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Abstract

In this thesis, the performance of the Capon beamformer is evaluated, using the
Delay-And-Sum beamformer as a performance benchmark. The beamformers
are utilized with simulated medical ultrasound data. The Capon beamformer
is an adaptive high-resolution beamformer but it can be sensitive to errors in
the assumed wavefield. This beamforming algorithm involves the estimation and
inversion of a spatial covariance matrix. The robustness of this estimation and
inversion can be increased by, e.g., applying spatial averaging when estimating the
covariance matrix, as well as by adding a diagonal load to the estimated matrix.

The performance of the Capon beamformer is measured in terms of resolution and
contrast when the subarray length and diagonal load are systematically varied.
The condition number and the eigenvalues of the covariance matrix are utilized
when assessing the stability with respect to the inversion of the covariance matrix.
The resolution and contrast have been analysed using simulated scenes containing
a set of scatterers, both with and without speckle, as well as a scene with a cyst
in speckle, respectively. A variant of the Capon algorithm is the power Capon
method, which is also assessed in terms of the separability of scatterers in a
simulated scene.

In the resolution analysis, it is deemed that a subarray size between Lmin = 1
3
M

and Lmax = 2
3
M , where M is the full length of the array, is robust. For the

diagonal load, it is found that DL = 0.01 tr(R)
dim(R)

is robust, dependent on the scene.
Furthermore, the condition number of the covariance matrix is found to be a
useful measure of stability in the covariance matrix inversion through analysis
and can be applied as an aid when setting the subarray length and diagonal load.



An analysis of contrast metrics showed how the subarray length and diagonal load
affect the measured contrast, combined with an analysis of how different regions
of interest affect the contrast metrics. The measured contrast metrics are the
Contrast Ratio, the Contrast-to-Noise Ratio, and the generalised Contrast-to-Noise
Ratio. The contrast analysis shows that using the results obtained from analyzing
the subarray length and diagonal load resolution leads to optimal outcomes in
terms of contrast metrics.
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Chapter 1

Introduction

1.1 Motivation

When creating medical ultrasound images, a probe transmits ultrasound waves
into the body and then receives backscattered waves, where the amplitude depends
on the physical properties of the tissue. The probe gathers these waves which
are converted into electrical time signals. Then, an ultrasound signal processing
system reconstructs these signals into images, before a final image sequence is
displayed. By applying beamforming algorithms, the received probe element
signals from the echoes are combined, by means of applying delays and weights to
the individual sensor signals before they are stacked. Beamforming can be seen
as a way to control how the signals are transmitted, or received by the probe, or
both, and processed by the system, to provide a high-quality ultrasound image.

Beamformers can be divided into two categories; conventional beamformers and
adaptive beamformers (Hoel Rindal, Austeng, and Rodriguez-Molares, 2020).
Conventional beamformers are beamformers that combine the signals of a beam, by
applying a predetermined set of weights and time delays. The delays are designed
to increase the amplitude of the waves received from a certain direction. Adaptive
beamformers, which are studied in more detail in this thesis, use additional
information from the received data to adapt the element weights. This adaptation
is hence based on the properties and statistics of the signal (Grythe, 2015).
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The main conventional beamformer is the Delay-And-Sum beamformer, where the
delays applied to the received signal at each sensor then follow a pre-determined
model that does not depend directly on the received data. The sensor signals can
also be weighted based on pre-determined window functions, such as Hamming,
and Hanning (Agarwal, Tomar, and Kumar, 2021), before they are summed to
form the beamformer output signal. A general drawback of the DAS beamformer
is related to the width of the main lobe, which affects, e.g., how well-resolved
targets in the examined scene are.

By applying adaptive beamforming, it is possible to achieve higher image resolution,
due to the fact that the beamformer adapts to the actual scene and received data.
There exist several adaptive beamformers, one being the Capon beamformer. The
Capon beamformer is a minimum-variance beamformer which increases image
resolution. The algorithm involves estimating and inverting the spatial covariance
matrix which describes the relation between the data received on each probe
element. The estimation and inversion of this matrix are not necessarily robust,
as there might be only few time samples available for the estimation related to
reconstructing a single image pixel. The limited amount of time samples and the
associated uncertainty in a temporally averaged covariance matrix can result in a
poor adaptive beamformer output, further resulting in decreased image quality
and undesirable artefacts.

To avoid misleading information in the ultrasound image, a robust estimate and
inversion of the covariance matrix should be performed for each pixel reconstruction.
The estimate can be made more robust using several methods. The Digital Signal
Processing group at the Department of Informatics, University of Oslo (UiO), has
in previous studies applied several methods, such as averaging in time, averaging in
space through subarray averaging, and adding a diagonal load. These approaches
are described in depth in Synnevåg, Austeng, and Holm (2009a) and Synnevåg,
Austeng, and Holm (2007a).

The methods of averaging in time and space enhance the estimate of the covariance
matrix by increasing the accuracy of the signal estimate. It is generally important
not to apply excessive averaging in time beyond the length of the ultrasound
pulse, as this will lead to decreased image resolution in the range direction, and
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1.2 Aims of thesis

therefore to a blurred image.

As part of the Capon beamformer algorithm, the covariance matrix has to be
inverted. The estimated covariance matrix can be non-invertible, or close to
non-invertible, which results in an inaccurate result. By applying a diagonal load
to the matrix, the invertibility of the matrix increases. It is desirable to avoid
adding a too large amount of diagonal loading, as this may alter the statistics of
the data described by the estimated covariance matrix. An excessive diagonal load
results in a beamformer output that approaches the Delay-And-Sum beamformer
output (Synnevåg, Austeng, and Holm, 2007b). The necessary amount of diagonal
loading depends on the invertibility of the covariance matrix estimate, as well
as robustness to errors. The latter is not part of the scope of this thesis. By
looking at the condition number of the covariance matrix estimate, it is possible
to estimate the amount of diagonal loading needed to attain a stable inversion of
the covariance matrix, as the condition number of a matrix is a measure of matrix
inversion stability.

1.2 Aims of thesis

Earlier research has provided insight and some rules of thumb with respect to
the amount of subarray averaging and diagonal loading to apply. Still, there
is no consensus within the ultrasound research community on the appropriate
choices of subarray size and diagonal load. The overall objective of this thesis is to
investigate the effects of these robustification methods and to provide additional
guidelines on the choice of parameters.

An aim of this thesis is to examine the robustness of the Capon beamformer in
terms of the covariance matrix estimation and inversion. This is done by analysing
how the matrix concepts of eigenvalues and condition numbers can be used as
a measurement of the stability of the estimate and inversion. This is done by
measuring the resolution of the beamformer by analysing the separability of two
scatterers in a simulated scene with varying distances between the scatterers. The
resolution is measured when varying the subarray size and the applied diagonal
load.

3
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Another aim is to further analyze how robustification methods, such as subarray
averaging and diagonal load, applied to the covariance matrix estimate affect a
set of image contrast metrics. This is done using data from a simulated scene
containing an anechoic cyst.

The following research questions are addressed in this thesis:

• Can the amount of diagonal load be determined based on the condition
number of the covariance matrix estimate?

• Can the eigenvalues of the covariance matrix provide additional information
on the resolution and separability of scatterers in a scene?

• To what extent are the eigenvalues of the estimated covariance matrix
affected by applied subarray averaging and speckle?

• How is the separability of scatterers in a scene when applying the Capon
beamformer affected by the amount of subarray averaging applied?

• How does applying speckle to the scene affect the scatter separability when
varying the subarray size?

• How do diagonal loading and subarray averaging affect the contrast metrics
in an anechoic cyst scene?

• How do the diagonal load and subarray averaging affect the contrast metrics
when considering different regions of interest?

1.3 Thesis outline

In Chapter 2, fundamental concepts of wave physics, signal processing, and
ultrasound imaging are introduced to provide the necessary background for un-
derstanding the work presented in this thesis. Some key aspects of applied linear
algebra are also introduced.

Chapter 3 presents and illustrates the datasets utilized in this thesis, and how
these datasets have been simulated. This chapter also presents the processing
chain and the Ultrasound Toolbox, which is utilized in this thesis.

4



1.3 Thesis outline

Chapter 4 presents and discusses the results obtained in this thesis. A comparison
of two Capon beamformer algorithms is also provided, and a brief analysis of the
general pixel resolution is done by examining the necessary amount of Multi-Line
Acquisition. An analysis of the separability between two scatterers in a scene
with no speckle is performed, before results are generated for scenes with speckle
added to the data. Before these results are presented, a brief analysis of the
speckle amplitude level is provided. Lastly, an analysis of contrast metrics for
a simulated dataset of a cyst is done. Throughout this chapter, the results are
discussed alongside their descriptions and display.

Finally, in Chapter 5, conclusions from the work presented in Chapter 4 are
provided, answering the research questions listed above, and ideas for further work
are discussed.
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Chapter 2

Background

2.1 Sound waves and their properties

When researching medical ultrasound image reconstruction algorithms, it is im-
portant to understand the fundamentals of sound waves, how the waves propagate
in mediums, and the properties of the waves. Some important physical properties
and phenomena are the speed of sound in a medium, as well as the refraction,
dispersion, absorption, and attenuation of a wave.

Sound waves which are audible for humans have a frequency between 20 kHz and
20 kHz, while ultrasound waves are inaudible and have a frequency above 20 kHz.
Sound waves are caused by for instance vibrations at the source, and propagate
through mediums as such, whether the medium is human tissue, air, or water.
Audible sound waves and ultrasound waves used for imaging are pressure waves.
Density and compressibility are the physical properties of the medium that decide
at which speed of sound the pressure wave can propagate. For water, the speed
of sound is typically 1500 m/s, and is mainly given by density, temperature, and
salinity (Leroy, Robinson, and Goldsmith, 2008). The speed of sound in air is
roughly 330 m/s (Pope, 1999).

For human tissue, the speed of sound lies between 1430 m/s and 1600 m/s
depending on the tissue (Pope, 1999). A typical value applied as the speed
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of sound in tissue in medical ultrasound imaging is 1540 m/s. The speed of
sound often varies in human tissue within an examination area, depending on the
composition of tissues (Duck, 2012). The speed of sound can also depend on the
frequency. This phenomenon is denoted as dispersion.

When the wave encounters an area with a new acoustic impedance, e.g., moving
from one kind of tissue to another, parts of the wave may be reflected at the
interface. An example is shown in Figure 2.1. Acoustic impedance is the opposition
a wave encounters in a medium, and is given by

Z = ρc, (2.1)

where Z is the acoustical impedance, ρ denotes the density of the medium, and c

is the speed of sound within the medium. The reflection of an ultrasound wave
traversing the interface between two media at normal incidence is given by the
intensity reflection coefficient (Pope, 1999)

α =
(Z2 − Z1)

2

(Z2 + Z1)2
. (2.2)

When the difference in acoustical impedance is large, α will be large. A large α

means a large amount of the wave will be reflected at the interface.

The different tissues may also attenuate the sound wave. Attenuation of a sound
wave is a loss of wave amplitude when travelling through the tissue, as shown in
Figure 2.2. Attenuation depends on properties such as density and speed of sound
in the medium, and how much of the wave is refracted throughout the medium.
When the ultrasound wave encounters a tissue with high stiffness, such as bone,
the attenuation of the wave will be high (Pope, 1999). The attenuation of a wave
when the wave travels through the medium is the main limitation of how far an
ultrasound beam can travel.

Bone has a speed of sound of 4080 m/s (Pope, 1999) and a high density, which
reflects most of the sound wave, which may result in a black shadow in an
ultrasound image. This black shadow appears because most of the wave is
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Medium 2
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Refracted wave

Medium 1

Refle
cte

d wave

Figure 2.1: An example of the refraction and reflection of a wave when coming
upon the interface between two mediums.
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Figure 2.2: An example of an attenuated signal.

