3 Step 3: Estimate coherence between looks

We estimate the coherence between the complementary looks while in the wavelet
domain. We present the formula as presented in Paper III.

“ The coherence between two looks is estimated as:

C(x, y, l, p) =

∣∣∣∣∣∣∣∣∣∣∣∣

N−1
2∑

m,n=− N−1
2

W1W∗
2√√√√ N−1

2∑
m,n=− N−1

2

|W1|2

√√√√ N−1
2∑

m,n=− N−1
2

|W2|2

∣∣∣∣∣∣∣∣∣∣∣∣
given Wi = Wi(x + m∆x, y + n∆y, l, p) (4.1)

where (x,y) is the pixel location in the wavelet transformed image, l is the decom-
position level, p is the realization number, and ∆x and ∆y are the pixel dimensions.
Wi is the wavelet transform of complementary look i and W∗

i denotes its conjugate.
NxN is the sliding window size over which the coherence for pixel location (x,y) is
calculated. A hanning window with N = 5 was used. A large window size will reduce
variance, but also reduce spatial resolution. The average coherence estimate for each
level l is obtained by averaging the coherence estimate between two looks over all P
realizations.

Cav(x, y, l) = 1
P

P∑
p=1

|C(x, y, l, p)| (4.2)
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Step 4: Apply shrinkage to incoherent wavelet coefficients

Figure 4.6 shows an example of the calculated average coherence estimate for each
decomposition level. Notice how the method encircles the boundaries of the cyst and
the point scatterers.

Figure 4.6: The average coherence estimate for three decomposition levels. The original
image is of a tissue-mimicking phantom and includes a cyst and several point scatterers.

4.4 Step 4: Apply shrinkage to incoherent wavelet coefficients

The next step is to apply shrinkage to the incoherent wavelet coefficients of the
average coherence estimate. We apply a simple weighting schemewhere we completely
suppress coefficients with values less than tmin and retain values greater than tmax. We
apply a linear transition for values in between these threshold limits.

“ Cth(x, y, l) =


1, if Cav(x, y, l) > tmax

0, if Cav(x, y, l) < tmin
Cav(x,y,l)−tmin

tmax−tmin
, otherwise

(4.3)

Paper III”4.5 Step 5: Apply shrinkage to the wavelet transform of the
original image

We now obtain the wavelet coefficient images of the original image. We multiply the
thresholded coefficients after (4.3) with the wavelet coefficients of the original image.
The inverse wavelet transform of these coefficients yields the final image.

4.6 Evaluation Criteria

We used the metrics conspicuity (Cp) and Peakpoint-to-Peakspeckle ratio (PP) in Paper III.
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4. The Wavelet Coefficient Shrinkage Method

“ Cp is a measure of how clearly discernible a point is from the background at
same depth and it is defined as [Dah+11]:

Conspicuity =
maxpoint −µspeckle

σspeckle
. (4.4)

PP measures the intensity difference between the point scatterers and peaks in the
speckle background:

PP = 20 log10

(
maxpoint

maxspeckle

)
(4.5)

where maxpoint and maxspeckle are the maximum intensity values.
Paper III”4.7 Additional steps for a 3-D image

In addition to the work presented in Paper III, I performed a preliminary study of the
wavelet shrinkage method applied to 3-D images. If we have a 3-D image, we can
exploit all three orthogonal directions to reduce the number of false alarms. When we
have a 3-D input image, we perform steps 1-5 for each orthogonal direction. We then
obtain three new 3-D data images from the azimuth, elevation, and depth direction run-
throughs. We further calculate the coherence between these three direction estimates.
Finally, we combine all three direction estimates and retain only the locations with
high coherence values. Points present in all three direction estimates are more likely
to be true point targets. The method suppresses point scatterer candidates and speckle
points not present in all three directions.

Figure 4.7 shows an example of the process applied on a 3-D image of a breast
phantom. It is difficult to ascertain which of the intensity peaks in the image are true
microcalcifications (MCs). I tested the 3-D wavelet coefficient shrinkage method on
such images. Figure 4.7 shows how we can drastically reduce the number of point
target candidates if we exploit all three directions.

Figure 4.8 shows the original image together with the final wavelet shrunk image.
The wavelet shrunk image determines probable locations of microcalcifications. For
the image example in Figure 4.8, the method reduced the number of candidates from
an average of 18 when using only one of the direction estimates to the final three
candidates.
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Additional steps for a 3-D image

Figure 4.7: We create three direction estimates from a 3-D image of a breast phantom
(top left). The image in the top right shows the image after a single direction run-
through. The image to the bottom left is the result after running through all three
directions and thresholding the coherence between the direction estimates. We
drastically reduce the number of probable point targets by exploiting all three directions.
The final image to the bottom right overlays the new wavelet shrunk image atop the
original image to highlight the probable point targets. All images are shown in 2-D
in a radial depth versus azimuth pixel plane. The images are all normalized by the
maximum value to be comparable.
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4. The Wavelet Coefficient Shrinkage Method

Figure 4.8: The original image of a breast phantom is shown together with the
final wavelet shrunk image. The 3-D images are shown in a 2-D plane in cartesian
coordinates. The wavelet shrinkage method reduces the number of probable
microcalcifications. The image to the right shows the original image with small
white circles indicating the probable locations.
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Chapter 5

The Whitening Transform
A whitening transform converts a set of random variables having a known covariance
matrix into a set of new random variables whose covariance is the identity matrix
[Kel86; KK99; KLS18]. The transformation is called whitening because it changes the
input vector into white noise. To obtain a whitening transform, we can estimate a
smoothed average of the spatial frequency spectrum. We can calculate the estimate by
applying an adaptive method or using secondary data. By applying the inverse of this
estimate to the image’s frequency spectrum, we boost the frequency amplitudes to
the same average level. Regarding the methods presented in Chapter 7, we can also
incorporate the whitening transform into the covariance matrix calculation [Kel86].

5.1 Prewhitening a 1-D Sequence

To study the effect of prewhitening on point detection in Paper IV, we started with
ideal 1-D sequences of a point scatterer with a random position in speckle. Figure 5.1
shows the magnitude of the frequency response of such a sequence. The speckle
vector in Figure 5.1 is oversampled by a factor of three. Its frequency spectrum has a
similar shape to the spectrum of an oversampled, basebanded ultrasound signal in one
direction.

To obtain a whitening filter, we first calculate a smoothed average of the magnitude
of the 2-D Fourier transform of the speckle vector. We can calculate the average for
all the complex speckle vectors if we have secondary data. In Paper IV, we used the
magnitude of the 2-D Fourier transform, but we could have used the magnitude of
the frequency power spectrum. The output is an estimate with real values, and the
whitening filter is the inverse of this estimate. We set the whitening filter to zero
outside the valid frequencies and smoothen the cutoffs slightly to reduce edge effects.
The frequencies after whitening have the same mean amplitude level, but the transform
retains the randomness. In this thesis, we call the resulting sequence in the image
domain a whitened or prewhitened sequence.

Figure 5.2 shows the significant improvement in ROC by applying an optimized
prewhitening of the data. The detection improvement depends on the signal spectrum
and the noise spectrum. We use a priori knowledge of the spectrum shape to set the
whitening filter limits. The sequences in the 1-D study are oversampled by a factor of
three, and we accordingly set the whitening limits. However, the optimal limits depend
on where we have both large bandwidth and positive point SNR. The shape of the
frequency spectrum for a near-field, broadband signal will not have an ideal rectangular
shape with clear cutoff limits between the signal and noise. The optimal cutoff limits,
therefore, depend on the additive noise level. For high point SNR values, the optimal
whitening limits are governed by the known oversampling as given in Figure 5.1.
For weak point scatterers, the optimal wavenumber coverage of the whitening filter
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5. The Whitening Transform

Figure 5.1: The spatial frequency spectrum of a bandpass filtered, oversampled 1-D
speckle sequence with some added noise. The same spectrum is also shown after
applying an optimized whitening transform, and the transform only retains and
enhances the valid frequencies. Figure borrowed from Paper IV.

Figure 5.2: ROC for prewhitening applied on the 1-D sequences before point detection.
Applying an optimized whitening increases the measured point SNR.

shrinks. The whitening filter that optimizes detection performance thus depends on
both image resolution and point SNR since the spectrum is nonuniform. We discuss
how PD is proportional to both bandwidth B and point SNR in Paper IV.
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2-D Whitening Limits

5.2 2-D Whitening Limits

In the 2-D detection study in Paper IV, we applied the same whitening transform to
all the DAS images. We estimated a smoothed average of the magnitude of the 2-D
Fourier transform using all of the complex speckle images. We tapered the inverse
estimate with a small Gaussian filter to reduce edge effects. As presented in Section 2.5,
the limits for the spatial frequencies are defined by the critical angle α and the pulse
bandwidth.

Figure 5.3 from Paper IV compares the ROC curves for the original and optimal
α-whitened images for two different point SNR values. The results in Paper IV show
that an optimized prewhitening can drastically increase the point SNR, as shown by
the measured point SNR values in the legend. The ROC results in Figure 5.3 show that
prewhitening the images has a significantly positive effect on point detection.

Figure 5.3: ROC curves for two point SNR values with or without α-whitening the 2-D
ultrasound images before detection analysis. Figure borrowed from Paper IV.

Paper IV also studied suboptimal whitening limits by increasing or decreasing
the applied critical angle or frequency bandwidth. The optimal whitening limits
depend on the image resolution and the point SNR. Figure 5.4 illustrates the different
whitening filter limits analyzed in Paper IV. Narrowing the limits can be beneficial in
the presence of noisy backgrounds and weak point scatterers since we then suppress
spatial frequency regions with low SNR values.
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5. The Whitening Transform

Figure 5.4: Illustration of seven whitening filter limits defined by the critical angle
α and the pulse bandwidth. +5% fH corresponds to a 5% increase in the maximum
bandwidth limit fH and −5% in the minimum bandwidth limit fL. Figure borrowed
from Paper IV.
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Chapter 6

Texture Correction
Since ultrasound images typically include varying echo intensities in the tissue speckle,
it is important to study nonuniform backgrounds when testing a method’s point
detection performance. Living tissue is full of movement and structure and is nonlinear
both elastically and dynamically [Sza14, ch. 9.1]. An inhomogenous texture has
predominantly the same type of tissue with small fluctuations about a mean value,
while a region enclosing a group of contiguous regions with different characteristics is
called heterogeneous [Sza14, ch. 9.2]. Transitions between interfaces or lines caused
by anisotropic muscle fibers can create edges in an ultrasound image, making it more
difficult to discern small point scatterers. A point scatterer detector, therefore, needs to
handle nonuniform backgrounds. In Paper V, we created textured ultrasound images
and applied texture correction prior to point detection performance.

6.1 Creating Textured Backgrounds

In Paper V, we model the tissue backgrounds with random texture fluctuations of a
specific scale. The size of the texture was substantially larger than a point scatterer but
much smaller than the image scene. We chose to model random Gaussian variations
in an image scene, providing relevant texture fluctuations for an inhomogenous
ultrasound background. We combined the DAS images with the random texture maps
to simulate varying texture backgrounds. With such a method, the point scatterer
retains its point SNR value compared to the immediate surrounding background. We
applied a Gaussian profile with a maximum value in the center of the frequency
spectrum to create a texture map. Figure 6.1 shows such a frequency spectrum with
a Gaussian distribution. It is easy to set a specific scale for the texture blobs with a
Gaussian texture profile. Since we use simulations, we can easily use the frequency
spectrum to measure the size of the texture.

“ The −6 dB width ∆kx in spatial frequency is related to the −6 dB width in the
image domain

∆xtexture = 2π

∆kx
. (6.1)

Paper V”The texture size can also be estimated by measuring the autocorrelation of some
realizations of the textured image scene. Averaging over some frames can improve the
estimate.

The random texture map in Figure 6.1 is approximately 7 mm × 8 mm in size.
The frequency spectrum has a steep Gaussian profile. We further multiply it with a
complex random frequency spectrum. Inversion back to the image domain creates the
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6. Texture Correction

amplitude texture map. We produce the final textured background by multiplying the
original image with the texture map. We created texture with two different sizes in
Paper V.

Figure 6.1: Example of a random texture map. A frequency spectrum with a Gaussian
distribution is multiplied with a complex random frequency spectrum. Inversion back
to the image domain creates the amplitude texture map. We multiply the texture map
with the original image to produce a textured background. The final DAS image is
normalized by its maximum value and shown with a −30 dB dynamic range.

6.2 Texture Estimation and Correction

Texture correction is a necessary step for simple threshold detection to work. It finds
slowly varying changes in the amplitude of the textured image and removes them.
We can estimate the texture by applying background smoothing with a sufficiently
large window. In Paper V, we apply median filtering and continue with a 2D Gaussian
smoothing kernel. We get the texture corrected image by dividing the original image
with the estimate. Figure 6.2 shows the texture estimate of an image and the resulting
texture corrected image.

The optimal texture correction depends on the scale and type of texture. Since
the applied texture size in Paper V was known and the same in the whole image
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Texture Estimation and Correction

Figure 6.2: Texture correction of the DAS image (”DAS TC”). A texture estimate is first
found by applying background smoothing with a large window. We obtain a texture
corrected image by dividing the original image with the texture estimate. The texture
estimate is shown with a −15 dB dynamic range, while the other images have −30 dB
dynamic range. All images are normalized by their maximum value to be comparable.

Figure 6.3: ROC for texture corrected (TC) images using three window filter sizes
compared to original DAS with and without texture. PFA is shown up to 0.1. The red
curve signifies texture estimation with window size defined by the measured −6 dB
texture size. The red curve lies directly beneath the purple curve. The purple ROC
curve corresponds to 50% larger window size. Figure borrowed from Paper V.

scene, we could apply a relatively simple texture estimation. The window size must
be larger than a point scatterer to ensure we only suppress the texture. However, if
we apply a too large window, we can miss smaller texture variations. It is especially
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6. Texture Correction

challenging to estimate aggressive and highly varying texture of small size. We ensured
an optimal window size in Paper V by using the known −6 dB texture size combined
with comparing ROC analysis using varying window sizes to the ROC results for the
original DAS images without texture. Figure 6.3 from Paper V shows how texture
degrades the ROC. As seen in the figure, we can improve the performance by applying
texture correction, but it will not entirely restore the performance to the non-textured
backgrounds. The yellow ROC curve in Figure 6.3 shows the ROC results when the
window size used in the texture estimation is too small and consequently reduces PD.

6.3 Prewhitening Before Texture Correction

Prewhitening changes the resolution of point scatterer and speckle blobs, as discussed
in Chapter 5 and Paper IV. It does not change the size of the texture variations. In
Paper V, we wanted to know if there is a difference in detection performance if we
whiten the images before or after texture correction. Figure 6.4 shows a textured image
that is whitened prior to texture correction and can be compared to Figure 6.2.

Figure 6.4: Texture correction on a whitened image (”Whitening + TC”). We obtain
a texture corrected image by dividing the whitened image with the texture estimate.
The texture estimate is shown with a −15 dB dynamic range, while the other images
have −30 dB dynamic range. All images are normalized by their maximum value to
be comparable.

Paper V compares the ROC results between prewhitening (”Whitening + TC”) and
whitening after texture correction (”TC + Whitening”). The results show how the ROC
greatly improves when prewhitening is applied prior to texture correction.
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Chapter 7

The Multilook Technique

In this section, we introduce the multilook technique, a technique widely used
on synthetic aperture radar (SAR) images to reduce speckle [Jak+96, ch. 3.3]
[Fer+03][OQ98, p. 29]. The technique splits the entire frequency bandwidth of the
image into several adjacent subsets. Each subset has a different central frequency. We
can create a separate image, known as a sublook or look, by computing the inverse
Fourier transform of a subset. Splitting into L non-overlapping subsets reduces
the frequency bandwidth by a factor L and thus similarly degrades the final image
resolution of the looks. We can create several sublooks by either having independent
subset bandwidths or allowing a partial overlap [San+15]. Paper IV introduces the
multilook technique and three new multilook methods. We therefore reuse some
formulations and text from Paper IV in this Chapter.

7.1 Point Signal Response in a Sublook

“ A point target is a coherent scatterer that is a dominant scatterer within a
resolution cell. Some scattering loss occurs when the point scatterer is not in the
center of the resolution cell. The Point Spread Function (PSF) describes the response of
an imaging system to a point source. To obtain the PSF for each point position in the
1-D study, we started with the PSF of a point in the center, and then shifted the phase
with respect to each pixel position. We can retrieve the response of a coherent scatterer
in each sublook by adjusting the PSF for the sublook center frequency and bandwidth.
We now evaluate the ideal 1-D point scatterer signal. The complex amplitude of this
original point scatterer is C = C0ejϕ if we assume it is in the center of the resolution
cell. Following [San+15], we start with a point scatterer positioned at a distance z0
and its sinc-response

apoint(z) = C0ejϕe−j
4πf0

c z0sinc
(

2B(z−z0)
c

)
. (7.1)

Here f0 is the transducer center frequency, c is the wave speed, and B is the frequency
bandwidth. We create L sublooks of equal bandwidth BS = B/L by applying
rectangular window filters over the different central frequencies f

(n)
c , for n = 1, ..., L.

Each sublook response a(n) is thus

a(n)(z) = F−1

{
F{apoint(z)}rect

(
f − f

(n)
c

BS

)}
(7.2)
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where F represents the Fourier transform. We can express the point signal response
in each sublook n as [San+15]

a(n)(z) = BS

B
C0ejϕe−j

4πf0
c z0ej

4πf
(n)
c

c (z−z0)sinc
(

2BS(z−z0)
c

)
. (7.3)

From the expression, we see that the new bandwidthBS creates a broader sinc and thus
degrades the range resolution to ∆zS = c/(2BS). The final 2-D response depends on
the bandwidth in both directions. For the 2-D images in [San+15], the response in the
other direction was similarly calculated and multiplied to the above expression.

Paper IV, slightly adapted”Paper IV further discusses how to obtain the PSF per pixel position. In [Che+20],
Chen et al. presents a theoretical model to depict the PSF for varying point scatterer
positions and apodization settings for plane-wave ultrasound imaging. The point
scatterer’s position, the transducer characteristics, and beamforming setting all affect
the PSF. Since so many aspects affect the PSF, we chose to simulate the actual response
of a point scatterer placed in each pixel to obtain the true PSF. The PSF was further
whitened and divided into subsets. We tested 9 × 9, 13 × 13, 19 × 15, and 45 × 25
sublook divisions in Paper IV and Paper V.

7.2 Sublook Covariance Matrix

Figure 7.1: Sublook covariance matrices for independent and overlapping subset
bandwidths. The covariance matrices shown here are for 1-D speckle sequences.
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Spatial Frequency Limits of Subset Division

In the case of partially overlapping sublooks, i.e., subsets of bandwidth BS > B/L,
we must calculate the correlation among speckle samples belonging to the different
sublooks. The correlation depends on the amount of bandwidth overlap compared to
the total subset bandwidth. The normalized covariance matrix Mn,m of the nth and
mth rectangular subsets can be simplified to [San+15]

Mn,m =
{

1 − |f(m)
c −f(n)

c |
BS

, if |f (m)
c − f

(n)
c | < BS

0, otherwise.
(7.4)

The correlation decreases when the distance between the center frequencies of the
subsets increases. M is equal to the identity matrix I in the case of independent subsets.
In the case of overlapping subsets, it depends on both the number of subsets L and the
ratio between BS and B, as depicted in Figure 7.1.

When considering 2-D subsets, the joint 2-D covariance matrix M is calculated as
the Kronecker product of the matrices in each dimension [San14, p. 41],

M = Mz ⊗ Mx. (7.5)

If we have Lz and Lx number of sublooks, the final dimension of M is LzLx ×LzLx =
L × L. We refer to L as the total number of sublooks.

7.3 Spatial Frequency Limits of Subset Division

Figure 7.2: The frequency spectrum of a point scatterer, shown with a 40 dB dynamic
range. The spatial frequencies are normalized by the estimated center frequency kD

(≈ 2k0). The critical angle α is 16o. The region shown is divided into 9 × 9 subsets.
Figure borrowed from Paper IV.

As described in Section 2.5, the spatial frequency support for an ultrasound imaging
system is defined by the finite aperture size and the band-limited pulse. It is centered
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7. The Multilook Technique

on 2k0 = 4πf0/c [AT00, ch. 3]. The imaging pulse is bandpass filtered (fL ≤ f ≤ fH )
and demodulated by kD ≈ 2k0. The PSF has a shape resembling a slice cut of a circular
arc and is illustrated in Figure 7.2 from Paper IV. The support region is bounded
by the aperture function in the kx direction. The lateral width increases linearly
with increasing frequency. In Figure 7.2, the spectrum has been demodulated and
normalized. The region is then divided into rectangular subsets for the multilook
technique. We create individual sublooks by applying the inverse Fourier transform
on each subset.

7.4 The Generalized Likelihood Ratio Test (GLRT) for Sublooks

The Generalized Likelihood Ratio Test (GLRT) is the basis for the formulae for the
multilook techniques. In Paper IV, we presented a detailed derivation of the solution
to the GLRT for sublooks. Quite a lot of effort was spent in formulating a compact and
complete derivation, so we will reuse the text from the Appendix in Paper IV here.

“ To give a complete and detailed presentation, we follow and combine the
derivations in [Kel86], [CLR95], [San14, ch. 3.4.4], and [San+15], and fill in steps
in between. We start with a binary test to decide if we have speckle (hypothesis H0)
or signal + speckle (hypothesis H1) [TRL15]. The point scatterer is present in the
pixel under test when the L-dimensional sublook vector y contains the point signal
response a. {

H0 : y = w

H1 : y = Ca + w.
(7.6)

The complex amplitude of the point scatterer is C = C0ejϕ, and w signifies only
speckle.

The Neyman-Pearson (NP) theorem states that the Likelihood Ratio Test (LRT)
maximizes PD for a given PFA [Kay98, ch. 3.3]

LRT(y) = p(y; H1)
p(y; H0) > γ, (7.7)

where p is the probability density function (PDF) for observation y. The threshold γ
can be found by integrating the PDF for observation y of hypothesis H0 to the chosen
PFA value [Kay98, p. 30],

PFA =
∫ ∞

γ

p(y; H0)dy. (7.8)

If the speckle background is modeled as a zero-mean complex Gaussian random
vector, the PDF of the sublook vector y given hypothesis H0 is [San+15]

p(y; H0) = 1
πL(σ2)L|M|

exp
(

−yHM−1y

σ2

)
, (7.9)

where aH is the conjugate transpose of the point signal response and M is the
normalized covariance matrix. Note that the notation in [San+15] refers to normalized
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covariance matrix, while the notations in [Kel86] and [CLR95] uses the covariance
matrix M = 2σ2Σ where Σ is the normalized covariance matrix after the whitening
transformation (|M| = |2σ2Σ| = (2σ2)L|Σ|). Under the H1 hypothesis, the
background w has the same PDF as under H0, and we find the PDF of y by substituting
w with y − Ca [Kel86]

p(y; H1) = 1
πL(σ2)L|M|

exp
(

−(y−Ca)HM−1(y−Ca)
σ2

)
. (7.10)

The LRT is thus the ratio between (7.10) and (7.9), and the NP test becomes a matched
filter [San14, ch. 3.4].

The LRT is the optimal detector for a known signal in noise when the PDFs of both
hypotheses are known. However, in our case, we wish to detect a signal with unknown
amplitude, phase, and position in a speckle background of unknown level. Following
classical detection theory [Kay98, ch. 6], the GLRT replaces the unknown parameters
by their maximum likelihood estimates (MLE) before performing hypothesis testing as
in (7.7). The GLRT takes the form

GLRT(y) =
max
C,σ2

p(y|C, σ2; H1)

max
σ2

p(y|σ2; H0) > γ, (7.11)

where the speckle power σ2 is the variance of the speckle and noise background, and
C is the complex signal amplitude C0ejϕ. For simplicity, we assume the point scatterer
inside the resolution cell is centered. In [San14, ch. 4.2.5], the formulae was extended to
the case of unknown position, and the mismatch was shown to be small but noticeable
for low point SNR values. The results indicate that using many sublooks decreases
the mismatch and makes it possible to avoid optimizing the formulae for unknown
position.

We now derive the maximizations in (7.11) using the PDFs in 7.10 and 7.9, and
following [Kel86], [CLR95], [San14, ch. 3.4.4], and [San+15]. Even though the solution
is derived in the case of white Gaussian background, the formulation remains valid
also for the more complex case of compound-Gaussian clutter[San14, ch. 3.4.4]. To
derive the GLRT, it is necessary to calculate the MLEs of the unknown parameters σ2

and C .
We first derive the MLE of σ2 under H0 and start by taking the natural logarithm

of the PDF. The exponential function goes away and the expression becomes the sum

ln(p(y; H0)) = − ln π − L ln σ2 − ln |M| − σ2yHM−1y. (7.12)

Derivation of (7.12) gives

d

dσ2 {ln(p(y; H0))} = − L

σ2 − yHM−1y. (7.13)

By setting (7.13) equal to zero, we get the final expression for the MLE of σ2 as

σ̂2 |H0= yHM−1y

L
. (7.14)
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Inserting M as the identity matrix in (7.14) simplifies the expression to yHy/L. With
the MLE σ̂2, the denominator in (7.11) becomes

max
σ2

p(y; H0) = exp(−L)

πL
(

yHM−1y
L

)L

|M|
. (7.15)

The MLEs under hypothesis H1 must also be found. We start by first supposing
the parameter C is known [San14, ch. 3.4.4]. Using the same parameter substitution
on (7.14) as we did moving from (7.9) to (7.10), the MLE under H1 can be expressed as

σ̂2 |H1= 1
L

(y − Ca)HM−1(y − Ca). (7.16)

We now insert (7.16) into (7.10) to get

max
σ2

p(y; H1) = exp(−L)
πL( 1

L (y−Ca)HM−1(y−Ca))L|M|
, (7.17)

We must also obtain the MLE for Ĉ to maximize the PDF for C . To maximize this term,
we follow the procedure E. J. Kelly presented in [Kel86] by rewriting

(y−Ca)HM−1(y−Ca) =(yHM−1y) + |C|2(aHM−1a)
− 2Re{C(yHM−1a)}

= (yHM−1y) − |(aHM−1y)|2

(aHM−1a)

+ (aHM−1a)×
∣∣∣∣C− (aHM−1y)

(aHM−1a)

∣∣∣∣2 .

(7.18)

We maximize the PDF by minimizing the quantity in (7.18). The minimum is clearly
attained when the positive term containing C is made to vanish [Kel86]. The MLE for
C is therefore

Ĉ = aHM−1y

aHM−1a
. (7.19)

Using this expression for Ĉ , we can now find σ̂2 under hypothesis H1 by inserting
(7.19) into (7.16) [San+15]. We get

σ̂2 |H1 = 1
L

(y − aHM−1y

aHM−1a
a)HM−1(y − aHM−1y

aHM−1a
a)

= 1
L

(
(yHM−1y) − |(aHM−1y)|2

(aHM−1a)

)
.

