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Abstract
In this project we analysed the functional role of directed simplicial structures in bi-

ological neural networks. This was inspired by previous work analysing the correlations
in the activity in such networks, but a novel approach was here taken, emphasising the
causal structure and dependencies in the dynamics of the networks. The motivation
for such an approach was the belief that such a causal description more strongly re-
flect the underlying causal mechanisms of the systems, such that detecting these are
more conducive to a complete understanding of the system at multiple levels. The
datasets considered were computationally generated neural activity in a variety of net-
works with different simplicial structures. It was then tested whether the low-level
functions considered were dependent on the size and completeness of the directed sim-
plices. Additionally, we investigated whether the simplicies formed coherent functional
groups with regard to the metrics chosen. As well as testing for specific functions, a
model-independent approach was also tested, where we attempted to train machine
learning models to predict the simplicial structures of the networks from their activity.

From the results obtained, we were unable to attribute any functional properties
to the simplicial structures, so the question of whether these structures serve any clear
functional role remains unanswered. Further, we found a very high within-group vari-
ance with respect to the different functions considered, indicating that grouping the
simplices together based on their size and completeness is not informative of the func-
tional properties of the activity in these networks. This led to a more critical discussion
regarding the methodological approach taken in this project, as well as the pursuitwor-
thiness of such simplicial structures in future neuroscientific research.
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1 Introduction
With its approximately 86 billion neurons, the human brain remains one of the least under-
stood systems of modern science. Much progress has been made in the reductionist program,
such that we largely understand the dynamics of individual neurons and their interactions.
However, we are still very far from any understanding of how the network structures and
activity of these neurons give rise to the complex behaviour of humans and other animals.
In recent decades, an increasingly popular and fruitful approach in neuroscience has been to
study the brain in terms of the organisation and function of brain networks. Analysing the
networks of the brain at different scales and using different measures, this has led to new
methods for diagnosis of neural diseases [55], better understanding of cognitive features [37]
as well as new conceptual frameworks for understanding both low-level dynamics and cog-
nition [53]. This subdiscipline of neuroscience is what has become known as connectomics,
under which category this project falls.

The networks of the brain can be analysed at different levels, but in the current project,
the emphasis has been on networks at the level of individual neurons and synapses. The
overarching motivation has here been to explain the functionality of these structures. A
necessary question is thus what such an explanation would involve.

In the past, many of our theories of scientific explanations have been based on physics
as the “model science”, and have consequently assumed a rather reductionist view of na-
ture. This assumption might well hold in physics, but does not necessarily generalise to
other disciplines, such as biology. In response to this, neuroscientist David Marr presented
a more suitable framework for describing what constitutes understanding of complex and
hierarchical biological systems. He argued that a full understanding of biological systems
requires understanding at three different levels: the computational, the algorithmic and the
implementational [36]. The computational level concerns the purpose of the computation,
i.e. the problem it is trying to solve. The algorithmic level describes the algorithm used
to solve the problem. Here, the states of the system are seen as representational of differ-
ent informational states, and the algorithm describes the information processing in terms of
input and output. Finally, the implementational level describes how these algorithms are
instantiated physically in the system. Each level is thus the realisation of the preceding one.
Further, in complex and hierarchical systems, such as the brain, these three levels can in turn
exist at different levels of description, such that what constitutes the holistic computation at
one level might also be the smallest element of the implementation at the level above. Marr
argued that a problem in much of neuroscience was that many scientists operated at only
one of the levels, without regard for the other two. This gives an incomplete description,
insufficient for providing a holistic understanding of the system, which requires all three.

A much discussed problem in neuroscience today is that we are in a situation where
observational “big-data” is abundant, yet the organising principles required to interpret this
data in meaningful ways and thereby turning it into understanding are still lacking. A
common approach in the field is to look for correlations in the data at different levels of
description. However, as will be argued in later sections, there is much to be said against
the explanatory potential of mere descriptive accounts of correlations, since these do not
necessarily reflect any underlying causal structure of the systems. Most importantly, whereas
causal relations are believed to reflect the objective ontological structure of the system,
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descriptions of correlations are epistemic in that they only reflect patterns in the emergent
activity, rather than the underlying mechanisms constraining said activity. This is one
motivation for a turn towards causal explanations in neuroscience, as the current project is
an example of.

Given this focus on causality, it is reasonable that the structure of choice should be one
which has the potential to be treated as causal units. The set of network structures inves-
tigated here are so-called directed simplices of different sizes. These are all-to-all connected
cliques of neurons with a single source and a single sink, such that the flow of activity through
the structure is uni-directional. This is a network structure which has only very recently
been shown any interest in neuroscience, such as in [47] and [21], where they hypothesise
that simplicial structures in the functional and structural connectivity of the brain might
be related to certain higher-level cognitive functions. As per usual, both of these studies
focused on correlations in the activity of the networks, and to the best of our knowledge,
this project constitutes the first attempt to study the emergent functionality of simplicial
structures using the framework of causal inference.

The datasets analysed were generated computationally, using a simulator of neural ac-
tivity based on a generalised linear model, and the aim was to study the dependency of the
resulting activity on the simplicial network structures. The main benefits of using simulated
data is that all information about the system is available at all times, and it is possible to
include interventions, thereby facilitating the identification of causal dependencies between
the components of the networks. In terms of Marr’s explanatory levels, one can consider the
set of network structures and the neuronal dynamics between them as the implementational
level, which was given in our case. The aim of this project was to connect these descriptions
with their corresponding algorithms, which would describe the flow of information in the
systems. In other words, the goal was to find the functional role of a certain set of network
structures at the circuit level. The overarching goal would of course be to further connect
this level of analysis with the computational description, but this would require an under-
standing of the purpose of the algorithms, which would in turn require knowledge of how
the higher-level cognitive functions supervene on the low-level circuit functions here studied.
Unfortunately, these bridge principles are as yet unknown. Thus, we were limited to looking
at the neural dynamics at the level of neurons and their activity, and the best we could hope
for was to find some lower-level functional properties which might plausibly be connected
with higher-level cognitive functions, and which might thereby serve as proxies for these.
The choice of low-level features and metrics will be discussed in detail in later sections.

Finally, inspired by recent successes in applying machine learning models to datasets to
discover unknown functional mappings, most notably AlphaFold [16], a similar approach
was attempted here. It was tested whether a graph neural network, which had successfully
been employed for causal inference on the same datasets, was able to discern some functional
features of the network activity and thereby reconstruct the simplicial structure from this.
However, the main emphasis was on the analysis of the simplices’ functional role, for, to
quote Krishna Shenoy: “[w]hile it is tempting to [...] treat this unique neural dataset as
just another “big data” dataset and unleash somewhat generic machine learning algorithms
on it, [this] would likely limit the full extent of insights that are believed to be possible”
[59, p. 88]. More specifically, a positive result with such a method would simply be an
indication that some function exists, though we would be none the wiser as to what it is.

2



Thus, since the primary aim of this project was to gain further understanding rather than
just accurate predictions, the main emphasis has been on trying to establish the functional
role of simplicial structures in biological neural networks.

1.1 Research Questions

The main research questions in this project were as follows

• Do directed simplices in biological neural networks of different sizes form meaningful
functional groups as well as structural groups?

• Are larger directed simplices more functionally significant than smaller ones?

• Can directed simplices meaningfully be treated as causal units in the networks, and do
their causal significance increase with simplex size?

1.2 Outline of Thesis

In section 2, an overview of the theoretical background from the different related fields is
presented. The datasets and the main statistical methods used are also presented here. In
section 3, we present a more detailed account of the research purpose and the motivation for
the approach adopted in this project. This involves some more philosophical perspectives on
the methodology and the conceptual challenges related to this, along with more details of
the different metrics chosen to answer the research questions. Next, the details and results
from the functional analysis of the simplicial structures is presented in section 4. This
section is in turn divided into three main parts, one for each of the metrics considered. The
different metrics are presented at the beginning of each subsection, and each ends with a brief
discussion of the results, in addition to a short summary and discussion at the end of the
main section. The next section, section 5, is where the machine learning model is presented,
along with some motivating remarks regarding its use. The results of this investigation is
presented at the end of the section, along with a discussion of these. Finally, a summary
and conclusion of all the findings is presented in section 6, along with a discussion regarding
the limitations of the research. This section also includes some reflections on how similar
questions might be pursued in future research.
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2 Background and Theory
This rather interdisciplinary project brings together research from a range of different fields.
As a result, a somewhat extensive background section is required.

The first section covers the neuroscientific background, both the very basics necessary
to understand the dynamical systems studied here, as well as a more extensive section on
connectomics. Though not strictly linked with the current project, this part is included for a
fuller understanding of the motivation for the project, as it highlights many of the practical
and experimental challenges currently being grappled with in the field. The same holds for
the section on causal inference.

The other sections are more directly linked with the current research, and we have aimed
to present these more laconically. First, we give the mathematical background regarding the
simplicial structures. Second, an introduction is given to the field of causal inference and
its significance. Third, a brief overview of the theory behind the machine learning methods
used in the project is given. Fourth, we present the different datasets investigated, along
with a more detailed explanation of the simulator used to generate these. Finally, an outline
of the different statistical tools used for the data analysis is given.

2.1 Neuroscience

The overarching aim of this project has been to investigate and analyse the causal structure
of biological neural networks. This naturally builds on knowledge from many fields in neu-
roscience, so it will be useful to have decent overview of the most relevant topics. First, a
brief description of the basic constituents of biological neural networks and their dynamics
is provided. Second, given that the current project falls under the category of connectomics,
an outline of the different branches of connectomics and their related challenges will be pre-
sented. A fuller exposition of the model used to generate the artificial data used in this
project can be found in section 2.5.2.

2.1.1 Biological Neural Networks - The Basics

The Neuron Neurons are usually considered the fundamental processing units of the
brain. They come in different shapes and sizes, but they all consist of three functionally
distinct parts: the soma, the dendrites, and the axon. The soma is the cell body where the
information is processed and the action signal originates. The dendrites are the branching
structures near the soma. These are connected to other neurons through synapses, and are
where the signals from these other neurons enter before they are transmitted to the soma.
The soma processes the incoming signals, and if the total incoming activity exceeds some
approximate threshold, a signal is generated in the axon hillock in the soma and passed along
the axon. This in turn has many outgoing branches, known as axon terminals, connecting it
to the dendrites of other neurons, which then receive the signal. A figure of two connected
neurons with their functional parts is shown in fig. 1.

Both the intracellular (the cytoplasm) and the extracellular media of neurons contains a
range of different ions. Normally, the concentration of negatively charged ions are higher on
the inside than the outside, giving a membrane potential of about -70 mV in mammals. This
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Figure 1: Figure of two neurons, here labelled as cells, connected together via an axon and a
synapse. The action potential goes from the pre-synaptic to the post-synaptic neuron, and
is transmitted at the synapse.

is known as the resting membrane potential. Changes in the concentration of different ions
in the cytoplasm leads to changes in the membrane potential, and this is what ultimately
triggers an action potential to be fired. Such changes are regulated by a range of different
ion channels in the membrane, through which different types of ions may enter or exit the
neuronal membrane.

The Action Potential The signals transmitted by neurons come in the form of a series of
electrical pulses, each of which is called an action potential or a spike. Action potentials last
for about 1-2 ms, and they all have the same amplitude. Since all action potentials are fairly
equal in shape and strength, they do not in themselves encode any information. Rather,
the information is encoded in the spike trains, i.e. the series of subsequent spikes, including
their timing and the number of spikes. An illustration of the shape and the different phases
of the firing of an action potential is shown in fig. 2.

Whether a spike is generated in the soma is dependent on the state and membrane
potential of the neuron. The membrane potential is affected by incoming signals which
are passed on through the dendrites. These can either make the membrane potential more
negative (hyperpolarised) or less negative (depolarised). An action potential is triggered by
an increase in the membrane potential (depolarisation), up to an approximate threshold. The
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Figure 2: Diagram of a single action potential, with membrane potential plotted as function
of time. After a stimulus with sufficient strength to increase the voltage above the threshold,
the potential is first depolarised, before it reaches the peak, and becomes repolarised, until it
reaches a minimum, labelled hyperpolarisation. After this, the membrane potential returns
to its stable state of the resting potential. Each change is triggered by changes in the
intracellular and extracellular ion concentration, though these are not included here.

action potential itself is characterised by a sharp increase in the membrane potential, usually
to a positive value, followed by a less sharp decrease in the membrane potential, known as
repolarisation, to a membrane potential below the resting potential. Immediately after an
action potential has been fired, it is impossible for a new one to be generated, regardless
of the incoming signals. The minimal period between two action potentials for a neuron is
known as the absolute refractory period. This ensures that the spikes are usually distinct
and well separated. After the absolute refractory period, there is a relative refractory period,
during which the soma requires far stronger input to elicit a new action potential than what
is normally the case [20].

The Synapse When an action potential is transmitted from one neuron to another, it
is said to be sent from the pre-synaptic to the post-synaptic neuron. The synapse is thus
the point at which the two neurons meet and the action potential is transmitted. There
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are two different types of synapses, chemical and electrical, where the chemical synapse is
the most common type in vertebrate brains, constituting about 90 % of the synapses[4],
and is also better understood [62]. At a chemical synapse, there is a small gap (a synaptic
cleft) between the membranes of the pre- and post-synaptic cells. When the action potential
reaches the synapse, it triggers a response leading to the release of neurotransmitters from the
pre-synaptic terminal into the synaptic cleft. These are in turn taken up by receptors at the
post-synaptic site, leading to ion channels opening and ions flowing into the recipient neuron.
These ions may be positive or negative, depending on the neurotransmitters released. The
strength of a synapse is defined as the average voltage produced in the post-synaptic neuron
as a result of the action potential at the pre-synaptic neuron [41]. This is determined both by
the amount of neurotransmitters released at the pre-synaptic terminal and by the sensitivity
of the receptors at the post-synaptic site. The strength of a synapse may change over
time, both at long and short time-scales. Neurons can be either excitatory or inhibitory,
meaning that they either increase the membrane potential of their recipients, making an
action potential more likely, or decrease it, making it less likely that the recipient neuron
will fire. Dale’s law tells us that neurons are always either excitatory or inhibitory, meaning
that the neuron has the same effect on all of its post-synaptic neighbours. About 80% of
the neurons in the brain are excitatory, and the remaining 20% inhibitory [62]. Importantly,
chemical synapses are uni-directional, so the information always flows from the pre-synaptic
to the post-synaptic neuron. Electrical synapses, on the other hand, are bi-directional. These
are also known as gap junctions, and allow for direct transmission of electrical signals between
neurons, without the use of neurotransmitters. In this project only chemical synapses will
be considered, as these are the focus of most of the research in neuroscience.

Network Motifs As well as individual neurons, it is possible to treat larger circuits as
functional units of the brain. Such circuits are known as motifs, and are defined by the nodes
and edges between them, giving sets of sub-graphs with specific topological configurations.
If a certain motif is found more frequently in neural networks than what one would expect
from chance, the assumption is that the motif performs some significant functional role, and
can therefore be considered an important processing unit of the network [19]. Formally, a
network motif is only defined by its number of constituent neurons and the number of edges
between these. For each motif, there will be a number of possible configurations of the edges,
and the set of all such possible configurations of a given motif is known as the motif class.
When performing the analysis, it is customary to look at the frequency of each individual
class of the same motif separately, as these might have very different structural properties.
Such motif analysis is a sub-discipline of the broader field of connectomics.

2.1.2 Connectomics

Many of the underlying premises and motivations for the current project comes from re-
search in connectomics, so a general overview of this field and its main research questions
and methodology will be of use. Connectomics is a grouping of a range of different network-
centred approaches to studying the brain which is becoming increasingly prevalent in neu-
roscience. It is most often associated with the study of the structural connectivity map of
the brain or smaller parts thereof, but more generally, one can distinguish between three
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main branches of connectomics, namely structural, functional and effective. The first is the
study of the static structural connectivity. This involves determining the direct anatomical
connections between neurons or regions of the brain. Secondly, one can study the functional
connectivity between regions or individual neurons in the brain, though regions are most
commonly the unit of study here. This connectivity is a description of the statistical corre-
lations or covariances of activity in the units under consideration, so is undirected. Finally,
effective connectivity aims to go beyond mere correlations and to establish causal connections
between the units, resulting in a directed and weighted connectivity diagram. In addition
to different types of connectomics, the connectivity can be studied at different scales. The
four primary ones are the macroscale, which looks at the connections between regions of
the brain, the mesoscale, looking at the connections between different types of neurons, the
microscale, which looks at the synaptic connections between individual neurons, and the
nanoscale, which looks at the connections at synapses. In this project only the microscale
was considered.

There is a significant amount of literature dedicated to discussing which of these methods
are most conducive to understanding the functioning of the brain. Here we shall give an
overview of the main research questions, methodology and limitations of each of the methods.

Structural Connectomics When the topic of connectomics is discussed, what is often
meant is the study of the anatomical connections of the brain, commonly referred to as “the
brain’s wiring diagram”. For simplicity, we shall mainly focus on structural connectomics at
the microscale, though many of the points raised will apply to the other scales as well. At
this scale, the complete connectome is a map of all the synaptic connections between all of
the neurons in the system at hand, both electrical and chemical. Whether it is directed or
not is a matter of convention. There are no non-invasive techniques which allows this level of
detail to be determined, so the analysis can only be done post-mortem on thin slices of brain
tissue. This makes it hard to study the relationship between the structural connectome and
higher-level cognitive features, since this naturally requires a living organism. In practice,
by staining the tissue in the thin slices of the brain, the circuit diagram is obtained by
visualising the synaptic vesicles in serial brain sections using an electron microscope. Using
this approach, the direction of the connections can be determined, but it is usually unknown
whether the synapses are excitatory or inhibitory. As of now, full connectomes have only
been determined for a few small model organisms.

The connectome of the worm C. Elegans, a commonly used model organism in biology,
was found in 1986, after 10 years of effort. This consists of only 302 neurons with about
7000 chemical synapses, and showed a surprising level of interconnectedness and complexity,
making the system challenging to analyse [11]. Much simpler and easier to analyse is the
connectivity diagram of the stomatogastric ganglion (STG) of the crab Cancer borealis,
consisting of only about 27 neurons [4]. There is also an ongoing effort to map the full
connectome of the Drosophila fruit fly, which has about 135.000 neurons. Far more ambitious
is the Human Connectome Project, which aims at obtaining a complete map of the human
connectome [17].

The main issue, and a commonly raised concern regarding the usefulness and explanatory
power of such structural diagrams, is that they are static descriptions of dynamical systems
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system, taken at a specific instant in time. The overarching aim of much of this research is to
understand how complex functions, such as behaviour, arise from processes at lower levels,
such as those between neurons. These include the firing of action potentials, the release
and uptake of neurotransmitters at chemical synapses, as well as the release of neuromodu-
lators and neuropeptides, amongst others. Importantly, the information processing at this
level, from which the higher order functions are thought to emerge, are dynamic processes
which cannot be described purely in terms of static connections. Yet they are by no means
independent of the structural connections, so the aim of structural connectomics is by and
large to find the mapping between the static wiring diagram and the higher-level functions.
The question then is to what extent these dynamical processes are indeed reducible to the
static structure, and much has been written about the limitations and potential challenges
related to this approach [38]. These criticisms generally fall under one of two categories.
The first is related to the plasticity of the brain at different timescales, the second to the
sheer complexity of even the static diagram and the ensuing interpretational issues.

The brain’s plasticity is a key feature of its functioning. It is known to be plastic in numer-
ous ways and at different timescales, meaning that the brain is constantly changing in ways
which affect the information processing and the functional properties of the circuits involved.
These changes, though, are not reflected in the structural connectome. At short timescales,
the main sources of plasticity (known as short-term plasticity) are neuromodulators and
neuropeptides. Neuromodulators are chemical substances which do not directly affect the
ion-channel receptors, but which nevertheless modulate the function, activity and communi-
cation between the neurons by regulating the response of the receptors at the post-synaptic
site. Examples include dopamine, noradrenaline and serotonin. Similarly, neuropeptides are
small chains of amino acids which modulate neural activity in numerous ways. Examples in-
clude endorphins and oxytocin. Both neuromodulators and neuropeptides are often released
near synapses but are not necessarily passed on to a single neuron in the same way as the
neurotransmitters released at chemical synapses. Instead, they can diffuse through greater
areas in the brain, in a manner similar to that of hormones, through the circulatory system.
This makes their pathways impossible to detect through electron microscopy, and they there-
fore lack a structural correlate which could form part of the structural connectome. Research
by Marder and Bargmann has shown that both neuromodulators and neuropeptides have
the potential to greatly affect the function of neural circuits in a range of different ways [4].
In the case of the STG, the effective circuit diagram at any moment is largely determined
by the current neuromodulatory environment. For example, it has been found that synaptic
connections can be functionally turned on or off, entire circuits silenced, and the spiking
patterns of individual neurons changed [35]. In Drosophila, being in a state of starvation
has been shown to increase the sensitivity of the fly’s behavioural response to sugar, which
is in turn partly dependent on the neuromodulator dopamine [26]. Similar effects have been
found in mammals. This shows how the anatomical connectivity on its own is insufficient
for determining the function of neural circuits. Instead, it can be thought of as a map of the
set of potential functional circuits which a system can instantiate given different neuromod-
ulatory environments. To get an idea of the extent of the underdetermination of the wiring
diagram in determining circulatory function, consider that although C. Elegans only has 302
neurons, its genome encodes over 200 different neuropeptides, suggesting an immense poten-
tial for modulation of the connectome, giving a multitude of different functional circuits for

9



the same structure [56].
This form of neural plasticity creates a further problem in determining the mapping

between structure and function. Neuromodulators and neuropeptides can spread without
anatomical synapses to areas both far and near, and at short timescales, making it impos-
sible to precisely measure the modulatory state over time. Indeed, neurobiologist Cornelia
Bargmann writes that “there is no reliable way to assess the complete modulatory state
within any animal, including C. elegans – it is the dark energy of the nervous system, in-
ferred but not measured.” [3, p. 462]. This introduces a substantial problem when trying to
map structure to function, with a danger of circular reasoning, since changes in the depen-
dent variable (the functional properties) are used to infer the presence of modulatory factors.
The circularity can be summarised as follows:

1. We are trying to determine the mapping from structure (S) to function (F), call this
F = m(S). However, this relation is known not to be true, as the function is also
affected by the environment, call this E. We thus have the relation F = m(S,E).

2. F and S are the only observable variables, so we are trying to determine both the
function m and the environment E from these.

3. Neither E nor m can be tested empirically, since that would require knowing the other
three variables.

4. Thus, we are trying to determine both the function and one of its independent variables
solely from the output and the other independent variable, i.e., using the function m
to infer E from F and S whilst simultaneously using the variable E to infer m from F
and S.

Thus, almost any function can be explained by assuming a new modulatory state, and
vice versa, making it very difficult to extract the contribution of the structure to the function.
This greatly constrains the explanatory power of the structural connectivity diagram beyond
providing a vast number of potential functions a circuit could perform in different (largely
unmeasurable) environments, and even these will be difficult to test empirically.