Figure 2.3: An example of the diffraction of plane waves through a slit.
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reflected, resulting in less energy being transmitted to the area behind the bone.
Even though the wave may be fully reflected at the encountered surface of the
bone, it is often possible to receive energy from the area behind it. The energy
received depends on the size of the obstacle, in this example the bone, and is
due to diffraction (Pope, 1999). Diffraction is the reason why a wave can “bend”
around the corner of an object. An example of diffraction is given in Figure 2.3,
which shows the diffraction of waves sent through a slit.

10



2.2 Digital sampling of physical signals

2.2 Digital sampling of physical signals

A physical signal, such as a sound wave, present in a medium can be recorded by
an instrument, such as a hydrophone, a microphone or an ultrasound probe. The
signal is then converted into a continuous electrical signal. This electrical signal
is in turn converted to a digital signal through sampling. Sampling consists of
collecting the value of a signal at points in time, i.e. converting a continuous-time
signal to a discrete-time signal. This is typically done at a uniform sampling
interval.

Conversion of a continuous-time signal to a discrete-time signal can be done
without loss of information as long as the sampling of the continuous-time signal
is sufficient. A sufficient sampling of a signal, according to the Shannon-Nyquist
sampling theorem (Shannon, 1949), is to sample the signal using a sampling
frequency at least twice as large as the highest frequency present in the signal.
That is

fsampling ≥ 2 · fmax. (2.3)

This corresponds to sampling at least two samples per period of the highest-
frequency signal component. This is done to prevent the recreation of the wrong
signal.

One example of a badly sampled signal is shown in Figure 2.4 on the next page.
The figure shows a well-sampled continuous-time signal, and the effect of sampling
using a too small sampling frequency compared to the frequency in the signal.
A physical recreation of the example in Figure 2.4 would result in a frequency
of 2 Hz. This misrepresentation of a signal is called aliasing and is a limitation
in sampling. Other limitations are noise in the sampled signal, e.g., noise in the
form of quantification errors, or electrical noise from the probe. To be able to
accurately reconstruct the original signal after sampling, it is important to satisfy
the Shannon-Nyquist sampling theorem.

11
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Sampling of continuous time signal example

Reconstructed signal
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Figure 2.4: Example of poor sampling of a continuous-time signal. The
blue line is a well-sampled discretisation of a continuous-time, periodic cosinus
signal with 10Hz. The red line is a possible reconstruction of the signal from
the red samples when using a sampling frequency fs = 1.2 · fhigh = 12 Hz. The
circles indicate where the samples are collected using a sampling frequency of
fs = 12 Hz.

2.3 What is ultrasound imaging?

Ultrasound pulse-echo imaging is the process of transmitting and receiving ultra-
sound waves using a probe, before processing the received signal through various
beamforming methods. Some beamforming methods will be presented in Sec-
tion 2.4. The process of transmitting, receiving, and processing ultrasound waves
is repeated quickly and continuously, which creates a live view of the imaged area.

An ultrasound probe is typically a set of elements made of piezoelectric materials
and is used to transmit and receive ultrasound waves. Piezoelectric materials
are ceramic crystals that vibrate when an alternating voltage is imposed on the
material, as shown in Figure 2.5. This vibration generates pressure waves to be
transmitted through a medium. Properties such as the frequency and strength of
the alternating voltage imposed on the piezoelectric material decide the properties
of the transmitted wave.

When the wave has been transmitted, it travels through the medium, for instance,
the human body. The wave propagation changes when the wave encounters objects
in the medium with different physical properties. A part of the wave is then
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2.3 What is ultrasound imaging?

Applied stress Induced strain

Figure 2.5: An example of how piezoelectric material expands and compresses
when an alternating voltage is applied.

reflected.

The reflected waves, i.e. the echo, are received by the probe, and the wave is
converted to digital signals, see Section 2.2. This conversion is the opposite of
the transmission process, where the piezoelectric material vibrates due to the
received wave, and is converted into an electric signal. This received electric signal
is then digitally sampled. The digital signal is then processed by applying various
beamforming algorithms, which will be presented in Section 2.4, generating a
greyscale image, showing the final result of the ultrasound examination. A general
example of an ultrasound image is shown in Figure 2.6 on the next page.

In general, when working with a phased array probe, an ultrasound image is
created by transmitting and receiving a given number of beams within a sector.
The received signals are then compounded into a polar image of tx × rx pixels in
cylindrical coordinates, i.e. the number of angular pixels is given by the amount of
transmits tx, and the number of range pixels is given by the number of recorded
time samples rx from each transmit. To view the image on a computer screen, the
polar image is scan converted into a cartesian grid image that is being displayed.

2.3.1 Speckle

In most medical ultrasound images recorded in a physical medium, there will be
noise-like signals called speckle. Speckle patterns in physical media are a result of
natural inhomogeneity of the human tissue, i.e. reflections from structures that are
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Figure 2.6: An example of an ultrasound image. The example shows an
ultrasound image of a fetus in a sagittal scan at 30 weeks of pregnancy. The
image is adapted from Moroder, 2012.

random and smaller than the size of the resolution cell (see Section 2.5.1). Speckle
is then the sum of coherent and incoherent signals from at least 10 scatterers inside
a resolution cell (Jensen and Nikolov, 2000). In ordinary ultrasound imaging,
speckle is unavoidable due to the tissue inhomogeneity. A perfectly homogeneous
medium will theoretically give a speckle-less result.

2.3.2 Near-field and far-field

All medical ultrasound imaging is applied in the near-field, where the transmitted
wave maintains its spherical shape. In medical ultrasound imaging, a focused
beam is applied. A focused beam will have a focal zone, and the shape of the
beam transforms into an hourglass shape. The focal zone is the zone where the
beam achieves the highest resolution.

14



2.4 Image reconstruction and beamforming

2.4 Image reconstruction and beamforming

Beamforming can be seen as a way of controlling how the signals are transmitted
or received or both. In the transmit process, beamforming is done by altering
how the ultrasound wave is sent from each element. When the signal is received,
the signal recorded on each element in the probe is transformed from a domain of
position and time to x and y coordinates in an image. Beamforming is a form of
spatial filtering.

Beamformers are typically divided into two categories, namely conventional and
adaptive beamformers (Rindal, 2019). The main beamformer applied in time
is the DAS beamformer. DAS applies a set of delays and weights to the signal
recorded at each element and sums these over all elements.

Adaptive beamformers are all beamformers where the signal alters how the beam-
forming is performed. This alteration is performed by continuously using infor-
mation from the time signal to adapt, e.g., the element weights applied to each
channel before summation. In addition, several beamformers exist that include a
form of image weights, for instant coherence factor and phased coherence factor
(Rindal, 2019). These act more like image-processing techniques. Such techniques
will not be further discussed in this thesis.

2.4.1 Conventional beamforming – the Delay-And-Sum
beamformer

Conventional beamforming is beamforming which applies a predetermined set of
weights and delays at each element through both the transmit and receive beam-
forming process. As mentioned above, DAS is the main conventional beamformer.
As the name implies, the delay is applied to the signal received at each element,
and then all the signals are summed. A visual example of the DAS beamformer is
shown in Figure 2.7.

When the reflections from interfaces in the scene are reflected back to the probe
array, the transmitted signal arrives at different times over the array. This is due
to the difference in travel time from the outer and middle array elements to a
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Figure 2.7: A visualisation of the receiving part of the DAS algorithm,
mathematically shown in Equation (2.4). The wave arrives at the elements
at different times. The signal at each element is then delayed before being
summed.

point in the tissue and back.

The difference in travel time can be compensated for by applying delays to the
received signal from the probe elements. A set of optimal delays will result in the
alignment of the signals at each element, so the summation of the received and
delayed signals is optimized. This will result in the amplification of the signal
received in the direction corresponding to the delays.

The DAS output is defined as

zDAS (t) =
M−1∑
m=0

wmym(t−∆m,t), (2.4)

where M denotes the number of elements in the array and m denotes the specific
element number. wm is the weight applied to the signal ym from the element
which has been delayed by the delay ∆m,t.

Equation (2.4) may also be written in a compact vector form;
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2.4 Image reconstruction and beamforming

zDAS = wY. (2.5)

w is then the weight vector containing the weights at each element, and Y contains
the delayed signal recorded at each element.

Expanding aperture

The lateral image resolution is dependent on aperture size and depth, and a
general goal is to achieve a uniform resolution in the entire image. One aid to
help achieve this is to utilize an expanding aperture. The resolution along the
lateral axis is given by

xres = zΘ6dB = z
1.21λ

D
= 1.21λf#. (2.6)

The f-number, denoted f#, is the ratio between the depth z and aperture size D

(Rindal, 2019). Hence, in order to have a constant lateral resolution at all depths,
the active aperture size is increased linearly as the imaging depth increases.

2.4.2 Adaptive beamforming – the Capon beamformer

An adaptive beamformer usually has a specific criteria to fulfil. One example of
this criterion is to update the element weights by minimizing the expected output
power of DAS, which is the minimum-variance beamformer, alternatively named
the Capon beamformer (Capon, 1969). The Capon beamformer is typically a
secondary step of DAS, however only the step of applying a set of delays to the
received signals. The information from each element is then used to estimate the
signal, and to update and adapt the beamformer continuously.

The beamformer estimates the weight vectors by estimating the signal, as men-
tioned above. The signal is estimated using what is called a covariance matrix.
The aim of the minimum-variance Capon beamformer is to minimize noise and
interference from other directions while maintaining the gain from the direction
of interest, often denoted as the steering vector.
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The DAS is applied as an initial step by applying a set of delays, but not summing
the received signals. Then, the signal is received, and the covariance matrix R,
which will be presented shortly, is estimated through the derivation of DAS from
Equation (2.5):

E{|zDAS|2} = E{wHY }2 = E{wHY Y Hw}2 = wHE{Y Y H}2w = wHRw.

(2.7)

The Capon beamformer is expressed as the solution to the following minimization
problem:

min
w

(
wHRw

)
, subject to wHa = 1. (2.8)

The analytical solution to the optimization problem above is (Synnevåg, Austeng,
and Holm, 2009b)

w0 =
R−1a0

aH
0 R

−1a0

, (2.9)

where a0 is the steering vector. The steering vector gives information about the
location parameters of the sources (Li, Stoica, and Wang, 2003). When the delays
have been applied, the steering vector is simply a vector consisting of ones. The
weight set from Equation (2.9) is then applied to a snapshot of time samples at
all elements, resulting in the amplitude Capon beamformer output.

The power Capon beamforming method is derived by inserting Equation (2.9) as
the set of weights applied in Equation (2.7), and leads to (Lukose and Mathurakani,
2016)

PCapon = wHRw =
1

aH
0 R

−1a0

. (2.10)

The covariance matrix R is a matrix containing a measure of the similarity between
two samples recorded at two elements. By this, it is meant that the matrix element
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(m1,m2) in R represents the similarity between two samples at the probe elements
m1 and m2;

Rm1,m2 = cov(ym1(t), ym2(t)). (2.11)

Here, xm is the signal recorded at array element m, and t is the time sample in
question.

The estimate of the covariance matrix, denoted as R̂, is typically given as

R̂ =
1

N

N∑
n=0

ym[n]ym[n]
H . (2.12)

Here, N is the number of time samples, ym is the recorded signal at each sensor
element, and yH

m denotes the complex conjugate transpose.