(7.20)

Finally, we have σ̂2 and Ĉ under H1 and we can rewrite the numerator in (7.11) as

max
σ2,C

p(y; H1) = exp(−L)

πL
(

1
L

(
(yHM−1y)− |(aHM−1y)|2

(aHM−1a)

))L

|M|
. (7.21)
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Inserting (7.21) and (7.15) into (7.11), we express the GLRT as

GLRT(y) =

 exp(−L)

πL

(
1
L

(
(yHM−1y)− |(aHM−1y)|2

(aHM−1a)

))L

|M|


(

exp(−L)

πL
(

yHM−1y
L

)L
|M|

) ,

=
(
yHM−1y

)L(
(yHM−1y) − |(aHM−1y)|2

(aHM−1a)

)L
> γ.

(7.22)

Adjusting the threshold and simplifying (7.22) further gives

GLRT(y) = 1(
1 − |(aHM−1y)|2

(yHM−1y)(aHM−1a)

) > γ, (7.23)

or equivalently [CLR95]

GLRT(y) = |aHM−1y|2

(yHM−1y)(aHM−1a)
> γ. (7.24)

Paper IV, Appendix”7.5 The Multilook Methods NMF, MLCF, NMFW, and MLCFW

The GLRT detector is well-known in the radar community and known as the normalized
matched filter (NMF) [CLR95; CLR96; DFP09]. It evaluates each specific image pixel
and its corresponding L-dimensional sublook vector y. The multilook method NMF
and the three new multilook methods NMFW, MLCF and MLCFW are derived and
presented in Paper IV. We borrow the presentation from Paper IV here.

“ The NMF decision rule with respect to threshold γ is [CLR95; CLR96; Kel86;
San+15] [San14, ch. 3.4.4]

NMF(y) = |aHM−1y|2

(yHM−1y)(aHM−1a)
> γ. (7.25)

HereaH is the Hermitian conjugate of the sublook vector of a theoretical point scatterer
at the specific pixel position. The correlation among speckle samples belonging to the
different sublooks is described by the sublook covariance matrix M. The whitening
process can be incorporated into M as in [CLR95; CLR96; Kel86], but in this study we
prewhiten the images prior to subset division and therefore M only depends on the
subset bandwidth overlap [San+15]. M is equal to the identity matrix I in the case
of independent, non-overlapping subsets. With L = LzLx number of sublooks, the
dimension of M is L × L.
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The numerator of (7.25) corresponds to the power output of matched filtering of
the sublook vector y with the theoretical vector a, calculated per pixel. Note that the
numerator effectively is a weighted coherent sum of all looks such that we retain the
full image resolution in the final image. The NMF method is a normalized method due
to the denominator. The denominator is essential in the case of textured backgrounds,
where the number and resolution of the sublooks influence how well the denominator
estimates the background.

We simplify (7.25) for independent sublooks (M = I) and get

NMF(y)
∣∣∣∣
M=I

= |aHy|2

(yHy)(aHa) > γ. (7.26)

If we weight all sublooks equally, i.e., a = 1’s, the numerator becomes a coherent sum
of all looks. The numerator is then the same as only applying prewhitening. Again,
the numerator ensures we retain the full image resolution in the final image. The test
in (IV.11) changes to a ratio of the coherent and incoherent sum of all the sublooks.
We term the new multilook method multilook coherence factor (MLCF).

MLCF(y) = |1Hy|2

(yHy)L =
|
∑L

n=1 y(n)|2

L
∑L

n=1 |(y(n)|2
> γ. (7.27)

The simplification of a = 1’s drastically reduces the computational complexity as the
method does not require prior knowledge of the theoretical point signal response per
sublook. The ratio in MLCF is reminiscent of Coherence Factor (CF) beamforming in
ultrasound. The CF beamformer calculates the ratio between coherent and incoherent
energy across the aperture [MF94]. It is used as an adaptive weight to the DAS
image [LL03]. This study takes the DAS image as its starting point and investigates
methods to improve point detection. The MLCF method is a new 2-D CF method since
we divide the spatial frequencies over two dimensions and calculate the coherence
over the resulting sublooks. Traditional CF has overlapping spatial frequency areas,
whereas MLCF has non-overlapping spatial frequency areas in both spatial direction
and frequency.

The image weighting is inspired by adaptive coherence-based beamformers that
apply weights to the DAS image. Since image weighting with the CF weights gave an
improvement in the ROC results in [THA22], it was interesting to explore if we could
obtain the same improvement using the multilook methods as weighting schemes. We
therefore create two new multilook methods by applying NMF and MLCF as weighting
schemes to the prewhitened image. NMF is not applied as an image weighting in
the radar community. We term the new image created by NMF weighting as a NMF
weighted image (NMFW).

NMFW(y) = NMF(y) ·

∣∣∣∣∣
L∑

n=1
y(n)

∣∣∣∣∣ > γ. (7.28)
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We correspondingly apply MLCF as a weighting scheme and refer to the new multilook
image as a MLCF weighted (MLCFW) image.

MLCFW(y) = MLCF(y) ·

∣∣∣∣∣
L∑

n=1
y(n)

∣∣∣∣∣ > γ. (7.29)

It should be noted that (7.25) and (7.27) produce normalized results, and (7.30) and
(7.31) do not.

Paper IV”Table 7.1 from Paper IV summarizes the differences in computational complexity
of the suggested methods.

Table 7.1: Computational Complexity of the Suggested Methods

Prewhitening MLCF & MLCFW NMF & NMFW
Low computational
complexity. Preferable
with prior knowledge
of the critical angle and
pulse bandwidth.

Medium computa-
tional complexity.
Prewhitening and
sublook division.

High computational complex-
ity. Prewhitening and sublook
division. Requires prior knowl-
edge of the theoretical point
signal response per sublook.

The inspiration for weighting the multilook images with the prewhitened image
was that adaptive coherence-based beamformers calculate weights and apply these
to the DAS image. The van Cittert–Zernike theorem postulates that speckle has a
lower CF value than a point scatterer [MF94]. The DAS image includes the intensity of
the point scatterer, while the CF weights can help differentiate the point and speckle.
In Paper II, the CF weights alone do not improve the detection performance, but the
CF weights used as image weighting to the DAS image performed well. Therefore,
it was interesting to investigate if the same improvement could be the case for the
multilook methods. The traditional CF beamformer calculates the coherence over the
elements and has overlapping spatial frequency areas. MLCF has non-overlapping
spatial frequency areas in both spatial direction and frequency. There is a difference
between coherence over direction and coherence over time. Look direction is not the
same as an array position. As such, CF is not just MLCF in one dimension.

The NMF and MLCF methods are calculated on prewhitened images and do not
require any texture correction prior to detection analysis. Paper IV introduced the
multilook methods NMFW and MLCFW as weighting schemes of NMF and MLCF
to the prewhitened images. For homogenous backgrounds, the coherent sum of all
sublooks is the same as the prewhitened DAS image. With the introduction of texture
in Paper V, we refer to these multilook methods using the term DASwhitened+TC instead
of the coherent sum of all looks.

“ We also apply NMF and MLCF as a weighting schemes to the prewhitened
and texture corrected image, DASwhitened+TC. We refer to these two methods as NMF
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weighted (NMFW) and MLCF weighted (MLCFW) images.

NMFW(y) = NMF(y) · DASwhitened+TC. (7.30)

MLCFW(y) = MLCF(y) · DASwhitened+TC. (7.31)

Paper V”Figure 7.3 shows an example ultrasound image scene with seven point scatterers.
The same image scene is shown after prewhitening and the four multilook methods.
The number of sublooks is 45 × 25 for the multilook methods, and optimal α-
prewhitening is applied. From the image example, it would seem all the methods
improve the point scatterer’s visibility. The multilook methods seem to increase the
threshold level between the point scatterers and the peaks in the speckle background.
However, it could be that the methods stretch the dynamic range [Rin+19]. This is the
reason a complete ROC analysis using many realizations is needed to fully evaluate
the detection performance of a method.
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Figure 7.3: Example of how prewhitening and the multilook methods affect an
ultrasound image scenewith seven point scatterers in uniform speckle background. The
number of sublooks is 45 × 25 for the multilook methods and optimal α-prewhitening
is applied. All images are normalized by the maximum value to be comparable and
shown with a 12 dB dynamic range.
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Chapter 8

Summary and Discussion of Findings

This section summarizes and discusses the findings in the papers in relation to the
main research question.

8.1 Measuring and Evaluating Point Detection Performance

Paper II presents a framework for how to measure and evaluate point detection
performance in ultrasound images. I present and discuss the strategy and methodology
from Paper II in Chapter 3 as it provides relevant background material for Paper IV
and Paper V.

We used the detection strategy summarized in Section 3.6 for Paper II, Paper IV, and
Paper V. To obtain ROC andAUC results with sufficient confidence intervals, we created
many images using the Field II software. Real phantom data has challenges regarding
wanted point SNR, point location, and varying speckle backgrounds. Standard
tissue-mimicking phantoms often give images with brighter point targets, and slight
deviations in the probe orientation can cause slight shifts in the assumed point locations.
When evaluating detection performance, we are most interested in the point SNR range
where the probability of detection PD varies the most. Therefore we want images
with weak point scatterers at known positions. We have complete control of the point
scatterer’s intensity and exact position in the image scene with simulated images.

We chose to obtain images with uniform resolution. We could then position
point scatterers randomly and be ensured the same point SNR value. We used many
point positions to ensure we average out possible artifacts from the simulations. We
must compare point targets of equal size and point SNR value since the detection
performance depends strongly on spatial resolution and point SNR. Another reason
for choosing a large speckle scene is that this requires fewer speckle images, and
many speckle images with fully developed speckle are computationally demanding
to simulate. We could have created very small, focused speckle scenes with equal
resolution, but this would require more realizations. To simulate such scenes, we could
have chosen to use compound plane-wave imaging, retrospective transmit focusing,
or even focused transmits for each pixel in the images. The results should be the same.
We chose to use synthetic transmit aperture imaging with constant f#.

The theoretical formulae for the detection probabilities given in Chapter 3 assume
a Rayleigh distributed speckle background. The presented detection study starts with
a complex DAS image with uniform resolution and Rayleigh distributed speckle. We
chose to have uniform apodization at receive. The resulting image still has Rayleigh
distributed speckle if we wanted to receive with tapering. The second harmonic
has Rayleigh distributed speckle even though the effective apodization is narrower
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[Fed+03]. Therefore, the detection performance results are valid for both fundamental
and second harmonic imaging. Our study concerns point in speckle, regardless of the
frequency used. Focused imaging, as we have chosen, can produce such images with
uniform resolution. So do imaging with a defocused beam, but the spatial resolution
will then vary. It could drop or become range dependent. Images with varying spatial
resolution require an adjustment to the detection strategy since the point SNR value
then depends on where the point is located. The optimal size of the search window is
also affected by the resolution and must be varied if the resolution is not constant.

8.2 Effect of common ultrasound techniques

8.2.1 Spatial Resolution and Apodization Affect Point Detection

Reducing the size of the aperture degrades the spatial resolution of the image. In
Paper II, we compared three different f# values to establish the effect of aperture
size on detection performance. As seen from the ROC results in Paper II, increasing
the f# degrades the detection performance. The great difference between f# = 7
and f# = 3.5 illustrates how doubling the adaptive aperture greatly improves point
detectability.

In Paper II, we also studied the effect of different apodization schemes: rectangular,
Hamming only on transmit, and Hamming on both transmit and receive. We can
conclude from the results that when we mainly wish to detect point scatterers, the
ideal method is to apply uniform apodization. A uniform rectangular window gives
the highest detection probability. Applying a nonuniform window suppresses some
probe elements. It thereby reduces the resolution and the maximum point intensity
value. In general, techniques that trade-off spatial resolution to obtain better contrast
have lower probability of point detection.

8.2.2 Speckle Reduction Affects Point Detection

In Paper II, we analyzed the effect of common denoising filters on the detection
of point scatterers. They alter the speckle statistics of the image. Applying any
speckle reduction smooths the background, and also degrades the image resolution
and consequently reduces the point SNR. The results in Paper II show that it is possible
to smooth the speckle background while still having detection performance quite close
to the original. The bilateral, Wiener, and non-local means filters managed to preserve
relatively high performance even for a high degree of background smoothing.

8.2.3 Advanced Beamforming Methods Affect Point Detection

In Paper I, we show that certain adaptive beamformers alter the statistics of the speckle
background. The altered speckle statistics allow cherry-picking of contrast metrics to
describe the image quality and performance of the beamformer. The observed results
and conclusions of Paper I can be summarized as follows:

• The adaptive beamformers CF, GCF, PCF, and DMAS have higher CR than DAS
but concurrently lower CNR.
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• Figures of the PDFs confirm that EBMV, CF, PCF, GCF, and DMAS have increased
both the variance and the intensity difference between the regions.

• Several adaptive beamformers alter the speckle statistics, and the alteration is
both spatially and intensity dependent.

• A beamformer may have high CR and simultaneously low CNR compared to
DAS. This allows for cherry-picking of contrast metrics.

• When benchmarking a beamformer, we should present both CR and CNR and
include a statistical discussion.

Paper I has inspired several other works. In 2017, the papers Paper I and [RRA17]
compared seven beamformers and how they affect the image statistics. The findings
in these initial studies elucidated why we need a generalized contrast metric to
compare the image quality of different techniques when they deviate from conventional
DAS speckle statistics. This inspired the publication [Rod+20], which introduces the
generalized CNR metric (gCNR). With the new knowledge introduced in [Rod+20],
the last finding in the above bullet list is less relevant since we now should use gCNR.

Advanced beamforming techniques and speckle reduction methods alter the
statistics. They have different PDFs than DAS and will correspondingly affect
the detection performance. The approach of Paper II is to measure the detection
performance independent of knowledge of the PDFs to directly compare how they
affect the point detectability. In Paper II, we analyzed the detection performance of
the three advanced beamformers; MV, CF, and PCF. The input to all the methods was
identical and the point SNR value was calculated from the corresponding DAS images.
The tabulated PD-results from Paper II are visually illustrated in Figure 8.1.

Figure 8.1: TabulatedPD for the four beamformers, given 2 % PFA and three SNR values.
Error margins were calculated for PD with 6500 realizations and 80% confidence.
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Applying a search window lets us evaluate and compare how the imaging method
affects the speckle background and corresponding false alarms. A search window is a
good choice since the positions of the peaks of the speckle pattern remain more or
less the same for CF and MV. For each direction, MV retains the energy in the specific
direction and suppresses the energy from the other directions. MV has a narrower PSF
than DAS. It calculates a weight per direction and depth. It uses the full DAS resolution
for its calculations. We have more than 20 scatterers per cell in our simulated images.
As presented in Chapter 2, fully developed speckle requires more than ten scatterers
per resolution cell.

The results show how the CF weights provide a positive weighting to DAS at low
SNR and PFA values. Unweighted, original DAS is the best detector unless we include
prior knowledge in the analysis. CF differentiates between coherent and incoherent
energy across the aperture. Its weights thereby accentuate signals from coherent point
scatterers. However, we do not have enough realizations to state that CF is statistically
significantly better than DAS at low SNR and PFA values since the confidence intervals
partially overlap.

8.3 The Wavelet Coefficient Shrinkage Method

Paper III investigates if the wavelet coefficient shrinkage method can enhance point
scatterers and suppress speckle background in ultrasound images. The results on the
simulated images and the tissue-mimicking phantom in Paper III show that we can
greatly increase the visibility and conspicuity of the point scatterers with the wavelet
coefficient shrinkage method. The method retains the point scatterers even when
peaks in the speckle background are almost at the same intensity level.

The 3-D breast phantom results show that the method is ideal for strong point
scatterers. The results also show that we can drastically reduce the number of point
target candidates if we exploit all three dimensions. I imaged the breast phantom with
a tiny transesophageal probe, which is not ideal for point detection. A transducer
with a higher center frequency and larger aperture size is better suited to find point
scatterers. The 3-D wavelet shrinkage method illustrates the benefits of exploiting all
available information and the possibility of using coherence to enhance signals from
point scatterers. An obvious next step is to exploit fluctuations in time. Point targets
should have high coherence over several image frames. Using several frames should
then drastically reduce the number of false alarms.

To fully ascertain if the wavelet coefficient shrinkage method increases point
detectability, we must perform a complete ROC analysis using many simulated images.
The conference paper in 2017was a preliminary studywith promising results. Thework
in Paper III started a discussion on how to measure point target enhancement correctly
and how the ultrasound community lacks a clear overview of how to statistically
describe an improvement in point detectability. This discussion led to the work
published some years later in Paper II. The work in Paper III also started a discussion on
the possibility of partitioning the frequency spectrum in other ways than by creating
look pairs. This discussion led to the work in Paper IV and Paper V where we partition
the frequency spectrum into many sublooks. The algorithms we apply in these two

70



Prewhitening Before Point Detection

papers also exploit the coherence information over the sublooks to enhance point
targets.

8.4 Prewhitening Before Point Detection

Paper IV compares the ROC curves for the original and optimal α-whitened images.
An optimized prewhitening can increase the measured point SNR value and the results
show that prewhitening has a significantly positive effect on point detection.

In Paper IV and Paper V, we study suboptimal whitening limits by increasing or
decreasing the applied critical angle or frequency bandwidth. The optimal whitening
limits depend on the image resolution and the point SNR. Narrowing the limits can be
beneficial in the presence of noisy backgrounds and weak point scatterers since we
then suppress spatial frequency regions with low SNR values. For a point scatterer with
increasing intensity compared to the background, the optimal angular limit converges
towards α. The ROC curves in Paper IV show that the limits of the pulse bandwidth
are a good estimate of the optimal frequency limits. Increasing or decreasing the
frequency limits by only 5% degrades the overall detection performance in Paper IV.

Since the whitening transform increases the resolution, it increases the number
of independent pixels within the applied search windows. In Paper II, we discuss
how the number of independent pixels within a search window affects the detection
performance. We found that the search window must be sufficiently large and include
several independent pixels to provide a fair comparison between different methods.
We also use an oversampled image to ensure we do not have straddle loss. We apply
the 1-D and 2-D detection setups from Paper II in the studies in Paper IV and Paper V.

The images used in Paper IV and Paper V have uniform resolution and thereby
the same wavenumber coverage for all pixels. It was then possible to calculate one
whitening filter and use it on all the images. If we have an image with varying spatial
resolution, the wavenumber coverage will vary at different pixel positions. We must
then vary the prewhitening transform based on pixel position. The resolution will also
affect the optimal size of the search window. In addition, the probability of detection
will also vary due to the changes in resolution and consequently changes in point SNR
values. We chose to use the most straightforward scenario in Paper IV and Paper V.
We strongly believe that the results are transferable to images with varying spatial
resolution. The detection strategy and the prewhitening method will then have to be
adjusted.

In Paper V, we wanted to know if there is a difference in detection performance if
we whiten the images before or after texture correction. The ROC results in Paper V
show how the ROC greatly improves when prewhitening is applied prior to texture
correction. Prewhitening achieves a higher performance since it reduces the size of
the point scatterers and speckle blobs, but not the slowly varying texture. The scale
difference between the point scatterers and the texture is larger after prewhitening.
The texture estimation can therefore achieve a better estimate of the texture only. In
general, a successful texture estimate is easier to achieve with slowly varying texture,
such as illustrated in Figure 6.4. The results in Paper V show significant improvement
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in detection performance using optimized prewhitening on images where an optimal
texture correction is easily obtained.

We use the Fourier transform to obtain a spectral estimate for the prewhitening
method in the papers. The classical estimator requires that the input signal is stationary
and ergodic [Ale16, p.399]. If the data has an amplitude trend in range, we can
compensate by first applying a time-varying gain or depth correction to remove
the transmission loss effects. The signal is strictly non-stationary even after depth
correction when the spectrum shape changes with depth. A fixed prewhitening filter is
then suboptimal, and we should instead apply a depth-dependent prewhitening filter.
If we have considerable amplitude variations in the image, it may be beneficial to apply
texture correction to achieve stationarity before applying prewhitening.

8.5 Multilook Methods and Point Detection

Paper IV introduces the multilook technique and three new multilook methods aiming
to improve point detection. In this chapter, I discuss the findings on number of
sublooks, suboptimal texture correction, suboptimal prewhitening, and dominant
additive acoustic noise.

8.5.1 The Number of Sublooks

The optimal number of sublooks for the multilook methods varies depending on the
image background. In Paper IV, we found that it was beneficial to divide the frequency
spectrum into as many subsets as computationally possible. The numerator in (7.24)
retains full image resolution regardless of the number of sublooks. However, Paper IV
studied uniform speckle background images. With the introduction of texture in
Paper V, the optimal number of sublooks changed. We found that the optimal number
of sublooks for our scene with large texture was around 19 × 15, while the optimal for
small texture was around 13 × 13 sublooks. Table 8.1 from Paper V summarizes the
observed performance of the multilook methods using a varying number of sublooks.
I include the table here to give a complete summary of the findings.

Table 8.1: Summary of Observed Performance Using Varying Number of Sublooks

Number of sublooks
Background

9x9 13x13 19x15 45x25
Homogenous Poor Poor Moderate Best
Large texture Moderate Good Best Poor
Small texture Good Best Good Poor

The results show that textured scenes require sublooks with higher image
resolution than the uniform speckle backgrounds in Paper IV. The denominator in (7.24)
improves its estimate of the background when the sublooks are many but also have
high image resolution. Therefore, there is an optimal number of sublooks that depends
on the texture size. A texture of small size requires subsets with larger bandwidth for
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it to be discernible in the resulting sublooks. If we have a texture of larger size, we
can decrease the subset size slightly and thereby increase the number of sublooks. A
larger texture is estimated more easily, which is why the multilook methods perform
better on images with slowly varying textures.

8.5.2 Suboptimal Texture Correction

The results in Paper V show that the detection performance of the multilook methods
compared to prewhitening is especially large for image backgrounds where optimal
texture correction is difficult to obtain. Such a scenario is realistic, as optimal texture
estimates can be difficult in ultrasound images with unknown or more aggressive
textures. To simulate such a scenario, we applied a window size for the texture
estimation that was smaller than the actual texture size.

Paper V presents the ROC results for the multilook methods on small texture
with suboptimal texture correction. All the multilook methods perform better than
prewhitening in this scenario. The image weighting methods NMFW and MLCFW
perform best since the applied texture correction still provides some improvement
to the detection performance. However, the NMF and MLCF methods show great
potential when an optimal texture correction is difficult to obtain, or a normalized
method is wanted.

8.5.3 Dominant Acoustive Noise

Paper V shows how the improvements in ROC for the multilook methods compared to
prewhitening are significant when additive, acoustic noise dominates speckle. Acoustic
noise is a realistic scenario as the imaging depth increases. For this detection study,
we applied adaptive prewhitening of the images. The optimal whitening limits and
window size for the texture correction were known. The images had slowly varying
textures, and we used 19 × 15 sublooks. All four multilook methods perform better
than prewhitening, but the NMFW and NMF methods perform exceptionally well.

8.5.4 Suboptimal Prewhitening

The results in Paper IV show that the detection performance of the multilook methods
compared to prewhitening is high when optimal whitening limits are difficult to
obtain. The multilook methods MLCF and MLCFW can be applied even when prior
knowledge about the optimal prewhitening limits is unavailable. They do not require
prior knowledge of the point signal response per sublook. The results in both Paper IV
and Paper V show significant improvement in detection performance when we apply
MLCF as an image weighting to the prewhitened image.

Paper IV compares suboptimal prewhitening and the four multilook methods NMF,
NMFW,MLCF andMLCFW on speckle backgrounds that are without texture variations.
The slightly wider whitening limits reduce the detection performance compared to
the optimized α-whitening limits. The NMFW method performs better than MLCFW
in the case of suboptimal whitening since it incorporates extra knowledge about the
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correct point signal response per sublook and can suppress more unwanted subsets at
the edges of the spectrum.

When we expand to textured backgrounds, the results change a little. As discussed,
textured backgrounds require sublooks with higher resolution, which causes the
optimal number of sublooks to decrease. Consequently, the multilook methods cannot
suppress as many unwanted subsets at the edges, and it cannot achieve the same
amount of increase in the ROC results as found in Paper IV.

Paper V presents tabulates PD given 3% PFA for the multilook methods using
slightly wide or very wide whitening limits. Figure 8.2 presents the ROC values for
the multilook methods when using a suboptimal, slightly wider whitening filter. The
ROC curves show how NMFW and MLCFW perform slightly better than prewhitening
at low PFA values. However, the results also show that prewhitening is robust even
when applied suboptimal limits. The difference at low PFA values is too small to give
the multilook methods higher overall AUC values.

Figure 8.2: ROC for the multilook methods using 19 × 15 sublooks combined with
suboptimal prewhitening and optimal texture correction (TC). The speckle backgrounds
have slowly varying texture fluctuations. The multilook methods NMFW and MLCFW
perform only slightly better than prewhitening at low PFA values.

If the whitening limits are poorly estimated, the benefit of using the NMF weights
increases. Figure 8.3 presents the ROC values for the multilook methods when used
with a poor choice for the whitening limits. We chose extra-wide limits corresponding
to a 30% increase in critical angle α and ±10% increase in the frequency bandwidth
limits. The increased span in wavenumber coverage gives a larger area to divide into
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subsets. We increased the number of sublooks to keep the subset size the same as in
the studies with α-prewhitening.

Figure 8.3: ROC for the multilook methods using 25 × 21 sublooks combined with
too wide whitening limits. The speckle backgrounds have slowly varying texture
fluctuations, and we applied optimal texture correction (TC). The multilook methods
NMF and NMFW perform better than prewhitening at low PFA values.

As discussed, we used DAS images with uniform resolution in Paper IV and Paper V
as the starting images. An image with uniform resolution has the same wavenumber
coverage for all pixels. If we have an image with varying spatial resolution, the
wavenumber coverage will vary at different pixel positions. We must then adjust
the detection strategy and the prewhitening method accordingly. The NMF method
incorporates the theoretical PSF for each pixel position in the scene and has no problems
with images with varying spatial resolution. The suboptimal prewhitening results
show that the NMF and NMFWmethods can improve the detection performance when
the optimal prewhitening is unknown. The potential gain of the NMF weights is
promising for images with varying resolution.

8.5.5 Table Summarizing the Observed Benefits and Setbacks of the
Methods

Table 8.2 from Paper V summarizes the observed benefits and setbacks of prewhitening
and the four multilook methods. I also include it here to give a complete summary of
the findings from Paper IV and Paper V.
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Table 8.2: Summary of Observed Benefits and Setbacks of the Multilook Methods

MethodScenario
Prewhitening MLCF MLCFW NMF NMFW

Optimal
whitening &
optimal TC

Large im-
provement
in detection
performance.