At longer timescales, a significant source of change in the wiring diagram is the synap-
tic rewiring which takes place during development and learning. Such changes are more
trackable, but it nevertheless means that the connectome cannot be treated as a stable de-
scription of even the “static” wiring diagram of an organism. Thus, depending on the degree
of plasticity, it will be of limited explanatory value as time passes.

Another problem which is sometimes raised regarding the mapping between function
and structure is that in addition to the functional ambiguity of circuits, functions are also
multiple realisable by different circuit motifs, meaning that the same function can arise from
different circuit structures [38]. However, assuming that the main purpose of the mapping
is to be able to infer function from structure, and not the other way around, a one-to-many
mapping from function to structure is unproblematic, apart from the additional complexity
it introduces into the data analysis.

Finally, there is the problem of the sheer complexity of the system. Even if one assumed
that all of the activity of the network was mediated through the synaptic connections de-
scribed in the structural connectome, interpreting this has proven very challenging. The
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connectomes studied so far have been found to be highly interconnected, and it is not un-
common to find seemingly “contradictory” motifs in the same connectome. For example,
in the STG, there are many instances of parallel pathways between the same two neurons,
sometimes with opposite effects, neurons connected through reciprocal inhibition or synapses
which are dormant [11]. In the case of C. Elegans, it is usually possible to find a path between
any two neurons in only three synapses, so to assign functional roles to edges and motifs
has proven far harder than determining the functions of individual neurons. Regarding this,
Bargmann and Marder write:

At this point, over 60 % of C. Elegans neuron types have defined functions in
one or more behaviours. This notable success, however, hides a surprising failure.
For C. Elegans, although we know what most of the neurons do, we do not know
what most of the connections do, we do not know which chemical connections
are excitatory or inhibitory, and we cannot easily predict which connections will
be important from the wiring diagram [4, p. 485].

Thus, the connectome also lacks the information about the relative significance of different
synapses and their actual contributions to the functioning of the system.

To summarise, the structural connectome of the brain is a static map of the synaptic con-
nectivity of the brain, and must be treated as such. It is very far from a complete description
of the dynamic information processing which takes place in the brain and from which higher-
level functional properties arise. However, even though these high-level properties are not
fully reducible to the anatomical structure, the latter certainly plays an essential role in
constraining the potential functional circuits which can be instantiated in the brain.

Functional Connectomics Whereas the structural connectome shows the anatomical
connections in the brain, the functional connectome is a description of the statistical corre-
lations between activity in the different units of interest. Often, one also try to correlate
this activity with higher-level cognitive functions. As with the other types of connectomics,
this can be done at multiple scales. In animals, where in-vivo invasive methods are permis-
sible, one can insert electrodes into the brain to record from individual neurons or smaller
clusters of neurons while also recording the activity of the animal. With humans, it is most
often done at the macro-scale, involving recordings of different types of activity measured
at the surface of the skull. Since this can be done without non-invasively, it is the most
commonly used connectivity analysis method in humans. Methods include, amongst others,
magnetoencephalography (MEG), electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI), of which fMRI seems to be the most common method in func-
tional connectivity studies, so shall be the primary focus here. One reason for this is that
the nodes derived from the fMRI data are voxels (a volume-based unit which the brain can
be divided into), i.e. anatomically localised regions in the brain. The corresponding nodes in
EEG and MEG are the recording electrodes or the sensors on the surface of the skull, which
are less suitable when the aim is to determine a three-dimensional anatomical functional
connectome of the brain.

fMRI has a spatial resolution on the order of millimetres and a temporal resolution on
the scale of second. This is because fMRI measures the activity indirectly by monitoring
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the level of oxygenation in the blood, or more specifically, the iron atoms in oxygenated and
deoxygenated haemoglobin. The ensuing signal is known as the blood oxygen level dependent
(BOLD) signal. This is related to neural activity because activity in neurons leads them to
consume oxygen, which involves their deoxygenation of the haemoglobin. The connection
has been experimentally verified, so the BOLD signal is to some extent a good proxy for
neural activity, though it comes with a certain time-lag and low temporal resolution [12].
An underlying assumption in most fMRI studies is that of functional localisation, meaning
that higher-order functions are localised to smaller regions of the brain. There is evidence
showing that this if often the case. For example, the high degrees of clustering in the brain
ensures that neurons which are spatially close together tend to fire together and process the
same information [51]. However, the exact degree of localisation differs from function to
function, so is not something which one can simply assume a priori. This therefore limits
the range of functions which can be studied using fMRI.

The standard setup in fMRI studies is to place the subjects in an MRI scanner and
record changes in the BOLD signal as the subjects perform certain tasks as instructed. The
resultant signal is then usually compared with the signal recorded when the subject is in a
“resting state”, meaning that they are just sitting there without performing any cognitive
task. This resting state activity is known as the default mode network. The idea is then
that the difference between the activity maps in the resting state and the task-related state
can be linked to the functions required to perform the task at hand. This method is known
as cognitive subtraction [60]. Often, this is repeated for numerous related tasks, with the
hope that some of the same regions will light up for different tasks, such that these can
be functionally related to what we take as the commonalities between the tasks. Thus, by
combining assumptions about functional localisation and connectivity, one might hope to
determine how different functions in the brain relate and support each other.

The main problem here, however, is not with the inferred connectivity diagrams them-
selves, but rather with how they are used. As mentioned, such studies are often conducted
with the aim of not just determining the correlations between activity in different regions
of the brain, but comes with an additional premise about the higher-order function these
regions perform. The functional connectivity then becomes a map of the interdependence of
different functions of the brain. This is a rather controversial endeavour, since there is much
debate about the localisation of function in the brain and how to infer it [34].

First of all, the increase in activity in an area tells us little about the actual function
performed in that region, and might even just be a spurious correlation between location and
function. All we can really tell from such activity is that the voxels in question are probably
contributing with something which is necessary to perform the task at hand. However, we
do not know how the brain decomposes a cognitive task into its logical parts, so even though
different tasks might induce activity in the same regions, it is difficult to know what logical
part of the task this corresponds to, or the significance of the contribution. Furthermore, the
same task will usually lead to increased activity in multiple regions, making it even harder
to connect them to specific functions. Conversely, most brain regions are activated in a lot
of different functional contexts.

Further, there is the danger of picking up random fluctuations in the activity. This point
has rarely been made as succinctly as in an fMRI study conducted by Bennett and colleagues.
As they describe it:
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One mature Atlantic Salmon (Salmo salar) participated in the fMRI study.
The salmon was approximately 18 inches long, weighed 3.8 lbs, and was not alive
at the time of scanning. [. . . ] The salmon was shown a series of photographs
depicting individuals in social situations with a specified emotional valence. The
salmon was asked to determine what emotion the individual in the photo must
have been experiencing [5].

Activity was detected in multiple voxels within a cluster spanning 81 mm3, with a statis-
tical significance of p = 0.001, which, by the standards of the field, is sufficient to conclude
that the salmon was indeed processing the images in the specified regions. Although a strik-
ing example of the dangers of blindly trusting fMRI results, it should be noted that such
results are avoidable by simply repeating the same experiment or by taking the average over
a larger sample of participants in the studies.

A final concern regarding functional connectomics is the resolution of the fMRI images
and the functional scale this corresponds to in the brain. Looking at the 300 top-cited
cognitive fMRI studies as of 2008, neuroscientist Nikos Logothetis found that the average
voxel size studied was approximately 55 mm3 in size. He further estimated that such a
volume of brain tissue contains around 5.5 million neurons, between 2.2 and 5.5 × 1010

synapses, 22 km of dendrites and 220 km of axons [34]. This stands in a stark contrast to
the scale at which the structural connectome is usually studied, where function is typically
assigned at the level of individual synapses and circuit motifs. Whereas it is possible to
analytically determine the theoretical potential for the information processing of smaller
circuit motifs (see for example [1]), it is as yet unknown how this scales when combined in
such grandiose numbers. The analysis of fMRI studies are thus further complicated by the
fact that we do not know what the potential functional extent of individual voxels might be.
Further, this resolution also imposes a limit on what activity can be detected, since scant or
spatially distributed (but potentially functionally significant) activity is largely undetectable
using fMRI, making the functional connectivity map an incomplete description of the actual
activity.

In light of these concerns, philosopher of neuroscience Carl Craver has argued that the
main uses of fMRI studies are system identification, brain parcellation and comparative
analysis [13]. System identification involves detecting clusters of highly connected neurons
by looking at voxels of neurons which tend to fire together. This is based on the Hebbian
idea that “neurons that fire together wire together”, which in turn should cause their activity
to become related. The assumption is that these also form functional units, but the analysis
itself can be done without attributing any function to these clusters. Conversely, the same
methods of analysis can be used to find discontinuities in the activity, which can be indicative
of cortical boundaries where the neurons on each side of the discontinuity are unconnected.
This might then be indicative of a functional boundary. Comparative studies can be used to
compare brains of different individuals looking for systematic differences. This can in turn
be used for diagnostic purposes of neural disorders or illnesses, where statistically significant
differences between populations of healthy and unhealthy patients can be used either as an
indication of where the problem might reside or simply as a correlation-based diagnostic
tool. It should be noted, though, that Craver stresses that the fMRI studies in all of these
cases are insufficient for providing proofs or explanations of the suggested findings, and that
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determining their correctness requires further verification using other methods.

Effective Connectomics Finally, we have effective connectivity. This corresponds to a
connectivity diagram delineating the causal connections between the nodes of the network.
Comparing it to the structural connectome, it would only include the directed edges (chemical
synapses) which are functionally active. It can either be taken as a time-average of the causal
influence between the neurons, or as a time-varying description of these. For a complete
description of all the causally effective components of the system, it would also include the
source- and target-neurons of neuromodulators and neuropeptides, though this is difficult as
a result of the aforementioned challenges in measuring the neuromodulatory environment.

One of the major challenges in determining the causal connectivity of neural networks
is the sheer size of the system. At the microscale, it is possible to insert electrodes into
the brain which can detect the spiking patterns of individual neurons. One could imagine
that given a complete description of the activity of neurons in a fairly segregated cluster, it
would be possible to infer the causal connectivity between the neurons given enough data,
both observational and interventional. However, the number of connections makes this a
surprisingly difficult endeavour. To illustrate, a group of researchers at the Max Planck
Institute set out to reconstruct a tiny bit of the wiring in the mouse brain [40]. They looked
at a cubic part with sides less than 0.1 mm long, containing 89 neurons. Yet, in this tiny
structure they found a staggering 153,171 synapses. This makes the dynamics of the system
very complex, with a potential for a range of different stable patterns of activity. Thus,
if only given the spike trains of the neurons in question, it will be a difficult endeavour to
establish the effective connections between all the pairs of neurons. Further, given the change
in the causal dependencies over time, there simply is no “one true” effective connectome.

This example of the mouse brain also illustrates another problem with causal inference,
which is that of confounding variables. In the case above, the tiny fraction studied not only
contained immense numbers of internal connections. The 0.001 m3 of the brain contained
2.7m of axons and dendrites whose cell bodies were located outside of the volume studied,
exerting causal effects whose sources will not be included in the dataset. In the lingo of
causal inference, such unmeasured but causally effective variables are known as confounding
variables. This makes determining the causal structure between the elements observed very
difficult, since it is often impossible to differentiate between direct causal effects, causal
effects mediated by other neurons and effects which have a common cause. Given the size
and complexity of the brain, the causal diagram will usually be largely underdetermined.

Finally, even if such a complete effective connectome could be obtained, it is far from
clear how a human would use it to gain a deeper understanding of the system, given its size
and complexity. In terms of Marr’s levels of explanation, although we are able to find the
implementational and algorithmic explanations of the lower level dynamics, connecting these
to the purpose of the computations requires a more holistic understanding of the system and
how the different levels supervene on each other. This interpretational issue also pertains to
the structural and functional connectomes, and shows the need for explanatory models and
bridge principles connecting the different levels of interpretation of the brain.
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2.1.3 The Need for Models and Idealisations

Following from this, it might seem a hopeless cause to try to understand how the brain works.
And indeed, there is general agreement that the brain is amongst the most complex systems
science is grappling with at the moment, and that we are very far form understanding it.
What is needed are theories and simplifying models for moving from the vast amounts of
raw data to both a holistic understanding of the system as a whole, as well as a conceptual
understanding of the underlying principles and how these are connected[59]. This is not a new
problem, and all branches of science operates with a range of different simplifying models
to obtain this. These are partial descriptions of phenomena that usually focus on some
aspects of them whilst deliberately disregarding others. In that sense, they always contain
some known falsehoods, yet are nevertheless seen as necessary for providing intuition and
understanding. This might seem paradoxical, but there are many advocates of the thesis
that truth and understanding do not necessarily come hand in hand. Philosopher Nancy
Cartwright makes this point in the opening lines of her essay, poignantly entitled The Truth
Doesn’t Explain Much: “Scientific theories must tell us both what is true in nature, and
how we are to explain it. I shall argue that these are entirely different functions and should
be kept distinct. Usually the two are conflated” [10, p. 44]. The reason for this is that
the complete truth about a system is usually too complex for humans to understand in its
full detail. In another essay, published in the same collection, she claims that to “explain
a phenomenon is to find a model that fits it into the basic framework of the theory and
that allows us to derive analogues for the messy and complicated phenomenological laws
which are true of it” [10, p.152]. Models are thus necessary to explain a phenomenon, and
they do so either by working as a mediator between the theory and the phenomenon or by
representing the phenomenon directly, independent of a theory.

Regarding the known falsehoods, such as variables which get removed from the model
description although they are known to influence the variables of interest, Catherine Elgin
presents a compelling argument in favour of such idealisations [18]. According to her, models
represent phenomena by exemplifying certain features or properties that then gets imputed
onto the system in question. These are features that might otherwise get overlooked, so by
exemplifying and emphasising these, models give epistemic access to significant properties
that might be hard to discern otherwise. Furthermore, such exemplification is not necessarily
best done by conveying a mirror-image of the system. Indeed, one of the main functions of
scientific models is to disentangle the important properties of a complex system from the
more arbitrary, negligible and irrelevant ones. It can therefore be useful to include what she
calls “felicitous falsehoods”, such as idealisations, simplifications, distortions or abstractions,
in the model in order to make the important features of the phenomenon more salient.

Thus, if the hope is that humans should not just be able to use computers to make pre-
dictions about the brain, but also understand some of its underlying mechanisms and causal
dependencies, we need some simplifying models which reduce the number of components and
their types dramatically. This allows us to study how the variables depend on each other
and how changing some of these affect both their mutual dynamics and properties of the
system as a whole. This was the approach taken in this project, where all the data analysed
was computationally generated using a neural dynamics simulator, which in turn was based
on a range of simplifying models. These models, along with a detailed description of the
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exact model used to generate the simulated data studied in this project, are presented in
section 2.5.

2.2 Simplicial Complexes

Figure 3: A directed graph consisting of four nodes. Nodes 1-2-3 form a cycle, so is not
considered a directed simplex. Nodes 2-3-4, however, form a directed 2-simplex with 2 as
the source, 3 as the mediator, 4 as the sink. Thus, 2 is the source of a 2-simplex, even though
it has an incoming edge from node 1, since node 1 is not a part of said simplex.

The primary aim of this project was to analyse the functional role of simplicial structures
in biological neural networks, so an introduction to simplicial complexes is required. Sim-
plicial complexes were first introduced in algebraic topology as a generalisation of graphs,
moving from a focus on dyadic relationships between two and two elements to also include
higher-order relationships as units of interest. Following the notation of [21], a directed
graph G can be represented as a set of vertices and edges (V,E), and a function τ = (τ1, τ2).
V denotes the set of vertices, {vi}, and E the set of edges, {ei}, of G, and the function τ
specifies the direction and vertices of each edge. Specifically, if the edge e goes from vertex
v1 to v2, we have that τ(e) = (v1, v2). Further, the functions τ1 and τ2 returns the source
and target vertices of the edge respectively, such that τ1(e) = v1 and τ2(e) = v2. We also
require that there are no self-loops and that there is at most one edge with the same direction
between each pair of nodes. Note that this still allows for reciprocal connections between
vertices.

This framework gives a representation of a graph which is centred around the dyadic
relationships between pairs of vertices. There are many other types of relationships which
may exist between nodes in a graph, however, and one such type of higher-order relationship
which has recently become a popular target of investigation is triadic relationships between
three and three elements. This is the inspiration for the notion of a simplicial complex.
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Figure 4: A directed graph (left), with its corresponding simplicial complex to the right.
Simplices of different dimensions are labelled as examples.

In the same way as a graph, G, can be represented by its vertices and the edges between
them, an abstract simplicial complex, S consists of a set of vertices, as well as sets of simplices
of different dimensions. Originally, such simplices were restricted to undirected graphs. A
2-simplex then consists of three vertices which are all connected to each other, it exists in
two dimensions and is commonly called a triangle. Similarly, a 3-simplex consists of four
interconnected vertices, is 3-dimensional, and is known as a tetrahedron. In general, an n-
simplex spans n dimensions and consists of (n+1) vertices which are all directly connected
to all the other vertices in the simplex. For consistency, a vertex is denoted as a 0-simplex,
and two vertices connected by a single edge is a 1-simplex. We denote each simplex σ,
regardless of its dimensionality, such that the simplicial complex S consists of the set of all
the simplices {σi}. Each simplex σ is itself a set containing the constituent vertices of the
simplex. The dimension of each σ is its cardinality minus one, such that if σ consists of
(n+1) vertices, it is an n-simplex of S. It is required that each subset σj of σ is also in S.
The set of (n-1)-dimensional simplices which forms part of the n-dimensional σ are called
the faces of σ. Thus, for each σ = (v0, v1, ..., vn) ∈ S, for each 0 ≤ i ≤ n, the ith face of σ
is an (n-1)-simplex obtained by removing the vertex vn−i. Because of the requirement that
every face of a simplex is also a simplex, it is sufficient to specify only the set of maximal
simplices, which are those that do not appear as the face of any other simplex. The set of
all the maximal simplices is thus sufficient to determine the entire simplicial complex, since
every simplex is either maximal itself, or the face of some other maximal simplex.

This framework for analysing graphs in terms of simplices can be generalised to directed
graphs, as presented in [47]. In the case of a directed graph, an abstract directed simpli-
cial complex is needed. Here, the elements σ of S are ordered sets of vertices, where the
order determines the direction of the edges. Further, only simplices with a single source
and a single sink are defined as directed simplices. In this case, the source is the vertex
with only outgoing edges in the given simplex, and the sink the vertex with only incoming
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edges. This requirement holds for simplices of any dimension, such that an n-dimensional
simplex, consisting of (n+1) vertices, will have one source-vertex, one sink-vertex, and (n-1)
mediator-vertices. Note that a vertex can be a source/sink and still have incoming/outgoing
edges, as long as these do not form part of the same simplex. See fig. 3 for an example
of this requirement of directionality, and fig. 4 as an example of a directed graph with its
corresponding simplicial complex.

Each simplex can be represented as a list of nodes, where their order gives the structure of
the simplex. For each node, there is an outgoing node from this to all the subsequent nodes
in the list. Thus, for an n-simplex, the first node has n outgoing edges, the second has (n-1)
outgoing and 1 incoming edge, the third has (n-2) incoming and 2 outgoing edges and so on.
Further, every subset of the list of nodes which respects the order of the maximal simplex
will be a face of the maximal simplex. For example, the 4-simplex [a, b, c, d, e] is made up
of this set of 3-simplices {[b, c, d, e], [a, c, d, e], [a, b, c, e], [a, b, c, d], [a, b, c, d]} and this set of
2-simplices {[a, b, c], [a, b, d], [a, b, e], [a, c, d], [a, c, e], [a, d, e], [b, c, d], [b, c, e], [b, d, e], [c, d, e]}.

2.2.1 Hasse Diagrams

Figure 5: Diagram of a directed simplicial complex (top) and its corresponding Hasse diagram
(bottom).

A Hasse diagram is a mathematical diagram which can be used to represent ordered
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sets, such as simplicial complexes. The entire binary (ignoring node properties and the
edge weights) representation of the connectivity graph can be represented in a single Hasse
diagram. This is ordered hierarchically, where each level of the Hasse diagram contains
simplices of the corresponding dimensionality. Assuming a simplicial complex S, the level n
vertices of the corresponding Hasse diagram H are the n-simplices of S. The 0th level are
the nodes, i.e. the 0-simplices, the 1st level are the edges, i.e. the 1-simplices, the 2nd level
the 2-simplices etc. Further, the vertices at each level of H are oriented from left to right
corresponding to their position in the simplex. An example of a simplicial complex and its
corresponding Hasse diagram is shown in fig. 5. Importantly, all the information about the
“descendant” lower levels of a simplex is contained in the vertex at the highest level.

In [47], they present an algorithm for extracting the Hasse diagram of a regular directed
graph in matrix form. The algorithm is presented in their supplementary material. As part
of the current project, we implemented this algorithm from scratch in Python in two variants,
using numpy and PyTorch, since the original implementation was in C++.

2.2.2 Relevance for Neuroscience

Given the interpretational and computational challenges discussed in section 2.1.2 above,
there is an increasing interest in the fields of neuroscience and connectomics in finding alter-
native methods for analysing and understanding neural networks [51]. A common approach
is to try to understand the structure and computational potential of neural networks in terms
of the basic units of computation and the flow of information between them. Traditionally,
this has meant looking at individual neurons, clusters or regions, where dyads (i.e. two units
connected to each other) has been treated as the basic units of the flow of information. These
can then be combined to form greater network motifs. However, this approach assumes that
the features of interest at higher levels are reducible to these low-level dyadic relationships.
This is not necessarily the case, as many argue for the existence of emergent properties in
complex systems, including the brain [51]. Such emergent properties are observable when
one looks at the system at certain levels, without being reducible to the lower-level compo-
nents of the system. Thus, if we only study the system at those lower levels, we are simply
unable to explain the emergent features, because we are looking at it at the wrong level.
This would be akin to trying to use particle physics to explain the pollination of roses. An
obvious challenge in a new and emerging field, such as network neuroscience, is that one
does not know a priori what the correct level of analysis is for any phenomenon. In other
words, assuming some form of emergence, it is impossible to know in advance what the
lowest possible explanatory level is for the phenomenon one wishes to explain. As for any
research programme in its infancy, this thus comes with its due amount of speculation, trial
and error.

In the case of connectomics, this focus on dyadic relationships might lead us to miss out on
important higher-order structures which are causally relevant for the emerging functionality
of the brain at different levels. Hence, there is a growing interest in exploring the potential
for analysing biological neural networks in terms of other higher-order network structures,
such as their simplicial structure. The motivation for this is natural. It is well known
that clusters of highly connected neurons tend to fire together, so structural connectivity is
tightly linked with functional connectivity [25]. In the lingo of motif analysis, a simplex of a
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given dimension is a motif, since all simplices of the same dimension have the same number
of nodes and edges. Further, given the strict constraints on the directionality of directed
simplices, all directed simplices of the same dimension are isomorphic, meaning that only
one motif class of each graph motif is included in the set of directed simplices.

