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Abstract

This thesis is concerned with the theory of homological projective duality of
A. Kuznetsov. The varieties of interest are projective bundles. By considering
the resolution X = Hilb2 P2 of the variety Sym2 P2 as a projective bundle, we
show using results of Kuznetsov that the homological projective dual Y of X
agrees with that of the smooth stack [P2 ×P2/S2] as described by J. Rennemo.
Further, we describe the homological projective dual of a family of projective
bundles over the Grassmanian G(n, n + 1) to which X belongs. Lastly we
study the duality of X and Y on linear sections and show an equivalence of
derived categories of a pair of elliptic curves XL ⊂ X and YL ⊂ Y .
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Chapter 1

Introduction

1.1 Background

A classical duality relation in algebraic geometry is projective duality. It stems from
the duality of points and hyperplanes of projective space Pn. Hyperplanes can be
considered as points of the dual projective space (Pn)∨, and for a smooth projective
variety X embedded into projective space, the set of points in (Pn)∨ corresponding to the
hyperplanes tangent to X describes a projective variety X∨ embedded into (Pn)∨. We
call this variety the projective dual of X. Homological projective duality of A. Kuznetsov
first presented in [Kuz07], is a generalization of the projective duality in the sense that it
carries the information of projective duality. However, the homological projective duality
happens on the level of the derived categories of the varieties involved.

For a smooth projective variety X with a morphism f : X → P(V ) to projective
space, denote by D(X) its bounded derived category of coherent sheaves. For the
duality to capture interesting information, we will need a particular semi-orthogonal
decomposition of D(X), called a Lefschetz decomposition with respect to the morphism
f . We define the universal hyperplane section of X to be the variety H consisting of
pairs (x,H) ∈ X × P(V ∨) with the incidence relation x ∈ H. Now given a Lefschetz
decomposition of D(X), the derived category of the universal hyperplane section H of
X will inherit a semi-orthogonal decomposition

D(H ) = ⟨CH ,A1, . . . ,An⟩.

For the duality relation, the subcategory CH of D(H ) will be the category of interest. If
CH can be identified with the derived category of some other smooth projective variety
Y , we call this the homological projective dual of X. This identification is given by a
Fourier-Mukai functor from the derived category of Y to the derived category of H that
restricts to an equivalence of categories onto CH . The variety Y comes with a morphism
g : Y → P(V ∨) and a Lefschetz decomposition. Moreover, the duality is symmetric in the
sense that if we now consider the derived category of the universal hyperplane section
of Y and its decomposition with respect to g, then the subcategory appearing as the
first term in the decomposition is equivalent to D(X). Further, homological projective
duality gives related semi-orthogonal decompositions of the derived category of linear
sections of the two varieties involved.

A complication for finding homological projective dual pairs is the fact that finding a
decomposition of the derived category of a variety X in general is a difficult task.
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Chapter 1. Introduction

Question. When does the derived category of a smooth projective variety X with a
morphism f to projective space have a Lefschetz decomposition with respect to f?

The approach to finding such a decomposition will often be to find a collection
of exceptional objects and show that the collection is full. However, fullness of the
exceptional collection is in general not easily verified either. Some types of varieties,
such as Calabi-Yau varieties, have derived categories that do not admit semi-orthogonal
decompositions. The varieties we are concerned with will in general not be Calabi-Yau.
They will be projective bundles, and for such varieties, Lefschetz decompositions of their
derived categories are know due to Orlov in [Orl92]. He showed that the derived category
of a projective bundle X over a basescheme Y has a Lefschetz decomposition if the
derived category of Y has a full exceptional collection. We give a proof of his result and
write down the decompositions for the projective bundles we are interested in.

The main example we study in this thesis is the pair of varieties Sym2 P2 and P2 ×P2.
Since Sym2 P2 is not smooth, the theory of homological projective duality does not apply
to this variety. A natural choice is to replace Sym2 P2 with its resolution given by the
Hilbert scheme Hilb2 P2. Alternatively, since the theory of A. Kuznetsov generalizes to
smooth stacks, another approach would be to study the smooth stack [P2 × P2/S2].

[P2 × P2/S2] Hilb2 P2

Sym2 P2

By results of [BKR01] and [Hai01], there is an equivalence of derived categories

D(Hilb2 P2) ≃ D([P2 × P2/Sn]).

Further, in [Ren20] J. Rennemo determined the HP-dual of the smooth stack
[P(V ) × P(V )/S2] for a general vector space V by giving a Lefschetz decomposition of
the derived category of the S2-equivariant coherent sheaves on P(V ) × P(V ). He found
that the HP-dual of [P(V ) × P(V )/S2] is a Clifford module category which in the case
dimV = 3 can be computed as the derived category of the variety P2 × P2. With these
two results in mind, we aim at answering the following question:

Question. Does the homological projective dual of Hilb2 P2 agree with that of the smooth
stack [P2 × P2/S2]?

We find that even though the Lefschetz decomposition used to study D(Hilb2 P2)
differs from the one decomposing D([P2×P2/S2]) given in [Ren20], the answer to the above
question is yes nevertheless. Since HP-duality depends on the Lefschetz decompositions,
this is not expected in general. We find that the method used for determining the dual
of Hilb2 P2 generalizes to a family of projective bundles, and we determine the HP-dual
of each variety in this family.

1.2 Outline

Chapter 2 is devoted to building the necessary foundations for studying the derived
category. We give an introduction to the derived category at a level where notions of
categories and functors are sufficient prerequisites. We introduce some essential notions
of category theory and describe how the derived category of a general abelian category is
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constructed. We move on to study the derived category of coherent sheaves on a smooth
projective variety more closely. We define the most essential derived functors used in
algebraic geometry and illustrate some of their useful properties.

In Chapter 3 we study the geometry of projective bundles. We present the construction
of relative projective spaces and present some results describing the sheaf cohomology of
such schemes, making use of the derived functors from Chapter 2. We carry on to study
closer the varieties of interest in this thesis for homological projective duality. To do so,
we introduce quotient varieties and Hilbert schemes of points and describe the Picard
groups of the varieties in question. Finally, we move on to study the varieties from a
viewpoint of cohomology of their invertible sheaves. We prove the Künneth formula for
smooth projective varieties and apply the results on cohomology of projective bundles to
a few examples.

In Chapter 4 we study the decompositions of the derived categories necessary to apply
the theory of homological projective duality. The decompositions are first introduced
in the general setting of a triangulated category and later in the specific case of the
derived category of a variety. We introduce the notion of an exceptional collection and
describe the connection between full exceptional collections of the derived category and
K-theory of coherent sheaves. Some further conditions on exceptional collections to be
full are given and applied to some examples. Finally, we focus on the setting of projective
bundles and present a way to decompose the derived category of a relative projective
space in terms of the base scheme, as given in [Orl92].

In Chapter 5 we study homological projective duality. We state this duality in its
original form given by Kuznetsov. We present the main theorem of A. Kuznetsov for
studying pairs of homologically projectively dual varieties on linear sections. Lastly,
we present a theorem of Kuznetsov that describes the homological projective dual of a
general projective bundle which will also set the stage for the applications of homological
projective duality.

Finally, in Chapter 6 we apply the theory and give a description of the homological
projective dual of a family of projective bundles. This will also determine the dual Y of
X = Hilb2 P2. We end this chapter by studying the duality of X and Y on linear sections
and find a pair of closed subschemes XL ⊂ X and YL ⊂ Y whose derived categories are
equivalent.

1.3 Notations and Conventions

We let k denote an algebraically closed field of characteristic 0. Unless otherwise specified,
we assume all schemes to be quasi-projective over k. We use the terms vector bundle
and locally free sheaf, in particular line bundle and invertible sheaf, interchangeably.
We assume familiarity with algebraic geometry at the level of [Har77] Chapters I-III,
although some specific constructions will be recalled when necessary.
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Chapter 2

The Derived Category

This chapter is devoted to studying the derived category. We construct it in a general
setting but quickly turn our attention to the use of the derived category in algebraic
geometry. The motivation for the derived category is to have a category for studying
homological algebra. The main idea is to have as objects the complexes and work with
them rather than their cohomology. We follow chapters 1-4 in [Huy06] by D. Huybrechts.

2.1 Preliminary Category Theory

We begin this section by recalling some basic notions from category theory. A category
C is additive if for all objects A,B ∈ C, the sets HomC(A,B) are abelian groups and the
compositions

HomC(A,B) × HomC(B,C) → HomC(A,C)

are bilinear. We say that an additive category is k-linear if the groups HomC(A,B)
are k-vector spaces and the compositions k-bilinear. A k-linear functor F : C → D is a
functor of k-linear categories such that the map Hom(A,B) → Hom(F (A), F (B)) is a
homomorphism of k-vector spaces. An additive category is abelian if every morphism
f : A → B admits a kernel and a cokernel fitting into an exact sequence

0 → ker f → A → B → coker f → 0,

i.e. there are isomorphisms coim f ≃ im f . A functor of abelian categories is called exact
if it preserves short exact sequences.

Definition 2.1.1. Let F : C → D be a functor. We say that the functor H : D → C is right
adjoint to F if there for all C ∈ C and D ∈ D are isomorphisms

HomD(F (C), D) ≃−→ HomC(C,H(D))

which commute with the natural maps of Hom-spaces induced by morphisms in C and
D. If H is right adjoint to F , then F is left adjoint to H.

Definition 2.1.2. A functor F : C → D is called full if for all A,B ∈ C the map

HomC(A,B) → HomD(F (A), F (B))

is surjective. If it is injective we call it faithful, and if it is an isomorphism, fully faithful.
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Chapter 2. The Derived Category

We say that two categories C and D are equivalent if there exists a pair of functors
F : C → D and G : D → C such that F ◦ G ≃ idD and G ◦ F ≃ idC. Let S ⊂ C be
a subcollection of objects and morphisms of C. Then S is a subcategory of C if the
subcollection of morphisms is closed under composition, contains the identity idA : A → A
for all A ∈ S and if f : A → B is in the collection of morphisms, then A,B ∈ S. We
denote by ι the inclusion functor ι : S → C.

Definition 2.1.3. A subcategory S ⊂ C is full if

HomS(A,B) = HomC(A,B)

for all A,B ∈ S.

A fully faithful functor F : C → D gives an equivalence of categories between C and
the full subcategory of D of all objects D ∈ D isomorphic to F (C) for some C ∈ C. If
every object D ∈ D is isomorphic to F (C) for some object C ∈ C we call F essentially
surjective.

Proposition 2.1.4. [Huy06, Proposition 1.4] A fully faithful essentially surjective functor
F : C → D defines an equivalence of categories C ∼= D.

Example 2.1.5. Let X = Spec(A) be an affine scheme. Then the category QCoh(X) of
quasi-coherent sheaves on X and the category ModA of A-modules are equivalent. The
functor

∼: ModA → QCoh(X)

defined by sending a module M to the sheaf M̃ defined on the distinguished opens by
M(D(f)) = Mf and the global sections functor

Γ : QCoh(X) → ModA

are fully faithful. Moreover, Γ(X, M̃) = M and ˜Γ(X,F) = F . Hence the functors
compose to the identity on ModA and QCoh(X).

Definition 2.1.6. [Huy06, p. 9] Let C be a k-linear category. Then a k-linear auto-
equivalence S : C → C is called a Serre functor if for all A,B ∈ C, there are isomorphisms

HomC(A,B) ≃−→ HomC(B,S(A))∨

of k-vector spaces functorial in A and B.

Definition 2.1.7. A subcategory S ⊂ C is (left or right) admissible if the inclusion functor
ι : S → C admits a (left or right) adjoint.

Definition 2.1.8. Let A be an abelian category. Then

• I ∈ A is injective if Hom(−, I) : Aop → Ab is an exact functor. If for every A ∈ A there
is an injection 0 → A → I with I injective, then we say that A has enough injectives.

• P ∈ A is projective if Hom(P,−) : A → Ab is an exact functor. If for every A ∈ A there
is a surjection P → A → 0 with P projective, then we say that A has enough projectives.
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2.2. The Derived Category

2.2 The Derived Category

For an abelian category A we can form the category of complexes of A, denoted Kom(A).
The objects of Kom(A) are complexes

· · · Ai−1 Ai Ai+1 · · ·
di−1

A di
A di+1

A

such that Ai ∈ A and di+1
A ◦ diA = 0 for all i ∈ Z. The maps diA are called differentials or

boundary maps. If A,B ∈ Kom(A), then a morphism f : A → B of complexes is given
by a morphism f i ∈ Hom(Ai, Bi) for each i ∈ Z such that the f i’s commute with the
differentials. The category of complexes is an abelian category; the complex consisting of
only zeroes is the zero object and for each morphism f we can form the complex of the
kernels ker f i and the complex of the cokernels coker f i. For a complex A ∈ Kom(A), we
define the cohomology objects by

H i(A) = ker diA
im di−1

A

.

These are objects of A and they all vanish exactly when the complexes are exact
sequences. A morphism f : A → B of complexes induces a morphism on cohomology
objects H(f) : H(A) → H(B).

Definition 2.2.1. A complex A ∈ Kom(A) is acyclic if H i(A) = 0 for all i ∈ Z. We say
that a functor F : Kom(A) → Kom(B) is acyclic with respect to a class of objects S ⊂ A
if it maps any acyclic complex of objects of S to an acyclic complex in Kom(B).

For any given complex A we can shift the entire complex to the left or right. We
denote by A[1] the complex A shifted one term to the left. More precisely, we let A[1] be
the complex such that A[1]i = Ai+1 and diA[1] = −di+1

A for all i. For another complex B
and a morphism f ∈ Hom(A,B) define f [1] to be the morphism of complexes such that
f [1]i = f i+1. This shifting of complexes gives rise to a functor.

Definition 2.2.2. Define the shift functor T : Kom(A) → Kom(A) by T (A) = A[1] and
T (f) = f [1] ∈ Hom(A[1], B[1]).

The shift functor is an auto-equivalence on Kom(A) and satisfies T i ◦ T j = T i+j for
all i, j ∈ Z. For any n ∈ Z the complex A[n] which is A shifted n terms is defined by
A[n] = Tn(A).

Definition 2.2.3. ([Huy06, p. 33]) Let f : A → B be a morphism of complexes. We define
the cone of f , denoted C(f) to be the complex defined by

C(f)i = Ai+1 ⊕Bi

with differentials
diC(f) =

(
−di+1

A 0
f i+1 diB

)
.

The cone construction gives a short exact sequence of complexes

0 → B → C(f) → A[1] → 0,

which gives a long exact sequence on cohomology

· · · → H i−1(C(f)) → H i(A) → H i(B) → H i(C(f)) → H i+1(A) → · · ·

7



Chapter 2. The Derived Category

We want to study complexes and morphisms of complexes up to cohomology, meaning
that we would like to consider a morphism of complexes f : A → B as an isomorphism if
the induced map on cohomology is an isomorphism.

Definition 2.2.4. (Chain Homotopy) Let A,B be complexes with boundary maps dA and
dB, and let f, g : A → B be morphisms of complexes. We say that f and g are homotopic
if there exists a morphism s : A → B[−1] such that

f − g = dB ◦ s+ s ◦ dA.

. . . Ai−1 Ai Ai+1 . . .

. . . Bi−1 Bi Bi+1 . . .

di−1
A

f i−1,gi−1

di
A

f i,gi

si
f i+1,gi+1

si+1

di−1
B di

B

Figure 2.1: Chain Homotopy

Notice that if f and g are homotopic and we restrict to ker dA, then s ◦ dA = 0 and
the difference of f and g can be factored through im dB. Hence, the induced morphisms
on cohomology are equal. The homotopy equivalence is an equivalence relation on the
morphisms of Kom(A) and gives rise to a new category called the homotopy category.

Definition 2.2.5. Let A be an abelian category. We define the homotopy category K(A)
to be the category with the same objects as Kom(A) and with morphisms being chain
homotopy equivalence classes of morphisms of Kom(A), i.e. for A,B ∈ K(A) we let

HomK(A)(A,B) := HomKom(A)(A,B)/ ∼

with f ∼ g if f and g are homotopic.

Some verification is needed to show that this is in fact a category, c.f. [Huy06, prop.
2.13]. The definition above defines a homotopy category for any additive category A
which is not necessarily abelian [Huy06, p.32], however we will focus on the case where
A is abelian.

Definition 2.2.6. Let f : A → B be a morphism of complexes. We say that f is a quasi-
isomorphism if the induced maps H i(f) : H i(A) → H i(B) are isomorphisms for all
i.

If we would like to work in a category where the quasi-isomorphisms are actual
isomorphisms, then the existence of inverses is necessary. However, there is no guarantee
that a quasi-isomorphism has an inverse. The solution to this problem is a so-called
‘localization’ of the category K(A). The process is analogous to the localization of a
ring by adding inverses of elements of a multiplicatively closed subset of the ring. Only
now, we wish to add inverses of morphisms. The property we need is that the type of
morphisms we want to invert, which in our case are the quasi-isomorphisms, form what
is called a localizing class. For details, see [Ser13, p. 147].
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2.2. The Derived Category

Definition 2.2.7. Let C be an additive category and let S be a localizing class of C. We
define the category C[S−1] to be the category satisfying the universal property that any
functor F : C → D factors uniquely through C[S−1] if and only if F (ϕ) is an isomorphism
for all ϕ ∈ S.

F : C D

C[S−1]

This universal property determines C[S−1] uniquely up to equivalence of categories.

The class of quasi-isomorphisms form a localizing class and we define the derived
category by the localization of the homotopy category by this class.

Definition 2.2.8. Let A be an abelian category and let S denote the class of quasi-
isomorphisms of K(A). We define the derived category of A, denoted D(A), to be the
category K(A)[S−1].

We denote by QA : K(A) → D(A) the functor satisfying the universal property: it
sends quasi-isomorphisms to isomorphisms, and any functor F : K(A) → D with the same
property factors uniquely through it. Notice that the objects in the derived category are
the same as the objects of the category of complexes. We will often be interested in the
complexes that are bounded in some way. We call a complex A ∈ Kom(A) bounded above
if Ai = 0 for i ≫ 0, bounded below if Ai = 0 for i ≪ 0 and bounded if Ai = 0 for |i| ≫ 0.
Analogously we say that A has cohomology bounded above if H i(A) = 0 for i ≫ 0,
bounded below if H i(A) = 0 for i ≪ 0 and bounded if H i(A) = 0 for |i| ≫ 0. If we want
to restrict to complexes that are bounded above, bounded below or bounded, we write
D−(A), D+(A) and Db(A), respectively. The categories D−(A), D+(A) and Db(A) are
equivalent to the subcategories of D(A) of complexes with cohomology bounded above,
bounded below and bounded, respectively [Huy06, Prop 2.30]. While the objects of the
derived category are just the complexes, the morphisms are more complicated to specify
because of the localization involved.