2.4.3 Multi-Line Acquisition

Multi–Line Acquisition (MLA) is a method frequently used in medical ultrasound
imaging. The MLA method involves acquiring multiple received beams for each
transmitted beam. There will normally be an equal amount of transmitted and
received beams when no MLA is applied. When applying MLA to a set scenario,
there are two main applications.

One implementation is to transmit fewer and wider non-overlapping beams while
receiving an increased number of beams than transmitted beams. This implemen-
tation increases the frame rate while keeping the resulting amount of received
beams the same. One drawback of this implementation is, however, the possi-
ble loss of resolution. When increasing the transmitted beamwidth, the axial
resolution decreases. Targets in the scene may be missed due to the increased
beamwidth, and even though the MLA method increases the axial resolution, it
does not restore missed targets. Hence, MLA applied through this implementation
increases the frame rate, but not necessarily the image quality.

The second main implementation is to transmit wider, overlapping beams while
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receiving at an increased number of elements. This implementation does not
increase the frame rate, but increases the image quality regarding the transmitted
focus.

2.4.4 Robustification

Adaptive beamformers, such as the Capon beamformer, are typically sensitive to
errors on the probe array that effectively becomes an error in the applied steering
or time delay. As mentioned in section 2.4.2, the Capon beamformer increases
resolution by using an estimate of the covariance matrix. The estimate of the
covariance matrix is based on the weighted time-signal, i.e. the result of applying
a set of delays to the transmit dimension.

The covariance matrix estimate is based on rather short, non-stationary time-
signals. One risk when working with such signals is that the signal model adapts
poorly to the signal, as the signal model will not receive a sufficient amount of
information about the signal. The estimation of the covariance matrix may then
be challenging. However, by applying methods such as subarray averaging or time
averaging, the estimation of the covariance matrix is robustified.

To avoid challenges with generally poor estimations of the covariance matrix,
a robust estimate of the covariance matrix has to be found. As mentioned in
the introduction, the Digital Signal Processing (DSB) group at the Institute of
Informatics, University of Oslo, has applied some methods such as averaging in
time and space, or adding a diagonal load to the covariance matrix. These have
been presented by Synnevåg, Austeng, and Holm (2009a) and Synnevåg, Austeng,
and Holm (2007a).

Time averaging

Ultrasound pulses are, as mentioned, non-stationary, meaning the covariance
matrix estimate is based on only a short time snapshot. The time limitation
may cause the covariance matrix estimate to be affected by speckle. This will
further increase the variance of the covariance matrix estimate. By applying time
averaging, the influence of speckle is reduced, causing the variance to be reduced,
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2.4 Image reconstruction and beamforming

ensuring a more stable pixel value.

As for all averaging methods, it is desired to average as much as possible, within
reason. The maximum amount of averaging possible to apply is physically limited
due to the non-stationarity of the pulse. However, it can be chosen based on the
pulse length, as each part of the pulse may contain information about the imaged
scene. The averaging is applied to the covariance matrix estimate, resulting in a
stabilized estimate of each pixel value, as the pixel estimate will be less exposed
to the variance of the speckle in the recorded scene.

Subarray averaging

Subarray averaging is a space averaging method used to robustify the estimated
covariance matrix, and is the main method to reduce the effect of coherent sources
(Synnevåg, Austeng, and Holm, 2009b). Statistically, the information from all
parts of the probe array is similar when delays have been applied. A spatially
averaged covariance matrix will then, theoretically, contain the same information
about the pulse and noise as the full covariance matrix.

For a full array consisting of M elements, one can divide the full array into
P = (M − L+ 1) subarrays of a length of L elements, and then apply adaptive
beamforming to the subarrays. The covariance matrix estimation from Equa-
tion (2.12) is then averaged over all subarrays, and temporally averaged over
2K + 1 time samples, as such (Synnevåg, Austeng, and Holm, 2009b, Eq.8):

R̂ =
1

(2K + 1)(M − L+ 1)

K∑
k=−K

M−L∑
l=0

yl[n− k]yl[n− k]H . (2.13)

An example of subarray averaging is shown in Figure 2.8, where an array with 10

elements is divided into 6 subarrays with a length of 5 elements. The covariance
matrix estimate is then reduced from a 10× 10 matrix to a 6× 6 matrix.

When determining the subarray size L, there is a trade-off between the resolution
and robustness of the Capon beamformer. A smaller subarray size robustifies the
estimate of the covariance matrix, but it does reduce the resolution (Synnevåg,
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Figure 2.8: A visualisation of the subarray averaging method. The original
array has 10 elements, and the subarrays have a length of 5 elements. The
covariance matrix is then reduced from a 10 × 10 matrix, to a 5 × 5 matrix
through averaging. Figure borrowed from Johnson and Dudgeon, 1992, Fig.4.35.

Austeng, and Holm, 2007b).

Diagonal loading

In the calculation of the weights (Equation (2.9)), the covariance matrix R is
to be inverted. However, it is possible for the sample covariance matrix to be a
non-invertible matrix. A non-invertible matrix does not have full rank, and will
result in a matrix with infinitely positive and negative values in the matrix. A
close-to-non-invertible matrix will give similar results. The result of the inversion
of such matrices will result in an inaccurate inversion. The cause of non-inversion
is the singularity of a matrix.

A singular matrix is a square matrix where the determinant is 0. In the case of a
2x2 matrix A =

(
a b
c d

)
, the determinant is defined as (D. C. Lay, S. R. Lay, and

McDonald, 2016)
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det(A) = ad− bc. (2.14)

Further, the inversion of the matrix A is defined as

A−1 =
1

det(A)

(
a b
c d

)
. (2.15)

The inversion is not defined if the determinant (Equation (2.14)) is zero. This is
the case of singular matrices, as division by zero is not defined.

One way to make the inversion of the matrix is to add a diagonal load to the
matrix, as such

Ã = A+DL ∗ I. (2.16)

Here, A denotes the matrix in question, Ã denotes the modified matrix, and I is
the identity matrix, a matrix with ones at the diagonal and zeros elsewhere. The
diagonal load is denoted DL, and is in this thesis defined as

DL = regCoeff · tr (A)

dim (A)
, (2.17)

where regCoeff is a fraction representing the percentage of diagonal load factor
applied, dim denotes the dimension of the matrix A, and tr is the trace of the
matrix A, i.e. the sum of all diagonal elements of the matrix. The applied diagonal
load reduces the singularity of the matrix, which in return increases the stability
of the inversion.

2.5 Image metrics

The quality of an ultrasound image can be measured using different image metrics,
such as resolution and contrast.
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2.5.1 Resolution

One important image metric is the resolution, where a well-resolved image is
desired to be able to distinguish all details from the imaged scene in the image.
The depth resolution is given by

δr =
c

2B
, (2.18)

and the lateral resolution is given by

δβ =
λ

D
, (2.19)

where c denotes the speed of sound in the medium, λ denotes the wavelength, B
is the bandwidth of the signal, and D is the length of the array. Equation (2.18)
and Equation (2.19) denotes the size of the resolution cell, i.e. the area in which
two targets located within cannot be separated by the system.

To ensure a correctly sampled wave field, the Nyquist sampling theorem gives the
following two-way (tr) beam spacing constraint to be fulfilled (Bjåstad, 2009, Eq.
1.9)

δθtrNyquist =
λ

Dtx +Drx

[rad]. (2.20)

Here, Dtx and Drx denote the physical length of respectively the transmit and
receive arrays.

One way to measure the resolution of an imaging system is to analyse a well
designed scene, such as an image of a set of scatterers. By doing this, it is possible
to measure the separability of scatterers in the scene, where the separability is
described by a resolution criteria.

By analysing the intensity dip between two points in a scene, it is possible to
describe whether or not the scatterers are separated by the beamformer. One
criterion is the -6 dB limit, where the scatterers are considered separated if the
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amplitude dip between the two scatterers is 6 dB lower than the amplitude of the
scatterers.

Another separability criterion is the Sparrow limit. Here, the scatterers are
considered separated if the amplitude between the scatterers shows any dip.

2.5.2 Contrast

Contrast Ratio

Contrast Ratio (CR) is a ratio between the mean background value and the mean
value in a Region Of Interest (ROI), and is defined as (Smith, Lopez, and Bodine,
1985)

CR =
µROI

µbackground
. (2.21)

Here, µ denotes the expected value of the power of the beamformed signal, i.e.
µ = E {|b|2} of the ROI and the background region.

Contrast-to-Noise Ratio

The Contrast-to-Noise Ratio (CNR) was first introduced by Patterson and Foster
(1983) as contrast-to-speckle ratio, later denoted as contrast-to-noise ratio. The
CNR is defined as

CNR =
|µROI − µbackground|√
σ2

ROI + σ2
background

, (2.22)

where σ =
√

E {(|b|2 − µ2)} is the standard deviation of the power of the beam-
formed signal in a set region.

Generalized Contrast-to-Noise Ratio

The generalised Contrast-to-Noise Ratio (gCNR) is related to the total overlap
area of the Probability Density Function (PDF) derived from the two regions ROI

25



Background

and background region (Rodriguez-Molares et al., 2020). The overlap OVL is
given by

OVL =

∫ ϵ0

−∞
pROI(x)dx+

∫ ∞

ϵ0

pbackground(x)dx, (2.23)

where ϵ0 is the optimal threshold between the two PDFs to avoid misdetection
between the two regions, and p denotes the PDF value. The relationship between
the gCNR and OVL is (Rodriguez-Molares et al., 2020)

gCNR = 1− OVL. (2.24)

2.6 Linear algebra aspects

2.6.1 Eigenvalues of a matrix

If one has a probe with M elements which receive a set of waves, the received
signal can be viewed in two ways. One way is to consider the signal recorded at
each element as a function of time, while another way is to consider one time
sample and a snapshot from each sensor. In the case of considering a snapshot
of all elements, these samples can be used in the estimation of the covariance
matrix R. From R, it is possible to calculate the eigenvalues, which will return
m values from an m × m matrix. When considering an analysis as such, the
number of significant eigenvalues will represent the number of significant waves
received at the probe elements. The vector space spanned by the eigenvectors
having a corresponding significant eigenvalue represents the space spanned by the
significant waves received.

A wave arriving from the far-field arrives as a plane wave. This can be described
with one eigenvector and the corresponding eigenvalue. An analysis of the eigen-
values will then show a significant eigenvalue, representing the plane wave. When
speckle is present in the data, the eigenvalues will show an increased level of small
eigenvalues, as there is more signal present in the data.
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A wave arriving from the near-field will be a spherical wave and will arrive at the
probe slightly curved. Depending on the curvature, this may result in a few or
several significant eigenvalues with corresponding eigenvectors.

The size of the array will affect the size of the covariance matrix, which in turn
affects the number of eigenvalues, as the size of the array coincides with the
number of eigenvalues. A near-field wave received by the probe has a spherical
shape until the delay step of DAS has been applied. If the applied delays return
a perfect plane wave, there will be one set of eigenvalues representing the wave.
However, if the estimate of delays is not perfectly accurate, or the wave arrives
from a direction slightly off from the direction of interest, the received wave may
still have a slightly curved wavefront. A full array is then more affected by this
curved wavefront than a smaller fraction of the full array, which in turn may
increase the number of significant eigenvalues.

The magnitude of the eigenvalues also increases when the subarray size increases,
as a larger array receives more energy from the wave.

2.6.2 Condition number of a matrix

The condition number of a matrix is a measure of how sensitive the result is to
variations in the input data. A matrix can be defined as well- or ill-conditioned.
A well-conditioned matrix will return a more stable result of the matrix inversion
(Equation (2.15)) (Cheney and Kincaid, 2007, p. 321) (D. C. Lay, S. R. Lay, and
McDonald, 2016, p. 132).