In their [21], Giusti, Ghrist and Bassett present an overview of current research into
analysing the functional connectivity in terms of simplices rather than dyads. As an ex-
ample, simplicial complexes can be used to represent higher order correlations between the
firing rates, such as cofiring over time. Strong coactivity between neurons can be a sign
that these are connected and somehow form a functional unit which processes related pieces
of information. The fact that this focuses on functional connectivity rather than structural
connectivity means that in experiments, where the sensory input can be controlled, it is
possible to connect certain sensory input to activity in particular simplicial structures. As
an example, Curto and Itzkov [14] managed to use such higher-order patterns of coactivity
in hippocampal place cells to extract global features of the animal’s environment, as well
as a reconstruction of the topological map of the environment. Multiple studies have also
applied some sort of weight filtering to these coactivity complexes. This involves using a
continuous filter on the complex, where only those edges with weights (correlations) above a
certain threshold are kept. This approach has successfully been used to distinguish between
subjects with different neurological and cognitive difficulties and control subjects, including
classification of children with attention deficit hyperactivity (ADHD), autism spectrum dis-
order (ASD) and control subjects [31] and differentiating between pre- and postlingual deaf
adults [29].

Another approach is to focus on simplices in the structural connectome. Here the nodes
represent the neurons and the edges the chemical synapses between them. This can be
done both with and without regard for the direction of the synapses, but in the case where
their direction is taken into consideration, the information flow is uni-directional along any
given edge. The bidirectional electrical synapses are thus ignored. Higher-order structures
of neural networks might then be informative of both local and global properties of the
information flow in the network. One way of analysing such networks is thus by representing
them as a directed simplicial complex, where each simplex has a single source neuron and a
single sink neuron. This is to prevent cyclic relationships from being included, ensuring that
the causal flow is uni-directional between the source and the sink.

This was the approach taken by Reimann et al. [47], whose aim it was to study the
relationship between the structural and functional simplicial complexes. They analysed
digital reconstructions of rat neocortical microcircuitry, resembling biological neural networks
in terms of density of neurons and connectivity patterns. The functional data came from
simulating activity in these networks. The functional connectome was taken to be a subset
of the structural connectome, containing only those synapses which were active within a
certain time-frame (i.e. those where the post-synaptic neuron fired shortly after the pre-
synaptic neuron). Thus, the functional graph represented the pairs of neurons which fired
subsequently within a given time-frame, and not the simultaneous co-activity, as in [21].

They compared the simplicial structure of the reconstructed neocortical circuit graphs
with five Erdös-Rényi random graphs with similar graph properties, such as size and con-
nectivity. They found that the number of higher-dimensional simplices in the biological
networks far exceeded those in the random graphs, and this discrepancy increased with di-
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mension. Performing the same analysis on the structural connectome of C. Elegans gave the
same result. This does not in and of itself prove anything about the usefulness or functional
significance of such higher-order simplices, as they could simply be a byproduct of something
else. However, the fact that they are found in unexpectedly high numbers across species is at
least an indication that they are possibly performing some significant functional role which
has been selected for through evolution.

Regarding the functional analysis, their main approach was to study the spike correlations
between different neurons as function of their simplicial role. This was done for microcircuit
activity in response to sensory stimuli in activity simulations in the reconstructed networks.
Comparing the pairwise correlations between all pairs of neurons in these networks, they
found that this increased significantly with the number and dimension of the directed sim-
plices to which the neurons belonged. They took this correlation, which implies a form of
coactivity, as a measure of emergent integrated activity patterns, which is in turn believed
to be indicative of more complex patterns of activity and information processing. They took
this finding to mean that “the hierarchical structure of the network shapes a hierarchy of
correlated activity” [47, p. 2]. Similarly, they established that the functional correlations
between neurons in the same simplex depended on their role therein. They found that the
spike correlation between any pair of neurons increases with the pair’s proximity to the sink
of the simplex, arguing that this results from the corresponding increase in shared infor-
mational input. From these observations, they conclude that “the emergence of correlated
activity mirrors the topological complexity of the network.” [47, p. 10]

One problem with this approach is the strict emphasis on correlations. As discussed in the
section on functional connectomics, correlations in activity are insufficient for establishing
causation, which is generally seen as a better method for studying the ontological structure
of systems. Indeed, descriptions of correlations can hardly be said to be explanatory, as most
agree that scientific explanations are required to be causal. Thus, if we want an explanation
of the neural dynamics, we need to establish the causal relationships between the network’s
constituent elements. This project was largely based on the motivations and findings of [47]
and [21], but the emphasis was on the causal relationships rather than the correlational ones.
The initial idea was to test whether the directed simplices could potentially be treated as
separable causal units in the network. Assuming this is the case, it is reasonable to assume
that their causal and functional role will be instantiated and thereby observable at different
scales and using different metrics. Further motivation, as well as how this was approached
and tested, will be further elaborated below.

2.3 Causal Inference

In very broad terms, the overarching aim of most scientific endeavours is to establish the
underlying causal structure of the system under investigation. Somewhat surprisingly, then,
a rigorous mathematical framework for how to extract such causal information is fairly new,
and has become known as causal inference. The primary aim of the field is to establish what
empirical evidence is required to infer causal relationships and what legitimate inferences
one might indeed draw given different types of information in different situations. In his
[45], Judea Pearl presents this framework, on which the following exposition is largely based.

Although statistics and probabilities can tell you about the statistical dependencies be-
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tween variables, without further specification, it is based on purely correlational measures.
Pearl argues that the lack of information about the origins and mechanisms giving rise to
the correlations makes such correlation-based models less stable and robust than those based
on causality. He writes: “We expect such difference in stability because causal relationships
are ontological, describing objective physical constrains in our world, whereas probabilistic
relationships are epistemic, reflecting what we know or believe about the world. Therefore,
causal relationships should remain unaltered as long as no change has taken place in the en-
vironment, even when our knowledge about the environment undergoes changes.” [45, p. 25]
Thus, if the aim is to truly understand a dynamical system, knowing the causal relationships
between the variables will likely be of far more value than knowing their correlations.

Structural Causal Models The main property of causality is in many ways its asym-
metry: causes precede their effects. Nevertheless, when we express quantifiable relations
mathematically, we tend to do so using functions with equalities, even when the relations
are causal. The problem with this is that the same equation can be rewritten in many ways,
and in that sense only express the correlations between the variables. Take for example
Newton’s second law, stating that F = ma. This presents the relations in a symmetric way,
where any one of the variables can be expressed as a function of the other two, such that,
given any two of the quantities, the third can be found. Considering the causal structure of
these variables, however, we would say that the force causes the acceleration, not the other
way around, so by expressing it in an asymmetric fashion, we leave out essential informa-
tion about the system. Instead, we could express it using a structural equation, which also
captures the causal structure of the system. In this case, we would rewrite it as

a := f(F,m) =
F

m
,

where the expression := signifies that the acceleration a is the effect, and the independent
variables of the function f the causes, so it encodes the causal direction and asymmetry of
the situation. In general, this gives rise to the notion of a structural causal model. Such
models specify all the causal dependencies between the variables in the system, and can be
expressed either as a set of structural equations, or as graphs.

We use uppercase letters to denote the variables in the model, and lowercase letters to
denote the values which they can take. Thus, the variable X may take on any of the values
from the set {x1, x2, ..., xn}. The structural equation of X is a function whose independent
variables are the direct causes of the X. In addition, there will usually be some noise or
background conditions which are not accounted for in the model, but which will nevertheless
affect the variable X. These unknown background conditions are grouped together in the
random variable U , which introduces some uncertainty in the outcome. An example of such
a structural causal model, M, is shown in fig. 6. The structural equations for the same model
M are

B := fB(A,UB)

C := fC(A,B, UC) (1)
D := fD(A,C, UD)
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Figure 6: A structural causal model corresponding to the structural equations in eq. (1).
The variables A, B, C and D are the observed variables, whereas the variables in the dashed
circles are their respective noise variables, which remain unobserved.

For adjacent nodes A and B, where there is an edge from A to B, A is referred to as the
parent of B and B as the child of A. Only the direct causes, i.e. the parents, of a variable
are included in its structural equation. If there is a path from variable A to C which passes
through B, without there being any direct edge from A to C, then A is an ancestor of C,
and C a descendant of A.

It is usually also required that the model is a directed acyclic graph (DAG), meaning
that (within a given time-step) there are no reciprocal edges between two nodes and there
cannot be a directed path from any one node to itself. It is then possible to use such a
model to find the effect which intervening on one of the variables has on the other variables.
This is something which a purely correlational model cannot provide, since the asymmetry
of causation is missing from this description.

Causality is closely linked with the notions of intervention and counterfactuals. An
intervention is an action where one intervenes by assigning a value to one of the variables
in a causal model without affecting the others. This will affect the children, and in turn the
descendants, of this variable. Given a variable X, we denote the intervention of assigning
value x to X as do(X=x). By looking at the changes in the probability distributions of
the descendants, it is then possible to extract the causal effects of variable X on the other
variables in the model. This gives rise to Pearl’s definition of causal effect:
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Definition 2.1: Causal Effect

“Given two disjoint sets of variables, X and Y, the causal effect of X on Y, denoted
either as P (y|x̂) or as P (y|do(x)), is a function from X to the space of probability
distributions on Y. For each realisation x of X, P (y|x̂) gives the probability of Y = y
induced by deleting from the structural equations of X all equations corresponding to
variables in X and substituting X = x in the remaining equations.” [45, p. 70]

Confounding Variables A considerable challenge when inferring causal relations are con-
founding variables. These are unobserved variables which might influence the observed vari-
ables in significant ways, which might lead us to make incorrect inferences about the causal
relations between the observed variables. For example, imagine measuring the variables X
and Y and detecting what appears to be a causal relation from X to Y, for example because
every event x is followed by an event y with some time lag, but not the other way around.
This is insufficient information to infer a direct causal connection from X to Y, since there
might be a third causally relevant variable, Z. Assuming Z remains unobserved, the purely
statistical information about the relationship between X and Y is insufficient for singling
out which of the three causal models shown in fig. 7 is correct. Together, they form the
Markov equivalence class of this model. A Markov equivalence class is a set of DAGs which
share the same set of conditional independencies between their variables. To identify the
correct causal model in such cases, numerous methods have been found, and which one is
applicable depends on the type of dataset and which assumptions can be made about it.
For example, the average treatment effect can be used in cases where interventional data is
available. This will be discussed further in section 4.2.

Causation at Multiple Levels For the current purposes, the aim is to look at the po-
tential for studying causal effects at different levels. This gives a different causal model at
a different level of detail, but both are equally true. In the same way as one might increase
the level of detail through reductionism, it is also possible to go the other way, and to treat a
composition of causal units and effects at one level as higher-order causal units at a different
level. A challenge, then, is how to quantify this causal effect at higher levels.

In the case of simplicial structures, one of the underlying assumptions for this project
was that the simplices themselves could serve as a type of causal unit. However, the concepts
from causal inference largely assume that the causal units are well separated and both causal
events and outcomes are clearly defined. This is not the case in the simplicial structures
in biological neural networks, where different simplices are often largely overlapping, and
both external input and outputs are present at many places between the source and the sink
neurons. Further, whereas a spike event in a single neuron is a clearly defined event, what
constitutes “activity” in a larger simplex is not clear. For these reasons, it is far from trivial
exactly how one should apply the methods from causal inference when analysing the causal
effects in simplicial structures.

The approach here chosen is thus not necessarily the only possible way of quantifying the
causal effects in these structures. When looking at a simplex as a causal unit, the emphasis
here has been on the informational flow from the source to the sink, which were treated as
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Figure 7: Three causal diagrams in the same Markov equivalence class. With only observa-
tional data with the final outcome of the three variables, it is impossible to determine which
is the correct causal model.

the two informational “bottlenecks” in the structures. Thus, by investigating the observable
effects of the activity in the source neurons on the activity in the sink neurons in different
simplices, this should work as a proxy for the causal effects between simplices, as well as for
the causal significance of the different changeable variables of simplices.

2.4 Machine Learning - Neural Networks

The main machine learning method used in this project is called graph neural networks
(GNNs). This is often described as a generalisation of convolutional neural networks ap-
plicable to graphs. We shall not go too deeply into the details regarding CNNs, but shall
limit ourselves so an overview of regular deep neural networks and the learning algorithms
pertaining to these, which also form the backbone of graph neural networks. A brief overview
of the main learning algorithms of GNNs will then be given.

2.4.1 Feed Forward Neural Networks

For simplicity, we shall consider a simple feed forward neural network with only a single
input data-point consisting of a vector a(0) = [a

(0)
1 , a

(0)
2 , ..., a

(0)
n , ..., a

(0)
N ]. The ground truth

which we wish to predict is also a vector t = [t1, t2, ..., tf , ..., tF ]. The aim is thus to train a
network to perform the mapping a(0) → t. This is done by passing the input vector through
multiple layers of weights and biases, with activation functions after each layer. Each layer
can be thought of as consisting of a set of K nodes. The output from layer l is denoted
a(l) = [a

(l)
1 , a

(l)
2 , ..., a

(l)
k ..., a

(l)
K ]. Each node in a given layer is connected to all the other nodes
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in both the precesing and the succeeding layer, but there are no connections between the
nodes in the same layer. The layers between the input and output are referred to as hidden
layers, and the dimensionality of these are optional and independent of the dimensionality of
the input and the output. For a network consisting of L layers, L-2 of these are thus hidden.
The weight matrix at layer l is denoted W(l), the elements of which are w

(l)
jk . Each layer

l also has a bias vector b(l) = [b
(l)
1 , b

(l)
2 , ..., b

(l)
k ..., b

(l)
K ]. The output vector from a given layer

before the activation function σ is applied is denoted z(l). This is of the same dimensionality
as a(l), and is given by

zl = al−1Wl + bl

The value of the node k in layer l is given by:

a
(l)
k = σ(z

(l)
k ) = σ

(
J∑

j=1

al−1
j wl

jk + blk

)
Here, j refers to the index of the nodes in the previous layer, the total of which is J.
The complete weight matrix at level l is given by

W(l) =



w
(l)
11 w

(l)
12 . . . w

(l)
1k . . . w

(l)
1K

w
(l)
21 w

(l)
22 . . . w

(l)
2k . . . w

(l)
2K

...
... . . . ... . . . ...

w
(l)
j1 w

(l)
j2 . . . w

(l)
jk . . . w

(l)
JK

...
... . . . ... . . . ...

w
(l)
J1 w

(l)
J2 . . . w

(l)
Jk . . . w

(l)
JK


A visualisation of this mapping is shown in fig. 8.
Neural networks are trained to minimise some cost function. This determines the metric

used to evaluate the quality of the model, and is usually a measure of the error. Training
the network is thus equivalent to updating the model in order to minimise this cost function.
Different cost functions are applicable for different purposes, but the most common for
continuous values, and the one used here, is the mean squared error (MSE). With the final
prediction being aL = [aL1 , a

L
2 , ..., a

L
f , ..., a

L
F ] and the ground truth t = [t1, t2, ..., tf , ..., tF ], the

final MSE loss is given by:

C =
1

F

F∑
f=1

(tf − aLf )
2.

There is a great range of different activation functions which can be used. For the model
used in this project, ReLU was used, and this is given by

σ(z) =

{
z for z > 0

0 for z ≤ 0,

with range [0, ∞) and its derivative by
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Figure 8: A feed forward neural network showing the input layer and the first hidden layer
along with the corresponding calculations. Figure adapted from [42].

σ′(z) =

{
1 for z > 0

0 for z ≤ 0.

Note that it is common to not use an activation function at the final layer, since the
ranges of these do not always correspond with the desired output range.

When training the model, for each iteration, each weight (and bias) is updated by taking
the derivative of the final error with respect to this weight (and bias), such that the new
weights and biases are given by

w
(l)
jk ⇐ w

(l)
jk − η

∂C

∂w
(l)
jk

,

b
(l)
k ⇐ b

(l)
k − η

∂C

∂b
(l)
k

,

where η is a small number known as the learning rate. In practice, this is done through
the backpropagation algorithm, which is used to update both the weights and the biases.
First, the error in the final layer is calculated, and from there, the weights and biases are
updated in reverse order according to the following algorithm.

From the chain rule, the error in node k in the output layer is given by:

δLk =
∂C

∂aLk

∂aLk
∂zLk

=
∂C

∂aLk
σ′(zLk ).

In matrix notation, we have

δL = ∇aLC ⊙ σ′(zL)
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The errors in each layer are then calculated iteratively in reverse order as a function of
the errors in the succeeding layer according to the following expression. (The full derivation
of which can be found in a range of different sources on the topic, such as [43].)

δl = δl+1(Wl+1)T ⊙ σ′(zl)

Here, ⊙ denotes the Hadamard product. The gradients of the weights and biases are
then given by

∂C

∂w
(l)
jk

= a
(l−1)
k δlj

∂C

∂b
(l)
k

= δlk

In matrix notation, the updates are given by

∇Wl = (al−1)Tδl,

∇bL = δl,

And the updated weights and biases are thus

Wl ⇐ Wl − η∇Wl,

bl ⇐ bl − η∇bl,

In practice, this is done using autograd (backward automatic differentiation) i Pytorch.
Finally, a commonly encountered problem in deep learning is that the gradients of the weights
either become extremely large (exploding) or diminishingly small. It has been found that
initialising the weights in certain ways can sometimes help in mitigating these problems, as
well as improving the convergence rate of the solution. The intuitive reason for this is that
the input to each node is a weighted sum of all of the outputs from the preceding layer, so
somehow scaling the weights with the number of nodes in the layers makes intuitive sense.

In the model here used, the weights were all initialised using what is known as the
Kaiming-He initialisation method, as described in [24]. The weights in layer l are initialised
according to the following normal distribution

W l ∼ N
(
0, σ2

)
.

Where the standard deviation is given by

σ =

√
2

J
,

where J is the number of nodes in the preceding layer.
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2.4.2 Graph Neural Networks

An important limitation of standard feed forward neural networks is that the ordering of
the input matters, such that reshuffling the input X will in most cases change the output.
Depending on the intended application, this may or may not be a problem. A typical
example of where this is a problem is with images, where we often want the prediction,
say the classification of the object in the image, to be both rotationally and translationally
invariant, such that the prediction remains the same regardless of the object’s position
and orientation in the image. To deal with this problem, convolutional neural networks
(CNNs) were introduced. Another data-type which requires a similar form of invariance is
graphs, where the same information can be represented in a multitude of ways. To deal
with this, graph neural networks (GNNs) have been introduced, and these can be seen as a
generalisation of CNNs applicable to graph data.

As above, we define a graph as a set of nodes and edges, where both the nodes and the
edges can have a set of corresponding attributes, both of which can be represented in vector
or matrix form. For a graph of N nodes, each with F features, the nodes are represented by
the matrix X ∈ RN×F . Similarly, for edges with S attributes, for each edge from node i to
j, there exists an edge vector eij ∈ RS.

The interactions between the nodes are dependent on the edges between them, and these
can be represented in the binary adjacency matrix A, where for each edge eij, there is a
corresponding non-zero element in A. There is a great variety of GNN structures, and which
one to use depends on the task at hand. The current exposition will be limited to the task
relevant for the current project, which is to go from one set of node embeddings X ∈ RN×T to
another, Y ∈ RN×N , where both the adjacency matrix and the edge features are unknown.

For this purpose, the message passing algorithm of GNNs will be useful. This consists of
three steps: sending the message, aggregating the messages, and updating the node embed-
dings. The general formula for a message passing GNN is given by

x̂i = γ(k)
(
xi,□j∈N (i)ϕ (xi,xj, eji)

)
(2)

Here, N (i) represents all the neighbours of node i. In the case of a directed graph, they
are the nodes from which there is an incoming edge to node i. At each step, the node i
thus receives a message from every other node j from which it has an incoming edge. This
message depends on the node attributes xi and xj, and possibly the edge attributes of eji.
Each message is passed through a neural network, often referred to as an MLP (multi-layer
perceptron), and here denoted by ϕ. All incoming messages are then aggregated according
to some aggregation function, here denoted □j∈N (i). The exact type of aggregation will
depend on the purpose, but common choises include sum, average or concatenation. Finally,
the update function γ, which is also an MLP, takes the previous embedding xi along with
the output from the aggregation function, to learn a new node embedding x̂i. All of this is
easily implemented using the MessagePassing class from PytorchGeometric. At the end
of each epoch, the predicted embeddings x̂i are then compared with the ground truth yi,
and the loss calculated according to the cost function chosen. The learnable parameters
are the weights and biases in the two MLPs ϕ and γ, and these are updated using the
same backpropagation algorithm as for regular feed forward neural networks. By iteratively
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performing this message passing step on a range of different graphs, the model learns to
perform the mapping X ∈ RN×T → Y ∈ RN×N .

2.5 Dataset

The datasets analysed in this project consisted of simulated activity in artificial neural net-
works. These datasets were generated using a computational implementation of a generalised
linear model, and the connectivity graphs were chosen according to the purposes. In the cur-
rent section, the model and the simulator will be described in detail, followed by a section
covering the different connectivity graphs studied. Finally, some of the shortcomings and
limitations of the dataset will be discussed.

2.5.1 Modelling Neural Dynamics

Given the many challenges related to the different types of recordings in experimental neuro-
science, being able to computationally model neural dynamics in systems where all variables
of interest can then either be tuned or easily obtained is of immense value. There are nu-
merous approaches to modelling neuronal dynamics, and which one to use depends on the
purpose in question. In our case, the detailed descriptions of the ion fluxes, the change in the
membrane potential or the exact shape of the action potential is unimportant. Instead, it is
sufficient to treat an action potential as an event with a binary value. In such cases, one of
the simplest models one can use is the (leaky) integrate-and-fire model of neural dynamics.
However, this model is not optimal when the aim is to accurately model the spike statistics
of the neurons, so a class of more generalised models have been introduced, called generalised
linear models (GLM). A brief overview of both types of models are given below.

Leaky Integrate and Fire Models Integrate and fire models are in essence very sim-
plified descriptions of the dynamics leading up to an action potential being fired in a single
neuron. It takes the shape of a differential equation describing how incoming signals are in-
tegrated and transformed into a changing membrane potential, and the subsequent firing of
an action potential and resulting discharge. In its simplest form, it describes the evolution of
the membrane potential and the threshold for the firing of an action potential. The solution
to this equation is given by

u(t)− urest = ∆u exp

(
−t− t0

τm

)
for t > t0

where the membrane potential at time t = 0 is

u(t0) = urest +∆u

such that ∆u is some constant defined thereafter. τm is the characteristic time of the
decay of the membrane potential, which is typically in the range of 10 ms [20].

The leaky integrate and fire model is a highly simplified model of actual firing dynamics,
and neglects many salient features of neuronal dynamics. Two crucial omissions are the
dependence on the state of the receiving neuron and the spiking history. The model assumes
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that the inputs are integrated linearly, independently of the actual state of the post-synaptic
neuron. Additionally, the membrane potential is simply reset to the resting potential after
each firing event, so no memory of previous spikes is retained. These, along with a range of
other omissions (see [20], section 1.4 for a more extensive list and discussion of these), may or
may not be a problem, depending on the intended use of the model. It is possible to include
additional variables to account for the dependency of the activity on the spike-history of
the neuron, thereby allowing for adaptability and refractoriness, as well as non-linearities
in the synaptic responses. For even more complex descriptions of the neural dynamics, so-
called generalised leaky integrate-and-fire (GLIF) models can be used. These can include a
range of other variables describing the adaptability of the spike-responses and other dynamic
dependencies within the networks.