2.2.1 Morphisms in the Derived Category

For complexes A and B, a morphism f ∈ HomD(A)(A,B) is given by a composition
f = h ◦ q−1, where h ∈ HomK(A)(C,B) and q−1 denotes the formal inverse of a quasi-
isomorphism q ∈ HomK(A)(C,A) for an object C. The morphism f can be represented
as a roof diagram

C

A B

q
h

f

by adding an inverse to q. Two morphisms f, g ∈ HomK(A)[S−1](A,B) are equal if their
roof diagrams are dominated, that is if there is an object C3 and a quasi-isomorphism q3
fitting into the commutative diagram

9



Chapter 2. The Derived Category

C3

C1 C2

A B.

q3

q1 q2

Given two morphisms represented by the roof diagrams

C1 C2

A B B C

q1 q2

their composition is given by extending to a diagram

C3

C1 C2

A B C.

q3

q1 q2

The existence of such an extension is ensured by the properties of a localizing class.
Although the derived category and the homotopy category are not abelian categories,
they do have the structure of triangulated categories. In the absence of exact sequences,
what we do have are the distinguished triangles.

2.2.2 Triangulated Categories

Definition 2.2.9. A triangulated category is an additive category T equipped with an
auto-equivalence T i : T → T for each i ∈ Z and a collection of distinguished triangles
subject to four axioms, see [Huy06].

Definition 2.2.10. [Stacks, Tag 05QK]. A distinguished triangle in an additive category T
is a tuple (X,Y, Z, f, g, h) with X,Y, Z ∈ T giving a diagram

X
f−→ Y

g−→ Z
h−→ T (X).

A morphism of triangles is given by morphisms α, β, γ such that the squares in the
diagram

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

α

f

β

g

γ

h

T (α)
f ′ g′

h′

commute.

The derived category and the homotopy category with the shift functor both form
triangulated categories. The class of distinguished triangles is defined as follows

10
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2.2. The Derived Category

Definition 2.2.11. [Huy06, p. 36] A triangle

A → B → C → A[1]

in the derived (or homotopy) category is distinguished if it is quasi-isomorphic to a
triangle of the form

F
f−→ G → C(f) → F [1]

where C(f) denotes the cone of f .

A distinguished triangle induces a long exact sequence on the cohomology objects

· · · → H i−1(A) → H i−1(B) →H i−1(C) → H i(A) → H i(B)
→ H i(C) → H i+1(A) → H i+1(B) → · · ·

There is a natural inclusion functor ι : A → D(A) sending an object A ∈ A to the
complex

· · · → 0 → A → 0 → · · ·

with trivial differentials and A sits in degree 0. A morphism f ∈ HomA(A,B) is sent to
the morphism

· · · 0 A 0 · · ·

· · · 0 B 0 · · ·

f

We will write just A instead of ι(A) whenever it is clear from context that we think of
A as a complex in the derived category D(A) centered in degree 0 rather than as an
object of A. The following proposition provides a way of calculating morphisms between
complexes of this type.

Proposition 2.2.12. [Huy06, p. 49] Let A be an abelian category with enough injectives.
Then

HomD(A)(A,B[n]) ≃ ExtnA(A,B) ≃ HomD(A)(A[−n], B)

for all A,B ∈ A.

Proposition 2.2.12 will prove useful later as we will be especially interested in objects
of A considered as objects of D(A) with no morphisms between them in the derived
category. The proposition translates that problem into a question of homological algebra
in the category A.

Proposition 2.2.13. The inclusion functor ι : A → D(A) is fully faithful and takes exact
sequences to distinguished triangles.

Proof. Under the assumption that A has enough injectives, Proposition 2.2.12 says that

HomA(A,B) = Ext0
A(A,B) ≃ HomD(A)(ι(A), ι(B)),

so ι is fully faithful. The functor is fully faithful for a general abelian category also,
c.f. [Stacks, Tag 06XS]. For any exact sequence 0 → A → B → C → 0 we get a
quasi-isomorphism

11
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Chapter 2. The Derived Category

· · · 0 A B 0 · · ·

· · · 0 0 C 0 · · ·

The cone of ι(A → B) is just the complex in the top row, hence C(ι(A → B)) ∼= ι(C).
The morphism ι(C → A[1]) is trivial since ι(A) is nonzero in degree 0 only. Thus

ι(A) → ι(B) → ι(C) → ι(A)[1]
defines a distinguished triangle. ■

2.2.3 Truncation

In this section we briefly introduce the concept of truncation of complexes since it will
be used througout. We follow the notation of [Stacks, Tag 0118]. Let A be an abelian
category. Then for E ∈ D(A) we can define the morphisms of complexes given in the
diagram

σ≤i−1(E•)[1] · · · E i−2 E i−1 0 · · ·

σ≥i(E•) : · · · 0 E i E i+1 · · ·

E• · · · E i−1 E i E i+1 · · ·

f

−di−2
E

0

0

di−1
E 0

0

0

di
E

id id
di−1

E di
E

Then the cone of f is given by

C(f) : · · · −→ E i−2 ⊕ 0

(
di−2

E 0
0 0

)
−−−−−−→ E i−1 ⊕ 0

( 0 0
di−1

E 0

)
−−−−−−→ 0 ⊕ E i

(
0 0
0 di

E

)
−−−−−→ 0 ⊕ E i+1 −→ · · ·

Hence C(f) ≃ E• and we get a distinguished triangle σ≥i−1E•[1] → σ≤iE• → E•. The
complex σ≥i(E•) and σ≤i(E•) are sometimes refer ed to as the stupid truncations of E•.
If we instead truncate the complex E• as

τ≤i(E•) : · · · E i−1 ker diE 0 · · ·

E• : · · · E i−1 E i E i+1 · · ·

then we obtain a complex with the property that

Hk(τ≤i(E•)) =
{
Hk(E•) if k ≤ i

0 if k < i.

Similarly, the truncation

E• : · · · E i−1 E i E i+1 · · ·

τ≥i(E•) : · · · 0 coker di−1
E E i+1 · · ·

gives a complex with the property that

Hk(τ≥i(E•)) =
{
Hk(E•) if k ≥ i

0 if k > i.

12
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2.3. The Derived Category of Coherent Sheaves

2.3 The Derived Category of Coherent Sheaves

Now that we have constructed the derived category for a general abelian category, we
want to apply the framework to algebraic geometry. We would like to work with bounded
complexes of coherent sheaves.

Definition 2.3.1. For a smooth projective variety X over Spec k we define the derived
category of X as

D(X) = Db(Coh(X)).

In chapter 4 we will study exceptional collections of derived categories. We will then
be interested in the homomorphisms in the derived category between locally free sheaves
on X, specifically when the groups HomD(X)(E ,F [n]) are trivial for locally free sheaves
E and F . The following proposition will be useful for that problem.

Proposition 2.3.2. Let X be a smooth projective variety and let F be coherent and E a
locally free sheaf on X. Then

HomD(X)(E ,F [n]) ≃ Hn(X,F ⊗ E∨).

Proof. We have Extn(E ,F) ≃ Extn(OX ,F ⊗ E∨) and the result follows from
Proposition 2.2.12 and the fact that Hom(OX ,−) is the global sections functor. ■

Proposition 2.3.3. [Huy06, p. 63] The inclusion functor ι : D(X) → D+(QCoh(X))
defines an equivalence of D(X) with the full subcategory of D+(QCoh(X)) of bounded
complexes of quasi-coherent sheaves with coherent cohomology.

Now that we have constructed the bounded derived category of coherent sheaves on a
smooth projective variety, we would like a derived version of the usual functors - global
sections, pushforward, pullback and tensor product. The naive approach is to just apply
the functors term wise in each complex. This does preserve homotopy equivalence and
gives a well defined functor between homotopy categories. However, it does not work
in the derived category. Since the isomorphisms in the derived category are homotopy
classes of quasi-isomorphisms of complexes, any bounded acyclic complex is trivial in the
derived category - the zero morphism on each term in the complex to the trivial complex
is a quasi-isomorphism. Hence, applying a functor term wise to an object in the derived
category makes sense only when the functor is exact. What we will need to define the
derived versions of the functors is a class of objects in the homotopy category for which
each functor is acyclic, and the assertion that any complex is isomorphic in the derived
category to a complex of objects from this class.

Definition 2.3.4. [Huy06, p. 48] For abelian categories A and B and a left exact functor
F : A → B, we say that a triangulated subcategory K ⊂ K+(A) is adapted to F if the
following hold:

(i) F is acyclic with respect to the subcategory K.
(ii) Any B ∈ K(A) is quasi-isomorphic to an object A ∈ K.

We call K an adapted class.

Replace left exactness with right exactness and K+(A) with K−(A) for the definition
of an adapted class to a right exact functor. We treat the case for left and right derived
functors separately.

13



Chapter 2. The Derived Category

2.4 Right Derived Functors

For an abelian category A with enough injectives, any left exact functor F : A → B is
acyclic with respect to the class of injective objects. The injective objects I form a full
additive subcategory of A and one can define the homotopy category K+(I). By the
following proposition, the category K+(I) form an adapted class to any left exact functor
F : A → B.

Proposition 2.4.1. [Huy06, Proposition 2.35] If A is an abelian category with enough
injectives, then any A ∈ K+(A) has a quasi-isomorphism A → I to a complex I ∈ K+(A)
of injective objects of A.

To define a derived functor RF : D+(A) → D+(B) we will need to go via the
homotopy category K+(A).

Proposition 2.4.2. [Huy06, Proposition 2.40] Let I denote the full additive subcategory of
all injective objects of A. Then there is an equivalence of categories

QI : K+(I) ≃−→ D+(A).

For a left exact functor F : A → B of abelian categories with A having enough
injectives, we define the right derived functor RF as the composition given in the diagram

D+(A) D+(B)

K+(I) K+(B),

RF

QI

F

QB

by choosing an inverse functor to the equivalence QI . The bottom arrow is the functor
that applies F to every term in the complex.

Now, let us confine our attention to the setting in algebraic geometry. While the
category Coh(X) in general does not have enough injectives, the category QCoh(X)
does [Huy06, p. 44]. Any F ∈ QCoh(X) has a resolution

0 → F → I0 → I1 → · · ·

of injective objects Ii ∈ QCoh(X). We will often write 0 → F → I• where
I• ∈ D(QCoh(X)) is the complex of injectives. Notice that

F• : · · · 0 F 0 · · ·

I• : · · · 0 I0 I1 · · ·

0 i 0

is a quasi-isomorphism of complexes, and so every quasi-coherent sheaf is isomorphic in
D(QCoh(X)) to its injective resolution. Moreover, Proposition 2.4.1 ensures that any
complex F• of quasi-coherent sheaves is quasi-isomorphic to a complex of injectives.

14



2.4. Right Derived Functors

2.4.1 Derived Global Sections

Let X be a k-scheme. The global sections functor

Γ : QCoh(X) → Vec(k)

is left exact. Since QCoh(X) has enough injectives, any complex F• ∈ D+(QCoh(X))
is quasi-isomorphic to a complex of injectives I• ∈ D+(QCoh(X)) and we define the
derived global sections as the functor

RΓ : D+(QCoh(X)) D+(Vec(k))

F• Γ(X, I•)

We denote by RiΓ(X,F•) the higher derived global sections defined as the cohomology
objects of the complex Γ(X, I•). If F is just a sheaf, then

RiΓ(X,F) = H i(X,F)

are the cohomology groups of X with respect to F . If F is coherent, then these are
finite dimensional and they vanish for i > dim(X). We can define the derived functor
RΓ : D(X) → D(Vec(k)) by the composition

D(X) → Db(QCoh(X)) → D(Vec(k)).

2.4.2 Derived Pushforward

For a morphism f : X → Y the pushforward functor

f∗ : QCoh(X) → QCoh(Y )

is left exact. We define the derived pushforward by

Rf∗ : D+(QCoh(X)) D+(QCoh(X))

F• f∗(I•)

If f is projective or proper then f∗ preserves coherence and the higher pushforwards
Ri(F•) are coherent as well. In this case we have a derived functor

Rf∗ : D(X) → Db(QCoh(X)) → D(Y )

by Proposition 2.3.3. If g : Y → Z is another morphism, then g∗ ◦ f∗ = (g ◦ f)∗. We
would like

Rg∗ ◦ Rf∗ = R(g ◦ f)∗ (2.1)

to be true also. However, the pushforward functor does not preserve injectives in general.
The solution to this problem is the flasque sheaves. We say that a sheaf is flasque if all
the restriction maps are surjective. For opens V ⊂ U in Y , we have

f∗F(U) f∗F(V )

F(f−1(U)) F(f−1(V )),

15



Chapter 2. The Derived Category

so flasque is preserved under pushforward. Any injective object of QCoh(X) is also
flasque, and the flasque sheaves are adapted to the pushforward functor [Huy06, p. 74].
Thus if I• is a complex of flasque sheaves quasi-isomorphic to F•, then Rf∗(F•) = f∗(I•)
and f∗(I•) is again a complex of flasque sheaves.

Proposition 2.4.3. [Ser13, p. 200] For abelian categories A, B and C, let F : A → B and
G : B → C be left exact functors. Let KA and KB be adapted to F and G, respectively.
Then the derived functors RF , RG and R(G ◦ F ) exist, and if F (KA) ⊂ KB, then

RG ◦ RF = R(G ◦ F ).

Since the flasque sheaves are also adapted to the global sections functor [Har77,
p.208][Stacks, Tag 09SY], the above proposition says that there are well defined
compositions RΓ(X,Rf∗(−)) = Γ(X,Rf∗(−)) and (Rf∗ ◦ Rg∗)(−) = R(f ◦ g)∗(−).

The derived pushforward and derived global sections have useful compatibilities.
If f : X → Spec k, then Rf∗(−) = RΓ(X,−) since f∗(−) = Γ(X,−). If Y is affine,
then f∗(F) = ˜Γ(X,F) for a quasi-coherent sheaf F . By taking an injective resolution
0 → F → I•, we get

Rf∗(F) = f∗(I•) = ˜Γ(X, I•) = ˜RΓ(X,F) (2.2)

since the tilde-functor is exact. Taking cohomology of 2.2 gives the following proposition.

Proposition 2.4.4. For a morphism f : X → Spec(A) and a quasi-coherent sheaf on X we
have

Rif∗(F) ≃ ˜H i(X,F).

The derived pushforward and derived global sections are compatible in the following
way.

Proposition 2.4.5. Let f : X → Y be a morphism of schemes and let F ∈ QCoh(X).
Then

RΓ(X,F) = RΓ(Y,Rf∗(F)).

Proof. Consider the diagram

X Y

Spec(C).

f

h
g

We have
Γ(X,F) = h∗(F) = (g ◦ f)∗(F) = g∗(f∗(F)) = Γ(Y, f∗F).

Take a flasque resolution 0 → F → I• of F . Then

RΓ(Y,Rf∗(F)) = RΓ(Y, f∗I
•) = Γ(Y, f∗I

•) = Γ(X, I•) = RΓ(X,F).

■
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2.5. Left Derived Functors

2.5 Left Derived Functors

The left derived functors require less work. Since any coherent sheaf F on smooth
projective scheme X of dimension n admits a resolution

0 → En−1 → · · · → E1 → E0 → F → 0

of locally free sheaves E i, any coherent sheaf F is isomorphic in D(X) to its locally free
resolution E• by the quasi-isomorphism

E• : · · · E1 E0 0 · · ·

F• : · · · 0 F 0 · · ·

In fact, if X is regular then any G• ∈ D(X) is isomorphic to a complex E• ∈ D(X) of
locally free sheaves [Huy06, p.77]. Thus for the right exact functor F ⊗ (−) : Coh(X) →
Coh(X) we can define the derived tensor by

F ⊗L (−) : D−(X) D−(X)

G• F ⊗ E•.

If G• is a complex of locally free sheaves then the derived tensor product and the usual
tensor product coincide. For two honest complexes F• and G• with either F• or G• a
complex of locally free sheaves, define the derived tensor product by

L(−) ⊗L (−) : D−(X) × D−(X) D−(X)

(F•,G•) F• ⊗L G•,

where F• ⊗L G• is defined as the complex with entries (F• ⊗ G•)i = ⊕
p+g=i Fp ⊗ Gq and

differentials d = dF• ⊗ 1 + (−1)i1 ⊗ G• [Huy06, p. 79]. For a morphism f : X → Y , let
E• be a complex of locally free sheaves isomorphic to G• in D(Y ). We define the derived
pullback Lf∗ as the functor

Lf∗ : D−(QCoh(Y )) D−(QCoh(X))

G• f−1E• ⊗L
f−1(OY ) OX .

The inverse image functor is exact and can be applied term wise in the complex. The
tensor product is the derived tensor product. If G• itself is a complex of locally free
sheaves or if f is flat, then the derived and usual pullbacks coincide.

2.6 Properties of Derived Functors

Proposition 2.6.1. (The projection formula) Let f : X → Y be a morphism of ringed
spaces, F an OX-module and E a locally free sheaf on Y of rank r. Then

f∗(F ⊗ f∗E) ≃ f∗(F) ⊗ E .

17



Chapter 2. The Derived Category

Proof. Let {Ui} be a cover of Y such that E|Ui ≃ O⊕r
Ui

for each i. We prove that an
isomorphism exists for every Ui in the cover. So assume X = f−1(Ui) and Y = Ui. Then
E ≃ O⊕r

Y and we have

f∗(F ⊗ f∗E) ≃ f∗(F ⊗ O⊕r
X ) ≃ f∗F⊕r = (f∗F)⊕r ≃ f∗F ⊗ O⊕r

Y ≃ f∗(F) ⊗ E . (2.3)

Since the isomorphism f∗(F ⊗ f∗E) ≃ f∗F ⊗ E is independent of the choice of local
isomorphism E ≃ O⊕r

Y , it is clear that the isomorphism commutes with the restriction
maps. ■

Proposition 2.6.2. [Har77, Excercise III 8.3] Let f : X → Y be a morphism of ringed
spaces, F an OX-module and E a locally free sheaf on Y of rank r. Then

Rf∗(F ⊗ f∗E) ≃ Rf∗(F) ⊗ E .