Similar per-
formance as
whitening.

Similar per-
formance as
whitening.
Slightly
better than
whitening
in the case
of large
texture.

Setback
compared
to whiten-
ing.

Similar per-
formance as
whitening.

Suboptimal
prewhiten-
ing wo/tex-
ture

Some re-
duction in
detection per-
formance, but
still a robust
method.

Performs
slightly
better than
whitening.

Performs
slightly
better than
whitening.

Performs
slightly
better than
whitening.

Performs
better than
whitening.

Suboptimal
prewhiten-
ing w/tex-
ture

Some re-
duction in
detection per-
formance, but
still a robust
method.

Similar per-
formance as
whitening.

Performs
slightly
better than
whitening
at low PFA
values.

Some
setback
compared
to whiten-
ing.

Performs
slightly
better than
whitening
at low PFA
values.

Wide
prewhiten-
ing w/tex-
ture

Reduction in
detection per-
formance.

Similar per-
formance as
whitening.

Similar per-
formance as
whitening.

Performs
slightly
better than
whitening
at low PFA
values.

Performs
better than
whitening.

Suboptimal
TC

Much af-
fected by
suboptimal
TC.

Not affected
by TC.

Improvement
due to
weighting
with MLCF.

Not affected
by TC.

Improvement
due to
weighting
with NMF.

Poor TC Much affected
by poor TC.

Not affected
by TC.

Affected by
poor TC.

Not affected
by TC.

Affected by
poor TC.

Dominant
additive
acoustic
noise

Improvement
compared
to only TC,
but method
enhances
much of the
noise.

Method
weights
sublooks
using co-
herence.

Method
weights
sublooks
using co-
herence.

Method
weights
sublooks ac-
cording to
theoretical
point signal
response.

Method
weights
sublooks ac-
cording to
theoretical
point signal
response.

Computational
complexity

Low Medium Medium High High

Color coding: Poor Good Great
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Chapter 9

Concluding Remarks

9.1 Main Contributions of Thesis Work

The primary research question of this thesis is how to enhance and detect point
scatterers in an ultrasound image. In this thesis, I explore how new software methods
affect the statistics of the ultrasound image and how to evaluate possible improvements
in point detection. I explore new and existing approaches to improve the detection
of point scatterers by optimizing the spatial frequency spectrum. The following
results answer the primary research question as concretized by the detailed questions
presented in Chapter 1:

• How should wemeasure and evaluate the detection performance of point
scatterers in ultrasound images?
This thesis presents an overview and framework of detection of point scatterers
in ultrasound images. It discusses different detection strategies for evaluating
and measuring point detection performance. It presents a methodology for
calculating detection performance and corresponding confidence intervals.

• How do advanced beamforming techniques influence the statistics of an
ultrasound image, and do common ultrasound techniques affect point
scatterer detection?
Adaptive beamformers alter the speckle statistics and influence conventional
contrast metrics in ultrasound imaging. A beamformer may have high CR and
simultaneously low CNR compared to DAS. This allows for cherry-picking of
contrast metrics. Phantom results show that the beamformers alter the statistics
of two speckle regions differently depending on the orientation of the boundary
between the regions.
Common ultrasound techniques such as apodization, speckle reduction, and
adaptive beamformers affect the detection of point scatterers. In general,
methods that preserve spatial resolution have better detection performance
of point scatterers. Results show that it is possible for a suitable and optimized
method to smooth the speckle background and still preserve relatively high
performance. Detection results show that the adaptive beamformer CF achieves
slightly better detection performance than DAS for weak point scatterers.

• Inspired by the wavelet shrinkage method presented in [HV14], can the
method also be applied to medical ultrasound images to enhance point
scatterers?
The wavelet coefficient shrinkage method can enhance the conspicuity of point
targets in an ultrasound image. The phantom results show that we can enhance
point scatterers by separating coherent point targets from incoherent background
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speckle. However, a complete detection study is needed to statistically prove an
improvement in point detection.

• Can we get inpiration from other methods in radar and sonar imaging to
find new methods that improve point scatterer detection in ultrasound
images?
Optimized prewhitening can significantly improve point detection performance.
Results show that optimized prewhitening before texture correction and point
detection is a robust method that dramatically improves the detection.
Point detection can be improved by dividing an image’s spatial frequency
spectrum into subsets and exploiting the coherent properties of point targets. The
multilook technique NMF from the radar community is introduced to ultrasound
in this thesis work. The work also introduced three new multilook methods
called NMFW, MLCF, and MLCFW, and studied their effect on point detection.
The multilook methods have the potential to improve the detection of weak point
scatterers when a sufficient number of looks are used. The MLCF and MLCFW
are more straightforward methods than conventional NMF. The new methods
can be applied even when prior knowledge about the optimal prewhitening
limits is unavailable and results show they can improve the point detection. The
multilook methods are also very promising methods to apply on images where
acoustic noise dominates the speckle background.
The texture size affects the optimal number of sublooks for the multilook
methods. The multilook methods NMF and MLCF are normalized methods
that do not require texture correction prior to detection analysis. They are
especially promising when optimal texture correction of the ultrasound images
is difficult to obtain or a normalized method is wanted.

9.2 Implications and Further Research

Paper I explored how certain adaptive beamformers alter the speckle statistics and
consequently allow cherry-picking of contrast metrics to describe the image quality.
The findings elucidated why we cannot use the standard contrast metrics to compare
the image quality of different techniques when they deviate from conventional DAS
speckle statistics. This work is a part of the initial studies that raised awareness
around the validity of image quality metrics and inspired later work on developing a
generalized contrast metric [Rod+20].

As indicated by the third detailed research question, a part of the Ph.D. plan was
to explore if the wavelet shrinkage method from [HV14] could be used to improve
the detection of point scatterers in ultrasound images. The work in Paper III started
a discussion on how the ultrasound community lacks a clear framework on how to
statistically measure point detection, which led to the work in Paper II. Paper II presents
an overview of how to measure and evaluate point detection performance. Many
previous works used contrast metrics or similar to describe observed improvements
in point detectability. With Paper II, we emphasize how we must evaluate detection
performance using many realizations with known point scatterers to provide detection
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results with reliable accuracy. The work offers a framework for point detection in
ultrasound.

Paper III shows promising results using the wavelet coefficient shrinkage method to
enhance the conspicuity of point targets in ultrasound images. A possible further work
is to perform a detection analysis using the detection strategy presented in Paper II on
many wavelet shrunk images. The preliminary studies on 3-D images in Chapter 4
shows promising results when we exploit the coherence over all three dimensions. A
further research possibility is to test the multilook methods in Paper IV on 3-D images
and exploit all orthogonal directions.

The method in Paper III partitions the spatial frequency spectrum into many look
pairs. It inspired the work in Paper IV and Paper V where we instead partition the
spectrum into many sublooks. Paper IV and Paper V introduce the multilook methods
to ultrasound. The work emphasizes how the detection performance can be drastically
improved by prewhitening the images before point detection analysis. Applying a
whitening transform is not computationally heavy for modern software systems. The
increase in software processing power makes it possible to generate both the standard
display image and images that are preferable for analysis. It is thereby possible to use
the whitened image for the point detection analysis. An option could be to indicate
the detected point scatterer locations on the standard display image. To the author’s
knowledge, using a whitened image is not standard practice in ultrasound. The work
in this thesis illuminates the great potential improvement in point detection by using
an optimized prewhitening method. It also raises awareness of how the whitening
filter limits can affect point detection. The research has established the importance
of prewhitening for the ultrasound community regarding point detection. The work
has also inspired changes to supervisor Roy Hansen’s work on underwater images,
especially the importance of optimizing the whitening transform when detecting point
scatterers.

The multilook methods from this thesis will be used in further work on detecting
coherent scatterers in large sonar images [Han+22]. In [Han+22], the multilook
coherence method is tested on real synthetic aperture sonar data collected by a HUGIN
autonomous underwater vehicle. This thesis work has shown the potential of using
multilook methods in the ultrasound community. It has provided a foundation for
further studies on clinical images. The multilook methods will be tested on ultrasound
heart images with scar tissue. The detection study on textured images in Paper V nears
authentic, inhomogenous ultrasound images. Detection on clinical ultrasound images
is the natural next step.

There are several applications in medical ultrasound in which point detection
is essential, such as breast microcalcifications, kidney stones, and point tracking.
For example, breast microcalcifications are often the first indication of cancer and
consequently key to early cancer diagnosis. The latest report by the World Health
Organization and International Agency for Research on Cancer showed that the
incidence and mortality of breast cancer ranked first place among female cancer
patients [Ouy+19]. In [Ouy+19], Ouyang et al. present a review summarizing the
current ultrasonic detection methods for breast microcalcifications. There are some
commercialized techniques and several others currently in the experimental stage.
Ultrasound imaging is low-cost and has real-time capability. It does not include ionizing
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radiation as conventional mammography does. With the steady increase in software
flexibility and equipment quality, it is possible that ultrasound imaging will be used
as the early screening method in the future. This thesis shows promising potential
for going further with the multilook methods on clinical images with known breast
microcalcifications.
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I

Abstract

Adaptive beamformers aim for improved resolution and contrast in the ultrasound
images, and their performance is typically benchmarked using metrics such as
contrast ratio (CR) and contrast-to-noise ratio (CNR). Using synthetic aperture
Field II simulations, we show that certain beamformers alter speckle statistics and
that this opens up for cherry picking of contrast metrics.

I.1 Introduction

Quality assessment of ultrasound images is difficult since image quality is subjective
to the human observer. Nevertheless, image quality metrics are imperative when
benchmarking different beamforming techniques. If we do not know how a beamformer
alters an image, a quality metric might give an incorrect measurement of the actual
image quality. Using the standard Delay-And-Sum (DAS) beamformer as a reference,
we examine several adaptive beamformers presented in literature; Capon’s Minimum
Variance (MV), Eigenspace Based Minimum Variance (EBMV), Coherence Factor
(CF), Generalized Coherence Factor (GCF), Phase Coherence Factor (PCF), and Delay-
Multiply-And-Sum (DMAS). We show that the speckle statistics for some of these
adaptive beamformers are dependent on both scattering intensity and location of
the region of interest, resulting in contradicting measurements of standard contrast
metrics.

I.2 Background

In this section we briefly introduce the theory for the following beamforming methods;
DAS, MV, EBMV, CF, GCF, PCF and DMAS. We refer to [Rin+16] and [RRA17] for full
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description of the implementation of the beamformers and the parameters used in this
study.

I.2.1 Conventional Delay-And-Sum (DAS)

Conventional DAS for image pixel [z, x] is defined as:

SDAS[z, x] =
M−1∑
m=0

wmym[z, x] (I.1)

where M is the number of elements, ym[z, x] is the delayed signal received at element
m, and wm is a predefined weight for element m.

I.2.2 Minimum Variance Beamforming

Capon’s Minimum Variance (MV) beamformer calculates for each pixel a data
dependent set of weights wT = {w0, w1, . . . , wM−1} that minimizes power while
maintaining unity gain in the steering direction [SAH07]. The solution found with
Lagrange multipliers turns out to be dependent on the spatial covariance matrix. The
MV weights are used in the summation in (I.1).

The Eigenspace Based Minimum Variance (EBMV) beamformer is an extension
of the MV beamformer which utilizes the eigenstructure of the covariance matrix
to enhance performance [AM10]. The covariance matrix is eigendecomposed into a
signal and noise subspace, and the conventional MV weights are projected onto the
signal subspace.

I.2.3 Coherence Based Beamforming

The Coherence Factor (CF) beamformer calculates the ratio between coherent and
incoherent energy across the aperture [MF94]. It is used as an adaptive weight to the
DAS image [LL03].

The Generalized Coherence Factor (GCF) beamformer is an extension of CF which
utilizes the Fourier-spectrum over the receive aperture of the delayed channel data
[LL03]. The GCF is calculated as the ratio between the energy in a small angular sector
around the direction of interest divided by the total energy of the Fourier-spectrum. It
is also used as an adaptive weight to the DAS image.

The Phase Coherence Factor (PCF) beamformer [CPF09] calculates for each pixel
an adaptive weight based on the phase of the receive data. The weights are multiplied
with the DAS image.

The Delay-Multiply-And-Sum (DMAS) [Mat+15] multiplies the delayed RF-signals
using a "signed" square root. The sum of these signals is band-pass filtered around
an "artificial second harmonic" signal before conventional envelope detection and
log-compression of the signal results in the final image. It is not obvious that this
is a "coherence based beamformer". However, it has been shown that "The DMAS
enhances signal coherence and can be seen as an intermediate solution between the
DAS beamformer and the coherence factor method" [Pri+17].
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Figure I.1: Ultrasound images for the seven different beamformers. The vertical
orientation of the speckle phantom is in (a), and the horizontal orientation is in (b).
The images are shown with a dynamic range of 80 dB.

Synthetic transmit aperture datasets were simulated in Field II [JS92][Jen96] using a
128 element, λ pitch, linear array with 5 MHz center frequency (L11-4v). The simulated
phantom consists of two speckle regions with intensity at −30 dB and 0 dB, using
at least 43 scatterers per resolution cell. To investigate any spatial dependency of
the beamformer’s speckle statistics, two different phantoms were designed. The first
phantom has the speckle regions in vertical orientation, where the low intensity region
is above the high intensity region as shown in Figure I.1(a). The other phantom
is horizontally oriented with the speckle regions located side-by-side as shown in
Figure I.1(b).

The beamforming was performed in MATLAB (Mathworks, Natick, MA) using The
UltraSound ToolBox (USTB) [Rod+17]. Each transmit sequence was combined before
applying the different beamforming methods briefly described above on the combined
receive aperture.

The two most common contrast metrics are contrast ratio (CR) and contrast-to-
noise ratio (CNR). CR is defined as [HTu+92]:

CR = 20 log10

(
µ1

µ2

)
,

where µ1 and µ2 are the mean intensity values of the two rectangular speckle regions.
The values for the region are calculated with a 0.9 mm margin from the other speckle
region, and horizontal and vertical edge margins of 1.5 mm and 3.0 mm. CNR weighs
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the intensity difference between the two regions with the average variance [PF83]:

CNR = |µ1 − µ2|√
(σ2

1 + σ2
2)/2

,

where µi is the mean intensity value and σ2
i is the variance of speckle region i.

I.3 Results

Images created with the DAS, MV, EBMV, CF, GCF, PCF and DMAS beamformers for
the vertical speckle phantom are shown in Figure I.1(a) and images for the horizontal
phantom are shown in Figure I.1(b). To measure the speckle statistics for the different
beamformers in Figure I.1, the normalized probability distribution function (PDF)
of each speckle region was estimated. Figure I.2 shows the estimated PDFs of the
horizontally oriented phantom shown in Figure I.1, together with the corresponding
signal-to-noise ratio (SNR=µ/σ). The estimated PDFs of the speckle region with high
intensity is presented in Figure I.2(a). The theoretical Rayleigh distribution for DAS,
with SNR = 1.91 [Wag+83], is plotted for comparison. Figure I.2(b) presents the statistics
of the low intensity speckle region.

Figure I.3 shows the estimated PDFs of the images after log-compression of the
intensity values. Figure I.3(a) shows the vertical speckle phantom and Figure I.3(b)
shows for the horizontal speckle phantom. In both plots the estimated PDFs of the
low intensity regions are plotted with a solid line, while the estimated PDFs of the
high intensity regions are plotted with a dashed line. The SNR, measured from the
envelope before log-compression, is indicated in the legend. Figure I.4 shows the CR
and CNR measurements for both phantom orientations for the different beamformers.

I.4 Discussion

Figure I.1 shows the different beamformed images for our simulation with 30 dB
intensity difference between the speckle regions and two phantom orientations. From
the images, we notice how especially the CF and PCF images have higher variance
than the DAS image. When the two speckle regions are side-by-side , i.e. horizontally
oriented, the adaptive beamformers EBMV, CF and PCF seem to darken the low
intensity speckle region in the transition between the two regions.

We can observe in Figure I.2(a) that DAS, MV, EBMV and GCF seem to approx-
imately follow the theoretical Rayleigh distribution. The above beamformers have
SNR values close to theoretical Rayleigh, i.e. SNR ≈ 1.91, whereas the CF, PCF and
DMAS beamformers have very different distributions and much lower SNR values.
However, for the low intensity region presented in Figure I.2(b), only the DAS and MV
beamformers are Rayleigh distributed with SNR close to 1.91. The SNR values for the
EBMV and GCF beamformers are significantly lower for the low intensity region than
the high intensity region. This signifies that the beamformers alter the statistics of the
two regions differently. For the CF and PCF beamformers, the SNR was much lower
than 1.91 in both cases.
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Figure I.2: Estimated probability distributions (PDF) of the two speckle regions in the
horizontal phantom orientation, shown for all beamformers. DAS is compared to its
respective theoretical Rayleigh distribution.
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Figure I.3: Estimated PDFs of the log-compressed images for each speckle region,
shown for all beamformers. When the speckle regions are in horizontal orientation,
the statistics of the low intensity region is altered compared to the high intensity
region.

Figure I.3 shows the estimated PDFs of the beamformed log-compressed images
for both phantom orientations. When the speckle regions are orientated one on top
of the other, i.e. vertical phantom orientation, the speckle statistics for each region
within the same image are similar. However, when the speckle regions are horizontally
oriented, several of the adaptive beamformers have different distributions for the
two regions. The CF, PCF and DMAS beamformers, which had distributions far from
theoretical Rayleigh in Figure I.2, have heavy left-tailed distributions for both phantom
orientations. However, for the horizontally oriented phantom there is a clear difference
between the low intensity region (solid line) and the high intensity region (dashed line).
The EBMV, CF, GCF and PCF beamformers have much more heavy-tailed distributions
for the low intensity region, which corresponds to increased variance. The DMAS
beamformer has a deformed PDF for the low intensity region with a second peak
emerging at very low intensity.

This leads to the results presented in Figure I.4, where we show that a beamformer
may have high CR and simultaneously low CNR compared to DAS. The CR measure-
ments in Figure I.4(b) indicate that the CF, GCF, PCF and DMAS beamformers have
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Figure I.4: Contrast metrics for the different adaptive beamformers compared to DAS,
given different phantom orientations.

higher contrast than DAS, but concurrently lower CNR compared to DAS. This is con-
sistent with what we observe in Figure I.3 where the EBMV, CF, PCF, GCF and DMAS
beamformers have both increased the variance and the intensity difference between
the regions. This means that apparent contrast enhancement can be due to alterations
of the speckle statistics or the dynamic range. When a beamformer increases the
contrast between the speckle regions while also increasing the intensity variance, it is
not sufficient to only present one contrast metric when analyzing the beamformer’s
performance. Presenting only CR as a quality metric would not adequately describe
the performance of for example the PCF beamformer when compared to conventional
DAS.

The results show that several of the adaptive beamformers are spatially and
intensity dependent when altering the speckle statistics of the image data. Further
investigation of the intensity dependency should include varying the intensity
difference between the regions. Benchmarking the performance of an adaptive
beamformer by only using one contrast metric will not sufficiently address any possible
spatial or intensity dependent behavior.
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I.5 Conclusions

We have shown that the effect of adaptive beamformers on the speckle statistics
vary for different beamformers. The effect varies also with regard to spatial location
of the speckle regions examined. When evaluating a beamformer’s performance in
comparison to conventional DAS, both the contrast and contrast-to-noise metrics
should be presented. Since an adaptive beamformer can alter the speckle statistics, it
is imperative that a performance comparison also includes a statistical discussion.
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II

Abstract

We present an overview of the detection of point scatterers in ultrasound images
and suggest strategies for evaluating and measuring the detection performance.
We use synthetic aperture Field II simulations of a point scatterer in speckle
background and evaluate how common imaging techniques affect point target
detectability. We discuss how to compare different methods and calculate
confidence intervals. In general, applying speckle reduction methods reduces
the point detection performance. However, the results show that it is possible to
smooth the speckle background and preserve relatively high performance with
a suitable and optimized method. The different detection performances of the
advanced beamforming methods Coherence Factor (CF), Phase Coherence Factor
(PCF), and Capon’s Minimum Variance (MV) are presented and benchmarked with
standard Delay-and-Sum (DAS). The results show that CF achieves slightly better
detection performance than DAS for weak point scatterers, whereas PCF and MV
perform worse than DAS. Choice of apodization window and adaptive aperture
size affects the probability of detection. Results show that methods that preserve
spatial resolution have better detection performance of point scatterers.

II.1 Introduction

Detection of point scatterers in ultrasound images can be challenging due to peaks in
the speckle background. Point scatterers are small, highly coherent targets, and there
are several applications in medical ultrasound in which their detection is essential.
Breast microcalcifications are small, hard calcium deposits in soft tissue that behave
as point scatterers in an ultrasound image and can be an early indicator for cancer
[And+97; AST00; AST98; Flø+17; Mac+18]. Ultrasound can detect kidney stones,
but accurate sizing and diagnosis can be difficult due to background clutter [Ray+10;
Tie+18]. Point tracking, use of contrast microbubbles, and biopsy needle tracking are
other examples where detection of point targets is crucial [Dia+18; Mat+19; MBR20].
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Point scatterers are also of interest in other fields, such as radar [OQ98] and sonar
[Abr19].

Detection of a point scatterer in speckle can be viewed as a classical binary detection
problem [Abr19; EG05; Kay13; Kay98; Lev08]. In 1983, Smith et al. [Smi+83] developed
a statistical model for image quality by connecting contrast and lesion detection. Lesion
detectability using contrast is now well established in medical ultrasound [Dah+11;
IH94; LPW04; Rod+20; SW84; Zem+05]. However, the statistical properties of a lesion
area are different from a point scatterer. In 1997, Anderson et al. [And+97] studied the
effects of aperture geometry and phase aberration on point detection performance. In
[AST98], they conclude that frequency and spatial compounding slightly improve point
target detectability. They summarize their findings on the effect of phase aberration,
sound speed errors, array aperture size, transducer center frequency, speckle reduction
by compounding, and logarithmic compression in [AST00]. In [Ouy+19], Ouyang et
al. reviewed many ultrasound methods for microcalcification detection. Huang et al.
[Hua+14] created a detection algorithm based on coherence factor. Torp et al. [TRL15]
applied detection theory to create a beamformer (BF) for signal detection.

In this paper, we present an overview and framework for the detection of point
scatterers in ultrasound images. Themotivation for this paper is to present strategies for
calculating the detection performance for point scatterers in speckle, how to compare
detection performance between different methods, and how common techniques in
ultrasound affect the point detection performance. We discuss how to measure the
detection performance and calculate confidence intervals. We establish an optimal
intensity threshold detector based on standard Delay-And-Sum (DAS) beamforming.
Using synthetic aperture Field II simulations [Jen+06; Jen96; JS92], we create images
with a point scatterer in uniform speckle background. We vary the applied apodization,
aperture size, beamforming, and speckle reduction method. We wish to evaluate how
these common ultrasound techniques affect point detection performance. We apply
the same detection strategy to the different images and measure the overall detection
performances.

Applying an apodization window on the received channel echoes is a common
approach to reduce sidelobes at the cost of spatial resolution [Sza14, p. 178] [JD93,
p. 322]. Changes in aperture geometry are expected to give changes in detection
performance [And+97]. We study aperture size to establish how reduced resolution
degrades detection.

Speckle reduction methods are often applied on ultrasound images to improve
contrast [Sza14, ch. 8.4.6]. Our results show that such methods reduce point detection
performance, but the effect varies depending on the chosen method. A suitable speckle
reduction method may retain high performance while still applying some smoothing
to the background. However, an increased amount of smoothing degrades both the
resolution and the detection performance.

Adaptive BFs are applied to improve image quality, and they affect the point
detection performance. Using DAS as a reference, we examine several adaptive BFs
presented in literature; Coherence Factor (CF) [MF94], Phase Coherence Factor (PCF)
[CPF09b], and Capon’s Minimum Variance (MV) [Cap69]. Our results show that CF
achieves slightly better detection performance than DAS for weak point scatterers,
whereas the other two perform worse than DAS.
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The following chapter presents classical detection theory for point scatterers
and strategies for calculating point detection performance. We then introduce the
background theory for the BFs. Section II.4 presents the different choices for spatial
resolution, apodization, and speckle reduction. Section II.5 shows the results, and in
Section II.6 we discuss the effects on detection performance.

II.2 Background - Detection Theory

In this section, we present the background theory for how to measure and evaluate
detection performance and introduce general detection theory as presented in [Abr19;
Kay98; Lev08]. We reduce the case to its simplest form and study the detection of a
single point scatterer in uniform speckle background. Speckle is caused by interference
in the echoes from many random scatterers within a resolution cell [Cob07, ch. 8.2.1],
whereas point scatterers are small and highly coherent targets. The objective is to
decide between two hypotheses: speckle background without (H0) or with (H1) a
point signal present.

II.2.1 Point Target Detection Strategies

The probability of false alarm PFA is estimated on sequences containing only speckle
and the probability of detection PD is estimated on sequences containing one point
scatter in speckle. We count the number of intensity values above threshold γ in each
scenario to find the number of false alarms and true positives. By comparing them to
the total number of realizations R, we get PFA and PD. There is a choice in the type of
strategy to use when calculating point detection performance. When presented with
an ultrasound image, one assumes the strongest scatterer is the most likely point target
candidate. However, the measured probability when picking the maximum point target
will depend on how many independent pixels we consider. We can check if the chosen
location is correct and the point is an actual true positive in a simulated environment.
The overall detection performance depends on how we choose to count false alarms
and true positives. In this section, we present the theory behind the five possible
detection strategies listed in Table II.1. Based on the results, we choose which strategy
to use when measuring the detection performance of the different 2-D ultrasound
imaging methods.

The probability distribution of an ideal point signal in additive white Gaussian
noise in complex sequences is statistically equivalent to an ideal point in a critically
sampled, fully developed speckle scene. To illustrate the detection theory, we consider
a simple one-dimensional (1-D) speckle sequence constructed as the complex sum of
two normally distributed sequences. Under hypothesis H1, we add a point scatterer
with intensity ip at a discrete, random location. We estimate expressions for the
detection probabilities of the different strategies using this ideal 1-D case.

As a measure of the point’s intensity relative to the speckle background, we
calculate the point’s SNR metric as

SNR = 10 log10

(
ip

β

)
, (II.1)
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Table II.1: Point Detection Strategies

Strategy Description

A Consider each pixel in the image when counting false alarms and only
known point pixel when counting true positives.

B Consider only the maximum value in the image when counting both
false alarms and true positives.

C Consider the maximum value within a small image search window
around the known point location when counting both false alarms and
true positives.