Generalised Linear Models Generalised linear models (GLMs) can be seen as a further
extension of these. These are useful when the main emphasis is on the spike statistics of
the neurons, which they capture more accurately by including a stochastic element in the
spike responses. In essence, GLMs consist of a linear filter (which is based on the solution
to a GLIF model), a link function and a probability distribution [46]. The input signal to
each cell is described by the set of linear filters, including a stimulus filter, a post-spike filter
capturing the dependencies of the activity on the spike-train history of the neuron itself and
a coupling filter which gives the dependencies on the recent spike-histories of its pre-synaptic
neurons. In a Bernoulli GLM, which is what was used in this project, the input is then passed
through the link function, which is a non-linear function converting the membrane potential
resulting from the input activity to an instantaneous spike probability. Finally, a probability
distribution is applied to this probability, determining whether or not a spike event occurs
in the neuron in question [44].

The main difference between such models and the generalised integrate-and-fire models
is the stochastic element arising from the probability distributions. Further, the model con-
tains a range of tunable parameters which can be fit to data, such that GLM models can be
used to predict future activity in individual neurons or larger networks given previous activ-
ity and new stimuli. Undoubtedly, these models are still gross simplifications of biological
neural networks in their full complexity. Perhaps most importantly, they completely ignore
all influences coming from other factors than the chemical synapses, such as the neuromod-
ulators and neuropeptides in the extracellular environment and effects from other neurons
connected through electrical synapses.

2.5.2 Neural Activity Simulation

The activity in the networks here studied was simulated using a generalised linear model,
specifically, the Bernouilli GLM as presented in [32] and implemented using an early version
of the spikeometric package in Python, though with some adjustments. The code used to
generate the data is available at [28].

The activity in the network is represented as a matrix X containing the spike-trains of
each of the neurons in the network. This is encoded as zeros and ones, where each element
represents whether the neuron spiked at a given time-step or not. Thus, for a network of N
neurons with activity generated over a period of T time-steps, X is a matrix of dimension
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N × T . The network itself is represented as a graph G = (V , E), where V is the set of N
nodes, and E the directed edges between them in the network.

These connections are also represented in the weighted connectivity matrix W0, whose
elements represent the weighted synaptic connections between the neurons in the network.
The elements in this matrix are thus given by the elements of E , as well as a weighting
function ϕ : E → R. Thus,

(W0)i,j =

{
ϕ(i, j) (i, j) ∈ E
0 otherwise

Note that this connectivity matrix can either be interpreted as the structural or the
effective connectome. If taken as the structural connectome, each element represents a single
synapse, meaning that we only allow a single synapse to exist in each direction for any pair
of neurons. If taken as the effective connectome, we may allow for multiple synapses to exist
in the same direction for the same pair of neurons, and the elements of W0 would represent
the sum of the effect mediated through all the synapses between the pair. For simplicity, we
here adopt the former interpretation. Note that this means that since other factors, such as
the neuromodulatory environment or the electrical synapses, are not taken into account, and
W0 is kept constant throughout the entire simulation, W0 represents both the structural
and the effective connectome in this case.

Further, the influence from an individual spike may last for more than one time step.
The influence is set to be a decaying function over the coupling window of cw time steps.
This is implemented by defining a connectivity filter tensor with size N ×N × cw, such that
the influence of neuron i on neuron j at time-step t after a spike-event at neuron i is given
by

Wi,j(t) =

{
(W0)i,j e

−βt∆t if t < cw

0 if cw ≤ t
(3)

where β is the (tuneable) decay rate of the weights and ∆t is the time-step size used.
This was kept constant at 1 ms. The exponential term corresponds to the coupling function
c(t), determining the rate of the decay.

The dynamics of the synaptic interactions are here represented by a current-based model.
The interaction between the neurons is simply represented as a current injected into the
postsynaptic neuron which directly affects the membrane potential, without regard for the
changes in the conductance of the neuron’s membrane. To simplify further, this change in the
post-synaptic current is modelled as a step-function, rather than as a time-varying function,
thereby assuming that the synaptic strength is constant throughout the interaction.

In addition to the incoming activity at each time step, a neuron’s chance of firing is also
dependent on its absolute and relative refractory periods, and thus on its previous activity.
As mentioned in section 2.1.1, the absolute refractory period is the period after a spike
during which it is impossible for a neuron to spike again, whereas the relative refractory
period is the succeeding period during which a higher input activation is needed to excite a
new action potential. This refractory filter is implemented as a function of the time t since
the last spiking event, and is given by
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r(t) =


a if t < Aref

re−αt∆t if Aref ≤ t < Aref +Rref

0 if Aref +Rref ≤ t

To summarise, the following parameters are included in the model, listed along with their
default values:

• θ = 4.3 - the activation threshold above which the neuron spikes with a probability
above 50%

• ∆t = 1 ms - the time-step size, in ms

• cw = 10 ms - the length of the coupling window

• α = 0.5 - the decay rate of the negative activation during the relative refractory period

• Aref = -100 ms - the absolute refractory period of the neurons

• a = -3 - the negative activation added to the neurons during the absolute refractory
period

• Rref = -30 ms - the relative refractory period of the neurons

• r = -7 - the negative activation added to the neurons during the relative refractory
period

• β = 0.2 - the decay rates of the weights

The activity in the network is generated at each time-step, and can be split into three
steps. First the input each neuron receives from all incoming edges, as well as random input
noise, it calculated. This is implemented using the MessagePassing class from torch_geometric.
Second, this activity is passed through a nonlinear sigmoid function σ to get the probabili-
ties of firing. Finally, whether each neuron fires or not is determined by sampling from the
Bernoulli distribution of the probabilities. These three steps are summarised as:

gi(t+ 1) =
T−1∑
τ=0

Xi(t− τ)r(τ) +
∑

j∈N (i)

(W0)j,iXj(t− τ)c(τ)

+ Ei(t+ 1)

pi(t+ 1) = σ (gi(t+ 1)− θ)∆t

Xi(t+ 1) ∼ Bernoulli (pi(t+ 1))

The sigmoid function is given by

σ(x) =
1

1 + e−x
.
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The Bernoulli distribution is a binary and discrete probability distribution, used to model
random experiments where the outcomes are 0 or 1. The distribution is characterised by the
variable p, which is the probability of the random variable taking the value 1, or, conversely,
by the probability of it taking the value 0, denoted q = 1−p. The probability of the variable
X taking the value x, for x ∈ {0, 1} is thus given by

P (X = x) = px(1− p)(1−x).

This distribution has a mean of p and a variance of pq = p(1− p).

2.5.3 Connectivity Graphs

The connectivity graphs used in these investigations were all computationally generated, and
their resemblances to biological neural networks are thus limited. Three main types of binary
graph structures were investigated, for different purposes, but also for comparison between
them. For each combination of variables, 200 datasets were generated. The distribution
of inhibitory and excitatory neurons was set to 50/50. This was to ensure stability in the
activity, and given that the networks studied were very small, setting the ratio to 20/80 with
different strengths made the activity overly dependent on the distribution of the weights.
In many cases, this led the activity to either explode or die out, so the 50/50 ratio was
used instead. The synaptic weights were generated in the same way for all three types, with
different randomly chosen weights for each dataset. The absolute values of the edge weights
were all taken from a random uniform distribution U(0, 6√

N
), where N is the number of

neurons in the network. This scaling was found to be necessary to ensure stable activity in
the networks regardless of their size.

Table 1: The number of neurons and edges in simplices of different dimensions

Dimension Neurons Edges

2 3 3

3 4 6

4 5 10

5 6 15

6 7 21

7 8 28

8 9 36

9 10 45

Idealised Simplices The simplest networks studied consisted of only one directed simplex
of a given size, of which all the neurons in the network formed a part. The connectivity matrix
is thus an upper triangular matrix with the diagonal as 0 (no self-loops). These very simple
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structures are of course extremely unrealistic as components of real biological networks, but
this simplicity greatly facilitates the functional analysis for which they were used. Contrary
to the directed simplices found in more integrated networks, these isolated simplices have no
confounding variables between the source and and sink, and this makes it possible to identify
the functional potential of the simplex in its purest form. These graphs can thus be seen as
idealised models used to isolate the functional effect the activity in the source neuron has on
the activity in the sink neuron. When instantiated in other networks, the actual effect will
of course be influenced by a range of other factors, and will differ from network to network.
The number of edges in each network is determined by the number of nodes, and are listed
in table 1.

Small World The graph structure used as the model for biologically realistic networks
were small-world networks, also known as Watts–Strogatz networks. Small-worldness involves
that the nodes are relatively sparsely connected, but the average geodesic (shortest path
length) between any two nodes is nevertheless relatively short. It has been found that
biological neural networks to a great extent share these properties. The ubiquity of a certain
structure in biological systems might indicate that it has been adapted for evolutionarily, and
further that this is because it serves certain beneficiary functions. In the case of small-world
networks, it has been hypothesised that they facilitate effective information flow and thereby
reduce the energy expenditure [51]. It has also been hypothesised that small-world networks
are more robust, since small perturbations to the networks, such as adding or removing
individual nodes or edges, rarely cause significant changes to the global properties of the
networks [52].

The graphs were generated in python using the watts_strogatz_graph method from
networkX, which takes three parameters, N, k and p. Given these numbers, the algorithm
for generating the graph is as follows. First, a ring containing N nodes is created. Next,
each node in the ring is connected to its k nearest neighbours (or (k -1) if k is odd.) Finally,
for each edge (u, v) in the network, this is replaced with probability p with another edge (u,
w), where w is a randomly chosen node in the network with w ̸= v. This has the effect of
creating shortcuts in the network. Following from this algorithm, the number of edges will be
the same for each graph containing the same number of nodes. The number of nodes, edges
and k -values for the different graphs studied are listed in table 2. For reasons of scalability,
the k -values used were dependent on the number of neurons, N, and given by:

k =
√
N

rounded off to the nearest integer.
It should be noted that although such small-world graphs share certain properties with

biological neural networks, they are far from realistic reproductions. The main commonalities
are the short average path length and the high degree of clustering. The main limitation is
the degree distribution. The degree of a node is defined as the number of other nodes to which
it is connected, so the degree distribution is the probability distribution of the degrees of all
the nodes in the network. For small-world networks, this distribution is centred with a sharp
peak around k, meaning that the connectivity of the network is fairly homogeneous, with
most of the nodes having similar degrees. Such patterns are rarely seen in real networks,
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Table 2: The number of neurons, edges and the k -values in small-world networks of different
sizes

Neurons k Edges

10 3 20

15 4 60

20 4 80

25 5 100

30 5 120

40 6 240

50 7 300

60 8 480

70 8 570

so is a substantial limitation to how realistic these networks are. In contrast, many real
networks are scale-free, meaning that the degree distribution follows a power law. This
is caused by new nodes having a preferential attachment to nodes of already high degree.
The nodes with high degree thereby end up serving as hub nodes between clusters of less
densely connected nodes. However, a limitation of these is that they fail to reproduce the
high degree of clustering seen in many real networks, which the small-world networks do
indeed reproduce, so neither of the graphs can be treated as fully realistic as reproductions
of biological neural networks [51].

Erdős–Rényi Erdős–Rényi graphs are a type of a random graphs, and these were gener-
ated using the corresponding function from networkX. This function takes two arguments,
N and p, where N is the number of neurons and p the probability that any possible edge
in the graph is present. This introduces an element of stochasticity in the actual number
of edges in the graph, where the average number of edges in a graph with N nodes is given
by (N × N − N) × p. For comparability, the values used for p were chosen to match the
number of connections with those in the small-world networks containing the same number
of nodes. Thus, the value of p was adjusted for graphs of different sizes according to the
following relation.

p =
E

N ×N −N

Where E is the number of edges in the small-world graph with the same number of nodes.
The resulting values of p, as well as the actual average number of edges in each dataset are
listed in table 3.
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Table 3: The number of neurons, the probabilities p and the average number of edges in
each dataset for the Erdős–Rényi networks

Neurons p Avg. edges

10 0.22222 20.21

15 0.28571 60.54

20 0.21053 80.78

25 0.16667 100.02

30 0.13793 119.50

40 0.15385 240.04

50 0.12245 297.39

60 0.13559 477.93

70 0.11801 567.91

Metrics For each graph, both their complete and maximal simplicial complex were cal-
culated and represented in Hasse diagrams. This gives a complete description of the entire
graph. The “simplicial properties” of the individual nodes were also computed. This included
a count of how many simplices of each dimension the node served as a source, mediator and
sink. In addition to these simplicial properties, the in- and out-degrees of the nodes were
also considered. The in-degree of a node is simply the number of incoming edges to that
node, and the out-degree the number of outgoing edges. The degree of a node is the sum
of these two. These properties are of course correlated with the simplicial role of a node,
but it is not a symmetric relation. Being a source in an n-simplex automatically implies an
out-degree of at least n, but a node can have the same out-degree without being the source
of an n-simplex. Since the aim is to study the functional role of the simplicial structures,
and not just that of the clustering and degree, one must control for the effect of the degree
of the nodes.

2.5.4 Limitations

The datasets studied are to some extent realistic, but some realisticness is necessarily sacri-
ficed for the sake of simplicity and interpretability. This is an inevitable part of any model in
science, but it is important to be conscious of their shortcomings. Regarding the connectivity
graphs, the 50/50 ratio of excitatory and inhibitory neurons and their equal distributions in
the absolute value of their synaptic strengths are known falsehoods. Furthermore, the distri-
bution of excitatory and inhibitory neurons is not random in real neural networks, although
it is assumed to be so here. For example, neurons which send signals to other regions of
the brain tend to be excitatory, whereas inhibitory neurons tend to have shorter range and
often form part of circuits where their signals are looped back to earlier segments of the same
circuit [62]. Regarding the activity simulator, this model only takes into account the activity
which results from the synaptic input of chemical synapses, so includes no consideration for
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changes in the extracellular environment nor effects from electric synapses. Although these
simplifications are not believed to be of major significance, it is something worth keeping in
mind, especially when considering the functional analysis performed on the simulated data.

2.6 Statistical Toolkit

When analysing the results obtained, a range of different methods from statistics were used.
An overview of these are given here.

2.6.1 Standard Metrics

Assume a dataset consisting of N datapoints x = x1, x2, ..., xN . The arithmetic mean of the
dataset is given by

x̄ ≡ 1

N

N∑
i=1

xi.

Another useful metric is the variance in the data, which is defined as the average distance
squared between the datapoints and the mean. This is given by:

V ≡ 1

N

N∑
i=1

(xi − x̄)2

= x2 − x̄2

From this, we can define the standard deviation, which is

σ ≡
√
V

This is measured in the units of the data itself, and is commonly used to evaluate how
unusual a datapoint is. Assuming the data is normally distributed, 68.3 % of the datapoints
will lie within the range of one standard deviation around the mean, 95.4 % of the datapoints
within the range of two standard deviations around the mean and 99.7 % within the range
of three standard deviations around the mean. Whereas the standard deviation of a dataset
represents the average distance of each datapoint from the mean of the dataset, so describes
the spread of individual datapoints within a dataset, the standard error of the mean, or
simply the standard error, is a measure of the variability of the sample mean from the true
population mean, so tells us something about how accurate the sample mean is relative to
the population mean. This is given by

SE ≡ σ√
N
.

Further, it is common to use a slightly adjusted form of the variance and standard
deviation, given by
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VN−1 ≡
1

N − 1

N∑
i=1

(xi − x̄)2

= VN
N

N − 1

σN−1 =
√

VN−1

= σN

√
N

N − 1

This is motivated by the fact that our datasets are always subsets of the complete (and
ideal) dataset obtained for N → ∞, and the variance and standard deviations which we
calculate are really descriptions of the subsets studied, whereas what we actually want is
the variance and standard deviation of the complete (and infinitely big) dataset. The N-1
versions of these equations are better estimates of the true variance and standard deviations,
which is what we wish to approximate.

Further, it is often useful to study the relationships between different datasets. Assuming
another dataset with the same number of datapoints as the original, y = y1, y2, ..., yN , the
covariace between x and y is defined as:

cov(x, y) ≡ 1

N

N∑
i=1

(xi − x̄) (yi − ȳ)

= xy − x̄ȳ

This tells us something about how the parameters are related to each other, but has
the disadvantage that it also depends on their respective ranges, and has units. A more
informative metric is thus the correlation coefficient. This is in the range [-1, 1], where -1
indicates that the datasets are perfectly anti-correlated, 0 that the datasets are uncorrelated,
and 1 that they are perfectly correlated. The correlation coefficient between x and y is defined
as

ρxy ≡
cov(x, y)
σxσy

.

When presenting the obtained results, it is common to give the calculated value along
with its confidence interval. The confidence interval is the error bars on the results, and it
is common to set this to being within one, two or three standard deviations. The higher the
error, the more certain one can be that the true value lies within the range stated (see above
for the certainties corresponding to the different ranges), at the cost of precision.

2.6.2 The Normal Distribution

In statistics, how the variables are distributed is an important factor for determining the
appropriate statistical tools to be used. A statistical distribution shows the number of
observations for each value of the variable in question, or for each group of variable values. It
is thus a useful tool when studying either the spread of the sample values or the probability
of observing a certain value. Commonly used metrics for characterising distributions are
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their mean, variance, standard deviation and shape. For the current purposes, we shall limit
ourselves to a brief introduction to the normal distribution.

The normal distribution, also called a Gaussian distribution, is a symmetric distribution
with a single peak around the mean. The probability distribution of a normal distribution
is given by

f(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

where µ is the mean around which the distribution is centred, σ is the standard deviation
and x is the independent variable. This distribution is commonly used to represent real-
valued random variables, both in the natural and the social sciences. Part of its significance
derives from the central limit theorem. This states that in many cases, given a variable X,
if we take multiple subsamples of X and calculate their means m̂, as the number of samples
increases, the distribution of these means will itself approach a normal distribution.

2.6.3 Null Hypothesis Significance Testing

When testing hypotheses, a common method is the null hypothesis significance testing. The
reasoning behind this method is based on the following rule:

Definition 2.2: Rare Event Rule for Inferential Statistics

“If, under a given assumption, the probability of a particular observed event is ex-
tremely small, we conclude that the assumption is probably not correct.” [57, p. 393]

In essence, this means that we analyse the data in order to be able to distinguish between
events which could plausibly occur by chance and those that are highly unlikely to occur by
chance. The method proceeds as follows. Assume we have an initial hypothesis H, which
states that some variables are correlated. We then create a null hypothesis, H0, which is the
negation of this, namely that the variables are not correlated. This null hypothesis must
be precisely defined in terms of a numerical value. In this case, it would state that the
correlation coefficient c = 0. Next, we formulate an alternative hypothesis, H1, which must
imply that H0 is false, although it need not be its perfect negation. This is because the
alternative hypothesis can be either one-sided or two sided. If two-sided, it would state that
c ̸= 0, but it could just as well state that c < 0 or c > 0. In our case, where the original
claim which we wish to test is that there is a positive correlation, the natural choice would
be H1 : c > 0. However, note that H1 need not be equal to H. We then assume that H0 is
true, perform the experiments, and analyse the data in question using some appropriate test
statistic. We then calculate the probability of seeing the observed data given that H0 is true,
so the lower the value, the less likely it is that H0 is true. The resulting number is commonly
known as the p-value. Beforehand, we have decided on a significance level α, which is a
probability threshold below which the null hypothesis H0 will be rejected. Common choices
are 0.01 and 0.05. The lower the value, the harder it is for the null-hypothesis to be rejected,
but the more statistically significant is the potential rejection. The obtained p-value is then
compared with α. If p < α, the null-hypothesis is rejected. In the case of a one-sided H1,
some further investigation is then needed to test whether we are also justified in accepting
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H1, whereas when H1 is two-sided, this follows directly from the rejection of H0. However,
if p > α, we fail to reject the null hypothesis. It is of crucial importance to stress that this
does not mean that we accept H0. All we can say from such a result is that we have failed
to show that H1 is the case with the required degree of certainty [57].

Errors For any set of hypotheses and observations, there are four potential outcomes. We
can correctly reject H0, correctly fail to reject H0, incorrectly reject H0 or incorrectly fail to
reject H0.

Incorrectly rejecting H0 is known as a type I error, and involves that we reject H0 and
accept H1, when H0 is in fact true. The rate of type I errors depends on the significance level
chosen. For example, with a significance level of 0.05, in the worst case we will incorrectly
reject H0 5% of the time, so whenever p < α, we can only be 95% certain that the detected
effect is real and not just a statistical fluctuation.

Incorrectly failing to reject H0 is known as a type II error, and means that we fail to
reject H0, and thereby implicitly reject H1, when H1 was indeed correct. The rate of type
II errors is usually denoted by β, and is the result of numerous other things, such as the
sample size, the standard deviation and the significance level. In general, there is a trade-off
between type I and type II errors, where the rate of type II errors increase with decreasing
α.

2.6.4 Test Statistics

The general form of the test statistic is to calculate some test score on the following format

Observed data − Expected data if H0 is true
Average variation in data

In cases where the true distribution is known to be a gaussian and the standard deviation
σ of the entire population is known, it is common to use a z-test. When testing a single sample
of n elements, where x̂ is the sample mean and µ0 the hypothesised population mean (i.e.
the expected mean if H0 is true), the z-value is given by

z =
x̂− µ0

σ√
n

.

However, in many cases, the standard deviation is unknown, and the distribution might
not be perfectly gaussian. Assuming n is sufficiently large, it is possible to instead use a
t-test. This is given by

t =
x̂− µ0

s√
n

,

where s is the sample standard deviation. To find the p-value, one also need the number
of degrees of freedom, df, which is defined as

df = n− 1.
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For the current purposes, the test statistic which will be most applicable is the analysis
of variance, commonly shortened as ANOVA [15]. This is a type of F-test statistic which is
used to test to what extent a certain grouping of the samples helps to explain their values.
The null hypothesis is that the means of the underlying distributions of all the groups with
respect to the variable in question are identical, with the alternative hypothesis being that
at least one of the means differ from the others. In other words, it is a test of whether the
grouping is meaningful for the current explanatory purposes. It does this by comparing the
variance in the observations of the different groups. It comes in a few varieties, though for our
purposes only the one-way ANOVA will be needed. This allows us to compare the variance
in a single independent variable within and between groups. The resulting F-statistic is
given by

F =
explained variance

unexplained variance

=
between-group variance
within-group variance

Let K denote the number of groups, ni the number of observations in the i th group, x̄i

the sample mean of group i and x̄ the overall sample mean. The between-group variance is
then given by:

1

K − 1

K∑
i=1

ni(x̄i − x̄)2

Further, let xij denote the j th observation in the i th group and let N be the overall sample
size. The within-group variance is then given by

1

N −K

K∑
i=1

ni∑
j=1

(xij − x̄i)
2.

In this case, the degrees of freedom under the null hypothesis are given by d1 = K−1 and
d2 = N−K, hence the denominators. If F is higher than some critical value corresponding to
the chosen significance level α, the null hypothesis is rejected. This critical level is a function
of the degrees of freedom and α, and can be found in tables. Alternatively, statistics packages
in python usually allow you to go directly to the p-value for a straightforward comparison
with α. In cases where only two groups are considered, the t-test and the ANOVA are
equivalent, with their relation being F = t2. Note that rejecting the null-hypothesis in an
F -test only tells us that at least one of the groups differ from the others, though it does
not tell us which one. To determine this, further investigations with pair-wise comparisons
are needed. This can for instance be used to see whether there is only a single group which
stands out, or whether numerous groups are significantly different from the others. The
ANOVA test was applied using the f_oneway method from scipy.stats.