Proof. Let I• be an injective resolution of F . Then the derived pushforward of F is
defined as Rf∗(F) = f∗(I•). Since E is a locally free sheaf, both f∗(E) and E ⊗ (−) are
exact. Hence

Rf∗(F) ⊗ f∗E ≃ f∗(I•) ⊗ f∗E ≃ f∗(I• ⊗ f∗E),

where we use the projection formula on each term in the complex f∗(I•) ⊗ E . To show
that I• ⊗ f∗E is an injective resolution of F ⊗ f∗E , we can show that Hom(−, I• ⊗ f∗E)
is exact. We have

Hom(−, I• ⊗ f∗E) = Hom((−) ⊗ (f∗E)∨, I•).

Since E is locally free, so is (f∗E)∨ and tensoring with locally free sheaves is exact. Since
I• is injective, Hom(−, I•) is also exact. Hence their composition is exact. It follows that

f∗(I• ⊗ f∗E) ≃ Rf∗(F ⊗ f∗E),

which proves the proposition. ■

Lemma 2.6.3. If X and Y are smooth projective, then for any F• ∈ D(X) and G• ∈ D(Y )
we have

Rf∗(F• ⊗L Rf∗G•) ≃ Rf∗F• ⊗L G•.

Proof. Replace F• with a complex I• of inectives and G• with a complex E• of locally
frees. Then

Rf∗F• ⊗L G• = f∗(I) ⊗ E• = f∗(I ⊗ f∗E) = Rf∗F• ⊗L G•.

■

Theorem 2.6.4 ([Huy06, p. 67]). Let X be a smooth projective variety of dimension n over
a field k, and denote by ωX the cannonical sheaf of X. Then

SX : D(X) −→ D(X)

defined by F• 7→ ωX ⊗ (F•)[n] is a Serre functor.

18
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Any equivalence F : D(X) ≃ D(Y ) commutes with Serre functors SX and SY , i.e.
F ◦SX ≃ SY ◦F . As the name might suggest, the Serre functor encodes the Serre duality
in a derived category setting. By the property of a Serre functor, there are isomorphisms

Hom(G•,F•) ≃ Hom(F•, ωX ⊗ G•[n])∨

for all F•,G• ∈ D(X). If we set G• = OX [−i] and let F• be a coherent sheaf F on X
both considered as complexes in D(X), then

HomD(X)(G•,F•) = Exti(OX ,F) = H i(X,F)

and
HomD(X)(F•, SX(G•)) = Extn−i(F , ωX).

This gives the more classical statement of Serre duality that for a coherent sheaf F on a
smooth projective variety, there are isomorphisms

H i(X,F)∨ ≃ Extn−i(F , ωX)

for all i. If moreover F is locally free, then Extn−i(F , ωX) ≃ Extn−i(OX ,F∨ ⊗ ωx) and
we get isomorphisms

H i(X,F)∨ ≃ Hn−i(X,F∨ ⊗ ωX)

for all i.

Example 2.6.5. Consider the Euler sequence on Pn given by

0 → ΩPn → OPn(−1)⊕(n+1) → OPn → 0,

where ΩPn denotes the cotangent bundle on Pn. Taking exterior powers gives an
isomorphism

∧n+1OPn(−1)⊕(n+1) ≃ ∧nΩPn ⊗ ∧1OPn .

Thus the canonical sheaf on Pn is given by

ωPn = ∧n+1OPn(−1)⊕(n+1) = OPn(−1)⊗(n+1) = OPn(−n− 1).

Then Serre duality says that

H i(Pn,OPn(m))∨ ≃ Hn−i(Pn,OPn(−m− n− 1)). (2.4)

We will refer to the isomorphism (2.4) later for cohomology computations.

Proposition 2.6.6. [Har77, Proposition II 9.3] For schemes X, Y and S, let f : X → Y
be a morphisms of finite type and g : Y → S be a flat morphism.

X ×S Y X

Y S

p

q f

g

Then for a quasi-coherent sheaf F on X, there are isomorphisms

g∗Rif∗(F) ≃ Riq∗(p∗F)

for all i ≥ 0.
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Corollary 2.6.7. [Stacks, Tag 0736] If F ∈ D(QCoh(X)) then

g∗Rf∗(F) ≃ Rq∗(p∗F).

Definition 2.6.8. [Huy06, p. 114](Fourier-Mukai functor) Let X and Y be smooth projective
varieties, and denote by p : X × Y → X and q : X × Y → Y the two projections. A
Fourier-Mukai functor is a functor ϕP defined by

ϕP : D(X) D(Y )

F Rq∗(P ⊗L Lp∗F).

We call P ∈ D(X × Y ) the Fourier-Mukai kernel.

We will not use Fourier-Mukai Functors explicitely, but quite remarkably, any
equivalence of categories D(X) ≃ D(Y ) for X and Y smooth projective is given by a
Fourier-Mukai functor [Orl97, Theorem 2.2]. One might ask what geometric information
carries over to the derived category. The following theorem summarizes some of the
important properties.

Theorem 2.6.9. Let X and Y be smooth projective and assume D(X) ≃ D(Y ) is an exact
equivalence of triangulated categories. Then

1. X and Y have the same dimension.
2. Their canonical bundles are of the same order.
3. If the (anti)-canonical bundle of X is ample, then X ≃ Y and the (anti)-canonical bundle

of Y is also ample.

Proof. Proof of the first and second statement: [Huy06, Proposition 4.1]. Proof of the
third statement: [Huy06, Proposition 4.11]. ■
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Chapter 3

Geometry of Projective Bundles

The majority of the varieties in question in this thesis will be projective bundles. We call
a scheme X a projective bundle if it has a morphism π to some base scheme Y such that
for a cover of affine opens U ⊂ Y , the inverse image π−1(U) is isomorphic to U × Pn for
some n. In other words, for every U in the cover there exists a commutative diagram

U × Pn π−1(U) X

U Y

∼=

π

and the square is a fiber product. To any locally free sheaf E on Y one can associate a
projective bundle P(E) by the relative Proj construction. Before giving the construction,
we state some properties of symmetric and exterior powers of sheaves.

3.1 Projectivization of Vector Bundles

3.1.1 Properties of Symmetric and Exterior Powers

Recall the construction of the symmetric and exterior algebra SymnM and ∧nM of a
module M over a ring R. For the construction see for instance [EPS98, Appendix 2.A.3].
For a scheme X and a sheaf F on X we let Symn F denote the sheafification of the
presheaf defined by

U 7→ Symn F(U)

for opens U ⊂ X. Similarly let ∧nF denote the sheafification of the preseheaf

U 7→ ∧nF(U).

Define Sym F = ⊕
n≥0 Symn F and ∧F = ⊕

n≥0 ∧nF . We will use several properties of
the sheaves Symn(F) and ∧nF throughout the thesis, the most important of which are
summarized in the proposition below.

Proposition 3.1.1. Let (X,OX) be a ringed space, let F , G and E be locally free sheaves on
X of finite rank and let L be an invertible sheaf on X. Assume there is an exact sequence
0 → E → F → G → 0. Then

1. There are isomorphisms Symn(F∨) ≃ (Symn F)∨ for all n ≥ 0.
2. There is an isomorphism ∧rk FF ≃ ∧rk GG ⊗ ∧rk EE.
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3. There are isomorphisms ∧kL⊕n ≃ (L⊗k)⊕(n
k) and ∧nL⊕n = L⊗n for all 0 ≤ k ≤ n. If

k > n then ∧kL⊕n = 0.
4. For all n > 0 there is an exact sequence

0 → ∧nE → ∧n−1E⊗ Sym1 F → · · · → ∧2E ⊗ Symn−2 F
→ E ⊗ Symn−1 F → Symn F → Symn G → 0.

5. Moreover, if E is invertible, then for all n > 0 there is a short exact sequence

0 → E ⊗ Symn−1 F → Symn F → Symn G → 0.

Proof. Properties 1.-3. are canonical isomorphisms that can be checked locally, c.f.
[EPS98, Appendix 2.A]. Let E, M and N be free modules fitting into the exact sequence

0 → E
f−→ M

g−→ N → 0.

The maps of the sequence in property 4. are

SymnM → SymnN

defined by m1 · · ·mn 7→ g(m1) · · · g(mn) and

∧kE ⊗ Symn−kM → ∧Ek−1 ⊗ Symn−k+1M

defined by

e1 ∧ · · · ∧ ek ⊗m1 · · ·mn−k 7→
k∑
i=1

(−1)i+1e1 ∧ · · · ∧ êi ∧ · · · ∧ ek ⊗ f(ek) ·m1 · · ·mn−k.

One can check that the sequence in 4. with these maps is indeed exact. Property 5. is a
consequence of 3. and 4. ■

Proposition 3.1.2. [Wei94, p. 114] (The Koszul Resolution) Let R be a ring and
x = (x1, . . . , xn) a regular sequence in R. Denote by I the ideal generated by x. Then
there is an exact sequence

0 → ∧n(Rn) → · · · → ∧2(Rn) → Rn
x−→ R → R/I → 0.

The maps ∧kRn → ∧k−1Rm are given by ei1 ∧ · · · ∧ eik 7→
∑(−1)j+1xijei1 ∧ · · · ∧ êij ∧

· · · ∧ eik .

Example 3.1.3. Let R = k[x0, . . . , xn], let x = (x0, . . . , xn) be the regular sequence and
let I = (x). Then R/I ≃ k and ∧m(Rn) ≃ R(n

m), so the sequence

0 → R → · · · → R(n+1
2 ) → Rn+1 → R → k → 0

is exact. The homomorphisms are all degree one maps, so

0 → R → · · · → R(n− 1)(
n+1

2 ) → R(n)n+1 → R(n+ 1) → k → 0

is an exact sequence of graded R-modules. By applying the graded tilde functor, we get
the exact sequence

0 → O → · · · → O(n− 1)(
n+1

2 ) → O(n)n+1 → O(n+ 1) → 0,

which gives a resolution of the n+ 1’st twist on Pn by the previous n twists.
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3.1.2 Relative Projective Spaces

Let F be a quasi-coherent sheaf with the structure of a graded OX -algebra on a scheme X.
That is, F ≃

⊕
i≥0 Fi with F0 ≃ OX and F1 coherent such that F1 locally generates F .

Then for a cover of X by affine opens U = Spec(A), each F(U) is a graded OX(U)-algebra,
and so we get a morphism

πU : Proj(F(U)) → Spec(A).

Gluing over the affine opens gives a scheme Proj(F) and a morphism

π : Proj(F) → X.

The scheme Proj(F) comes with an invertible sheaf OProj(F)(1) defined by the gluing
of the invertible sheaves O(1) on each Proj(F(U)). If F is locally free, then Sym F is
a graded OX -algebra and we define the projectivization of F as the projective bundle
given by

P(F) = Proj(Sym(F∨)).

If the rank of F is r + 1, then over an open affine U = Spec(A) ⊂ X we have
π−1(U) = Proj(F(U)∨) and the graded OX(U)-algebra Sym(F(U)∨) is isomorphic
to the polynomial ring A[x0, . . . , xr] where the xi form a basis for F(U)∨. Thus we have
commutative diagrams

PrSpec k(x) PrA P(F)

Spec k(x) Spec(A) X

π

where each square is a fiber product. Notice that if X itself is affine, say X = Spec(A),
then P(F) = PrA. We define the projectivization P(V ) of a vector space V analogously by

P(V ) = Proj(Sym(V ∨)).

The projectivization of vector bundles behave nicely with respect to injections and
surjections. For locally free sheaves E , F and G, if the morphism E ↪→ F is injective and
F ↠ G surjective, then P(E) ↪→ P(F) is injective and P(F) ↠ P(G) surjective. Moreover,
if E and E ′ are locally free sheaves, then P(E) ≃ P(E ′) if and only if E ′ ≃ E ⊗ L for some
line bundle L [Har77, p. 170].

Proposition 3.1.4 ([Har77, p. 253]). Let Y be a scheme and let E be a locally free sheaf on
Y of rank r + 1. If X = P(E) and π : X → Y is the projection morphism, then

1. π∗OP(E)(l) ≃ Syml(E∨) for l ≥ 0

2. π∗OP(E)(l) = 0 for l < 0

3. Riπ∗(OP(E)(l)) = 0 for 0 < i < r and all l ∈ Z

4. Rrπ∗(OP(E)(l) = 0 for l > −r − 1
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Proof. To prove 1 and 2, we restrict to an open affine U ⊂ Y . Then π∗OP(E)(l)|π−1(U) ≃
OY (l)|U = Syml(OY (1)|U ) ≃ Syml(E∨|U ). Hence

π∗OP(E)(l) ≃ Syml(E∨),

and if l < 0, then the right hand side is zero since there are only positive graded pieces,
which proves 2. To prove 3 and 4, note that Riπ∗OP(E)(l) is the sheafification of the
presheaf defined by

U 7→ H i(p−1(U),OP(E)(l)|p−1(U)),

c.f. [Har77, p. 251]. The right hand side is equal to H i(P(E(U)),OP(E(U))(l)) which is
just the cohomology of an invertible sheaf on a projective space of dimension r − 1. We
know that these are all zero for 0 < i < −r − 1 which proves 3. By Serre duality they
are also zero for i = r whenever l > −r − 1, which proves 4. ■

Proposition 3.1.5. Let f : X → Y be a morphism of smooth projective varieties, F a
coherent sheaf on X and L a locally free sheaf on Y . Then

H i(X,F ⊗ f∗L) ≃ H i(Y,Rf∗F ⊗ L).

Proof. Take a flasque resolution 0 → F ⊗ f∗L → I•. We know that

RΓ(X,F ⊗ f∗L) = RΓ(Y,Rf∗(F ⊗ f∗L).

By taking cohomology on the left hand side we get

RiΓ(X,F ⊗ f∗L) = H i(Γ(X, I•)) = H i(X,F ⊗ f∗L).

Using the fact that pushforward preserves flasque and flasque is adapted to the global
sections functor, we take cohomology on the right hand side to get

RiΓ(Y,Rf∗(F ⊗ f∗L) = RiΓ(Y, f∗(I•)) = H i(Y,Rf∗(F ⊗ f∗L)).

Lastly, the projection formula tells us that Rf∗(F ⊗ f∗L) ≃ Rf∗F ⊗ L. ■

Corollary 3.1.6. Let Y be smooth projective and X = P(E) for a locally free sheaf E of
rank r + 1 on Y and let π : X → Y be the projection morphism. Then for a locally free
sheaf L on Y we have

H i(X,OX(l) ⊗ π∗L) ≃ H i(X,Syml E∨ ⊗ L)

for l ≥ 0. The cohomology groups vanish for 0 < l < −r − 1.

Proof. From Proposition 3.1.4 we know that Rπ∗OX(l) = Syml E∨ for l ≥ 0 and
Rπ∗OX(l) = 0 for 0 < l < −r− 1. Then the corollary follows from Proposition 3.1.5. ■

3.2 Grassmanians

Given a vector space V of dimension n, we can consider the set of all linear subspaces
of a given dimension. Grassmannians are projective varieties that parameterize such
subspaces. The points of the Grassmannian G(k, n) can be described as the set

G(k, n) = {[L] : L ⊂ V is a linear subspace of dimension k}.
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The Grassmannian is a projective variety and can be embedded into projective space via
the Plücker embedding [EH16, p. 90]. A point [L] ∈ G(k, n) defines a linear subspace
L ⊂ V . Then the orthogonal space of L is the space

L⊥ = ker(V ∨ → L∨).

Sending L to its orthogonal space L⊥ ⊂ V ∨ defines an isomorphism

G(k, n) ≃−→ G(n− k, n).

We can think of the elements of G(k, n) either as k-dimensional linear subspaces of V or
k − 1-dimensional linear subspaces of Pn−1. With our convention of the projectivization
of vector spaces we have P(V ) = G(1, n) and P(V ∨) = G(n− 1, n).

3.2.1 Sheaves Associated to Grassmannians

Let OG denote the structure sheaf of G(k, n). Then we can form a bundle V ⊗ OG →
G(k, n) called the tautological bundle. The fibers over points on G(k, n) are isomorphic
to V . The tautological bundle has a subbundle S of rank k whose fibers over points
[L] ∈ G(k, n) are isomorphic to the subspace L ⊂ V [EH16, p. 95]. Since S is a subbundle
of the tautological bundle, we get a short exact sequence

0 → S → V ⊗ OG → Q → 0,

where Q is the quotient. We call S and Q the universal subbundle and universal quotient
bundle, respectively.

3.3 Quotients and Hilbert Schemes of Points

3.3.1 Quotients

Let X be a variety and G a group. Denote by q : X → X/G the quotient map of X by
G.

Definition 3.3.1. [Har95, p. 123] We call X/G the quotient of X by G if any regular map
f : X → Y factors through q if and only if it is invariant under the action of G, that is if
f(x) = f(gx) for all x ∈ X and all g ∈ G.

The quotient does not always exist as a variety. However, if we take the quotient
of X by a finite group G it does always exist. The case of G finite is the one we are
interested in. Consider the affine case where X = Spec(A) for a ring A and G is a finite
group. We can form the G-invariant ring of A by

AG = {f ∈ A : gf = f for all g ∈ G}

and the quotient is given by X/G = Spec(AG).
For a variety X we define the variety SymnX to be the quotient of Xn by the

symmetric group Sn which acts on Xn by permutation of the coordinates. The points
of SymnX are cycles of permutations of the points of Xn. They can be represented by
formal sums ∑i ni[pi] such that ∑ni = n where pi ∈ X and the ni are positive integers.
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Example 3.3.2. Let X = Spec k[x]. Then Xn = Spec(k[x]⊗n) = Spec k[x1, . . . , xn] and
SymnX = Spec(k[x1, . . . , xn]Sn). The natural homomorphism

ϕ : k[s1, . . . , sn] → k[x1, . . . , xn]Sn

where si denotes the symmetric functions in the xi is an isomorphism and we conclude
that

Symn(A1) ≃ An.

Similarly, one can show that Symn P1 = Pn.

