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Abstract

Spectrahedra are the solution set of linear matrix inequalities and is thus the set
of feasible solutions in semidefinite optimization. This thesis is concerned with
different representations of spectrahedra and the properties of spectrahedra
given the representation. Combining theory from real algebraic geometry, matrix
theory and linear algebra, we show several properties of spectrahedra, with
focus on the boundary. Specifically, we introduce a new concept concerning
the boundary of spectrahedra named façades, and relate this to more well
known concepts in the theory of spectrahedra. In addition, we explore plane
spectrahedra, which is a class of spectrahedra with a complete characterization.
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CHAPTER 1

Introduction

The concept of spectrahedra emerged in the late 1990’s in the mathematical
field of optimization. Since then, it has been discovered that spectrahedra
reside at the intersection of convex geometry, linear algebra, and optimization,
providing a powerful framework for modeling and solving a wide range of
problems. This versatile concept finds applications in engineering, control
theory, quantum information, and various other fields.

In this thesis we will investigate properties of spectrahedra already known,
and present some new properties. A majority of our results will be concerning
the boundary of spectrahedra. We will also take a closer look at some properties
that are sometimes treated as they are obvious, but needs a bit of framework
to be proved.

The main contribution in this thesis is the introduction of a new concept
related to convex sets, which we have named façades. The name refers to
the similarity to the faces of convex sets and moreover that they are on the
"outside" of the spectrahedron, i.e., on the boundary. The idea to introduce
the concept originated in a frustration of only being able to describe the "flat"
parts of the boundary of a closed convex sets. To create a definition, the writer
was inspired by the one of vertices of convex sets, and when it was apparent
that it was possible to define the "curved faces", the idea was nurtured, and
resulted in a thorough description of façades. Other than all results concerning
façades, the writer has stated and proved all results in the thesis where it is not
referred to any reference text.

The structure of the of the thesis is as follows: Chapter 2 introduces the
basic mathematical concepts and results of interest. Chapter 3 presents the
definitions of spectrahedra and present properties of general spectrahedra,
moreover, this is the chapter where the concept of façades is introduced and
explored. Chapter 4 concerns spectrahedra in the plane and explores properties
which are based on a result that only apply for plane spectrahedra. Throughout
the thesis, every result which is not cited or referred to any other text is stated
and proved by the writer of the thesis.

On all matters of convexity, the references Convex optimization by Boyd
and Vandenberghe [BV04] and An introduction to convexity[Dah10] by Geir
Dahl are the main source. For spectrahedra and semidefinite optimization the
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Semidefinite Optimization and Convex Algebraic Geometry[BPT12], especially
the chapter by Parrilo and Linear Matrix Inequality Representation of
Sets[HV03] by Helton and Vinnikov provide both important results, but also
examples and figures this thesis. Most of the figures are created using GeoGebra,
but some are also collected from other papers.
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CHAPTER 2

Preliminaries

2.1 Euclidean spaces

In this thesis, we will focus on Euclidean spaces, which are finite-dimensional
vector spaces defined over the real numbers or a translation of such. We will
use the standard inner product for Rn, defined as

⟨x, y⟩ = xT y =
n∑

i=1
xiyi.

This inner product gives rise to the Euclidean norm, ∥x∥ =
√

⟨x, x⟩, and the
metric d(x, y) = ∥x − y∥. When ⟨x, y⟩ = 0, we say that x and y are orthogonal.

For the space Rm×n, the inner product of X, Y ∈ Rm×n is given by

⟨X, Y ⟩ = tr(XT Y ) =
m∑

i=1

n∑
j=1

Xi,jYi,j ,

where tr denotes the trace of the given matrix, i.e. the sum of all its elements.
The norm on Rn×n is ∥X∥ =

√
⟨X, X⟩.

If V is any finite dimensional real vector space, the span of x1, . . . , xk ∈ V
are all elements of V that can be written as a linear combination
a1x1 + a2x2 + . . . akxk. The elements x1, x2, . . . , xk ∈ V are linearly in-
dependent if a1x1 + a2x2 + . . . akxk = 0 if and only if a1 = a2 = . . . = ak = 0.
We say that a subset B ⊂ V is a basis of V if all elements of B are linearly
independent, and their span is equal to V . The dimension of V is then the
number of elements in B. For any subset U ⊆ V of a real vector space V , we
can form the orthogonal complement of U , denoted U⊥, by including all
elements of V which are orthogonal to all elements of U . The following equality
holds dimR U + dimR U⊥ = dimR V .

If V, W are two real vector spaces, they are isomorphic, denoted V ∼= W ,
if there is a bijection T : V → W , such that for all u, v ∈ V and all α ∈ R,
T (u + v) = T (u) + T (v) and T (αu) = αT (u). Any two real vector spaces of
the same (finite) dimension are isomorphic. This can be shown by letting the
isomorphism T be a map taking basis elements to basis elements. Then T is
bijective as the vector space have the same dimension, hence the same number
of basis elements.
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2.2. Affine geometry

Let f : Rn → R be any function. Then the gradient of f is given
by ∇f(x1, x2, . . . , xn) =

(
∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

)
. The gradient is the direction

and rate of fastest increase of the function at a given point. The set
L = {x ∈ Rn : f(x) = c} for some c ∈ R is a level set of f , and for any
x ∈ L, the gradient in x is orthogonal to L at x.

2.2 Affine geometry

Definition 2.2.1. A subset A ⊆ Rn is affine if the line through two distinct
points in A lies in A, i.e. if for all x, y ∈ A and all θ ∈ R, (1 − θ)x + θy ∈ A.

The combination of points from the definition can be generalized to an
affine combination of some collection of points {xi}i=1,...,k. That is a point
on the form λ1x1 + λ2x2 + . . . λkxk, where

∑k
i=1 λi = 1 for some k. From

induction on the definition of an affine set, it can be shown that an affine set
contains all affine combinations of its points.[BV04].

Any affine set A ⊆ Rn can be expressed on the form

A = x0 + L = {x0 + l : l ∈ L}, (2.1)

where x0 ∈ A and L is a linear subspace of Rn. I.e., an affine set is a translated
linear subspace [BV04]. The affine set A does not depend on the choice of
x0 ∈ A. To see this, consider the affine set A, and some point x0 ∈ A, and
define L = A − x0. Then for l1, l2 ∈ L and α, β ∈ R, we have l1 + x0 ∈ A and
l2 + x0 ∈ A. Thus

αl1 + βl2 + x0 = α(l1 + x0) + β(l2 − x0) + (1 − α − β)x0 ∈ A

the last inclusion holds as it is an affine combination of elements in A. Now
since αl1 + βl2 + x0 ∈ A we can conclude that αl1 + βl2 ∈ L, thus L is closed
under sums and scalar multiplications, so it is a linear subspace of Rn. For a
given affine space, the corresponding linear subspace is unique. Note that every
linear space is also an affine set as x0 can be chosen to be 0.

The affine hull of a set S ∈ Rn, aff(S), is the set of all affine combinations
of elements in S. The dimension of an affine set A is equal to the dimension
of the associated linear space L, i.e. dim A = dim L. Moreover, we say that
the (affine) dimension of an arbitrary set S ∈ Rn, is the dimension of its
affine hull. An affine set of dimension n − 1 is called a hyperplane, and can
be expressed as

H = {x ∈ Rn : ⟨c, x⟩ = b}.

A line is of dimension 1, and a point of dimension 0.

If the dimension of a subset S ⊆ Rn is strictly smaller than n, the interior
of S will be empty. To describe the inner part of the set, we define the relative
interior, rint(S) as the points in S for which there exist an open ball B(x, ϵ)
such that affS ∩ B(x, ϵ) ⊆ S. We can say that this is the interior of an set with
respect to its affine dimension. From the relative interior of a set, we define the
relative boundary by rb(S) = S \ rint(S) where S is the closure of S. Note
that if a set is full dimensional in the space it lies in, the relative boundary and
relative interior coincide with the boundary and interior.
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2.3. Convexity

Figure 2.1: Left. The set C = {x ∈ R3 : x2
1 + x2

2 ≤ 1, x3 = 0} ⊆ R3. Middle.
Two open balls in R3, intersecting both C and Cc. Right. The open balls
intersected with the affine hull of C. Notice that one is included in C and is
therefore in the relative interior.

Example 2.2.2. Consider the set C = {x ∈ R3 : x2
1 + x2

2 ≤ 1, x3 = 0} pictured
in Figure 2.1.

• The affine hull of C The origin is in C, so for all x = (x1, x2, 0) ∈ C, the
affine combination (1 − θ) · 0 + θ(x1, x2, 0) = {x ∈ R3 : x3 = 0} ⊆ aff(C)
for θ ∈ R. Furthermore if x3 ≠ 0, then x /∈ C hence x /∈ aff(C). So
aff(C) = {x ∈ R3 : x3 = 0} ∼= R2.

• The affine dimension of C From above, we can easily see that the affine
dimension of C is 2, as the affine hull is isomorphic to R2.

• The interior and boundary of C Each open ball in R3 will be of dimension
3, and hence each ball intersecting C, will also intersect the compliment
of C. Thus Co = ∅. The same argument implies that the boundary of C
equals C.

• The relative interior and relative boundary of C If we consider the set
{x ∈ R2 : x2

1 +x2
2 ≤ 1}, the interior is the set where the inequality is strict.

Thus the relative boundary is C \ rint(C) = C \ {x ∈ R3 : x2
1 + x2

2 <
1, x3 = 0} = {x ∈ R3 : x2

1 + x2
2 = 1, x3 = 0}

2.3 Convexity

Convex sets

Definition 2.3.1. A subset C ⊆ Rn is a convex set if for each pair of points
x, y ∈ C, (1 − λ)x + λy ∈ C for λ ∈ [0, 1].

If x1, . . . xk is a collection of points we denote a point on the form
λ1x1 + λ2x2 + . . . λkxk, where λi ≥ 0 for all i, and

∑k
i=1 λi = 1, a convex

combination of the points x1, . . . xk. Any convex sets include every convex
combination of its points.

For any set S ⊆ Rn we can define the convex hull of a finite set of points
x1, . . . , xk by

conv S =
{ k∑

i=1
λixi : x1, x2, . . . , xk ∈ S, λ1, λ2, . . . , λn ∈ [0, 1],

k∑
i=1

λi = 1
}

, .

In other words, it is the set of all convex combinations of the elements of A.
An alternative definition of the convex hull is that the convex hull of a set S
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2.3. Convexity

Figure 2.2: Two sets in R2. The set on the left is convex, and the one on the
right is not.

is the intersection of all convex sets containing S, thus it is also the smallest
convex set containing S. This definition allows us to form the convex hull of
infinite sets, e.g., curves and surfaces. If S is a finite set of points, conv S is a
polytope, which is an extensively studied convex set. A convex set is line-free
if there are no linear space contained in the set.

For any family {Ci}i∈I of convex sets, the intersection
⋂

i∈I Ci is convex.
The Minkowski sum of convex sets C and D, defined by C + D = {x + y : x ∈
C and y ∈ D} is convex, moreover this extends to any family of convex sets,
i.e., the set {

∑
i∈I xi : xi ∈ Ci} is convex.

Figure 2.3: The first figure show the set A ∈ R2, and the second show the
convex hull of A, conv(A).

Hyperplanes and halfspaces

As earlier stated a hyperplane H in a real inner product space V is denoted

H = {x ∈ V : ⟨c, x⟩ = b}

c ∈ V orthogonal to the hyperplane, usually referred to as the normal vector
of H, and b ∈ R. Corresponding to each hyperplane in V , there are two
halfspaces, H+ = {x ∈ V : ⟨c, x⟩ ≥ b} and H− = {x ∈ V : ⟨c, x⟩ ≤ b}. If
S ⊆ V is contained in either H+ or H− and S ∩ H ̸= ∅, we say that H is a
supporting hyperplane of S, more precisely we say that for each x ∈ S ∩ H,
H supports S at x. We also sometimes refer to the halfspace containing S as the
supporting halfspace of S. When the set of concern is of a smaller dimension
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2.3. Convexity

than the space it lies in, there are hyperplanes that include the whole set. We
say they are trivial supporting hyperplanes. For example, the xy-plane is
a supporting hyperplane of C in Figure 2.1, but it also fully contains C. The
trivial supporting hyperplanes are not of much interest, so we will only refer to
H as a supporting hyperplane of S, if S is not fully contained in H. For convex
sets, we have the following useful connection to supporting hyperplanes.

Theorem 2.3.2. [Dah10] Let C ⊆ V , be a nonempty convex subset of an
euclidean space, and let x ∈ rb(C). Then there is a hyperplane supporting C in
x.

Corollary 2.3.3. [Dah10] Let C ⊆ V be a nonempty closed convex subset of an
euclidean space. Then C is the intersection of all its supporting halfspaces.

Convex cones

Definition 2.3.4. A subset K in a real vector space V is a convex cone if for
each pair of points x, y ∈ V , and for all α, β ∈ R+ we have that αx+βy ∈ K, i.e.,
if K is closed under non-negative linear combinations, or conical combination.
Similar to affine and convex hull, we can define the conical hull cone A, by
including all conical combinations of the points in A.

A cone K ∈ V is pointed if K ∩ {−K} = {0}. If a cone is closed, convex,
pointed and full-dimensional, we say that it is a proper cone. For every convex
cone, K ⊂ V , there is a dual cone;

K∗ =
{

y ∈ V : ⟨x, y⟩ ≥ 0 for all x ∈ K
}

. (2.2)

If a cone is proper, then the dual cone is proper. For several of the cones
we will study in this thesis, the cones are self-dual, which is when the dual
cone equals the cone, i.e., K∗ = K. In general, the pair (K, K∗) is of great
importance in optimization, as duality is an important tool for finding and
confirming optimal solutions.

Another convex cone that will be useful is the normal cone of a convex
set, also sometimes referred to as the polar cone. For a convex set C ⊆ Rm,
and a point x ∈ C, the normal cone is

NC(x) = {z ∈ Rm : ⟨z, x⟩ ≥ ⟨z, y⟩ for all y ∈ C}. (2.3)

The gradient of a real valued function is orthogonal to any level set of the
functions, thus for a convex where the boundary is defined by a level set of a
function, we have that ∇f(x) ∈ NC(x) for all x in the level set.

Lemma 2.3.5. Let A = x0 + L ⊆ Rm be an affine set as in Equation (2.1).
Then for any a ∈ A, NA(a) = L⊥

Proof. The affine set does not depend on the choice of x0 ∈ A, thus we choose
x0 = a and express A = a + L, where L is the corresponding linear subspace of
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2.3. Convexity

Rm. The normal cone of A in a is

NA(a) ={z ∈ Rm : ⟨z, a⟩ ≥ ⟨z, a + l⟩ ∀l ∈ L}
={z ∈ Rm : ⟨z, a⟩ ≥ ⟨z, a⟩ + ⟨z, l⟩ ∀l ∈ L}
={z ∈ Rm : 0 ≥ ⟨z, l⟩ ∀l ∈ L}
={z ∈ Rm : 0 = ⟨z, l⟩ ∀l ∈ L}
=L⊥

■

Faces of convex sets

Definition 2.3.6. [Dah10] Let C be a convex set in Rm. A convex subset F ⊆ C
is a face of C if the following holds: if x1, x2 ∈ C is such that (1−λ)x1+λx2 ∈ F
for some 0 < λ < 1, then x1, x2 ∈ F .

We include ∅ and C in the faces of C, and refer to them as the trivial faces
of C. The dimension of a face is its affine dimension. Faces of dimension 0 are
called extreme points, and dimension one less than the convex set are called
facets.

Definition 2.3.7. An extreme point x ∈ C is a vertex if dim NC(x) = dim C.