D Consider only the maximum value in the image when counting false
alarms and only known point pixel when counting true positives.

E Consider only the maximum value in the image, but additionally check
if the chosen maximum is an actual true point when counting true
positives.

where ip is the point scatterer intensity, and β is the average speckle intensity. In this
ideal 1-D study, β = 2.

II.2.2 Probability of False Alarm

The probability density function (PDF) for speckle in an ultrasound image is Rayleigh
distributed in amplitude a [Bur78] [OQ98, p. 88] [Kay98, p. 30]

p(a)Rayleigh =
{

a
σ2 exp(− a2

2σ2 ) if a > 0
0 if a < 0.

(II.2)

Here σ is the scale parameter and σ
√

π/2 is the mean value. When searching for
a point target, one assumes the point has a higher intensity than the surrounding
background. To find candidate points, we apply a threshold on the intensity image
[OQ98, ch. 10]. Intensity i = a2 has a negative exponential PDF [Abr19, p. 261] [OQ98,
p. 88][Cob07, p. 502]

p(i)neg.exp. = 1
β

exp
(

− i

β

)
, (II.3)

where β is the mean intensity value and β = 2σ2 = 2. The threshold γ can be found
by integrating the PDF for observation t of hypothesis H0 to the chosen PFA value
[Kay98, p. 30]

PFA =
∫ ∞

γ

p(t; H0)dt. (II.4)

Inserting (II.3) into (II.4), we get

PFA(γ) = exp (−γ/β) , (II.5)
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where γ is the chosen intensity threshold. When measuring the PFA(γ), we simply
count the number of false alarms above the threshold γ compared to the total number
of realizations.

II.2.3 Probability of False Alarm for Maximum Intensity Value

Strategies B-E selects the maximum value for false alarm calculation. The maximum
value of speckle increases however with the number of independent pixels N
considered. This increases or inflates the PFA for a given threshold, as shown in
Figure II.1. Following [EG05, ch. 2.11], the probability is such that Pr{imax ≤ γ} =
(Pr{i ≤ γ})N . The PFA for the maximum of N random independent variables then
becomes [EG05, ch. 2.11], [Kay98, p. 283], [Abr19, p. 587]

PFA(γ)max = 1−(1−PFA(γ))N = 1−(1−exp (−γ/β))N . (II.6)

Figure II.1: Theoretical PFA(γ)max vs. threshold values. The maximum value of a
speckle sequence increases with sequence length. The theoretical mean value β is 2.

II.2.4 Probability of Detection

When a signal from a point scatterer is added to a speckle background, the PDF becomes
Rician [Kay98, p. 31], [OQ98, p. 113]

p(a)Rician =
{

a
σ2 exp

(
− (a2+α2)

2σ2

)
I0
(

αa
σ2

)
if a > 0

0 if a < 0,
(II.7)
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where I0(u) is the modified Bessel function of the first kind and zeroth order, and α2

equals the point scatterer intensity ip. If α = 0, the PDF reduces back to Rayleigh. The
right-tail probability can be shown to be related to that of the noncentral χ2 random
variable and must be evaluated numerically [Kay98, App. 2D] [Kay13, ch. 6.4]. The
theoretical PD for threshold γ can be estimated as [Kay98, p. 283]

PD(γ) ≈ Qχ
′2
2 (τ)

(
2γ

β

)
, (II.8)

where Qχ
′2
2 (τ) is the right-tail probability or complementary cumulative distribution

function related to a noncentral χ2 variable. PD is estimated using τ = 2ip

β , and it is
therefore dependent on point SNR. By combining (II.5) with (II.8), PD can be expressed
in terms of PFA as

PD(γ) ≈ Qχ
′2
2 (τ)

(
2ln 1

PFA(γ)

)
. (II.9)

By combining (II.6) with (II.8), PD given by PFA(γ)max is

PD(γ) ≈ Qχ
′2
2 (τ)

(
−2ln

(
1 − (1 − PFA(γ)max)

1
N

))
. (II.10)

The PD of the maximum value can be found as [Abr19, p. 588]

PD(γ)max = 1 − (1 − PD(γ))(1 − PFA(γ)max)(1− 1
N ). (II.11)

Scalloping loss occurs when signals arrive between two samples [Har78]. A slight
shift in location can cause a reduction in amplitude and energy leakage to the nearby
pixels. Oversampling can help reduce this loss and ensure that themaximum achievable
resolution is retained [MI11, ch. 6.7]. The increase in PFA(γ)max when N increases
is less than the alternative loss in signal-to-noise ratio (SNR), and oversampling is
therefore beneficial for detection [Abr19, p. 497].

As with PFA(γ)max, PD(γ)max also increases with N . Figure II.2 shows the different
methods for calculating PD. One can consider the known true point location, pick the
maximum intensity peak of the whole vector, or pick the maximum within a small
search window at the known point position. Since the maximum intensity peak may
be in the background for low point SNRs, an option is to additionally check if the
found candidate is the true point target. For weak point scatterers, the found candidate
may be false, and PD(γ)true max will consequently not converge to 1 for low thresholds.

In Table II.2, we summarize the theoretical formulae corresponding to the five
strategies in Table II.1. The formulae are for ideal signals in additive white Gaussian
noise in complex sequences, which is statistically equivalent to ideal points in fully
developed speckle and corresponds to DAS beamforming.

II.2.5 Evaluation of Detection Performance

A Receiver Operating Characteristics (ROC) curve is a standard method of displaying
detection performance. It compares PD to PFA for a given threshold γ. By increasing
γ, a lower PFA can be obtained, but then PD will also decrease. All points on the ROC
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Figure II.2: Theoretical PD(γ)max vs. threshold values and varying sequence length.
Point SNR is 12 dB. The theoretical mean value β is 2. PD(γ)max finds the maximum
intensity point within the sequence. N = 1 signifies PD calculated using known true
point position only, N = 7 corresponds to a ±3 pixel search window, and N = 500
signifies picking the maximum out of 500 pixels. PD(γ)true max additionally checks if
the found maximum has correct position, and for weak point scatterers it will not
converge to 1.

Table II.2: Summary of Theoretical Formulae for the Strategies

Strategy Theoretical Formulae for PFA and PD
A (II.5), (II.8) and (II.9).
B (II.6) and (II.11).
C (II.6) and (II.11) with a small number of independent pixels N .
D (II.6), (II.8) and (II.10).
E (II.6).

curve should satisfy PD ≥ PFA [Lev08, ch. 2.4.2] [Kay98, p. 74]. Figure II.3 presents
theoretical ROC curves for the strategies in Table II.1, applied to a random vector of
length 500 and a point scatterer placed at random position with 12 dB SNR. Strategy C
applied a ±3 pixel search window (N = 7 independent pixels).

Tabulating Area Under the Curve (AUC) is also a way to present ROC results
[Abr19, p. 315]. AUC for a diagonal line with PD = PFA is 0.5. Another way to
present detection performance is to plot PD as a function of SNR for a fixed PFA value
[Kay13, ch. 7.3.2]. From Figure II.4 we can see that the detection performance of
strategy C varies quite a lot in the range SNR = [8, 14] dB. When testing the detection
performance of different methods, the SNR-range where PD varies greatly is the most
interesting to analyze. Tabulating PD for a chosen PFA value, for example PFA = 1 %,
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is another way to compare detection performance.

Figure II.3: ROC curves for the different strategies for calculating point detection
performance.

Figure II.4: The PD increases with point SNR. PD is shown for five PFA values and
calculated using strategy C with a ±3 pixel search window.
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II.2.6 Choice of Point Target Detection Strategy

Strategy A considers only the known point location for detection and can be vulnerable
when imaging effects slightly alter the point target’s location. Picking the maximum
intensity is the natural choice when searching for a point target in speckle background.
Strategy A does not pick the maximum value. Strategy B uses maximum for both PFA
and PD, but ignores the fact that the found maximum might not be the true point
target. Strategies D and E pick the maximum intensity peak of the entire image for PFA.
Two downsides of strategy D are that we ignore false detections when the maximum is
not in the correct position, and only PFA is inflated by maximum. Strategy E resembles
what we would apply in practice if searching for one point scatterer in an image.
However, it has the disadvantage that PD does not converge to 1 for PFA = 1 in the
ROC curve if the SNR is low. As such, strategy E does not fulfill the properties of a
valid ROC curve [Lev08, ch. 2.4.2].

Strategy C stands out as the optimal choice, a combination of strategies A and B.
It resembles a realistic, practical approach the most and gives valid ROC curves. It
evaluates a search window around the known point location and picks the maximum
value for both false alarm and true positive detection. Figure II.2 shows how PD for a
small search window only slightly deviates from PD at the known point position. At
the same time, evaluating an image selection will give some inflation of PFA due to
the number of pixels considered, as shown in Figure II.1. Picking the maximum gives
dependence on N and reduces R compared to using all the pixels.

In the 2-D study, we set the size of the search window to be twice the -6 dB spatial
resolution for the DAS image. The probability of detecting the true point target as
the maximum is high within such a small window, even when scalloping loss or other
imaging effects cause a slight shift in pixel location. We also evaluate how the imaging
method affects the speckle background and corresponding false alarms by applying a
search window. For detection studies with experimental images, we can fit the search
window size to the confidence interval of the known point location. Strategy C can be
applied if the detection of several point scatterers is of interest. However, we must
note that the choice of search window size relates to the separability of detected point
scatterers. If two point targets are located within the same search window, only one
detection will be registered. With nonuniform backgrounds, we can apply a form of
constant false alarm rate detection with local adaptive thresholding [Abr19; Lev08].
In our study, we only consider a single point scatterer in homogeneous background
speckle.

II.2.7 Number of Required Realizations and Confidence Interval

The number of realizations R will affect the accuracy of the measured performance
results. If the true probability is small, for examplePFA = 0.1 %, only one in a thousand
realizations is expected to exceed the threshold. In such a case, R must be much larger
than a thousand to ensure an accurate probability estimate. As presented in [Kay98, p.
37], if we wish to have a relative absolute error ϵ for probability P for 100(1−b) % of
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the time, then the required number of realizations Rreq is

Rreq ≥ (Q−1(b/2))2 (1 − P )
ϵ2P

. (II.12)

Here Q−1(b/2) is the inverse right-tail probability function of a standard normal
distribution evaluated at b/2. For very small values such as PFA = 10−3, a 10 %
relative accuracy for 80 % of the time requires R = 164070 and it can be difficult or
impractical to get enough data. On the other hand, if we wish to analyze a probability
of P = 0.05 for 80 % of the time and have R = 6500, we get an error of ϵ = 7 %.
Confidence intervals for the ROC curve can be plotted by calculating the relative error
for both PFA and PD at each threshold value using (II.12). The coefficient of variation
of the estimated probability P , i.e. the ratio of the standard deviation (STD) to the
mean of the estimate, is a similar quantity used to express Rreq [Abr19, p. 314].

As presented by Hanley and McNeil [HM82], we can compute the confidence
interval for the AUC. For large samples, the distribution of AUC is approximately
normal. A 100(1− b) % confidence interval for sample AUC-value θ may be computed
using the standard error (SE) as follows

θ ± Q−1(b/2) SE(θ), (II.13)

where

SE(θ) =

√
θ(1−θ) + (Rp−1)(Q1−θ2) + (Rs−1)(Q2−θ2)

RsRp
.

It is worth noting that SE(θ) is inversely proportional to
√

R. Quadrupling R only
reduces SE(θ) by a factor of two. SE(θ) is small for high θ values close to 1. The number
of realizations with and without a point scatterer present is Rp and Rs respectively.
Q1 and Q2 are distribution-specific quantities expressed as functions of θ and give a
conservative estimate of SE(θ) [HM82].

Q1 = θ

2 − θ
, Q2 = 2θ2

1 + θ
. (II.14)

II.2.8 Practical Detection Performance in Ultrasound Images

The theoretical formulae for detection performance in this section are for ideal signals
in additive white Gaussian noise in complex sequences. This is statistically equivalent
to ideal points in fully developed speckle. In practical ultrasound imaging, several
factors that potentially affect detection:

• Additive noise on channel data. The effect of noise causes the SNR to vary with
depth.

• Finite probe size causes targets positioned far off-center not to be as well
represented as centered point targets.

• The spatial resolution is determined by the aperture size and transmitted pulse
bandwidth. It typically varies for depth and angle, and oversampling is common.

108



Background - Advanced Beamforming

• Scalloping loss can cause a reduction in amplitude and leakage in energy to
nearby pixels.

• Apodization changes resolution and reduces side lobes.

• Speckle reduction methods are often applied on ultrasound images and alter the
statistics.

• Advanced beamforming methods alter both the speckle statistics [Hve+17b] and
the point-plus-speckle statistics.

In the 2-D study, we evaluate how common imaging techniques affect the detection
performance of point scatterers.

II.3 Background - Advanced Beamforming

This section briefly introduces the theory for the following beamformingmethods: DAS,
MV, CF, and PCF. See The Ultrasound Toolbox (USTB) [Rod+17] for implementation.

II.3.1 Conventional Delay-And-Sum (DAS)

Conventional DAS consists of applying a delay and an amplitude weight to the output
of each sensor, then summing the resulting signals [JD93, ch. 4.1]. DAS for image pixel
[z, x] is defined as

SDAS[z, x] =
M−1∑
m=0

wmym[z, x], (II.15)

where M is the number of elements, ym[z, x] is the delayed signal received at element
m, and wm is a predefined weight. DAS is the oldest and simplest array signal
processing algorithm but remains a powerful approach today [JD93, ch. 4.1].

II.3.2 Capon’s Minimum Variance (MV)

Capon’s Minimum Variance (MV) [Cap69] calculates for each pixel a data dependent
set of weights www = [w0, w1, . . . , wM ′−1]T that minimizes power while maintaining
unity gain in the steering direction [SAH07]. To calculate the weights, the spatial
covariance matrix needs to be estimated for each pixel. To do this, we apply spatial
averaging with subarrays yyyl[z, x] = [yl, yl+1, . . . , yl+L−1]T , l ∈ [0, M ′ − L − 1],
where M ′ is the length of the active receive aperture and L = M ′/2. We apply time
averaging with 1.5λ range (λ being the wavelength), a diagonal loading factor of
1/100, and the steering vector as a vector of ones [SAH09]. The MV weights are used
in (II.15) and the final image becomes

SMV [z, x] = 1
M ′ − L + 1

M ′−L∑
l=0

wwwH [z, x] yyyl[z, x]. (II.16)
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MV can achieve low sidelobe levels and a narrow beamwidth, increasing the spatial
resolution of closely spaced point scatterers. See [SAH09] for a discussion on the
parameters.

II.3.3 Mallart-Fink Coherence Factor (CF)

The Coherence Factor (CF) calculates the ratio between coherent and incoherent energy
across the aperture [MF94]

CF[z, x] = |
∑

ym[z, x]|2

M
∑

|ym[z, x]|2
. (II.17)

It has the potential to give increased contrast and resolution when applied as an
adaptive weight to the DAS image [LL03]

SCF = SDAS[z, x] CF. (II.18)

II.3.4 Camacho-Fritsch Phase Coherence Factor (PCF)

The Phase Coherence Factor (PCF) [CPF09b] calculates for each pixel an adaptive
weight based on the phase of the receive data. It is a method proposed to improve
resolution [CPF09a]

PCF[z, x] = max
{

0, 1 − γ∗

σ0
f [z, x]

}
, (II.19)

where γ∗ is a parameter provided to adjust the sensitivity of PCF to out-of-focus signals
[CPF09b], and σ0 = π/

√
3 is the STD of a uniform distribution between −π and π

[Rod+17]. The function f [z, x] calculates the minimum STD of the instantaneous
phase across the aperture. PCF is applied as an adaptive weight to the DAS image

SPCF = SDAS[z, x] PCF. (II.20)

II.4 Methods

In this section, we describe the simulation, processing, and test setups in our study.
We used Field II to generate raw channel data and USTB to beamform the data, as
illustrated in Figure II.5. We varied the following: the simulated phantom, the point
data intensity, the aperture size, the apodization, the speckle reduction, and the BF.

II.4.1 Synthetic Transmit Setup and Image Reconstruction

We designed the phantom as a simple scenario of a single point scatterer in speckle
background to establish a baseline detection. We simulated synthetic transmit aperture
datasets in Field II to obtain synthetic focus and uniform resolution for all pixels. We
used a 128 element, λ pitch, linear array with 5.1 MHz center frequency (L11-4v).
We added white Gaussian noise to the channel data at 10 dB channel SNR. We kept
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Figure II.5: Overview of the acquisition and processing stage for producing simulated
ultrasound images. We use Field II to produce channel data and USTB to beamform
the data.

the additive channel noise fixed and below the speckle background level and instead
varied the point intensity relative to the combined speckle and noise background. The
speed of sound in the medium was 1540m/s, the transmitted pulse bandwidth was 65
% of the center frequency, the wavelength λ was 0.3mm, and the aperture size was
38.1mm.

We simulated 200 speckle realizations, each consisting of 91000 point scatterers
and at least 20 scatterers per resolution cell. The speckle pattern is considered well
developed if the number of scatterers per resolution cell is larger than ten [Wag+83]
[Rin19, ch. 2.9]. We simulated one point scatterer at 65 image positions (13 × 5
matrix grid), chosen to ensure varying straddle loss. To reduce the number of Field II
simulations, we simulated radio frequency channel data for the point scatterers and the
speckle background separately. Afterward, we combined the channel data such that
we could change the point intensity and position. For a given method and point SNR
value, we created and analyzed 65 × 100 images. To improve the statistical accuracy at
low PFA values, we additionally analyzed 100 speckle images. With detection strategy
C, this corresponds to 6500 realizations for PD calculation and 13000 realizations
for PFA calculation. To ensure uniform average background intensity, we calculated
correction maps from the average of all speckle background realizations for each
advanced BF and apodization method and applied them to the images before detection.
The beamforming was performed in MATLAB (Mathworks, Natick, MA) using USTB.

The reconstructed image scene was 20mmwide and 40mm deep. We oversampled
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the images to ensure full gain and top performance for the high-resolution adaptive
BFs. The −6 dB theoretical and measured spatial resolution for a center point scatterer
in DAS with hamming transmit apodization corresponded to approximately 5 × 7
pixels. The total image size was 512 × 256. For the detection search, we applied a
search window grid size two times the spatial resolution. The window ensured we
would not miss a detection due to straddle loss or a slight shift in pixel location and
also caught some of the method’s effect on detected false alarms.

We calculate the point’s SNR metric using (II.1) with the average maximum
point intensity and the average intensity of the speckle region around center focus
depth without the point scatterer present. SNR was calculated for the point scatterer
positioned in the center of the image scene, beamformed by the DAS method. By
varying the point’s intensity, we tested three SNR values in the range SNR = [10, 14]
dB. Detection performance in this range varied greatly and signified relatively weak
point scatterers in speckle. Note that the choice of point detection strategy and search
area affects which SNR interval to choose.

II.4.2 Adaptive Aperture Size and Spatial Resolution

The ratio between imaging depth z and size of active aperture D is termed F-number or
f# = z/D. Uniform resolution in the final image can be ensured by having a constant
f#. It ensures a range-independent beamwidth by increasing the active aperture with
increasing range z [Sza14, p. 381]. For pixels close to the edges, the active aperture
will be reduced since the physical aperture has finite size. We used f# = 1.75 in this
study unless otherwise described. The two-way -6 dB lateral resolution with fixed f#
and rectangular apodization can be approximated as [Rin19, p. 12][Har78]

xres ≈ 1.21√
2

λf#. (II.21)

We compared three different f# values to establish how image resolution affects the
detection performance.

II.4.3 Apodization

In medical ultrasound, applying an apodization window is standard practice for
reducing sidelobe levels [Sza14, p. 178] [JD93, p. 322]. Windowing is always a trade-
off between resolution and contrast [Har78]. We applied the following apodization
methods to study the effect on detection: rectangular, Hamming only on transmit,
and Hamming on both transmit and receive. Excepting the apodization study, we
applied the same apodization for all simulations; hamming apodization on transmit
and rectangular on receive.

II.4.4 Speckle Reduction

Speckle reduction or noise suppression is often applied on medical ultrasound images
to improve contrast [Sza14, ch. 8.4.6]. Speckle reduction using filters can greatly
improve the contrast between grayscale tissue areas but simultaneously reduce the the
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point scatterer’s resolution. In this study, we analyzed the effect of common denoising
filters on the detection of point scatterers. We studied the following filters: Wiener,
non-local means, bilateral, anisotropic diffusion, and simple block averaging. Table II.5
in App. II.A presents the filter settings used in this study. Speckle reduction can be
applied on the intensity or log-intensity images, but we applied it on the amplitude DAS
image for this study [AB07; Bre+07; YA02]. Based on visual inspection, we chose filter
settings giving a mild background smoothing. For all methods, we found parameter
settings giving in approximately 0.3 STD vs. mean µ of the speckle background. A
detailed study on optimal parameters for each filter was not performed.

TheWiener filter is also referred to as the minimum mean square error filter or the
least square error filter [GW10, ch. 5.8]. The method assumes that noise and image are
uncorrelated, tailoring itself to the local image variance. We tested four window sizes
with an increasing amount of speckle reduction. We also tested four window sizes for
simple block averaging.

A non-local means filter removes noise from an image while preserving the
sharpness of strong edges [BCM05]. We used the technique first implemented by
Buades et al. [BCM05], but for computational efficiency omitted to convolve the
Euclidean distance between two comparison windows with a Gaussian kernel. We
varied the degree of smoothing with respect to the STD of the image. We present four
filters with an increasing amount of speckle reduction.

An anisotropic diffusion filter also tries to denoise an image while still preserving
the sharpness of edges. It is a technique presented by Perona and Malik [PM90]. We
tested several filters by varying the number of iterations used in the diffusion process
and the gradient threshold value with respect to STD of the image. The threshold
value controls the conduction process by classifying gradient values as edges or noise,
and increasing the value smooths the image more.

A bilateral filter applies an edge-preserving Gaussian filter. It was presented by
Tomasi and Manduchi [TM98]. We varied the degree of smoothing with respect to the
image variance and the STD of the spatial Gaussian smoothing kernel. The value of
the degree of smoothing corresponds to the variance of the Range Gaussian kernel of
the bilateral filter [TM98]. The Range Gaussian is applied on the Euclidean distance of
a pixel value from the values of its neighbors.

II.4.5 Advanced Beamforming Methods

We analyzed the four BFs presented in Section II.3 and will refer to them as DAS, MV,
CF, and PCF. The input to all the methods was identical. We applied Hamming window
on transmit and uniform apodization on receive. The point SNR value was calculated
from the DAS images.

II.5 Results

II.5.1 Spatial Resolution and Apodization

Figure II.6 presents the detection performance of three adaptive aperture sizes. As
seen from the results, increasing the f# degrades the detection performance. The
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Figure II.6: ROC curve for DAS using three adaptive aperture sizes, giving different
spatial resolutions. PFA is shown up to 0.1.

Figure II.7: ROC curve for DAS using different apodization methods: rectangular,
Hamming only on transmit (tx), and Hamming on both directions. The input data is
the same for all methods, but the different windows alter the spatial resolution and
the final point SNR values. PFA is shown up to 0.1.

performance difference between f# = 7 and f# = 3.5 illustrates how doubling
the adaptive aperture greatly improves point detectability. We applied hamming
apodization on transmit and rectangular on receive for all f#s. Figure II.7 shows
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the ROC curve for DAS using different apodization schemes: rectangular, Hamming
only on transmit, and Hamming on both transmit and receive. Applying a uniform
rectangular window gives the highest probability of point detection. A nonuniform
window reduces resolution and slightly alters the measured point SNR value. The
three methods have final SNR values of 13.0, 12.5, and 11.7 dB.

II.5.2 Speckle Reduction

Figure II.8 shows speckle-reduced images of a sample speckle realization with a point
scatterer. Figure II.9 presents AUC results for the methods with respect to STD vs. the
mean of the smoothed speckle background. The images in Figure II.8 correspond to the
bars with σ/µ ≈ 0.3 in Figure II.9. Figure II.10 shows the corresponding ROC curves.
We can see that some speckle reduction methods perform very close to the original
DAS image, and all perform better than simple block averaging. The ROC curves for
the bilateral and Wiener filters have partially overlapping confidence intervals. The
differences in the ROC curves for the other filters are statistically significant since the
separations between the curves are larger than the individual confidence intervals. 80
% confidence intervals were calculated using (II.12) with 6500 and 13000 realizations
for PD and PFA.

II.5.3 Advanced Beamforming Methods

Figure II.11 shows beamformed image scenes where the point scatterer is located in the
center. The figure visually compares the effect of the BFs. Figure II.12 presents ROC
curves for three SNR values. Tabulated performance statistics are shown in Table II.3
and II.4. Confidence intervals for the ROC curves were calculated using (II.12) at each
threshold value, with 6500 realizations for PD, 13000 realizations for PFA and an 80 %
confidence interval. Confidence intervals for the tabulated AUC values were calculated
similarly using (II.13).

Table II.3: AUC for Beamforming Methods

BF 10.3 dB SNR 12.5 dB SNR 13.7 dB SNR
DAS 94.1 ± 0.3 99.4 ± 0.1 99.9 ± 0.04
CF 94.1 ± 0.3 99.4 ± 0.1 99.9 ± 0.04
PCF 93.5 ± 0.3 99.2 ± 0.1 99.8 ± 0.05
MV 91.9 ± 0.3 98.4 ± 0.1 99.4 ± 0.09

Table II.4: PD for Beamforming Methods

BF 10.3 dB SNR 12.5 dB SNR 13.7 dB SNR
DAS 62.2 ± 0.8 94.7 ± 0.4 98.9 ± 0.2
CF 63.6 ± 0.8 94.6 ± 0.4 98.9 ± 0.2
PCF 59.8 ± 0.8 93.4 ± 0.4 98.6 ± 0.2
MV 53.4 ± 0.8 87.2 ± 0.5 95.3 ± 0.3

115



II. Detection of Point Scatterers in Medical Ultrasound

Figure II.8: Speckle reduction methods applied on an image with a point located at
[z, x] = [40, 0]mm, indicated by the yellow circle. Point SNR is 10.3 dB. All images are
normalized by maximum and presented with -35 dB dynamic range. A center depth cut
is presented below each image. The filters have speckle backgrounds with σ/µ ≈ 0.3.
Thresholding the DAS image at −3 dB corresponds to 10 % PFA and 84 % PD. For this
specific DAS image, thresholding at 2 % PFA gives eight false alarms.
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Figure II.9: Tabulated performance results for the speckle reduction methods with 10.3
dB point SNR. The bars present the filter parameters giving high AUC with respect to
STD vs. mean of the speckle background.