Example 3.3.3. Let (x, y) be the coordinates on P2 × P2, so x = (x0 : x1 : x2) and
y = (y0 : y1 : y2). Consider the map

f : P2 × P2 P5

(x, y) (xiyj + xjyi)

for 0 ≤ i ≤ j ≤ 2. Since f is given by homogeneous polynomials on the coordinates
and is invariant under scaling, it defines a projective morphism of schemes. It is S2-
equivariant so it f factors through the universal quotient Sym2 P2 of P2. We get an
injection i : Sym2 P2 ↪→ P5, so the image of f is isomorphic to Sym2 P2 and is cut out by
the zero locus of the homogeneous degree 3 polynomial defined by the determinant of
the matrix

M =

 2x0y0 x0y1 + x1y0 x0y2 + x2y0
x1y0 + x0y1 2x1y1 x1y2 + x2y1
x2y0 + x0y2 x2y1 + x1y2 2x2y2.


Thus we can embed Sym2 P2 as a 4-dimensional closed subscheme of P5.

3.3.2 Hilbert Schemes of Points

Given a scheme X, we would like to study its closed subschemes. The closed and proper
subschemes of X can be parametrized in a way that gives the parametrization itself the
structure of a scheme. The resulting scheme is the Hilbert scheme of X. We give the
definition of a general Hilbert scheme as presented in [Nak99, p. 5]. However we will
quickly turn our attention to the Hilbert schemes of points, that is those that parametrize
zero-dimensional closed subschemes of X.

Let X be a projective scheme with an ample line bundle O(1). For a sheaf F on X,
define the Hilbert polynomial of F as

PF (m) = χ(F ⊗ OX(m)) =
∑
i≥0

(−1)i dimkH
i(X,F ⊗ OX(m)).

For a scheme T let Z ι
↪−→ X×T be a closed subscheme such that the projection π : Z → T

is flat. For a point t ∈ T , denote by Zt = π−1({t}) the fiber of π at t and define the
Hilbert polynomial at t as

Pt(m) = χ(OZt ⊗ OX(m)).

Since π is flat, the Hilbert polynomial at t takes the same value for every t ∈ T if T is
connected. Define the contravariant functor

HilbPX : Sch → Set
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from the category of schemes to the category of sets by

HilbPX(T ) = {Z ⊂ X × T | π : Z → T is flat and Pt(m) = P for all t ∈ T}.

This functor defines the Hilbert scheme HilbPX by the following theorem.

Theorem 3.3.4. [Gro95] The functor HilbPX is representable by a projective scheme
HilbP X.

The degree of the Hilbert polynomial is the maximal dimension of the subschemes it
parametrizes. Thus for a constant Hilbert polynomial, the above functor will parametrize
zero-dimensional subschemes. The Hilbert scheme of points is defined to be exactly this
scheme.

Definition 3.3.5. For a projective scheme X we define the Hilbert scheme of n points of X
denoted by HilbnX as the projective scheme representing the functor HilbnX .

If T is just a point then the set HilbnX(T ) describes the points of HilbnX. Indeed, if
Z

ι
↪−→ X × T is a closed subscheme and π : Z → T is the flat projection, then OZT

= OZ

and n = χ(OZ ⊗ OX(m)). Since Z is zero-dimensional it is supported in finitely many
points and we define the length of Z as

len(Z) =
∑
p

dimkH
0(Z,OZ,p) = dimkH

0(Z,OZ),

where the sum is taken over all p ∈ supp(Z). If Z ∈ HilbnX then len(Z) = n. If
we let Z ⊂ X be the closed subscheme supported in n distinct points x1, . . . , xn ∈ X,
then OZ = ⊕n

i=1 k(xi), where k(xi) denotes the skyscraper sheaf at xi and we see that
len(Z) = n. The Hilbert scheme of points has a map

ϕ : HilbnX SymnX

Z
∑
p len(OZ,p)[p].

This map defines a morphism of schemes, called the Hilbert-Chow morphism [Fan+05].

Proposition 3.3.6. [Fan+05, Theorem 7.3.4] If X is a nonsingular quasiprojective surface,
then the Hilbert-Chow morphism Hilbn(X) → Symn(X) is a resolution of the singularities
of Symn(X).

Remark 3.3.7. If X is smooth of dimension one then SymnX is smooth and the Hilbert-
Chow morphism is an isomorphism.

Example 3.3.8. The variety Sym2 P2 is singular along the image of the diagonal ∆ ⊂ P2×P2

by the quotient map. The Hilbert scheme Hilb2 P2 is a resolution of the singularities of
Sym2 P2 and Bl∆ Sym2 P2 ≃ Hilb2 P2.

Hilb2 P2 as a Projective Bundle

The variety Hilb2 P2 has a morphism ϕ : Hilb2 P2 → G(2, 3) given by sending a closed
zero-dimensional subscheme Z of length 2 to the unique projective line containing Z
[BOR20]. This projective line defines a point in (P2)∨ = G(2, 3). If Z is supported in two
different points p1 and p2, then Z is mapped to the projective line H ∈ G(2, 3) spanned
by p1 and p2. If p1 and p2 coincide, then they specify a tangent direction to the point
p1 = p2 which again defines a unique projective line H ∈ G(2, 3) [Fan+05, p. 169]. The
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fibers of ϕ are given by the set of pairs of points on a given projective line. So for a
H ∈ G(2, 3) the fiber is given by

ϕ−1(H) = P(Sym2 H) = Sym2 P(H) ≃ P2.

Thus Hilb2 P2 has the structure of a P2-fibration over G(2, 3). We want to describe
Hilb2 P2 as a projective bundle P(E) for a locally free sheaf E on G(2, 3) of rank 3.
Specifying a point of P(E) should be equivalent to specifying a projective line P(H) and
a pair of points on the line. So we can describe the points of P(E) as the set

Y = {(p1 + p2,H) ∈ Sym2 P2 ×G(2, 3) : pi ∈ P(H)}.

Now, Y has a projection to G(2, 3), and the fiber of a point H is all pairs of points on
P(H), which are in bijection with the points of Sym2 P(H). On G(2, 3) the universal
subbundle S parameterizes the 2-dimensional linear subspaces, which are 1-dimensional
projective spaces. So the fibers S|H are exactly the projective lines. We see that

Sym2 S|H = Sym2 P1 ≃ P2,

so by setting E = Sym2 S we obtain the desired projective bundle P(E), and one can
show that P(E) ≃ Hilb2 P2 is in fact an isomorphism of schemes.

3.4 The Picard Group

Invertible sheaves will play a central role when finding decompositions of the derived
category of a variety. In this section we briefly describe the invertible sheaves of projective
bundles.

Definition 3.4.1. On a ringed space X we define the Picard group of X denoted Pic(X)
to be the abelian group of isomorphism classes of locally free shaves under the tensor
operation.

If f : X → Y is a morphism of ringed spaces then the pullback f∗L of an invertible
sheaf L on Y is again invertible and it defines a group homomorphism

f∗ : Pic(Y ) → Pic(X).

Example 3.4.2. [Har77, p. 145] The invertible sheaves on Pn are, up to isomorphism, given
by OPn(m) for some m ∈ Z. The assignment OPn(m) 7→ m gives an isomorphism

Pic(Pn) ≃−→ Z.

Proposition 3.4.3. [Har77, p. 170] Let Y by a scheme and X = P(E) a projective bundle
over Y . Then

Pic(X) ≃ Z ⊕ Pic(Y )
and the invertible sheaves on X are of the form OX(i)⊗π∗O(j), where π is the projection
morphism.

Example 3.4.4. (Pn × Pm) By Proposition 3.4.3 we have Pic(Pn × Pm) ≃ Z ⊕ Z. All the
invertible sheaves on Pn × Pm are of the form p∗OPn(i) ⊗ q∗OPm(j) for i, j ∈ Z where p
and q are the two projections.

Example 3.4.5. By the identification of Hilb2 P2 with the projective bundle P(E) over
G(2, 3) = P2, the Proposition 3.4.3 says that Pic(Hilb2 P2) = Z ⊕ Z, and the invertible
sheaves are of the form OP(E)(i) ⊗ π∗OP2(i) for i, j ∈ Z.
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3.5 Cohomology of Invertible Sheaves on Projective Bundles

3.5.1 A Künneth Formula

In this section, we prove the Künneth formula for the fiber product of two projective
schemes over an algebraically closed field. Let X and Y be two such schemes, and
consider the diagram

X × Y X

Y Spec k.

p

q f

g

Given a pair of coherent sheaves F and G on X and Y respectively, we can form the
sheaf F ⊠ G = p∗F ⊗ q∗G on X × Y . The Künneth formula gives a way to calculate the
cohomology groups H i(X × Y,F ⊠ G) by knowing the cohomology groups of X and Y
with respect to this pair of sheaves.

Theorem 3.5.1. (Künneth Theorem) Let X and Y be smooth projective schemes over a
field k, and let F and G be coherent sheaves on X and Y , respectively. Let p and q be as
in the diagram above. Then

Hn(X × Y,F ⊠ G) ≃
⊕
i+j=n

H i(X,F) ⊗Hj(Y,G).

Proof. Since pushforward to a point defines the same functor as taking global sections,
we have that R(f ◦ p)∗(−) = RΓ(X × Y,−). Since f and g are flat, separated morphisms
of finite type, we know by Corollary 2.6.7 that cohomology commutes with flat base
change. In other words, we have

f∗Rg∗(G) ≃ Rp∗(q∗G).

By the symmetry of the diagram, we also have

g∗Rf∗(F) ≃ Rq∗(p∗F).

Using this and the derived projection formula (Lemma 2.6.3), we have

RΓ(X × Y,F ⊠ G) =R(f ◦ p)∗(p∗F ⊗ q∗G)
≃Rf∗(F ⊗ Rp∗(q∗G))
≃Rf∗(F ⊗ f∗(Rg∗G))
≃Rf∗F ⊗ Rg∗G
=RΓ(X,F) ⊗ RΓ(Y,G).

Now, RΓ(X × Y,F ⊠ G) is a complex of k-vector spaces, and since every complex of
vector spaces splits, we have a quasi-isomorphism

RΓ(X × Y,F ⊠ G) ≃
⊕
n

Hn(X × Y,F ⊠ G)[−n], (3.1)

where the complex on the right has trivial differentials. For A,B ∈ D(Spec k) we define
A⊗L B as the total complex of the double complex
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...
...

...

· · · Ai−1 ⊗Bi+1 Ai ⊗Bi+1 Ai+1 ⊗Bi+1 · · ·

· · · Ai−1 ⊗Bi Ai ⊗Bi Ai+1 ⊗Bi · · ·

· · · Ai−1 ⊗Bi−1 Ai ⊗Bi−1 Ai+1 ⊗Bi−1 · · ·

...
...

...

di−1
A ⊗1 di

A⊗1

di−1
A ⊗1

(−1)i−1⊗di
B

di
A⊗1

(−1)i⊗di
B (−1)i+1⊗di

B

di−1
A ⊗1

(−1)i−1⊗di−1
B

di
A⊗1

(−1)i⊗di−1
B (−1)i+1⊗di−1

B

where (A ⊗ B)i = ⊕
p+q=iA

p ⊗ Bq. Replacing A and B with ⊕
iH

i(A)[−i] and⊕
iH

i(B)[−i] respectively, the double complex will have trivial differentials and entries
H i(A) ⊗Hj(B). Hence, the total complex will have trivial differentials, and each term
will have the form ⊕

i+j=n
H i(A) ⊗Hj(B).

It follows that what sits in degree n of the complex ⊕iH
i(X×Y,F ⊠G)[−i] is isomorphic

to ⊕
i+j=n

H i(X,F) ⊗Hj(Y,G).

■

Example 3.5.2. (Cohomology of invertible sheaves on P2 × P2) Let X = P2 × P2,
Y = P2 and let p and q denote the first and second projections, respectively. We
have seen that Pic(X) ≃ Z ⊕ Z and that the invertible sheaves on X are given by
OX(i, j) = OY (i) ⊠ OY (j) for i, j ∈ Z. From the Künneth formula, we have

Hn(X,OX(i, j)) =
⊕
l+k=n

H l(Y,OY (i) ⊗Hk(Y,OY (j)).

so we can recover the cohomology groups of X by knowing the cohomology groups of Y .
For projective space, we have the perfect pairing

H0(Pn,OPn(m)) ×Hn(Pn,OPn(−m− n− 1)) −→ C (3.2)

by the isomorphism (2.4) in (Example 2.6.5). Since all the intermediate cohomology of
projective space vanish, we only have to consider the cases where l and k are equal to
either 0 or 2. Consequently, P2 × P2 can have cohomology only in even degree. By the
perfect pairing (3.2), we know that if i ≥ −2 then H2(P2,OP2(i)) = 0. We have

H0(P2 × P2,O(i, j)) =

0 if either i < 0 or j < 0,
C(i+2

2 ) ⊗ C(j+2
2 ) otherwise .

In degree 2, we have

H2(P2 × P2,O(i, j)) =H0(P2,O(i)) ⊗H2(P2,O(j)) (3.3)

30



3.5. Cohomology of Invertible Sheaves on Projective Bundles

⊕H2(P2,O(i)) ⊗H0(P2,O(j)). (3.4)

We know that Hk(P2,O(i)) vanishes for k = 0 when i < 0, while for k = 2 it vanishes for
i ≥ −2. So in any case, either the first or second term in (3.3) will vanish. If 0 > i ≥ −2
then both terms vanish. We get

H2(P2 × P2,O(i, j)) =


0 if 0 > i ≥ −2 or 0 > j ≥ −2,
C(i+2

2 ) ⊗ C(−j−1
2 ) if i > 0 and j < −2,

C(−i−1
2 ) ⊗ C(j+2

2 ) if i < −2 and j > 0.

Lastly, in degree 4 we get

H4(P2 × P2,O(i, j)) =

0 if i ≥ −2 or j ≥ −2,
C(−i−1

2 ) ⊗ C(−j−1
2 ) otherwise .

Example 3.5.3 (Cohomology of invertible sheaves on Sym2 P2). We have seen that
X = Sym2 P2 can be embedded in Y = P5 as the image of an S2-equivariant morphism
from P2 × P2, and that the image of this morphism is cut out by a degree 3 homogenous
polynomial F . Let P5 = Proj(R) for the graded ring R = C[x0, . . . , x5]. If I = (F ) is the
ideal generated by F , then the sequence

0 → R(−3) ·F−→ R −→ R/I → 0

is a short exact sequence of graded rings. Applying the graded tilde functor, we get a
short exact sequence

0 → OY (−3) → OY → OX → 0

where OX denotes the pushforward by the inclusion of the structure sheaf on X. We can
tensor this sequence by an invertible sheaf OY (k) to get the sequence

0 → OY (k − 3) → OY (k) → OX(k) → 0.

This gives a long exact sequence on cohomology

· · · → H i(Y,OY (k − 3)) → H i(Y,OY (k)) → H i(X,OX(k))
→ H i+1(Y,OY (k − 3) → H i+1(Y,OY (k)) → · · · .

Since H i(Y,OY (l)) = 0 for all 0 < i < 5 and all l, and H5(X,OX(k)) = 0 since X has
dimension 4, we have just two short exact sequences to consider, namely

0 → H0(Y,OY (k − 3)) → H0(Y,OY (k)) → H0(X,OX(k)) → 0 (3.5)

and
0 → H4(X,OX(k)) → H5(Y,OY (k − 3)) → H5(Y,OY (k)) → 0. (3.6)

Lets consider the global sections first. If k < 0, everything vanishes. If 0 < k < 3, the
first term vanishes and we get an isomorphism H0(X,OX(k)) ≃ H0(Y,OY (k)). If k ≥ 3
then (3.5) is isomorphic to

0 → C(k+2
5 ) → C(k+5

5 ) → H0(X,OX(k)) → 0.
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Hence, H0(X,OX(k)) ≃ C(2−k
5 )−(−1−k

5 ) since it is a short exact sequence of finite
dimensional vector spaces over C. As for (3.6), we can do a similar analysis. By
the perfect pairing (3.2), the sequence is isomorphic to

0 → H4(X,OX(k)) → H0(Y,OY (−k − 3))∨ → H0(Y,OY (−k − 6))∨ → 0.

If k ≥ −2 everything vanishes. If −2 > k > −6 the last term vanishes so we have an
isomorphism H4(X,OX(k)) ≃ H0(Y,OY (−k − 3))∨. If k ≤ −6, then (3.6) is isomorphic
to

0 → H4(X,OX(k)) → C(2−k
5 ) → C(−1−k

5 ) → 0

so H4(X,OX(k)) ≃ C(2−k
5 )−(−1−k

5 ). To summarize, we have

H0(X,OX(k)) =


0 if k < 0,
C(k+5

5 ) if 0 < k < 3,
C(k+5

5 )−(k+2
5 ) if 3 ≤ k.

and

H4(X,OX(k)) =


0 if k ≥ −2,
C(2−k

5 ) if − 2 > k > −6,
C(2−k

5 )−(−1−k
5 ) if k ≤ −6.

Example 3.5.4. (Cohomology of invertible sheaves on P(Sym2 S)) Let X = P(Sym2 S),
Y = G(2, 3) and let π : X → Y be the projection morphism. The invertible sheaves on
X are of the form

OX(k) ⊗ π∗OY (j)

for i, j ∈ Z. From 3.1.6 we know that for k ≥ 0 we have isomorphisms

H i(X,OX(k) ⊗ π∗OY (j)) ≃ H i(Y, Symk(Sym2 S∨) ⊗ OY (j)).

If k = 0 then these are just the cohomology groups of the twists O(j) on P2. To treat
the cases k > 0, consider the exact sequence

0 → S → O⊕3
Y → Q → 0.

We dualize and get
0 → Q∨ → O⊕3

Y → S∨ → 0.

Since Q = OY (1) has rank one, we can apply Proposition 3.1.1 to get an exact sequence

0 → Q∨ ⊗ O⊕3
Y → Sym2 O⊕3

Y → Sym2 S∨ → 0.

We have Sym2 O⊕3
Y ≃ O⊕6

Y and Q∨ ⊗ O⊕3
Y ≃ OY (−1)⊕3. So If k = 1, then

H i(X,OX(1)) ≃ H i(Y, Sym2 S∨) ≃ H i(Y,O⊕6
X )

which are zero for i > 0 and k⊕6 for i = 0. Now assume k > 2. Again by Proposition 3.1.1
we get a long exact sequence

0 → (Q∨)⊗3 → ∧2(Q∨)⊕3 ⊗ Symk−2O⊕6
Y → (Q∨)⊕3 ⊗ Symk−1 O⊕6

Y

→ Symk O⊕6
Y → Symk(Sym2 S∨) → 0.
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For simplicity, rewrite the sequence as

0 → A
i−→ B

h−→ C
g−→ D

f−→ E → 0.