Importantly, there are three conditions which need to be met for the ANOVA test to be
valid [58]. Firstly, the observations must be independent, secondly, the observations should
be approximately normally distributed within each group, and thirdly, the variances must
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be fairly equal across the groups. The first condition is easily met in our case, but tests must
be performed to check whether the other two conditions are met.

Without going into further details, whether the data is normally distributed can be tested
using the Shapiro-Wilk [50] test for normality, which was done using the shapiro method
from scipy.stats. The Levene [33] test can be used to check for equal variance between the
groups. This was done using the homoscedasticity method from pingouin. In both cases,
the null-hypothesis tested assumes that the samples are normally distributed or that the
variance is equal, such that p-values below 0.05 means that the null hypotheses are rejected,
and the assumptions are not met. For p-values above 0.05, the null-hypotheses are not
rejected, and we assume that the data is normally distributed or that we have homogeneity
of variances.

If the normality-criterion is not met, one can use the Kruskal-Wallis [30] test instead. This
is a non-parametric version of the one-way ANOVA, and is similarly used to test whether
there are statistically significant differences between the observations from different groups.
Whereas the ANOVA tests whether the means of the groups are different, the Kruskal-Wallis
looks at the median values. These are then ranked, and the test checks whether a random
observation from one group is equally likely to be above or below random observations from
the other groups. This was implemented using the kruskal method from scipy.stats. In
cases where the data is normally distributed, but the groups have unequal variance, the one-
way Welch ANOVA [61] can be used instead. This was implemented using the welch_anova
method from pingouin. Finally, in cases where neither condition is met, one can use the
non-parametric Mann-Whitney U test [23]. This test only works for pair-wise comparisons,
and tests whether the underlying distributions of the two datasets are the same. This was
implemented using the mannwhitneyu method from scipy.stats.

In retrospect, the Mann-Whitney U test was the method primarily used, so we describe
this in more detail. This is another rank-based test, where the null-hypothesis being tested
is that given two random samples, x and y, one from each distributions, the probability of
x being ranked higher than y is equal to the probability of y being ranked higher than x. If
this is rejected, one can infer that the distributions are different. This is done by calculating
the so-called U -statistic, which can be done by focusing on either sample 1 or sample 2,
giving two different, but equivalent, numbers, namely

U1 = R1 −
n1 (n1 + 1)

2
,

U2 = R2 −
n2 (n2 + 1)

2
.

n1/n2 are the sample sizes of sample 1/2, and R1/R2 the the sum of the ranks of sample
1/2. When calculating the p-values, the smaller of the two values U1 and U2 is used. Note
that the shapes of the two sample distributions are important for how the results should be
interpreted. If the two distributions have the same shape, meaning that their variances are
equal, a statistically significant result on the Mann-Whitney U test means that the means
of the two distributions are different. In the cases where the shapes are different, a positive
result means that their mean ranks, i.e. the average of the ranks of all the observations in
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each sample, are different. However, both results implies a statistically significant difference
between the distributions.
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3 Research Purpose and Conceptual Challenges

3.1 Overarching Purpose and Preliminary Work

As discussed in previous sections, the challenges we are facing when trying to understand the
dynamics of biological neural networks are substantial, and there is no agreement on what
approaches are likely to be most conducive in this very broad research program. The current
project falls under the category of connectomics, which, as discussed in section 2.1.2, is in
itself a field with much uncertainty about how to interpret different types of connectivity
and connecting this to different functions.

Further, instead of simply looking for correlations in the data, as is common in the field of
neuroscience, our emphasis was on the causal dependencies in the networks. This is inspired
by Pearl’s argument about the deeper ontological status of such causal relationships, and the
belief that they more closely “carve nature at its joints” than mere descriptions of correlations
between the variables. We believe that establishing the underlying causal mechanisms of
the systems studied will be a better starting point for true understanding and mechanistic
explanations of the dynamics of the activity in the networks.

The initial purpose of this project was to investigate and potentially develop machine
learning methods for causal discovery from spike trains in neural structures. In the lingo
of connectomics, this falls under the category of effective connectomics. However, this aim
was eventually abandoned in favour of a more investigative analysis of the function of said
structures, the reasons for which will be elaborated on below.

The machine learning model used was developed by Sønstebø and Brunborg, and is
available at [8]. This model is based on graph neural networks, and is capable of discovering
the structural connectome from activity generated using the simulator discussed above. A
challenge with this model is that it learns a very high-dimensional version of the connectome,
where the connection between every pair of neurons is mapped and given equal importance.
This might indeed be useful in some cases, where the aim is to study smaller network motifs,
but it does not scale well for larger systems with greater number of neurons, both when
it comes to the computational power needed and our ability to interpret the output. For
larger systems, the scale makes it near impossible to assign function to individual neurons
and synapses. The initial aim of the this project was to develop a model which, given
the same input, would be capable of learning a lower-dimensional representation of the
connectivity by identifying bigger structural units than individual neurons. As discussed
above, the brain shows a high degree of clustering and modularity, where the assumption is
that these structural parcellations are indicative of functional parcellations, since segregated
areas with high degrees of internal connectivity will be receiving and outputting much of
the same information with small variations. It would thus be useful if a tool could be found
to determine this low-dimensional structure of clusters and their inter-cluster connectivity,
rather than the complete connectome.

Since the aim was to find a low-dimensional representation of the effective connectome, it
was also required that the units of choice could somehow be interpreted as causal units, and
after lengthy considerations of potential structures, the choice fell on the directed simplices,
partly because of their relative novelty and hence lack of previous research done on them.
As discussed above, there have been some investigations into their potential significance
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in neural networks, but as of now, relatively little has been established, so this is a field
in need of more research. This lack of research and known functionality of the structures
led us to shift the focus away from the development of a mere predictive tool, and move
towards a more functional investigation of these structures. After all, there is much to be
said against spending great amounts of time and resources on developing a machine learning
model capable of predicting a structure which you have no idea how to use or interpret. Hence
the primary purpose of the project ended up being to determine the functional significance
of higher-order simplicial structures in biological neural networks.

3.2 Conceptual Analysis of Simplices

As mentioned, studying the structural connectivity of neural networks in terms of simplicial
complexes is a very new approach. Consequently, hardly anything is known about what they
might signify, nor of whether they should even be treated as structural units of any special
significance.

There are two main arguments in favour of the pursuitworthiness of simplices, one the-
oretical and one experimental. The theoretical argument is that they intuitively seem like
important information processing units. In isolation, they only have a single input source, so
all the neurons in the simplex initially receive the same bits of information from the source
neuron. Next, there is a step-wise information processing where the number of integration
points (and thus the number of steps) depends on the dimensionality of the simplex. For each
additional neuron, the potential complexity of the information processing increases. Finally,
the sink neuron serves as another bottleneck through which the processed output must pass.
In the same way as other interconnected clusters are believed to serve as functional units
because of their shared input, it is natural to believe that simplices might play a similar role.

The experimental motivation, as presented in [47] and outlined in section 2.2 above, is that
higher-order simplices are found in unexpected numbers in reconstructed neural networks,
compared with random (Erdös Rényi) graphs with the same number of neurons and synapses.
A problem with this motivation is that these results are insufficient to justify the claim
that simplicial structures play a designated role and that these are the units which have
been selected for. It is often the case that we observe features in biological organisms in
unexpected numbers. However, to go from there to assuming that the features necessarily
serve a function which has been selected for will be an example of an adaptationist fallacy,
as discussed by Gould and Lewontin [22]. They argue that many features will have appeared
as necessary byproducts of other features which have been selected for. As an analogy, they
use the spandrels in St Mark’s Basilica in Venice as an example of an architectural feature
which might easily and incorrectly be interpreted as an intentional decorative feature, when
in reality they are simply an unavoidable byproduct of the construction of the dome. This
illustrates the importance of always taking into account other features which might be the
true evolutionary advantage which has been selected for, and from which the feature under
investigation might simply be a byproduct. In short, one should be very cautious with
assuming function just from presence.

Regarding simplices, we know that high degrees of connectivity and clustering are ubiq-
uitous in biological neural networks, and are fairly confident that these traits do indeed
serve a purpose in themselves. It might well be the case that the simplices’ disproportional
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pervasiveness is simply a byproduct of the high degrees of connectivity in the networks.
Further, the directed simplices discussed in [47] are very strictly defined, even though

one might expect that near-perfect simplices, with only a few edges missing, will be able to
perform very similar computations. To make the argument that it is the perfect simplices
which have been selected for and are therefore worthy of special treatment as functional
units in the brain, further justification is needed. One approach would be to show that they
are found in disproportionately large numbers even when the high degree of connectivity is
corrected for, and that their numbers are more statistically significant than similar structures
which one would also expect to follow as a byproduct from high levels of connectivity.
Another result to strengthen the belief that directed simplices are somehow special would be
to show that they are especially suited to perform certain computational functions which we
believe to be common, or at least favourable, in the brain. A significant part of this project
has been focused on the latter question, thereby also investigating the pursuitworthiness of
higher-order simplices as a significant unit in biological neural networks. The ultimate aim
would be to connect these structures to higher-level cognitive functions, but in the current
project, we were looking at the neural dynamics at a much lower level. The best we could
hope for was thus to find some lower-level functional properties which might plausibly be
connected with higher-level cognitive functions, and which could thereby serve as proxies for
the higher-level functional importance.

3.2.1 Natural Kinds

Another way of framing the purpose of this project is in terms of natural kinds. The over-
arching question then is to what extent this structural description of the graphs in terms of
simplices really corresponds to any useful functional grouping. In philosophy, the notion of
natural kinds is used to describe groupings of entities which reflect actual structures in the
natural world and not just things humans group together based on their actions and moti-
vations [6]. In other words, a grouping must be mind-independent in order to qualify as a
natural kind. As an example, chemical elements are normally seen as natural kinds, whereas
tables are not. In the case of simplices, one could say that the structural connectivity makes
them a natural kind. However, it is not really the structure itself we are interested in, but
rather the function it facilitates. The assumption is that the structures imposes certain
constrains on the information-flow between the neurons in the simplices, such that it also
makes sense to treat them as distinct groups based on their functional role. Whether this is
the case is far from certain.

Firstly, the directed simplices are defined without regards to the nature of the neurons
(whether they are excitatory or inhibitory), nor the synaptic weights in the structures. How
these properties are distributed in the simplex will naturally have some impact on the func-
tional output of the simplex, so it is far from obvious that directed simplices of the same
dimension, but with very different distributions of synaptic weights and neuron types, can
meaningfully be grouped together in terms of their functional potential.

Secondly, one must not forget that these simplices do not exist in isolation. Whereas it
seems reasonable to treat semi-isolated clusters in networks as functional units, since they
only have a few incoming and a few outgoing nodes, and therefore share much of the same
information, this is not the case when it comes to simplices. The neurons which form part
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of the simplices are also highly connected with neurons from outside the simplex, and there
will be information flowing both in and out of the simplex in far more places than just at
the source and the sink. Further, neurons have no way of distinguishing between activity
coming from different sources, which further speaks against treating the simplices as clearly
delineated functional units.

An underlying assumption behind the focus on simplicial structures is that despite these
sources of variance, the simplices nevertheless form meaningful functional groups according
to some metric. In this project, different types of groupings were tested relative to the dif-
ferent metrics outlined below. The most obvious grouping is that of simplex size, where
the expectation seems to be that higher-order simplices are somehow more powerful or sig-
nificant in performing some function in the brain. Another underlying assumption is that
the complete simplices somehow represent a distinguished functional group amongst all the
other (arbitrary) structures one could have chosen to focus on. In this case, simplices with
missing edges lose their status as simplices, whereas additional edges, either to other neurons
outside of the simplex or reciprocal connections within the simplex, are allowed. It is far
from trivial why this should be the set of necessary and sufficient conditions for something
to be a directed simplex. To justify having the completeness of the simplex as a necessary
requirement when treating the simplicial structures as functional groups, one would need
the difference between the complete and incomplete simplicial structures to be functionally
observable. On the other hand, the definition of a directed simplex allows for additional con-
nections in the graph. Thus, for the argument to hold, one must be able to show that adding
additional connections has a lesser overall effect on the function than removing connections,
and preferably that the complete simplex is somehow in a special functional group, worthy of
being singled out. The validity of these groupings were tested using the appropriate analyses
of variance, as presented in section 2.6.4.

3.2.2 Quantifying Significance - In Search of a Metric

A difficulty was thus to find a meaningful metric which could be used to quantify the signifi-
cance of these structures. For example, one could consider the effect the simplicial structures
have on the general information-flow in the network, or compare the information input in
the source-neuron with the output of the sink-neuron. In the case of neurons firing, we know
that the information is encoded in the spike trains, not in the individual action potentials.
However, talk of information only makes sense once you have an encoding and a decod-
ing protocol, and since different neurons play different roles in the network, no universal
decoding scheme can be assumed, so the same patterns of spiking might mean completely
different things coming from different neurons. To make matters even worse, the activity in
the simulated networks studied here remains uninterpreted. The input cannot be related to
any specific sensory stimuli, nor the output to any function. We simply have noise in and
noise out, making it very difficult to use this dataset to assign function to structures, both
at the local and the global scale.

For these reasons, coming up with any one metric which could be used to quantify the
functional significance of higher-order simplices was simply impossible, so a small subset of
metrics were chosen. These include the average treatment effect, transfer entropy and auto-
correlation, details of which will be given in section 4. The first two metrics mostly focus on
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the causal relationship between the source and the sink neuron, whereas the autocorrelation
mainly focuses on the activity patterns in the sink neuron as function of individual spikes in
the source neuron. Importantly, these are only a few of a near infinite number of possible
functional roles these simplicial structures might have, so a negative result on these metrics
is by no means sufficient to disprove the functional role of the simplicial structures in gen-
eral. In addition, an alternative approach was also tested. Without making any assumptions
about the actual function, it was tested whether it was possible to train a machine learning
model to learn the mapping from the activity in the networks to their simplicial structures.
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4 Analysis of Function

4.1 Methodological Approach

As discussed above, the general challenge when testing for the functional role of directed
simplices is that the question itself is somewhat ill defined. The underlying assumption in
much of the literature seems to be that it makes intuitive sense that such a neatly defined
structure should come with a corresponding functional role, but what this role is remains un-
specified. In general, when testing for function in a dataset, one must specify the hypothesis
beforehand, and preferably have a new dataset for each variable under investigation. This
is to avoid so-called p-hacking, which is when one tests numerous variables using the same
dataset in the hope that at least something will turn up as statistically significant, which,
as a result of the sheer numbers and the probabilistic nature of p-values, it eventually will.
In other words, by performing numerous different tests on the same dataset, we increase the
chances of type I errors. This is because, when using a significance level of α = 0.05, we
expect to incorrectly reject the null hypothesis in 5 % of the cases. Thus, the chance of
doing this for some of the observations increases when different tests are performed on the
same dataset. Thus, to somewhat mitigate the problem of incorrectly interpreting random
variation as statistically significant, it was decided that if anything of substance turned out
to be a statistically significant functional trait, a new dataset would have to be generated
to double check that this was not simply due to random fluctuations, and hence to validate
the conclusions.

In the following sections, three different metrics were used to test for function. These
were average treatment effect, transfer entropy and autocorrelation. With some exceptions,
the general approach was to focus on the relationship between activity in the source and
sink neurons, and investigate the dependency of this on the size and completeness of the
simplices. Analysis of variance was then used to test whether the grouping used, be it
size or completeness, was statistically meaningful and informative given the functional trait
in question. The underlying premise for even considering directed simplices an interesting
structural group is that they also form an interesting functional group, which is what the
analyses of variance were included to test.

4.2 Average Treatment Effect

One potentially important functional trait is the causal relationship between the source and
the sink neurons in simplicial structures. In [47], they only investigated the correlations
between the spike trains of different neurons. This is an interesting measure if what one is
looking for is cofiring or coactivity. However, because of its symmetry, correlation is a poor
measure of causal effect, even if one includes a time-shift. Instead, the average treatment
effect, a metric commonly used to quantify the causal effect of treatments in randomised
controlled trials in medical research, was adopted. This method requires randomised inter-
ventions, but is appropriate here since the lack of confounding variables ensures that the
activity in the source neurons can be treated as randomised interventions without further
ado. Here, only the causal effects of the source neurons on the sink neurons were considered.

The ATE is a measure of the average difference in outcome between subjects given treat-
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ment and those not given treatment. It assumes a counterfactual understanding of causality,
where causation is taken as the difference in effect when one intervention is used compared
with what would have happened had another intervention been chosen. This is done by mak-
ing the variable conditioned on an intervention, so the ATE is defined using the do-operator
introduced in section 2.3. Given outcome Y and treatment T, where T and Y are binary
values ∈ {0, 1}, the average treatment effect τ of T on Y is given by

τ = E[Y |do(T = 1)]− E[Y |do(T = 0)].

In our case, Y represents whether the sink neuron spikes or not and T represents the
source neuron’s spiking or not. To study the time dependency of the causal effect of T on
Y, the ATE was calculated for different relative time-shifts. Thus, the activity of the source
neuron at time t was compared with the activity of the sink neuron at time t+i. The ATE
with time-shift i of network n is given by:

τi,n = E[Yt+i,n|do(Tt,n = 1)]− E[Yt+i,n|do(Tt,n = 0)]

Since the activity is binary, the expectation values are equal to the conditional probabil-
ities. Consequently, we have that

τi,n =1× P (Yt+i,n = 1|do(Ti,n = 1)) + 0× P (Yt+i,n = 0|do(Ti,n = 1))

− (1× P (Yt+i,n = 1|do(Ti,n = 0)) + 0× P (Yt+i,n = 0|do(Ti,n = 0)))

=P (Yt+i,n = 1|do(Ti,n = 1))− P (Yt+i = 1|do(Ti,n = 0))

For simplicity, do(Tt = 1) is denoted as T and do(Tt = 0) as ¬T . From the definition of
conditional probabilities, we have that

P (Y |T ) = P (Y ∩ T )

P (T )

and

P (Y |¬T ) = P (Y ∩ ¬T )
P (¬T )

Substituting in

P (Y ) = P (Y ∩ T ) + P (Y ∩ ¬T ),

we have that the absolute ATE is

τabs = P (Y |T )− P (Y |¬T )

=
P (Y ∩ T )

P (T )
− P (Y )− P (Y |T )

1− P (T )

(4)

This gives the absolute ATE. This is equivalent to the effective connectivity between the
source and sink neurons in the network, which can also be defined for different time-shifts
between them. Perhaps more informative is the relative ATE, which tells us the relative
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change in activity of the sink neuron when the source neuron fires. This is given by the
absolute ATE divided by the probability of the sink neuron’s firing given that the source
neurons did not fire.

τrel =
τabs

P (Y |¬T )
(5)

These values describe individual networks. However, the aim was to find functional
properties which simplicial structures of the same dimensionality have in common. Thus,
the average treatment effect across networks of the same size was calculated, such that the
relative ATE for time-shift i of the N networks containing d -dimensional simplices in the
dataset was given by

ATErel,i,d =
1

N

N∑
n=1

τrel,i,n,

and similarly for the absolute ATE

ATEabs,i,d =
1

N

N∑
n=1

τabs,i,n.

4.3 ATE in Minimal Networks

One potential functional trait associated with simplicial structures is the average treatment
effect between the source and the sink neuron. This is a measure of the average change in
activity in the sink neuron induced by an extra spike in the source neuron. In the idealised
networks, where there are no confounding factors and the only structure is a perfect directed
simplex, all the information is constrained to move from the source to the sink, so the two
neurons form the two bottlenecks in the information flow. In such a case, one can treat
the entire simplex as a single causal unit, such that the ATE between the source and the
sink neurons also becomes a measure of the causal effect the unit as a whole exerts on the
incoming information, by comparing its input with its output.

As the time-shift between the spike-trains increases, this will not just measure the direct
causal effect, but also include the causal effect passing through the intermediate neurons in
the simplex. It should be noted that this is a somewhat crude measure of causal effect, since,
as discussed above, this only measures the increase in probability of individual spikes. In
the case of neural signalling, we rarely care about such independent spikes. However, even
though the actual causal effect we are interested in might be more complex, it is reasonable
to assume that this would also lead to an increase in the ATE for individual spikes. Thus,
the ATE should function as a reasonable proxy, given that we lack a description of the “true”
function.

If the assumption is that bigger simplices are somehow more “important” than smaller
simplices, and we assume that the ATE between the source and the sink neurons is a good
measure of importance, then we should expect to find a higher ATE for bigger simplices.
Note that the ATE is also a function of the time-shift used between the spike-trains of the
two neurons. A reasonable expectation is that the causal effect of the source neuron will last
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for longer for simplices of higher dimensions, since the maximal path length between them
will increase for each additional neuron. This would show as a relative increase in ATE for
bigger time-shifts.

4.3.1 Results

0 5 10

0

0.5

1

1.5

2

2.5

3

3.5
Neurons

3

4

5

6

7

8

9

Relative ATE for different simplex dimensions over time

Time-shift [ms]

R
e
la

t
iv

e
 A

T
E

Loading [MathJax]/extensions/MathMenu.js

(a) Standard errors shown in shaded regions.
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(b) Standard deviations shown in shaded regions.

Figure 9: The average relative ATE between source and sink neurons as function of time-shift
between the time-series, shown for simplices of different sizes. Standard errors and standard
deviations are shown in the shaded regions of subfigures (a) and (b) respectively.

First, the relative ATE was studied for simplices containing between 3 and 9 neurons, as
shown in fig. 9, with the standard errors included in subfig. (a) and the standard deviations
in subfig. (b). Here, the relative ATE is plotted as function of time-shift between the spike-
trains of the source and sink neurons. There are two things worth noting here. Firstly, the
relative ATE is strongest for the first time-step across all simplex sizes, suggesting that the
main causal effect is transmitted through the direct connection from the source neuron to
the sink neuron, regardless of simplex size. As time passes, the relative ATE decreases, until
after about 6 ms, where there is hardly any detectable causal influence for any of the simplex
sizes. Secondly, the relative ATE is significantly stronger for the smaller simplices, even for
greater time-shifts. This is contrary to the expectation that the additional causal paths in
the bigger simplices from the source to the sink would make the effect last for longer. This
is not what is observed, however, and we conducted some further investigations to try to get
a better idea of why this might be.