Example 2.3.8. Consider the polytope in Figure 2.4. For every line segment
in the polytope, where the relative interior of the line segment is included in
one of the edges of the polytope, the endpoints of the line segment are also on
that edge. Hence the edges are faces of the polytope. An example is depicted
on the right in Figure 2.4. The other faces of the depicted polytope are the
"corners". The corners are faces of dimension 0, or extreme points, because if
there are two points, x1, x2 in the polytope such that (1 − λ)x1 + λx2 intersects
the corner point for any λ ∈ (0, 1), then both x1 and x2 must be the corner
point. Note moreover that for a polytope, the extreme points are also vertices.

Figure 2.4: "Line segments" with relative interior contained in what turns out
to be the faces of a polytope in R2

Definition 2.3.9. [Dah10] Let C be a convex set in Rm and H a supporting
hyperplane of C.Then the intersection C ∩ H is called an exposed face of C.

8



2.3. Convexity

Example 2.3.10. Consider the closed unit disk, B ⊆ R2. For each point y on
the boundary, the set H = {x ∈ R2 : ⟨x, y⟩ = 1} is a supporting hyperplane of
H, and y ∈ B ∩ H. Moreover for any other point z ∈ B, z = λx for some λ < 1
or z and x are linearly independent. Thus z /∈ H as ⟨x, z⟩ < ∥x∥∥z∥ = 1 by the
Cauchy-Schwarz inequality. This shows that each boundary point of the unit
circle is an exposed face, in particular an extreme point.

Proposition 2.3.11. [Dah10] Let C ∈ Rm be a convex set. Then every exposed
face of C is also a face of C.

The contrary is not necessarily true, though we will see that for our main
object of interest, spectrahedra, the two concepts coincide. First we will see an
example of a face that is not exposed.

Example 2.3.12. Consider the set C = B + ([0, 1] × 0) ∈ R2, which is the
Minkowski sum of the closed unit disc B and the line segment from [0, 1] on
the x-axis. See Figure 2.5. In Example 2.3.10 we saw that for every point
which is only on the "curved" part of ∂C (blue in the figure) is an exposed
face, hence also a face. The line segments [0, 1] × {−1} and [0, 1] × {1} (black
in the figure) are also exposed faces. The hyperplanes y = 1, and y = −1
intersects C exactly in these line segments. Now consider the point a = (0, 1).
The supporting hyperplane of C in a = (0, 1) is y = 1. Then a can not be an
exposed face, since the intersection between C and the hyperplane includes
more than just the point a. On the other hand, if we let a1, a2 ∈ C be points
such that a = 1

2 a1 + 1
2 a2, this implies that a1 = a2 = a, hence a is a face. A

similar argument hold for the points (0, −1), (1, −1), (1, 1).

Figure 2.5: The set C = B + ([0, 1] × 0) ∈ R2.

Proposition 2.3.13. [NPS09] Let C be a closed convex set with non-empty
interior in an euclidean space, and let {Fi}i∈I be the set of faces of C. Then
the following holds.

(i) For every face Fi ⊊ C, there exist a supporting hyperplane H of C
such that Fi ⊆ H.

(ii) Fi is closed for all i ∈ I.
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2.4. Functions and maps

(iii) If F1 ⊊ F2, then dim F1 < dim F2.

(iv) If G is a face of any element in {Fi}i∈I , then G ∈ {Fi}i∈I . I.e. any
face of a face of C is also a face of C.

2.4 Functions and maps

Convex functions

Definition 2.4.1. A function convex function is a function f : C → R, where
for any convex set C ⊆ Rm, we have

f((1 − λ)x + λy) ≤ (1 − λ)f(x) + λf(y)

for all x, y ∈ C and for all 0 ≤ λ ≤ 1.

Definition 2.4.2. The epigraph of a function f : Rm → R is the set

epi(f) = {(x, y) ∈ Rm × R : y ≥ f(x)}

Theorem 2.4.3. [Dah10] Let f : C → R where C ⊆ Rm is convex. Then f is a
convex function if and only if epi(f) is a convex set.

Affine maps

Definition 2.4.4. Let A, B be affine sets with corresponding linear spaces LA, LB .
A map α : A → B is an affine map if there exist a linear map β : LA 7→ LB

such that β(x − y) = α(x) − α(y) for all x, y ∈ A.

Proposition 2.4.5. Affine maps preserve the following

(i) Colinearity, three or more points that lie on the same line, will still be
on the same line under the map

(ii) Paralellism, the image of paralell lines will be paralell

(iii) Convexity, the image of a convex set is convex

(iv) Extreme points, the image of extreme points of a set will be extreme
points of the image of the set

Projections

Definition 2.4.6. Let C ⊆ Rm be closed subset, then the projection of
x ∈ Rm \ C onto the set Cis defined by πC(x) = arg min

y∈C
∥x − y∥.

A necessary condition for the existence of a projection is that C is closed.
For an arbitrary set in Rm, the projection is not unique. Consider for example
the projection of (0, 0) onto the set {(x, y) ∈ R2 : x2 + y2 ≥ 1}. Then every
boundary point will be a projection of origo onto the set.

If however C ⊆ Rm is a closed convex set, then for every x ∈ Rn \ C the
projection πC(x) is a unique point in C, more specific in ∂S. Furthermore,
for each boundary point of a closed convex set, y ∈ ∂C, there exist a point
x ∈ Rn \ C such that πC(x) = y. [LV16]
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2.5. Matrix theory

2.5 Matrix theory

Let A = (aij)1≤i,j≤n be a real valued with n × n matrix. The rank of a matrix
is the dimension of the vector space spanned by the columns of the matrix, i.e.
the number of linearly independent columns. The null space of a matrix A
consist of all the vectors x ≠ 0 such that Ax = 0. The dimension of the null
space is called the nullity, denoted nl A.

The eigenvalues of A are all λ such that Ax = λx for some non-zero
vector x ∈ Rn, in particular x is an eigenvector corresponding to the
eigenvalue. The eigenvalues can be found by computing the roots of the
characteristic polynomial pA(λ) = det(λI − A). If {λi}i=1,...,n are the
eigenvalues of A, pA(λ) =

∏n
i=1(λ − λi). From this it can be deduced that

det A = (−1)n det(0 · I − A) = (−1)n
∏n

i=1(0 − λi) =
∏n

i=1 λi

A square matrix D ∈ Rn×n diagonal if all elements off the diagonal are zero.
A square matrix A ∈ Rn×n is diagonalizable if there exist an n × n invertible
matrix P such that P −1AP is a diagonal matrix. A matrix A = (aij)1≤i,j≤n

is symmetric if aij = aji for all i, j = 1, 2, . . . , n or equivalently if AT = A.
The set of real symmetric matrices of dimension n will be denoted Sn. All
eigenvalues of a real symmetric matrix are real.

For any matrix A we can form a submatrix by including a subset of rows
and columns of A, its determinant is called a minor of A. If A is quadratic
matrix, i. e m = n, then a principal submatrix is formed by including the
rows and columns of the same index, the determinant of this submatrix is called
a principal minor of A. Moreover, we say that the principal submatrix and
principal minor are leading if they are formed by a submatrix in the upper
left corner of the matrix.

Theorem 2.5.1. [LV16] Any real symmetric matrix A ∈ Sn can be decomposed
as

A =
n∑

i=1
λiuiu

T
i ,

where {λi} are the eigenvalues of A, and {ui} are the corresponding eigenvectors
which form an orthonormal basis for Rn. Moreover, the decomposition can be
expressed on matrix form

A = UDUT

where U is an real orthogonal (columns are orthonormal) n × n- matrix, and D
is a diagonal matrix with the eigenvalues of A on the diagonal.

A consequence of the spectral theorem of symmetric matrices is that all
symmetric matrices are diagonalizable.

Positive semidefinite matrices

A positive semidefinite matrix is a symmetric matrix A such that xT Ax ≥ 0
for all x ∈ Rn. We denote this by A ⪰ 0. If the inequality is strict for all
x ∈ Rn \ {0} we say that the matrix is positive definite, or A ≻ 0.

Theorem 2.5.2 ([BPT12, p. 448]). Let A ∈ Sn. Then the following are equivalent

11



2.5. Matrix theory

(i) A is positive semidefinite (A ⪰ 0).

(ii) All eigenvalues of A are non-negative.

(iii) All principal minors of A are non-negative.

(iv) A = UT U for some matrix U ∈ Rn×r, where r is the rank of A.

(v) The coefficients of pA(λ) weakly alternates in signs.

A similar set of equivalences holds for positive definite matrices.

Theorem 2.5.3 ([BPT12, p. 448]). Let A ∈ Sn. Then the following are
equivalent.

(i) A is positive definite (A ≻ 0).

(ii) All eigenvalues of A are strictly positive

(iii) All n leading principal minors are strictly positive.

(iv) The coefficients of pA(λ) alternates in signs.

(v) A = BT B for some invertible matrix B ∈ Rn×n.

There are several ways to show that a matrix is positive semidefinite using
the equivalent definitions. We will take a look at a few results which can be
easily deduced from Theorem 2.5.2.

Proposition 2.5.4. If X ∈ Sn and B ∈ Rn×n is an invertible matrix. Then
X ⪰ 0 if and only if BXBT ⪰ 0, we say that this is a congruence transformation
of X.

Given two symmetric matrices A ∈ Sn and B ∈ Sm, we can define the
following block diagonal matrix.

A ⊕ B =
(

A 0
0 B

)
∈ Sn+m

As a direct consequence of (iii) in Theorem 2.5.2 we get the following proposition

Proposition 2.5.5. Let A, B ∈ Sn, then A ⊕ B ⪰ 0 if and only if both A ⪰ 0
and B ⪰ 0.

Proposition 2.5.6. Let X be a real symmetric matrix, such that the Schur
complement exist, then X ⪰ 0 if and only if its Schur complement is positive
semidefinite.

A matrix A = (aij)1≤i,j≤n is diagonally dominated if |aii| ≥
∑

j ̸=i|aij |
for all i.

Proposition 2.5.7. Let A be areal valued symmetric matrix with non-negative
diagonal elements which is diagonally dominated. Then A is positive
semidefinite.

12



2.6. Positive semidefinite cone

2.6 Positive semidefinite cone

If we now consider the set of all symmetric n × n-matrices Sn, they form a real
vector space under the usual matrix addition, and scalar multiplication. As Sn

is a real vector space, it is also an inner product space, with the trace inner
product. The standard basis of this vector space, is the set of matrices that are
zero everywhere except either one diagonal element equal 1, or except that the
elements (i, j) and (j, i) are 1√

2 . It can be checked that this is an orthonormal
basis. As the non-zero elements for this basis can be placed in n2+n

2 different
ways, we have that Sn ∼= R

n2+n
2 .

For A, B ⪰ 0, and α, β ≥ 0,

xT (αA + βB)x = αxT Ax + βxT Bx ≥ 0,

so αA + βB ⪰ 0, which shows that the set of all positive semidefinite matrices
form a convex cone Sn

+ ⊆ Sn. In fact this cone is generated by the symmetric
matrices of rank 1, i.e., Sn

+ = cone{xxT : x ∈ Rn}. This can easily be seen
by observing that the conical combinations of rank 1 matrices, is exactly the
symmetric matrices described in the spectral decomposition theorem (The-
orem 2.5.1) with non-negative eigenvalues, thus it is the positive semidefinite
symmetric matrices.

Proposition 2.6.1. [BPT12] For the positive semidefinite cone Sn
+ the following

properties hold

(i) Sn
+ is self dual, i.e., (Sn

+)∗ = Sn
+.

(ii) Sn
+ is a proper cone.

(iii) The interior of Sn
+ is {X ∈ Sn : X ≻ 0}.

2.7 Convex optimization

Convex optimization is the task of minimizing a convex functions over convex
sets. A convex optimization problem is on the form[BV04]

minimize
x

f0(x)

subject to fi(x) ≤ 0 i = 1, . . . , m

aT
j x = bj j = 1, . . . , p

Where f0, f1, . . . , fm : V → R are convex functions, for some finite dimensional
real vector space. We refer to the function to be optimized, f0(x) as the
objective function, and the inequalities and equations that must hold for
the variable we are optimizing over as the constraints. We say that any
x such that the constraints hold is a feasible solution of the optimization problem.

There are no general analytic ways to solve a convex optimization problem,
but for various classes of problems there are effective methods for solving them.
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2.7. Convex optimization

For other classes the known methods for solving them might be either "slow" or
with low accuracy. For practical use, the methods known today are sufficient,
but usually the challenge is to formulate the real world problems as convex
optimizations problems, both the objective function and the constraints. The
types of optimization that are most widely used in practical applications are
all various versions of conic optimization. Convex sets are in general hard
to express, the solution sets in conic optimization are somewhat "nicer". In
conic optimization, the feasible solutions are given by a proper convex cone
intersected with an affine space.

Let V be a real vector space, for example Rm, c ∈ V , a1, . . . , ak ∈ V ,
b1, . . . bk ∈ R, and K a proper cone in V . Then we define a primal conic
optimization problem by

inf
{

⟨c, x⟩ : x ∈ K, ⟨ai, x⟩ = bi, i = 1, 2, . . . , k
}

(2.4)

If x ∈ Ko, we say that x is strictly feasible.

Conic optimization holds another powerful property, the existence of a dual
problem that generates lower (or upper, in the case of maximization problems)
bounds on the original problem. The duality property makes is possible to
find better approximations to the optimal solution, and also more ways of
assuring optimality. If the primal of a conic optimization problem is given by
Equation (2.4), then the dual problem is

sup
{ k∑

i=j

yibi : y = (y1, . . . yk) ∈ V,

k∑
i=1

yiai − c ∈ K∗
}

(2.5)

If x is a feasible solution to the primal problem, and y is a feasible solution
to the dual problem, we sometimes say that (x, y) is a feasible solution to the
primal-dual problem. For all feasible solutions of a primal-dual pair of a conic
program weak duality holds, i.e., the value of the function we minimize in
the primal problem, is greater than or equal to the value of the function we
maximize in the dual problem. We will return to this property in two special
cases of conic optimization; linear and semidefinite.

Linear Optimization

To get an overview of the main concepts of conic optimization, we take a look
at the most famous, but also most straight forward type. Linear optimization is
also known as linear programming (LP). Linear programming is a cornerstone
in mathematical optimization, and was one of the first types where efficient
algorithm for solving problems was developed. As a consequence, linear op-
timization have been a vital tool in several practical applications, as logistics,
economics, engineering, and resource allocation.
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2.7. Convex optimization

A linear optimization is the problem of minimizing (or maximizing) a linear
function, given linear constraints and has a standard form given by

(P ) minimize
x∈Rn

⟨c, x⟩

subject to Ax ≤ bi, i = 1, . . . , m (2.6)
x1, x2, . . . , xn ≥ 0

The parameters of the problem is A ∈ Rm×n, c ∈ Rn and b1, . . . , bm ∈ R, and
x ∈ Rn is the decision variable.

The inequality x ≥ 0 is what makes linear programming a conic optimization
problem. It defines the non-negative orthant which is the set {xi ≥ 0, i =
1, 2, . . . , n}. The non-negative orthant Rn

+ is a convex cone, as for each pair
x, y = (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ Rn

+, every non-negative combination
is also in Rn

+. Furthermore, for any x ≥ 0, ⟨y, x⟩ ≥ 0 if and only if y ≥ 0. It
follows that the non-negative orthant is a self-dual cone. Hence the dual of a
linear program (Equation (2.6)) is

(D) maximize
y∈Rm

⟨b, y⟩

subject to AT y ≥ cj , j = 1, . . . , n (2.7)
y1, y2, . . . , ym ≥ 0

Theorem 2.7.1. [BPT12] For a primal-dual linear optimization problem the
following holds.

(i) Weak duality: For any feasible solution (x, y) for (P,D), we have
⟨b, y⟩ ≤ ⟨c, x⟩.

(ii) Strong duality: If both (P) and (D) are feasible, there exist optimal
solutions (x∗, y∗) and they (P) and (D) have the same optimal value,
i.e., ⟨c, x∗⟩ = ⟨b, y∗⟩ .