The cohomology groups of A, B, C and D are not hard to compute. Since

Symk O⊕6
Y ≃ O⊕(k+5

5 )
Y

we get
H i(Y,D) = H i(Y,OY )⊕(k+5

5 )

which only has cohomology in degree zero. We have H i(Y,A) ≃ H i(Y,OY (−3)) which
has cohomology only in degree 2. Since

C = (Q∨)⊕3 ⊗ Symk−1 O⊕6
Y ≃ OY (−1)⊕3 ⊗ OY (−1)⊕(4+k

5 ),

we have
H i(Y,C) = H i(Y,OY (−2))⊕3·(4+k

5 )

which is zero for all i. By the identification ∧2OY (−1)⊕3 ≃ OY (−2)⊕3 it is clear that
H i(Y,B) = 0 for all i also. The cohomology is summarized in table 3.1.

Table 3.1: Cohomology Groups

i 0 1 2

H i(Y,A) 0 0 C

H i(Y,B) 0 0 0

H i(Y,C) 0 0 0

H i(Y,D) C⊕(k+5
5 ) 0 0

Now, we split the sequence into short exact sequences

0 A B im h 0

0 ker g C im g 0

0 ker f D E 0.

i

f

From the long exact sequences on cohomology, we get

H0(Y, ker f) = H0(Y, im g) ≃ H1(Y, ker g) = H1(Y, im h) ≃ H2(Y,A) ≃ C

and

H1(Y, ker f) = H1(Y, im g) ≃ H2(Y, ker g) = H2(Y, im h) ≃ H3(Y,A) = 0.

So we get a short exact sequence of C-vector spaces

0 → H0(Y, ker f) → H0(Y,D) → H0(Y,E) → 0,
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thus
H0(Y,E) ≃ C⊕(5+k

5 )−1.

Further, we have

H1(Y,E) ≃ H2(Y, ker f) = H2(Y, im g) ≃ H3(Y, ker g) = 0

and
H2(Y,E) ≃ H3(Y, ker f) = 0.

However, introducing twists OY (j) in the long exact sequence quickly complicates things.
The isomorphisms above rely on C having no cohomology in any degree and B and D
having no cohomology in degree 1 and 2, which will not be the case when tensoring with
OY (j) for j ̸= 0.
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Chapter 4

Decompositions of Derived Categories

Before we can study homological projective duality, we will need a certain type of
decomposition of the derived categories of the varieties involved, called a Lefschetz
decomposition. This chapter is devoted to studying decompositions, both in the general
case of triangulated categories as well as in the specific case of the derived category of a
smooth projective variety. From here on out we will not distinguish notation between a
functor and its derived functor. It should be clear from context whether it is derived or
not.

4.1 Semi-orthogonal Decompositions

Recall that a subcategory S of a category C is called full if HomS(A,B) = HomC(A,B)
for all objects A,B ∈ S.

Definition 4.1.1. [Kuz07, Definition 2.1](Semi-orthogonal decomposition) Let T be a
triangulated category, and let A1, . . . ,An be a collection of full triangulated subcategories
such that for any Ai ∈ Ai and any Aj ∈ Aj , we have HomT (Ai, Aj) = 0 for all
0 < j < i ≤ n. Then ⟨A1, . . . ,An⟩ is a semi-orthogonal collection of T . If for any T ∈ T
there exist a chain of morphisms

0 = Tn → Tn−1 → · · · → T1 → T0 = T

such that the cone of Tk−1 → Tk is contained in Ak then ⟨A1, . . . ,An⟩ is a semi-orthogonal
decomposition of T .

If T = ⟨A,B⟩ is a two term semi-orthogonal decomposition, then for any T there is a
chain of morphisms

0 → T1 → T.

The cone of the morphism 0 → T1 which of course is quasi-isomorphic to T1 is an object
of B, and the cone of the morphism T1 → T is an object of A. In other words, any T ∈ T
fits into a distinguished triangle

B → T → A → B[1]

with A ∈ A and B ∈ B.
Given a triangulated category T and a full triangulated subcategory A ⊂ T , we can

form the left orthogonal category

A⊥ := {F ∈ T : HomT (A[n], F ) = 0 for all A ∈ A and n ∈ Z}
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of A. Similarly, the right orthogonal category of A is given by

⊥A := {F ∈ T : HomT (F,A[n]) = 0 for all A ∈ A and n ∈ Z}.

If A is admissible, i.e. if the inclusion functor has a left and right adjoint, then
T = ⟨A⊥,A⟩ and T = ⟨A,⊥ A⟩ are semi-orthogonal decompositions of T . The
semi-orthogonal decompositions we will be concerned with when studying homological
projective duality are those given by an exceptional collection.

4.2 Exceptional Collections

Definition 4.2.1. [Huy06, Definition 1.57](Exceptional Collection) Let T be a k-linear
triangulated category. We say that E ∈ T is an exceptional object if HomT (E,E[n]) = k
for n = 0 and 0 otherwise. A sequence E1 . . . , Em of exceptional objects is called an
exceptional collection if HomT (Ei, Ej [n]) = 0 for all j < i and all n ∈ Z.

Given a category T and a collection of exceptional objects E1, . . . , En we can
generate a full triangulated subcategory C ⊂ T by the exceptional objects. We write
C = ⟨E1, . . . , En⟩ for this category, and it is generated by the exceptional objects under
the following operations.

1 Sums: For any two objects A,B ∈ C let A⊕B ∈ C.

2 Shifts: For any object A ∈ C let T (A) ∈ C, where T denotes the shift functor.

3 Cones: For any two objects A,B ∈ C and any f ∈ HomT (A,B) let C(f) ∈ C, where
C(f) denotes the cone of f .

We say that the exceptional collection generates all of T if the smallest full triangulated
subcategory containing the exceptional objects which is closed under the above operations
is equivalent to T , in which case we write T = ⟨E1, . . . , En⟩, c.f. [Căl05, p. 10].

Definition 4.2.2. Let T be a k-linear triangulated category, and let E = {E1 . . . , Em} be
an exceptional collection of objects of T . We say that E is full if ⟨E⟩⊥ = 0, in which
case T = ⟨E⟩.

Remark 4.2.3. Note that if T is the derived category of some abelian category A, T can
have a full exceptional collection of objects of A considered as objects of T by the fully
faithful inclusion functor. In fact, this will be the case for the varieties we will consider.

The simplest examples of full exceptional collections in the algebraic geometry setting
are those that decompose the derived category of projective space.

Example 4.2.4. (Beilinson’s collection on Pn) Consider the derived category D(Pn). As it
turns out, this category can be generated by n+ 1 invertible sheaves on Pn, namely the
sheaves O,O(1), . . . ,O(n). In other words, the sheaves form a full exceptional collection
for D(Pn), hence

D(Pn) = ⟨O,O(1), . . . ,O(n)⟩.

One easily checks that these are exceptional objects. For 0 ≤ i < j ≤ n and all k ∈ Z, we
have

HomD(Pn)(O(i),O(i)) ≃ Ext0(O(i),O(i)) ≃ Hom(O,O) = Γ(Pn,O) = k.
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The exceptional objects also form an exceptional collection since

HomD(Pn)(O(i),O(j)[k]) = Extk(O(i),O(j))
= Extk(O,O(i) ⊗ O(j)∨)
= Hk(Pn,O(i) ⊗ O(j)∨) = 0

whenever 0 < i− j < −n− 1. What remains to show is that C = ⟨O,O(1), . . . ,O(n)⟩ is
full, i.e. that C⊥ is trivial. We will later see that it suffices to show that the exceptional
collection generates all line bundles on X. So we solve the easier problem of showing that
the objects of C generates all line bundles of X. We confine to the case of P1 and show
that any line bundle is generated as an object of D(P1) by the collection {O,O(1)}. Let
P1 = Proj(R) with R = C[x, y]. Then the sequence

0 → R
(−y,x)−−−−→ R(1) ⊕R(1)

(x
y)−−→ R(2) → R(2)/(x, y) → 0

is an exact sequence of graded rings. It is just the Koszul resolution from Example 3.1.3
on P1. Applying the graded tilde functor gives an exact sequence

0 → O → O(1) ⊕ O(1) → O(2) → 0. (4.1)

Since a short exact sequence gives a distinguished triangle

O → O(1) ⊕ O(1) → O(2) → O[1]

in the derived category by the inclusion functor, it follows that

C(O → O(1) ⊕ O(1)) ≃ O(2)

is a quasi-isomorphism, hence O(2) is the cone of a morphism of objects in the collection.
More generally we have C(O(n−1) → O(n)⊕O(n)) ≃ O(n+1), so all the positive twists
are generated inductively by the collection. As for the negative twists, denote by A• the
exact complex (4.1) and tensor by O(−1). Then truncating gives a quasi-isomorphism

τ≤0(A•) : . . . 0 O(−1) 0 0 . . .

σ≥0(A•) : . . . 0 O ⊕ O O(1) 0 . . .

Inductively we obtain all the negative twists, hence Beilinson’s collection on P1 generates
all the line bundles. The argument for P1 generalizes to Pn by the Koszul sequence from
Example 3.1.3 given by

0 → O → O(1)⊕n+1 → O(2)⊕(n+1
2 ) → · · · → O(n)⊕n+1 → O(n+ 1) → 0.

Hence the twisting sheaf O(n+1) on Pn fits into a resolution by sums of the first n twists.
If A• denotes the corresponding complex, then the morphism σ≤n(A•) → σ≥n+1(A•)[−1]
pictured in the diagram

σ≤n(A•) : . . . O(n− 1)⊕(n+1
2 ) O(n)⊕n 0 . . .

σ≥n+1(A•)[−1] : . . . 0 O(n+ 1) 0 . . .
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is a quasi-isomorphism. Thus O(n + 1) is generated by the sequence. Analogously to
the case of P1 we obtain all the positive twists inductively. The line bundle O(−1) is
generated by the quasi-isomorphism τ≤0(A• ⊗ O(−1)) → σ≥0(A• ⊗ O(−1)). Similarly,
all the negative twists are generated inductively by twisting down the Koszul sequence.
The same argument will show that

D(Pn) = ⟨O(d),O(d+ 1), . . . ,O(d+ n)⟩

is a semi-orthogonal decomposition of D(Pn) for all d ∈ Z.

Lemma 4.2.5. A fully faithful functor F : C → D takes exceptional collections to
exceptional collections.

Proof. Let ⟨E1, . . . , En⟩ be a collection of exceptional objects Ei of C. Then

HomD(F (Ei), F (Ej)[k]) = HomC(Ei, Ej [k])

for all i, j and all k ∈ Z. Hence F (E1), . . . , F (En) is an exceptional collection. ■

Lemma 4.2.6. Let X = P(E) for a locally free sheaf E on a base scheme Y and denote by
π : X → Y the projection. Then the functor

π∗ : D(Y ) → D(X)

is fully faithful.

Proof. Let G,F ∈ D(Y ). Then

Hom(π∗G, π∗F) = Hom(G, π∗π
∗F)

= Hom(G, π∗(π∗F ⊗ OX))
= Hom(G,F ⊗ π∗OX)
= Hom(G,F ⊗ OY ) = Hom(G,F).

Here we have used adjunction of pushforward and pullback, the projection formula from
Lemma 2.6.3 and the fact that π∗OX = OY by Proposition 3.1.4. ■

The question of whether an exceptional collection is full is difficult to answer in
general. We can however give criteria on the length of a full exceptional collection in the
cases where we know the K0-theory of the variety.

4.3 K-theory

Definition 4.3.1. For a smooth projective variety X we define the K0-theory of X denoted
K0(X) as the quotient of the free abelian group generated by isomorphism classes of
coherent sheaves on X by the relation that [E ] = [F ] + [G] if there is an exact sequence

0 → F → E → G → 0

of coherent sheaves E , F and G. We define K0(D(X)) analogously by taking quasi-
isomorphism classes of complexes with the relation that [E•] = [F•] + [G•] if

F• → E• → G• → F•[1]

is a distinguished triangle.
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An exact functor F : C → D gives rise to a homomorphism K0F : K0(C) → K0(D) defined
by K0([F ]) = [F (F)]. If D(X) admits a two term semi-orthogonal decomposition ⟨A,B⟩,
then any object F ∈ D(X) fits uniquely into a distinguished triangle FB → F → FA for
objects FA ∈ A and FB ∈ B. Consider the exact functors

iA : A → D(X)

iB : B → D(X)

given by the inclusions and denote by K0iA and K0iB the homomorphisms on K0-theory
arising from these functors. Since any F ∈ D(X) fits into a distinguished triangle
FB → F → FA for unique FA and FB, we also get projection functors

pA : D(X) → A

pB : D(X) → B

defined by pA(F) = FA and pB(F) = FB. Similarly, denote by K0pA and K0pB the
homomorphisms induced by these projection functors.

Proposition 4.3.2. The homomorphism ϕ := K0iA ⊕K0iB given by

ϕ : K0(A) ⊕K0(B) K0(D(X))

([FA], [FB]) [FA] + [FB]

is an isomorphism.

Proof. We have
K0pA ◦K0iA = idA

K0pB ◦K0iB = idB

and
K0pA ◦K0iB = K0pB ◦K0iA = 0.

Let (α, β) ∈ K0(A) ⊕K0(B) and assume ϕ(α, β) = 0. Then

K0pA(ϕ(α, β)) = (K0pA ◦K0iA)(α) + (K0pA ◦K0iB)(β) = α+ 0

implies that α = 0 since K0pA is a group homomorphism. Similarly,

K0pB(ϕ(α, β)) = (K0pB ◦K0iA)(α) + (K0pB ◦K0iB)(β) = 0 + β

implies that β = 0. Hence ϕ is injective. We have

(K0iA ◦K0pA +K0iB ◦K0pB)([F ]) = K0pA([FA]) +K0iB([FB])
= [FA] + [FB] = [F ].

So composing with the projections is the identity on K0(D(X)) and it follows that ϕ is
also surjective. Hence ϕ is an isomomorphism. ■

Proposition 4.3.3. For a smooth projective variety X we have

K0(D(X)) = K0(X).
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Proof. Consider ϕ : K0(X) → K0(D(X)) defined by [E ] 7→ [E•] where

E• : · · · → 0 → E → 0 → . . .

and E sits in degree 0. Let ψ : K0(D(X)) → K0(X) be defined by [F•] 7→∑
i(−1)i[H i(F•[−i])]. Then ϕ and ψ are inverses and respect the respective group

operations of K0(X) and K0(D(X)) [Stacks, Tag 0FCP]. ■

Theorem 4.3.4. Let X be a smooth projective variety and assume that E = ⟨E1, . . . , En⟩
is a full exceptional collection of D(X). Then

K0(D(X)) ≃ K0(⟨E1⟩) ⊕ · · · ⊕K0(⟨En⟩) ≃ Z⊕n.

Proof. We know from Proposition 4.3.2 that if D(X) admits a two term semi-orthogonal
decomposition ⟨A,B⟩, then

K0(D(X)) ≃ K0(A) ⊕K0(B).

Now, if ⟨E1, . . . , En⟩ is a full exceptional collection of D(X), then ⟨E1, ⟨E2, . . . , En⟩⟩ is a
semi-orthogonal decomposition. If we let B1 = ⟨E2, . . . , En⟩, then

K0(D(X)) ≃ K0(⟨E1⟩) ⊕K0(B1).

So if Bi = ⟨Ei+1, . . . , En⟩, then K0(Bi) ≃ K0(⟨Ei+1⟩) ⊕K0(Bi+1). We then have

K0(D(X)) ≃ K0(⟨E1⟩) ⊕K0(B1)
≃ K0(⟨E1⟩) ⊕ · · · ⊕K0(⟨Ei⟩) ⊕K0(Bi)
≃ K0(⟨E1⟩) ⊕ · · · ⊕K0(⟨En⟩).

It remains to show that K0(⟨Ei⟩) ≃ Z. It is clear that K0(Spec(k)) = Z since any two
k-vector spaces of the same rank are isomorphic, and

0 → kl → km → kn → 0

is exact only if m = l + n. Moreover, the exact equivalence

Φ : ⟨E⟩ D(Spec(k))

F
⊕

n∈Z Hom(E,F [n])[−n]

induces an isomorphism K0Φ : K0(⟨E⟩) ≃−→ K0(D(Spec(k))), so

K0(D(X)) ≃
n⊕
i=1

K0(⟨Ei⟩) ≃
n⊕
i=1

K0(D(Spec(k))) ≃
n⊕
i=1

K0(Spec(k)) ≃ Z⊕n.

■

As an immediate consequence we have the following condition on full exceptional
collections.

Corollary 4.3.5. Any two full exceptional collections of D(X) have the same length.

Proof. If E1, . . . , En and G1, . . . , Gm are full exceptional collections then

Z⊕n ≃ K0(D(X)) ≃ Z⊕m,

which implies that n = m. ■
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In other words, if D(X) has a full exceptional collection, then K0(X) = Z⊕n and n is
the length of the collection. So knowing the K0-theory of X is sufficient to say what the
length of a full exceptional collection of D(X) should be. Since we are concerned with
projective bundles, the following result will be useful for our applications.

Proposition 4.3.6. [Qui75, Thm. 2.1] Let E be a locally free sheaf on Pn of rank r. Then

K0(P(E)) = K0(Pn)⊕r = Z⊕(n+1)r.

4.4 Lefschetz Decompositions

To use the machinery of homological projective duality, we will need a decomposition
which has the form of a Lefschetz decomposition. This decomposition is defined specifically
for the derived category of a projective variety.

Definition 4.4.1 ([Kuz14, p. 6]). Let X be a smooth projective variety and let L be an
invertible sheaf on X. We call a semi-orthogonal decomposition of Db(X) a right Lefschetz
decomposition with respect to L if it has the form

D(X) = ⟨A0,A1 ⊗ L, . . . ,An ⊗ L⊗n⟩,

where the Ai are full subcategories of Db(X) such that An ⊂ An−1 ⊂ · · · ⊂ A0. If it has
the form

D(X) = ⟨Bn ⊗ L⊗−n,Bn−1 ⊗ L⊗−n+1, . . . ,B0⟩,

with the Bi full subcategories such that Bn ⊂ Bn−1 ⊂ · · · ⊂ B0, we call it a left Lefschetz
decomposition with respect to L. If the subcategories Ai (resp. Bi) are all equal, the
Lefschetz decomposition is called rectangular.