From eq. (5) and eq. (4), one can see that the relative ATE must come from a combination
of the probabilities P (sink|source) and P (sink|¬source), so these were investigated further.
Again, this was done for different relative time-shifts between the spike-trains of the two
neurons. One potential reason for the reduced relative ATE for simplices of higher dimensions
is that the sink neurons in the larger simplices show less variation in their spike rate over
time. This can be seen in fig. 10b, where the probabilities of the sink firing given that the
source did not fire is plotted as function of time-shift for simplices of different sizes. The
likelihood that a sink neuron fires without the source neuron’s firing is higher for simplices
of higher dimensions, giving a lower both absolute and relative ATE. Further, the average
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(a) P (sink|source)
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(b) P (sink|¬source)

Figure 10: The average probabilities of the sink firing given that the source neuron in the
simplex did (a) or did not (b) fire as function of the time-shift between the two time-series.
Shown for simplices of different sizes, with the standard errors of the means shown in shaded
regions. The errors might make it difficult to distinguish the colours in (b), so in order of
high to low probabilities, the simplex sizes are as follows: 9, 7, 8, 5, 6, 4, 3.
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Figure 11: Average probability that the sink neuron fires at any given time step as function
of simplex size. Standard errors shown in shaded region.

firing rate for the sink neurons also tend to increase with the simplex dimension, as shown in
fig. 11, where the average overall firing probability is plotted as function of simplex size. This
is likely a result of the higher number of incoming connections to these neurons compared to
those in the smaller simplices, which introduces more complexity to the dynamics of the sink
neurons. Note that this does not necessarily generalise to more interconnected networks,
where the sink neurons of smaller simplices might be tightly interconnected with other parts
of the networks, and therefore have higher in-degrees than the ones in the idealised networks
considered here. In fig. 10a, the probability of the sink neuron’s firing given that the source
neuron fired is plotted as function of time-shift for different simplex sizes. As can be seen,
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(a) Excitatory source neurons, standard errors in
shaded regions.
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(b) Inhibitory source neurons, standard errors in
shaded regions.
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(c) Excitatory source neurons, standard devia-
tions in shaded regions.

0 5 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
Neurons

3

4

5

6

7

8

9

Relative ATE for different simplex dimensions

over time for inhibitory source neurons

Time-shift [ms]

R
e
la

t
iv

e
 A

T
E

Loading [MathJax]/extensions/MathMenu.js

(d) Inhibitory source neurons, standard devia-
tions in shaded regions.

Figure 12: The average relative ATE between source and sink neurons as function of time-
shift between the time-series, shown for simplices of different sizes. Standard deviations are
shown as shaded areas. The dataset has been sorted based on whether the source neuron is
excitatory or inhibitory, with the excitatory shown in (a)/(c) and the inhibitory shown in
(b)/(d), with standard deviations included in (a)/(b), and standard errors in (c)/(d).

this follows a very similar pattern to the relative ATE in fig. 9a. The sink neurons in the
smaller simplices have a significantly higher probability of firing right after the source neuron
has fired. Again, this difference is somewhat surprising, since the direct connection from the
source to the sink is present in all of the simplices. One potential reason for this is that as
a result of the firing patterns of the higher order simplices being more spread out, the sink
neurons of these simplices are more likely to be in their refractory periods when the source
neuron fires next, reducing their chance of firing.

A final feature detected in these graphs is that the firing probabilities are not simply
a function of the simplex size. For the simplices consisting of more than 5 neurons, both
the average firing rate and the probability of firing when the source neuron did not fire is
lower for the even-numbered simplices than for the odd-numbered ones. This can be seen
in fig. 10 and fig. 11, where the sink neurons in the simplices with 6 and 8 neurons have
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significantly lower firing probabilities than expected from the probabilities of the simplices
with 5, 7 and 9 neurons (if we assume linearity). Why this is the case was not investigated
further, but a potential reason is that the time-phase of the inputs somehow corresponds
with the refractory period of the sink neurons.

Finally, and rather importantly, one must consider the variance in the datasets, and not
just the standard errors of the means. The standard deviation is a measure of the average
variance of the datapoints in the groups, so is indicative of how homogeneous the group is
with respect to the metric in question. The standard deviations of the relative ATEs are
shown in the shaded regions in fig. 9b. Looking at this, it is clear that the variance in the
relative ATE of simplices of the same dimension is very high. Indeed, it looks as if the
average values of all the sizes considered are within the standard deviations of all the other
sizes. This is a strong indication that we are dealing with some very heterogeneous groups
of entities, and one might begin to question whether grouping them together based on size
with respect to the relative ATE is even meaningful. It is not difficult to think of reasons
for the high standard deviation, for although the simplices of a given dimension all share the
same structure, the distribution of synaptic weights and inhibitory and excitatory neurons
can vary widely. This will certainly have a strong effect on the firing patterns of the different
neurons.

One obvious factor when looking at the ATE between the source and the sink is of course
whether the source neuron is excitatory or inhibitory. We therefore tested the effect of
also grouping the networks together based on the type of the source neuron. The resulting
graphs, again showing the relative ATE for simplices of different sizes, but this time with
the networks with excitatory and inhibitory source neurons in separate groups, are shown in
fig. 12. When this feature is corrected for, the standard deviations in both of the datasets
become smaller, showing that this was indeed a contributing factor to the variance in the
previous analysis. However, the variance is, not surprisingly, still high, since there will still
be great variety in both the synaptic strengths and the distribution in type of the other
neurons.

Finally, something which might be worth noticing is that the positive effect of the excita-
tory source neurons is far stronger than the negative effect of the inhibitory source neurons.
The absolute values of the ATE of the excitatory source neurons is about 10 times higher
than the absolute values of the ATE of the inhibitory source neurons. There is also a much
clearer dependency on simplex size for the ATE of the excitatory source neurons than for
the inhibitory ones, which are more clustered together. This suggests that the size of the
simplex only makes a difference to the ATE between source and sink when the source neuron
is excitatory.

Analysis of Variance Given the high in-group variance, a pressing question in this case
is whether categorising the different graphs according to simplex size is even informative.
To test this, the intention was to use the one-way ANOVA, so we first tested whether the
observations within each group were normally distributed and whether their variance was
equal.

The resulting analysis showed that the distributions were generally normally distributed
for time-shifts above 10 ms, but were in general not normally distributed for time-shifts less
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than that. This held across all simplex sizes. Unfortunately, the variances were not homo-
geneous for time-shifts below 5 ms. This makes employing either variation of the ANOVA
test considered unreliable. We therefore tested whether grouping the simplices according to
whether the source neuron was inhibitory or excitatory might help. The distributions were
still not normal for lower time-shifts, nor were the variances equal. Unfortunately, none of
the tests of variance were thus be applicable, as they would not give reliable results if used.

Thus, the weaker Mann-Whitney U test was used with pairwise comparisons of all the
different simplex sizes for time-shifts up to 10 ms. The null hypothesis in each of these
cases was that the underlying distributions behind the two datasets were identical. The
null hypotheses were rejected for p-values below 0.05, meaning that the difference between
the two groups was statistically significant, and thus that their difference in simplex size
corresponded with a difference in relative ATE.

The results corresponded well with what can be seen from visual inspection of fig. 9 and
fig. 12. When the type of source neuron was not controlled for, only the smallest simplices
of 3 neurons were significantly different from most of the other simplex sizes for time-shifts
up to 5 ms. The 3-simplices (4 neurons) were also significantly different from most of the
other sizes for a time-shift of 1 ms. When separating the networks with excitatory and
inhibitory source neurons, the significance levels of the excitatory group were higher than for
the inhibitory group. They also corresponded well with the patterns observed without the
pre-grouping, but with even higher significance levels. For the graphs with excitatory source
neurons, both the 2- and 3-simplices were significantly different from all the other sizes for
time-shifts up to 4 ms. For the inhibitory source neurons, there was more variation across
the time steps, where the 3- and 5-simplices stood out for time-shifts of 2 and 3 ms and the
2- and 3- simplices for a time-shift of 6 ms. There were few general trends in the significance
of the groupings for the inhibitory source neurons.

4.3.2 Discussion

There are two main finding from these results. Firstly, the relative ATE between the source
and the sink neurons is significantly higher in the smaller simplices for time-shifts up to about
6 ms, after which it is roughly identical for all simplex sizes. Secondly, the high variance
in the results speaks against treating directed simplices of the same dimensions as forming
functional groups, and not just structural groups.

Regarding the stronger ATE between source and sink neurons in smaller simplicies, this
was contrary to the expectation that the ATE would at least be higher for bigger simplices
for greater time-shifts. The ATE at larger time-shifts can either be the causal effect passing
through the mediator-neurons in the simplices, or from the fact that the effect of even a
direct connection works over 10 time-steps with decreasing effect (see eq. (3)). The lasting
effect for the smaller simplices must indeed come from this coupling window, since there
is no other way for the effect of the source on the sink in a 2-simplex (3 neurons) to last
for more than 2 ms. The fact that the ATE in the smaller simplices is so much higher
than for the bigger ones suggests that most of the detectable ATE comes from these direct
connections, rather than from the effect passing through mediator-neurons in the bigger
simplices. In this context, this is a negative result regarding the importance of higher-order
simplices, though with significant limitations. One must remember that these results are

57



based on very idealised graphs, where the sink neurons in the smaller graphs receive far less
input than those in the bigger simplices. This is not necessarily the case in more complex
networks, so the difference detected could also partly be the result of a simple difference in
in-degree. Yet, one would expect the two values to be correlated also in more integrated
networks.

Perhaps more damning for the focus on simplices is the significant levels of variance
within the groups. Although the mean values between the groups are significantly different,
the within-group variance makes it difficult to justify using these groupings as strongly
informative of ATE. When we search for functional groupings, we usually look for the ones
that give a combination of differentiable means and low within-group variance. Assuming
the means are different, high in-group variance could be an indication that the grouping
we are currently working with partly corresponds with a more “natural” grouping, which
is the real cause of the difference in function detected. Further, as mentioned, it is far
from difficult to come up with reasons for the high in-group variance. For example, these
results clearly show that whether the source neuron is inhibitory or excitatory has a strong
effect on the mutual dynamics of the source and the sink neurons in the simplices, and it is
far from obvious why grouping them together simply based on their simplicial structure is
functionally meaningful. Further, this is only one of the differences which could be controlled
for. It is likely that other factors, such as the type of some of the other neurons and the
edge weights, give rise to different dynamics. This is reflected in the great variance in the
relative ATE, and gives reason to be sceptical of the meaningfulness of treating all these very
heterogeneous structures (i.e. simplices of the same dimension) as part of a single functional
group. This point is further reinforced by the finding that there is hardly any difference
between the simplices of different dimensions for networks with inhibitory source neurons,
so with respect to relative ATE between source and sink neurons, distinguishing based on
simplex size only seems meaningful in the cases where the source neurons are excitatory.

4.4 ATE in Imperfect Simplices

Table 4: The number of neurons and edges in complete simplices of different dimensions, as
well as the number of edges to be added or removed.

Neurons Edges 10 % 15 %

4 6 1 1

5 10 1 2

6 15 2 2

7 21 2 3

8 28 3 4

9 36 4 5

10 45 5 7
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Another approach in determining the functional role of simplices is to compare the func-
tionality of complete simplices with slightly imperfect simplices to see whether the perfect
simplices somehow stand out. This would be an argument in favour of treating them as
a unique functional group when compared with similar structures with a few edges added
or removed. This is important because of the very precise way the simplices are defined,
where additional edges are permitted, whereas the simplex loses its status as a simplex if
even a single edge is removed. Assuming that this is a meaningful set of necessary and
sufficient conditions for something to be a simplex, this distinction should be reflected in the
functionality of these different structures.

The aim here was thus to test whether there was an observable difference in relative
ATE between these structures. Directed simplices of different sizes were again used, and
the results in the complete simplices were compared with those in the simplices where some
edges had been added or removed. A similar analysis as was used for the idealised simplices
was thus performed on simplices where a random selection of 10 % and 15 % of the edges in
the simplices had been added or removed (rounding off to the nearest integer). The number
of edges added and removed for each simplex size is shown in table 4. It should be noted
that adding extra edges to an already complete simplex when this constitutes the entire
network means adding reciprocal connections between the neurons. Thus, the causal flow in
the simplex is no longer uni-directional, as it will now include causal loops.

4.4.1 Results

To study the effect of changing the number of edges in the simplices, the difference in relative
ATE between the complete simplex and the adjusted ones were considered. These were
calculated by taking the average relative ATE of the adjusted simplices minus the average
relative ATE of the complete simplices, such that the effect of the change is what is plotted.
The effects of removing or adding 10 or 15 % of the edges are shown in fig. 13.

As expected, the relative ATE decreases when connections are removed, and slightly
more so when 15 % are removed than when 10 % are removed. The effect is most notable up
to a time-shift of 6 ms, across all sizes. This corresponds with the duration of the relative
ATE found in the perfect simplices, after which it is close to 0, so it is perfectly reasonable
that removing edges has little effect after this. Interestingly, when 10 % are removed, the
effect on the smallest simplex (4 neurons) is disproportionately higher compared to all the
others. In fact, the effects on the other networks are very similar. The same pattern is found
when looking at the 15 % reduction in edges, though in this case the 4-simplex (5 neurons)
is also more strongly affected. This suggests that for each percentage-wise reduction, above
a certain threshold in simplex-size, the effect of removing the edges is roughly the same for
all simplex sizes.

Importantly, however, the effect of adding edges leads to a corresponding increase in the
ATE. With the exception of the smallest simplices (3 and 4 neurons), for smaller time-shifts,
the absolute value of the difference in ATE from adding connections is actually greater than
the effect of removing edges. The main difference is that the shapes of the curves are more
similar across all simplex sizes, without any disproportionate effect for the smallest simplices.
Further, the effect of adding edges is visible for longer time-shifts as well, probably because
this has the effect of introducing causal loops in the networks.
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(a) 10 % decrease in edges.
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(b) 15 % decrease in edges.
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(c) 10 % increase in edges.
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(d) 15 % increase in edges.

Figure 13: The difference in average relative ATE between the source and sink neurons for
simplices where 10 (a)/(c) and 15 (b)/(d) % of the edges has been removed (a)/(b) or added
(c)/(d) and the corresponding complete simplices. Plotted as function of the time-shift
between the two time series for simplices of different sizes, with standard errors included in
the shaded regions.
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Figure 14: Average relative ATE between source and sink neurons in 7-simplices as function
of the number of edges added or removed. (a) simply shows the relative ATE for each
time-shift, whereas (b) shows the difference between the changed graphs and the complete
simplex. Hence, all the lines meet in origo. Standard errors are shown in the shaded regions.

In one sense, it is a positive result that both adding and removing edges has an effect on
the ATE in opposite directions. However, this equally well shows that the ATE as a function
of the number of connections in the network lies on a continuum, which somewhat goes
against the categorical way in which they are defined, where the complete simplex without
any additional connections is treated as the special case.

To more rigorously test whether the complete simplex stands out in any way, or whether
the relative ATE is fairly linear with respect to the number of edges in the graph, the effect
of adding and removing edges incrementally in a 7-simplex was tested. The change in the
number of edges was on the interval [−5, 5], and the difference in the relative ATE between
the source and the sink for time-shifts up to 4 ms was plotted as function of the changing
number of edges, show in fig. 14. From these results, there is nothing which stands out with
the complete simplex without additional reciprocal edges. Rather, the relationship between
the relative ATE and the change in edges is fairly linear for all time-shifts, up to the point
where 3 edges are added. At the addition of 3 edges, there is a sharp discontinuity, where the
relative ATE makes a sudden jump for all time-shifts. Interestingly, at this point even the
ATE without a time-shift, which has been 0 thus far, also becomes positive. This is a strong
indication that the sudden increase is a result of the reciprocal connections creating causal
loops in some of the networks, which could also be the reason for the sudden increase in the
standard error at this point. Perhaps at a certain number of additional edges, the likelihood
of causal loops appearing reaches some threshold, creating the sudden jump in the average
difference in the relative ATE. How many edges are needed to reach this threshold is likely
dependent on the size of the simplex, but further investigations of this is beyond the scope
of this project.

Analysis of Variance The grouping in question here is no longer the size of the simplices,
but rather their completeness. More specifically, we wish to test whether the structural defi-
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nition, where simplices with additional edges are grouped together with the perfect simplices
whereas simplices with missing edges are not, also makes sense with respect to their assumed
functionality. Since the distributions were neither normally distributed nor showed equality
of variance, we used the Mann-Whitney U test to check whether there were statistically
significant differences between the pairwise distributions of the three groups in question,
namely the perfect simplices, the simplices with 10 and 15 % of the edges removed and the
simplicies with 10 and 15 % of the edges added. This was tested separately for simplices
of different sizes. A result in favour of the current definition of simplices would be that the
simplices with edges removed are statistically different from both the perfect simplices and
those with edges added, whereas the perfect simplices and those with edges added are not
significantly different.

Somewhat surprisingly, there were no statistically significant differences detected between
the complete simplices and those with edges removed for any of the time-shifts nor for any
of the simplex sizes. This is likely a results of the high variance in the datasets, as seen
from the large standard deviations. The only statistically significant differences between the
distributions were found at a time-shift of 0 ms, where the datasets with edges added were
significantly different from both the complete simplices and those with edges removed. This
held across all simplex sizes, and is likely the result of the causal loops introduced from the
additional connections.

Next, the 7-simplices with iterative changes in edges were considered. Here, all the
networks with different number of edges (from 1 to 5) removed were grouped together, and
so were those with edges added. These two groups were then compared with each other, as
well as with the perfect 7-simplices. In this case, a statistically significant difference between
the group where edges were added and the group where edges had been removed was found
for time-shifts of 1 and 2 ms as well, but there was no significant difference between either
of these groups and the perfect simplices.

4.4.2 Discussion

The above results clearly suggest that the number of edges between the source and the
sink neuron has some effect on the relative ATE between the source and sink neurons for
simplices of different sizes, although the within-group variance is too big for this difference
to be statistically significant. Above a certain simplex size, the effect of removing the same
percentage of connections is roughly the same for simplices of all sizes. Similarly, adding
a similar percentage of edges to the simplices, giving reciprocal connections, on average
increases the relative ATE. It should be noted that the type of the neurons from which the
outgoing edges were either added or removed were not taken into account here. In reality,
one would of course expect that whether these neurons are excitatory or inhibitory will be
significant, and grouping these cases together is quite plausibly a major cause of the high
variance in these datasets. Yet again, this is not something which is taken into consideration
in the definition of the directed simplices, although one can easily argue that it should be.
The results regarding the effect of incrementally adding or removing edges certainly speaks
against giving the complete simplex any special functional status, at least with regards to
the relative ATE between the source and the sink.

Finally, the fact that the effect of removing edges is lower in the higher order simplices
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could be an indication that these structures are more resilient to changes in the networks,
which is generally seen as a favourable trait. However, the same argument can be used in
favour of granting simplices with additional reciprocal connections the same special status,
since these are seemingly even more resilient to changes.

In sum, these results are insufficient to justify the strict structural definition of the
directed simplices if this is thought to correspond to any function which might be measured
using the relative ATE between the source and the sink neurons in simplices. The high
within-group variance in all of these datasets shows that the defined groups are far from
homogeneous with respect to their ATE, and there is so much overlap between the different
datasets that the groupings are not even statistically significant. Thus, if the function of
interest is the relative ATE, this provides a strong argument against granting complete
directed simplices any special status, as there are many other similar structures which seem
to serve a similar function, although these do not meet the structural criteria. However, the
relative ATE between the source and the sink is only one metric out of many, and since it is
not clear what function we are expecting to be associated with these simplicial structures,
it is far from clear whether this is even a meaningful metric for comparing and evaluating
their status as a functional group.

4.5 Transfer Entropy

Another metric which was introduced by Schreiber [48] to measure the amount of infor-
mation transferred from one variable to another is that of transfer entropy. Under certain
interpretations, this can then also be considered as a measure of the causal effect of the first
variable on the second. Contrary to the ATE, this does not assume interventional data, so
can also be used when only observational data is available. It is different from other metrics
used to quantify causality, such as the Granger causality, in that it is also able to pick up
on non-linear causal relationships between variables.

We have two variables, X and Y, where the state of X/Y at time i is denoted xi/yi. In
our case, the variable X is the source neuron and the variable Y the sink neuron. We wish to
study the causal effect of variable X on variable Y. Further, we define □ = {W1, . . . ,Wl} to be
the background variables conditioned on. Note that no background conditions were included
in our analyses. The notion of k-histories is also needed here. This is simply subsections
of the previous history of the state of the variable, such that y

(k)
i = {yi−k+1, yi−k+2, . . . , yi}.

Ideally, one has k → ∞, but due to computational limitations, k = 20 was used in all
analyses of the transfer entropy. The time-local transfer entropy is given by

tX→Y,□,i(k) = log2

P
(
yi+1, xi | y(k)i ,W{1,i}, . . . ,W{l,i}

)
P
(
yi+1 | y(k)i ,W{1,i}, . . . ,W{l,i}

)
P
(
xi | y(k)i ,W{1,i}, . . . ,W{l,i}

) (6)

and the average over time by

TX→Y,□(k) = ⟨tX→Y,□,i(k)⟩i .
In practice, this was calculated using the transfer_entropy function of the PyInform

package. The crucial difference between the ATE and the transfer entropy is that the ATE
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(a) Standard errors in shaded regions.
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(b) Standard deviations in shaded region.

Figure 15: The average transfer entropy between the source and sink neurons in simplices
of different sizes as function of the time-shift between the two time-series.

looks at events in the form of individual spikes, so only considers the likelihood that a single
spike event will occur at the sink neuron a certain number of time-steps after a single spike
event occurred in the source neuron. The transfer entropy, on the other hand, looks at the
k-series of events in the sink neuron. Given the previous activity in the sink neuron over k
time-steps, it quantifies the reduction in our uncertainty about its future activity from our
knowing that a single spike in the source neuron has occurred. This nuance is valuable since
repeating patterns are what we are truly interested in when studying neural activity, not
individual spikes in isolation. Also worth noting is that whereas the ATE can be negative,
the transfer entropy is always positive.

As above, this was studied as a function of of simplex size in the idealised networks and as
function of the number of edges added or removed in 7-simplices. Further, since the transfer
entropy can also be used in integrated networks with confounding variables, simplices within
bigger networks were also investigated. Specifically, we investigated whether the sum of
the outgoing and incoming transfer entropy of neurons in small-world networks was more
correlated with their simplicial roles than with their in- and out-degrees.

4.5.1 Results

In fig. 15, the average transfer entropy between the source and sink neurons in simplices of
different sizes is plotted as function of the time-shift between the neurons. The standard
errors and standard deviations are included in the shaded regions in fig. 15a and fig. 15b
respectively. The results correspond well with what was found for the relative ATE, where
the transfer entropy is highest for the smallest simplices and at the first time-steps. It is
worth remarking that whereas the relative ATE was 0 for time-shifts of 0 ms, the transfer
entropy has its maximum at 0 ms for all simplex sizes. This is because a relative time-shift
of 1 time-step is implicit in the definition, as can be seen from eq. (6), so we always consider
what the current state of X tells us about the future state of Y. After about 5 ms, there is
hardly any observable transfer entropy between the neurons, regardless of dimensionality of
the simplices. Again, the standard deviations are remarkably high, and only the means of

64



3 4 5 6 7 8 9

0.001

0.0015

0.002

0.0025

0.003

Transfer entropy between source and sink neurons as

function of simplex size with excitatory source neurons

Neurons

T
r
a
n
s
fe

r
 e

n
t
r
o
p
y

Loading [MathJax]/extensions/MathMenu.js

(a) Excitatory source neurons
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(b) Inhibitory source neurons

Figure 16: The average transfer entropy between source and sink neurons as function of
simplex size for a time-shift of 0 ms. The datasets have been sorted based on whether
the source neurons were excitatory or inhibitory, with the excitatory shown in (a) and the
inhibitory shown in (b). Standard errors shown in shaded regions.

the simplices of 5 neurons or less are substantially different from the others.
As with the relative ATE, to get a better idea of the source of the variance, the type

of source neurons were selected for, and the transfer entropy with a time-shift of 0 ms was
plotted separately for the inhibitory and excitatory source neurons. This is shown in fig. 16.
As expected, the transfer entropy is higher for the excitatory source neurons, and the same
pattern of decreasing transfer entropy with increasing simplex size is found. As with the
relative ATE, the absolute value of the metric for the inhibitory source neurons is about a
tenth of that of the excitatory ones, showing that the effect of excitatory neurons are stronger
than that of inhibitory ones. As with the relative ATE, the transfer entropy of the inhibitory
source neurons do not show the same dependency on the simplex size as the excitatory ones
do. Why this is so is not clear, and it should be noted that the values are extremely low, so
one might wonder whether these are simply statistical fluctuations rather than actual effects,
especially given the high errors.