Figure II.10: ROC curves for speckle reduction methods compared to DAS with 10.3
dB point SNR. PFA is shown up to 0.1. The filters give speckle backgrounds with
σ/µ ≈ 0.3. The bilateral and Wiener filter have partially overlapping confidence
intervals.
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Figure II.11: Four BFs applied on image scenewith a point located in center at x = 0mm
and z = 40mm depth. The yellow circle indicates the point location. We analyzed
65 different point locations for each speckle background, resulting in 6500 images
per beamforming method per SNR value. Point SNR is 10.3 dB here. All images are
normalized by maximum and presented with a -35 dB dynamic range to be comparable
for the detectability of the point scatterer. A center depth cut is presented below each
image to visualize how much the point stands out in log-intensity from peaks in the
surrounding speckle background.
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Figure II.12: ROC curves for advanced BFs compared to DAS. Three SNR values are
presented; 10.3 dB (dotted), 12.5 dB (solid), and 13.7 dB (dashed). PFA is shown up to
0.1. 80 % confidence intervals are also shown for a rectangular section of the graph,
calculated using 6500 realizations for PD and 13000 realizations for PFA.

II.6 Discussion

II.6.1 Spatial Resolution and Apodization

Reducing the size of the aperture degrades the spatial resolution of the image. From
Section II.2, we know that reducing the number of independent pixels lowersPFA(γ)max.
Increasing the size of the resolution cell will change the point signal to speckle level
within the cell. A loss in resolution is accordingly a loss in point SNR. Figure II.6 shows
how reducing the aperture size degrades the detection, as also found in [And+97]. The
effect is substantial compared to the other methods in this study. We conclude that
it is ideal to have high spatial resolution and high point SNR in terms of detection
performance. Techniques that trade-off spatial resolution to obtain better contrast
resolution will therefore degrade point detection.

Similarly, we can conclude from the results in Figure II.7 that when we mainly wish
to detect point scatterers, the ideal method is to apply uniform apodization. Applying
a nonuniform window will suppress some probe elements and thereby reduce the
resolution and the maximum point intensity. Apodization with a nonuniform window
results in lower point detection performance, though general contrast in the final
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image might have improved. It is also worth noting that point scatterers at the edges
can be more challenging to detect since the edges may not have full aperture coverage.

II.6.2 Speckle Reduction

Applying any speckle reduction will smooth the background, but unfortunately also
degrade the image resolution [JD93, p. 322]. This signifies a reduction in point
SNR. Based on our results, speckle reduction depletes the number of false alarms but
reduces PD even more. In general, speckle reduction thereby degrades the overall
point detection performance.

However, the results also show it is possible to smooth the background and keep
detection performance close to the original. In this study, the bilateral, Wiener, and
non-local means filters outperformed the others and managed to preserve relatively
high detection performance even for a high degree of background smoothing. Optimal
parameter choices improve detection performance, but from our experience, it is not
likely that this will do better than DAS. The anisotropic diffusion filter did not perform
as well as the non-local means and bilateral methods. Block averaging significantly
reduced the detection performance and is a poor choice if point targets are of interest.
When choosing a method for reducing speckle, one should consider that different
methods have different performances concerning point detection.

II.6.3 Advanced Beamforming Methods

Figure II.12 shows how CF performs slightly better than DAS for low SNR and PFA
values, though the confidence intervals are partially overlapping. Unweighted DAS is
the best detector unless prior knowledge is included in the analysis. Point scatterers are
small, bright, and highly coherent targets. We can expect high measurable coherence
in the signal from a point scatterer, and point detection algorithms can exploit this
[Hua+14; Hve+17a]. CF matches prior knowledge about point targets well since it
differentiates between coherent and incoherent energy. Speckle background alone
is known [MF94] to have an expected mean coherence value of 2/3, though this
theoretical value is affected by specific circumstances in ultrasound imaging [LW95].
Since this is the average, the weights of CF will also enhance some pointlike coherent
scatterers in the speckle background. It can be difficult to distinguish true point targets
from these peaks at low SNRs based on the weights alone. However, since CF uses
image weighting, it can achieve slightly better performance than DAS. The difference
in detection performance is distinguishable at low SNR and PFA values. However, we
do not have enough realizations to state that the difference is statistically significant
since the confidence intervals are partially overlapping in Figure II.12.

The tabulated values for PD in Table II.4 show higher values for CF than DAS
with statistical significance with 75 % confidence. The confidence interval curves in
Figure II.12 is still a better way to illustrate the accuracy of the results since it shows
several measurements. In general, AUC is a more robust method than tabulating PD
for a given PFA since it integrates several measurements and is thereby less vulnerable
to limited amount of realizations. Tabulating AUC will not catch the slight difference
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between CF and DAS here since it is calculated over all PFA values, and the difference
is only distinguishable for low PFA values.

The results indicate that CF is a promising method to use when point scatterers are
of interest, especially in imaging scenes with low SNR values. The DAS image shown
in Figure II.11 is an example of such a weak point scatterer. Thresholding the image
at −3 dB below the maximum intensity retains many false alarms. An example of a
practical application is an ultrasound image with small macrocalcifications in early
development. The points will then have low SNR values relative to the background. In
such a medical scenario, we wish to have few false alarms. A PFA value of 1 % or lower
can be applicable. Referring to the ROC curve in Figure II.12, 1 % PFA corresponds to
detecting half of the weak point scatterers, and the results show that CF is a promising
alternative to DAS.

The three adaptive BFs have different PDFs from DAS [Hve+17b]. The PDFs of CF
and PCF resemble intensity distributions, and in Figure II.11 they appear darker with
fewer bright peaks. The difference in PDF affects both PFA and PD. The difference in
ROC for PCF in Figure II.12 is statistically significant since the difference between the
other curves is larger than the particular confidence interval. PCF has a statistically
significant lower detection performance than CF and DAS, but the difference in
performance decreases with increasing SNR. PCF is calculated from the STD of the
phase. A possible explanation for its performance is that PCF disregards amplitude and
thereby retains less information about the point target and the speckle background
than CF.

In our analysis, MV has lower detection performance than the other methods. The
difference is statistically significant for all three SNR values. MV is known to have
good spatial resolution and high separability of point targets [HAR20]. MV is designed
for optimum performance for signal in interference and noise. We observe more false
alarms for MV, as illustrated in Figure II.11 where the true point in the MV image is
not the maximum intensity in the image. A possible cause is the strong dependence
on the estimate of the spatial covariance matrix. With a true covariance matrix, its
performance should meet DAS for our scenario. With parameter choices that have
shown to be robust in ultrasound imaging [SAH09], MV enhances more of the speckle
background peaks and attains a poorer detection performance. In the case of multiple
point scatterers in speckle, we expect MV to distinguish itself in separating weak point
scatterers in the presence of other strong point scatterers.

II.7 Conclusions

In this paper, we have presented an overview of the detection of point scatterers
in ultrasound images. Based on classical detection theory, we presented five main
strategies to measure and evaluate detection performance. We showed how the choice
of detection strategy affects the performance and gives very different ROC curves.
We showed how to compare the effect of different imaging methods and calculate
confidence intervals for the detection performance.

We simulate many images of a point target in speckle and apply a set of common
ultrasound techniques to form the images. Our study shows that uniform apodization

121



II. Detection of Point Scatterers in Medical Ultrasound

gives the best performance when detecting a point scatterer in speckle. Applying
a Hamming window or similar suppresses information from some probe elements.
It reduces the spatial resolution and thereby degrades the detection performance.
Similarly, a large aperture will have better spatial resolution and higher detection
performance than a smaller one.

In general, applying speckle reduction to an image will reduce the detection
performance of point targets. However, our results show that it is possible to smooth the
speckle background while still having detection performance quite close to the original,
provided one applies a suitable speckle reduction method with optimal parameters.

The advanced BFs PCF and MV have lower point detection performance than DAS.
Unweighted DAS is the best detector unless prior knowledge is included in the analysis.
However, CF matches prior knowledge about point targets well. Since it differentiates
between coherent and incoherent energy across the aperture, its weights accentuate
signals from point scatterers. Our detection performance results show that CF has a
positive weighting scheme to the DAS image at low SNR and PFA values.

Appendix II.A

For the speckle reduction methods in Section II.4.4, we chose to use the built-in versions
in MATLAB: wiener2, imnlmfilt, imdiffusefilt, imbilatfilt, and filter2. Table II.5 presents
the filter settings we used in this study. The parameter values corresponding to speckle
background smoothing of σ/µ ≈ 0.3 are emphasized in bold.

Table II.5: Speckle Reduction Parameter Settings

Method Parameter Names Parameter Values

Wiener Window sizes 5 × 7, 7 × 9
9×13, 11 × 15

Non-local means
DegreeOfSmoothing (×STD), [1,5,11], [1,7,13]
ComparisonWindowSize, [1,7,23], [1,9,21]
SearchWindowSize

Anisotropic NumberOfIterations, [7,1.5], [9,1.5]
diffusion GradientThreshold (×STD) [13,2], [20,2]

Bilateral DegreeOfSmoothing (×STD2), [1,5], [1,9]
spatialSigma [2,5], [3,5]

Block averaging Window sizes 5 × 7, 7 × 9
7×11, 9 × 13
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Abstract

Background speckle can often obscure objects of interest in an ultrasound image.
The probability of detection and classification of point scatterers is highly affected
by background speckle. The proposed algorithm uses a coherence-based wavelet
coefficient shrinkage method. Point scatterers in the ultrasound image are
enhanced by separating coherent point targets from incoherent background
speckle. Results using Field II ultrasound simulations show how the algorithm
retains the point scatterers and increases their conspicuity. The algorithm has
potential to detect microcalcifications in breast tissue.

III.1 Introduction

The size, distribution and morphology of microcalcifications in breasts can for some
cases be considered an early indicator of breast cancer. Microcalcifications are small,
hard calcium deposits in soft breast tissue and behave as point scatterers in an
ultrasound image. However, detection of microcalcifications in ultrasound images is
challenging as they are often obscured by background speckle.

The proposed algorithm uses a coherence-based wavelet shrinkage method to
suppress speckle background in order to enhance point scatterers. From the original
image, the algorithm creates multiple images or looks with statistically independent
noise realizations and retained wavenumber resolution. The algorithm then utilizes
a coherence metric to determine the similarity of the wavelet coefficients between
these looks. The wavelet coefficients with low coherence are attenuated to produce an
image with reduced speckle. The method has previously been applied on sonar images
to separate coherent targets from incoherent background reverberation noise [HV14].
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III.2 Methods

III.2.1 Phantom Data Sets

A phantom with three point scatterers in speckle was designed to test the algorithm’s
ability to enhance point scatterers. The simulation for the point scatterers and the
speckle were run separately in order to vary the speckle intensity level more easily.
Each data set was normalized by its maximum intensity, but the speckle data was
further intensity scaled relative to the point scatterers using the relative values of 50,
70, and 95 %. The scaled speckle data was then added to the other data to create images
with varying speckle intensity. The synthetic aperture dataset was simulated using
Field II [JS92][Jen96] and a linear array with 128 elements, 5 MHz center frequency
and λ pitch (properties of Philips L11-4v). Beamforming was performed using The
Ultrasound Toolbox (USTB) [Rod+17].

The method was also verified on an ultrasound image of a real tissue-mimicking
phantom (CIRS 054GS) with a hyperechoic area and several point scatterers. A coher-
ently compounded plane wave ultrasound image was acquired with the Verasonics
Vantage system using a linear probe (Philips L7-4, 128 elements, 75 angles, 5.2 MHz,
f# = 1.75). As with the simulated data, an image of only speckle was also recorded
and used to create an image with extra 70 % speckle intensity.

III.2.2 Algorithm Description

Figure III.1 shows a flowchart of the algorithm. The edges of the original image are
first tapered down to reduce Gibbs phenomenon in the discrete Fourier transform of
the images. Two complimentary looks are then generated as described below. These
looks are subsequently decomposed into wavelet coefficients. The coherence between
the wavelet transforms is estimated, and after p realizations an averaged estimate of
the coherence is thresholded. This is multiplied with the wavelet transform of the
original image to generate the final image.

Figure III.1: Flowchart of the wavelet coefficient shrinkage algorithm.

Complimentary looks of the original image are first generated by partitioning the

130



Methods

frequency space, i.e. the 2-D FFT of the image into two sets. This is accomplished by
applying a 2-D grid to the space where blocks are randomly assigned to either of the
two sets, see Figure III.2. The size of the blocks in the grid is chosen so that information
of the point scatterers is preserved over several blocks, while the speckle background
is correlated on a much smaller scale than the block size [HV14]. The point scatterers
will then be persistent in both of the resulting two complimentary looks, whereas the
speckle will ideally not have high coherence between the looks.

Random block grid, 16x16

(a) Block grid
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(b) Partitioned FFT

Figure III.2: Generation of complimentary looks by partitioning frequency space using
a random block grid (a). The partitioned frequency space shown here (b) creates one
look, and the other is created using the inverse block grid.

Wavelets can be used to de-noise images while preserving resolution. The target
information can be described using a few wavelet coefficients, whereas noise is
more evenly distributed [HV14]. Thresholding these wavelet coefficients will give a
final inverse wavelet transformed image which has retained target information and
suppressed noise.

The multilevel 2-D wavelet decomposition was performed with a symmetric
biorthogonal wavelet base [Dau92]. The discrete wavelet transform decomposes
an image into high and low frequencies. From the high-pass filtered image, three detail
images are created, each describing directional local changes in the image. The low-
pass filtered image is further downscaled and yields what is known as an approximation
image. This image is further high-pass filtered to produce the three smaller detail
images of the next level, and so on.
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The coherence between two looks is estimated as:

C(x, y, l, p) =

∣∣∣∣∣∣∣∣∣∣∣∣

N−1
2∑

m,n=− N−1
2

W1W∗
2√√√√ N−1
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2

|W1|2

√√√√ N−1
2∑

m,n=− N−1
2

|W2|2

∣∣∣∣∣∣∣∣∣∣∣∣
given Wi = Wi(x + m∆x, y + n∆y, l, p) (III.1)

where (x,y) is the pixel location in the wavelet transformed image, l is the decom-
position level, p is the realization number, and ∆x and ∆y are the pixel dimensions.
Wi is the wavelet transform of complementary look i and W∗

i denotes its conjugate.
NxN is the sliding window size over which the coherence for pixel location (x,y) is
calculated. A hanning window with N = 5 was used. A large window size will reduce
variance, but also reduce spatial resolution. The average coherence estimate for each
level l is obtained by averaging the coherence estimate between two looks over all P
realizations.

Cav(x, y, l) = 1
P

P∑
p=1

|C(x, y, l, p)| (III.2)

The average coherence estimate is thresholded by a simple weighting scheme where
coefficients with values less than tmin are completely suppressed, values greater than
tmax are retained, and between these two there is a linear transition.

Cth(x, y, l) =


1, if Cav(x, y, l) > tmax

0, if Cav(x, y, l) < tmin
Cav(x,y,l)−tmin

tmax−tmin
, otherwise

(III.3)

These thresholded coefficients are multiplied with the wavelet coefficients of the
original image, and the inverse wavelet transform of the adjusted coefficients yield the
final image.

III.2.3 Evaluation Criteria

As a visibility metric for the point scatterers, the metrics conspicuity (Cp) and Peakpoint-
to-Peakspeckle ratio (PP) are presented. Cp is a measure of how clearly discernible a
point is from the background at same depth and it is defined as [Dah+11]:

Conspicuity =
maxpoint −µspeckle

σspeckle
. (III.4)

PP measures the intensity difference between the point scatterers and peaks in the
speckle background:

PP = 20 log10

(
maxpoint

maxspeckle

)
(III.5)
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where maxpoint and maxspeckle are the maximum intensity values. We call PP1 the ratio
calculated within the areas depicted by the solid white lines in Figure III.3, i.e. areas at
same depth. PP2 is calculated when the maximum speckle intensity is within the area
depicted by the dotted white lines.

Original image. Speckle 50 %
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-10 0 10

Lateral distance [mm]

25

30

35

40

45

D
e
p
th

 [
m

m
]

-40

-30

-20

-10

0

[d
B

]

Point scatterer 

 max=0.0 dB

Speckle area at same depth 

max=-10.3 dB, µ=-18.1 dB

Figure III.3: Conspicuity (Cp) and Peakpoint-to-Peakspeckle ratio (PP) metrics calculated
using (III.4) and (III.5).

III.3 Results

Figure III.4 shows the results when the method is applied to a plane wave image of
a real tissue-mimicking phantom. Conspicuity of the point scatterers in the wavelet
shrunk image is around 14-17 times higher than in the original. A more detailed
analysis is presented for the simulated phantom.

The threshold levels for the simulated phantom were chosen based on the average
coherence estimates for each level, shown in Figure III.5. The three point scatterers are
easily discernible in the first level decomposition images with coherence values around
0.6. The points are somewhat discernible in the second level with coherence values
above 0.35. Further decomposition does not include much of the target information.
The approximate coherence values found in Figure III.5 were used as initial threshold
limits and were further adjusted. Mild threshold limits are more likely to retain all
point scatterers, but will also include more of the speckle background and increase the
possibility of false positives in the final image. Three different threshold limits were
used to create the thresholded average coherence estimates shown in Figure III.6.

Figure III.7 shows the results from the simulated phantom when the speckle
background intensity is varied (50, 70 and 95 %). All three point scatterers are retained
when their intensity is above maximum speckle intensity, and the conspicuity values
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Figure III.4: Results on an image of a real tissue-mimicking phantom. Cp is 14-17 times
higher in the wavelet shrunk image.
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Figure III.5: Average coherence estimates for the simulated phantom. The four
coefficient images are shown together for each wavelet decomposition level. The
upper left corner shows the approximation image. The other three corners show the
three detail images; horizontal (top right), vertical (bottom left) and diagonal (bottom
right).

Table III.1: Cp and PP measurements corresponding to Figure III.7, calculated using
(III.4) and (III.5).

Speckle Cp PP1 PP2
[%] Original Final Original Final Original Final
50 13.9 247.9 10.3 dB 33.3 dB 7.1 dB 18.3 dB
70 9.3 301.2 7.3 dB 35.7 dB 4.1 dB 12.3 dB
95 6.2 359.4 4.6 dB 36.6 dB 1.4 dB 6.5 dB

134



Results

20 40 60 80 100 120

Level 1

20

40

60

80

100

120

140

160 0

0.2

0.4

0.6

0.8

1
Thresholded Average Coherence Estimates. Speckle 50 %

20 40 60

Level 2

10

20

30

40

50

60

70

80 0

0.2

0.4

0.6

0.8

1

10 20 30

Level 3

5

10

15

20

25

30

35

40 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) Threshold limits: (0.5-0.65, 0.45-0.55, 0.4-0.5). Speckle 50 %
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(b) Threshold limits: (0.4-0.6, 0.4-0.6, 0.4-0.6). Speckle 50 %
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(c) Threshold limits: (0.55-0.65, 0.5-0.6, 0.5-0.6). Speckle 50 %

Figure III.6: Thresholded average coherence estimates using different threshold limits,
applied on the images in Figure III.5. The top image (a) corresponds to results shown
in Figure III.7(a), and (b) and (c) correspond to Figure III.8.

are around 18-58 times larger than in the original image. Table III.1 summarizes these
results. Figure III.8 shows the results when using two different threshold limits for the
50 % speckle image.
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Original image. Speckle 50 % 
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(a) Speckle 50 %. Threshold limits: (0.5-0.65, 0.45-0.55, 0.4-0.5)

Original image. Speckle 70 % 
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Wavelet shrunk image 
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(b) Speckle 70 %. Threshold limits: (0.5-0.65, 0.45-0.55, 0.4-0.5)

Original image. Speckle 95 % 
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Wavelet shrunk image 

 Cp:359.4, PP
1
:36.6 dB, PP

2
:6.5 dB

-10 -5 0 5 10

Lateral distance [mm]

25

30

35

40

45

D
e

p
th

 [
m

m
]

-30

-25

-20

-15

-10

-5

0

[d
B

]

(c) Speckle 95 %. Threshold limits: (0.5-0.65, 0.45-0.55, 0.4-0.5)

Figure III.7: Results with varying speckle background intensity (50, 70 & 95 %). Cp
and PP measurements are summarized in Table III.1.
136



Discussion

Original image. Speckle 50 % 
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(a) Results using threshold limits: (0.4-0.6, 0.4-0.6, 0.4-0.6).
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(b) Results using threshold limits: (0.55-0.65, 0.5-0.6, 0.5-0.6).

Figure III.8: Results when applying the threshold limits shown in Figure III.6(b) and
III.6(c).

III.4 Discussion

Results on both the tissue-mimicking phantom in Figure III.4 and the simulated
data in Figure III.7 show how the method can suppress speckle background. From
Figure III.6 we expect best results when threshold values for the first and second level
are relatively strict, since this excludes coefficients describing only speckle background.
Decomposing with mild threshold limits to more than three levels resulted in the
inclusion of more background speckle in the final image. From results shown in
Figure III.8 we see that the best result for the 50 % speckle intensity is obtained
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III. Point scatterer enhancement in ultrasound by wavelet coefficient shrinkage

when the threshold limits are so strict that the last level is completely attenuated,
corresponding to an actual two-level decomposition.

Results presented in Figure III.7 and summarized in Table III.1 illustrate how the
algorithm increases conspicuity by around 18-58 times more than in the original image.
The method retains all of the point scatterers, even when intensity peaks in the speckle
background are almost at the same level. When the speckle intensity increases, the
chance of false positives in the final image also increases. The high speckle values in
the shallow and deep depth range seen in the 95 % speckle results are assumed edge
artifacts caused by Gibbs effect.

The results show it is essential to choose threshold limits for each level based on
the coherence estimate values, which in turn are related to the size of the target objects
and the intensity of the speckle background in the original image. When the speckle
intensity is almost at the same level as the point scatterers, a strict thresholding can
exclude too much information. With high relative speckle intensity, the method can
be beneficial as a supplement to the conventional ultrasound image.

It is expected that a large number of realizations reduces the variance in the
final image. However, results showed no difference between using P=100 or P=10000
realizations. P=12 was similar to P=100 when using the same parameters. When P was
reduced to six realizations a little more of the speckle background was visible in the
final image. This indicates that few realizations are required to produce a final image
with well suppressed speckle background. The results when varying the threshold
limits show how it is also not necessary to decompose into many levels and that even
two levels might suffice. The fact that the algorithm works well with a low number
of realizations and few levels is very positive for its computation time. The initial
results indicate that the algorithm can enhance point scatterers that are almost buried
in speckle, a situation quite similar to microcalcifications in breasts.

III.5 Conclusions

We have shown that the wavelet coefficient shrinkage algorithm manages to suppress
speckle background and enhance point scatterers in an ultrasound image. The
conspicuity of the point scatterers are greatly increased. The method retains the
point scatterers even when intensity peaks in the speckle background are almost at the
same intensity level. The method was tested for a variety of wavelet decomposition
levels, thresholding schemes and number of realizations. Results show that few levels
and number of realizations are necessary. The algorithm has potential to detect
microcalcifications in breast tissue.
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IV

Abstract

We investigate methods to improve the detection of point scatterers in ultrasound
imaging using the standard Delay-and-Sum (DAS) image as our starting point.
An optimized whitening transform can increase the spatial resolution of the
image. By splitting an image’s frequency spectrum into many subsets using the
multilook technique, we can exploit the coherent properties of a point scatterer.
We present three new multilook methods and evaluate their effect on point
detection. The performances are compared to DAS using synthetic aperture
Field II simulations of a point scatterer in uniform speckle background. The results
show that optimized prewhitening of the images can significantly improve point
detection. The multilook methods have the potential to improve the detection
performance further when a sufficient number of looks are used. If prior knowledge
about the optimal spectrum limits is unavailable and a nonoptimal prewhitening
is applied, applying the new multilook methods can considerably improve the
point detection.

IV.1 Introduction

Point scatterers are small, highly coherent targets that can be challenging to detect
due to peaks in the speckle background. There are several applications in medical
ultrasound in which their detection is of importance, such as breast microcalcifications,
kidney stones, and point tracking [And+97; AST00; AST98; Dia+18; Flø+17; Mac+18;
Mat+19; MBR20; Ray+10; Tie+18]. Point targets are also of interest in other fields of
study, such as radar [OQ98] and sonar [Abr19]. In the same way as [Ste07], this study is
inspired by synthetic aperture imaging techniques in the radar community. We take the
standard Delay-and-Sum (DAS) image as our starting point and investigate methods
to improve point detection. The techniques presented in this paper are a continuation
of the work in [THA22] and inspired by the multilook technique established in the
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IV. Point Detection in Ultrasound Using Prewhitening and Multilook Optimization

radar community [CLR95; CLR96; Kel86; San+15]. We can view the detection of a
point scatterer in speckle as a classical binary detection problem [Abr19; EG05; Kay13;
Kay98; Lev08]. For a given image region, the objective is to decide between two
hypotheses: speckle background with or without a point signal present. In [THA22] we
discussed how to measure and evaluate the detection performance of various common
ultrasound techniques.

Czerwinski et al. studied boundary and line detection on ultrasound images in
[CJO98; CJO99]. They tested the Sticks detector and found that the performance
of this technique could be significantly improved by prewhitening the speckle
field. A whitening transform converts the covariance matrix of a set of random
variables into the identity matrix [Kel86; KK99; KLS18], which consequently raises the
frequency amplitudes to the same average level. Applying an optimized whitening
transform to the ultrasound image increases the effective spatial frequency coverage
and correspondingly the spatial resolution since resolution is inversely proportional
to bandwidth. Increased resolution corresponds to increased point signal intensity
compared to the speckle background (point SNR), and this significantly improves
the probability of detection [THA22]. We study different whitening filter limits
and evaluate their improved point detection performance. To get measurable and
statistically significant results, we need many images with specific point scatterer
intensity, known point location, and varying speckle background. To achieve this,
we simulated many images of a point scatterer in uniform speckle background using
Field II [Jen+06; Jen96; JS92]. This study is the first work in ultrasound to combine
prewhitening with the multilook technique.

The multilook technique is a widely used technique in synthetic aperture radar
(SAR) imaging to reduce speckle [Jak+96, ch. 3.3] [OQ98, p. 29]. It creates several
subimages or looks from the original DAS image by splitting the entire frequency
bandwidth into several subsets with different central frequencies. The normalized
matched filter (NMF) multilook method is well established in the radar field [CLR95;
CLR96; Kel86; San+15]. Based on the known response from a point scatterer, it
imposes higher weighting on the contribution from the important looks to maximize
point detection. We present three new heuristic methods to improve point detection
using multilook optimization. Our three new methods are inspired by the NMF
method. The normalized matched filter weighted (NMFW) method applies NMF as an
image weighting scheme. It combines optimized look weighting with the actual point
intensity to ensure that we enhance points with intensities higher than the surrounding
background. The multilook coherence factor (MLCF) is a simplification of the NMF
method. MLCF omits the look weighting and instead calculates the ratio between the
coherent and incoherent sum of all the looks weighed equally. The multilook coherence
factor weighted (MLCFW) method applies the MLCF method as a weighting scheme.