Example 4.4.2. Beilinson’s collection for Pn from example 4.2.4 can be written as a
right Lefschetz decomposition with respect to the invertible sheaf OPn(1) by letting
A0 = A1 = · · · = An = ⟨OPn⟩. We see that this is also rectangular.

4.4.1 Spanning Classes

In this section we introduce two classes of objects which are so called spanning classes.
They are useful for proving fullness of exceptional collections.

Definition 4.4.3. (Spanning Class) [Huy06, p. 20] A class of objects C ⊂ D(X) form a
spanning class of D(X) if Hom(A,B[i]) = Hom(B[i], A) = 0 for all A ∈ C, B ∈ D(X)
and all i ∈ Z implies that B ≃ 0.

Remark 4.4.4. Importantly, if an exceptional collection of D(X) generates all objects of
a spanning class of D(X), then it is full. By definition of a spanning class, the objects
with no morphisms to or from the shifted objects in the spanning class are trivial. So if
the exceptional collection generates all objects in the spanning class, any object in the
orthogonal must be trivial and the collection is therefore full.

For the derived category of a smooth projective variety, we will make use of two
spanning classes to show fullness of exceptional collections. These are line bundles and
the skyscraper sheaves.

Proposition 4.4.5. Let X be a smooth projective variety with an exceptional collection
C = ⟨E1, . . . , En⟩ that generates all the line bundles of X. Then C ⊥ = 0, i.e. the
collection is full.

41



Chapter 4. Decompositions of Derived Categories

Proof. We prove that for any E there is a line bundle L and some integer n ∈ Z such
that Hom(L[n], E) ̸= 0. This will show that the line bundles is a spanning class, and
in particular that the orthogonal C ⊥ is zero. For any E ∈ D(X) there is a minimal
l ∈ Z such that H i(E) ̸= 0. Now, replace E with E [l], i.e. shift E by [l] to get a complex
with no cohomology in negative degree. Then H0(E) = ker d0

E and we get a morphism
f : τ≤0(E) → E given by the morphism of complexes

τ≤0(E) : . . . 0 H0(E) 0 . . .

E : . . . 0 E0 E1 . . .

This gives a distinguished triangle

τ≤0(E) → E → C(f) → τ≤0(E)[1] (4.2)

where C(f) denotes the cone of f . It induces a long exact sequence on cohomology

· · · → H i(τ≤0(E)) → H i(E) → H i(C(f)) → H i+1(τ≤0(E)) → . . .

and since the complex τ≤0(E) has no cohomology in degrees i ̸= 0, the long exact sequence
gives an exact sequence

0 → H−1(E) α−→ H−1(C(f)) β−→ H0(τ≤0(E)) γ−→ H0(E) δ−→ H0(C(f)) → 0.

By construction of τ≤0(E), γ is an isomorphism which implies that β = δ = 0. Since we
have shifted E to have no cohomology in negative degree, H−1(E) = 0, implying that
α = 0. We get

H i(C(f)) = 0 for i ≤ 0,
H i(C(f)) = H i(E) for i ≥ 1.

We will need the following lemma to complete the proof:

Lemma 4.4.6. For any nonzero coherent sheaf F on a smooth projective scheme X, there
exists a line bundle L ∈ Pic(X) such that Hom(L,F) ̸= 0.

Proof. Since X is projective, it has an ample line bundle L. Then by definition, for any
coherent sheaf F there is an integer n0 so that F ⊗ L⊗n is globally generated for n ≥ n0.
Then Hom(OX ,L⊗n ⊗ F) ̸= 0, so Hom((L⊗n)∨,F) ̸= 0. ■

Assume L is a line bundle such that g : L → H0(E) is a nonzero morphism. Such an
L exists by Lemma 4.4.6. Then applying Hom(L,−) to the triangle (4.2) gives a long
exact sequence

· · · → Ext−1(L, C(f)) → Hom(L, τ≤0(E)) → Hom(L, E)
→ Hom(L, C(f)) → Ext1(L, τ≤0(E)) → Ext1(L, E) → . . .

We claim that Exti(L, C(f)) = Hom(L, C(f)[i]) = 0 for i ≤ 0. This follows from
the general fact that for any abelian category C and any two complexes A,B ∈ D(C)
such that H i(A) = 0 for i ≥ N and H i(B) = 0 for N < 0 for some N ∈ Z, we
have HomD(C)(A,B) = 0 [Huy06, p. 70]. In other words, if A has only cohomology
up to a certain degree and B has only cohomology in higher degree, then there are
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no morphism between them. In our case, we know that H i(C(f)) = 0 for i ≤ 0
and H i(C(f)[−1]) = H i+1(C(f)) = 0 for i ≤ 1. Hence, Hom(L, C(f)) = 0 and
Exti(L,C(f)) = Hom(L,C(f)[i]) = 0 for i ≤ 0. So the long exact sequence induces
isomorphisms

Exti(L, τ≤0(E)) ≃ Exti(L, E)

for i ≤ 0. In particular, Hom(L, τ≤0(E)) ≃ Hom(L, E) ̸= 0. Replacing E with E [−l], i.e.
shifting back E to the complex we started with, we get

Hom(L[l], E) ̸= 0

which proves the proposition. ■

We showed earlier that Beilinson’s collection generates all line bundles on Pn. The
proposition above completes the proof that the collection is indeed full. Another usefull
spanning class that we will make use of later is the class of skyscraper sheaves.

Proposition 4.4.7. [Huy06, p. 69] Let X be a smooth projective variety over Spec(k).
Then the skyscraper sheaves k(x) form a spanning class of D(X).

4.4.2 Calabi-Yau Varieties have no Semi-orthogonal Decomposition

An interesting example of smooth projective varieteies with no semi-orthogonal
decomposition of their derived categories are the Calabi-Yau varieties. Recall that
a variety X is Calabi-Yau if the canonical sheaf ωX is isomorphic to the structure sheaf.

Example 4.4.8. A non-singular degree 3 curve C
i
↪−→ P2 is Calabi-Yau. We saw in

Example 2.6.5 that ωP2 = OP 2(−3), and it follows from the adjunction formula that

ωC = i∗ωP2 ⊗ OC(3) ≃ OC .

More generally, if Z = V (f1, . . . , fr)
i
↪−→ Pn is a complete intersection with di = deg fi,

then Z is Calabi-Yau if ∑ di = n+ 1. By the projection formula we have

ωZ = i∗ωPn ⊗ OC(d1 + · · · + dr) ≃ OC(−n− 1 + d1 · · · + dr)

which is isomorphic to OC when ∑ di = n+ 1.

The fact that the derived category of a Calabi-Yau variety has no semi-orthogonal
decomposition is a consequence of Serre duality. Assume for contradiction that X is
Calabi-Yau and that D(X) = ⟨A,B⟩ is a semi-orthogonal decomposition. Let F ∈ A and
G ∈ B. Then semi-orthogonality implies that

Hom(G,F [i]) = 0

for all i ∈ Z. By Serre duality there are isomorphisms

Hom(F ,G[i])∨ ≃ Hom(G,F [dimX − i])

for all i ∈ Z since the canonical sheaf ωX is trivial. But since the right hand side is zero,
we have

Hom(F ,G[i]) = 0

for all i ∈ Z. This implies that the derived category actually splits as D(X) = A ⊕ B. In
other words, Calabi-Yau implies that semi-orthogonality is actual orthogonality. This is
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a contradiction whenever X is connected. Assume for contradiction that D(X) = A ⊕ B.
Then for x ∈ X the complex k(x) splits as k(x) = A⊕B with A ∈ A and B ∈ B. Since
H i(k(x)) = k(x) for i = 0 and zero otherwise we have H i(A) = H i(B) = 0 for i ̸= 0
so k(x) = H0(A) ⊕ H0(B) but k(x) does not split as a k-vector space. Since x was
chosen arbitrarily we have for all x ∈ X that k(x) ∈ A or k(x) ∈ B. Now, consider the
structure sheaf OX as a complex in D(X). Assuming OX = A′ ⊕ B′ for A′ ∈ A and
B′ ∈ B also implies that OX = H0(A′) ⊕H0(B′) and if X is connected, then H0(A′) = 0
or H0(B′) = 0 which in turn implies that OX ∈ A or OX ∈ B. Since Hom(OX , k(x)) ̸= 0
for all x ∈ X, the skyscraper sheaves k(x) all belong to the same subcategory as OX , say
A. Since the skyscraper sheaves form a spanning class of D(X), we have A = D(X) and
B = 0.

4.5 Decompositions for Projective Bundles

We start this section by considering an exceptional collection for P2 ×P2 which generalizes
to Pn × Pm. We move on to giving exceptional collections of projective bundles over
Pn before discussing the more general setting of a projective bundle over a general base
scheme Y .

Example 4.5.1. (P2 × P2) Consider the diagram

P2 × P2 P2

P2 Spec(C)

q

p

and define O(i, j) = O(i) ⊠ O(j). We know that all the line bundles on P2 × P2 are of
this form. From Proposition 2.3.2 we have

Hom(O(i),O(j)[n]) = Extn(O,O(j − i)) = Hn(P2,O(j − i)).

It follows from our cohomology computations of P2 × P2 in Example 3.5.2 that

HomD(P2×P2)(O(i, j),O(k, l)[n]) = Hn(P2 × P2,O(k − i, l − j)) = 0

for all n ∈ Z and all i, j, k, l ∈ Z such that 0 > k − i > −3 or 0 > l − j > −3. So we get
an exceptional collection

⟨O,O(0, 1),O(1, 0),O(2, 0),O(0, 2),O(1, 1),O(1, 2),O(2, 1),O(2, 2)⟩ (4.3)

Note that K0(P2 × P2) ≃ Z⊕9 so the collection is of expected length. To show that it it
is full, we exploit the fact that Beilinson’s collection on P2 generates all line bundles.
The exact sequence on P2 given by

0 → O → O(1)⊕3 → O(2)⊕3 → O(3) → 0

pulls back by p to the exact sequence

0 → O → O(1, 0)⊕3 → O(2, 0)⊕3 → O(3, 0) → 0,

which gives a resolution of O(3, 0) by the exceptional objects. Tensoring by O(0, j) for
j = 1, 2 gives a resolution of O(3, 1) and O(3, 2) by objects in the sequence. Symmetrically,
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we obtain O(3, 0), O(3, 1) and O(3, 2) by pulling back by q and tensor with O(i, 0) for
i = 0, 1, 2. An induction argument shows that all line bundles can be generated from
pullbacks of the Koszul resolution on P2. Since the line bundles on a variety span the
entire derived category of X, (4.3) gives a semi-orthogonal decomposition of P2 × P2.
The decomposition can be made Lefschetz with respect to the line bundle L = O(1, 1).
Firstly, let

A0 = ⟨O,O(0, 1),O(1, 0),O(0, 2),O(2, 0)⟩,
A1 = ⟨O,O(0, 1),O(1, 0)⟩,
A2 = ⟨O⟩.

Then A2 ⊂ A1 ⊂ A0 is satisfied, A1 ⊗ L = ⟨O(1, 1),O(1, 2),O(2, 1)⟩ and A2 ⊗ L⊗2 =
⟨O(2, 2)⟩ Hence

D(P2 × P2) = ⟨A0,A1 ⊗ L,A2 ⊗ L⊗2⟩.

is a Lefschetz decomposition of D(P2 × P2) with respect to L.

Proposition 4.5.2. Let X = Pn × Pm and denote by p and q the projection to the first and
second factor. Define OX(i, j) = p∗O(i) ⊗ q∗O(j). Let L1 = O(1, 0) and L2 = O(0, 1).
Define the full triangulated subcategories A = ⟨O(i, 0)⟩0≤i≤n and B = ⟨O(0, j)⟩0≤j≤m.
Then D(X) has semi-orthogonal decompositions of the form

D(X) = ⟨⟨O(i, j)0≤j≤m⟩0≤i≤n⟩ = ⟨B ⊗ L1,B ⊗ L⊗2
1 , . . . ,B ⊗ L⊗n

1 ⟩,
D(X) = ⟨⟨O(i, j)0≤i≤n⟩0≤j≤m⟩ = ⟨A ⊗ L2,A ⊗ L⊗2

2 , . . . ,A ⊗ L⊗m
2 ⟩.

If m = n and L = O(1, 1) then there is a semi-orthogonal decomposition

D(X) = ⟨C0, C1 ⊗ L, . . . , Cn ⊗ L⊗n⟩

where Ck = ⟨O(k.k),O(k + 1, k), . . .O(n, k),O(k, k + 1), . . .O(k, n)⟩.

Proof. The proof is analogous to showing that the exceptional collection for P2 × P2 is
full. For any O(i, j) we have

Hom(O(i, j),O(i, j)[r]) = Hr(X,O) = C

for r = 0 and 0 otherwise, so the objects are exceptional. For any O(k, l) appearing later
in the sequence, we have

Hom(O(i, j),O(k, l)[r]) = Hr(X,O(k − i, l − j) = 0

since either 0 < k− i < −n−1 or 0 < l− j < −m−1. So the objects form an exceptional
collection. To show that it is full, we show that all line bundles on X are generated by
the collection and argue that it is full Proposition 4.4.5.

All the line bundles on X are of the form O(i, j), so we can think of a line bundle on
X as a point in the Z × Z-plane. If we denote by [0, N ] × [0,M ] the N ×M rectangle in
the first quadrant of the Z × Z-plane with a vertex at the origin, then the collections
above can be represented by the rectangle [0, n] × [0,m]. We show that we can expand
the rectangle with one row in all directions. The Koszul resolution on Pn pulls back by p
to an exact sequence

0 → O → O(1, 0)⊕n+1 → O(2, 0)⊕(n+1
2 ) → · · · → O(n, 0)⊕n+1 → O(n+ 1, 0) → 0. (4.4)
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Tensoring by O(0, j) for j = 0, 1, . . . ,m we obtain all the line bundles that extends the
rectangle to [0, n + 1] × [0,m]. Symmetrically, by pulling back the Koszul resolution
from Pm by q and tensoring with O(i, 0) for i = 1, 2, . . . , n extends the original rectangle
to the rectangle [0, n] × [0,m+ 1]. Now that we have obtained O(0,m+ 1) we obtain
O(n+ 1,m+ 1) by the resolution

0 → O(0,m+ 1) → O(1,m+ 1)⊕n+1 → O(2,m+ 1)⊕(n+1
2 ) →

· · · → O(n,m+ 1)⊕n+1 → O(n+ 1,m+ 1) → 0.

which is just (4.4) tensored by O(0,m + 1). Then the original rectangle extendeds to
[0, n + 1] × [0,m + 1]. The extension in the negative directions is analogous. Simply
twist the Koszul resolution by O(−1) and take the pullback by p and q. This proves the
base case in an induction argument that the rectangle extends to the entire Z × Z-plane.
The inductive step is similar. Assume the collection generates all line bundles O(i, j) for
i ≤ N and j ≤ M for arbitrary N and M , i.e. it extends to the rectangle [0, N ] × [0,M ].
Now resolve O(N + 1, j) and O(i,M + 1) by the previous n and m twists, respectively.
The line bundle O(N + 1,M + 1) has a resolution

0 → O(N − n,M + 1) → O(N − n+1,M + 1)⊕n+1 → O(N − n+ 2,M + 1)⊕(n+1
2 ) →

· · · → O(N,M + 1)⊕n+1 → O(M + 1, N + 1) → 0.

This proves by induction that the rectangle can be extended to [0, N + 1] × [0,M + 1] and
it follows by induction that it extends to the entire first quadrant. In other words, the
collection generates all the positive twists. To show that it extends to all combinations
of negative and positive twists follows the same method by twisting accordingly. ■

The variety Pn × Pm is the trivial projective bundle over Pm. It is the projective
bundle P(O⊕n+1

Pm ). We wish to consider a more general case. So let E be a locally free
sheaf of rank r + 1 on Pn, and consider its projectivization X = P(E). We know that the
Picard group of X is Z⊕2, and if we let π : X → Pn be the projection morphism then the
sheaves OX(1) and π∗OPn(1) generate Pic(X). So let

H(i, j) = OX(i) ⊗ π∗OPn(j).

We seek an exceptional collection of D(P(E)) given by the line bundles H(i, j). Since
(OX(i) ⊗ π∗OPn(j))∨ = OX(−i) ⊗ π∗OPn(−j), we have

HomD(P(E))(H(i, j),H(k, l)[m]) = Extn(OP(E),H(k − i, l − j))
= Hn(P(E),H(k − i, l − j)),

which is zero for 0 < k− i < −r− 1. From Corollary 3.1.6 we know that if k− i ≥ 0 then

Hn(P(E),OX(k − i) ⊗ π∗OPn(l − j)) ≃ Hn(Pn, Symk−i(E) ⊗ OPn(l − j)).

If k = i then the right hand side is just the cohomology of a line bundle on Pn, which of
course is zero whenever 0 < l− j < −n− 1. If −r− 1 < k− i < 0 then the left hand side
vanishes. We have

HomD(P(E))(H(i, j),H(i, j)[m]) = Hn(Pn,Sym0(E) ⊗ OPn) = Hn(Pn,OPn)
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which is C for n = 0 and zero otherwise. So the sheaves H(i, j) are indeed exceptional
objects. If we assume k = i > −r − 1 then

HomD(P(E))(H(i, j),H(k, l)[m]) = Hn(Pn,OPn(l − j))

which is zero whenever 0 < l − j < −n− 1. Hence the sequence of sheaves

⟨H(i, 0),H(i, 1), . . . ,H(i, n)⟩

satisfies the conditions for being a collection of exceptional objects. If we assume j = l
then

HomD(P(E))(H(i, j),H(k, l)[n]) = Hn(Pn, Symk−i(E))
which is zero whenever 0 < k − i < −r − 1. Hence the sequence of sheaves

⟨H(0, 0),H(1, 0), . . . ,H(r, 0)⟩

satisfies the same condition. Combining the two, we get a collection

H = ⟨H(0, 0),H(0, 1), . . . ,H(0, n),
H(1, 0),H(1, 1), . . . ,H(1, n),
. . .