Finally, to study whether the strict structural criteria for categorising something as a
simplex are justified when considering transfer entropy as the function in question, the
transfer entropy as function of the number of edges added and removed in 7-simplices was
plotted, as shown in fig. 17. Although the variance is high, there is a clear linear dependency
between the number of edges and the transfer entropy between the source and the sink, as
was found when performing the same analysis with respect to the relative ATE. Again, the
standard deviations are higher for the simplices with additional edges.

Analysis of Variance Again, we tested the validity of two different types of groupings
of the simplices. Firstly, the simplex size, and secondly, the number of edges added and
removed in 7-simplices.

We started by testing whether the transfer entropy within each group was normally
distributed for each time-shift. This assumption turned out not to hold, for neither simplex
size nor for either time-shift. It was then tested whether the variance was equal between the
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(a) Standard error in shaded regions.
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(b) Standard deviation in shaded region.

Figure 17: The average transfer entropy for time-shift 0 ms between the source and sink
neurons in a 7-simplex as a function of the number of edges added or removed.

groups for different time-shifts. For simplex sizes between 3 and 10 neurons, the variance
was equal for time-shifts above 5 ms, but unequal for time-shifts smaller than that. Looking
at fig. 15, it is clear that the variance is much greater for the smaller simplices for the smaller
time-shifts, so this is not too surprising. Thus, the Mann-Whitney U test was again used for
pairwise comparisons.

First, it was used to test whether grouping the simplices by size was informative when
considering the transfer entropy between the source and the sink neurons for different time-
shifts. For the early time-shifts, it was for some reason the simplices with 6 neurons which
stood out most strongly from the others over time, whereas the 2-simplices were only signif-
icantly different from the others for the 0 ms time-shift. This is somewhat surprising when
looking at fig. 15a, but is likely caused by the fact that the variance is much higher for the
smaller simplices for the early time-shifts, as can be seen in fig. 15b. Thus, the difference in
the mean is not sufficient for it to be statistically significant. When considering the networks
with excitatory and inhibitory source neurons separately and for a time-shift of 0 ms, the 2-
and 3-simplices were significantly different from all the other simplices (though not from each
other) for the excitatory networks, whereas only the 2- and the 8-simplices were significantly
different from each other in the inhibitory networks.

To test whether grouping the simplices with edges added and removed separately is
meaningful, the 7-simplices with edges added and removed were considered. Again, all the
networks with different number of edges removed were grouped together, and so were those
with edges added, and both groups were compared with the complete simplices as well as
with each other. In this case, there was a statistically significant difference between the
group with edges added and the one with edges removed for all the time-shifts considered
(up to 9 ms). More importantly, there was also a statistically significant difference between
the complete simplices and those with edges removed for time-shifts up to 4 ms, but no
corresponding difference between the group with edges added and the complete simplices.
This was also tested for each incremental change separately, and the same result was found.
Further, it was tested with the networks of different sizes where 10 and 15 % of the edges
had been added or removed, and for most of the networks, there was a significant difference
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between the networks with edges removed and both the perfect simplices and those with
edges added. No significant difference between the perfect simplices and those with edges
added detected was detected for any of the datasets.

Table 5: Correlation coefficients and their corresponding 95 % confidence intervals, first
variable in the columns, second variable in rows, for small-world networks of 20 neurons,
with time-shifts of 0, 5, and 9 ms.

0 ms

Incoming TE CI95% Outgoing TE CI95%

In-degree 0.320833 [0.29, 0.35] Out-degree 0.204819 [0.17, 0.23]
2-sink 0.256591 [0.23, 0.29] 2-source 0.156361 [0.13, 0.19]
3-sink 0.093902 [0.06, 0.12] 3-source 0.05115 [0.02, 0.08]
4-sink -0.001867 [-0.03, 0.03] 4-source -0.000091 [-0.03, 0.03]

5 ms

Incoming TE CI95% Outgoing TE CI95%

In-degree 0.21889 [0.19, 0.25] Out-degree -0.012729 [-0.04, 0.02]
2-sink 0.174971 [0.14, 0.2] 2-source -0.001758 [-0.03, 0.03]
3-sink 0.058583 [0.03, 0.09] 3-source -0.004001 [-0.03, 0.03]
4-sink -0.002581 [-0.03, 0.03] 4-source 0.004179 [-0.03, 0.04]

9 ms

Incoming TE CI95% Outgoing TE CI95%

In-degree 0.224829 [0.2, 0.25] Out-degree -0.009327 [-0.04, 0.02]
2-sink 0.185185 [0.16, 0.21] 2-source -0.003816 [-0.03, 0.03]
3-sink 0.074686 [0.04, 0.11] 3-source 0.000724 [-0.03, 0.03]
4-sink 0.002759 [-0.03, 0.03] 4-source -0.000412 [-0.03, 0.03]

Small World One benefit of the transfer entropy as compared with the ATE is that it
can also be used for observational data with confounding variables. From the analysis of
the isolated simplices, it seems not to be the case that increasing the simplex size increases
the transfer entropy between the source and the sink neurons. However, it could still be the
case that the simplicial role of a neuron is connected with a more overarching “causal role”
of the neuron in the network. To measure this, the transfer entropy between every pair of
neurons in small-world networks was measured for different time-shifts, and the sum of the
transfer entropy of a neuron to all the other neurons in the network was taken as a measure
of its causal influence in the network. Similarly, the sum of the transfer entropy from all
the other neurons to a given neuron was taken as a measure of how “influenced” the neuron
is by the other neurons in the network. In other words, the outgoing transfer entropy was
taken as a measure of the effect each neuron had on the dynamics of the other neurons in
the network and the incoming transfer entropy as the effect the other neurons had on this
neuron’s dynamics.
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Table 6: Correlation coefficients and their corresponding 95 % confidence intervals, first
variable in the columns, second variable in rows, for small-world networks of 50 neurons,
with time-shifts of 0, 5, and 9 ms.

0 ms

Incoming TE CI95% Outgoing TE CI95%

In-degree 0.227134 [0.21, 0.25] Out-degree 0.120497 [0.1, 0.14]
2-sink 0.146584 [0.13, 0.17] 2-source 0.070648 [0.05, 0.09]
3-sink 0.085665 [0.07, 0.11] 3-source 0.035626 [0.02, 0.06]
4-sink 0.031307 [0.01, 0.05] 4-source 0.009238 [-0.01, 0.03]

5 ms

Incoming TE CI95% Outgoing TE CI95%

In-degree 0.16411 [0.14, 0.18] Out-degree -0.033858 [-0.05, -0.01]
2-sink 0.098669 [0.08, 0.12] 2-source -0.033653 [-0.05, -0.01]
3-sink 0.054677 [0.04, 0.07] 3-source -0.023216 [-0.04, 0.0]
4-sink 0.016058 [0.0, 0.04] 4-source -0.009392 [-0.03, 0.01]

9 ms

Incoming TE CI95% Outgoing TE CI95%

In-degree 0.172499 [0.15, 0.19] Out-degree -0.038726 [-0.06, -0.02]
2-sink 0.107778 [0.09, 0.13] 2-source -0.040258 [-0.06, -0.02]
3-sink 0.061283 [0.04, 0.08] 3-source -0.028408 [-0.05, -0.01]
4-sink 0.019223 [0.0, 0.04] 4-source -0.008752 [-0.03, 0.01]

The question was then whether these properties, denoted as the outgoing and incoming
transfer entropy (TE) respectively are correlated with the simplicial role of the neurons.
Counts of how many 2, 3 and 4-simplices each neuron was the source and sink of was used.
In addition, the in- and out-degree of each neuron was recorded. This is simply a count of
the number of incoming and outgoing synapses each neuron has. The reason for including
this is that one would expect the simplicial role of each neuron to be indicative of its causal
role just from the fact that this is correlated with the number of incoming and outgoing
synapses. Thus, if the transfer entropy was more strongly correlated with a neuron’s role in
bigger simplices than with its in- and out-degree, this would provide an argument in favour
of treating higher-order simplices as important causal units.

Using the pingouin package in python, the correlation coefficients between pairs of these
variables were found. The values found for networks of 20 and 50 neurons with time-shifts
of 0, 5 and 9 ms are shown in table 5 and table 6 respectively. Interestingly, the correla-
tion between both in-degrees (and sink-count) and the “incoming” transfer entropy is much
stronger than the correlations between the out-degrees (and source-counts) and the “outgo-
ing” transfer entropy. The reasons for this were not investigated further. Most important
for the current investigation is the fact that the variable most strongly correlated with the
transfer-entropy of a neuron is its degree, and not its simplicial role. This holds for both
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network sizes and for all the time-shifts considered. Secondly, the correlation between the
transfer entropy and the source/sink-count drops with increasing sizes of simplices. This
result goes straight against the main premise of this project, which is that the number of
higher dimensional simplices of which a neurons is a source and/or sink is correlated with
that neuron’s causal role in the network.

4.5.2 Discussion

From the investigations of the dependency of transfer entropy between source and sink
neurons on the simplex size in perfect simplices, it was found that the larger the simplices,
the smaller the transfer entropy, across all time-shifts. This goes against the assumption
that larger simplices are somehow more causally significant than smaller ones. However, it
must be noted that the variance in all the datasets was very high, especially for the smaller
time-shifts, so the conclusion from the analysis of variance was that the grouping according
to simplex size was in general not statistically significant for any of the pairs. Thus, it must
therefore be considered a null-result with regards to the dependency of transfer entropy on
simplex size.

The main result from this investigation is probably the finding that the incomplete sim-
plices clearly stand out from both the perfect ones and the ones with added edges, whereas
the perfect ones and those with added edges are not significantly different according to the
Mann-Whitney U test. This was somewhat surprising, especially considering the apparent
linearity of the relationship as shown in fig. 17. It thus remains unclear exactly how the
distributions differ, and thus how the imperfect simplices are significantly different from the
other two groups. However, it is certainly an indication that the completeness of the sim-
plices has some significance for the causal dependencies between the source and the sink
neurons in these structures. Further investigations would be needed to study the nature of
this dependency more in depth.

Finally, the hypothesis that the causal role of the neurons in small-world networks is
more strongly correlated with their role in higher-order simplices than with their in- and
out-degree was clearly falsified. From these investigations, the main factor (amongst those
here considered) in determining the causal role of a neuron in an integrated small-world
network is clearly its degree, both incoming and outgoing.

In sum, these results are insufficient to justify treating transfer entropy between source
and sink neurons as a function attributable to higher-order simplices.

4.6 Autocorrelation

As discussed, the information in the spike-trains of a neuron is encoded both in the firing
rates and the firing intervals. When looking at the ATE and the transfer entropy, only the
instantaneous firing rates of the sink neuron as function of individual spikes in the source
neuron were considered. However, another way in which the simplicial structures might be
significant is by facilitating certain spiking patterns. This is more in line with the standard
approaches for measuring the functional role of network motifs in neuroscience. A common
approach for such analyses is to look for repeating patterns in the spike trains of neurons,
either individual neurons or groups thereof. As an example, Curto and Morrison showed
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how different small circuit motifs could work as stable attractors of the dynamics of their
constituent neurons [39]. In our case, we shall limit ourselves to studying the complexity of
the activity in the sink neurons.

Repeated patterns in the time-series can be detected by measuring the autocorrelation
of a time-series at different intervals. This can also be treated as a proxy for the so-called
signal-to-noise ratio, which is the ratio between the desired signal and the background noise
in the spike-trains of the neurons. The higher this is, the more reliable is the process by
which it is generated. By comparing the autocorrelation of the activity in the sink neurons
of different simplices, which is related to the signal-to-noise ratio of their output, this tells
us something about the relative reliability of these structures in converting the activity in
the source neuron into informative activity in the sink neuron.

In the datasets studied thus far, the activity in the source neuron has been fairly randomly
distributed. If the assumption is that each spike in the source neuron causes a certain spiking
pattern in the sink neuron, we require a regular spiking pattern in the source neuron in order
for this to be detectable using auto-correlation. Further, from a causal inference point of
view, this gives interventional data, which provides much stronger grounding for inferring
causal relations between the variables. Thus, a stimulation of the source neuron was included
in the simulation of activity in the idealised simplicial networks as well as in the 7-simplices
with edges added and removed. This stimulation consisted of a single spike in the source
neuron with a constant period of P ms throughout the entire simulation. Note that this
method does not assume that the resulting activity pattern is the same across simplices of
the same dimension, only that the level of autocorrelation for the individual time series is
correlated with the size or completeness of the simplices.

The autocorrelation was calculated by measuring the correlation between the initial time-
series of the sink neuron with the same time-series with an added time-shift. In practice,
this was done using the acf method from statsmodels, which calculated the autocorrelation
for every time-shift up to a set limit, here set to 50 ms. P of 20 and 15 ms were tested.
To prevent the activity in the network from exploding, the spiking threshold θ was then
increased to 4.5 and 4.7 respectively.

We expected to see a peak in the autocorrelation in the spike-trains of the sink neurons
at P, as well as at integer multiples thereof. The main question was then whether the
size and completeness of the simplex had any effect on either of two variables, the first
being the strength of the autocorrelation at time-shift P, the second the distribution of
autocorrelations for other time-shifts. For example, one could imagine that bigger simplices
also show autocorrelation for longer time-shifts, since the influence from the source neuron is
expected to last for longer. This would be indicative of longer sections of repeating patterns
in the spike trains of the sink neurons, which in turn have the potential to encode more
complex informational patterns.

4.6.1 Results

The average maximum autocorrelation was plotted for complete simplices of different sizes
for P = 15 ms and P = 20 ms, as shown in fig. 18. As can be seen, the autocorrelation at P
decreases significantly with the size of the simplices. The average autocorrelation at P = 20
ms for the 9-simplices is 1⁄4 of that of the 2-simplices. However, there is also less variance
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(a) Standard errors shown in shaded regions.
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(b) Standard deviations shown in shaded regions.

Figure 18: Average autocorrelation of sink neuron at P, for P = 15 and 20 ms, as function
of simplex size. Both figures show the same data, with the standard errors and the standard
deviations shown in shaded regions in subfigs. (a) and (b) respectively.
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(a) Standard errors shown in shaded regions.
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(b) Standard deviations shown in shaded regions.

Figure 19: Average autocorrelation of sink neurons with P for P = 15 and 20 ms, as function
of the number of random edges added or removed in 7-simplices. Both figures show the same
data, with the standard errors and the standard deviations shown in shaded regions in
subfigs. (a) and (b) respectively.
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in the autocorrelation for the larger simplices. This should not be too surprising, for in
accordance with the previous findings, the causal link between source and sink neurons are
strongest in the smaller simplices as a result of the lack of other input to the sink neurons.
Thus, it is to be expected that when considering time-shifts of P, the spike patterns in
the source neurons as function of the activity in the sink neurons are also strongest for the
smaller simplices. The cause of the high variance might be that given the lack of other input,
the effect of differences in the synaptic strengths will be greater.

The same analysis was then performed with respect to the number of edges added or
removed in complete 7-simplices, and the resulting plots shown in fig. 19. Somewhat sur-
prisingly, removing edges had little effect on the average autocorrelation, whereas adding
edges led to a very significant increase. Further, the standard deviation also exploded with
the increase in the number of edges. The fact that removing edges has little effect suggests
that the main source of the autocorrelation comes from the direct link from source to sink,
which is reasonable given that we are only considering the autocorrelation at P. The ques-
tion is then what causes the strong increase in the autocorrelation with the added edges.
Adding extra edges has the effect of introducing causal loops in the network, so it is not too
surprising that this leads to additional repeating patterns in the spike trains. Further, these
additional edges can be both excitatory and inhibitory, and the increase in variance suggests
that the change in autocorrelation is dependent on the type and weights of the additional
edges.

Next, the autocorrelation was plotted as a function of time-shift for different simplex
sizes, as shown in fig. 20. The standard errors are included in the top row, the standard
deviations in the bottom. The maximum autocorrelation is, as expected, at integer multiples
of P for all sizes, and the strength is directly proportional with the size of the simplex as
found before. More interestingly here is what happens between the peaks, for the smaller
simplices show a corresponding extremity in the opposite direction, where they are the
most strongly anticorrelated between peaks. The bigger the simplices, the more flattened
and centred around zero is the autocorrelation of the sink neurons. To understand this,
it is useful to remind oneself of how to interpret correlations, which are in the range [-1,
1]. Importantly, negative values are equally indicative of repeating patterns as the positive
values, they simply show that the variables take opposite values. Thus, what fig. 20 shows is
that it is the smaller simplices which show the strongest autocorrelation in their time-series
across all time-shifts, refuting the hypothesis that the bigger simplices might show longer
sequences of repeating patterns. Looking at the graphs in the bottom row, which includes the
standard deviations, it is also clear that there is significant variation in the autocorrelation
within each group, and this is larger for the smaller simplices.

Finally, the same analysis was performed on the spike-trains of sink neurons in 7-simplices
where edges had been added or removed. Given the previous findings, which suggested
a much stronger effect of adding edges than removing them, the two cases were treated
separately. Only the stimulation with P = 15 ms was here considered, since no substantial
difference was found between the two cases earlier. The resulting plots are shown in fig. 21,
with standard errors included in the top row and standard deviations in the bottom. We see
that the autocorrelation as function of time has almost exactly the same shape independently
of the number of edges added, but its value increases with increasing number of edges. This
is thus a different type of dependency from that seen when the size of the simplex was the
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(a) Stimulation of source neuron every 15 ms,
standard errors in shaded regions.

10 20 30 40 50

−0.005

0

0.005

0.01

0.015

Neurons

3

4

5

6

7

8

9

10

Autocorrelation for P = 20 ms as function

of time-shift for different simplex sizes

Time-shift [ms]

A
u
t
o
c
o
r
r
e
la

t
io

n

Loading [MathJax]/extensions/MathMenu.js

(b) Stimulation of source neuron every 20 ms,
standard errors in shaded regions.
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(c) Stimulation of source neuron every 15 ms,
standard deviations in shaded regions.
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(d) Stimulation of source neuron every 20 ms,
standard deviations in shaded regions.

Figure 20: Average autocorrelation of sink neuron with P = 15 and 20 ms as function of
time-shift for simplices of different sizes. Standard errors included in the shaded regions in
subfigs. (a) and (b) and standard deviations in subfigs. (c) and (d).
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(a) Edges added, standard errors in shaded re-
gions.
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(b) Edges removed, standard errors in shaded re-
gions.
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(c) Edges added, standard deviations in shaded
regions.
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(d) Edges removed, standard deviations in
shaded regions.

Figure 21: Average autocorrelation of sink neuron with P = 15 ms as function of time-shift
for a 7-simplex with different number of edges added (left) and removed (right). Standard
errors included in the shaded regions in subfigs. (a) and (b) and standard deviations in
subfigs. (c) and (d).
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variable, where the autocorrelation flattened out for bigger simplices. Whereas increasing
the size of the simplex reduces the autocorrelation and pushes it toward 0 for all time-
shifts, adding additional edges (causal loops) had little effect on the shape of the curve, but
increases its value. However, looking at fig. 21c, where the standard deviation is included in
the shaded regions, it is again clear that the within-group variance of the networks with the
same number of edges added is substantial, making it dubious whether it is really meaningful
to treat these as unified functional groups with respect to the autocorrelation of their sink
neurons. Interestingly, the effect of removing edges, as shown in fig. 21b, is more or less
negligible, and the autocorrelation curves mostly overlap. This pattern is still apparent
when the standard deviations are included, as in fig. 21d, such that there is hardly any
discernible difference between the distributions, suggesting that they all belong to the same
functional group with respect to their autocorrelation.

Analysis of Variance Given that the Mann-Whitney U test had been used throughout
thus far, this was used here as well without further tests of normality and equality of variance,
thus making the results more comparable with the previous analysis. Given that the patterns
in the findings were very similar for both of the stimulation rates investigated, only the
datasets with P = 15 ms were considered in this analysis.

It was first tested whether the difference in simplex size was significant for time-shifts of
P and 1.5P, i.e. at the two extremities. The results showed that only the simplices consisting
of 3 and 4 neurons were significantly different from the other sizes, for both time-shifts.

When looking at the 7-simplices with different number of edges added and removed, all
the simplices with edges removed were grouped together and all those with edges added
were grouped together. These groups were then compared with each other, as well as with
the complete simplices. None of the groupings were significantly different from the others,
with the exception of the group of networks with edges added compared with the group of
networks with edges removed, when considering a time-shift of P. It should be noted that
the extremely high variance in the datasets with edges added compared to that in the other
datasets makes it difficult to obtain statistically significant results in this case, so little can
be inferred from this.

4.6.2 Discussion

The main hypothesis tested in this section was that the autocorrelation of the activity in the
sink neurons in networks with periodic input to the source neurons increases with simplex size
and completeness of the simplex. Neither could be proven, and the autocorrelation was rather
found to be highest for the smallest simplices across all time-steps. However, one should be
cautious with concluding too much from this finding, since this is one instance where the
network size and in-degree of the sink neurons can plausibly be assumed to influence the
results. In the smaller isolated simplices, the sink neurons only receive input from a limited
number of other neurons. As the in-degree of the sink neurons increases, it is reasonable
to assume that this introduces a higher degree of randomness in their activity, since the
firing rates in their pre-synaptic neurons are unlikely to be synchronised. This introduces
random noise in the activity of the sink neurons, thereby reducing the autocorrelation and
the signal-to-noise ratio. In more integrated networks, the in-degree can be higher also
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for smaller simplices, and it is unknown whether the relationship between simplex size and
autocorrelation would remain the same in such cases. The results here obtained should thus
be seen as a limiting case where the noise is kept at a minimum for simplices of all sizes, so
likely reflect the upper limits of the autocorrelations for the simplices.

Regarding the completeness of the simplices, the main finding was that removing edges
had very little effect on the autocorrelation, whereas adding edges increased it (although the
variance here was too high to make this finding statistically significant). This is an interesting
finding given how the directed simplices are defined. All the 7-simplices with added edges,
which show a significant difference in the autocorrelation, are treated as the same structure
according to the definition of directed simplices, whereas the different graphs with edges
removed, which show almost the exact same functionality when it comes to autocorrelation,
are classified as different structures. It thus seems safe to conclude that autocorrelation is
not the functional trait which justifies the structural classification and pursuitworthiness of
directed simplices.