A 2-norm condition number of a square matrix A is defined as (Cline, Moler,
Stewart, and Wilkinson, 1979, Eq.1.6)

k(A) = ∥A∥∥A−1∥. (2.25)

This can be written as

k(A) =
λmax

λmin
. (2.26)
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If the eigenvalues are particularly large or small, round-off errors in the calculations
are inevitable. Round-off errors occur if the value is getting infinitely big or small,
which is the situation when dividing a value by a respectively very small or large
value.

When the covariance matrix is singular, the condition number will be infinitely
high. When working with sample covariance matrices in the case of beamforming,
this can for instance happen with simulated data sets with no speckle, in pixels
with a value of 0, or if the sources are coherent. Then, a slight change in the
covariance matrix element will have a big effect on the stability of the matrix
inversion. Matrix inversion and non-invertible matrices have been presented in
Section 2.4.4.

The condition number represents the stability of the matrix inversion, where
log10(k(A)) is an estimation of the loss of precision. This is an upper boundary,
representing the number of digits that may be miscalculated. For example,
k(A) = 105 gives an upper boundary of 5 digits. What is considered a too
large condition number depends on the precision of the calculation tool applied.
MATLAB has a precision of 16 digits, meaning a matrix with a condition number
above 1016 is an ill-conditioned matrix (Cheney and Kincaid, 2007).

One way to avoid an infinitely high condition number is to apply a robustification
method, the most common method being adding a diagonal load to the matrix.
The diagonal loading method was presented in Section 2.4.4.
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Chapter 3

Methods

3.1 Datasets

The datasets used in this thesis are all simulated using Field II Ultrasound
Simulation Program (2023), version 3.30. The probe is identical between all
datasets. The simulated datasets have been generated both with and without
speckle. A simulated speckle-less scene has initially been used when examining
resolution, before speckle is added to repeat the resolution examinations.

3.1.1 Setup of the probe, the scene, and beamforming

parameters

All data has been simulated using the same probe, the P4 phased array transducer
with 64 elements (Vega, 2015). The transducer array properties are shown in
Table 3.1, and the simulation parameters are listed in Table 3.2 on the following
page. The element height of the probe is reduced from the original P4 phased
array transducer, to counteract the elevation focus of the original probe. This is
done to avoid introducing effects that could influence the results if not properly
addressed.

In some cases, some beamforming parameters have been set. Table 3.3 on the
next page contains the parameters set when beamforming. These parameters have
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Probe properties Value

Element width 0.25 mm
Element height 5 mm
Speed of sound c 1540 mm
Centre frequency fc 2.56 MHz
Pulse length 2.5 cycles
Number of elements 64

Table 3.1: Probe properties based on the P4 phased array transducer, applied
when simulating scenes.

Simulation parameter name Value

Number of transmits, tx 128

Simulated depth 0 to 60 mm
Simulated width −30◦ to 30◦

Depth of scatterers 30 mm
Depth of cyst 30 mm
Cyst radius 5 mm

Table 3.2: The applied variables when simulating scenes.

Parameter name Value

Subarray size, L 1
3
M ≈ 21

Diagonal load 1 %
f# 1.7

Expanding aperture window Boxcar
MLAresolution work factor MLA = 3

MLAcontrast work factor MLA = 1

Lateral distance d between scatterers 2 mm

Table 3.3: The default beamforming and dataset parameters when a value
needs to be set for analysis.
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been set based on earlier research and current standards.

Due to the expanding aperture (Section 2.4.1), the subarray size is adapted to
keep the number of subarrays the same at each depth. At a depth of 30 mm, the
adapted subarray size is Lnew = 19 elements, keeping the corresponding fraction
of L = 1

3
M . The MLA factors listed are the factor of which the MLA increases

the number of axial samples.

Choise of transmits, tx

From Equation (2.20), the Nyquist sampling theorem states that the beam spacing
requirement is

δθtrNyquist =
λ

Dtx +Drx

=
0.60156 · 10−3

2 · 64 · 0.25 · 10−3
= 0.0188[rad] = 1.0771◦. (3.1)

The full array size is then Dtx = Drx = Nelements · element width. Further, the
relationship between the number of transmits, tx,Nyquist, within a full scan for the
Nyquist sampling theorem is

θtot = δθtrNyquist · tx,Nyquist, (3.2)

which results in the following amount of necessary beams according to the Nyquist
criterion

tx,Nyquist =
θtot

δθtrNyquist
=

60◦

1.0771◦
= 55.7 transmits. (3.3)

By applying tx = 128 transmits, the constraint given by the Nyquist sampling
theorem is met, and the pulse is correctly sampled. However, tx = 128 results in
an oversampled signal in the lateral direction, which results in a visually pleasing
beamformer output.
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3.1.2 Simulations of the scenes containing scatterers

The simulated datasets have been simulated with points at a 30 mm depth and
different lateral locations in the scene. One example of a beamformed scene
without speckle is shown in Figure 3.1, a scene where there are two points located
with a lateral distance of 2 mm. This specific simulated scene has been used when
a set distance between the scatterers is necessary, e.g., when examining the effect
of subarray averaging. When the lateral distance between the scatterers is altered
for examination of scatter separability, the applied distances are 0, 0.5, 1, 1.5, 2,

and 5 mm.

3.1.3 Simulation of speckle scene

Speckle is added to the simulated scenes to replicate a more realistic scene. The
speckle simulation is done separately from the scatter simulation.

The speckle scene has been simulated by generating 106 randomly located scatterers
in the full scene. This is to ensure statistically correct speckle, which is when
there are 10 or more random scatter points within a resolution cell, as mentioned
in Section 2.3.1. The simulated speckle dataset beamformed with the DAS
beamformer in USTB is shown in Figure 3.2.

The result of combining the datasets visualised in Figure 3.1 and Figure 3.2 is
shown in Figure 3.3. The speckle level is −30 dB.

3.1.4 Simulated cyst target

When measuring contrast, a simulated dataset containing an anechoic cyst is
used. This is done using the same method as presented in Section 3.1.3. The cyst,
visualised in Figure 3.4, is then placed by removing all random scatterers within
a circle located at a depth of 30 mm, with a radius of 5 mm.
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Figure 3.1: A simulated dataset of a
speckle-less scene with two scatterers lo-
cated at a depth of 30mm, with a distance
of 2mm between them. The data has been
beamformed using the implementation of
the DAS beamformer in the Ultrasound
Toolbox (USTB).

Figure 3.2: A simulated speckle dataset,
beamformed using the DAS beamformer.

Figure 3.3: The beamformed result of the
combined simulated dataset with two scat-
terers and simulated speckle. The two scat-
terers are located at a depth of 30mm, with
a lateral distance of 2 mm. The speckle
is at a level of −30 dB. The full dataset
has been beamformed using the DAS beam-
former.
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Figure 3.4: A simulated dataset contain-
ing a cyst located at a depth 30 mm, with
a 5 mm radius. The data has been beam-
formed using the DAS beamformer.
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3.2 The Ultrasound Toolbox

“ ”
USTB is a MATLAB toolbox for processing ultrasonic signals. Its aim is to
facilitate the comparison of imaging techniques and the dissemination of research
results. USTB covers processing techniques for tissue and flow visualisation, as
well as other image reconstruction techniques. (Ultrasound Toolbox n.d.).

USTB was utilized for beamforming and visualisation. The toolbox features
well-tested beamformer implementations, such as the DAS beamformer.

3.2.1 Implementation of getCapon into the Ultrasound
Toolbox

One of the first steps in this thesis was to implement a stand-alone Capon
beamformer algorithm, named getCapon, into USTB as a postprocess. The
getCapon-algorithm dates back to 2009 at the DSB group at UiO.

First, the code was updated slightly regarding modernisation in the MATLAB
syntax, before some new functionalities were added. The main functionality
implemented in the algorithm is the possibility of applying expanding aperture
(section 2.4.1) to the data, followed by an update of the subarray averaging method
(section 2.4.4) to adapt to the expanding aperture.

After this, getCapon was implemented as a post-process in the USTB, to utilize
the full functionality of the USTB. The applied functionality mentioned above is
kept, as well as adapting the algorithm to fit the USTB syntax.

3.3 Code availability

The source code for this thesis is available on Github through the following link:

https://github.com/helenewold/MasterThesis.

Simulated datasets can be reproduced using the scripts located in the folder Source
Code/Dataset generation scripts
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Chapter 4

Results and discussion

4.1 Implementation of the Capon beamformer

into the Ultrasound Toolbox

One of the first tasks in this master project was to implement an already existing
Capon beamforming algorithm developed by the DSB group at UiO as a post-
process operation in the Ultrasound Toolbox (USTB) framework.

However, there already exists an implementation of the Capon beamformer in
the USTB. Both implementations calculate the weight vector as shown in Equa-
tion (2.9) on page 18, which theoretically should result in identical numerical
output from the two algorithms. It is then useful to compare the processing
results from the two implementations, to examine the result regarding the output
similarities.

A natural way to examine the similarity between the implementations is by
calculating and visualising the numerical difference between their outputs when
given the same input. The numerical difference between all pixel values in the
image is calculated by

∆ =

∣∣∣∣ |zA|
max(|zA|)

− |zB|
max(|zB|)

∣∣∣∣ , (4.1)
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Figure 4.1: The numerical difference be-
tween the outputs from the UiO getCapon
algorithm and the USTB Capon minimum-
variance algorithm. The input was the sim-
ulated speckle dataset.
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Figure 4.2: The numerical difference be-
tween the subarray length on the beam-
formed outputs from the UiO getCapon
algorithm and the USTB Capon minimum-
variance algorithm. The white represents
where there are differences between the two
methods.

where the complex output from the UiO getCapon implementation was applied
as zA, and the complex output from the USTB Capon algorithm as zB. The
beamformer input was the recorded dataset presented in Section 3.1.3, visualised
in Figure 3.2.

The result of the calculation is shown in Figure 4.1, where a striped pattern is seen
along the depth axis. The explanation for this are in the numerical differences
which occur when applying both expanding aperture and the subarray averaging
method, see respectively Section 2.4.1 and Section 2.4.4. The subarray size changes
according to the expanding aperture approach, as the ratio between the subarray
length and the full array length is kept constant.

Figure 4.2 visualises the numerical differences in subarray length L applied in the
two Capon beamforming algorithms. As is noticeable in the figure, the pattern
coincides with the striped pattern visible in Figure 4.1. The differences from
Figure 4.1 are barely visible to the naked eye when visually analysing the full
output of both algorithms. The numerical difference is below −20 dB, which,
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when visually comparing the two outputs, are close to non-distinguishable.

The reason for the difference in output and applied subarray lengths has not been
located. One possible reason for how this difference occurs might be the way the
two implementations apply the time averaging with respect to the first and last
samples, which then may affect the application of the expanding aperture. The
number of averaged time samples and the number of depth samples where there
are differences between the two implementations, are the same, supporting the
presented possible reasoning.

When applying temporal averaging, the covariance matrix of a sample ym(n)

is averaged over the covariance matrices of the surrounding t samples, i.e. the
samples between ym(n− t

2
) and ym(n+ t

2
). For the first t

2
− 1 samples, there are

not t
2

prior time samples to include in the averaging of the covariance matrix.
Then, the lack of sufficient prior time samples has to be accounted for. This can
be done by either averaging the covariance matrix over all available prior time
samples, or by not including the first t

2
− 1 time samples. The same applies to

the last t
2
− 1 time samples. The USTB implementation includes a method which

averages using the covariance matrices of all available prior samples if there are
less than t

2
samples available before or after sample ym(n).