(iii) Complementary slackness: If (x∗, y∗) are optimal solutions, then
x∗

i (c − AT y∗)i = 0 for i = 1, 2, . . . , n.

We will return to some of these terms in Chapter 3, but then in the context
of semidefinite optimization, which is another type of conic optimization.

Polyhedra

The set of feasible solutions of a linear program, both primal and dual, is a
convex object known as polyhedra.

Definition 2.7.2. A polyhedron is a set in Rn defined by finitely many
inequalities or equations, i.e., a set which can be written on the form

{x ∈ Rn : Ax ≤ b, x ≥ 0}.

Earlier, we defined a polytope as the convex hull of a finite set of points,
but a result from convexity theory show that a set is a polytope if and only if it
is a bounded polyhedron. Also unbounded polyhedra are related to polytopes
in the theorem we now present, called The main theorem for polyhedra.
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2.7. Convex optimization

Theorem 2.7.3. [Dah10] Each polyhedron P ⊆ Rn may be written as

P = conv V + cone W

where V, W ⊆ Rn are finite sets. In particular, if P is pointed, we may
here let V be the set of vertices, and W consist of a direction vectors of each
extreme halfline of P . Conversely, if V, W are finite sets in Rn, then the set
P = conv V + cone W is a polyhedron, i.e.,

P = conv V + cone W = {x ∈ Rn : Ax ≤ b}

for some matrix A ∈ Rm×n, b ∈ Rm for some m.
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CHAPTER 3

Spectrahedra

"Spectrahedron" is a term introduced by Ramana and Goldman in their paper
from 1995 called "Some geometric results in Semidefinite programming"[RG95].
After they define the spectrahedron they write the following to present it;
"Spectrahedra are nothing but the feasible regions of Semidefinite Programs
(SDP). The name Spectrahedron can perhaps be justified as follows: the definition
of this class of sets involves the spectrum, and they bear a resemblance to
polyhedra. Indeed, spectrahedra may be considered "next natural successors" to
polyhedra, as one moves beyond linear constraints in optimization theory."

Since then, spectrahedra has indeed become more than just the feasible
region of SDP problems, and is a familiar term in branches of mathematics
from algebraic geometry to control theory and optimization.

3.1 Defining a spectrahedron

There are two formal definitions of a spectrahedron, which are not "equivalent",
but the sets they describe have a clear connection and the same properties in
their respective spaces. The first and most commonly used, especially in the
study of spectrahedra as geometric objects, is the following;

Definition 3.1.1. A set S ⊆ Rm is a spectrahedron if it has the form

S =
{

(x1, x2, . . . , xm) ∈ Rm : A(x) = A0 +
m∑

i=1
Aixi ⪰ 0

}
(3.1)

where A0, A1, . . . , Am ∈ Sn.

We say that A(x) is a linear pencil and that A(x) ⪰ 0 is a linear matrix
inequality(LMI), both of size n. If A0 = I the linear pencil and the LMI
are monic. For convenience the linear pencil is usually expressed as one single
matrix with linear polynomials in all elements.

Example 3.1.2. Many well known convex sets in Rn are in fact spectrahedra,
for example the unit ball. Let

S = {x ∈ R3 : I4+x1


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

+x2


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

+x3


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 ⪰ 0}
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3.1. Defining a spectrahedron

By taking the Schur complement of the linear pencil above and using
Proposition 2.5.6, we get

1 −
(
x1 x2 x3

) 1 0 0
0 1 0
0 0 1

 x1
x2
x3

 = 1 − (x2
1 + x2

2 + x2
3)

Our linear pencil is PSD if and only if its Schur complement is PSD, and for a
1 × 1-matrix, this is the same as being non-negative. Thus the linear pencil in
S is PSD if and only if x2

1 + x2
2 + x2

3 ≤ 1 which holds for the unit ball in R3. A
similar argument can be used for the unit ball in any dimension.

Example 3.1.3. Another example of a spectrahedron is the elliptope, En. It can
be expressed by

E3 = {(x1, x2, x3) ∈ R3 :

 1 x1 x2
x1 1 x3
x2 x3 1

 ⪰ 0}

The elliptope is also the set of all correlation matrices of size n. The
elliptope was introduced as a semidefinite relaxation of the famous maximum
cut problem, i.e., it is a spectrahedron containing all the solutions of the
maximum cut problem. To learn more about the elliptope and maximum cut
problem, see [LP95].

Figure 3.1: The zero set of the determinant of the linear pencil of E3. The
elliptope is restricted to the set yellow part by the other principal minors of the
linear pencil.

When the spectrahedron is the set of feasible solution in semidefinite
optimization, the usual choice of definition is the following

Definition 3.1.4. A set S′ ⊆ Sn is a h-spectrahedron if it has the form

S′ =
{

X ∈ Sn : ⟨Dj , X⟩ = dj for j = 1 . . . , k, X ⪰ 0
}

(3.2)

where Dj ∈ Sn and dj ∈ R for j = 1, . . . , k. Note that S′ ⊆ Sn
+ ⊆ Sn

The notation "h-spectrahedron" is a term used in this thesis to differ the
usual definitions of spectrahedra. The h is a reference to the hyperplanes in Sn

that defines the spectrahedron in Equation (3.2).
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3.1. Defining a spectrahedron

Example 3.1.5. An example of an h-spectrahedron is a subset S′ ⊆ S4
+ such

that the following equations holds for all X ∈ S′.

⟨


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , X⟩ = 1, ⟨


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , X⟩ = 1

⟨


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , X⟩ = 1, ⟨


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , X⟩ = 1

⟨


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 , X⟩ = 0, ⟨


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , X⟩ = 0

⟨


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , X⟩ = 0,

In this example each equality put a constraint on either one element on
the diagonal, or two equal elements off the diagonal. More often we see that
the constraints create more complex relations between the elements of the
variable matrix. For example, in eigenvalue optimization we find the constraint
Tr(X) = 1 which equals ⟨J, X⟩ = 1. This constraint includes all the elements
of the variable matrix.

Connecting the definitions

At first glance these two definitions seem completely different, and actually
they are not equivalent as we usually expect definitions of the "same" object
to be. Nevertheless, [BPT12] claims they are affinely equivalent for linearly
independent matrices in both definitions. In the reference text, the claim stands
alone, so in this thesis we choose topresent a framework and provide a proof to
support it.

Definition 3.1.6. Let E and F be two euclidean spaces. Then P ⊆ E and
Q ⊆ F are affinely equivalent if there exist an affine map α : E 7→ F such
that α is bijective on its image and α|P = Q.

Lemma 3.1.7. The set

P = {A0 +
m∑

i=1
Aixi : (x1, x2 . . . , xm) ∈ Rm} (3.3)

is an affine set of Sn.
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3.1. Defining a spectrahedron

Proof. Let X, Y ∈ P , and t ∈ R, then

tX + (1 − t)Y = t · (A0 +
m∑

i=1
Aixi) + (1 − t)(A0 +

m∑
i=1

Aiyi)

= tA0 + (1 − t)A0 +
m∑

i=1
Ai(xi + yi)

= A0 +
m∑

i=1
Aizi ∈ P.

By Definition 2.2.1, P is an affine set of Sn. ■

Lemma 3.1.8. Let P be as in Equation (3.3) and assume that {Ai}i=0,1,...,m

are linearly independent matrices. Then Rm is affinely equivalent to the set
P ⊆ Sn. Moreover, dimR P = m.

Proof. Let α : Rm → Sn, x 7→ A0 +
∑m

i=1 Aixi, and β : Rm → Sn, x 7→∑m
i=1 Aixi. Then β is a linear map because

β(µ1x + µ2y) =
m∑

i=1
Ai(µ1xi + µ2yi)

= µ1

m∑
i=1

Aixi + µ2

m∑
i=1

Aiyi

= µ1β(x) + µ2β(y).

Furthermore β(x − y) =
∑m

i=1 Aixi −
∑m

i=1 Aiyi + A0 − A0 = α(x) − α(y),
thus α is an affine map. Since the Ai’s are linearly independent, α is injective,
and hence bijective on its image. This shows that Rm is affinely equivalent to
its image under α, which is P . The image of the map α can at most have the
dimension of its domain, which is m. Moreover dimR α(Rm) + dimR ker α = m,
so dimRP = m if and only if α is bijective, which we have already proven. ■

It follows from Lemma 3.1.8 that the spectrahedra S from Definition 3.1.1
is affinely equivalent to the set {A0 +

∑m
i=1 Aixi : x ∈ Rm} ∩ Sn

+ ⊂ Sn.

Lemma 3.1.9. The set

Q = {X ∈ Sn
+ : ⟨Bj , X⟩ = bj for j = 1 . . . , k} (3.4)

is an affine set of Sn.

Proof. Let X, Y ∈ Q, then

⟨Bj , θX + (1 − θ)Y ⟩ = ⟨Bj , θX⟩ + ⟨Bj , (1 − θ)Y ⟩
= θ⟨Bj , X⟩ + (1 − θ)⟨Bj , Y ⟩
= θbj + (1 − θ)bj = bj

so θX + (1 − θ)Y ∈ Q, and Q is an affine set. ■
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3.1. Defining a spectrahedron

Lemma 3.1.10. The sets P in Equation (3.3) and Q in Equation (3.4) are equal
for a suitable choice of {Ai}i=0,1,...,m, {Bj}j=1,...,k and {bj}j=1,...,k.

Proof. Let P = {A0 +
∑m

i=1 Aixi : (x1, x2 . . . , xm) ∈ Rm}, choose {Bj}j=1,...k

to be a basis of the orthogonal complement of span{A1, . . . , Am}. Then
⟨Bj , Ai⟩ = 0 for all j, i. Also let bj = ⟨Bj , A0⟩ for all j. Then for all X ∈ P and
for all j = 1, . . . , k, ⟨Bj , X⟩ = ⟨Bj , A0⟩+

∑m
i=0 xi⟨Bj , Ai⟩ = bj +

∑m
i=0 xi ·0 = bj ,

which shows that X ∈ Q.

Now let X ∈ Q. Then ⟨Bj , X⟩ = bj . As we have chosen bj = ⟨Bj , A0⟩, we
get ⟨Bj , X⟩ = ⟨Bj , A0⟩, and ⟨Bj , X − A0⟩ = 0, and X − A0 is the orthogonal
to Bj for all j. Since {Bj}j=1,...k is a basis of the orthogonal complement of
span{A1, . . . , Am}, X − A0 ∈ ((span{A1, . . . , Am})⊥)⊥ = span{A1, . . . , Am}.
Thus X − A0 =

∑m
i=1 Aixi, and X ∈ P . ■

The main theorem of this section connecting the definitions of spectrahedra
and h-spectrahedra follows from the above lemmas.

Theorem 3.1.11. A spectrahedra S ⊆ Rm on the form Equation (3.1) is affinely
equivalent to an h-spectrahedra S′ ⊆ Sn on the form Equation (3.2) where
span{{Bj}j=1,...,k} is the orthogonal complement of span{A1, . . . Am} and
bj = ⟨Bj , A0⟩ for all j.

Corollary 3.1.12. If S ⊆ Rm is a spectrahedron defined by linearly independent
matrices A1, . . . , Am, then an affinely equivalent h-spectrahedron S′ ⊂ Sn is
defined by at least n2+n

2 − m hyperplanes in Sn.

Proof. By Lemma 3.1.8, the dimension of a spectrahedron defined by linearly
independent matrices A1, . . . Am has dimension m. The space Sn has dimR Sn =
n2+n

2 . Thus the orthogonal complement of span{A1, . . . , Am} has dimension
n2+n

2 − m, which shows that k must be at least n2+n
2 − m for span{B1, . . . , Bk}

to form a basis of a subspace of the correct dimension. ■

With this theorem in mind, lets another look at Example 3.1.2 and
Example 3.1.5 which we now refer to as S and S′. Any X ∈ S′ is on the
form

X =


1 x1,2 x1,3 x1,4

x1,2 1 0 0
x1,3 0 1 0
x1,4 0 0 1


which is exactly the linear pencil described in S. Furthermore, notice that the
dimension of the affine space in S′ is 42+4

2 − 7 = 3 as we are in the space S4

and there are 7 linearly independent matrices creating the equations. Also
S ⊆ R3, so as it should, the dimension matches in these two spectrahedral
representations of the unit ball.

21



3.2. Properties of spectrahedra

3.2 Properties of spectrahedra

In this section, it is natural to start with a proposition describing the two
fundamental properties of spectrahedra. Since these properties are commonly
assumed without rigorous verification, we provide a formal proof in this thesis .

Proposition 3.2.1. Let S ⊆ Rm be a non-empty spectrahedron. Then S is closed
and convex.

Proof. First we show that S is closed. For each point y ∈ Rm\S = Sc, we know
that zT A(y)z < 0 for at least one z ∈ Rm. Let k = zT A(y)z, then the ball
B(y, ϵ) consist of the points u = y + ϵr with r ∈ Rm such that |r| = 1. For the
given z ∈ Rm we get

zT A(y + ϵr)z = zT A0z +
m∑

i=1
yiz

T Aiz + ϵ

m∑
i=1

riz
T Aiz

= zT A(y)z + ϵ

m∑
i=1

riz
T Aiz

≤ k + ϵ

m∑
i=1

1 · zT Aiz

= k + ϵ · M

We see that for a sufficiently small ϵ, B(y, ϵ) ⊂ Sc, hence Sc is open, and S is
closed.

To show that S is convex, let x, y ∈ S, and 0 ≤ λ ≤ 0. Then

A((1 − λ)x + λy) = A0 +
m∑

i=1
((1 − λ)xi + λyi)Ai

= (1 − λ)A0 + λA0 + (1 − λ)
m∑

i=1
xiAi + λ

m∑
i=1

yiAi

= (1 − λ)A(x) + λA(y)

So if zT A(x)z ≥ 0 and zT A(y)z ≥ 0 for all z ∈ Rm, then zT A((1−λ)x+λy)z =
(1 − λ)zT A(x)z + λzT A(y)z ≥ 0 for all z ∈ Rm. ■

It will often be convenient to use a monic LMI representation of a
spectrahedron, which we recall to have A0 = I. In [BPT12] the folowing
argument shows how each LMI can be represented by a monic LMI. This
assures that every spectrahedra with non-empty interior can without loss
of generality be represented by a monic LMI. The first step to see this is
by assuming A0 ≻ 0. Then we know that for some non-singular matrix
B, A0 = BBT . Proposition 2.5.4 implies that A(x) ⪰ 0 if and only if
BA(x)BT = I + x1B−1A1B−T + x2B−1A2B−T + . . . + xmB−1AmB−T ⪰ 0.
If A0 ⊁ 0, then choose a point x0 ∈ S such that A(x0) ≻ 0, which we later
in the chapter will see is exactly the interior points of S(Lemma 3.2.2). Let
St = {x ∈ Rm : A′(x) = A(x + x0) ⪰ 0}, be the translated spectrahedron.
Now we get A′

0 = A′(0) = A(0 + x0) ≻ 0, so we can apply the congruence
transformation described above.
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Boundary and interior

The proof of this lemma is inspired by the proof of property 5 of spectrahedra
in Tim Netzer’s doctoral thesis "Spectrahedra and their shadows".

Lemma 3.2.2. For all interior points of a spectrahedron , i. e. for all x ∈ So,
we have A(x) ≻ 0.

Proof. Let be a S ⊆ Rm a full dimensional spectrahedron. Let x0 ∈ S◦ and
assume for contradiction that A(x0) ⊁ 0, i.e., det A(x0) = 0 for the defining
linear pencil A(x) of S. Then there exist a vector v ∈ Rn, where n = sizeA(x),
such that vT A(x0)v = 0, and consequently vT A0v = 0. Now let B = B(x0, r)
be an open ball of radius r > 0 around x0 such that for every x ∈ B, A(x) ⪰ 0.
This implies that for every ϵ = (ϵ1, . . . , ϵm) such that |ϵ| < r, we have

A0 +
m∑

i=1
ϵiAi ⪰ 0.