We evaluate the detection performance of the multilook methods and compare
them to original DAS and optimized prewhitening. Our results show that applying a
multilook method can improve the point detection, provided we use many divisions in
the sublooking process. We also evaluate the methods using nonoptimal prewhitening
to test the methods when prior knowledge about the optimal whitening limits is
unavailable. The new methods MLCF and MLCFW significantly improve the detection
performance for weak point scatterers and can also be applied without prior knowledge
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about the theoretical point signal response.
The following section briefly presents how to calculate point detection performance.

We then introduce the whitening transform and the sublooking process. We present
results from a one-dimensional (1-D) study to establish the potential of prewhitening
and sublooking. Section IV.5 presents the different choices for the whitening filter
limits and the setup for applying the multilook methods on the 2-D ultrasound DAS
images. Section IV.6 shows the results, and in Section IV.7 we discuss how the methods
affect the point detection performance.

IV.2 Background - Detection Theory

IV.2.1 Measuring Probability of False Alarm and Detection

Detection performance is measured in terms of probability of false alarm PFA and
probability of detection PD. PFA is estimated using images containing only speckle,
and PD is estimated using images with a point scatterer present [Kay98, ch. 3.3]. We
classify the intensity values above threshold γ as correct detections and false alarms.
We find the measured probabilities PD and PFA by counting the number of values and
comparing them to the number of realizations R. When presented with an ultrasound
image, we assume that the most likely target candidate is the scatterer with the highest
intensity [Abr19; THA22]. We detect within a search window if the pixel is a point
scatterer. Since we have a simulated environment, we can adopt the detection strategy
from [THA22] and evaluate a search window around the known point location. We
pick the maximum value within the search window for the false alarm and true positive.
The search window size affects the separability of point targets. If there are two point
targets within a search window, we will only detect the strongest point. As in [THA22],
we study a simplified but statistically equivalent 1-D scenario to establish and illustrate
the different methods. We apply the same search window sizes as in [THA22] for the
detection studies, which for the 1-D study is a ±3 independent pixels window size.

PD depends on the point’s intensity relative to the background. We calculate the
point’s SNR metric as

SNR = 10 log10

(
ip

is

)
, (IV.1)

where ip is the average maximum point intensity, and is is the average intensity of
the speckle region around this location without the point scatterer present.

IV.2.2 Evaluation of Detection Performance

A Receiver Operating Characteristics (ROC) curve compares PD to PFA for a given
threshold γ. It is a conventional method of displaying detection performance. We
can achieve a lower PFA by increasing γ, but then PD is also expected to decrease. All
points on the ROC curve should satisfy PD ≥ PFA [Lev08, ch. 2.4.2] [Kay98, p. 74].
Area Under the Curve (AUC) is another way to present ROC results [Abr19, p. 315].
AUC for a diagonal line with PD = PFA equals 0.5. We can also present PD for a chosen
PFA value, for example PFA = 5%, or plot PD as a function of SNR for a fixed PFA value
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[Kay13, ch. 7.3.2]. The SNR-range where PD varies greatly is the most interesting
to analyze when comparing the detection performance of different methods. Since
detection performance given high PFA values is not of much practical interest, we
present ROC curves for PFA values up to 0.1.

The accuracy of the measured performance results is affected by the number of
realizations R [Kay98, p. 37]. We can plot confidence intervals for the ROC curve
by calculating the relative absolute error for PFA and PD at each γ value. In [HM82],
Hanley and McNeil present how to compute a conservative estimate of the confidence
interval for the AUC. It is proportional to

√
R and depends on the number of speckle

realizations with and without a point scatterer present.

IV.3 The Whitening Transform

A whitening transform is defined as a decorrelation transform that converts a set of
random variables having a known covariance matrix into a set of new random variables
whose covariance is the identity matrix [Kel86; KK99; KLS18]. The transformation
is called whitening because it changes the input vector into a white noise vector.
Prewhitening boosts the frequency amplitudes to the same average level. To obtain a
whitening transform, we can estimate a smoothed average of the frequency image data.
We calculate such an estimate based on secondary data or by applying an adaptive
method. This study estimated a smoothed average and applied its inverse to the
frequency data.

To study the effect of whitening, we first present results on ideal 1-D sequences of
a point scatterer with a random position in speckle. We first create 500 realizations of
a 1-D speckle sequence, constructed as a complex sum of two normally distributed
sequences. We add a point scatterer to the sequence with a chosen point SNR value.
To obtain statistically significant results, we tested 200 different random positions
for the point scatterer for each speckle sequence. The sequence is further bandpass
filtered with a raised cosine filter and oversampled by a factor of three. Since a realistic
ultrasound frequency spectrum always includes some noise, we add random noise
with intensity −15 dB below the average speckle level to the 1-D sequence. The
spectrum in Figure IV.1 has a similar shape to the magnitude frequency spectrum of
an oversampled, basebanded ultrasound signal in one direction.

Figure IV.1 shows the magnitude spectrum of a speckle sequence before and after
whitening. To obtain a whitening filter, we first calculate a smoothed average of the
magnitude of the Fourier transform of the speckle vector. The whitening filter is the
inverse of this smoothed average. The whitening filter is set to zero outside the valid
frequencies, which for the 1-D study depends on the amount of oversampling. The
frequencies after the whitening transform are raised to the same mean amplitude level
while retaining the randomness. We obtain the whitening filter for the 2-D images by
calculating a smoothed average of the magnitude of the 2-D Fourier transform of all
the complex speckle images.

The spectrum does not have an ideal rectangular shape with clear cutoff limits
between the signal and noise. We have used a priori knowledge of the spectrum shape
to set the prewhitening filter limits. The whitening filter that optimizes detection
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Figure IV.1: The spatial frequency spectrum of a bandpass filtered, oversampled 1-D
speckle sequence with some added noise. The same spectrum is also shown after
applying an optimized whitening transform, and the transform only retains and
enhances the valid frequencies.

performance depends however on both image resolution and point SNR since the
spectrum is nonuniform. Consider a uniform frequency spectrum for both signal and
noise with the same bandwidth B. Doubling the effective spatial frequency coverage
by whitening corresponds to doubling the resolution since resolution is inversely
proportional to bandwidth. Decreasing the size of the resolution cell means the point
scatterer is combined with fewer diffusive scatterers within the cell. This improves
the point SNR and consequently the detection performance [THA22]. The noise
contribution reduces and this consequently improves the point’s SNR. PD is therefore
proportional to both bandwidth B and point SNR,

PD for fixed PF A ∝ B · SNR. (IV.2)

The optimal whitening filter limits maximize (IV.2) and are therefore dependent on
where we have both large bandwidth and positive SNR. In Figure IV.1 we have used a
signal vector oversampled by a factor of three with accordingly narrowed whitening
filter limits. Increasing the filter limits outside the area of positive SNR will effectively
decrease the PD. Similarly, if we narrow the filter limits to enclose the portion of the
frequency spectrum with known high point SNR, the reduced bandwidth causes a
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decrease in PD. Figure IV.2 shows the great improvement in ROC that we can achieve
by prewhitening the data. It should be noted that the detection improvement is a
function of the signal spectrum and the noise spectrum.

Figure IV.2: ROC for a whitening transform applied on 1-D speckle sequences with
or without a point target. Applying an optimized whitening increases the measured
point SNR.

IV.4 The Sublooking Process

The multilook technique splits the entire frequency bandwidth of the image into
several adjacent subsets [Jak+96, ch. 3.3] [OQ98, p. 29]. Each subset has a different
central frequency. We can create a separate image, known as a sublook or look, by
computing the inverse Fourier transform of a subset. Splitting into L non-overlapping
subsets reduces the frequency bandwidth by a factor L and thus similarly degrades the
final image resolution of the looks. We can create several sublooks by either having
independent subset bandwidths or allowing a partial overlap [San+15].

IV.4.1 Point Signal Response in a Sublook

A point target is a coherent scatterer that is a dominant scatterer within a resolution
cell. Some scattering loss occurs when the point scatterer is not in the center of the
resolution cell. The Point Spread Function (PSF) describes the response of an imaging
system to a point source. To obtain the PSF for each point position in the 1-D study, we
started with the PSF of a point in the center, and then shifted the phase with respect
to each pixel position. We can retrieve the response of a coherent scatterer in each
sublook by adjusting the PSF for the sublook center frequency and bandwidth. We
now evaluate the ideal 1-D point scatterer signal from Sect. IV.2 and IV.3. The complex
amplitude of this original point scatterer is C = C0ejϕ if we assume it is in the center
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of the resolution cell. Following [San+15], we start with a point scatterer positioned at
a distance z0 and its sinc-response

apoint(z) = C0ejϕe−j
4πf0

c z0sinc
(

2B(z−z0)
c

)
. (IV.3)

Here f0 is the transducer center frequency, c is the wave speed, and B is the frequency
bandwidth. We create L sublooks of equal bandwidth BS = B/L by applying
rectangular window filters over the different central frequencies f

(n)
c , for n = 1, ..., L.

Each sublook response a(n) is thus

a(n)(z) = F−1

{
F{apoint(z)}rect

(
f − f

(n)
c

BS

)}
(IV.4)

where F represents the Fourier transform. We can express the point signal response
in each sublook n as [San+15]

a(n)(z) = BS

B
C0ejϕe−j

4πf0
c z0ej

4πf
(n)
c

c (z−z0)sinc
(

2BS(z−z0)
c

)
. (IV.5)

From the expression, we see that the new bandwidthBS creates a broader sinc and thus
degrades the range resolution to ∆zS = c/(2BS). The final 2-D response depends on
the bandwidth in both directions. For the 2-D images in [San+15], the response in the
other direction was similarly calculated and multiplied to the above expression.

Chen et al. present a theoretical model to depict the PSF for varying point scatterer
positions and apodization settings for plane-wave ultrasound imaging in [Che+20].
The PSF is affected by the point scatterer’s position, the transducer characteristics, and
beamforming setting [Che+20]. The PSF is horizontally symmetric when the point
scatterer is in the center, as illustrated in Figure IV.3, but asymmetric when the point is
shifted away from the center[Che+20]. Since many aspects affect the PSF, we simulated
the actual response of a point scatterer placed in each pixel position to obtain the
true PSF per pixel position for our 2-D setup. The frequency response was further
prewhitened and divided into subsets to create the theoretical point signal response
per sublook per pixel position.

IV.4.2 Spatial Frequency Limits

The spatial frequency coverage or wavenumber support for an ultrasound imaging
system is defined by the finite aperture size, the band-limited pulse, and centered on
2k0 = 4πf0/c [AT00, ch. 3]. In the kx direction, the support region’s lateral width
increases linearly with increasing frequency. The PSF has a shape resembling a slice
cut of a circular arc, as illustrated in Figure IV.3. The system cannot image objects
with spatial frequencies outside the PSF limits. The spectrum in Figure IV.3 has been
bandpass filtered (fL ≤ f ≤ fH ) and demodulated by the estimated center spatial
frequency kD (kD ≈ 2k0). The spectrum shown in Figure IV.3 is normalized such that

κzmax = kH − kD

kD
= fH − fD

fD
. (IV.6)

147



IV. Point Detection in Ultrasound Using Prewhitening and Multilook Optimization

Figure IV.3: The frequency spectrum of a point scatterer, shown with a 40 dB dynamic
range. The spatial frequencies are normalized by the estimated center frequency kD

(≈ 2k0). The critical angle α is 16o. The region shown is divided into 9 × 9 subsets.

With an adaptive aperture setting, we can ensure uniform image resolution by
applying a range-independent beamwidth by increasing the active aperture with
increasing range z [Sza14, p. 381]. The F-number or f# is the ratio between imaging
depth z and active aperture size D∗, i.e., f# = z/D∗. The adaptive aperture settings
limit the lateral spatial frequency kx. The receiving angle is the angle between the
depth z and the lateral distance from the origin x. The critical angle is the largest
probe-to-object angle the system can image. It is confined to the transducer aperture
range, i.e., xmax = D/2 [Che+20]. With equal transmit and receive aperture D∗, the
critical angle α is [Gol+21][Den+13]

α = atan
(

D∗/2
z

)
= atan

(
1

2f#

)
. (IV.7)

A small f# results in a wide frequency response in the kx-direction. Figure IV.3
illustrates the relation between angle α and the normalized spatial frequency limits:

limits for κx = ±kH sin(α)
kD

. (IV.8)

The lower limit for κz is

κzmin = kL cos(α) − kD

kD
. (IV.9)

IV.4.3 The Multilook Methods

The Generalized Likelihood Ratio Test (GLRT) is the basis for the formulae for the
multilook techniques and its derivation is shown in detail in the Appendix. The
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GLRT test for sublooks evaluates each specific image pixel and its corresponding L-
dimensional sublook vector y. The detector is also known as the normalized matched
filter (NMF) and it is well-known in the radar community [CLR95; CLR96; DFP09].
The NMF decision rule with respect to threshold γ is [CLR95; CLR96; Kel86; San+15]
[San14, ch. 3.4.4]

NMF(y) = |aHM−1y|2

(yHM−1y)(aHM−1a)
> γ. (IV.10)

HereaH is the Hermitian conjugate of the sublook vector of a theoretical point scatterer
at the specific pixel position. The correlation among speckle samples belonging to the
different sublooks is described by the sublook covariance matrix M. The whitening
process can be incorporated into M as in [CLR95; CLR96; Kel86], but in this study we
prewhiten the images prior to subset division and therefore M only depends on the
subset bandwidth overlap [San+15]. M is equal to the identity matrix I in the case
of independent, non-overlapping subsets. With L = LzLx number of sublooks, the
dimension of M is L × L.

The numerator of (IV.10) corresponds to the power output of matched filtering of
the sublook vector y with the theoretical vector a, calculated per pixel. Note that the
numerator effectively is a weighted coherent sum of all looks such that we retain the
full image resolution in the final image. The NMF method is a normalized method due
to the denominator. The denominator is essential in the case of textured backgrounds,
where the number and resolution of the sublooks influence how well the denominator
estimates the background.

We simplify (IV.10) for independent sublooks (M = I) and get

NMF(y)
∣∣∣∣
M=I

= |aHy|2

(yHy)(aHa) > γ. (IV.11)

If we weight all sublooks equally, i.e., a = 1’s, the numerator becomes a coherent sum
of all looks. The numerator is then the same as only applying prewhitening. Again,
the numerator ensures we retain the full image resolution in the final image. The test
in (IV.11) changes to a ratio of the coherent and incoherent sum of all the sublooks.
We term the new multilook method multilook coherence factor (MLCF).

MLCF(y) = |1Hy|2

(yHy)L =
|
∑L

n=1 y(n)|2

L
∑L

n=1 |(y(n)|2
> γ. (IV.12)

The simplification of a = 1’s drastically reduces the computational complexity as the
method does not require prior knowledge of the theoretical point signal response per
sublook. The ratio in MLCF is reminiscent of Coherence Factor (CF) beamforming in
ultrasound. The CF beamformer calculates the ratio between coherent and incoherent
energy across the aperture [MF94]. It is used as an adaptive weight to the DAS
image [LL03]. This study takes the DAS image as its starting point and investigates
methods to improve point detection. The MLCF method is a new 2-D CF method since
we divide the spatial frequencies over two dimensions and calculate the coherence
over the resulting sublooks. Traditional CF has overlapping spatial frequency areas,
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whereas MLCF has non-overlapping spatial frequency areas in both spatial direction
and frequency.

The image weighting is inspired by adaptive coherence-based beamformers that
apply weights to the DAS image. Since image weighting with the CF weights gave an
improvement in the ROC results in [THA22], it was interesting to explore if we could
obtain the same improvement using the multilook methods as weighting schemes. We
therefore create two new multilook methods by applying NMF and MLCF as weighting
schemes to the prewhitened image. NMF is not applied as an image weighting in
the radar community. We term the new image created by NMF weighting as a NMF
weighted image (NMFW).

NMFW(y) = NMF(y) ·

∣∣∣∣∣
L∑

n=1
y(n)

∣∣∣∣∣ > γ. (IV.13)

We correspondingly apply MLCF as a weighting scheme and refer to the new multilook
image as a MLCF weighted (MLCFW) image.

MLCFW(y) = MLCF(y) ·

∣∣∣∣∣
L∑

n=1
y(n)

∣∣∣∣∣ > γ. (IV.14)

It should be noted that (IV.10) and (IV.12) produce normalized results, and (IV.13) and
(IV.14) do not. Table IV.1 summarizes the differences in computational complexity of
the suggested methods.

Table IV.1: Computational Complexity of the Suggested Methods

Prewhitening MLCF & MLCFW NMF & NMFW
Low computational
complexity. Preferable
with prior knowledge
of the critical angle and
pulse bandwidth.

Medium computa-
tional complexity.
Prewhitening and
sublook division.

High computational complex-
ity. Prewhitening and sublook
division. Requires prior knowl-
edge of the theoretical point
signal response per sublook.

Figure IV.4 shows an example ultrasound image scene with three point scatterers.
The same image scene is shown after prewhitening and the four multilook methods,
but before any detection thresholding. The multilook methods seem to increase the
threshold between the point scatterers and the peaks in the speckle background.
However, it could be that the methods simply stretch the dynamic range [Rin+19].
The brightest points in the image, whether speckle or point targets, will then become
more distinct from the background. Since both speckle peaks and point targets are
enhanced, a detection strategy picking the maximum value within a search window
for false alarm and true positive will not measure an improvement in detection. To
fully evaluate the detection performance, we need to perform a full ROC analysis.
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The Sublooking Process

Figure IV.4: Example of an ultrasound image with three point scatterers shown for
prewhitening and the four multillook methods. All images are normalized by the
maximum value to be comparable, and shown with a 15 dB dynamic range. The red
circles indicate the locations of the three point scatterers.

IV.4.4 Number of sublooks

The NMF is shown to be asymptotically optimum for a large number of sublooks
L ≫ 1 [CLR95]. Even for a moderate number such as L ≥ 8, the deviation to the
optimum is relatively small except when PD is high. Figure IV.5 shows the ROC curves
for the multilook methods using 19 and 141 sublooks. Figure IV.6 shows how the AUC
for NMF and NMFW increases with increasing L but also observe how it starts to
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Figure IV.5: ROC for the multilook methods applied on ideal 1-D speckle sequences
with or without a point target. We analyzed 2500 speckle realizations, each with 200
random point scatterer positions. Point SNR is 8 dB. Here are the results using 19 and
141 sublooks.

saturate at a high number of sublooks. With increasing L, the denominator in (IV.12)
improves its estimate of the speckle power, and the ROC curve for MLCFW approaches
NMFW. The results indicate a saturation around three independent pixels per sublook
in the whitened case. To achieve sufficient variation in each sublook image, it must
contain information from some independent pixels. The results in [San14] also show
improved detection performance with increasing number of sublooks. Increasing the
number of sublooks increases the computational load, so the practical number to use
will be situation-dependent.

IV.5 Methods

This section describes the simulation and test setups in our study. We used Field II
software to generate raw channel data. Figure IV.7 illustrates the setup of the detection
analysis. The DAS beamforming was performed in MATLAB (Mathworks, Natick, MA)
using the Ultrasound Toolbox (USTB)[Rod+17].
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Figure IV.6: AUC for the multilook methods using a varying number of sublooks. Point
SNR is 8 dB. Using L = 85 sublooks corresponds to approximately three independent
pixels per sublook (85/256 ≈ 1/3).

IV.5.1 Synthetic Transmit Setup and Image Reconstruction

In order to establish a baseline for detection, we designed the phantom as a simple
scenario of a single point scatterer in uniform speckle background. The setup was
the same as in [THA22]. We acquired images with focused, uniform resolution for
all pixels using synthetic transmit aperture imaging. We used a 128 element, λ pitch,
linear array with 5.1 MHz center frequency. The transmitted pulse bandwidth was
65 % of the center frequency, the wavelength λ was 0.3mm, the aperture size was
38.1mm, and the speed of sound was 1540m/s. We added white Gaussian noise to the
channel data at 10 dB channel SNR, assuring the additive channel noise fixed and below
the speckle background level. The data was basebanded before further processing.
We varied the point scatterer intensity relative to the combined speckle and noise
background to obtain different point SNR values.

We simulated 243 speckle realizations, consisting of 91000 point scatterers and at
least 20 scatterers per resolution cell. This ensured fully developed speckle statistics
[Wag+83]. For the 2-D study with different whitening filter limits, we simulated one
point scatterer at 65 image positions (13 × 5 matrix grid). For the 2-D multilook study,
we simulated one point scatterer at 117 image positions (13 × 9 matrix grid). We chose
the point positions to ensure varying scalloping loss [Har78]. We simulated radio
frequency channel data separately for the point scatterer and the speckle background.
DAS beamforming is a linear process, and we could therefore coherently combine
the data images to get varying point locations and SNR values. For a given point
SNR value in the multilook study, we created and analyzed 117 × 243 images. Using
detection strategy C in [THA22], this corresponds to 28431 realizations for PD and
PFA calculation.

We ensured uniform average background intensity by calculating correction maps
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Figure IV.7: Setup of the detection analysis in this study. We start with the DAS image
in the spatial frequency domain (FFT) and apply a whitening transform. We then
divide the frequency domain into subsets over two dimensions and create sublooks. We
apply the multilook methods on these sublooks and finally analyze the point detection
performance.

from the average of all speckle backgrounds and applying them to the images before
detection. The reconstructed image scene is the same as in [THA22], a 20mm wide
and 40mm deep scene of 512×256 pixel size. The −6 dB spatial resolution for a center
point scatterer with hamming transmit apodization and f# = 1.75 corresponded to
approximately 5 × 7 pixels [THA22]. The detection strategy applied a search window
of size two times the spatial resolution. Point SNR was calculated using (IV.1) for the
point scatterer positioned in the center of the DAS image scene. We tested SNR values
that correspond to relatively weak point scatterers in speckle.

IV.5.2 Whitening Transform

In this study, we applied the same whitening transform to all the DAS images. The
whitening transform was estimated using many speckle realizations. As presented in
Section IV.4, the limits for the spatial frequencies are defined by the critical angle α
and the pulse bandwidth. The optimal limits of the whitening filter transform depends
on the image resolution and the point SNR. We studied the following eight different
whitening transform limits:

• Box region {kzmax, kzmin, kxmin, kxmax}

• Angle α with frequencies {fL, fH }

• Angles α ±10% with frequencies {fL, fH }
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• Angle α −20% with frequencies {fL, fH }

• Angle α with frequencies {+5% fL, −5% fH }

• Angle α with frequencies {−5% fL, +5% fH }

• Angle α +10% with frequencies {−5% fL, +5% fH }

The inverse whitening filter is tapered with a small Gaussian filter to reduce edge
effects. Figure IV.8 illustrates the different whitening filter limits. The optimal angle
for the whitening transform depends on both SNR and the geometry and system setup.

Figure IV.8: Illustration of seven whitening filter limits defined by the critical angle α
and the pulse bandwidth. +5% fH corresponds to a 5% increase in fH and −5% in
fL .

IV.5.3 Multilook Method

To get the same resolution for all sublooks, we chose a rectangular grid for the subsets,
as depicted in Figure IV.3. We applied a steep exponential decay, exp(−(2|k|/BS)4, to
the edges of the subset filters to suppress any edge effects. We applied prewhitening
using the critical angle α with the known pulse bandwidth frequencies {fL, fH } as
whitening limits. The α-whitening limits ensure that the sublooks created from the
subsets outside the critical angle α are suppressed. The theoretical point scatterer look
vectors in NMF will also suppress these sublooks. We simulated the actual response
of a point scatterer placed in each pixel and the pixel’s corresponding look vector to
ensure correct theoretical vectors. We can also determine the theoretical look vectors
using the frequency response of a point scatterer in the center, shifting the phase with
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respect to each pixel position, and calculating the corresponding look vector. The
latter technique was applied for the 1-D study in Section IV.4. For simplicity, (IV.20)
and (IV.10) assume the point scatterer is in the center of the pixel. ROC-analyses
on simulated SAR images have shown that this approximation has negligible effects
provided L is large (in the order of 30) and SCR > 10 dB [San14, p. 125].

We performed ROC analysis for NMF, NMFW, MLCF, and MLCFW. Since sublook
overlap does not contribute more overall information [San14], we chose to apply
independent, non-overlapping, and uniformly spaced subsets. The covariance matrix
M in (IV.10) simplifies to a diagonal matrix since the input images are prewhitened.
In comparison, [San+15] also used prewhitened images for NMF but chose to use
uniformly spaced, rectangular, and partially overlapping sublook bandwidths. We
tested 13×13, 19×15, and 45×25 subset block grids, dividing the frequency spectrum
into 169, 285, and 1125 subsets, respectively.

In addition to the optimized α-whitening limits, we also tested the multilook
methods combined with a nonoptimal prewhitening. We applied angle α + 10% and
frequencies {−5% fL, +5% fH } as the nonoptimal, wide whitening limits. The limits
are illustrated by the blue and purple lines in Figure IV.8.

IV.6 Results

Figure IV.9 compares the ROC curves for the original and α-whitened images for
two different point SNR values. The measured point SNR values of the images after
whitening is also presented in the legend to show how an optimized whitening can
drastically increase the point SNR.

Figure IV.9: ROC curves for two point SNR values with or without α-whitening the
images before detection analysis.

156



Results

Figure IV.10: ROC curves for the images before and after whitening. The seven
whitening filter limits correspond to varying angle and frequency limits.

Figure IV.11: AUC for the images before and after whitening, shown with respect to
the measured SNR of the original DAS images. Error bars show the 80 % confidence
intervals. The black α curve lies underneath the yellow α − 20% curve.
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Figure IV.10 compares the ROC curves for the original and whitened images using
seven different filter limits. Figure IV.8 illustrates the varying angle and frequency
limits. Only filtering the image using the filter limits {α, fL, fH } and without
prewhitening, results in the same ROC curve as the original unfiltered DAS image due
to relatively little added channel noise. Figure IV.11 shows the effect of whitening on
the AUC. Whitening the images drastically increases the AUC. The small error bars
indicate the 80% confidence intervals. The effect of whitening is more significant at
lower SNR values.

Figure IV.12: ROC curves for the multilook methods NMF, NMFW, MLCF, and MLCFW
using 45×25 sublooks. The curves are compared to the original DAS and the optimized
α-prewhitened DAS. Point SNR is 6.7 dB.