Both implementations have been analysed with respect to Equation (2.9) and the
subarray averaging method (section 2.4.4 on page 21), and are then considered
mathematically correct. The getCapon implementation exhibited a reduced com-
putational time, and since there is no located reason for the numerical differences,
the getCapon algorithm from the DSB group is utilized. As the getCapon algo-
rithm is separate from the USTB, other than the inclusion as a post-process, it is
possible to modify the algorithm without impacting the USTB core structure.

4.2 Applied Multi-Line Acquisition

It is important to have a well-sampled image, as a real-time visualisation can be
misrepresented if the image is poorly sampled in space. In the case of a scene
containing scatterers somewhere in the scene, a poor spatial sampling may cause

37



Results and discussion

-5 0 5
x[mm]

25

30

35

z[
m

m
]

getCapon output, MLA = 1

-60

-50

-40

-30

-20

-10

0

(a) Result from the Capon Beamformer when no
MLA is applied.

(b) Result from the Capon Beamformer when
an MLA factor of MLA = 3 is applied.

(c) Result from the Capon Beamformer when
an MLA factor of MLA = 5 is applied.

Figure 4.3: The result from the Capon Beamformer when applying two
different MLA factors of 3 and 5, as well as no MLA, to a dataset with two
scatterers at 30 mm depth, and 2 mm distance between. The figure visualises
how the pixel size decreases when the MLA factor increases.
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Figure 4.4: Resolution through the lateral axis at a depth of 30 mm, showing
the separability between two scatterers at a distance of 2 mm using different
MLA factors for both the DAS and Capon beamformer. The DAS beamformer
results are visualised using a dashed line, and the Capon beamformer results
are visualised using solid lines.

a missed peak at the scatter locations.

Increasing the lateral resolution demands a denser lateral sampling. One way
of increasing the lateral resolution is to apply Multi-Line Acquisition (MLA),
see Section 2.4.3. The amount of MLA is adjustable, and a choice regarding
this amount must be made. To keep the results comparable throughout this
thesis, a consistent use of MLA is beneficial. Therefore, it is useful to analyse
how MLA affects the separability and spatial resolution. This analysis was done
with the Capon beamformer, where the input is the dataset containing two
scatterers located 2 mm apart at a depth of 30 mm. The dataset was presented
in Section 3.1.2 and visualised in Figure 3.1.

The notation MLA = value is applied throughout this discussion, to represent
the factor by which the received beams have been increased. No applied MLA
is denoted as MLA = 1. The analysis was done with MLA = 1, 3, and 5. The
dataset has been simulated using tx = 128 transmit beams, as noted in Table 3.2.

Figure 4.3 shows the image reconstructed using the Capon beamformer. The
subfigures of Figure 4.3 visualise the processing with mMLA when using various
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factors of MLA = 1, 3, and 5.

When comparing Figure 4.3a with Figure 4.3c, namely the results from the Capon
Beamformer using an MLA of respectively no MLA and MLA = 5, it is clear that
the lateral resolution in Figure 4.3c is improved from Figure 4.3a. In Figure 4.3a,
the pixels are more visible along the lateral axis compared to Figure 4.3b and
Figure 4.3c. In Figure 4.3, it is shown that a higher MLA gives a noticeably
enhanced resolution using the Capon beamformer, with more precise locations of
the scatters with respect to the width of the scatterers.

As seen in Figure 4.4, the DAS beamformer represented by the dashed lines
performs similarly for the different MLA factors. It is possible to see how the DAS
beamformer already is over-sampled with 128 transmit beams when considering
the case of MLA = 1 at 30 mm depth. An increased MLA-factor will result in
an even more over-sampled beamformer output for the DAS beamformer. The
main difference between the DAS cases shown in Figure 4.4, is the difference in
the amplitude level at x = 0 mm. Here, the amplitude of the MLA = 1 case is
approximately 1 dB higher than for the MLA = 3 and MLA = 5 cases.

For the Capon beamformer, the case of MLA = 1 is clearly undersampled, as
indicated by the chopped scatter peak. By chopped, it is meant that the amplitude
peak at the scatterers is flat. This chopped peak is not visible in Figure 4.3. For
this undersampled case, the beamformer misses the scatter location peaks. The
amplitude is approximately 5 dB lower for the MLA = 1 case than for the two
cases of MLA = 3 and MLA = 5. The two cases with applied MLA do result in a
well-sampled signal when examining the resolution at 30 mm depth. Regarding the
amplitude around 0 mm, the three MLA cases perform equivalently. The higher
MLA-factors do, however, cause a slightly increased amount of perturbations.

Regarding the two MLA factors 3 and 5, the resolution analysis results shown
in Figure 4.4 using both the DAS and the Capon beamformer are very similar.
Throughout this thesis, the beamforming is performed with an applied MLA factor
of 3 to achieve a well-sampled signal along the lateral axis at 30 mm depth. An
MLA-factor of 3 increases the lateral pixel count from 128 to 384 pixels.
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4.3 Resolution

4.3.1 Scatterers in a speckle-less scene

One of the main image metrics is the resolution of objects in the recorded scene.
The following section will examine how the Capon beamformer performs with
respect to the separability of scatterers in the scene, applying the DAS beamformer
as a performance benchmark. The impact of the applied subarray averaging on
the separability will be studied. The separability analysis is initially done to define
a limit of lateral distance between the two scatterers where both the DAS and
Capon beamformer results in separated scatter location with the parameter set
discussed in Section 3.1. The eigenvalues of the estimated covariance matrix are
also examined.

Increasing distance between scatterers

First, the separability of scatterers in a scene is analysed when the distance
between the scatterers in the scene is varied. The scatterers are always simulated
symmetrically around the probe centre axis at a 30 mm depth.

Separability

Figure 4.5 shows the amplitude along a lateral line at 30 mm for different beam-
formed outputs, where the beamformed scenes contain two scatterers at 30 mm
depth. The difference between the scenes is the distance between the two scatterers.
Figure 3.1 visualises an example of the beamformed output of such a scene. The
inter-scatter distances applied are 0, 0.5, 1, 1.5, 2, and 5 mm. Each subfigure visu-
alises the amplitude of the different scenes beamformed using the DAS beamformer,
the amplitude Capon beamformer, and the power Capon beamformer.

The results from Figure 4.5a and Figure 4.5b have all been normalized by the
maximum value in the case of DAS applied to the 5 mm case. This has been
done to ensure a representable comparison between the results. It will also be
possible to see if one scene is more prone to signal cancellation when the amplitude
is compared with another scene, which is not as apparent when the images are
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(a) Output from the DAS beamformer.
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(b) Output from the amplitude Capon beamformer.
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(c) Output from the power Capon beamformer.

Figure 4.5: The resolution from the three methods of DAS, amplitude Capon
and power Capon, for different scenes with varying distances between two
scatterers. The distances between the scatterers are respectively 0, 0.5, 1, 1.5, 2,
and 5 mm, and the scatterers are located at 30 mm depth.
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individually normalized. The result from Figure 4.5c is, however, not normalized,
as the power Capon method in the getCapon algorithm has an unlocated error.
Correcting the power Capon implementation has not been prioritized in this thesis,
as the separability can be measured between scatterers, and the effect of subarray
averaging is still visible.

The power Capon result does however visualise how the amplitudes of the scatterers
are about 12 dB lower than the corresponding results from the amplitude Capon.
The difference between the amplitude of the scatterers when the inter-scatter
distances are 0 mm and 1 mm is about 6 dB, which is approximately 2 dB bigger
difference than from corresponding results from the amplitude Capon method.
This difference may, however, be reduced when proper normalization and the
proper implementation of the power Capon method have been implemented.

From all subfigures in Figure 4.5, it is noticeable how the peak amplitude of the
scatterers from the dataset using two scatterers at 0 mm and 0.5 mm apart is
enhanced compared to the other cases, as well as the peak amplitude from the
dataset with two scatterers at 1 mm when using DAS in Figure 4.5a. The max
amplitude then decreases when the scatterers are located 1.5 and 2 mm apart,
before increasing for a 5 mm distance. This is due to the beampattern of the array
and beamformer, which represent how the intensity of a beam varies dependent on
direction and distance from the source. If the scatterers are positioned so that one
scatter is located within the sidelobe of another scatterer, it results in a reduction
in the amplitude of the scatterers.

For the case of two scatterers located with 0 mm distance between, i.e. located
at the same place in the scene, the scatter amplitude is chopped. The missed
peak is a result of undersampling. The scatterers are located between two receive
lines, and as the effective point spread function is narrow, the peak is missed, and
the apparent amplitude of the peak is lowered. For the Capon beamformer, the
amplitude increases slightly when the two scatterers are moved 0.5 mm from each
other, the received lines are closer to the two scatterers.

For two scatterers with 1.5 mm when using the DAS beamformer, a dip between the
scatterers is noticeable. According to the Sparrow Limit, presented in Section 2.5.1,
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the two scatterers are then separable. This is not the case if one is to consider the
−6 dB limit. The two scatterers located 1 mm apart when using the amplitude
Capon beamformer are also separated when considering the Sparrow Limit.

A noticeable difference between the images reconstructed using the DAS and both
the Capon beamforming implementations is in the width of the located scatterers
for all scenarios, regarding, e.g., the Full Width at Half Maximum (FWHM).
FWHM is the width of the scatterers when the amplitude is reduced by half
from the maximum amplitude. The DAS beamformer generally results in a larger
estimated width of the scatterers.

Eigenvalues

Figure 4.6 shows the eigenvalues of the covariance matrix through a lateral line at
30 mm, and Figure 4.7 the axis along 0◦. The eigenvalues are calculated using
the eig() function in MATLAB. The eigenvalues have been sorted, locating the
highest values as λ1.

The eigenvalues are visualised in decibel. As the eigenvalues are quite small,
perturbations in the eigenvalues then appear more significant. This will help
derive more information about how, e.g., the increasing distance between the
scatterers affects the eigenvalues.

None of the eigenvalues has been normalized, other than a limitation to the
colour bar, to exclude eigenvalues close to zero. This is done to achieve a good
representation of the eigenvalues for the different scenes when compared to each
other.

As the upper left figure in both Figure 4.6 and Figure 4.7 on the facing page repre-
sents the scene with two scatterers located in the same position, it is not possible
to measure any separability. As noticeable in the upper left figure in Figure 4.6,
there is a slight decrease in the magnitude of the second largest eigenvalues in the
area surrounding 0 mm. The decrease in the eigenvalue magnitude is caused by
the axial line being gathered nearly directly through the point. The transmitted
pulse is then directed straight at the scatterers, and the received, delayed signal
is then a plane wave which hits all elements simultaneously. The covariance is
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Figure 4.6: Eigenvalues of the covariance matrix along a lateral line going
through a depth of 30 mm. The scatterers are located at 30 mm depth, with a
distance of 0, 0.5, 1, 1.5, 2, and 5 mm between the scatterers.

Eigenvalues of R through axial line at 0 degrees

Depth [mm]

j6
ij

d= 0

2

4

d= 0.5 d= 1

d= 1.5

26 28 30 32 34

2

4

d= 2

26 28 30 32 34

d= 5

26 28 30 32 34
-60

-50

-40

-30

-20

-10

0

[dB]

Figure 4.7: Eigenvalues of the covariance matrix through the azimuth axis at
an angle of 0◦. The scatterers are located at 30 mm depth, with a distance of
0, 0.5, 1, 1.5, 2, and 5 mm between the scatterers.
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then high between all elements from this pixel position, resulting in a covariance
matrix where all matrix entries are approximately the same value. Such a matrix
is called a all-ones matrix.