Then for the v ∈ Rm above, vT (A0 +
∑m

i=1 ϵiAi)v = vT (
∑m

i=1 ϵiAi)v ≥ 0.
This holds for all ϵ = (ϵ1, . . . , ϵm) such that |ϵ| < r, where each ϵi is not
necessarily positive, so vT Aiv = 0 for all Ai. Thus for all x ∈ Rm, it holds that
vT (A0 +

∑m
i=1 xiAi)v = 0, which implies S = Rm, which is a contradiction.

Thus det A(x0) ̸= 0, and A(x0) ≻ 0 for x0 ∈ S◦. ■

The following theorem is based on another claim, found in both [Ott+15] and
[BPT12], where a proof seem to be excluded in most texts about spectrahedra.

Theorem 3.2.3. Assume S ⊂ Rm is a non-empty spectrahedron with defining
linear pencil A(x). Then the boundary of S is defined by the equation
det(A(x)) = 0. i.e., if x ∈ S, then x ∈ ∂S if and only if det A(x) = 0.

Proof. From Lemma 3.2.2 it follows that if If x ∈ S and det A(x) = 0, then
x ∈ ∂S. Assume that x ∈ ∂S, then each neighbourhood containing x includes
a point x1 ∈ Rm\S and a point x2 ∈ S. In the point x1, at least one eigenvalue
of the linear pencil, λi(A(x1) is negative. For x2 all λi(A(x2)) ≥ 0 for all i. By
continuity of the eigenvalue, there exist a point y on the line segment between
x1 and x2 such that λi(A(y)) = 0. As this holds for all neighbourhoods of
x we get that y = x. Furthermore, λi(A(x)) = 0 for some i, if and only if
det(A(x)) = 0, which concludes the proof. ■

Proposition 3.2.4. For a point x∗ ∈ ∂S, the nullity of A(x∗) equals the root
multiplicity of det A(x) in the point x∗.

Proof. Let x∗ ∈ ∂S, then A∗ := A(x∗) is a symmetric positive semidefinite
matrix, with non trivial null space. From the spectral theorem for real symmetric
matrices Theorem 2.5.1, A∗ = UT D∗U where D0 is diagonal with the eigenvalues
of A0 and the columns of U are the corresponding eigenvalues, which also form
an orthonormal basis for Rm. Consequently there is one unique eigenvector of
A∗ for each diagonal element of D∗ which is equal to zero. Thus the nullity of
A∗ equals the eigenvalue multiplicity of λ = 0. Furthermore, the characteristic
polynomial of A∗ can be expressed as pA∗(λ) = f(λ)−det A∗ for some univariate
polynomial f . Thus the eigenvalue multiplicity of λ = 0 of A∗ equals the root
multiplicity of det A(x) in the point x∗ which concludes the proof. ■
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Example 3.2.5. The determinant of the linear pencil defines the boundary
of a spectrahedron, however, non-negativity of the determinant is far from
sufficient for describing a spectrahedron. The determinant is simply one of the
set of principal minors of the linear pencil, and to see the importance of all the
principal minors, we consider two spectrahedra in R2. Let

S1 =
{

(x, y) ∈ R2 :
(

x + 2 1
1 y + 1

)
⪰ 0

}
,

depicted in Figure 3.2.
The principal minors of S1 are {det A1 = xy + x + 2y + 1, x + 2, y + 1}. The

determinant is non-negative for two separate convex subsets of the plane, but
the two principal minors is only be non-negative for one of these sets. In this
example, the principal minors are strictly positive on the boundary of S1.
Let

S2 =
{

(x, y) ∈ R2 :

x + y − 1 0 0
0 x + y − 1 0
0 0 y − x + 1

 ⪰ 0
}

,

depicted in Figure 3.3. The principal minors of S2 are {det A2 = (x + y −
1)2(y − x + 1), (x + y − 1)(y − x + 1), x + y − 1, y − x + 1}. In this case, the
determinant is non-negative for all (x, y) such that (y − x + 1) ≥ 0, but it is
zero on a line "cutting through" the middle of this set. It is the lower degree
principal minors that ensures that the boundary of the spectrahedra is defined
by the zero set of the determinant.

Figure 3.2: The non-negative set of the determinant on the left, and of all the
principal minors, for which the intersection is S1.

Figure 3.3: The non-negative set of the determinant on the left, and of all the
principal minors, for which the intersection is S2.
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What about spectrahedra which are not full dimensional, i.e., spectrahedra
with empty interior?

Example 3.2.6. Recall the two-dimensional unit disc in R3Example 2.2.2. This
is a spectrahedron defined by the LMI

{
(x, y, z) ∈ R3 :


1 x y 0 0
x 1 0 0 0
y 0 1 0 0
0 0 0 z 0
0 0 0 0 −z

 ⪰ 0
}

.

The linear pencil is PSD if and only if both the first 3 × 3 block matrix, B1, and
the last 2 × 2 block matrix, B2, are PSD. We recognize B1 to be the unit disc
in R2 by taking the Schur complement, and with no restrictions on z, it forms a
sylinder. B2 simply ensures that z = 0. As a consequence S is a spectrahedron
with empty interior.

If we take a look at the determinant of this spectrahedron we see that
det A(x, y, z) = det B1(x, y, z) · det B2(x, y, z) = −z2 · (1 − x2 − y2) ≤ 0 for all
x ∈ S. Thus we have that det A(x, y, z) = 0 for all x ∈ S so S = ∂S. The
determinant does still define the boundary of the spectrahedron, but since it is
a convex set which is not full dimensional, the boundary is all of the set.

Minimal description LMI

Definition 3.2.7. The LMI A(x) ⪰ 0 is a minimal description of a
spectrahedron S with non-empty interior if A(x) has the smallest possible
size to describe the spectrahedron, i.e., if there does not exist A′(x) with size
A′ = n′ < n = size A such that S = {x ∈ Rm : A′(x) ⪰ 0}.

Lemma 3.2.8. [HV03] For each polynomial p(x) = p1(x)r1p2(x)r2p3(x)r3 . . . pk(x)rk

where {pi} are irreducible polynomials over R, the connected subset of
B = {x ∈ Rm : p(x) ̸= 0} are exactly the connected subsets of
B0 = {x ∈ Rm : p0(x) = p1(x)p2(x)p3(x) . . . pk(x) ̸= 0}.

We have seen that the boundary of a spectrahedron is defined by the
equation det A(x) = 0. The determinant is a polynomial, hence we get from
Lemma 3.2.8 that the boundary of a spectrahedron can be expressed as a
square free product of irreducible polynomials. We refer to this as the minimal
defining polynomial of S. Furthermore, det A(x) > 0 on the interior of
a spectrahedron, so without loss of generality we can assume all factors in
any factorization of a defining polynomial are also positive on the interior of
the spectrahedron S. In Chapter 4, we will return to the concept of defining
polynomials, and see for which polynomials we can "create" spectrahedra.

Lemma 3.2.9. For a spectrahedron S ⊆ Rm, and any describing LMI, A(x) ⪰ 0,
deg(p(x)) ≤ deg(det A(x)) ≤ nA

where p(x) is the minimal defining polynomial of S, and nA is the size of A(x).

Proof. The first inequality is due to the determinant of any describing LMI also
being a defining polynomial. The second is clear, as A(x) only includes linear
terms, and the determinant is the sum of products of n terms from A(x). ■
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3.3. Faces and façades of spectrahedra

3.3 Faces and façades of spectrahedra

Faces

Recall that a face F ⊆ C of a convex set, is a subset such that whenever the
open line segment between two points x1, x2 ∈ C lies in F , the endpoints x1
and x2 also belongs to F .

Proposition 3.3.1. [RG95] Every face of a spectrahedron is also an exposed
face. In other words, the two notions coincide for spectrahedra.

For spectrahedra of higher dimension than 2, there are no complete charac-
terization of which convex sets are spectrahedra. For this reason, results like
this can be useful in deciding whether or not a given set is a spectrahedron.
An example is the set in Example 2.3.10. We saw that there are points of
the boundary which are faces, but not exposed faces. Hence the set is not a
spectrahedron and can not be represented by an LMI.

Façades

From the definition of faces of convex sets, faces include line segments, which
colloquially means they are "flat", or they are single points. The polynomial
inequalities defining a spectrahedron indicates that the boundary is mostly
curved, not flat, thus most of the boundary are single point faces. Nevertheless,
there are several interesting properties of the parts of the boundary which are
the curved analogues to faces. To describe these, we introduce the new concept
of façades. Before giving the definition, we establish some essential theory.

Given two points x, y ∈ Rm, a path between them is is a continuous function
f : [a, b] → Rm such that f(a) = x and f(b) = y. Two points are in the same
path component of S ⊆ Rm if and only if there exist a path in S between
them. It is worth noting that all convex sets in Rm are path connected, since
the convexity property defines a path and holds for all pair of points in the
convex set.

Proposition 3.3.2. The boundary of a line-free spectrahedron S is path
connected.

Proof. Let x, y ∈ ∂S. Let Hx, Hy be the supporting hyperplanes of S in x, y
respectively. First consider the case where Hx ∩ Hy ≠ ∅. As hyperplanes are
convex, they are path connected, and there is a path p from x to y in Hx ∪ Hy.
As supporting hyperplanes only intersect the convex set in boundary points,
every point on the path is either in ∂S or in Sc. Spectrahedra are closed and
convex, so the path in Hx ∪Hy projects continuously onto S with the projection
πC defined in Definition 2.4.6. The projection of the path onto S is thus a path
in ∂S form x to y.

Consider now the case where Hx ∩ Hy = ∅, i.e., the supporting hyperplanes
are parallel, moreover, we can assume as well that Hx′ ∩ Hy′ = ∅ for every x′

in the path component of x and every y′ in the path component of y′. Choose
a point x0 in the interior of S, and define the line x0 + λv such that λ ∈ R and
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3.3. Faces and façades of spectrahedra

v is a vector parallel to the the hyperplanes Hx and Hy. Then, since S is line
free, there exist a point z ∈ x0 + λv such that z ∈ ∂S. Consequently there is
a supporting hyperplane of S in z, which is not parallel to Hx and Hy, which
implies that Hz ∩ Hx ̸= ∅ and Hz ∩ Hy ≠ ∅ so we can define a path between x
and y in ∂S as in the first case. ■

Lemma 3.3.3. Let S be a full dimensional spectrahedron. Assume ∂S have
more than one path component. Then the path components of ∂S are parallel
hyperplanes, and there are exactly two path components.

Proof. Assume P1, P2 are two path components of ∂S, x1 ∈ P1, and x2 ∈ P2,
and let Hi be the supporting hyperplane of S in xi for i = 1, 2. Then
H1 is parallel to H2, for if not, we could define a path as in the proof of
Proposition 3.3.2. Since this holds for every pair of points x1 ∈ P1 and
x2 ∈ P2, the path components are parallel affine sets. The spectrahedron is full
dimensional, so the boundary is an affine set of dimension m − 1. Moreover,
since ∂S is not path connected, there exist a line in the interior of S, so S
is unbounded. Since S is closed, the boundary is also unbounded, and hence
consists of hyperplanes. ■

Faces of convex sets are contained in affine subsets of Rm and since this is a
translated linear space, there is also an orthogonal complement. By examining
several spectrahedra, it becomes apparent that they are somewhat divided in
separate curved parts, and that there is some sort of orthogonal complement
which is constant for each part. From the definition of vertices of convex set,
we see how normal cones can be used to describe such "orthogonal complement"
which motivated the use of normal cones in the definition of façades. Moreover,
faces of convex sets are defined by an open line segment, which is a type of
path. The endpoints of the open line segments are by definition always in the
face, and for façades the endpoints of every path is in the façade because the
closure of each path is included.

Definition 3.3.4. Let C be a closed convex set in a euclidean space, then an
r-façade is the closure of a path component of the set {x ∈ ∂C : dim NC(x) =
dim C − r}.

We let F r be the path component we have before taking the closure. The
set of all r-façades for all r = 1, 2, . . . , dim C − 1 are the façades of C, and if r
is unspecified or without importance we might say only façade. The 0-façades
are defined as the same points on the boundary as the vertices, and as this
is a more common term, we will use vertex/vertices. For every subset S of a
real topological space, we can define the subspace topology by letting a set be
open in the subspace topology if and only if it is the intersection of S and a
open set in the real space. Thus we can define a topology on the boundary of a
spectrahedron.

A façades is defined as the closure of some subset of ∂S, which can be open
or closed, i.e, F r is not in general open or closed for a façade F . If it is closed,
we have information about all points in the façade, however if it is open, there
are points x ∈ F \ F r which we know less about. Upon further study, we attain
the result that all these points have normal cone in S of strictly larger dimension
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than m − r, i.e., strictly larger than for the points in the path component F r.
To prove this, we need some lemmas.

Lemma 3.3.5. Let M ⊆ R3 be a closed set defined by all points (x, y, z) ∈ R3

such that y ≥ 0, and z ≥ f(x, y). The function f(x, y) is given by

f(x, y) =
{

0 x ≤ 0
a(y)x x > 0

(3.5)

Here a(y) > 0 for y > 0 and a(y) = 0 for y = 0. Then M is not convex.

Proof. Consider the points (0, 1, 0), (1, 0, 0). Then for (0, 1, 0), x = 0, and z = 0,
which is equal f(0, y), and y = 0, so the point (0, 1, 0) ∈ M . For the point
(1, 0, 0), x > 0, but y = 0, so f(x, y) = 0 · x = 0 = z. Thus (1, 0, 0) ∈ M . Now
consider the point

1
2(0, 1, 0) + 1

2(1, 0, 0) = (1
2 ,

1
2 , 0),

i.e., a point on the line segment between the two points in M . In this point
f(x, y) = f( 1

2 , 1
2 ) = a( 1

2 ) · 1
2 > 0. Since z = 0, f(x, y) > z, so this point is not

in M , and M is not convex. ■

If we expand M and consider the set M ′ = M ∪ {(x, y, z) ∈ R3 : z ≥
0 and y < 0}, the only vector in the normal cone of M ′ in (0, 0, 0) is (0, 0, z).
For all (0, y, 0) and y > 0, the normal cone of M ′ have two directions, as the line
(0, y, 0) forms a "ridge" in M . The boundary of M ′ can be modelled by using a
sheet of paper. Make a fold on one edge of the sheet, but keep the opposite side
straight. It is not an accurate representation, but it looks somewhat similar.

Lemma 3.3.6. Let C ⊆ Rm be a closed convex set. Let F be an r-façade
of C. Then for each x ∈ F \ F r, and each sequence {xn} ⊆ F r such that
limn→∞ xn = x, we have

dim NC(xn) ≤ dim NS(x).

Note that the lemma does not address the existence of an x ∈ F \ F r.

Proof. Let x be as given, and assume {xn} is contained in a small neighborhood
of x. Assume dim NS(x) > dim NS(xn) for some, and thus for all, xn in the
sequence. Then there exist two normal vectors of each point xn that converge
to one normal vector in the point x. We can choose the neighborhood to be
sufficiently small to assume linearity, and furthermore, without loss of generality,
restrict C to R3. Then two of the normal vectors of C collapsing to one in
x defines a set like M in Lemma 3.3.5. Thus C is not convex, which is a
contradiction. Hence, dim NS(xn) ≤ dim NS(x). ■

Proposition 3.3.7. Let S ⊆ Rm be a spectrahedron, and F an r-façade of S,
then for each x ∈ F \ F r,

dim NS(x) > m − r.

28



3.3. Faces and façades of spectrahedra

Proof. Spectrahedra are closed convex sets, so by Lemma 3.3.6 we know that
for each x ∈ F \ F r, dim NS(x) ≥ m − r, since dim NS(xn) = m − r for every
element of {xn} ⊆ F r by definition.

If x is in the closure of a path component of ∂S, then x is in the same path
component. This is a consequence of Lemma 3.3.3, as each path component
of ∂S is closed, and must include the closure of all open sets contained in the
path component. This implies that x is path connected to F r in ∂S.