Figure IV.12 compares the ROC curves for α-whitened images and the four
multilook methods NMF, NMFW, MLCF and MLCFW. We studied 28431 images using
a 45 × 25 sublook division. Coherent sum of all looks has a similar ROC curve as only
prewhitening. Figures IV.13 and IV.14 shows the corresponding AUC and PD values.
The 80% confidence intervals are shown by the error bars. NMFW has a significantly
higher PD value than α-whitening in Figure IV.14. Though NMFW has higher PD than
whitening at low PFA values, its overall AUC is not significantly higher than that of
prewhitening. This is because the slope of the ROC curve for the multilook method
slightly reduces at high PFA values compared to whitening. Figure IV.15 shows the PD
values for three multilook methods with varying number of sublooks. PD increases
with an increasing number of sublooks for NMF and NMFW. At 45 × 25 sublooks,
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Figure IV.13: AUC for α-whitening and the four multilook methods; NMF, NMFW,
MLCF, and MLCFW. The 80% confidence interval is ±0.23% for these AUC values.

Figure IV.14: PD given 5% PFA for NMF, NMFW, MLCF and MLCFW compared to
α-whitening. The 80% confidence interval is ±0.37%.

Figure IV.15: PD given 5% PFA for NMF, NMFW, andMLCFW compared toα-whitening
and using a varying number of sublooks. The 80% confidence interval is ±0.37%.

NMFW has a significantly higher PD value than α-whitening. The results of this study
show it is beneficial to use many sublooks for point detection. However, increasing
the sublook division also increases the computational load.

Figure IV.16 compares the ROC curves for nonoptimal whitened images and the
four multilook methods NMF, NMFW, MLCF and MLCFW using 45×25 sublooks. The
wide whitening limits reduces the detection performance compared to the optimized
α-whitening limits. Figure IV.17 shows the corresponding PD values given 5% PFA.
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Figure IV.16: ROC curves for the multilook methods NMF, NMFW, MLCF, and MLCFW
using 45 × 25 sublooks and nonoptimal prewhitening. The curves are compared to
original DAS and the nonoptimal prewhitened DAS. Point SNR is 8.1 dB.

Figure IV.17: PD given 5% PFA for NMF, NMFW, MLCF, and MLCFW using
45 × 25 sublooks and nonoptimal prewhitening. The 80% confidence intervals are
approximately ±0.36%.

IV.7 Discussion

The steady increase in software processing power and the shift towards software
beamforming make it possible to generate both the standard display image and images

160



Discussion

that are preferable for analysis. Therefore, the image used for detection analysis can
differ from the image displayed on the machine for the medical personnel. In [THA22],
we showed how rectangular apodization was beneficial for point detection, although a
more Gaussian-shaped apodization produces a more visually pleasing image. In this
study, we propose using a whitened image for point detection. The results in Figures
IV.9 to IV.11 show that whitening the images has a significantly positive effect on point
detection. As discussed in Section IV.3, optimized whitening of the data is comparable
to increasing the bandwidth and consequently image resolution. Increased resolution
corresponds to increased SNR, as also shown by the measured point SNR values in
both Figure IV.2 and IV.9. We use the same search window size for the detection
strategy corresponding to two times the measured −6 dB spatial resolution in the
original image. The whitened image has therefore more independent pixels within
the applied search window. As long as the window is relatively small, this will not
disqualify whitened versus unwhitened [THA22].

The performances of the different whitening filter limits in Figures IV.10 and IV.11
show that narrowing the angular limits can be beneficial as regions with low SNR are
suppressed. However, with increasing SNR, the optimal filter limits converge towards
the critical angle α. The ROC curves also emphasize that the optimal frequency limits
are well estimated from the pulse bandwidth limits {fL, fH }. Increasing or decreasing
the frequency limits by ±5% degrades the overall detection performance.

The detection of point scatterers is strongly dependent of spatial resolution
[THA22]. We have therefore chosen to use ultrasound images with uniform resolution
in our study. This gives us the possibility to place point scatterers randomly in the
image and be ensured the same point SNR value. We chose to use synthetic transmit
aperture imaging with constant f# to obtain such images. This detection study starts
with a complex DAS image with uniform resolution and Rayleigh distributed speckle.
We have chosen to use uniform apodization at receive in our study. The speckle
statistics is not changed by tapering on receive or even harmonic imaging [Fed+03].
The sidelobe levels and the spatial resolution will change though. Our approach to
improve detection performance is therefore also valid in these cases, but the actual
detection performance changes due to the change in resolution.

Images with varying spatial resolution will have a location dependent detection
performance since the point SNR value then depends on where the point is located.
The optimal size of the search window is also affected by resolution. An image with
uniform resolution has the same wavenumber coverage for all pixels. If we have an
image with varying spatial resolution, the wavenumber coverage will vary at different
pixel positions. We would then need to vary the prewhitening transform and possibly
vary the sublook resolution based on the position in the image. We have chosen a
simplified scenario, but the results are transferable to images with varying spatial
resolution.

TheAUC increases for all multilookmethodswith an increasing number of sublooks
in the 1-D and 2-D studies. These findings are consistent with [CLR95], where a large
L is suggested since a small L can cause a deviation from the optimum at high PD

values. The NMFW method with 13 × 13 sublooks follows whitening at low PD and
PFA values, but the whitening curve is marginally better than NMFW at high PD and
PFA values. Increasing the sublook division to 45 × 25 increases both PD and AUC for
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NMFW. NMFW has a significantly higher PD value than α-whitening in Figures IV.14
and IV.15. It slightly reduces the slope of its ROC curve at high PFA values compared
to whitening. Therefore, NMFW gives better detection performance at low PFA values
but similar overall AUC values as whitening. Note that detection performance at high
PFA values is not of much practical interest. The results also indicate saturation of
PD and AUC at an increasing number of sublooks, similar to results in [San+15]. The
number of possible sublooks depends on the spatial wavenumber coverage of the
system, as the minimum subset bandwidth is governed by the resolution and number
of independent pixels. Dividing into many sublooks increases the computational load,
so there is a trade-off between the maximum exploitation of the sublook information
and the computational load.

From the initial 1-D simulations, it was surprising that NMF did not perform better
than prewhitening on the 2-D ultrasound images. The 2-D images consist of a uniform
speckle background with a frequency spectrum similar to that of a point scatterer.
The added channel noise was beamformed and demodulated in the same way as the
speckle and point signal. The speckle scenes used in the 1-D study include some added
noise at −15 dB below the average speckle level. The added noise in Figure IV.1 has a
flat frequency spectrum and is different from the Gaussian-shaped speckle frequency
spectrum. In the 1-D study, the NMF method suppressed the noise contribution and
improved the detection performance using many sublooks. The 1-D whitening filter is
not fully optimal and should ideally be tighter. Compared to the 2-D noise, the 1-D
noise has a flat spectrum and is also more uncorrelated. This can explain the observed
differences in the 1-D and 2-D results for NMF.

Figure IV.10 shows that slightly shrinking the whitening limits only provides small
improvements in the ROC curves for the 2-D images. The potential of the multilook
methods to adjust and weight the wavenumber coverage is similarly small for such
images. However, the multilook methods have great potential for 2-D images where
the optimal whitening limits are unknown or where the frequency spectrum of the
noise is different from the PSF. Quantization or range-dependent noise will provide a
noise spectrum with a different shape than the PSF. Since the NMF method uses prior
knowledge of the PSF per pixel position, it should then manage to suppress more of the
unwanted, noisy parts of the spatial spectrum. The application of NMF on SAR images
has proved to be especially beneficial for image scenes with compound-Gaussian
clutter backgrounds. The NMF method is a normalized method that does not require
texture correction prior to point detection. The denominator in the NMF equation
estimates the background and normalizes the output. Therefore, the authors believe
the NMF method will perform well for point scatterer detection in ultrasound images
with textured backgrounds. A possible next step is to study these multilook methods
on textured ultrasound images. Quantization noise or range-dependent noise will also
provide a noise spectrum of a different shape than the PSF.

The newmultilookmethod NMFWperformed better than NMF in this study. This is
similar to the observations in [THA22], where coherence-based beamforming methods
performed best when applied as weighting schemes to the original image. We found
that coherence-based methods that exploit both amplitude and phase information
perform best. In the radar community, NMF is not applied as an image weighting. The
coherent scatterers of interest are often of SNR > 10 dB and in heavily textured image
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scenes [San14, p. 125]. The benefit of NMF being bounded and normalized is therefore
of importance. Note also that our whitening transform utilized information about the
spatial frequency limits. In that sense, we included part of the benefits of the NMF and
NMFW methods into the whitening transform, as these methods also suppress the
same regions in the frequency domain.

The calculation of the new method MLCF is more straightforward than NMF, as it
sums all the sublooks without applying the matched filter weighting. The AUC result
for MLCF is better than NMF in Figure IV.13. Therefore, the MLCF results indicate a
good potential for textured or noisy image scenes where background normalization is
essential. The results for the new method MLCFW are similar to the observations in
[THA22] where CF beamforming improved the detection performance of weak point
scatterers compared to conventional DAS beamforming. Point scatterers are small,
bright, and highly coherent targets. MLCFW matches prior knowledge about point
targets well since it differentiates between coherent and incoherent energy across
the frequency spectrum. Combined with a whitening transform that suppresses the
frequency spectrum outside the critical angle and pulse bandwidth, the coherence-
based weights accentuate signals from point scatterers. The MLCFW method does not
need as many sublooks as NMF and NMFW to have the same detection performance
as prewhitening in the 2-D study. The results for MLCFW can indicate saturation of
PD towards the α-whitening level at a high number of sublooks, but we cannot declare
this tendency with sufficient statistical significance.

The results using nonoptimal whitening in Figures IV.16 and IV.17 show how
the multilook methods can improve the detection performance when the optimal
whitening limits are unknown or wrong. This corresponds to the results in the 1-D
study where tightened whitening limits would have been more optimal. The multilook
methods are able to suppress the sublooks generated from areas without true point
target information. The NMFmethod contains the known point signal response in each
sublook. The theoretical response might not be exactly known or difficult to obtain
for some setups. The results show that the new methods MLCF and MLCFW greatly
improve the detection performance for weak point scatterers and do not require prior
knowledge.

IV.8 Conclusions

This paper has studied methods to improve point detection performance in ultrasound
images. Our study shows that whitening can significantly improve the detectability
of point scatterers. Optimized whitening of the data is comparable to increasing the
image resolution. We applied an optimized whitening transform that included filtering
at the critical angle and pulse bandwidth limits. We also show that narrowing the
angular limits can be beneficial in the presence of noisy backgrounds and weak point
scatterers since we then suppress spatial frequency regions with low SNR values.

We introduce three new multilook methods based on the NMF method commonly
used for point detection in SAR images. We term the new methods NMFW, MLCF, and
MLCFW and evaluate their performance. The results show that the multilook methods
have the potential to improve the detection performance, provided the number of
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sublooks is high. The NMF method matches the received signal in each pixel by
the theoretical signal from a point scatterer over the sublooks. We apply NMF as a
weighting scheme, and the new multilook method NMFW improves the detectability of
weak point scatterers. The results indicate a potential gain in utilizing coherence over
looks when detecting point scatterers. MLCF is a new, simplified version of NMF, and
MLCFW is the image-weighted version. The MLCF and MLCFW methods accentuate
signals from point scatterers by differentiating between coherent and incoherent
energy over the sublooks.

The results on uniform speckle backgrounds indicate that optimized prewhitening
is the preferred method to use before point detection. However, the results on
multilook methods using nonoptimal prewhitening show that MLCF and MLCFW
can significantly improve the detection performance when prior knowledge about the
optimal whitening limits is unavailable. The application of NMF on SAR images has
proved to be especially beneficial for image scenes with compound-Gaussian clutter
backgrounds. Therefore, we expect the NMF and MLCF methods will perform well for
point scatterer detection in ultrasound images with textured backgrounds. However,
if computational efficiency is essential and we have uniform speckle backgrounds, we
recommend only applying an optimized prewhitening of the data.

Appendix IV.A The Generalized Likelihood Ratio Test (GLRT)
for Sublooks

The Generalized Likelihood Ratio Test (GLRT) is the basis for the formulae for the
multilook techniques. We present the derivation of the GLRT expression in this section.
To give a complete and detailed presentation, we follow and combine the derivations
in [Kel86], [CLR95], [San14, ch. 3.4.4], and [San+15], and fill in steps in between. We
start with a binary test to decide if we have speckle (hypothesis H0) or signal + speckle
(hypothesis H1) [TRL15]. The point scatterer is present in the pixel under test when
the L-dimensional sublook vector y contains the point signal response a.{

H0 : y = w

H1 : y = Ca + w.
(IV.15)

The complex amplitude of the point scatterer is C = C0ejϕ, and w signifies only
speckle.

The Neyman-Pearson (NP) theorem states that the Likelihood Ratio Test (LRT)
maximizes PD for a given PFA [Kay98, ch. 3.3]

LRT(y) = p(y; H1)
p(y; H0) > γ, (IV.16)

where p is the probability density function (PDF) for observation y. The threshold γ
can be found by integrating the PDF for observation y of hypothesis H0 to the chosen
PFA value [Kay98, p. 30],

PFA =
∫ ∞

γ

p(y; H0)dy. (IV.17)
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If the speckle background is modeled as a zero-mean complex Gaussian random
vector, the PDF of the sublook vector y given hypothesis H0 is [San+15]

p(y; H0) = 1
πL(σ2)L|M|

exp
(

−yHM−1y

σ2

)
, (IV.18)

where aH is the conjugate transpose of the point signal response and M is the
normalized covariance matrix. Note that the notation in [San+15] refers to normalized
covariance matrix, while the notations in [Kel86] and [CLR95] uses the covariance
matrix M = 2σ2Σ where Σ is the normalized covariance matrix after the whitening
transformation (|M| = |2σ2Σ| = (2σ2)L|Σ|). Under the H1 hypothesis, the
background w has the same PDF as under H0, and we find the PDF of y by substituting
w with y − Ca [Kel86]

p(y; H1) = 1
πL(σ2)L|M|

exp
(

−(y−Ca)HM−1(y−Ca)
σ2

)
. (IV.19)

The LRT is thus the ratio between (IV.19) and (IV.18), and the NP test becomes a
matched filter [San14, ch. 3.4].

The LRT is the optimal detector for a known signal in noise when the PDFs of both
hypotheses are known. However, in our case, we wish to detect a signal with unknown
amplitude, phase, and position in a speckle background of unknown level. Following
classical detection theory [Kay98, ch. 6], the GLRT replaces the unknown parameters
by their maximum likelihood estimates (MLE) before performing hypothesis testing as
in (IV.16). The GLRT takes the form

GLRT(y) =
max
C,σ2

p(y|C, σ2; H1)

max
σ2

p(y|σ2; H0) > γ, (IV.20)

where the speckle power σ2 is the variance of the speckle and noise background, and
C is the complex signal amplitude C0ejϕ. For simplicity, we assume the point scatterer
inside the resolution cell is centered. In [San14, ch. 4.2.5], the formulae was extended to
the case of unknown position, and the mismatch was shown to be small but noticeable
for low point SNR values. The results indicate that using many sublooks decreases
the mismatch and makes it possible to avoid optimizing the formulae for unknown
position.

We now derive the maximizations in (IV.20) using the PDFs in IV.19 and IV.18, and
following [Kel86], [CLR95], [San14, ch. 3.4.4], and [San+15]. Even though the solution
is derived in the case of white Gaussian background, the formulation remains valid
also for the more complex case of compound-Gaussian clutter[San14, ch. 3.4.4]. To
derive the GLRT, it is necessary to calculate the MLEs of the unknown parameters σ2

and C .
We first derive the MLE of σ2 under H0 and start by taking the natural logarithm

of the PDF. The exponential function goes away and the expression becomes the sum

ln(p(y; H0)) = − ln π − L ln σ2 − ln |M| − σ2yHM−1y. (IV.21)
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Derivation of (IV.21) gives
d

dσ2 {ln(p(y; H0))} = − L

σ2 − yHM−1y. (IV.22)

By setting (IV.22) equal to zero, we get the final expression for the MLE of σ2 as

σ̂2 |H0= yHM−1y

L
. (IV.23)

Inserting M as the identity matrix in (IV.23) simplifies the expression to yHy/L. With
the MLE σ̂2, the denominator in (IV.20) becomes

max
σ2

p(y; H0) = exp(−L)

πL
(

yHM−1y
L

)L

|M|
. (IV.24)

The MLEs under hypothesis H1 must also be found. We start by first supposing
the parameter C is known [San14, ch. 3.4.4]. Using the same parameter substitution on
(IV.23) as we did moving from (IV.18) to (IV.19), the MLE under H1 can be expressed as

σ̂2 |H1= 1
L

(y − Ca)HM−1(y − Ca). (IV.25)

We now insert (IV.25) into (IV.19) to get

max
σ2

p(y; H1) = exp(−L)
πL( 1

L (y−Ca)HM−1(y−Ca))L|M|
, (IV.26)

We must also obtain the MLE for Ĉ to maximize the PDF for C . To maximize this term,
we follow the procedure E. J. Kelly presented in [Kel86] by rewriting

(y−Ca)HM−1(y−Ca) =(yHM−1y) + |C|2(aHM−1a)
− 2Re{C(yHM−1a)}

= (yHM−1y) − |(aHM−1y)|2

(aHM−1a)

+ (aHM−1a)×
∣∣∣∣C− (aHM−1y)

(aHM−1a)

∣∣∣∣2 .

(IV.27)

We maximize the PDF by minimizing the quantity in (IV.27). The minimum is clearly
attained when the positive term containing C is made to vanish [Kel86]. The MLE for
C is therefore

Ĉ = aHM−1y

aHM−1a
. (IV.28)

Using this expression for Ĉ , we can now find σ̂2 under hypothesis H1 by inserting
(IV.28) into (IV.25) [San+15]. We get

σ̂2 |H1 = 1
L

(y − aHM−1y

aHM−1a
a)HM−1(y − aHM−1y

aHM−1a
a)

= 1
L

(
(yHM−1y) − |(aHM−1y)|2

(aHM−1a)

)
.

(IV.29)
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Finally, we have σ̂2 and Ĉ under H1 and we can rewrite the numerator in (IV.20) as

max
σ2,C

p(y; H1) = exp(−L)

πL
(

1
L

(
(yHM−1y)− |(aHM−1y)|2

(aHM−1a)

))L

|M|
. (IV.30)

Inserting (IV.30) and (IV.24) into (IV.20), we express the GLRT as

GLRT(y) =

 exp(−L)

πL

(
1
L

(
(yHM−1y)− |(aHM−1y)|2

(aHM−1a)

))L

|M|


(

exp(−L)

πL
(

yHM−1y
L

)L
|M|

) ,

=
(
yHM−1y

)L(
(yHM−1y) − |(aHM−1y)|2

(aHM−1a)

)L
> γ.

(IV.31)

Adjusting the threshold and simplifying (IV.31) further gives

GLRT(y) = 1(
1 − |(aHM−1y)|2

(yHM−1y)(aHM−1a)

) > γ, (IV.32)

or equivalently [CLR95]

GLRT(y) = |aHM−1y|2

(yHM−1y)(aHM−1a)
> γ. (IV.33)
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V

Abstract

Detection of point scatterers in textured ultrasound images can be challenging.
This paper investigates how four multilookmethods can improve the detection. We
analyze many images with known point scatterer locations and randomly textured
backgrounds. The normalized matched filter (NMF) and multilook coherence
factor (MLCF) methods are normalized methods that do not require any texture
correction prior to detection analysis. They are especially propitious when optimal
texture correction of the ultrasound images is difficult to obtain. The results
show significant improvement in detection performance when the MLCF method
is weighted with the prewhitened and texture corrected image. The method
can be applied even when we do not have prior knowledge about the optimal
prewhitening limits. The multilook methods NMF and NMF weighted (NMFW)
are very favorable methods to apply on images where acoustic noise dominates
the speckle background.

V.1 Introduction

Detection of point scatterers in medical ultrasound is essential in several applica-
tions. Some example applications are detection of breast microcalcifications [And+97;
AST00; AST98; Flø+17; Guo+18; Mac+18], kidney stones [Ray+10; Tie+18], microbub-
bles [Bro+19; Pel+21], and point tracking [Dia+18; Mat+19; MBR20]. Peaks in the
textured speckle background can make it very challenging to detect point targets. This
paper investigates if four multilook methods have the potential to improve the point
detection of a textured, standard Delay-and-Sum (DAS) image. The four multilook
methods are introduced in [THA22b], which studied uniform speckle backgrounds. We
now assess the point detection performance of these methods on textured ultrasound
images.

We can adjust the aperture weightings of the ultrasound array to optimize the
signal to noise ratio (SNR) versus the peak sidelobe levels [SMM06]. The results
in [THA22b] show how we can significantly improve the detection probability and
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increase the effective spatial resolution of the image if we apply an optimizedwhitening
transform. Whitening has previously been used in ultrasound to improve detection of
edges [CJO98; CJO99] or point scatterers in uniform speckle backgrounds [THA22b].
This work studies the point detection performance of prewhitening combined with
texture correction. To get measurable and statistically significant results, we simulate
several images of a point scatterer in inhomogeneous speckle backgrounds using the
Field II software [Jen+06; Jen96; JS92]. An inhomogeneous texture predominantly has
the same tissue type with some fluctuations about a mean value [Sza14, ch. 9.2].

The methods in this paper are inspired by multilook techniques from the radar
field [CLR95; CLR96; Kel86; San+15]. In a similar fashion, Masoom et al. detect
simulated spherical targets in textured ultrasound images by combining an algorithm
from radio astronomy with constant false alarm rate (CFAR) processing from the
radar field in [MAC13]. The multilook technique is used on synthetic aperture radar
(SAR) images and has the potential to reduce speckle [Jak+96, ch. 3.3] [OQ98, p.29].
The method splits the entire frequency bandwidth of the original image into subsets.
The subsets do not have the same central frequencies. We can in this way get many
images or sublooks from one original image. The contribution from some of the
sublooks are more important in terms of point detection. The normalized matched filter
(NMF) multilook method maximizes point detection by imposing higher weighting on
these sublooks [CLR95; CLR96; Kel86; San+15]. We presented three new multilook
methods to improve point detection in [THA22b]. The multilook coherence factor
(MLCF) [THA22b] calculates the ratio between the coherent and incoherent sum of the
sublooks with equal sublook weighting. It is a simpler method than the NMF method.
The NMF and MLCF are normalized methods and do not require texture correction
prior to detection analysis. The normalized matched filter weighted (NMFW) and the
multilook coherence factor weighted (MLCFW) methods weight the NMF and MLCF
methods with the prewhitened and texture corrected DAS image.

The performance of the multilook methods is benchmarked against texture
corrected versions of the original and prewhitened DAS image. The MLCF andMLCFW
methods do not need prior knowledge of the theoretical point signal response. By
using suboptimal or wide prewhitening limits, we test the methods when the optimal
whitening limits are unknown. We also evaluate the methods when a successful texture
correction is difficult to obtain. Finally, we evaluate the multilook methods on images
where acoustic noise dominates the speckle background.

Section V.2 briefly describes how to measure point detection performance, and
how to apply prewhitening and the multilook methods. We discuss how to estimate
and correct for texture in Section V.3. Section V.4 presents the setup for the simulation
and detection study. Section V.5 presents the detection results for the methods and
Section V.6 discusses the observed performances on textured backgrounds.

V.2 Background

V.2.1 Point Detection

We measure detection performance using the probability of false alarm PFA and the
probability of detection PD. We estimate PFA using images containing only speckle,
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and we estimate PD using images with a point scatterer present [Kay98, ch. 3.3].
We have a simulated environment with known location for the point scatterer and
adopt the detection strategy from [THA22a]. We evaluate a search window around
the known point location, and pick the maximum value within it. The point’s SNR
metric [THA22a; THA22b] is the point’s relative intensity compared to the background
and it greatly affects PD. We calculate the average intensity of the background around
the point location using the speckle images without the point scatterer present.

A Receiver Operating Characteristics (ROC) curve displays detection performance
by comparing PD to PFA for a given threshold γ [Lev08, ch. 2.4.2] [Kay98, p. 74]. As
in [THA22a; THA22b], this paper presents ROC curves for PFA values up to 0.1. ROC
results can also be presented by tabulating PD for a chosen PFA value or the Area
Under the Curve (AUC) [Abr19, p. 315]. The accuracy of the ROC and AUC depend on
the number of realizations [Kay98, p. 37][HM82; THA22a].

V.2.2 The Whitening Transform and Spatial Frequency Limits

Whitening or prewhitening is an operation performed on a signal to make it more
similar to white noise, and thus more suitable to be analyzed by statistics-based
methods [Ale16, p. 399]. A whitening transform can be estimated using a secondary
data set or by applying an adaptive method. In this study we have simulated many
realizations of speckle background images. We estimate the smoothed average of
the spatial frequency spectrum used in the whitening transform from the simulated
realizations. For most of the scenarios in this study, we estimated the average spectrum
using the image speckle scenes without texture or after texture correction. A texture
corrected image is an image where the amplitude variation of the speckle is estimated
and corrected for, i.e., an image with almost uniform speckle background. We then
apply the inverse of the smoothed average to the Fourier transform of the image in
question. We refer to the resulting image as a whitened or prewhitened image in
this study. The results in [THA22b] illustrate the significant improvement in point
detection obtained with an optimized whitening transformed image.

A system’s imaging capability is governed by the point spread function (PSF) and
many parameters affect it [Che+20; Shi+09]. The spatial frequency spectrum is centered
on 2k0 = 4πf0/c [AT00, ch. 3], where f0 is the center frequency and c is the speed of
sound. The aperture size limits the lateral spatial frequency kx and the critical angle
α [Che+20; Den+13; Gol+21; THA22b]. The images in this study are bandpass filtered
using lower and upper frequency limits fL and fH , i.e., fL ≤ f ≤ fH , and demodulated
using the estimated center spatial frequency kD (kD ≈ 2k0). As in [THA22b], we
ensure uniform image resolution by applying an adaptive aperture setting with a
range- independent beamwidth. The f# is the ratio between imaging depth and active
aperture size [Sza14, p. 381]. We used an f# of 1.75, and the reconstructed images are
20 mm wide with imaging depth of 20 mm to 60 mm. We use the notation κx and κz

for the normalized spatial frequencies in the lateral and depth direction.
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V.2.3 The Multilook Methods

The multilook technique is widely used on synthetic aperture radar (SAR) im-
ages [Jak+96, ch. 3.3] [OQ98, p. 29]. It splits the frequency bandwidth of the original
image into many subsets. The subsets have different central frequencies and they can
either be independent or partially overlapping [San+15]. We create a sublook by com-
puting the inverse Fourier transform of a subset. As in [THA22b], we choose to apply
L independent, non-overlapping, and uniformly spaced subsets to create sublooks
with equal image resolution. The multilook methods evaluate the L-dimensional
sublook vector y that corresponds to each image pixel. The normalized matched filter
(NMF) [CLR95; CLR96; DFP09] and the multilook coherence factor (MLCF) [THA22b]
are calculated on prewhitened images and do not require any texture correction prior
to detection analysis. For the case of independent sublooks, NMF is [THA22b]

NMF(y) = |aHy|2

(yHy)(aHa) . (V.1)

NMF weights the sublooks according to the theoretical point signal response a for
each pixel in each sublook. If we weight all sublooks equally, the test in (V.1) changes
to the ratio of the coherent and incoherent sum of all sublooks, i.e., MLCF [THA22b]:

MLCF(y) = |1Hy|2

(yHy)L =
|
∑L

n=1 y(n)|2

L
∑L

n=1 |y(n)|2
. (V.2)

We also apply NMF and MLCF as a weighting schemes to the prewhitened and
texture corrected image, DASwhitened+TC. We refer to these two methods as NMF
weighted (NMFW) and MLCF weighted (MLCFW) images.