When considering scenes with a larger distance between the scatterers, the received
signal contains a more distributed contribution of the waves reflected by the two
scatterers. The covariance between all elements then decreases slightly, causing the
covariance matrix to lose the all-ones characteristic. This reduction also increases
the number of significant eigenvalues, hence reducing the eigenvalue magnitudes.

In general, it is found that the eigenvalues gathered along the axial line through
30 mm presented in Figure 4.7 are skewed at greater depths. This skewness is a
result of the direction of arrival of the signals, as the reflected wave arrives at the
probe array dependent on the distance between the element and the localization
of the point.

Now, are the eigenvalues of the covariance matrix applicable for defining the
separability of two scatterers? It is possible, as the magnitude of the largest
eigenvalues is experiencing a decrease between two well-separated scatterers.
However, this method fails to prove new insights compared to a simple analysis of
the amplitude.

The eigenvalues do, however, provide some insight into the invertibility of the
covariance matrix. If a covariance matrix only has minuscule eigenvalues, the
inversion of the matrix may suffer from large numerical errors. This will be
covered shortly in Section 4.3.1 when the condition number of the matrix is to be
examined.

Generally, a reduction in eigenvalue magnitude between the scatterers becomes
increasingly notable when the distance between the scatterers increases. When
speckle is added to the scene at a later stage in this thesis (Section 4.3.3), there is
expected an increase in the magnitude of the more significant eigenvalues relative
to the most significant eigenvalue. Speckle decreases the correlation between the
signals recorded at each element, which then causes the covariance matrix to have
a speckle component that tapers off away from the diagonal. This increases the
orthogonality of the covariance matrix columns, which further increases the spread
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Figure 4.8: The amplitude of the signal through the lateral axis at a 30 mm
depth. The figure shows the separability between two scatterers when the
subarray length is 2, 12, 22, 32, 42, and 52 elements.

of the eigenvalues.

Analysis of different subarray lengths

Now, the second analysis regarding resolution in this thesis is an analysis of how
the subarray length affects the separability of two closely located scatterers.

The analysis below is performed with a scene containing two scatterers located
at a depth of 30 mm, 2 mm apart. This scene was chosen as the scatterers
are separable when considering the −6 dB limit for both the DAS and Capon
beamformer, as shown in Section 4.3.1. The two scatterers will then always
be separable when increasing the subarray length, as they are separable when
applying DAS. Compared to the DAS result, the width and amplitude of the
scatterers can be affected by an increased subarray length.

The notation of subarray length throughout the discussion is L = no. array elements

of the full array.
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Separability

Figure 4.8 shows the result when the subarray size is varied in the minimum-
variance Capon beamformer pipeline. It visualises the extent to which the subarray
size affects the separability of two scatterers. When looking at the result from
DAS and a subarray size L = 2, the results are close to identical. The two lines
plotted for the two results overlap each other, indicating a similar result. When
applying spatial averaging using L = 1, the result of the Capon beamformer
is theoretically the DAS beamformer with an applied uniform weight, as this
corresponds to summing the signal in both receive and transmit directions after
applying a delay.

The difference between two subarray sizes applied is expected to be quite small
when the subarray sizes differ by one element, as the amount of averaging only
slightly increases. However, when increasing the subarray size in increments of 10,
a more noticeable difference is measurable. As shown in Figure 4.8, the amplitudes
of the two scatterers are decreasing between each 10-element increment of the
subarray size when passing a certain L. With L = 2, 12, 22, and 32, the amplitude
at the scatterers is close to the DAS result, only decreasing with 1 dB at most.
When applying L = 42, the amplitude at the peaks is reduced with 3 dB. The
amplitude when L = 52 is reduced by about 10 dB.

The decrease in signal amplitude is a possibly consequence of two effects. The first
effect is instability in the covariance matrix estimate, as the averaging applied
decreases when L increases. Subarray averaging reduces the effect of coherent
signals (Synnevåg, 2009), and too little averaging causes signal cancellation. The
second effect is the resolution of the image possibly being too coarse due to a low
value of the MLA, such that the Capon beamformer does not properly capture
the peak of the scatter, causing the amplitude to be reduced.

In addition to the calculated amplitude of the two scatterers, the general separa-
bility between the two is useful to examine. The decibel level of the dip between
the two scatterers implies how well the two scatterers are separated. One expected
result is the DAS and the L = 2 having a nearly identical separation, which is
the case as shown in Figure 4.8. The separation between the two scatterers when
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Figure 4.9: The amplitude of the signal
through the lateral axis at a 30 mm depth.
The figure shows the separability between
two scatterers when the subarray length
L increases from 2 to 63 elements. The
top line is the result from DAS. All results
have been normalized in regard to the DAS
output.
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Figure 4.10: The amplitude of the sig-
nal through the lateral axis at a 30 mm
depth. The figure shows the separability
between two scatterers when the subarray
length L increases from 2 to 63 elements.
The top line is the result from DAS. All
results have been normalized according to
the maximum of each beamformed output.

considering L = 12 is however worse compared to the result of the two smaller
subarray sizes, i.e. DAS and L = 2. Here, the scatterers have a separation of
about 15 dB, while the result from L = 12 has a separation level of 10 dB.

From a subarray size of L = 22 elements and up, the dip will become slightly
larger in the middle of the two scatterers. L = 22 has a magnitude reduction
of approximately 16 dB, and L = 32 of approximately 18 dB. When moving on
to the results from L = 42 and 52, the general signal amplitude decreases with
respectively 3-4 dB and 10 dB.

An additional aspect to notice in Figure 4.8 is the width of the two scatterers.
For DAS and subarray of 2 elements, the width at the −6 dB resolution limit
is about 1 mm, while the increase to L = 12 elements gives a decreased width
of about 0.75 mm. Both L = 22 and L = 32 return a decreased width of about
0.2 mm at −6 dB. When further increasing the subarray size, the apparent width
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of the scatterers decreases. This results in a width of about 0.1 mm for both
scatterers. The increase in subarray size is, however, at a cost of signal intensity.
From this, it is possible to see that the separation as well as the width of the
scatterers increases when the number of elements in the subarray increases, up
to a certain subarray size. With a subarray size of about 50 % of the full array
size, there is a limitation of the resolution according to the −6 dB limit when
normalized by the result from DAS.

As shown in Figure 4.9, the intensity loss follows the increase of subarray size. The
apparent width of the scatterers is about 2 mm, and narrows when the subarray
size passes about 16 elements. This equals 1

4
of the full array size. When passing

L ≈ 42 elements in the subarray, i.e. 2
3

of the full array, the results will approach
signal cancellation according to the −6dB limit when compared with the DAS
beamformer.

The results visualised in Figure 4.10 is corresponding to the result in Figure 4.9,
however with a different normalization. Figure 4.9 is normalized in regard to the
DAS result, while Figure 4.10 is normalized in regard to the maximum value from
each output. Figure 4.10 then shows how the scatter width from L = 40 elements
to L = 60 elements is comparable. This was mentioned in regard to Figure 4.8,
i.e. how the signal mainly loses intensity when the subarray length is increased
past a certain point. When the subarray length increases, a slight increase in
amplitude appears around x = 0 mm, which is between the two scatterers. The
small amplitude increase is visible for smaller subarray sizes, and is visible in
Figure 4.8. The increased magnitude visible in Figure 4.10 is caused by the scatter
peak being decreased relative to the amplitude around x = 0 mm.

Eigenvalues of the subarray analysis

Figure 4.11 shows the eigenvalues of the covariance matrices gathered along
the azimuth axis along 0◦. It is noticeable that the largest eigenvalues increase
when the subarray size increases. This is also the case with the number of
significant eigenvalues for the covariance matrices, and is expected, as introduced
by Section 2.6.1. Hence, there is no new, significant information provided when
analysing the eigenvalues at this stage.
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Figure 4.11: Eigenvalues of the covariance matrix through the azimuth axis
at an angle 0◦. The scatterers are located at 30 mm depth, with a distance
of 2 mm between them. The result has been calculated using the subarray
lengths of 2, 12, 22, 32, 42, and 52 elements.
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Figure 4.12: Eigenvalues of the covariance matrix through the azimuth axis
at a depth of 30 mm. The scatterers are located at 30 mm depth, with a
distance of 2 mm between them. The result has been calculated using the
subarray lengths of 2, 12, 22, 32, 42, and 52 elements.
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(c) Condition Number of all covariance ma-
trices when 10% diagonal loading is added.
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Figure 4.13: A visual representation of the condition number of the covariance
matrices when the diagonal load is 0, 1, 10, and 100 %. The white field above
25 mm is due to the covariance matrix being a non-invertible matrix, leading
to NaN result. The dataset is a speckle-less dataset with two scatterers at
30 mm depth with 2 mm between the scatterers.
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4.3 Resolution

Condition number of the covariance matrix

As mentioned in Section 2.6.2, the condition number is in linear algebra a measure
of the stability of a matrix inversion, and applying a diagonal load to the matrix
before inversion increases the inversion stability, see Section 2.4.4. The effect of
diagonal loading on the stability of matrix inversion will be examined next by
analysing the condition number of the matrix. The calculations have been done
using the dataset presented in Section 3.1.2 and visualised in Figure 3.1, as input
to the Capon beamformer. How much the subarray averaging applied affects the
condition number will also be considered shortly.

The logarithmic value of the condition number, log10(CN), denotes the maximum
amount of digits that are in danger of being miscalculated by the matrix inversion
(Section 2.6.2). What then defines a well-conditioned or ill-conditioned matrix, i.e.
large or small condition number, is the precision of the calculation tool. MATLAB
has a precision of 16 digits. For example, if one were to think a sufficient limit of
a large condition number is 50 % of the calculation precision, a condition number
below log10(CN) = log10(10

8) = 8 digits is acceptable.

Added diagonal loading

As mentioned in Section 2.4.4, diagonal loading is a method to make the covariance
matrix inversion more robust. The amount of diagonal load necessary to apply
depends on, e.g., the input data of the beamformer, the precision of the applied
calculation tool, and the extent of error present in the beamformer.

From the results of the condition number calculations in Figure 4.13, where the
condition number is represented by the colour bar, it is possible to see how the
condition number is reduced with a factor of 10 when the diagonal load increases
with a factor of 10. The condition number results are visually similar between
all subfigures in Figure 4.13. The condition number decreases drastically when a
small diagonal load of 1% is applied, as seen from the magnitude of the colour
bar, causing the stability of the matrix inversion to increase.

Even though it is important to have a good precision of the matrix inversion, it
is also important to avoid altering the covariance matrix estimate significantly
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Figure 4.14: Logarithmic value of the condition number with increasing diag-
onal load, when the covariance matrix between the two scatterers is analysed.
Each line represents a subarray average size. The upper plot shows the full
range of diagonal loading considered. The lower plot shows the limited first
percentage of the applied diagonal load.

by adding an excessive amount of diagonal load. As previously indicated in the
introduction, an excessive diagonal load applied to the covariance matrix will
result in a beamformer output that approaches the DAS beamformer output
(Synnevåg, Austeng, and Holm, 2007b). The covariance matrix estimate is based
on physical time signals, and major alterations will cause the covariance matrix
estimate to deviate excessively from the original covariance matrix. Hence, the
amount of diagonal loading applied must be kept within boundaries.

Figure 4.14 shows the logarithmic value of the condition number calculated
for the covariance matrix in a point in the middle of the two scatterers in the
scene. Figure 4.14 has been calculated using a set of subarray lengths, namely
L = 1

4
, 1
3
, 1
2
, 2
3
, and 3

4
of the full array of M = 64 elements. Here it is noticeable

how much a small increase in the diagonal load robustifies the matrix inversion,
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Figure 4.15: Logarithmic value of the maximum condition number from
the calculations of the covariance matrix from the Capon minimum-variance
beamformer from each tested diagonal load. Each line represents a subarray
size.

rather independent of the subarray length.