Let {xn} ∈ F r such that limn→∞ xn = x and each xn is path connected to
xn+1 and we can define paths γn : [tn, tn+1) → F such that γn(tn) = xn and
γn(tn+1) = xn+1 for n ∈ N. Furthermore, let t0 = 0 and all tn < 1. Now we
can easily define a path γ by concatenating the paths. Then γ : [0, 1) → F , and
since {xn} → x we can let γ(1) = x. Thus x is path connected to F r in F , and
must have dim NS(x) ̸= m − r, as it is in F \ F r. ■

Though it is an abuse of topological terms, we will refer to F r as the interior
of the façade, and the points x ∈ F \ F r as the boundary points of the façade.
It is clear that it is an abuse of terms if one consider a vertex. The "interior" of
the façade is the point, and there are no "boundary" points. This is in contrast
to one-point-sets being closed in Rm with the usual topology, which is the one
we use.

Proposition 3.3.8. Let {p1, p2, . . . , pk} be the distinct irreducible factor of
the determinant of the linear pencil A(x) of a full dimensional spectrahedron
S ⊆ Rm. Then each (m − 1)-façade is contained in the set {x ∈ ∂S : pi(x) = 0}
for exactly one i. We say that this is the corresponding irreducible factor
of the façade.

Proof. Note that we can without loss of generality assume that all factors
pi(x) ≥ 0 for all x ∈ S.

Let F be an (m − 1)-façade of S, and x0 ∈ F such that x0 is in the
zero set of exactly one irreducible factor, which we denote p0. Thus we have
p0(x0) = 0, and pi(x0) > 0 for all pi ̸= p0. Let x1 ∈ {x ∈ ∂S : p0(x) ̸= 0}, so
p0(x1) > 0, and there is some other factor p∗, such that p∗(x1) = 0. Then
for each path in ∂S from x0 to x1, there is either at least one point z such
that p0(z) = p∗(z) = 0, or there are points z1, z2, . . . , zl and irreducible factors
{pi}i=1,...,l−1 of det A(x) distinct from p0, such that pi(zi) = pi−1(zi) = 0
for i = 0, 1, . . . , l and p∗(zl) = 0. First consider the case where for each
path from x0 to x1, there exist a z such that p0(z) = 0 and p∗(z) = 0. If
∇p0(z) ̸= k · ∇p∗(z), then since both gradients are contained in the normal
cone of S in z, dim NS(z) > 1, and x0, x1 are not on the same façade.

If we now assume ∇p0(z) = k · ∇p∗(z), the gradients span a one dimensional
vector space, and the normal cone is one dimensional. Define the polyno-
mial p(x) = p0(x) − p∗(x). Then, using the Taylor polynomial of degree 2,
p(x) = p(z) + (x − z)T ∇p(z) + 1

2 (x − z)T ∇2p(z)(x − z) where ∇2 is the hessian
matrix. If p0(z) = p∗(z) = 0 and ∇p0(z) = ∇p∗(z) then ∇p(z) = 0 then
p(x) = 1

2 (x − z)T ∇2p(z)(x − z). We recognize this to be a quadratic form, so
p(x) is either positive for all x in a sufficiently small neighborhood of z, or
negative for all such x. Since p = p0 − p∗, we have either that p0(x) > p∗(x) or
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p0(x) < p∗(x) for all x in a neighborhood of z. Thus if z is the only point on the
path between x0 and x1 such that both p0(x) = 0 and p∗(x) = 0, then either
p0(x0) > p∗(x0) and p0(x1) > p∗(x1) or p0(x0) < p∗(x0) and p0(x1) < p∗(x1).
Therefore, only one of p0 and p∗ can define the boundary on any path from x0
to x1, which is a contradiction.

Now consider the case where there are points z1, z2, . . . , zl and irreducible
factors {pi}i=1,...,l−1 of det A(x) distinct from p0, such that pi(zi) = pi−1(zi) = 0
for i = 0, 1, . . . , l and p∗(zl) = 0. Let p(x) =

∏l−1
i=1 pi(x). Then p(x1) = 0 and

p(x0) > 0, and p0(z1) = p(z1) = 0. Thus we can apply the argument from the
first case. This shows that if x1 ∈ ∂S with p0(x1) > 0, then x1 /∈ F , which
implies that for every x ∈ F , it holds that p0(x) = 0. ■

Example 3.3.9. Let

S =
{

(x, y) ∈ R2 :


1 x y 0 0
x 1 0 0 0
y 0 1 0 0
0 0 0

√
2

2 − x 0
0 0 0 0

√
2

2 + x

 ⪰ 0
}

Figure 3.4: The figure shows the zero set of the determinant in Example 3.3.9
and the 1-façades of the S.

We recognize the first 3 × 3 block to be the unit disc in R2, and two next
1 × 1 blocks to define the halfspaces x ≥ −

√
2

2 and x ≤
√

2
2 . The intersection

of these sets give the set in Figure 3.4, with minimal defining polynomial
p(x, y) = (1 − x2 − y2)(

√
2

2 − x)(
√

2
2 + x). From the figure it is easy to see that

all the points {(±
√

2
2 , ±

√
2

2 )} are vertices and have two-dimensional normal
cones.
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Consider now the 1-façades F1, F2, F3, F4. We see that F1 ⊂ {(x, y) ∈ R2 :√
2

2 + x = 0}, and F2 ⊂ {x ∈ R2 :
√

2
2 − x = 0}. Thus for F1, F2 they are the

unique (m − 1)-façade contained in the zero set of the respective corresponding
zero set.

F3 and F4 are are both contained in {(x, y) ∈ R2 : 1 − x2 − y2 = 0}. This
shows that even though each (m − 1)-façade is contained in the zero set of
exactly one irreducible factor of the minimal defining polynomial, the zero sets
may contain more than one (m − 1)-façade.

From Proposition 3.3.7 and Proposition 3.3.8 we can deduce some properties
of façades similar to some of the ones we have for faces of convex sets in
Proposition 2.3.13. The first property of faces in the proposition is that every
faces is contained in a supporting hyperplane, for façades this holds for a
hypersurface i.e., the zero set of some polynomial. The second property is that
faces are closed, which façades are by definition.

Corollary 3.3.10. If F1, F2 are respectively r1- and r2-façades of a spectrahedron
S, and F1 ⊆ F2, then r1 ≤ r2.

Proof. If F r1
1 ∩ F r2

2 ̸= ∅, then r1 = r2 and F r1
1 is path connected to F r2

2 so
F1 = F2. So if F1 ⊊ F2, the path components are not path connected with the
same r, and F1 ⊆ F2 \ F r2

2 . Proposition 3.3.7 implies that m − r2 < m − r1, so
r1 < r2. ■

Example 3.3.11. Consider again the elliptope given in Example 3.1.3 and
depicted in Figure 3.1. The determinant of the linear pencil is the irreducible
polynomial 1 − x2 − y2 − z2 + 2xyz, thus the whole boundary is contained in
one zero set, and defined one m − 1-façade. Nevertheless, there are 4 vertices.
So even though the intersection of m − 1-façades define smaller façades, they
can also occur without being an intersection of other façades.

Proposition 3.3.12. Let S ⊆ Rm be a full-dimensional spectrahedron, then the
intersection of k distinct (m − 1)-façades is an (m − k)-façade.

Proof. Let F1, F2, . . . , Fk be (m − 1)-façades of S. Then for each Fi there
is an irreducible factor pi of the determinant of the linear pencil of S such
that Fi is contained in the zero set of pi. Moreover, the gradient of pi is in
the normal cone of S at x for all x ∈ Fi. Then if x ∈ ∩k

i=1Fi, we have that
±∇f1(x), . . . , ±∇fk(x) ∈ NS(x), where ± refers to either + or −. Since the
façades are distinct, the irreducible polynomials are distinct. Moreover the
façades can not be parallel in x as only the "inner" zero set would be a façade
in that case. Thus all gradients are distinct, and the dim NS(x) = k. As this
holds for all x ∈ ∩k

i=1Fi, the dimension of the normal cone equals m minus the
number of intersecting m − 1-façades. ■

Example 3.3.13. Consider the spectrahedron

S = {(x, y, z) ∈ R3 :


1 x y z
x 1 x y
y x 1 x
z y x 1

 ⪰ 0}
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3.3. Faces and façades of spectrahedra

The determinant of the linear pencil is

det A(x, y, z) = (x2 + 2xy − xz − x + y2 − z − 1)(x2 − 2xy − xz + x + y2 + z − 1).

The two factors, which we denote f1(x, y, z), f2(x, y, z) are irreducible, and
define the two 2-façades of the spectrahedron. For each point on the boundary
which is only on one of these, one of the factors have a simple zero, i.e.,
fi(x, y, z) = 0 and ∇fi(x, y, z) ̸= (0, 0, 0).

Figure 3.5: The spectrahedron S, known as the Toeplitz spectrahedron. On
the "backside" of the spectrahedron, there is a line segment between the two
vertices separating the blue and orange surfaces.

The intersection of the two 2-façades form two 1-façades, where one of them is
also a face. The interior of the 1-façades are exactly the points where f1 = f2 = 0
and ∇fi(x, y, z) ̸= (0, 0, 0) for i = 1, 2. The gradients of the two irreducible
factors are ∇f1(x, y, z) = (2x + 2y − z − 1, 2x + 2y, −x − 1), ∇f2(x, y, z) =
(2x − 2y − z + 1, 2x + 2y, −x + 1). The interior of the 1-façade which is also a
face is is the open line segment (1 − 2λ, 1, 1 − 2λ) for 0 < λ < 1. We check that
it has the properties we have claimed.

f1(1 − 2λ, 1, 1 − 2λ)
= (1 − 2λ)2 + 2(1 − 2λ) − (1 − 2λ)2 − (1 − 2λ) + 12 − (1 − 2λ) − 1
= 0

f2(1 − 2λ, 1, 1 − 2λ)
= (1 − 2λ)2 − 2(1 − 2λ) − (1 − 2λ)2 + (1 − 2λ) + 12 + (1 − 2λ) − 1
= 0

∇f1(1 − 2λ, 1, 1 − 2λ)
= (2(1 − 2λ) + 2 − (1 − 2λ) − 1, 2(1 − 2λ) + 2, −(1 − 2λ) − 1)
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3.3. Faces and façades of spectrahedra

̸= (0, 0, 0)

∇f2(1 − 2λ, 1, 1 − 2λ)
= (2(1 − 2λ) − 2 − (1 − 2λ) + 1, 2(1 − 2λ) + 2, −(1 − 2λ) + 1)
̸= (0, 0, 0)

If we allow λ to be 1, then ∇f1 = (0, 0, 0), and if λ = 0, then ∇f2 = (0, 0, 0).
Thus the points (1, 1, 1), (−1, 1, −1) are zeros of both f1, f2, and a zero of one
of the gradients, i.e., they have normal cone of dimension 3, and are vertices of
the spectrahedron.

Façades are strongly related to the faces of a convex set, and for many
objects there are subsets of the boundary that are both façades and faces. For
example we will see that for polyhedra, all faces and façades coincide. For other
objects, the sets of façades and faces are disjoint. For example are all the points
on the boundary of a closed ball in Rm faces of dimension 0, but the whole
boundary is one (m − 1)-façade. So none of the faces of the ball are façades,
and the façade is not a face. Yet, there is one clear connection between the two
notions, which is the following.

Proposition 3.3.14. Let C ⊆ Rm be a closed convex set. Then every (proper)
face of C is contained in a façade of C.

Proof. Let x ∈ rint(F ) for some face F ⊆ C, and let z ∈ NC(x), i.e., in the
normal cone of C at x. Moreover, since F is a subset of C, NC(x) ⊆ NF (x).
Since x is in the relative interior of F , each point in F can be written as x + λl
where l ∈ L, the associated linear space of aff F , and λ ∈ R is sufficiently small.
Thus z ∈ NF (x) implies that

⟨z, x⟩ ≥ ⟨z, x + λl⟩
0 ≥ ⟨z, λl⟩
0 ≥ λ⟨z, l⟩

for all l ∈ aff F − x and some sufficiently small λ ∈ R. Assume for contradiction
that z ∈ L, then for each λ there exist some l ∈ L such that 0 < λ⟨z, l⟩. Thus
z ∈ L⊥, for all choices of λ. If z ∈ L⊥, then ⟨z, x − y⟩ = 0 for all x, y ∈ aff F ,
and NF (x) = L⊥. Moreover, as the inclusions of z does not depend on λ, so
Naff F (x) = L⊥.

If there exist a z ∈ NF (x)\NC(x) = L⊥\NC(x), then ⟨z, x⟩ < ⟨z, y⟩ for some
y ∈ C\F . In this case, ⟨−z, x⟩ > ⟨−z, y⟩, and consequently ⟨−λz, x⟩ ≥ ⟨−λz, y⟩
for all λ ≥ 0. Thus for each line in L⊥, there is a halfline with the same
direction in NC(x). This implies that aff Naff F (x) = aff NC(x) and the normal
cones share the same dimension. Since x ∈ rint(F ) is arbitrary, we have that
rint(F ) ⊆ {x ∈ ∂C : dim NC(x) = dim C − r}, for some r. In addition, the
relative interior of a face is path connected by the definition of relative interior.
By taking the closure, we get that the face F is included in a façade. ■

Lemma 3.3.15. A (m − 1)-façade is a face if and only if the corresponding
irreducible factor is linear. Moreover, if an (m − 1)-façade is a face, it has
dimension m − 1.
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3.3. Faces and façades of spectrahedra

Proof. Let Fi be the façade corresponding to the factor fi(x) of the det A(x),
where A(x) is the defining linear pencil of some spectrahedra S ⊆ Rm.
Assume first that Fi is a face, then there exist a hyperplane H such that
H ∩ S = Fi. Hyperplanes in Rm are given by the zero set of some
linear polynomial in m variables, for H we denote this polynomial h(x).
Then H ∩ S = {x ∈ Rm : h(x) = 0} ∩ {x ∈ S : det A(x) = 0} and
Fi ⊆ {x ∈ Rm : fi(x) = 0} ∩ {x ∈ S : det A(x) = 0}. This shows that
{x ∈ Rm : h(x) = 0} ⊆ {x ∈ Rm : fi(x) = 0}, and consequently h(x) is a factor
of fi(x), but since fi(x) is an irreducible polynomial, they are equal.

For the converse statement, let fi(x) be linear. Then Fi ⊆ {x ∈ Rm : fi(x) =
0} ∩ {x ∈ S : det A(x) = 0} which is the intersection between a hyperplane and
S, hence Fi is a face.

If Fi is a face, and a (m − 1)-façade. Recall from Lemma 2.3.5 that for an
affine set, the normal cone at any point equals the orthogonal complement of
the linear subspace of Rm corresponding to the affine space. Moreover, a proof
earlier in the section showed that for a face F of a convex set C and a point x
in the relative interior of F , dim Naff F (x) = dim NC(x). Thus

dim F = m − dim NS(x) = m − 1.

■

Corollary 3.3.16. Let S be a spectrahedron with minimal defining linear pencil
A(x). Then S is a polyhedron if and only if all irreducible factors of det A(x)
are linear.

Proof. By the the definition of polyhedra (Definition 2.7.2), S is a polyhedron if
and only if it can be written on the form S = {x ∈ Rm : A′x − b ≥ 0}, for some
matrix A′ ∈ Rn×m or S = {x ∈ Rm : l1(x) ≥ 0, l2(x) ≥ 0, . . . , ln(x) ≥ 0 where
all li are linear polynomials}. The boundary of the latter is clearly the set where
li(x) = 0 for at least one i, which is exactly when the product Πn

i=1li(x) = 0.
Consequently S is a polyhedron if and only if the minimal defining polynomial
is a product of linear factors, i.e. if and only if the irreducible factors of det A(x)
are linear. ■

The last proposition of this section is of importance to validate that façades
successfully describes the "curved faces" of a spectrahedron, as one would want
the terms to coincide when the curved parts are in fact flat.