NMFW(y) = NMF(y) · DASwhitened+TC. (V.3)

MLCFW(y) = MLCF(y) · DASwhitened+TC. (V.4)

V.3 Textured Scenes

V.3.1 Creating Textured Backgrounds

Ultrasound images typically include varying echo intensities in the tissue speckle.
Living tissue is full of structure, movement, and organization on several length
scales [Sza14, ch. 9.1]. An inhomogeneous texture has the same type of tissue with
small fluctuations about a mean value, while a region enclosing a group of regions
with different characteristics is called heterogeneous [Sza14, ch. 9.2]. An ultrasound
image can have edges caused by transitions between interfaces or lines caused by
anisotropic muscle fibers, making it more difficult to discern small point scatterers.
An optimal point scatterer detector needs to handle nonuniform backgrounds.

As in [THA22b], we simulate a huge number of images containing a single point
scatterer at different positions and images containing uniform speckle. By combining
all the different point only images with every speckle only image we produce a
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Figure V.1: Example of a random texture map. We first create a frequency spectrum
with a Gaussian distribution and multiply this with a complex random frequency
spectrum. An example is shown to the upper left, and a cut through the spectrum
at κz is shown to the upper right. We form the amplitude texture map shown to the
lower left by inverting the created spectrum. To get the textured scene to the lower
right, we multiply the amplitude texture map with the original image. The final DAS
image is normalized by its maximum value and shown with a 30 dB dynamic range.
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set of images of a point at different locations in speckle. By scaling the point only
images we control the point SNR value in the final images. Combining the images is
mathematically equivalent to combining the raw channel data since DAS is a linear
process. We can also combine the DAS images with random texture maps to simulate
textured backgrounds. The point scatterer will retain its point SNR compared to the
immediate surrounding background. Point detection is particularly of interest within
a tissue area, such as a liver or a cyst. We choose to model the tissue backgrounds
with random texture fluctuations of a specific scale such that the size of the texture is
larger than that of a point scatterer but substantially smaller than the image scene.

We create a frequency spectrum with a steep Gaussian profile with maximum
value in the center. With a Gaussian texture profile, it is easy to set a specific scale for
the texture blobs as the shape is of the form e−(k2

z+k2
x)/st , where st sets the scale of

the texture fluctuations. We multiply this Gaussian profile with a complex random
frequency spectrum and get the frequency spectrum shown in the upper subimages in
Figure V.1. Since we simulate the texture, we can measure the texture’s size using the
frequency spectrum. The −6 dB width ∆kx in spatial frequency is related to the −6
dB width in the image domain

∆xtexture = 2π

∆kx
. (V.5)

Inversion back to the image domain creates the amplitude texture map. Figure V.1,
bottom left, shows an example texture map with texture size is 4 mm × 4 mm, which
we refer to as small texture size. We then multiply the amplitude texture map with
the original DAS image to get the final textured image shown to the bottom right in
Figure V.1. The left subimage in Figure V.2 shows a scene with large texture size of
8 mm × 9 mm.

V.3.2 Texture Estimation and Correction

Texture correction finds slowly varying changes in the amplitude of the textured image
and removes them. This is a necessary step for simple threshold detection to work.
Another option is to have the detector locally estimate the speckle level [Kay98, ch. 9].
We find a texture estimate by first applying background smoothing with a sufficiently
large window. The size of the texture must typically be estimated, which is not always
easy to do. Since this is not a study about texture correction, we choose the texture
scale estimated from the texture map to get the best possible texture correction. We
start with median filtering and continue with a Gaussian smoothing kernel with filter
size set to the measured −6 dB texture size. We obtain a texture corrected image by
dividing the original image with the texture estimate. Figure V.2 shows the texture
estimate of an image and the resulting texture corrected image.

The optimal texture correction depends on the scale of the texture. The ultrasound
image can have varying texture, and we must use adaptive filtering in such instances.
This is not included in this study since we simplify the study to the same texture size
in the whole image scene. The window size for texture estimation must be sufficiently
large to avoid suppressing point scatterers but at the same time small enough to capture
small scale texture variations. It can be challenging to estimate large texture variations
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Figure V.2: Texture correction of the DAS image (”DAS TC”) shown to the left. A
texture estimate as shown in the middle is found by applying background smoothing
with a large window. We obtain a texture corrected image as shown to the right by
dividing the original image with the texture estimate. The texture estimate is shown
with a 15 dB dynamic range, while the other images have a 30 dB dynamic range. The
images are normalized by their maximum value to be comparable.

of small scale. Figure V.3 compares the ROC results using varying window sizes to the
original DAS images without texture and point SNR of 8.7 dB. Figure V.3 shows how
texture degrades the ROC. Texture correction can improve the detection performance
but will not entirely reach the same performance as non-textured backgrounds. Using
a too small window size reduces PD and creates a ROC curve only slightly better than
applying no texture correction.

V.4 Methods

We created raw channel data using the Field II software, and performed the DAS
beamforming using the Ultrasound Toolbox (USTB) [Rod+17] in MATLAB (Mathworks,
Natick, MA). The simulation setup is a replica of the setup used in [THA22a; THA22b].
We used a linear array with 38.1 mm aperture size, consisting of 128 elements with λ
pitch. The center frequency f0 was 5.1 MHz, the speed of sound was 1540 m/s and
the transmitted pulse had a frequency bandwidth of 65% of f0. Hamming apodization
was applied on transmit.

As in [THA22a; THA22b], we simulated radio frequency channel data separately
for the point scatterer and the speckle background. We simulated the speckle image
using at least 20 scatterers per resolution cell, corresponding to 91 000 point scatterers
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Figure V.3: ROC for texture corrected (TC) images using three window filter sizes
compared to original DAS with and without texture. PFA is shown up to 0.1. The red
curve signifies TC using the measured −6 dB texture size. The red curve lies directly
beneath the purple curve. The purple curve corresponds to 50% larger window size.

in total per speckle realization. To obtain images with high, uniform spatial resolution,
we used a synthetic transmit aperture setup with constant f#. Such a setup transmits
from every consecutive element, receives on all elements, and synthesizes focus at
every pixel. We do not include frequency dependent attenuation in the simulations.
We coherently combine the resulting point and speckle images to obtain a final DAS
image with a specific point SNR value. Using focused, uniform amplitude speckle
scenes ensures the same point SNR value regardless of where in the scene the point
target is located.

Figure V.4 shows the detection analysis setup. We simulated 243 focused, constant
resolution, uniform amplitude speckle scenes and 117 single point images that were
coherently combined to form 28 431 speckle scenes with a single point target. This
defines our sample size for PD and PFA calculation in our detection performance
study. Different from [THA22b], this study uses textured backgrounds that more
closely resembles a real-world situation. With uniform resolution, we can simplify the
prewhitening process by assuming the same wavenumber coverage for all pixels. We
calculated the point SNR value using the point scatterer in the center of the untextured
DAS image. We chose a point SNR value signifying relatively weak point scatterers
for the detection studies. The point SNR is 8.7 dB for the original untextured DAS
image for all the scenarios under study except the dominant additive acoustic noise
scenario. In the latter case, the original intensity of the point scatterer had to be
increased to 9.5 dB for it not to be buried by the noise. Each ROC curve represents
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Figure V.4: Illustration of the detection analysis setup of this study on textured images.
We first apply a whitening transform to the original, textured DAS image while in the
spatial frequency (FFT) domain. We divide the frequency spectrum into subsets and
create sublooks. We apply the multilook methods NMF and MLCF on these sublooks.
To create the NMFW and MLCFW images, we multiply the multilook weights to the
prewhitened and texture corrected image. We assess the point detection performance
of the various methods.

28 431 realizations of one choice of point SNR value.
Before adding texture, we calculated correctionmaps from the average of all speckle

backgrounds to ensure uniform average background intensity. The texture in this
study is of two different sizes; 4 mm × 4 mm and 8 mm × 9 mm. We varied the
texture amplitude to find an amplitude fluctuation that distinctly reduces the point
detection performance. The distinct drop in ROC after multiplying the original image
with the amplitude texture map is shown in Figure V.3 by the black and blue curves.
The texture map in Figure V.1 shows the applied amplitude map that we multiplied
to the original image. We also varied the window size for the texture estimation, as
illustrated in Figure V.3.

The optimal whitening limits depend on the geometry, system setup, and the
SNR [THA22b]. We also tested the multilook methods combined with suboptimal or
wide whitening limits. Prewhitening suppresses subsets outside the whitening limits.
We applied the following three whitening limits:

• Optimized: angle α with frequency limits {fL, fH }

• Suboptimal: α + 10% with {−5% fL, + 5% fH }
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• Wide: α + 30% with {−10% fL, + 10% fH }

Acoustic noise is a realistic scenario as the imaging depth increases. As mentioned,
a ROC study was also performed for dominant acoustic noise. To simulate the noise,
we created channel data consisting of white Gaussian noise and basebanded it before
beamforming. We then coherently combined the resulting noise image with the speckle
background image. We applied an adaptive prewhitening for the noisy background
scenario, where we estimated a smoothed average version of each image’s spatial
frequency spectrum and applied the optimal whitening limits. We created the point
scatterer look vectors for the NMF method by simulating the actual response of a point
scatterer placed in each pixel and the pixel’s corresponding look vector [THA22b]. We
studied the following cases corresponding to realistic scenarios:

• Prewhitening before or after texture correction.

• Optimal prewhitening and texture correction. The optimal prewhitening limits
and the optimal window size for texture estimation are both known.

• Varying texture size. How do the methods perform on small versus large texture
size? Using optimal prewhitening and texture correction.

• Varying number of sublooks for the multilook methods. Using optimal
prewhitening and texture correction.

• Suboptimal/wide prewhitening. The whitening limits are approximately known
or estimated from the frequency spectrum of the image. Using optimal texture
correction.

• Suboptimal texture correction. The optimal window size for texture estimation
is not known. Using optimal prewhitening.

• Dominant additive acoustic noise. Using optimal texture correction and adaptive
prewhitening with optimal whitening limits.

MLCF and MLCFW are especially of interest in the case of suboptimal prewhitening
since they do not require any prior knowledge about the optimal limits and the
theoretical point signal response in each sublook.

In Section V.5.2, we present an example image of the methods applied on an
experimental image acquisition of a CIRS 054GS tissue-mimicking phantom. The
phantom is imaged with a Verasonics linear probe (L7-4) with 5.2 MHz center frequency
and f# = 1.7. We note that we only include this example for illustrative purposes.
The optimal spatial frequency bandwidth limits are unknown in this example case.
The frequency bandwidth is estimated from the image’s frequency spectrum, and the
angular whitening limit is based on the imaging setup’s f#. The more straightforward
methods MLCF and MLCFW are compelling to use in this scenario since they do
not need prior knowledge about the theoretical point signal response. The multilook
methods used 19 × 15 sublooks.
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Figure V.5: Texture correction on a whitened image ("Whitening + TC”). We obtain the
texture corrected image shown to the right by dividing the whitened image shown to
the left with the texture estimate shown in the middle. The texture estimate is shown
with a 15 dB dynamic range, while the other images have 30 dB dynamic range. The
images are normalized by their maximum value to be comparable.

V.5 Results

V.5.1 Prewhitening Before or After Texture Correction

Figure V.2 illustrates texture correction of the DAS image, termed ”DAS TC”. Figure V.5
shows the results when the textured image is whitened prior to texture correction. We
refer to this as "Whitening + TC” in the result figures.

Figure V.6 shows the difference in detection performance whenwhitening is applied
before or after texture correction, termed "Whitening + TC” and "TC + Whitening”.
The red curve shows the ROC results of only applying texture correction to the DAS
images, termed "DAS TC”.

V.5.2 Example Images

We present two example images to illustrate the multilook methods on textured
backgrounds. The first example is the textured ultrasound image in Figure V.7 with
several point scatterers simulated using Field II software with the same setup as in
the detection study. The optimal prewhitening limits and the optimal window size
for texture estimation are both known in this example. Based on this image alone, it
would seem the multilook methods are better suited for point detection. For example,
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Figure V.6: ROC for texture corrected (TC) images compared to original DAS with and
without texture. PFA is shown up to 0.1. "DAS TC” signifies applying texture correction
to the DAS image, whereas "Whitening + TC” signifies prewhitening and then texture
correction.

at the −16.9 dB threshold, the MLCFW image has zero false alarms and retains all
true positives. In comparison, the whitened image has zero false alarms at the −4.9
dB threshold. However, the methods could be stretching the dynamic range [Rin+19]
and not actually improving the point detection. As discussed in [THA22b], we must
for this reason measure the detection performance using many independent images or
realizations with known point scatterer locations.
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Figure V.7: Ultrasound image with seven point scatterers in a textured background.
The red circles in the original DAS image indicate the locations of the true point
scatterers. The multilook methods NMF, MLCF, NMFW, and MLCFW used 19 × 15
sublooks and α-prewhitening. To be visually comparable, the images are normalized
by maximum and shown with a 19 dB dynamic range.
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The second example is an image of a tissue-mimicking phantom imaged and shown
in Figures V.8 and V.9. The original image is highly speckled and all four images are
shown with a 21 dB dynamic range to be visually comparable. In the original DAS
image, the amplitude difference between the two point targets is slight. However, the
whitening process increases the intensity difference between the points to 5.6 dB. We
note that the optimal whitening filter was unknown and instead estimated from the
frequency spectrum of the image. The multilook methods use the prewhitened image
as input and the resulting figures further increase the difference between the points.
As an example, the MLCF image has a 10 dB difference between the two point targets
and thereby indicate that the bottom point scatterer is more likely to be a true point
target. The MLCFW image has zero false alarms and retains both point scatterers at the
shown −21 dB threshold. Again, we cannot ascertain which method is better suited
for point detection from a few image examples. A detailed detection study requires
many images with known point target locations and point SNR values.

Figure V.8: Whitening filter limits for an ultrasound image of a tissue-mimicking
phantom where the optimal frequency limits are unknown and must be estimated from
the image’s frequency spectrum. The angular limit is based on the f#. The chosen
area is divided into subsets for the multilook methods.

V.5.3 Detection Results on Simulated Images

The dashed black curve in Figure V.10 represents the texture corrected (TC) DAS
images, as illustrated in Figure V.2. Point SNR is 8.7 dB for the original untextured DAS
image for all the scenarios under study except the dominant additive acoustic noise
scenario. The solid black curve shows the ROC curve for the prewhitened and textured
corrected images ("Whitening + TC”), as illustrated in Figure V.5. The colored ROC
curves represent the four multilook methods. Since low PFA values are of interest,
the ROC curves are shown for PFA values up to 0.1. Figure V.10 presents the results
for the multilook methods using 13 × 13 sublooks on images with large texture
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Figure V.9: An ultrasound image of a tissue-mimicking phantom with point scatterers
in a highly speckled background. The original image is shown with the whitened and
texture corrected image and the multilook methods MLCF and MLCFW. The whitening
limits are estimated from the image’s frequency spectrum. The red circles indicate
the true point scatterers. To be visually comparable, the images are normalized by
maximum and shown with a 21 dB dynamic range.

variations. This ROC study applied optimal α-prewhitening and optimal texture
correction. Figure V.11 presents the corresponding AUC results.

Figure V.12 presents the detection performance of MLCFW using varying number
of sublooks. Optimal prewhitening and optimal texture correction are applied in these
cases. The optimal number of sublooks for the multilook methods on large texture is
around 19 × 15, while the optimal on small texture is around 13 × 13 sublooks.
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Figure V.10: ROC for the four multilook methods using 13 × 13 sublooks on images
with large texture variations. Optimal α-prewhitening and optimal texture correction
are applied.

Figure V.11: AUC for the four multilook methods using 13 × 13 sublooks on images
with large texture variations. Optimal α-prewhitening and optimal texture correction
are applied.

Figure V.13 presents the ROC results for the four multilook methods using
suboptimal texture correction. The number of sublooks is 13 × 13, and the texture
size is small. The window size used in texture correction is smaller than the actual
texture size, and it therefore slightly degrades the overall detection performance of
"Whitening+TC”. All four multilook methods outperform prewhitening. Figure V.14
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Figure V.12: AUC for the multilook method MLCFW using optimal ”Whitening + TC”
and a varying number of sublooks on images with small and large texture variations.

presents the corresponding AUC results. The multilook methods NMFW and MLCFW
have the highest AUC values. Figure V.15 shows the PD values given 3% PFA for
the multilook methods when a suboptimal, slightly wider whitening filter was used.
Figure V.15 shows the PD values when a filter with very wide whitening limits was
used.

Figure V.17 presents the ROC results for the four multilook methods on images
where additive acoustic noise dominates the speckle background. We applied adaptive
prewhitening of the images. Optimal whitening limits and optimal window size for
texture correction are both known. All four multilook methods perform better than
prewhitening, especially the multilook methods NMFW and NMF. The number of
sublooks is 19 × 15, and the texture size is large. The dotted, black ROC curve
represents the original noisy DAS images without prewhitening and texture correction.
The point SNR is 9.5 dB for the original untextured images. Figure V.18 presents the
corresponding AUC results.

V.6 Discussion

Optimized prewhitening significantly improves the detection performance when
combined with texture correction. Prewhitening prior to texture correction achieves a
much higher detection performance than applying texture correction first, as shown
in Figure V.6. This is because prewhitening improves spatial resolution, giving a larger
scale difference between point scatterers and texture. This again allows for better
texture correction without negatively affecting the point scatterer response. The AUC
results for prewhitening are higher in the case of large texture. An optimal texture
estimate is easier to achieve with slowly varying texture, such as in Figure V.5.
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Figure V.13: ROC for the multilook methods on DAS images with suboptimal texture
correction (TC). The texture size is small. The methods used 13 × 13 sublooks and
optimal whitening.

Figure V.14: AUC for the multilook methods when using suboptimal texture correction
(TC). The texture size is small. The methods used 13 × 13 sublooks and optimal
α-whitening.

Prewhitening uses a classical spectral estimator, which requires that the input
signal is stationary and ergodic [Ale16, p. 399]. An amplitude trend in the data as
a function of depth can be compensated by applying a time-varying gain or depth
correction to remove the transmission loss effects before entering the spectral domain
and applying prewhitening. When the spectrum shape changes with depth, the signal
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Figure V.15: PD given 3% PFA for the multilook methods using 19 × 15 sublooks
combined with suboptimal prewhitening and optimal texture correction (TC).

Figure V.16: PD given 3% PFA for the multilook methods using 25 × 21 sublooks
combined with very wide whitening limits and optimal texture correction (TC).

is strictly non-stationary even after depth correction. A fixed prewhitening filter is
then suboptimum, and a depth-dependent prewhitening filter can be applied. We
expect the multilook methods to do better than prewhitening and texture correction in
such cases. If the amplitude variations in the ultrasound image are considerable, it may
be beneficial first to apply texture correction to achieve stationarity before applying
prewhitening.

By comparing the AUC results in Figure V.12, it is evident that both prewhitening
and the multilook methods perform better when the texture size is large. The results in
Figure V.12 show how the multilook method improves its detection performance when
the number of sublooks decreases. Table V.1 summarizes the observed behavior of
the multilook methods using a varying number of sublooks when applied to different
image backgrounds. Fewer sublooks increases the calculation speed of the multilook
method. Textured scenes require sublooks with higher image resolution than the
uniform speckle backgrounds previously studied in [THA22b]. The numerator in
(7.26) retains full image resolution regardless of the number of sublooks. However,
the denominator improves its background estimate when the sublooks are many but
have high image resolution. Therefore, the optimal number of sublooks depends on
the texture size. A small texture size requires subsets with larger bandwidth to be
discernible in the resulting sublooks. The results for the multilook methods are better
for slowly varying texture since we then can use a higher number of sublooks, which
improves the denominator’s estimate.
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Figure V.17: ROC for the multilook methods on DAS images with dominant acoustic
noise and optimal texture correction. The texture size is large. The methods are
calculated using 19 × 15 sublooks and adaptive prewhitening with optimal limits.

Figure V.18: AUC for the multilook methods on DAS images with dominant acoustic
noise and optimal texture correction. The texture size is large. The methods are
calculated using 19 × 15 sublooks and adaptive prewhitening with optimal limits.

The results in Figures V.10, V.14, and V.18 show significant improvement in
detection performance using the image weighted MCFW multilook method. The
benefit of MLCFW is that it can be applied even when prior knowledge about the
theoretical point signal response and the optimal prewhitening limits is unavailable.
Even for the scenario of optimal prewhitening and optimal texture correction in
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Table V.1: Summary of Number of Sublooks

Number of sublooks
Background

9x9 13x13 19x15 45x25
Homogenous Poor Poor Moderate Best
Large texture Moderate Good Best Poor
Small texture Good Best Good Poor

Figure V.10, the ROC curves for the MLCF and MLCFW methods slightly outperform
prewhitening at low PFA values.

The ROC study on suboptimal prewhitening in [THA22b] found a significant
improvement in detection performance for the multilook methods using 45 × 25
sublooks. The NMFW method performs better than MLCFW in the case of suboptimal
whitening since it incorporates extra knowledge about the correct point signal response
per sublook and can suppress more unwanted subsets at the edges of the spectrum.
However, the inclusion of texture in this study causes the optimal number of sublooks to
decrease. As a consequence, the multilook methods cannot suppress as many unwanted
edge subsets, and therefore they cannot achieve the same amount of improvement as
found in [THA22b]. The results on suboptimal prewhitening on textured image scenes
show that NMFW and MLCFW performs slightly better than prewhitening at low
PFA values, as illustrated by the PD values in Figure V.15. The difference is however
too small to give the multilook methods higher overall AUC values. Prewhitening
is a robust method even when applied suboptimal limits. Figure V.16 illustrates a
scenario when the whitening limits are poorly estimated and chosen too wide. The
NMFWmethod performs much better than the other methods in this case. The number
of sublooks is 25 × 21 to give subsets of similar size as when using the optimal
prewhitening limits.

The image example in Figure V.7 makes it evident that the multilook methods can
increase the threshold difference between false alarms and true positives. It is more
challenging to visually extract the point scatterers in the whitened image than the
multilook weighted images. Therefore, it can be preferable for an ultrasound operator
to see the multilook images when searching for point scatterers.

The improvements in detection performance for the multilook methods compared
to prewhitening are especially large for image backgrounds where optimal texture
correction is difficult to obtain. This is shown in Figures V.13 and V.14. An ultrasound
image can have a varying texture scale, making it more challenging to obtain an optimal
texture estimate. The image weighting methods NMFW and MLCFW perform best in
Figure V.13 since the applied texture correction still provides some improvement to the
detection performance. However, the NMF and MLCF methods show great potential
when an optimal texture correction is difficult to obtain, or a normalized method is
wanted.

The improvements in detection performance for the multilook methods compared
to prewhitening are significant when acoustic noise dominates speckle, as illustrated in
Figures V.17 and V.18. Such a scenario is realistic as the imaging depth increases. The

193



V. Point Detection in Textured Ultrasound Images

NMFW and NMF methods perform especially well in this scenario. They incorporate
prior knowledge about the theoretical point signal response in each sublook and can
weight the sublook accordingly.

Table V.2 summarizes the observed benefits and setbacks of the suggested methods
in this study.

V.7 Conclusions

We have studied four multilook methods with the aim of improving point detection in
textured ultrasound images. The results show significant improvement in detection
performance using optimized prewhitening on images where an optimal texture
correction is easily obtained. An improvement in detection performance is also found
for the image weighting multilook method MLCFW. When detecting point targets
in textured backgrounds, the multilook methods require sublooks with higher image
resolution than in uniform backgrounds. In general, the methods perform best when
using many sublooks with high image resolution. The optimal number of sublooks
depend on the texture size. The methods in this study perform best on the images with
slowly varying texture. The NMF and MLCF methods are normalized and perform
better than prewhitening when an optimal texture correction is difficult to obtain. The
multilook methods perform better than prewhitening when acoustic noise dominates
the speckle background.
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Table V.2: Summary of Observed Potential Benefits and Setbacks of the Suggested
Methods

MethodScenario
Prewhitening MLCF MLCFW NMF NMFW

Optimal
whitening &
optimal TC

Large im-
provement
in detection
performance.

Similar per-
formance as
whitening.

Similar per-
formance as
whitening.
Slightly
better than
whitening
in the case
of large
texture.

Setback
compared
to whiten-
ing.

Similar per-
formance as
whitening.

Suboptimal
prewhiten-
ing wo/tex-
ture

Some re-
duction in
detection per-
formance, but
still a robust
method.

Performs
slightly
better than
whitening.

Performs
slightly
better than
whitening.

Performs
slightly
better than
whitening.

Performs
better than
whitening.

Suboptimal
prewhiten-
ing w/tex-
ture

Some re-
duction in
detection per-
formance, but
still a robust
method.

Similar per-
formance as
whitening.

Performs
slightly
better than
whitening
at low PFA
values.

Some
setback
compared
to whiten-
ing.

Performs
slightly
better than
whitening
at low PFA
values.

Wide
prewhiten-
ing w/tex-
ture

Reduction in
detection per-
formance.

Similar per-
formance as
whitening.

Similar per-
formance as
whitening.

Performs
slightly
better than
whitening
at low PFA
values.

Performs
better than
whitening.

Suboptimal
TC

Much af-
fected by
suboptimal
TC.

Not affected
by TC.

Improvement
due to
weighting
with MLCF.

Not affected
by TC.

Improvement
due to
weighting
with NMF.

Poor TC Much affected
by poor TC.

Not affected
by TC.

Affected by
poor TC.

Not affected
by TC.

Affected by
poor TC.

Dominant
additive
acoustic
noise

Improvement
compared
to only TC,
but method
enhances
much of the
noise.

Method
weights
sublooks
using co-
herence.

Method
weights
sublooks
using co-
herence.

Method
weights
sublooks ac-
cording to
theoretical
point signal
response.

Method
weights
sublooks ac-
cording to
theoretical
point signal
response.

Computational
complexity

Low Medium Medium High High

Color coding: Poor Good Great
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