Diagonal loading is an aid to reduce numerical errors in the covariance matrix
estimate inversion. However, a stage is reached where the applied diagonal load
does not affect the stability of the matrix inversion as much. At this stage, the
applied diagonal load is no longer as beneficial. This can be seen in Figure 4.14 and
Figure 4.15, where the stability of the covariance matrix inversion is represented by
the logarithmic value of the condition number. Between 10 % and 100 % diagonal
loading, the calculation precision represented by the logarithmic condition number
only decreases by approximately 1 digit when considering Figure 4.14. Hence, a
diagonal load above 10 % alters the covariance matrix excessively when considering
how limited the increase of numerical stability of the matrix inversion is.

The differences in the condition numbers between the various subarray lengths
are small, but worth noticing. A larger subarray is in need of more diagonal load
if a certain condition number is sought. As seen from Figure 4.14, L = 16 calls
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for a diagonal load of 10 % to achieve log10(CN) ≈ 2, while the corresponding
logarithmic condition number for L = 48 calls for a diagonal load between 40 %
and 50%.

When calculating the condition number of the covariance matrix estimate from
the point located between the two scatterers, the condition number is consistently
below a value of approximately 109. This indicates a matrix inversion with a
numerical accuracy of at least 45 % when utilizing MATLAB. This is not the case
when considering the maximum finite condition number of the entire scene, as
shown in Figure 4.15. When comparing Figure 4.14 and Figure 4.15, the same
dependency of the diagonal load is visible for all subarray sizes, and a similar
trajectory. The maximum finite condition number is, however ,greater than the
condition number from the middle point between the scatterers.

Again, a reduced subarray size results in a lowered condition number when
considering the same diagonal load. There is therefore a need for less spatial
averaging when applying a set diagonal load to achieve a certain matrix inversion
stability measured by the condition number.

If a set matrix inversion stability, represented by the condition number, is desired
for a certain subarray length, the diagonal load necessary for this condition number
can be calculated through a similar examination as shown in Figure 4.14.

Several positions in the scene were considered when analysing the condition
number of the covariance matrix, but not all are presented here. The trend when
increasing diagonal load is however consistently following a trajectory close to the
function f(x) = 1

x
. In general, the condition number is applicable to define the

stability of the matrix inversion, which corresponds to an increased stability of
the Capon beamformer output. By increased stability of the Capon beamformer
output, it is in this context meant that the inversion is not the cause of large
errors in the beamformer output.

4.3.2 Applying speckle and defining a speckle level

In this analysis, an appropriate speckle level for simulations is examined. There
will always be speckle in datasets recorded in a physical medium, as mentioned
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Figure 4.16: The effect of increasing speckle level compared to the scatter
amplitudes, using the DAS beamformer.
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Figure 4.17: The effect of increasing speckle level compared to the scatter
amplitudes, using the amplitude Capon beamformer.
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Figure 4.18: The effect of increasing speckle level compared to the scatter
amplitudes, using the power Capon beamformer.
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in Section 2.3.1. Therefore, all examinations done thus far should be repeated,
applying a scene also containing speckle. The speckle and scatter datasets have
both been simulated using the same maximum amplitude. In order to identify
the scatterers in the speckle scene reliably, the amplitude of the speckle data has
to be reduced.

The reduction of speckle amplitude is done by simply multiplying the amplitude
of the simulated speckle with a fraction. For this analysis, these fractions are 1

10
,

1
4
, and 1

2
. The effect is visualised by measuring how the separability between the

scatter scatterers is affected by the speckle level in the scene.

The effect on separability when varying the speckle level

From Figure 4.5a and Figure 4.5b on page 42, it was possible to see how two
scatterers in a speckle-less scene were separable according to the −6 dB limit for
both the DAS and Capon beamformers when the scatterers had a distance larger
than 2 mm between them. A significant change in separability is not expected for
this scene, other than a possible increase in amplitude between the scatterers.

The amplitude of the external area of the two scatterers was reduced significantly
compared to the amplitude of the scatterers. When speckle is added, it is natural
that the amplitude outside of the two scatterers will increase relative to the
amplitude of the scatterers, as the speckle creates a consistent amplitude level in
the image. It was also noticeable how the amplitude in the area between the two
scatterers decreased when the distance between the scatterers increased.

As seen in Figure 4.16 through Figure 4.18, the amplitude is reduced by approxi-
mately 12 dB from the scatter peak when considering the amplitude at −4 mm
for the 0.25 speckle level in all three figures. For 6 mm, the amplitude is reduced
by approximately 18 dB. These reductions are slightly less for the power Capon
method, however, mostly for the amplitude at 6 mm, which is only reduced by
approximately 12 dB.

For the power Capon method shown in Figure 4.18, it is noticeable that the
speckle amplitude level is comparable to the amplitude Capon method and DAS,
and the scatter amplitude has increased with approximately 10 dB compared
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4.3 Resolution

to the corresponding result from Figure 4.5c. The increase in amplitude is only
present for the power Capon result, however, the power Capon method is not
normalized, as in Section 4.3.1.

It is noticeable when comparing Figure 4.17 and Figure 4.18 that the speckle is
drastically smoothed when applying the power Capon method. At x = −10 mm,
there is an arbitrary amplitude dip of approximately 12 dB visible when applying
the amplitude Capon method. However, the dip is smoothed when utilizing the
power Capon method.

The result in Figure 4.16, Figure 4.17 and Figure 4.18 supports the expectations
mentioned, as they visualise how the speckle amplitude level increases, only slightly
affecting the amplitude in the area between the two scatterers. The latter change
is larger for the amplitude and power Capon beamformer than for the DAS.
The width of the scatterers increases slightly when using the amplitude Capon
and power Capon beamformers, due to the amplitude increase between the two
scatterers.

Eigenvalues of the covariance matrix when increasing the speckle level

From Section 4.3.1 and Section 4.3.1, we saw how a speckle-less scene would result
in mainly two significant eigenvalues. Due to the decrease in covariance between
the recorded element signals when speckle is added, it is expected that the amount
of noticeable eigenvalues increases in both the axial and lateral directions.

A way to either confirm or deny this is to analyse the eigenvalues when the speckle
level is varied. The result is shown in Figure 4.19 and Figure 4.20, for the axial
direction through 0◦ and the lateral direction through 30 mm, respectively. From
these figures, it is seen that there is a noticeable increase in the general eigenvalue
magnitudes when the speckle level increases, which confirm the expected increase
in amount of noticeable eigenvalues.

The speckle level chosen for the following analysis is 1
4
, i.e. a relative amplitude of

−30 dB. This is due to the speckle not affecting the visibility of the scatterers in
the scene, while still maintaining a reasonable level to challenge the beamformer.
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Figure 4.19: The eigenvalues from the covariance matrix from an axial line
going through 0◦. The speckle level increases from no speckle in the leftmost
plot to 1

10 ,
1
4 , and 1

5 from left to right. The scene used is two scatterers located
at 30 mm depth with 2 mm distance between the scatterers.

Eigenvalues of R at lateral line through 30 mm
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Figure 4.20: The eigenvalues from the covariance matrix from a lateral line
through 30 mm. The speckle level increases from no speckle in the leftmost
plot to 1

10 ,
1
4 , and 1

5 from left to right. The scene used is two scatterers located
at 30 mm depth with 2 mm distance between the scatterers.

60



4.3 Resolution

4.3.3 Scatterers in a speckle-scene

Separability of scatterers when increasing the inter-scatter distance

As shown in Figure 4.21, the applied speckle only affects the separability of the
two scatterers slightly when the distance between the scatterers increases. The
DAS beamformer output shown in Figure 4.21a is not greatly affected by the
applied speckle to the scene, other than generally increasing the amplitude level
in the ultrasound image.

The amplitude and power Capon beamformer results, shown in respectively
Figure 4.21b and Figure 4.21c, maintain the width of the scatterers when speckle
is applied. The increased speckle level does, however, reduce the separability of
the scatterers located 1 mm apart, as this scene no longer is separable, regardless
of resolution criteria.

A general matter to note is how the amplitude level between the scatterers around
x = 0 mm is affected. When working with a speckle-less scene, this level was
rather low, −40 dB for the amplitude Capon beamformer with two scatterers
located 5 mm apart. After speckle is applied, this level is raised to approximately
−25 dB. The DAS beamformer performs rather similarly whether the speckle is
applied or not, the output is not symmetric due to the speckle.

For the power Capon beamformer, the amplitude of the scatterers is increased
when speckle is applied. For the speckle-less result, shown in Figure 4.5c on
page 42, the amplitude of the scatterers are between −16 and −26 dB for the
different cases. When speckle is applied, the amplitude is raised approximately
10 dB, resulting in a scatter amplitude between −8 and −14 dB. Some of this
increase in amplitude is probably due to the results not being normalized.

Further, the amplitude between the two scatterers has increased for all cases,
causing the amplitude dip to be reduced. This affects the separability of the
d = 1 mm case, as this case is not separable according to any resolution criteria
after speckle is applied. This shows that even though the power Capon method
reduces the variance of the speckle, the separability of scatterers in a speckle scene
may be greatly affected compared to the amplitude Capon method.
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(a) Resolution for different distances between two scatterers, using the DAS
beamformer.
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(b) Resolution for different distances between two scatterers, using the amplitude
Capon beamformer.
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Figure 4.21: The resolution from the three beamforming methods DAS,
amplitude Capon, and power Capon, for different scenes containing speckle
and two scatterers located at varying lateral distances. The distances between
the scatterers are respectively 0, 0.5, 1, 1.5, 2, and 5 mm, and the scatterers are
located at 30 mm depth.
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Figure 4.22: Eigenvalues of the covariance matrix through the azimuth axis
at an angle 0◦. The scatterers are located at 30 mm depth, with varying
inter-scatter distances. The distances are 0, 0.5, 1, 1.5, 2, and 5 mm.

Corresponding eigenvalues when increasing inter-scatter distances

Moving on to the eigenvalues of the covariance matrix in the scene with applied
speckle, one can see how the amount of eigenvalues increase from when the
speckle-less scene was examined. There are still two more significant eigenvalues
around the scatterers, but the general scenes have a higher amount of noticeable
eigenvalues, as shown in Figure 4.22 and Figure 4.23. This increase is due to the
decrease in covariance between the probe elements, and is expected as discussed
in Section 4.3.2.

Analysis of different subarray lengths

Here, the effect of subarray averaging is examined. As in Section 4.3.1, the scene
examined contains two scatterers at 30 mm depth located 2 mm apart, however,
now with applied speckle.

The main expectation regarding the separability of the scatterers is that the
FWHM is increased when applying speckle to the scene, when comparing the
same subarray length for the datasets with and without speckle. Other than this,
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Figure 4.23: Eigenvalues of the covariance matrix through the lateral axis at
a depth of 30 mm. The scatterers are located at 30 mm depth, with varying
inter-scatter distances. The distances are 0, 0.5, 1, 1.5, 2, and 5 mm.

it is expected that the average amplitude background level increases, as seen in
Section 4.3.2, due to the applied speckle.

Resolution

Figure 4.24 shows the resolution from the Capon amplitude beamformer of all
subarray sizes when normalized by the maximum DAS result. The scatter width
is increased compared to the speckle-less result (Figure 4.9), and the width is
maintained until L ≈ 1

3
M . This is at a later stage than the speckle-less result

shown in Figure 4.9, where the width decreased rapidly after about L = 16

elements, i.e. L = 1
4
M . When considering where the scatter peak is reduced below

−6 dB compared to DAS, the approximate upper limit of L = 2
3
M is similar

between the cases with and without speckle.