Proposition 3.3.17. If a full dimensional spectrahedron S ⊆ Rm with defining
linear pencil A(x) is a polyhedra, then the r-façades and the faces of dimension
r coincide.

Proof. Assume S is a polyhedron of dimension n. Then the boundary of S
is the union of all faces of dimension m − 1. From Proposition 3.3.14, every
face of a spectrahedron is contained in a façade. Furthermore, when S is a
polyhedron, the corresponding irreducible factor of each (m − 1)-façade is a
linear polyonomial.

Assume now that F is a face of S with dimension m − 1. Then we first note
that F is also an exposed faces, so F = H ∩ S for some hyperplane H. We also
have that F ⊆ F ç for some façade F ç. Since the dimension of the orthogonal
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3.3. Faces and façades of spectrahedra

complement of the corresponding linear subspace of the affine hull of F is 1,
the normal cone of F is of dimension 1 for all points in the relative interior.
Thus F ç must be a (m − 1)-façade. We also now that F ç ⊆ H ′ ∩ S for some
hyperplane H ′, since the corresponding linear factor of F ç is linear, and hence
the zero set defines a hyperplane. This gives us the following

H ∩ S = F ⊆ F ç ⊆ H ′ ∩ S

But then H ′ is a supporting hyperplane of S in F , and since F is of dimension
m − 1, H = H ′, and F = F ç. Thus the (m − 1)-façades and faces of dimension
m − 1 coincide.

From Proposition 3.3.12, the intersection of k distinct (m − 1)-façades is a
(m − k)-façade. AS the gradient of linear polynomials are constant, the zero
multiplicity of a point in S, and hence the dimension of the normal cone, is
the number of linear factors with intersecting zero sets in this point. Thus
when S is a polyhedron, then every (m − k)-façade is the intersection of k
distinct (m − 1)-façades. Consider now a r-façade for r < m − 1, we denote it
G. Then G = ∩m−r

i=1 F çi where F çi are distinct (m − 1)-façades. We then have
that F = (∩m−r

i=1 Hi) ∩ S, also the points in the interior of G has normal cone of
dimension m − r, and since G is a subspace of an affine set, G has dimension r.
Furthermore, if x, y ∈ S such that the open line segments between them is in
G, then the line segment is also in ∩m−r

i=1 Hi, and hence x, y ∈ ∩m−r
i=1 Hi. AS we

choose x, y ∈ S, and S is convex, this implies x, y ∈ S ∩ (∩m−r
i=1 Hi), and G is a

face of S, which we already showed has dimension r. ■

Faces of h-spectrahedra

The faces of an h-spectrahedron correspond to the faces of the spectrahedron
in Rm it is affinely equivalent to. This can be seen by using the steps described
in Section 3.1.

Definition 3.3.18. [LV16] The smallest face of an h-spectrahedron S′ ∈ Sn

(Equation (3.2)) containing an element A ∈ S′ is a subset

FS′(A) =
{

X ∈ S′ : ker X ⊇ ker A.
}

The following example suggests that the dimension of a face of an h-
spectrahedron is the same as the dimension a corresponding face in the
corresponding spectrahedron in Rm.

Example 3.3.19. Let S′ = {X ∈ S2
+ :

〈 (
0 1
1 0

)
, X

〉
= 2}}. Then all X ∈ S′

are on the form
(

x1 1
1 x2

)
.

Let A =
(

a1 1
1 a2

)
∈ S′, then A can be row reduced to

(
1 1

a1
0 a2 − 1

a1

)
, thus

if a2 ̸= 1
a1

, A has a trivial kernel, and ker X ⊇ ker A for all X ∈ S′. So the
smallest face containing A is the trivial face which is all of the h-spectrahedron.
If however a2 = 1

a1
, the kernel of A is spanned by the vector

(
−1
a1

)
. Let X ∈ S′
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3.4. Spectrahedra in semidefinite optimization

and k ∈ R, then
X

(
−k
ka1

)
=

(
−kx1 + ka1
−k + ka1x2

)
equals

(
0
0

)
if and only if x1 = a1 and x2 = −1

a1
, which is exactly the matrix

A. This shows that A is a face. Furthermore, since the face consist of exactly
one element, it is zero dimensional, so it is an extreme point. This holds for all
elements of S′.

The corresponding spectrahedron S ⊆ R2 is the set defined by xy − 1 ≥ 0
and x ≥ 0. Thus the boundary is curved and the faces are each of the points
on the curve. Points are one dimensional, so the dimension of the faces are the
same as for S′ ⊆ S2

+.

3.4 Spectrahedra in semidefinite optimization

Spectrahedra were first defined to have a name for the feasible set of solutions
for semidefinite optimization problems. Thus is seems only fair that we give a
proper introduction to have they occur, and how their properties are utilized in
optimization.

In semidefinite optimization, there is a primal problem, and a dual problem
which are

(P ) inf
X∈Sn

⟨C, X⟩

s.t. ⟨Ai, X⟩ = bi, i = 1, . . . , m

X ⪰ 0

(D) sup
y∈Rm

bT y

s.t.
m∑

j=1
yiAi + Y = C

Y ⪰ 0

From the primal problem (P), we immediately recognize the constraints to
be a spectrahedron on the form in Definition 3.1.4. For the dual, rearrange the
constraint

m∑
j=1

yiAi + Y = C, Y ⪰ 0

Y = C −
m∑

j=1
yiAi ⪰ 0

considering that the objective function is optimizing over a variable y ∈ Rm,
this is the spectrahedron defined in Definition 3.1.1.
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3.4. Spectrahedra in semidefinite optimization

Theorem 3.4.1. [AL11] Let (P) and (D) be a primal-dual semidefinite
optimization problem as defined above. If X∗ is feasible for (P) and y∗, B∗ for
(D), then

⟨C, x⟩ ≤ bT y∗

.

Proof. We have that

bT y∗ − ⟨C, X∗⟩ =
m∑

i=1
y∗

j ⟨X∗, Ai, ⟩ − ⟨X∗, C⟩ = ⟨X∗,

m∑
i=1

y∗
i Ai − C⟩ = ⟨X∗, Y ∗⟩.

Since X∗, Y ∗ are feasible, they are positive semidefinite. The positive
semidefinite cone is self dual, so ⟨X∗, Y ∗⟩ ≥ 0, which concludes the proof. ■

Contrary to linear programming, semidefinite programming does not have
strong duality in general, i.e., the optimal value of the primal problem may
be different from the optimal value of the dual problem. If we however have a
feasible solutions to the primal and dual problem, we can easily check if the
solutions are optimal.

Lemma 3.4.2. If (X∗, Y ∗) is a feasible pair for a primal and dual SDP problem,
and

X∗Y ∗ = 0,

then (X∗, Y ∗) is optimal.

The lemma follows directly from Theorem 3.4.1, and the fact that ⟨X, Y ⟩ = 0
if and only if XY = Y X = 0.

Example 3.4.3. [BPT12] Consider the primal-dual pair

minimize αX11

subject to X22 = 0
X11 + 2X23 = 1
X ⪰ 0

maximize y2

subject to

α − y2 0 0
0 −y1 −y2
0 −y2 0

 ⪰ 0

If X22 = 0, then all elements in the same row and column must be 0 for
X to be positive semidefinite. Thus X11 = 1, and the optimal solution to the
primal problem is attained equals α. For the dual problem, y2 = 0 for all y1, y2
such that the constraint matrix is positive semidefinite. This shows that the
duality gap is equal to α for all feasible solutions, end hence for all optimal
solutions, to the primal-dual problem.

With some extra constraint qualifications, we can ensure strong duality also
for semidefinite optimization. These are extra conditions regarding the set of
feasible solution. One simple and common constraint qualification is the Slater’s
condition. For a semidefinite optimization problem, the Slater condition holds
if there exist a strictly feasible solution to the primal or/and the dual problem,
i.e., X ≻ 0 and or Y ≻ 0.
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3.4. Spectrahedra in semidefinite optimization

Theorem 3.4.4. [BPT12] Assume both the primal (P) and the dual (D) of
a positive semidefinite optimization problem are strictly feasible. Then both
problems have optimal values, and there is no duality gap.

Example 3.4.5. Consider the primal-dual semidefinite optimization problem
given by

minimize ⟨

0 α 0
α 0 0
0 0 0

 , X⟩

subject to ⟨

1 0 0
0 0 0
0 0 0

 , X⟩ = 1

⟨

0 0 0
0 1 0
0 0 0

 , X⟩ = 1

⟨

0 0 0
0 0 0
0 0 1

 , X⟩ = 1

X ⪰ 0

maximize y1 + y2 + y3

subject to

−y1 c 0
c −y2 0
0 0 −y3

 ⪰ 0

The primal problem is strictly feasible as the identity matrix is a feasible solu-
tion, and is positive definite. For the dual, consider a Y such that yi < 0 for
i = 1, 2, 3 and y2 ̸= −c2

−y1
. Then Y ≻ 0 and the dual is also strictly feasible.

Then by Theorem 3.4.4, there exist an optimal solution for both problems
which give the same value.

Semidefinite relaxation

In optimization, if one is able to express the problem as a semidefinite op-
timization problem, there are good and effective way of solving the problem.
Unfortunately, most problems can not be directly expressed as SDP problems,
but it can be approximated by one, which we say is the semidefinite relaxation
of the problem.

Linear optimization relaxations has been widely used in optimization theory
since it was introduced in the 40’s by Dantzig. However, in the last 30 years,
semidefinite relaxations have taken more over. As linear optimization is a
special case of semidefinite optimization, it is only natural that semidefinite
relaxations can create tighter bounds of optimization problems. This allow us to
approximate a wider range of problems and improve the precision and accuracy
of our solutions. Semidefinite optimization is anticipated to be applied in more
fields in near future, but we provide some examples of where it is already applied.

The elliptope, which we have seen in several examples, is a semidefinite
relaxation to the maximum cut problem. The max cut problem involves dividing
the vertices of an undirected graph into two sets to maximize the number of
edges that connect vertices from different sets. It seeks to find a partition that
cuts the most edges in the graph. There are also other graph problems, like the
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3.4. Spectrahedra in semidefinite optimization

graph coloring problem, which have semidefinite relaxations.

In [Luo+10], semidefinite relaxations to non-convex quadratically constrained
quadratic programs(QCQP). Quadratic programs have applications in finance,
agriculture, economics, production operations, marketing, and public policy. A
type of QCQP which is non homogeneous is the problem

minimize
x∈Rn

xT Cx

subject to xT Aix ⊵i bi, i = 1, . . . , m

where ⊵i represent ≥, ≤ or = for each i, C, A1, . . . Am ∈ Sn, and b1, . . . , bm ∈ R.
[Luo+10] shows that this problem has semidefinite relaxation, which is exactly
the standard form for a primal semidefinite program given in ??. A standard
semidefinite problem can be solved, in arbitrary accuracy in an efficient and
reliable way using software created to solve SDP problems. And thus give
strong bounds on the QCQP problem.

Another field where semidefinite relaxations is of importance is in control
theory. About a hundred years before the term spectrahedron was introduced,
Lyapunov showed that all trajectories of the differential equation

d

dt
x(t) = Ax(t)

converge to zero if and only if there exist a positive semidefinite matrix P such
that AT P + PA is negative definite definite.[Boy+94]

One last example of a semidefinite relaxation is from [Das+04]. Here they
define a semidefinite relaxation of a principal component analysis problem,
which is the problem of approximating a symmetric matrix by a rank one
matrix with an upper bound on the cardinality of its eigenvector. To find a
lower bound on this problem, they first formulate it as a variational problem,
and then construct a semidefinite relaxation. Efficient solvers will the provide a
lower bound. Without diving too deep in the first variational formulation, we
state the semidefinite relaxation to see an example of a semidefinite formulation
which is not on standard form.

Let A be the symmetric matrix we want to approximate with a rank one
matrix, In be the identity matrix, and 1 be a vector of all ones. Then the
semidefinite relaxation of the PCA-problem is given by

max
X∈Sn

⟨A, X⟩

s.t. ⟨In, X⟩ = 1
1T X1 ≤ k

X ⪰ 0

[Das+04] further states that the optimal value of the semidefinite relaxation
will be an upper bound of the optimal value of the first variational problem
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3.4. Spectrahedra in semidefinite optimization

formulation, which is then a lower bound to the original PCA-problem. The
optimal solution X to the semidefinite relaxation is not always of rank 1, but a
small adjustment and specific choice of eigenvector of X will give an approximate
solution to the original problem.
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CHAPTER 4

Spectrahedra in the plane

While a comprehensive characterization of spectrahedra is still under explor-
ation, the most significant result to date has been obtained by J. Wiliam
Helton and Victor Vinnikov. Their work presents a property that holds for all
spectrahedra and is as a sufficient condition for classifying some two-dimensional
set as a spectrahedron. In this chapter about spectrahedra in the plane, it is
appropriate to begin by presenting this fundamental result.

Throughout the chapter, we let S = {(x, y) ∈ R2 : A0 +xA1 +yA2 ⪰ 0}, and
A(x, y) the corresponding linear pencil. We let pI(x, y), where I ∈ P({1, . . . , n}),
denote the principal minors of A(x, y) including the intersection of the rows
and columns corresponding to the indices in I.

Before we introduce the Vinnikov-Helton-theorem, there are two necessary
concepts we need to know, algebraic interiors and real zero polynomials.

Definition 4.0.1. [HV03] A closed set C ⊆ Rm is an algebraic interior, if
there is a polynomial p in m variables such that C equals the closure of a
connected component of the set {x ∈ Rm : p(x) > 0}. We denote the algebraic
interior including x0 with defining polynomial p by Cp(x0)

From Lemma 3.2.8 we easily derive that, that all algebraic interiors C, have
a minimal defining polynomial with no repeated factors, which we denote p0.

Example 4.0.2. The set C = {(x, y) : x3 + x − y2 ≥ 0} is the closure of the
only component of {x ∈ Rm : p(x) > 0}, and hence an algebraic interior. Note
that C is a non-convex algebraic interior. ( 1

10 , 0), (3, 5) ∈ C, but there are
points on the line segment between them that are not in C. E.g., for the point
1
2 ( 1

10 , 0) + 1
2 (3, 5), x3 + x − y2 < 0.

Definition 4.0.3. [HV03] A polynomial p is real zero polynomial in x0 (RZx0)
if it satisfy the condition; for each x ∈ Rn,

p(µx + x0) = 0 implies that µ is real . (4.1)

If x0 = 0, then p is simply a real zero polynomial (RZ)

In [HV03] they refer to the polynomials that are real zeros in origo as simply
a real zero polynomial.
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Example 4.0.4. Let p : Rm → R be a linear polynomial. Then

p(µx + x0) = a0 + a1(µx1 + x0
1) + . . . + am(µxm + x0

m)
= a0 + a1x0

1 + . . . amx0
m + µ(a1x1 + . . . + amxm)

So if p(µx + x0) = 0, then since ai is real for i = 0, 1, . . . , m and xi, x0
i are real

for i = 1, 2, . . . , m, then µ must be real. Thus all linear polynomials are real
zero polynomials.

Example 4.0.5. [BPT12] The polynomial p(x, y) = 1 − (x4 + y4) is not a real
zero polynomial for any x0 ∈ R2. Consider x0 = 0. Then for every (x, y) ∈ R2,
the univariate polynomial in µ

p(µ(x, y)) = (1 − µ2(x4 + y4) 1
2 )(1 + µ2(x4 + y4) 1

2 ),

has two non-real zeros.

Theorem 4.0.6 ([HV03]). Some properties of real zero polynomials are the
following

(i) The product of RZx0 polynomials is a RZx0 polynomial

(ii) If a RZx0 polynomial p factors as p = p1p2 . . . pk, then all factors
p1, p2, . . . pk are RZx0 polynomials.

(iii) If C is an algebraic interior and p is RZx0 for x0 ∈ C, then p is RZx

for all x ∈ Co .