H(r, 0),H(r, 1), . . . ,H(r, n)⟩

which is an exceptional collection for D(P(E)). It is also of expected length by
Proposition 4.3.6. Our base scheme is Pn and the bundle E has rank r + 1, so a
full exceptional collection for D(P(E)) must have length (n+1) · (r+1). Showing that the
collection is full is more difficult. We will make use of the spanning class of skyscraper
sheaves.

Proposition 4.5.3. Let E be locally free on Pn of rank r + 1, let X = P(E) and denote by
π : X → Pn the projection morphism. Then H is a full exceptional collection of D(X)
and it gives a rectangular Lefschetz decomposition

D(X) = ⟨π∗D(Pn) ⊗ OX , π
∗D(Pn) ⊗ OX(1), . . . , π∗D(Pn) ⊗ OX(r)⟩ (4.5)

where D(Pn) = ⟨OPn ,OPn(1), . . .OPn(n)⟩.

Proof. It is clear that (4.5) is just a rearrangement of the collection H . We have

π∗D(Pn) ⊗ OP(E)(i) = ⟨π∗OPn ⊗ OP(E)(i), . . . , π∗OPn(n) ⊗ OP(E)(i)⟩
= ⟨H(i, 0), . . . ,H(i, n)⟩

and by letting i range from 0 to r we obtain the collection H . To prove that H is full,
we show that the collection generates all the skyscraper sheaves k(x) for x ∈ X and use
the fact that these form a spanning class of D(X). On the base scheme Y , the Koszul
resolution gives an exact sequence

0 → OY (−n) → · · · → OY (−2)⊕(n
2) → OY (−1)⊕n → OY → k(y) → 0. (4.6)

For instance, if R = C[x0, . . . , xn] and y = (1 : 0 : · · · : 0), then the Koszul resolution
with respect to the regular sequence I = (x1, . . . , xn) reads

0 → R(−n) → · · · → R(−2)⊕(n
2) → R(−1)⊕n → R → C[x0] → 0 (4.7)

47



Chapter 4. Decompositions of Derived Categories

and (4.6) is obtained by applying the graded tilde functor to (4.7). Since k(y) ⊗ OY (n) =
k(y), we can twist (4.6) to get the sequence

0 → OY → · · · → OY (n− 2)⊕(n
2) → OY (n− 1)⊕n → OY (n) → k(y) → 0. (4.8)

The projection morphism π is flat, so this resolution pulls back to an exact sequence on
X. For every x ∈ X we can choose a fiber P(E|y) containing x. Let i : P(E|y) ↪→ P(E) be
the inclusion. Since P(E|y) ≃ Prk(y) there is a resolution

0 → OP(E|y) → · · · → OP(E|y)(r − 2)⊕(r
2) → OP(E|y)(r − 1)⊕r → OP(E|y)(r) → k(x) → 0.

(4.9)
Further i∗k(x) = k(x) and i is a closed immersion, so pushing forward (4.9) by i gives
a resolution of k(x) by the sheaves i∗OP(E|y)(j) for 0 ≤ j ≤ r. The sheaves i∗OP(E|y)(j)
we obtain inductively by pulling back the sequence (4.8) by π and then twist by OX(j).
So for each x ∈ X we get a resolution of k(x) by sheaves in the collection by choosing
a fiber containing x. So every k(x) is isomorphic in D(X) to its resolution, hence the
collection generates all skyscraper sheaves k(x) and is therefore full. ■

We have shown that any projective bundle over Pn has a semi-orthogonal
decomposition given by the exceptional collection H . We can actually stretch the
result a bit further and consider any projective bundle over a general base scheme Y
with a full exceptional collection. The result is by D. Orlov [Orl92, Cor. 2.7].

Proposition 4.5.4 ([Orl92, Cor. 2.7]). Let X = P(E) be the projectivization of a locally
free sheaf E of rank r + 1 on a smooth projective variety Y and let p : X → Y be the
projection morphism. If D(Y ) has a full exceptional collection ⟨E1, . . . , En⟩ then

D(X) = ⟨p∗D(Y ), p∗D(Y ) ⊗ OX(1), . . . , p∗D(Y ) ⊗ OX(r)⟩

is a semi-orthogonal decomposition of D(X).

Proof. We first show that the objects indeed form an exceptional collection. From
Lemma 4.2.6 we know that π∗ is fully faithful, so

Hom(π∗Ej ⊗ OX(i), π∗Ek ⊗ OX(i)[m]) = Hom(Ej , Ek[m]) = 0

if j > k. Also by adjunction and projection we have

Hom(π∗Ej ⊗ OX(i), π∗Ek ⊗ OX(l)[m]) = Hom(Ej , π∗(π∗Ek[m] ⊗OX(l − i)))
= Hom(Ej , Ek[m] ⊗ π∗OX(l − i)) = 0

if 0 < l−i < −r−1 since π∗OX(l−i) = 0 in that case. So the objects form an exceptional
collection. It remains to show that the collection is full. We will make use of the following
lemma.

Lemma 4.5.5. Let C = ⟨π∗E1, . . . π
∗En⟩. If F ∈ D(Y ), then π∗F ∈ C.

Proof. Any F ∈ ⟨E1, . . . , En⟩ is an iteration of sums, shifts and cones of morphisms
Ei → Ej . But π∗ distributes over sums and shifts. Moreover π∗ is an exact functor of
triangulated categories, so for any A,B ∈ D(Y ) and an exact triangle

A
f−→ B → C(f)
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we get an exact triangle
π∗A → π∗B → π∗C(f).

If we take A = Ei and B = Ej then this implies that π∗C(f) ∈ C. It follows that
any iteration of cones of morphisms Ei → Ej pulls back by π to an object in C. Thus
π∗F ∈ C. ■

Now for any x ∈ X choose a point y ∈ Y so that x ∈ P(E|y) ≃ Prk(y). Then there is a
resolution of k(x) given by

0 → OP(E|y) → · · · → OP(E|y)(r − 2)⊕(r
2) → OP(E|y)(r − 1)⊕r → OP(E|y)(r) → k(x) → 0.

Pushing forward by the inclusion i : P(E|y) ↪→ X gives a resolution of k(x) by the sheaves
i∗OP(E|y)(k) for 0 ≤ k ≤ r. By Lemma 4.5.5 the object π∗k(y) is generated by the
exceptional collection, and π∗k(y) ⊗ OX(k) = i∗OP(E|y)(k). So the sheaves i∗OP(E|y)(k)
are generated by the collection and gives a resolution of k(x), i.e. the collection generates
k(x). So for any x ∈ X we can choose a fiber containing it and find a resolution of locally
free sheaves generated by the collection. Thus the collection generates all skyscraper
sheaves k(x) and is therefore full by Proposition 4.4.7. ■

Example 4.5.6. (Hilb2 P2) From the identification of Hilb2 P2 with the projectivization
of the rank three locally free sheaf Sym2 S on G(2, 3), an exceptional collection
for Hilb2 P2 becomes a special case of the general case discussed above. So let
X = P(Sym2 S) ≃ Hilb2 P2 and P2 = G(2, 3) and define H(i, j) = OX(i) ⊗ OP2(j).
Then we have a full exceptional collection

D(X) = ⟨H(0, 0),H(0, 1),H(0, 2),
H(1, 0),H(1, 1),H(1, 2),
H(2, 0),H(2, 1),H(2, 2)⟩.

Consider the morphism

f : P(Sym2 S) ↪→ P(Sym2 O⊕3
G(2,3) ≃ P5 ×G(2, 3) → P5

given by the inclusion Sym2 S ↪→ Sym2 O⊕3
G(2,3) and the projection P5 ×G(2, 3) → P5. By

this composition it is clear that the sheaf O(1) pulls back to OX(1) via f . If we let

A = ⟨H(0, 0),H(0, 1),H(0, 2)⟩

then
D(X) = ⟨A,A ⊗ OX(1),A ⊗ OX(1)⊗2⟩

is a rectangular Lefschetz decomposition with respect to OX(1) and of the form of
Proposition 4.5.4.
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Chapter 5

Homological Projective Duality

In this chapter we finally state the definition of homological projective duality. Throughout
the chapter, the schemes in question will always be smooth projective varieties over
Spec(C), and for such a scheme X we denote by D(X) the bounded derived category of
coherent sheaves on X. We follow the two articles [Kuz14] and [Kuz07] by Alexander
Kuznetsov, the latter of which is the original article stating the homological projective
duality relation, as well as the notes on homological projective duality by Richard Thomas
[Tho18].

5.1 The Universal Hyperplane Section

For a scheme X with a globally generated line bundle OX(1), let V = H0(X,OX(1))∨

and assume given a morphism f : X → P(V ). Denote by Q ⊂ P(V )×P(V ∨) the incidence
quadric defined by

Q = {(x,H) ∈ P(V ) × P(V ∨) : x ∈ H}.

Here we think of the points H in the dual space P(V ∨) as their corresponding
hyperplanes in P(V ). Equivalently, we can think of a point of P(V ∨) as the section
s ∈ H0(P(V ),OP(V )(1)) up to scaling whose zero locus defines a hyperplane of P(V ).
Then we can describe the points of Q as pairs (x, s) such that s(x) = 0. The universal
hyperplane section H ⊂ X × P(V ∨) of X is defined as the fiber product X ×P(V ) Q:

H Q

X P(V ).f

The points of H can also be described by an incidence relation as

H = {(x, s) ∈ X × P(V ∨) : s(x) = 0}.

Remark 5.1.1. If f is an embedding, which will be the case when OX(1) is very ample,
H carries the information of the usual projective dual X∨ of X. Under the projection
down to P(V ∨), the discriminant locus of H , which is the set of points (x,H) ∈ H such
that H is tangent to x (i.e. H ⊂ TxX), is the projective dual X∨ of X.
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5.2 The Homological Projective Dual

For a variety X with a morphism f : X → P(V ) with dimV = N , let
OX(1) := f∗OP(V )(1). Assume given a Lefschetz decomposition

D(X) = ⟨A0,A1(1), . . . ,An(n)⟩ (5.1)

where Ai(i) := Ai ⊗ OX(i). Consider the base change diagram

X × P(V ∨) X

P(V ∨) Spec(C).ϕ

Proposition 5.2.1. [Kuz14] The flat base change morphism P(V ∨) → Spec(C) gives a
semi-orthogonal decomposition

D(X × P(V ∨)) = ⟨A0 ⊠D(P(V ∨)),A1(1) ⊠D(P(V ∨)), . . . ,An(n) ⊠D(P(V ∨))⟩ (5.2)

from the pullback by the two projections.

Notice that

Ak(k) ⊠D(P(V ∨)) = ⟨Ak(k) ⊠ OP(V ∨),Ak(k) ⊠ OP(V ∨)(1), . . . ,Ak(k) ⊠ OP(V ∨)(N)⟩,

so in the case where X = Pn we recognize this as the decomposition of Pn × PN−1

from Proposition 4.5.2. Let H denote the universal hyperplane section of X, and let
α : H ↪→ X × P(V ∨) be the embedding.

Proposition 5.2.2. [Kuz07, Lemma 5.3] For any 1 ≤ k ≤ n, the functor

Ak(k) ⊠D(P(V ∨)) ⊂ D(X × P(V ∨)) α∗
−→ D(H )

is fully faithful and gives a semi-orthogonal collection

⟨A1(1) ⊠D(P(V ∨), . . . ,An(n) ⊠D(P(V ∨)⟩ ⊂ D(H ). (5.3)

Define CH to be the left orthogonal of (5.3). Then D(H ) admits a semi-orthogonal
decomposition

D(H ) = ⟨CH ,A1(1) ⊠D(P(V ∨), . . . ,An(n) ⊠D(P(V ∨)⟩. (5.4)

Definition 5.2.3. For a smooth projective variety X with morphism f : X → P(V ) and a
given Lefschetz decomposition (5.1), we define the homological projective dual category
of D(X) to be the category CH . If moreover the category CH is geometric, that is
equivalent to the derived category D(Y ) of some smooth projective variety Y with a
morphism g : Y → P(V ∨), we call (Y, g) the homological projective dual of (X, f).

Let us make precise what we mean by CH being geometric. Since any equivalence
of derived categories is given by a Fourier-Mukai functor, there should exist an object
E ∈ D(H ×P(V ∨) Y ) so that the Fourier-Mukai functor ϕE : D(Y ) → D(H ) is fully
faithful and defines an equivalence of categories onto CH [Kuz07, Def. 6.1].
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Example 5.2.4. Let X = Pn, V = H0(X,OX(1))∨ and let f : X → P(V ) be the identity.
We seek the homological projective dual of (X, f) with Beilinson’s collection

D(X) = ⟨A0,A(1), . . . ,A(n)⟩.

So A(i) = A ⊗ O(i) and A = ⟨O⟩. Let H ⊂ P(V ) × P(V ∨) be the universal hyperplane
section. Over every point x ∈ P(V ), H parametrizes all hyperplanes in P(V ∨) incident
to x. So H is a projective bundle with Pn−1-fibers over Pn, i.e. the projectivization of
a rank n locally free sheaf on Pn. One can show that H is in fact the projectivization
P(ΩP(V )) of the cotangent bundle. Now, the flat base-change P(V ∨) → Spec k gives a
semi-orthogonal decomposition

D(X × P(V ∨) = ⟨A0 ⊠D(P(V ∨)),A1(1) ⊠D(P(V ∨)), . . . ,An(n) ⊠D(P(V ∨))⟩.

Here
Ak(k) ⊠D(P(V ∨)) = ⟨O(k) ⊠ O,O(k) ⊠ O(1), . . . ,O(k) ⊠ O(n)⟩. (5.5)

Pulling back to H by the inclusion gives a decomposition

D(H ) = ⟨CH ,A1(1) ⊠D(P(V ∨), . . . ,An(n) ⊠D(P(V ∨)⟩ (5.6)

which is fully faithful onto the last n− 1 terms. The subcategory CH is the orthogonal
of ⟨A1(1) ⊠D(P(V ∨), . . . ,An(n) ⊠D(P(V ∨)⟩. Now, the Ai are all exceptional objects
and they pull back to exceptional objects on D(H ). But since H is a projective bundle,
we know from K0-theory (Proposition 4.3.6) that a full exceptional collection of D(H )
must have length n(n + 1). Writing (5.6) out in terms of exceptional objects, that is
writing each of the last n− 1 terms of (5.6) as in (5.5), it is clear that

⊥CH = ⟨A1(1) ⊠D(P(V ∨), . . . ,An(n) ⊠D(P(V ∨)⟩

can be written as a collection of length n(n + 1). Since the pullback of each term by
the inclusion is fully faithful (Proposition 5.2.2), the objects are all exceptional. Thus
CH = 0, and the homological projective dual of (X, f) is the empty variety.

From the above example, the duality relation can seem somewhat odd. The interesting
part of the duality is what happens on linear sections. The following section is dedicated
to studying the duality relation on linear sections.

5.3 The Main Theorem of Homological Projective Duality

The setting of the main theorem of HP duality is the following. We let X → P(V ) and
Y → P(V ∨) be smooth projective, V denotes the dual of the vector space H0(X,O,X(1))
of global sections of a globally generated line bundle OX(1) on X. We assume given a
right Lefschetz decomposition

D(X) = ⟨A0,A1(1), . . . ,An(n)⟩ (5.7)

of D(X) with respect to f∗OP(V )(1). Here Ai(i) = Ai⊗f∗OP(V )(1). For a linear subspace
L ⊂ V ∨ consider the fiber products XL and YL given by the diagrams

XL X YL Y

P(L⊥) P(V ) P(L) P(V ∨),

f g
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where L⊥ is the orthogonal of L defined as the kernel ker(V → L∨).

Definition 5.3.1. (Expected dimension) Assume L has dimension r and V has dimension
N . Then L⊥ has dimension N − r and we say that XL and YL have expected dimension if

dimXL = dimX − r and dimYL = dimY − (N − r).

The duality statement of X and Y is summarized in the following theorem.

Theorem 5.3.2. [Kuz14, Thm. 2.5] Let (Y, g) be the HP dual of (X, f) with respect to the
Lefschetz decomposition (5.7). If V has dimension N and L ⊂ V ∨ is an r-dimensional
linear subspace such that XL and YL have expected dimension, then

1. D(Y ) has an admissible subcategory B0 equivalent to A0 extending to a left Lefschetz
decomposition

D(Y ) = ⟨Bn(−n),Bn−1(1 − n), . . . ,B0⟩ (5.8)

2. (X, f) is HP dual to (Y, g) with respect to the Lefschetz decomposition (5.8)

3. There are semi-orthogonal decompositions

D(XL) = ⟨CL,Ar(r), . . . ,An(n)⟩,
D(YL) = ⟨Bn(−n), . . . ,BN−r(r −N), CL⟩,

where
CL = ⟨Ar(r), . . . ,An(n)⟩⊥ =⊥ ⟨Bn(−n), . . . ,BN−r(r −N)⟩.

If L has dimension 1, then P(L) defines a point in P(V ∨) and P(L⊥) defines a
hyperplane in P(V ). Denote by H = P(L⊥) the hyperplane in P(V ) and assume L is
such that XL and YL have expected dimension. Then XL = f−1(H) and YL = g−1(H),
which is the fiber of g over the point H ∈ P(V ∨).

f−1(H) X g−1(H) Y

H P(V ) H P(V ∨)

f g

By Theorem 5.3.2 we have semiorthogonal decompositions

D(XL) = ⟨CL,A1(1), . . .An(n)⟩
D(YL) = CL.

So intersecting X with a hyperplane corresponds to taking a fiber YH on the other side
of the duality, and D(YL) consist of only the category CL.

Remark 5.3.3. As mentioned, the usual projective dual X∨ is the discriminant locus of the
morphism H → P(V ∨). But this discrimant locus consist of exactly those hyperplanes
H ∈ P(V ∨) for which the fiber g−1(H) is singular. In other words X∨ is also the
discriminant locus of the morphism Y → P(V ∨), c.f. [Tho18, p. 3].

Theorem 5.3.4. [Kuz07, Thm. 7.9] If g : Y → P(V ∨) is homologically projectively dual to
f : X → P(V ), then the discriminant locus of g is the projective dual of X.
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Example 5.3.5. Let X = P1 and consider the morphism v : X → P2 given by the veronese
embedding (x0 : x1) 7→ (x2

0 : x0x1 : x2
2). Then v∗OP 2(1) = OX(2), and we seek a

decomposition of D(X) which is Lefscehtz with respect to OX(2). Since no nontrivial
Lefschetz decomposition of D(P1) with respect to OX(2) exists, we take the trivial
decomposition D(X) = ⟨A⟩. Then

D(X × P(V ∨)) = ⟨A ⊠D(P(V ∨))⟩,

and we see that
D(H ) = ⟨CH ⟩.