As expected, the apparent width of the scatterers has increased when speckle is
applied. The separation regarding the general magnitude reduction between the
two scatterers is also reduced, as the magnitude level between the scatterers is
increased, as seen in Figure 4.26. Hence, the performance of the Capon beamformer
suffers slightly due to the speckle.
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Figure 4.24: The amplitude of the signal
through the lateral axis at a 30 mm depth.
The figure shows the separability between
two scatterers in a speckle scene when the
subarray length L increases from 2 to 63
elements. All results have been normalized
in regard to the DAS output.
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Figure 4.25: The amplitude of the sig-
nal through the lateral axis at a 30 mm
depth. The figure shows the separability
between two scatterers in a speckle scene
when the subarray length L increases from
2 to 63 elements. All results have been
normalized according to the maximum of
each beamformed output.
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Figure 4.26: The amplitude of the signal through the lateral axis at a 30 mm
depth. The figure shows the separability between two scatterers in a speckle
scene when the subarray length is 2, 12, 22, 32, and 42 elements.
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4.4 Contrast

Further, the images are analysed using a set of contrast metrics, to study how
subarray averaging and the amount of diagonal loading affect the image contrast
when utilizing the amplitude Capon beamformer. The contrast metrics analysed
are the CR, CNR, and gCNR, presented in Section 2.5.2. The contrast metrics are
calculated using three different ROIs, while keeping the same background region.

The three ROIs are implemented to study how the different contrast metrics are
affected by the chosen ROI. The cyst has a correct, physical radius of 5 mm. In
an ideal case, the cyst is perfectly reconstructed by the system. This is not the
case, however, due to both physical limitations, and how the applied beamformer
operates. The DAS beamformer, e.g., has a wide mainlobe, which smoothes the
theoretical edge of the cyst. When applying the Capon beamformer, the cyst

-20 -10 0 10 20
x[mm]

0

10

20

30

40

50

z[
m

m
]

DAS beamformed data

-60

-50

-40

-30

-20

-10

0

Figure 4.27: The beamformed output of a scene with a cyst, beamformed by
DAS, containing a set of circles visualising the regions applied when working
with contrast metrics. The blue circles mark the inner and outer limits of the
background region. The green circle marks a border with a radius of 2.5 mm,
ROI1. The yellow circle marks a border with a radius of 3.5 mm, ROI2. The
red circle marks the theoretical border of the cyst, ROI3.
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Figure 4.28: The measured CNR when subarray size increases, with an
applied diagonal load of 0%, 0.0001%, 0.1%, 1%, 10%, and 100%. The CNR
from the DAS output is used as a benchmark, shown as a red, dashed line. Each
subplot visualises the corresponding CNR from three different applied ROIs.
The upmost subplot is ROI1 = 2.5 mm, the middle subplot is ROI2 = 3.5 mm,
and the bottom subplot is ROI3 = 5 mm.

edge is sharpened due to the beamformer being a high-resolution method, but
elements such as subarray averaging may affect this. This is assessed in this
section.

The limits of the different regions are shown in Figure 4.27. The three ROIs
are circles around the cyst centre, with radiuses of 2.5 mm, 3.5 mm, and 5 mm,
denoted respectively as ROI1, ROI2, and ROI3. ROI3 has a radius of 5 mm, as
the cyst has a theoretical radius of 5 mm. The other ROI radiuses are chosen
to have a set of reasonable ROI for the final, beamformed image. ROI1 will
mainly only contain the data from the cyst, while ROI2 may contain some speckle,
dependent on, e.g., subarray averaging.

The beamformed output from a set of subarray lengths is shown in Figure 4.31
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Figure 4.29: The measured gCNR when subarray size increases, with an
applied diagonal load of 0%, 0.0001%, 0.1%, 1%, 10%, and 100%. The gCNR
from the DAS output is used as a benchmark, shown as a red, dashed line. Each
subplot visualises the corresponding gCNR from three different applied ROIs.
The upmost subplot is ROI1 = 2.5 mm, the middle subplot is ROI2 = 3.5 mm,
and the bottom subplot is ROI3 = 5 mm.

on page 71 and Figure 4.32 on page 72. The figures have been beamformed by
applying L = 10, 20, 32, 40, and 60 elements, shown in the figures from Figure 4.31b
to Figure 4.32c.

Figure 4.28, Figure 4.29 and Figure 4.30 show how the contrast metrics, CNR,
gCNR, and CR, respectively, are affected by the subarray averaging, for a set of
applied diagonal loads.

As shown in Figure 4.28, the CNR of the Capon beamformer is comparable with
the CNR of the DAS beamformer for all subarray sizes up to approximately half
the of the full array, for all applied diagonal loads. After the subarray size passes
L ≈ 1

2
M = 32, the CNR suffers. This goes for all ROIs accounted for.

The gCNR does however increase from the DAS gCNR when the subarray length
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Figure 4.30: The measured CR when subarray size increases, with an applied
diagonal load of 0%, 0.0001%, 0.1%, 1%, 10%, and 100%. The CR from the
DAS output is used as a benchmark, shown as a red, dashed line. Each subplot
visualises the corresponding CR from three different applied ROIs. The upmost
subplot is ROI1 = 2.5 mm, the middle subplot is ROI2 = 3.5 mm, and the
bottom subplot is ROI3 = 5 mm.

increases. How much depends on the considered ROI. As seen in Figure 4.32c,
which is the beamformed output when L = 60, the speckle has changed, causing
the gCNR to increase. The gCNR of ROI1 and ROI2 approaches a value of 1,
while the real cyst ROI peaks at gCNR ≈ 0.84.

The CR shown in Figure 4.30 shows how the Capon beamformer has a better
CR compared to the DAS CR for all subarray lengths when considering ROI1

and ROI2. The best CR is achieved when applying ROI1, and is achieved with
L ≈ 42, and 0% or 0.0001% applied diagonal loading.

From all figures showing the contrast metrics with a varying subarray length,
namely Figure 4.28, Figure 4.29, and Figure 4.30, it is noticeable how the applied
diagonal load does not greatly affect the CNR and gCNR other than some
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deviations. The general trend for the CR is that the more applied diagonal load,
the lower CR, as shown in Figure 4.33a on page 73. The contrast metrics are
hence affected slightly by the applied diagonal load, and are differently affected
by the amount of subarray averaging.

Based on the result shown in Figure 4.28, passing a subarray size of L ≈ 32

reduces the gCNR. From the gCNR shown in Figure 4.29, a subarray size above
L ≈ 10 results in an increased gCNR. Even though all metrics depend on the ROI
chosen, the CR is more influenced by the ROI when considering the subarray size.
ROI2 does however show that a subarray size between L ≈ 16 and L ≈ 32 results
in the best CR, which states that the visual contrast toward the actual cyst edge
with a subarray size in that interval.

The effect of diagonal loading for a set of subarray sizes is shown in Figure 4.33
on page 73. However, the results from Figure 4.28, Figure 4.29, and Figure 4.30
visualise how the diagonal loading and subarray size are connected regarding the
contrast metrics.
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Figure 4.31: The beamformed output applying DAS and the Capon beam-
former, applying the subarray sizes L = 10, 20, and 32 elements.
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Figure 4.32: The beamformed output applying DAS and the Capon beam-
former, applying the subarray sizes L = 40, and 60 elements.
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Figure 4.33: The contrast metrics CR, CNR, and gCNR measured for three
different ROIs when increasing the diagonal load, for set subarray sizes of
L = 1

4M, 13M , and 1
2M . The DAS output is used as a benchmark, shown as

a red, dashed line. Each upmost subplots are ROI1 = 2.5 mm, each middle
subplots are ROI2 = 3.5 mm, and each bottom subplots are ROI3 = 5 mm.
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Chapter 5

Conclusion and further work

In this thesis, an analysis of the performance of the Capon beamformers was done
to evaluate resolution and contrast, using the DAS beamformer performance as a
benchmark. The analysis was applied to simulated medical ultrasound data, and
was based on parameter studies to assess how the amount of subarray averaging
and diagonal load affect the ultrasound image resolution and contrast. The study
is done by examining the separability between two scatterers in a scene. The
contrast metrics are examined from a scene containing a cyst, as well as the
stability of the covariance matrix inversion measured by the condition number.
The eigenvalues of the covariance matrix were examined to assess the potential
use to understand beamformer performance.

When analysing the resolution as a function of a varying subarray size, it was
found that two scatterers located at a lateral distance of d = 2 mm apart at a
depth of 30 mm are well resolved for a subarray size between Lmin = 1

4
M and

Lmax = 2
3
M , where M is the full array length. Through analysis of scenes with

two scatterers in a speckle background, the lower boundary Lmin is increased to
Lmin = 1

3
M , while the upper boundary Lmax is maintained.

The condition number of the covariance matrix estimate provides insight into the
stability of the matrix inversion, and was shown to be an applicable measure of
matrix inversion stability with respect to the applied diagonal load. From the
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perspective of image quality, it was shown that a small amount of diagonal loading,
i.e. ≈ 1 %, resulted in a significant increase in stability of the covariance matrix
inversion. The increased stability results in a more accurate weight vector.

The eigenvalues did not provide any additional information regarding the resolu-
tion and separability of scatterers in a scene, as a general analysis of the amplitude
provided this information. By applying subarray averaging, the eigenvalues was
shown to have an increased amount of significant eigenvalues, and the eigenval-
ues had an increased magnitude. An increased speckle level also increased the
amount of significant eigenvalues. However, these observations did not provide
any additional information regarding the resolution of the two scatterers either.

By analysing the contrast metrics CR, CNR, and gCNR when varying both the
applied diagonal load and subarray size, as well as considering three different
ROIs, it was shown that a subarray size between 1

3
M and 1

2
M overall results in

better Capon beamformer image contrast. For the diagonal load, an applied load
of ≈ 1 % is deemed sufficient to increase the stability of the matrix inversion. The
applied diagonal load affects neither the resolution nor the contrast greatly. There
were no significant deviations from these findings when considering different ROIs,
other than the ROI at the theoretical edge of the cyst. This ROI was affected
differently by the varied subarray averaging and diagonal loading, as this ROI
contained larger amounts of the surrounding speckle dependent on the applied
subarray averaging and diagonal loading. Hence, the results from the contrast
analysis and the resolution analysis coincide.

Primarily, the conducted research within the current thesis has been carried out
exclusively by applying simulated data. Consequently, it is crucial to replicate
the study using recorded in-vivo data to confirm the discovered findings within
the current thesis.

The conclusion made in this thesis shows what an appropriate choice of subarray
averaging and diagonal load are to get optimal resolution and contrast in a
simulated scene. The scene of which the analysis was done in the current thesis is
however quite homogeneous regarding the location of the scatterers.

One further approach would be to consider an increased variability of scatter
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locations regarding both lateral and axial positions. This could help when building
more generalised conclusions on the subarray averaging and diagonal loading
parameters.

Setting the diagonal load based on a condition number criterion is a proposed
approach. By doing this, one can examine how the Capon beamformer depends on
diagonal load to maintain a given matrix inversion stability. Thereby, a possible
method of it could be to adaptively decide the diagonal load for each pixel. This
might also include adapting the subarray size L to increase the matrix inversion
stability.

Further, a study of the statistics of the resolution and contrast metrics can be
done over multiple speckle scenes. In the current thesis, only one speckle scene
was considered. A study of how these statistics change when altering the subarray
averaging and diagonal loading for different scenes could help build the foundation
of when to choose what parameters regarding the applied subarray averaging and
diagonal loading.
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