With these two definition established, we state the Theorem by Helton and
Vinnikov.

Theorem 4.0.7. [HV03] If a set C ⊆ Rm with x0 in the interior have an LMI
representation, then it is a convex algebraic interior, and the minimal defining
polynomial p for C satisfies the RZx0 condition, 4.1.

Conversely, when n = 2, if p is a polynomial of degree d, satisfying the
RZx0 condition, 4.1 and p(x0) > 0, then Cp(x0) has an LMI representation of
dimension d × d.

The proofs can be found in [HV03], but we will see how properties of
spectrahedra we have already described imply parts of the theorem.

The boundary of a spectrahedron is defined by the determinant of its
linear pencil, i.e. a polynomial in m variables, moreover the determinant is
non-negative on the interior. So a spectrahedron is a subset of the non-negative
set of some polynomial. Moreover, a spectrahedron is closed and convex.

For a spectrahedron, the determinant of its linear pencil is det A(x) =
det(I + A1x1 + . . . Amxm), where all Ai are symmetric. Then we can further
derive that det ( x

λ ) = det ( 1
λ (λI + A1x1 + . . . + Amxm) = 1

λm det (λI + A1x1 +
. . . + Amxm) which is the characteristic polynomial of the symmetric matrix
−A1x1 − . . .−Amxm, hence it has only real roots. Consequently the polynomial
det A(x) has only real zeros and is a RZ polynomial. This argument is from
[HV03].
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Corollary 4.0.8. Let S = {x ∈ Rm : A(x) ⪰ 0}, with A(x) a linear pencil of
size n, (be a spectrahedra with x0 in the interior). Then if the minimal defining
polynomial of S is of degree n, then A(x) ⪰ 0 is a minimal LMI of S. If m = 2,
the converse statement also holds.

Proof. First assume that the minimal defining polynomial of the set S is of
degree n. From Lemma 3.2.9 the determinant of A(x) has degree n, so it is the
minimal defining polynomial of S. Then all A′(x, y) of size n′ × n′ and n′ < n
will have det A′(x, y) of degree less than n and hence it cannot be a LMI of S.
Thus A(x, y) ⪰ 0 is the minimal LMI of S.

Now let A(x, y) ⪰ 0 be a minimal LMI of S ⊆ R2. Then det A(x, y) is a
defining polynomial of S with degree less than or equal to n. From theorem
Theorem 4.0.7 we know that the minimal defining polynomial of a spectrahedron
is a RZ, and conversely that for two variables, any RZ has an LMI representation
of the same degree. So if the minimal defining polynomial of S has a smaller
degree d than det A(x, y), there exist an LMI representation of S of size d × d
wich contradicts that A(x, y) ⪰ 0 is a minimal LMI for S. ■

As a consequence of the above results, we can define a minimal standard
form of spectrahedra in the plane. Let S ∈ R2 be a spectrahedron with non-
empty interior and det A(x, y) = f1(x, y)f2(x, y) . . . fk(x, y), where the factors
fi(x, y) are polynomials of degree ni, irreducible over R. In other words, each
fi defines a 1-façade of S. Then the spectrahedron can be expressed as

Sm =
{

(x, y) ∈ R2 : A(x, y) =


A1(x, y) 0 . . . 0

0 A2(x, y) . . . 0
...

... . . . ...
0 0 . . . Ak(x, y)


}

(4.2)

where Ai(x, y) is of size ni with
∑k

i=1 ni = n = size A(x, y) and det Ai(x, y) =
fi(x, y).

In [HV03], Theorem 4.0.7 is also presented as a geometric version through a
property called rigid convexity. They show that for an algebraic interior Cp(x0),
rigid convexity of Cp(x0) is the same as p having the real zero condition in x0.

Definition 4.0.9. An algebraic interior C ∈ Rm of degree d with minimal
defining polynomial p is rigid convex provided for every x0 ∈ C◦ and generic
line l through x0, l intersects the (affine) real algebraic hypersurface p(x) = 0
in exactly d points.

An example of a rigid convex algebraic interior is the unit ball. The minimal
defining polynomial of the unit ball in any dimension is a degree 2 polynomial,
and every line through the interior of the unit ball intersects the boundary in
two points. An example of an algebraic interior which is not rigid convex is
one defined by the polynomial x3 − 3xy2 − (x2 + y2)2. Figure 4.1 shows how a
line through (0.5, 0) only intersect the zero set of the polynomial in two points.
As the polynomial is of degree 4, it would have to intersect four points for the
algebraic interior to be rigid convex.
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4.1. Particular cases of plane spectrahedra

Figure 4.1: An algebraic interior which is not rigid convex.(Figure 6.2 in
[BPT12].

4.1 Particular cases of plane spectrahedra

We know that spectrahedra are closed and convex sets of R2, and typically they
will appear as a "rounded" polyhedra with some bounded part and possibly
including a convex cone. In this section we will have a look at some less of the
less conventional spectrahedra in the plane.

S = R2

The first case we consider is whether or not the whole plane can be a spectra-
hedron. If we let S = {(x, y) ∈ R2 : A0 ⪰ 0} we clearly get S = R2 for any
positive semidefinite matrix A0. In this case, all points of the spectrahedron
are interior points, or all points are boundary points, only depending on the
rank of A0. This is because a positive semidefinite matrix A is positive definite
if and only if det A ̸= 0.

For any S = {(x, y) ∈ R2 : A0 + xA1 + yA2 ⪰ 0} with either A1 ̸= 0 or
A2 ̸= 0, S ⊊ R2. Each diagonal element of A(x, y) is a linear polynomial,
and if the coefficient of x or y is non-zero in at least one diagonal element,
then it can be both greater than and less than zero, and hence the spec-
trahedra is not equal to R2. If all diagonal elements are constant, there
has to be elements off the diagonal with non-zero coefficient for either x or
y. Then every element off the diagonal is included in the principal minor
PMij = (A(x, y))ii(A(x, y))jj − (A(x, y))2

ij . The polynomial (A(x, y))2
i,j for a

non-constant linear polynomial (A(x, y))i,j , is positive and unbounded, so the
principal minor PMij < 0 for some (x, y) ∈ R2, and S ̸= R2.

S = ∅
On the contrary, we have the case of an empty spectrahedron, S = ∅. It is easy
to create examples of empty spectrahedra, but in general it is challenging to
find algorithms deciding whether a given spectrahedra is in fact non-empty. As
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4.1. Particular cases of plane spectrahedra

a spectrahedron is the feasible solutions to a semidefinite program, deciding
whether it is non-empty, coincide with deciding feasibility of a semidefinite
program. In literature, this problem is thus referred to as the semidefinite
feasibility problem.

Two examples of empty spectrahedra are the following

S1 =
{

(x, y) ∈ R2 :

x + y − 1 0 0
0 −x − y − 1 0
0 0 −x + y

 ⪰ 0
}

S2 =
{

(x, y) ∈ R2 :
(

−x − y − 1 x + y
x + y 1

)
⪰ 0

}

For S1, the sets such that the 1 × 1 principal minors are positive are not
intersecting, hence S1 = ∅. For S2 determinant of the linear pencil in S2 is
always negative.

S◦ = ∅
We have seen in the earlier chapters that spectrahedra have empty interior if and
only if they are not full dimensional. This means that in R2, the spectrahedra
with empty interior are the spectrahedra that consist of one single point,a line
segment, a halfline or a line. As the interior is empty, the determinant of the
defining linear pencil will be zero on all of S. If S = {x}, then there are no
restrictions on the size of the blocks in the standard minimal form of the linear
pencil. The zero sets of the irreducible factors must intersect in one point,
and this can be done with both linear irreducible factors and higher degree
irreducible factors. If the spectrahedron on the other hand is a line segment,
halfline or line, the determinant can only have linear factors, as the determinant
defines the boundary.

S3 =
{

(x, y) ∈ R2 :


1 + x y 0 0

y 1 − x 0 0
0 0 1 + x y − 2
0 0 y − 2 1 − x

 ⪰ 0
}

S4 =
{

(x, y) ∈ R2 :

x 0 0
0 −x 0
0 0 y

 ⪰ 0
}

S3 defines two circles intersecting in the point (0, 1), where all principal
minors are greater or equal to zero for both circles. This shows that we can
define a one-point-spectrahedron where the determinant of tA(x, y) has only
higher degree irreducible factors. In S4, the determinant is greater or equal to
zero, if and only if x = 0, so the determinant defines the y-axis. In addition,
y is a principal minor, thus the spectrahedron is the halfline defined by the
non-negative part of the y-axis.
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4.2. Number of vertices

4.2 Number of vertices

The boundary of a plane spectrahedron is in algebraic geometry referred to as
a plane algebraic curve. Plane algebraic curves are widely studied, and many
of the results of them are also relevant in the study of spectrahedra and for
applications in SDP.

The vertices of a plane spectrahedra are singular points in the subset of a
plane algebraic curve that is the boundary of the spectrahedron. The singular
points of a plane curve are the points where the curve has higher multiplicity
than one, or in other words, it is a point where the curve fails to have a well
defined tangent line. This subsection is based on results from [Kun05].

Lemma 4.2.1. The vertices of a plane spectrahedra are singular points of the
zero set of its minimal defining polynomial.

Proof. For any vertex (x0, y0) of a spectrahedron S ⊆ R2, the normal cone of S
in (x0, y0) has dimension 2. A tangent line is perpendicular to a vector in the
normal cone. Consequently, the tangent line of S in a vertex is not well defined,
and is a singular point. ■

The lemmas 4.2.2,4.2.4, 4.2.5 and4.2.6 follow directly from the result in
[Kun05] they are referring to. In the reference text, the results are given
as number of singular points on plane algebraic curves over an algebraically
closed field. I.e., a field such that each univariate polynomial with coeffi-
cients in the given field have at least one root in that field. As this is not the
case for R, the singular points of an algebraic curve over R may all be outside R2.

As each vertex of a spectrahedron is a singular point of the curve defined
by the determinant of its defining linear pencil, the number of vertices are
less than or equal to the bounds in the lemmas underneath. Moreover, two
curves may have more intersection points than the ones that are vertices of
the spectrahedra they define. For example if one curve is a hyperbola and
the other is a line intersection both components of the hyperbola. Then as a
spectrahedron is a connected convex component, only one component of the
hyperbola define the boundary of the spectrahedron, and thus only one of the
intersections with the line is a vertex.

The first result is a weak form of the famous "Bézout’s theorem".

Lemma 4.2.2 ([Kun05], corollary 3.10). Let f(x, y) and g(x, y) be polynomials
of degree n and m with no factors in common. Then the zero sets {(x, y) ∈ R2 :
f(x, y) = 0} and {(x, y) ∈ R2 : g(x, y) = 0} intersect in at most m · n points in
R2.

Corollary 4.2.3. Let f(x, y) = f1(x, y) · f2(x, y) · . . . · fk(x, y) be a polynomial.
If the degree of each factor fi(x, y) is ni and

∑k
i=1 ni = n, then there are at

most

n1(n − n1) + n2(n − n1 − n2) + . . . + nk−1(n − n1 − n2 − . . . − nk−1)

points where the zero set of two or more factors intersect.
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4.2. Number of vertices

Proof. Each pair of factors fi, fj are polynomials as described in 4.2.2. Thus
fi, fj intersect in at most ninj points. Summing over all pairs of factor we get

n1(n2 + n3 + . . . + nk) + n2(n3 + n4 + . . . + nk) + . . . + nk−1nk

=n1(n − n1) + n2(n − n1 − n2) + . . . + nk−1(n − n1 − n2 − . . . − nk−1)

■

Lemma 4.2.4. [[Kun05], corollary 7.10] Let Z = {(x, y) ∈ R2 : f(x, y) =
f1(x, y) ·f2(x, y) · . . . ·fk(x, y) = 0} where all fi(x, y) are irreducible and distinct.
Then Z has at most n(n−1)

2 singular points. Equality holds if and only if all
factors fi are linear and non-parallel, i.e., if all façades are faces.

The lemma is based on [Kun05], but the text does not provide a proof for
the last statement on when equality holds.

proof of equality. It follows from the Corollary 4.2.3 that if ni = 1 for all
i = 1, 2, . . . , k, and no factors define parallel lines, then all intersections of the
curves are in the real plane, and we get

1 · (n − 1) + 1 · (n − 2) + . . . + 1 · 1 = n(n − 1)
2

intersections of factors.
Without loss of generality, asssume n1 ≥ n2 ≥ . . . ≥ nk. If n1 > 1 and

ni = 1 for i = 1, 2, . . . , k = n − n1, then

n1(n − n1) + . . . + nk−1(n − n1 − n2 − . . . − nk−1)
=n1(n − n1) + 1 · (n − n1 − 1) + 1 · (n − n1 − 2) + . . . 1 · (n − n1 − (k − 2))

=n1(n − n1) + (n − n1 − 1 + n − n1 − (k − 2))
2 · (k − 2)

=2n1(n − n1) + (2n − 2n1 − 1 − (n − n1 − 2)) · (n − n1 − 2)
2

=2n1(n − n1) + (n − n1 + 1) · (n − n1 − 2)
2 ·

=n2 − n − (n2
1 − n1 + 2)

2

<
n(n − 1)

2

The last inequality holds as (n2
1 − n1 + 2) > 0 for all n1. Thus if a factor is of

higher degree than 1, then we do not attain the maximum. Now we can do
the same for the remaining linear factors, which will for each factor we change,
create a smaller number of intersections. ■

Lemma 4.2.5. [[Kun05], corollary 7.17] Let Z = {(x, y) ∈ R2 : f(x, y) =
0, f is irreducible}. Then there are at most (n−1)(n−2)

2 singular points.

Lemma 4.2.6. [[Kun05], corollary 6.7] Let S ⊆ R2 be a non-empty spectrahedron
with minimal defining linear pencil A(x, y). If S has no vertices, then det A(x, y)
is an irreducible polynomial, and S has only one façade.
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4.2. Number of vertices

Proof. Suppose det A(x, y) has two factors f1(x, y), f2(x, y). If the zero set of
the factors do not intersect, then only one of the factors define the boundary
of S, which contradicts A(x, y) being a minimal defining linear pencil. If the
zero sets of the factors do intersect in S, it will be a vertex of S which is a
contradiction. ■

Lemma 4.2.7. Let S ⊆ R2 be a spectrahedron with minimal defining linear
pencil A(x, y). Then for each linear factor l(x, y) of det A(x, y) the set
{(x, y) ∈ R2 : l(x, y) = 0} ∩ S contains at most two vertices.

Proof. Assume v1, v2, v3 ∈ {(x, y) ∈ R2 : l(x, y) = 0} ∩ S are vertices of the
spectrahedron S. As they are all in the zero set of the same linear factor, we can
assume v2 is on the line segment between v1 and v3. If both (1 − λ)v1 + λv2 for
λ ∈ [0, 1] and (1 − γ)v2 + γv3 for γ ∈ [0, 1] are in S, then v2 is not an extreme
point, and hence not a vertex, which is a contradiction. If on the other hand, at
least one of the described line segments are in S, S can not be convex, which
is also a contradiction. Thus the zero set of a linear factor contains at most 2
vertices of a spectrahedron in R2. ■

Consider a polyhedra defined by a diagonal minimal defining linear pencil
A(x, y) of size n. We know that det A(x, y) is a product of n unique linear
polynomials. By Lemma 4.2.4, the polyhedra may have n(n−1)

2 vertices.
However, for linear factors, every vertex belongs to at least two zero sets,
and since we have a minimal description, exactly two zero sets. From this we
deduce the following corollary.

Corollary 4.2.8. Any polyhedra P ⊆ R2 has at most n vertices.

Another corollary is based on the number of vertices, and then deciding
polyhedrality from that.

Corollary 4.2.9. If a non-empty spectrahedron S ⊆ R2 with minimal defining
pencil A(x, y) of size n has n(n−1)

2 vertices, then it is a polyhedron. Moreover,
size n ≤ 3.