So the homological projective dual is the universal hyperplane section H of X itself with
the projection morphism H → P(V ∨).

The example above illustrates what happens in general if we take a trivial
decomposition of D(X) for some X → P(V ). Then the homological projective dual
is just the universal hyperplane section with the projection H → P(V ∨). We end this
section by stating a theorem of A. Kuznetsov which will set the stage for the next chapter.
We have broken the theorem into two parts. The first is the statement of Proposition 4.5.4
which gives a way to obtain a Lefschetz decomposition of a projective bundle over a
basescheme with a full exceptional collection. The second part gives a description of the
homological projective dual of the projective bundle.

Theorem 5.3.6 ([Kuz07, Cor. 8.4]). Let X = P(E) be the projectivization of a locally free
sheaf E of rank r + 1 on a smooth projective variety Y with a full exceptional collection
and let p : X → Y be the projection morphism. If V = H0(X,OX(1))∨ and E is globally
generated, then the homological projective dual of X with the morphism X → P(V ) and
the decomposition from Proposition 4.5.4 is given by Y = P(E⊥), where

E⊥ = Ker(V ∨ ⊗C OY → E∨).

Note: H0(X,OX(1))∨ = H0(Y,E∨)∨ by Corollary 3.1.6.

A few things need to be specified in the above theorem. First of all by the slightly
abusive notation V ∨ ⊗C OY we mean the sheaf obtained by letting the vector space V ∨

be the constant sheaf of global sections of E∨. So for any U ⊂ X the sections of V ∨ on
U are the elements of the vector space V ∨. The morphism

V ∨ ⊗ OY → E∨

is defined over an open U ⊂ X as the Γ(U,OG)-module homomorphism

Γ(G, Symk S) ⊗ Γ(U,OY ) → Γ(U,Symk S)

given by s ⊗ p 7→ s|U · p. Secondly, HP dual varieties X and Y come with a pair of
morphisms f : X → P(V ) and g : Y → P(V ∨) which need to be specified. The surjection
V ∨ ⊗ OY → E∨ dualize to an inclusion E ↪→ H0(Y,E∨) ⊗ OY . Taking projectivizations
gives an inclusion

P(E) ↪→ P(H0(Y,E∨) ⊗ OY ) ≃ P(V ) × Y.

Finally, composing with the projection to the first factor describes the morphism
f : P(E) → P(V ).
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P(E) P(V ⊗ OY ) P(V ) × Y

P(V ).

f

∼=

Similarly, projectivization of the inclusion E⊥ ↪→ V ∨ ⊗ OY gives a morphism

P(E⊥) ↪→ P(V ∨ ⊗ OY ) ≃ P(V ∨) × Y,

and by composing with the projection to the first factor we obtain the morphism
g : P(E⊥) → P(V ∨).

P(E⊥) P(V ∨ ⊗ OY ) P(V ∨) × Y

P(V ∨).

g

∼=

It is clear that f∗OP(V )(1) = OX(1) and the Lefschetz decomposition of D(X) is the one
given in Corollary 3.1.6.
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Applications

6.1 The Homological Projective Dual of a Family of Projetive Bundles

Now that we have the machinery of HP duality at hand, we can calculate the HP dual of
Hilb2 P2. We have identified Hilb2 P2 with the projective bundle P(E) where E = Sym2 S
and S is the universal subbundle on G(2, 3). This identification and Kuznetsovs result
on the HP dual of projective bundles (Theorem 5.3.6) gives us enough information to
calculate the HP dual of Hilb2 P2 with the morphism

f : Hilb2 P2 → P(H0(P(E),OP(E)(1))∨).

It turns out that the method for this calculation generalizes to a whole family of projective
bundles. So we give the proof of the more general case, and the HP dual of Hilb2 P2 will
follow.

Consider the Grassmanian G = G(n, n+ 1) and let S denote the universal subbundle
of rank n. Let

V = H0(P(Symk S,O(1))∨) = H0(G, Symk S∨)∨.

We aim to prove the following theorem.

Theorem 6.1.1. Let X = P(Symk S). The homological projective dual (Y → P(V ∨)) of
(X → P(V )) is the variety

Y = Pn × PM−1.

where M =
(n+k−1
k−1

)
.

Proof. Let E = Symk S. We wish to apply c5.3.6 stating that the homological projective
dual of X is given by P(E⊥) where E⊥ is the kernel of the map

f : V ∨ ⊗ OG → E∨.

To determine E⊥ we aim to obtain a different description of f . So consider the exact
sequence

0 → S → O⊕n+1
G → Q → 0

where S is the universal subbundle of rank n and Q is the universal quotien tbundle of
rank one. More specifically, on G = Pn, the universal quotient bundle Q is the invertible
sheaf OG(−1). We dualize the sequence to get

0 → Q∨ → O⊕n+1
G → S∨ → 0.
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Applying Proposition 3.1.1 we get the exact sequence

0 → Q∨ ⊗ Symk−1 O⊕n+1
G → Symk O⊕n+1

G → (Symk S)∨ → 0. (6.1)

Again, by Proposition 3.1.1 we have have an isomorphism Symk(S∨) ≃ (Symk S)∨. Set

F = Q∨ ⊗ Symk−1 O⊕n+1
G ≃ OG(−1)⊕M

and write the sequence (6.1) as

0 → F → O⊕N
G → E∨ → 0 (6.2)

where N =
(n+k
k

)
. This gives a long exact sequence on cohomology, and since

H i(G(2, 3),F) = 0 for all i, there are isomorphisms

H i(G,O⊕N
G ) ≃−→ H i(G, Symk S∨)

for all i. Thus
V ∨ = H0(G, Symk S∨) ≃ C⊕N

and so there is a natural identification

V ∨ ⊗ OG ≃ O⊕N
G .

We see that E∨ is globally generated and f is surjective. Thus Theorem 5.3.6 applies,
and We wish to identify F with the kernel E⊥. If we can find an isomorphism β so that
the diagram

E⊥ V ∨ ⊗ OG Symk S∨

F Symk O⊕n+1
G Symk S∨

α

f

β =

g

with exact rows commutes, then there is a morphism α of the kernels. The Five Lemma
[Wei94, p. 13] ensures that α too is an isomorphism. On global sections there is a diagram

H0(G,V ∨ ⊗ OG) H0(G, Symk S∨)

H0(G, Symk O⊕n+1
G ) H0(G, Symk S∨)

∼=

∼=

=

∼=

where the isomophism H0(G,V ∨ ⊗ OG) ≃−→ H0(G,Symk O⊕n+1
G ) is just the composition

of the other three. We ask the question whether this isomorphism on global sections
induces a unique isomorphism β of sheaves fitting into the diagram above. To answer
the question, we will prove two lemmas from which the result will follow.

Lemma 6.1.2. Let X be a smooth projective variety over Spec(C) and let E be a sheaf on
X. Then

H0 : Hom(ON
X , E) → HomC(H0(X,ONX ), H0(X, E))

is an isomorphism.
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Proof. We have
Hom(ON

X , E) = Hom(OX , E)⊕N = H0(X, E)⊕N = HomC(C, H0(X, E))⊕N

= HomC(C⊕N , H0(X, E)) = HomC(H0(X,ON
X ), H0(X, E)).

■

Lemma 6.1.3. Let X be as above and assume given two surjections f, g : O⊕N
X → E to a

locally free sheaf E. Assume further that f and g induce isomorphisms on global sections.
Then there exists a unique isomorphism h : O⊕N

X → O⊕N
X making the following diagram

commute:

O⊕N
X E

O⊕N
X

f

∃!h
g

Proof. Let
H0(f), H0(g) : H0(X,O⊕N

X ) ≃−→ H0(X, E)
denote the two isomorphisms on global sections induced by f and g. Define H0(h) =
(H0(g))−1 ◦ H0f . We wish to show that H0(h) is induced by a unique isomorphism
h : O⊕N

X → O⊕N
X . By Lemma 6.1.2 the inverse H0(h)−1 is the image of a unique

morphism h′ : O⊕N
X → O⊕N

X , and by functoriality of H0, we have
id = H0(h) ◦H0(h)−1 = H0(h) ◦H0(h′) = H0(h ◦ h′).

Hence h ◦ h′ = h′ ◦ h = id and we conclude that h is an isomorphism. Uniqueness of h
follows from Lemma 6.1.2. Again, by functoriality of H0 we have

H0(f) = H0(g) ◦H0(h) = H(g ◦ h)
so f = g ◦ h and the diagram commutes. ■

Now let ϕ : Symk O⊕n+1
G → O⊕N

G and ψ : V ∨ ⊗ OG → ON
G be the two isomorphisms and

define the two surjections by the compositions
f ◦ ψ−1, g ◦ ϕ−1 : O⊕N

G → Symk S∨.

Then by Lemma 6.1.3 the isomorphism H0(G,O⊕N
G ) ≃−→ H0(G,O⊕N

G ) induces a unique
isomorphism O⊕N

G → O⊕N
G making the diagram in Figure 6.1 commute.

Thus α gives an isomorphism E⊥ ≃ F = OG(−1)⊕M . Then
P(E⊥) ≃ P(OG(−1)⊕M ) ≃ P(OG(−1)⊕M ⊗ O(1)) ≃ P(O⊕M

G ) ≃ PM−1 ×G

since P(E⊥) ≃ P(E⊥ ⊗ L) for a line bundle L. So
Y = P(E⊥) ≃ PM−1 × P2

is the homological projective dual of X.
■

By the identification of Hilb2 P2 with the projective bundle P(Sym2 S) over G(2, 3), we
also obtain the homological projective dual of Hilb2 P2.

Corollary 6.1.4. Let X = Hilb2 P2 and let f : X → P(V ) where V is the vector space
H0(P(Sym2 S),O(1))∨ = H0(G(2, 3), Sym2 S∨)∨ and S is the universal subbundle on
G(2, 3). Then the homological projective dual Y of X is

Y = P2 × P2 → P(V ∨).
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V ∨ ⊗ OG

E⊥ O⊕N
G Symk S∨

F O⊕N
G Symk S∨

Symk O⊕n+1

f
ψ

ψ◦i

i

∃!∼=

f◦ψ−1

∃!∼= id

ϕ◦j

j

g◦ϕ−1

ϕ
g

Figure 6.1: Commutative Diagram

6.2 Duality of Hilb2 P2 and P2 × P2

Let X = Hilb2 P2 and Y = P2 × P2, and denote by f : X → P(V ) and g : Y → P(V ∨)
the two morphism so that (X, f) and (Y, g) are homologically projectively dual by
Corollary 6.1.4. So X = P(E) for E = Sym2 S and V = H0(G,E∨)∨. Denote by G
the Grassmanian G(2, 3) over the vector space W ≃ C3, so G = P(W∨). Since we
are interested in the HP-dual of X with the morphism to P5 factoring through the
Hilbert-Chow morphism, we need to show that this morphism actually agrees with the
morphism f . Recall that f is given by the composition

f : P(E) ↪→ P(V ⊗ OG) ≃ P(V ) ×G → P(V ).

From the proof of Theorem 6.1.1 we can identify the exact sequence

0 → E⊥ → V ∨ ⊗ OG → E∨ → 0

with the exact sequence

0 → Q∨ ⊗W∨ → Sym2(W ⊗ OG)∨ → E∨ → 0

inducing an isomorphism V ∨ ≃ H0(G, Sym2(W ⊗ OG)∨). By identifying the morphisms
V ∨ ⊗ OG → E∨ and Sym2(W ⊗ OG)∨ → E∨, dualizing and taking projectivizations we
get the morphisms P(E) ↪→ P(V ⊗ OG) and P(E) ↪→ P(Sym2W ⊗ OG). By composing
the latter with the projection to P(Sym2W ) gives a description of f as the composition

f : P(E) ↪→ P(Sym2W ⊗ OG) → P(Sym2W ).

We now wish to show that there is a commutative diagram

P(Sym2 S) P(Sym2W ⊗ OG)

Sym2 P(W ) P(Sym2W )

ϕ

i

p

ι
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where f = p ◦ i and the composition ι ◦ ϕ is the morphism factoring through the Hilbert-
Chow morphisms. Since we are dealing with varieties, it suffices to show that f and ι ◦ ϕ
agree on every closed point. A point of P(E) can be specified by the data

{(H, [w]) ∈ G(2, 3) × P(Sym2H) : w ∈ Sym2H}

where [w] denotes the class of the element w ∈ Sym2H when projectivizing and H ⊂ W
is a two-dimensional linear subspace. Write w = [v1 ⊗ v2 + v2 ⊗ v1] for elements vi ∈ H
and denote by [v1], [v2] ∈ P(H) ⊂ P(W ) the classes of v1 and v2. Then the morphism
ι ◦ ϕ is given by

ι ◦ ϕ : P(E) Sym2 P(W ) P(Sym2W )

(H, [w]) {[v1] + [v2]} [v1 ⊗ v2 + v2 ⊗ v1].

Since ι is the inclusion and p the projection to P(Sym2W ), we have ι : (H, [w]) 7→
(H, [w]) and p : (H, [w]) 7→ [w]. Hence the diagram commutes, so f factors through the
Hilbert-Chow morphism. Now the morphism g is given by the composition

g : P(E⊥) ↪→ P(OG ⊗ V ∨) ≃ P(W∨) × P(V ∨) → P(V ∨).

We have
P(E⊥) = P(OG(−1) ⊗W∨) ≃ P(W∨) × P(W∨)

and identify P(E⊥) ↪→ P(OG ⊗ V ∨) with P(E⊥) ↪→ P(Sym2W∨ ⊗ OG). Let

τ ◦ ψ : P(W∨) × P(W∨) Sym2(W∨) P(Sym2W∨)

([v1], [v2]) {[v1] + [v2]} [v1 ⊗ v2 + v2 ⊗ v1]

be the composition of the quotient map and the inclusion from Example 3.3.3. In order
to show that g factors through Sym2 P(W∨), it remains the check that the following
diagram commutes

P(Q∨ ⊗W∨) P(Sym2W∨ ⊗ OG))

P(W∨) × P(W∨) P(Sym2W∨)

≃

j

q

τ◦ψ

A point of P(Q∨ ⊗W∨) is specified by the data p = (H, [w⊗ρ]) where H ∈ G(2, 3), w is in
the fiber Q∨|H and ρ ∈ W∨|H . Then the point p is included via j by (H, [w⊗ ρ+ ρ⊗w])
and projecting down to P(Sym2W∨) just forgets the point H in the base. The fiber
Q∨|H is one-dimensional so [w] = H. The isomorphism in the diagram maps p to
(H, [ρ]) = ([w], [ρ]), and ψ ◦ τ([w], [ρ]) = [w ⊗ ρ + ρ ⊗ w]. So the diagram commutes
showing that g factors through Sym2 P(W∨).

Now that we know that f factors through Sym2 P(W ) and g factors through
Sym2 P(W∨) we can study the duality closer on linear sections. Recall that the image
of the morphism Sym2 P2 ↪→ P5 is cut out by the zero locus of a homogeneous degree
3 polynomial with a two dimensional singular locus. The Hilbert-Chow morphism
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Hilb2 P2 → Sym2 P2 is one-to-one away from the singular locus of Sym2 P(W ). On the
other hand g factors through Sym2 P(W∨) and is two-to-one away from the singular
locus. For a linear subspace [L] ∈ G(3, 6) of V ∨ let P(L) denote its projectivization.
Consider the subset U ⊂ G(3, 6) defined by

U = {[L] ∈ G(3, 6) : Y ×P(V ∨) P(L) is smooth}.
Denote by L⊥ the orthogonal of L and let U ′ ⊂ G(3, 6) be the subset defined by

U ′ = {[L] ∈ G(3, 6) : X ×P(V ) P(L⊥) is smooth}.
One can show that U and U ′ are both Zariski-open subsets of the variety G(3, 6), hence
they are dense and have non-empty intersection. Choose an [L] ∈ U ∩ U ′. Let

XL = X ×P(V ) P(L⊥) and YL = Y ×P(V ∨) P(L).

Since the Hilbert-Chow morphism Hilb2 P(W ) → Sym2 P(W ) is one-to-one away from
the singular locus of Sym2 P(W ) and f(X) avoids this singular locus, we see that
XL = f−1(P(L)) embeds into P(L⊥) via f as a smooth one-dimensional subvariety
defined by a homogeneous degree 3 polynomial. That is XL is an elliptic curve.

On the other hand, g is two-to-one away from the singular locus, so YL does not
embed into P(V ∨) via g. However, we can try to understand YL = g−1(P(L)) as
a closed subvariety of P2 × P2. Take three hyperplanes H1, H2, H3 ⊂ P5 so that
P(L) = H1 ∩ H2 ∩ H3. Denote by s1, s2, s3 ∈ H0(P5,OP5(1)) the sections defining
H1, H2 and H3. Then

YL = g−1(H1 ∩H2 ∩H3) = g−1(H1) ∩ g−1(H2) ∩ g−1(H3).
Since g∗OP5(1) = OP2×P2(1, 1), the si pull back to sections

ti = g∗si ∈ H0(P2 × P2,OP2×P2(1, 1)).
Let Di = V (ti) denote the corresponding effective divisors of P2 × P2. Then O(Di) =
O(1, 1) and by the adjunction formula we have

ωD1 =≃ O(−3,−3)|D1 ⊗ O(1, 1) = O(−2,−2).
Then

ωD1∩D2 ≃ O(−2,−2)|D1∩D2 ⊗ O(1, 1) = O(−1,−1),
and finally we find that

ωYL
≃ O(−1,−1)|YL

⊗ O(1, 1) = OYL
.

In other words, the closed subscheme YL of P2 × P2 is Calabi-Yau. It is smooth of
dimension one, so it is also an elliptic curve.

Since both XL and YL have expected dimension, the main theorem of homological
projective duality applies.

XL Hilb2 P2 YL P2 × P2

P2 P5 P2 P5

f g

By the 3rd property of Theorem 5.3.2 and the fact that the derived category of smooth
Calabi-Yau varieties does not decompose, we deduce that there is an equivalence

D(XL) ≃ D(YL)
of derived categories of the elliptic curves XL and YL.
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