Proof. In Lemma 4.2.4 we saw that the maximum number of singular points is
n(n−1)

2 and is attained if and only if all factors are linear. From Corollary 3.3.16,
a spectrahedron is a polyhedron if and only if all factors of the determinant are
linear. Thus any spectrahedron with n(n−1)

2 vertices is a polyhedron. Moreover,
since a polyhedron has at most n vertices, and n(n−1)

2 ≤ n if and only if n ≤ 3,
the second statement holds. ■

Example 4.2.10. Consider a spectrahdron with defining linear pen-
cil of size n = 4. Then the possible degrees of the factors are
{1, 1, 1, 1}, {1, 1, 2}, {2, 2}, {3, 1}, {4}. By Lemma 4.2.2, the possible number
of intersections between the curves defined by the zero set of the factors are
respectively 10, 5, 4, 3 and 0, assuming each factor defines a non-singular curve.
However, for factors of degrees {1, 1, 1, 1}, all factors are linear so the maximum
number of vertices for this factorization of a size n = 4 spectrahedron only gives
4 vertices. Also for {1, 1, 2} , each linear factor can only contain 2 vertices, so
there is is a maximum of 4 vertices. For {3,1}, the linear factor can at most
contain 2 vertices, but the third degree factor may have a singular point, so the
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4.2. Number of vertices

maximum number of vertices is 3. If the determinant is irreducible of degree 4,
the only vertices that can exist are the at most 3 singular points.

Example 4.2.11. An example of a spectrahedron with irreducible determinant
of the linear pencil where the maximum number of vertices is attained is the
spectrahedron

S

{
(x, y) ∈ R2 :

1 x 0
x −x y
0 y −x

 ⪰ 0
}

The determinant of the linear pencil is x2 + x3 − y2 and defines the curve in
Figure 4.2. As we see, (0, 0) is a singular point. The linear pencil is of size

Figure 4.2: The curve x2 + x3 − y2 = 0

n = 3, and the determiant is an irreducible polynomial, thus from Lemma 4.2.5,
there are at most 1 singular points, which we have. Thus the spectrahedron
attain the maximal number of vertices.

Even though the results from [Kun05] can give useful upper bounds on the
number of vertices of some spectrahedra, they apply to general curves, and
will in general not give sharp bundaries. The characterization by Helton and
Vinnikov in [HV03] can in some cases offer a tighter upper bound. A geometric
interpretation of Theorem 4.0.7 provides a description of the zero set of linear
pencils as nested "ovaloids".

For a technical definition of the terms "ovaloid" and "pseudo-hyperplane"
see [HV03]. In this paper we will only be interested in the ovaloids in R2, or
ovals. These are smooth closed curves, i.e., curves with no endpoint, which
completely encloses a convex area. We refer to the enclosed area as the interior
of the oval, and the complement as the exterior. A pseudo-hyperplane in R2

is an unbounded curve.
The "standard example" of an oval is the set {(x, y) ∈ R2 : x2s + y2t − 1 = 0.
Note that this is not a spectrahedra as any line

Theorem 4.2.12. [HV03] Let S ⊂ R2 be a spectrahedron with minimal defining
linear pencil A(x, y) of size n and (x0, y0) ∈ S◦. Then for each irreducible
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smooth (i.e., non-singular) factor pi(x, y) of det A(x, y) with degree ni, the
following holds

(i) If ni = 2k even, then {(x, y) :∈ R2 : pi(x, y) = 0} consist of k disjoint
ovals W1, . . . , Wk such that Wi is contained in Wi+1 for i = 1, . . . , k − 1, and
(x0, y0) is in the interior of W1.

(ii) If ni = 2k + 1 is odd, then {(x, y) :∈ R2 : pi(x, y) = 0} consist of k
disjoint ovals W1, . . . , Wk such that Wi is contained in Wi+1 for i = 1, . . . , k −1,
and (x0, y0) is in the interior of W1, and a pseudo-hyperplane Wk+1 is in the
exterior of Wk.

Instead of expressing the number of ovals by k, when n = {2k + 1, 2k}, we
can use the floor function on the fraction n

2 . Then if n is odd, ⌊ n
2 ⌋ = n−1

2
and if n is even ⌊ n

2 ⌋ = n
2 , which is the same as k in both cases in Theorem 4.2.12.

[HV03] further suggests that whenever det A(x, y) is not smooth, i.e. has at
least one singular point, then the zero set is still a collection of nested ovals,
but they touch in said singular point.

Example 4.2.13. An example of a spectrahedron where Theorem 4.2.12 can
come in handy for deciding the number of vertices of a spectrahedron is if

S =
{

(x, y) ∈ R2 :
(

A1(x, y) 0
0 A2(x, y)

)
⪰ 0

}
where A1(x, y) is of size 10 and defines a smooth curve, and A2 is of size 2, and
defines an unbounded curve. Then by Corollary 4.2.3, there are at most 20
vertices. However, based on Theorem 4.2.12, det A1(x, y) defines 5 nested ovals,
where the innermost is the spectrahedron. Then for every unbounded curve
intersecting the inner oval, it also intersects the outer ovals. Furthermore, the
curve has at least two intersections with each oval, as it is unbounded. Thus
there are 10 intersections of the irreducible zero sets, but only 2 are vertices
of the spectrahedron. If the degree two curve is e.g., a hyperbola and both
component intersect the innermost oval, all 20 intersections are in the real
plane, and only 4 of them are vertices of the spectrahedron. Figure 4.3 is an
illustration of how such spectrahedra may appear.

Figure 4.3: 5 nested ovals and a hyperbola, with both components intersecting
the innermost oval.
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4.3. Rank of spectrahedra

The ovals are all of course convex, but can have different curvature, thus
it is not trivial to present a general number of vertices given the degree of the
irreducible factors of the determinant of the linear pencil. Still, as we see in the
above example, knowing what the determinant of linear pencils "look like" in
the plane, can be a tool for deciding the vertices of a spectrahedron.

4.3 Rank of spectrahedra

For a spectrahedron, the rank of a defining linear pencil will vary between the
points in the spectrahedron. We know that for the interior points, A(x) ≻ 0,
hence rk A(x, y) = n. For the points on the boundary, we will see that the rank
of the linear pencil can be everything from 0 to n − 1. It is well known that for
any square matrix A of size n

rk A + nl A = n.

Proposition 3.2.4 shows that the nullity of a linear pencil A(x, y) at a point
(x0, y0) equals the root multiplicity of det A(x, y) in (x0, y0). Thus we can
decide the rank of the linear pencil at different points in the spectrahedron
simply by examining the determinant.

Lemma 4.3.1. Let S ⊆ R2 be a spectrahedron with defining linear pencil A(x, y)
of size n. Then rk A(x, y) = 0 for some point in S, if and only if all elements
of A(x, y) intersect in one point (x0, y0). Furthermore, if A(x, y) is minimal,
then n = 2.

Proof. Any matrix has rank 0 if and only if it is the zero matrix. Thus the
linear pencil has rank 0 in (x0, y0) if and only if all elements are zero, which is
if and only if all the lines defined by the zero set of each factor intersect in the
point. Furthermore, if A(x, y) is minimal, then all vertices belong to exactly
two zero sets, hence there can only be 2 (linear) factors of the determinant, and
n = 2. ■

Lemma 4.3.2. Let A be a block diagonal symmetric matrix with k blocks, i.e.,
on the form

A =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ak

 (4.3)

where each Ai is a symmetric matrix of size ni, and
∑k

i=1 ni = n = sizeA.
Then rk A =

∑k
i=1 rk Ai.

Proof. Let A be a block matrix as presented in the lemma. Then each block
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Ai = UT
i DiUi and
A1 0 . . . 0
0 A2 . . . 0
...

... . . . ...
0 0 . . . Ak



=


UT

1 D1U1 0 . . . 0
0 UT

2 D2U2 . . . 0
...

... . . . ...
0 0 . . . UT

k DkUk



=


U1 0 . . . 0
0 U2 . . . 0
...

... . . . ...
0 0 . . . Uk


T 

D1 0 . . . 0
0 D2 . . . 0
...

... . . . ...
0 0 . . . Dk




U1 0 . . . 0
0 U2 . . . 0
...

... . . . ...
0 0 . . . Uk


Then the number of diagonal elements equal to zero in the block matrix including
all Di is equal the sum of eigenvalues equal to zero for each Di. It follows that

rk A = n − nl A

=
k∑

i=1
ni −

k∑
i=1

nl Ai

=
k∑

i=1
(ni − nl Ai)

=
k∑

i=1
rk Ai.

■

Since each spectrahedron S ⊆ R2 has a minimal description on the form
Equation (4.2), the rank of each point in the spectrahedra can be determined
by finding which rank it has in each block of the linear pencil on standard form.
Thus we can examine the rank of the linear pencil in a point, by breaking it
up in smaller parts, in particular, the parts connected to the façades of the
spectrahedron.

The following two theorems are based on the assumption that Helton and
Vinnikov’s claim on the character of irreducible singular determinants of linear
pencils holds. They claim that it is "intuitive" that also singular determinants
of linear pencils consist of ⌊ n

2 ⌋ nested ovals and an additional pseudohyperplane
if the degree is odd. The difference is that two or more ovals and possibly the
pseudohyperplane touch in singular points. They don’t give a proof, and if it is
not the case, the theorems does not hold. To support the claim, we will give an
explanation of the intuition.

Let S be a spectrahedron with a minimal defining linear pencil with
an irreducible singular determinant. Then for a singular point with higher
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multiplicity than 2, the curve must "circle back" to the singular point, which
calls for an extra two degrees of the determinant. We have seen in Figure 4.1
that when a curve create non-nested ovals, there are lines through the interior
which does not intersect the other ovals, so this cannot be the case for our curve
which defines the boundary of a spectrahedron. Consequently the ovals need
to be nested. If the degree of the determinant is odd, there are also directions
where the curve is unbounded, thus we get a pseudohyperplane.

Theorem 4.3.3. Let S ∈ R2 be a spectrahedron with non-empty interior, and
minimal defining linear pencil A(x, y) of size n such that det A(x, y) is an
irreducible polynomial over R. Then if det A(x, y) is non-singular

rk A(x, y) = n − 1

And if det A(x, y) is a singular curve

rk A(x, y) ≥
⌊n

2

⌋
for all (x, y) ∈ S

Proof. Assume first that det A(x, y) is non-singular, then S has no vertices, and
all points on the boundary have a well defined tangent line. Since det A(x, y)
is a polynomial, this implies that the gradient is non-zero, and rk A(x, y) = n−1.

Assume now that det A(x, y) is singular, and let (x0, y0) be a singular
point which is also a vertex, i.e., a singular point on the innermost ovals.
Let l be a line including one point from the interior of S, which is thus
the interior of the inner oval and the point (x0, y0), such that l does not
intersect any other singular points of the curve det A(x, y) = 0. Such line
exists as there are finitely many singular points on the boundary, and since
S is convex, infinitely many lines through the interior of S and the point (x0, y0).

By Theorem 4.0.7, or more precisely, the geometric version, the line must
intersect the zero set of det A(x, y) in n points, counting with multiplicity. There
are ⌊ n

2 ⌋ ovals, and the halfline from the interior of S which does not intersect
any singular points, must intersect all the ovals. Thus this halfline intersect
det A(x, y) = 0 in ⌊ n

2 ⌋ points. Since the singular point can be a point where
all the ovals and the pseudohyperplane intersect, the multiplicity is at most
n − ⌊ n

2 ⌋ = ⌈ sn
2 ⌉. Then the nullity in the singular point is nl A(x0, y0) ≤ ⌈ n

2 ⌉
and rk A(x0, y0) = n − nl A(x0, y0) ≥ ⌊ n

2 ⌋ ■

Now we can deduce that for any minimal description, where each irreducible
factor can have singularities or not, we have the following bounds for the rank
of the linear pencil.

Theorem 4.3.4. Let S ∈ R2 be a spectrahedron with non-empty interior and
minimal defining linear pencil A(x, y) of size n. The factorisation of det A(x, y)
in irreducible factors is p1(x, y) · p2(x, y) · . . . · pk(x, y). For each (x, y) in ∂S,
we have ⌊n

2

⌋
− (k − 1) ≤ rk A(x, y) ≤ n − 1 (4.4)
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Proof. From Lemma 4.3.2 rk A(x, y) = rk A1(x, y)+rk A2(x, y)+. . .+rk Ak(x, y)
where for all submatrices Ai, the assumptions from Theorem 4.3.3 holds. Thus
rk A(x, y) ≥

⌊
n1
2

⌋
+

⌊
n2
2

⌋
+. . .+

⌊
nk

2

⌋
. Furthermore, ⌊r1⌋+⌊r2⌋ ≤ ⌊r1+r2⌋+1 for

any two r1, r2 ∈ R. By induction on this inequality,
⌊

n1
2

⌋
+

⌊
n2
2

⌋
+ . . .+

⌊
nk

2

⌋
≥⌊

n1+n2+...+nk

2

⌋
− (k − 1) =

⌊
n
2

⌋
− (k − 1). Thus the left inequality holds.

The right inequality is because all boundary points are in the zero set of the
det A(x, y), and hence the nullspace of A(x, y) is non-trivial in all boundary
points. Then rk A(x, y) = n − null A(x, y) ≤ n − 1. ■

As vertices are of extra importance, we provide the following result on the
rank of vertices of spectrahedra.

Proposition 4.3.5. Let S ∈ R2 be a spectrahedron then rk A(x, y) ≤ n − 2 for
all vertices.

Proof. A vertex (x0, y0) ∈ S has dim NS(x0, y0) = 2, and so the tangent line is
not defined in (x0, y0). Sine det A(x, y) is a polynomial, the tangent line is not
defined if and only if ∇ det A(x0, y0) = 0, which is when the determinant has a
multiple zero in the point. Then from Proposition 3.2.4, nl A(x0, y0) ≥ 2, and
rk A(x0, y0) ≤ n − 2. ■

Low rank points

For some spectrahedra, there are low rank points which are not vertices. If
the describing linear pencil is not minimal, there can be repeated factors of
the determinant of the linear pencil, or factors that do not define any parts
of the boundary of the spectrahedron. However, also for minimal description
representation there can be low rank points which are not vertices.

Figure 4.4: V1, V2, V3, V4 are all vertices where rk A(x, y) = n − 2 = 4. The
point N is not a vertex, but rk A(x, y) = 3
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4.3. Rank of spectrahedra

Example 4.3.6. Let S ⊆ R2 be the spectrahedron depicted in Figure 4.4 defined
by

S =
{

(x, y) ∈ R2 :


y + 1 2x 0 0 0 0

2x 1 0 0 0 0
0 0 1 + y x 0 0
0 0 x 1 − y 0 0
0 0 0 0 1 + 8

9 y − 1
9

√
2x

0 0 0 0
√

2x 1 − 8
9 y − 1

9

 ⪰ 0
}

At the point N = (0, −1), each block of the matrix have rank 1, so the linear
pencil have rank 3. Furthermore, each block have a determinant with gradient
either on the form (k · x, 1) or (k · x, c · y), for some k, c ∈ R. Thus in N , all
gradients have the same direction, (0, −1), so the normal cone is of dimension
1, and N is not a vertex.

For further studies, it could be interesting to take a closer look at what
happens to the non-vertex low rank points under small perturbation of the
linear pencil. Consider for example the point N in Figure 4.4. Shifting the
inner curve, lets denote it f0, slightly downwards. Then the zero provided in N
by f0 will split into two new vertices, and the rank in N will increase by one.
Thus the perturbed spectrahedron has a different number of vertices, and a
strictly higher rank for all points on the boundary. In applications, this can
make a difference, considering it is often of interest to minimize or maximize the
rank, or finding the value of an objective function in the vertices. This is just
one example of a perturbation of a spectrahedron, and it would be interesting
to dive deeper into what we can achieve by perturbing the linear pencils of
spectrahedra.
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