4.7 Summary and Conclusion

Thus far, no positive results in favour of a special function of simplicial structures in biological
neural networks has been found. We were unable to show that higher-order simplices have
a more important functional role according to the metrics tested. Rather, for all three
metrics, namely relative average treatment effect, transfer entropy and autocorrelation, the
smaller simplices scored higher throughout. Further, there was little evidence to support the
strict structural definition of the directed simplices with respect to these metrics. Rather, a
continuous relationship between the completeness of the simplices (in terms of edges added
or removed) and the different functionalities were found both for ATE and transfer entropy,
whereas removing edges hardly had any effect on the autocorrelation.

The main finding was probably the high levels of variance in all the datasets with respect
to the different metrics. This shows that grouping the structures according to their simplex
size is likely not the most informative way of functionally categorising these structures.
This argument was further supported by the analyses of variance, where hardly any of the
groupings considered were statistically significant.

However, from this we are only justified in rejecting the specific hypotheses about function
which were tested. As discussed, function is a vague term, so these results are by no means
sufficient to reject the looser hypothesis that these structures entail some special function.
It might simply be the case that the specific function which they entail has not been tested
for here.
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5 Machine Learning Model

5.1 Motivation

A more general and model-independent way of thinking about the function of the simplicial
structures is to say that their having a function implies that there exists some (potentially
deterministic) mapping from structure to function, S → F . This would imply a one-to-
one or a many-to-one mapping from structure to function, meaning that the same structure
always gives rise to the same function, but that multiple structures may give rise to the same
function.

Similarly, one could look for an inverse mapping, F → S, where one assumes that each
function corresponds to a single structure, but that different functions could arise from the
same structure. This is a less intuitive interpretation, since one would normally consider the
structure as being the cause of the function, rather than the other way around. Assuming
determinism, it would thus be difficult to imagine a scenario where the same structure could
give rise to different functions, so for this to be plausible, one would presumably have to
include some other variables U in the mapping, such that we have F → S + U . In our case,
U could represent the synaptic weights or random input noise, to mention just a few. Thus,
one could understand function in either of the two ways.

The crucial point here is that the function F is left undefined, so it is not possible to
construct a general test for the hypothesis that it exists. One can only come up with a range
of different candidates and test these, as was done in the section above, with negative results.
However, this is one case where the use of machine learning could be valuable. In the not so
recent past, machine learning models have successfully been used to find mappings from one
set of variables to another, even in cases where humans themselves are unable to find this
functional mapping. A prominent example of this is the relatively recent (2020) machine
learning model AlphaFold2, which is able to predict the 3D structure of folded proteins from
their linear amino-acid sequence [16], something which humans have thus far been unable to
do. Implicit in the discovery of such a model is the fact that there must exists some (at least
partly) deterministic mapping from the amino-acid sequence to the folded protein. In other
words, the information about the 3D structure of the folded protein is somehow encoded in
the amino-acid sequence, it is simply us who are ignorant of it.

For our purposes, if it turned out to be possible to train a machine learning model
to successfully perform the mapping between function and simplicial structure (in either
direction), this would be a strong result in favour of the interdependency between simplicial
structure and function of such networks. As a result of the high levels of stochasticity in
the simulated activity, it is rather unrealistic to be able to train a model to accurately
perform the mapping from structure to function. Further, on more pragmatic grounds, if
the intention is that this could also provide a tool useful in the analysis of experimental
data, one must also take into consideration what observational data is usually available and
what one wants to predict. As discussed in section 2.1.2, spike-trains of individual neurons
are obtainable, whereas complete structural or effective connectomes with synaptic weights
are near impossible to measure experimentally in vivo. Thus, in this case, we were more
interested in the possibility of finding a model which was able to perform the mapping
F → S + U , as well as differentiating between S and U . This was the overarching purpose
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of the investigations and analyses presented in the current section.

5.2 Edge Regressor

The code for the models employed is available at [27]. Using the message passing algorithm
in GNNs, its functionality is to perform the mapping from the time series X ∈ RN×T

to a prediction of the connectivity matrix Ŵ0 ∈ RN×N . The ith row of the time-series
matrix X is denoted xi, and represents the complete time-series of node i. The rows of
the connectivity matrix can be taken as the node embeddings wi, where each element of
the vector represents the edge weight of the outgoing edge to the receiving node in the
network. Thus, Ŵ0 = [ŵ1, ŵ2, ..., ŵi, ..., ŵN ]. We denote the edge weight from node i
to node j (W0)i,j. Further, the adjacency matrix is unknown, so all elements in A, with
the exception of the dioagonal, were set to 1 prior to training, such that messages were
passed in both directions between all the neurons in the network. Using the formalism from
section 2.4, where N (i) denotes the set of all the neighbours of node i, this means that
∀j(j ̸= i → j ∈ N (i)). The model found to be capable of performing the mapping X → W0

can be expressed as

ŵi = MLP2

 n

j∈N (i)

MLP1

(
100

T

Cn

t=1

xi · P txj

) . (7)

T is the total number of time-steps, C is the number of time-shifts considered in P. This
is the hypothesised coupling window cw, which was here set to 10 ms, since this was known.
The aggregation function used was concatenation.

The expression inside the first MLP requires further elaboration. The aim was to learn the
causal effect between the neurons from their spike trains. This was done by multiplying their
respective time series for up to C time-shifts. The complete time series of the hypothesised
sender node i, i.e. xi is multiplied (dot product) with the time series of the hypothesised
receiver node, xj, for different time-shifts applied to the receiver node. The time-shift is
represented by the shift-operator P t, where t denotes the time-shift. Thus, for time-shift
3, the resulting number from the dot product tells us something about the rate of cofiring
between the node i and node j three time-steps after node i fired. The resulting dot products
for up to C time-steps are then concatenated into a single vector qj, which is what is passed
through the first MLP. Thus, the first MLP learns the mapping from the vector qj to a single
number, which should somehow represent the causal effect of node i on node j. For each
node i, this is done for every other node in the network and the results concatenated into
another vector of length N. This vector is then passed through the second MLP, allowing
the final prediction of ŵi to take potential interdependencies between the different qjs into
account.

The cost function used was mean squared error (MSE), such that

C =
1

N2

N∑
i=1,j=1

((W0)i,j − (Ŵ0)i,j)
2 (8)
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In previous analyses, the model has been found to perform well at the task of predicting
the connectivity matrix of networks of different types and sizes. As an example of the
predictions provided by the model, a sample of a prediction from the test set of a small-
world network containing 30 neurons is shown in fig. 22.

Figure 22: Sample from the test set of a model trained on small-world networks of 30 neurons.
The figure shows the true connectivity matrix, along with the prediction and the difference
between the two.

5.3 Hyper-parameter tuning

The only hyper-parameter in the model is the learning rate. Some rudimentary testing was
done for a few different network sizes, and the outcomes were fairly constant and independent
of small changes in the learning rate. Thus, this was kept constant at 0.003. This lack of
rigorous testing was justified by the fact that the purpose of the investigations was primarily
to compare different results obtained from the same algorithm, rather than to find the best
possible model for predictive purposes. The analysis consisted in comparing different models
trained using the same algorithm, so as long as the hyper-parameters were kept constant
across models, their actual values were of lesser significance. The maximum number of
epochs was set to 50, as most of the models converged far before this, after about 20 epochs.
The batch size was set to 1, mainly because of limited GPU memory.

5.4 Model Reliability

Before testing whether the model was able to reconstruct the simplicial structures from the
activity, we performed some different tests on the reliability of the model when set to predict
the connectivity matrix. This was to better be able to analyse the later results, and to rule
out other sources of error.

5.4.1 Scaling

To test how well the ML algorithm scales with network size, models were trained for both
small-world and random networks with sizes ranging from 10 to 70 neurons. Bigger networks
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(a) Loss as function of training epochs for differ-
ent network sizes.
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(b) Best validation loss as function of network
size.

Figure 23: Validation loss in small-world networks of different sizes. Standard errors shown
in shaded regions.

were not tested due to computational limitations. In fig. 23, the losses for different network
sizes of small-world networks are shown. In fig. 23a, the validation losses are shown as
function of epochs for a range of different network sizes. As can be seen, most of the
networks converge towards a similar loss, regardless of size. fig. 23b supports this further.
Here, the minimum validation loss across epochs is plotted as function of network size, and
as can be seen, the model scales well. Why the loss is significantly higher for the network
containing 15 neurons is unknown, but is likely a random fluctuation in the datasets. The
same pattern is found for the random networks, as shown in fig. 24. Indeed, the minimum
validation loss actually decreases quite substantially with the simplex size.

This is slightly peculiar, and is likely related to the fact that the number of edges in the
networks do not scale linearly with the number of neurons. This introduces an increasing
bias towards edges being set to 0, which is a problem in this comparison. To investigate
whether this was the case, plots of the predictions for the random networks containing 30
and 70 neurons are shown in fig. 25 and fig. 26. Looking at these, one can see that although
the MSE loss is higher for the smaller network, the maximum difference relative to the true
values is higher for the network containing 70 neurons. This can be seen from the scales
of the colour-maps. Whereas the true values of the network containing 30 neurons are in
the range [−1.0, 1.0] and the errors in the range [−0.4, 0.4], the true values of the network
containing 70 neurons are in the range [−0.6, 0.6], yet the errors are in the same range as
for the smaller network. This suggests that the individual predicted values are less reliable
in the bigger networks, such that the average MSE loss is somewhat misleading, and that
the model does not in fact scale as well as the previous results would suggest. This is not
particularly surprising, since the increase in size increases the complexity of the problem,
but is certainly something worth being aware of.
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(b) Best validation loss as function of network
size.

Figure 24: Validation loss in random networks of different sizes. Standard errors shown in
shaded regions.

Figure 25: Sample from the test set of a model trained on random networks of 30 neurons.
The figure shows the true connectivity matrix, along with the prediction and the difference
between the two.

5.4.2 Confounding Variables

As discussed in section 2.3, a major challenge in causal inference is to distinguish between
true causal relations and correlations which arise from random fluctuations or confounding
variables. As mentioned, various methods have been introduced for causal inference, and
which one to use depends on the problem. The hope is here that the outer MLP is able
to, without further supervision, learn an appropriate method for causal inference also in the
presence of confounding variables.

When training the models on the complete graphs, there is random noise in the data,
but no confounding variables. Good predictions thus show that the model is able to learn
to distinguish between causal relations and noise, but this is normally not sufficient for es-
tablishing causality. To test whether the model is also able to distinguish between actual
causal links and confounding variables, we introduced confounding variables in the datasets.
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Figure 26: Sample from the test set of a model trained on random networks of 70 neurons.
The figure shows the true connectivity matrix, along with the prediction and the difference
between the two.

Figure 27: An example of a network before and after a neuron has been removed from the
available data. The network to the left is the complete network containing four neurons, and
is the one used to generate the spike-trains. All information pertaining to neuron A is then
removed from the connectivity matrix and the spike-trains in the data-sets. If we assume all
synapses are excitatory, the structure of the true network means that neuron A then becomes
a confounding variable, and without the information about its spiking-pattern available, if
one only looks at the correlations, it might easily look like there is a causal connection from
node C to node D. The aim of the current test was thus to see whether the model was able
to predict only the true connection from B to D.

This was done by removing datapoints in the data, both in the spike-trains and the connec-
tivity matrices. Specifically, m randomly selected neurons were completely removed from
the datasets. This was done by removing these neurons’ spike trains from the X-matrix and
removing all of their row and columns from the connectivity matrix. Thus, if the original
network contained n neurons, the original X had dimensions n × T and the original Ŵ0

n×n. In the adjusted dataset, the X is of dimension (n−m)×T and the Ŵ0 of dimension
(n−m)× (n−m). Note that the removed neurons were not removed from the simulation,
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(a) Small-world network of 25 neurons with up
to 9 neurons removed
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(b) Random network of 30 neurons with up to 9
neurons removed

Figure 28: The validation loss plotted as function of epoch for networks with different
numbers of neurons removed. Standard errors shown in shaded regions.

however, so their causal influence was still present in the dataset. However, since they were
unknown to the model, they worked as unobserved confounding variables. An example of
such a removal is illustrated in fig. 27. For each combination of n and m, a new model was
trained to see whether the training algorithm would make it possible for the model to learn
distinctly causal, and not just correlational, relationships.

This analysis was done for small-world networks of 25 neurons and random networks of
30 neurons. In both cases, up to 9 neurons were removed. The resulting validation losses
as function of epoch for different numbers of neurons removed are shown in fig. 28. As can
be seen, the loss converges to about the same values for all the networks, showing that the
model does indeed pick out the distinctly causal relations between the neurons, so is able
to perform the causal inference in contexts where both noise and confounding variables are
present.

5.5 Simplicial Thresholding

To test whether the models were able to pick out the higher order simplicial structures, a
pre-processing scheme of simplicial thresholding was introduced. Here, nothing was done to
the spike-trains, but the connectivity matrices were adjusted based on the maximal simplicial
complex of the network. For each threshold, only edges which took part in simplices of a
certain dimension or above were kept, the others were set to zero. Since almost all edges are
at least part of a 2-simplex, the lowest threshold tested was that of 3-simplices. For example,
when using a threshold of, say, 5, only the edges which form part of simplices containing at
least 5 neurons are kept. All other edges are set to 0. An illustration of filtering of 3-simplices
is shown in fig. 29.

Two different approaches were taken to see whether the models were able to learn the
simplicial structures of the networks. First, the simplicial thresholding was applied to test
datasets and sent through models trained to predict the complete connectivity matrix. Sec-
ond, the thresholding was applied to the training datasets as well, and it was tested whether
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it was possible to train models to only learn the thresholded connectivity matrices.

Figure 29: An example of simplicial thresholding of 3-simplices (4 neurons). The figure to
the left shows the original network, whereas the figure to the right shows the network with
the remaining edges after simplicial thresholding of 3-simplices has been applied. Note that
the 2-simplex in the middle nonetheless remains, as all of its constituent edges form part of
the surrounding 3-simplices.

5.5.1 Testing

First the intention was to see whether the models trained on the complete simplices showed
any difference in accuracy in predicting the edge weights of the different edges based on
their simplicial role. The idea was to see whether the models were more accurate in their
predictions of the edge weights of the edges which form part of higher-order simplices than
those which are only part of smaller simplices. If this were to be the case, it would be an
indication that whatever information the model uses to predict the edge weights is somehow
more prevalent or easily extractable when the edges form part of higher order simplices.

The original models obtained when training on the complete connectivity matrices were
used, and the test-set was pre-processed and used in the analysis. For each pair of prediction
Ŵ0 and ground truth W0, the pair was sent through the simplex filtering process such that
both were filtered based on the maximal simplicial complex of W0. Denote this thresholded
set Ŵ0,t and W0,t for threshold t. This was done for each filtering-threshold up to a certain
value. Consequently, they both have the non-zero values at the same indices, though the
actual weights predicted might differ. When calculating the loss, a slight alteration of the
MSE loss was used. Instead of dividing by the total number of potential edges, N ×N , the
sum of squares was divided by the number of non-zeros edges in the thresholded W0,t, call
this ENZ,t. The loss at threshold t was thus:

Ct =
1

ENZ,t

N∑
i=0

N∑
j=0

((Ŵ0,t)i,j − (W0,t)i,j)
2 (9)
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Note that for higher thresholds, some of the losses became 0 since there were no simplices
remaining. These losses were excluded when calculating the averages, since only the losses
on the non-zero edges were of interest. Importantly, a filtering of 1 makes no difference to the
W0 matrix, since every edge is per definition part of a 1-simplex. However, it does change
the prediction Ŵ0,t, since all the edges which are incorrectly predicted to be non-zero are set
to 0 in the filtering process. The loss should therefore decrease significantly even at the first
step as a result of this, whereas what we are really interested in is the dependency after that.
Thus, the 1-threshold was included as the point of reference for how accurate the model was
in predicting the non-zero edges of the complete connectivity matrix.

This was tested for small-world and random networks of different sizes, and the resulting
plots of test loss as function of threshold is shown in fig. 30. As can be seen, no general
pattern of dependency of loss on simplex threshold was found, and the changes detected
were marginal relative to the baseline. This shows that how well the model learns a certain
edge weight is independent of that edge’s simplicial role. The hypothesis that the models are
better at predicting edges which form part of higher order simplices is thus falsified, though
little more can be said about the functionality of the edges themselves from this negative
result. Further, given that these models were trained to learn the complete connectivity
matrix with equal importance of all the edges, this result is not particularly surprising.
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Figure 30: Average test loss on non-zero values as function of simplex thresholding for small-
world and random networks of different sizes. All the models were trained to predict the
complete connectivity matrices. Standard errors shown in shaded regions.

5.5.2 Training

To better test whether the edges in higher-order simplices are functionally distinguishable
from those in smaller simplices, we attempted to train new models to only predict the filtered
connectivity matrices. This was done by performing the simplex thresholding to the entire
dataset prior to the training. To test whether it was possible to train the models to only pick
out simplicial complexes of a certain dimensionality, a new model was trained for datasets
with each threshold. A positive result would then imply that these higher-order structures
are somehow detectable in the time-series, and thus that they must have some functional
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coherence which the model is able to learn, even though we have been unable to identify
this. Importantly, a negative result is in this case not sufficient to falsify the hypothesis that
they do have some functional role, since all this tells us that this specific machine learning
algorithm is unable to learn to pick out these structures, which does by no means imply that
the information is absent from the input data.

This analysis was done for networks containing 60 and 70 neurons, both small-world
and random. Thresholding up to 5-simplices were tested. Note that the standard MSE
loss was here used, since we are also interested in the models’ ability to correctly predict
the absent edges. The resulting plots of validation loss as function of epochs for different
simplex thresholds are shown in fig. 31. The most obvious result is probably that the highest
filtering gives the lowest loss. This is simply because there are hardly any edges left in these
networks, such that the models primarily learn to correctly predict zeros. For the networks
where there are still edges present, however, one can see that the models perform slightly
worse with increasing thresholding. This suggests that the models are unable to pick out
only the higher-order structures. Further, this difference is likely even more significant when
we take into account the increasing number of zeros in the matrices where thresholding has
been applied. Previously, we found that the loss decreased with the percentage-wise increase
in zero-weights. This is likely the case here as well, so this is a clearly negative result with
regard to the hypothesis that the models will be able to learn to pick out higher order
functional relations from the time-series.
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(a) Small-world network of 60 neurons
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(b) Random network of 60 neurons

Figure 31: The validation loss plotted as function of training epochs for small-world and
random networks, both containing 60 neurons, with different simplex thresholding applied.
Standard errors shown in shaded regions.

Before rejecting the hypothesis, a final possibility was considered. It could be the case
that in order for the function of the higher order simplices to become observable, one must
consider greater time-shifts than the coupling window of 10 ms. In the above analysis,
looking at eq. (7), the maximum shift of the vector P was 10 time-steps (i.e. T = 10 ms).
This was a fairly arbitrary choice, motivated by the fact that coupling window cw from the
GLM was known to be 10 ms. Thus, the maximal time-shift was increased to 30 ms, and the
above analysis repeated. The resulting plot for small-world networks of 70 neurons is shown
in fig. 32. As can be seen, the exact same pattern is found as with the time-shift of 10 ms,
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where the loss increases with the thresholding, showing that the model remains unable to
differentiate between the edges based on their simplicial role. The same was found for both
small-world and random networks of other sizes.
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Figure 32: The validation loss plotted as function of training epochs for small-world network
of 70 neurons when using a maximal time-shift in P of 30 ms, with different simplex thresh-
olding applied. Standard errors shown in shaded regions.

5.5.3 Discussion

So what can be said about the function of the simplices based on these results? In reality,
very little can be inferred from a null result in an investigation like this. The only thing
which has been shown is that this specific machine learning algorithm, which has been shown
to be able to find the dyadic effective and structural connections between neurons, is unable
to differentiate between the connections which form part of higher order directed simplices
and those which do not. It is, however, an indication that the hypothesised function which
arise from the simplicial structures is not instantiated in the relationships between pairs of
neurons. In other words, given only the spike-trains of two neurons, it might be impossible
to infer their simplicial relation. Instead, the function might be instantiated at a higher
level, as a property which might only become evident when looking at certain relationships
between the spike-trains of many neurons simultaneously.

This is related to a more general problem in the application of machine learning models,
especially when they are being used for explanatory purposes such as this. A commonly
raised criticism of machine learning models is their double opacity, where both what is
learned and how it is learned remains opaque to the programmer [7]. This lack of knowledge
of what the model actually learns and bases its predictions upon makes it near impossible
to draw any inferences about the dataset just from the model’s inability to learn certain
features. In our case, it is unclear to what extent the current algorithm is able to pick up on
higher-order relationships, and testing for this is very difficult. The only indication we have
that it picks up on some more integrated relationships than the purely dyadic conditional
probabilities of the firing rates is that it is able to differentiate between correlations resulting
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from confounding variables and direct causal links. To do so, it seems reasonable to assume
that some analysis of higher-order relationships in the network is necessary. At the very
least, it must be able to consider a neuron’s relationship to multiple different neurons at
the same time, and how these relate to each other. Hence, if the information about the
functional properties of the simplicial structures is available at this level, the model should
have been able to learn it. Nevertheless, this is too vague and uncertain an argument to
conclusively say anything of substance about whether the simplicial information is present
in higher-order functional properties of the networks.
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6 Conclusion and Outlook

6.1 Conclusion

In this project, we investigated whether directed simplices in biological neural networks are
associated with certain functions. This was done in two parts, first using methods and
ideas from the field of causal inference to test for three specific functional properties, and
second, with a more model-independent perspective, using a machine learning model. This
constituted a novel approach to the study of the functional role of such structures in biological
neural networks. In previous work, such as [47] and [21], only correlations in the functional
connectivity in such networks have been considered. In contrast, the main emphasis in this
project has been on analysing the causal effects of activity in source neurons in higher-order
simplices on the dynamics of the other neurons, primarily that of the sink neurons in the
same simplices.

In sum, no positive results were obtained regarding the increasing functional significance
of higher-order simplices in the simulated activity in the networks studied. Consequently,
we also have no indication that they can be treated as (semi-)independent causal units in
the networks. This held both when considering the specific metrics of relative ATE, transfer
entropy and autocorrelation, as well as for the model-independent approach taken using
the machine learning model. Unfortunately, however, very little can be ascertained from
the negative results obtained in this case, apart from refuting the very specific hypotheses
tested. The overarching question of whether higher-dimensional simplicial structures in
neural networks are linked to some form of function, either causal of not, thus remains
unanswered. The main reason for this is the problematic vagueness of the hypothesis - it is
simply impossible to falsify whether the simplicies serve “some functional role”, it can only
be verified in the case where one simply happens to test for the correct function. This is a
good reason to be critical of such an approach in science.

The final research question was whether the simplices of different sizes form coherent
functional groups as well as structural groups, as was also discussed using the notion of
natural kinds. The main finding against this grouping was the general lack of within-group
homogeneity for all the different functional metrics tested. This was shown by the high
within-group variance, and evidenced further by the fact that the analysis of variance in
very few of the cases showed that the groupings according to simplex size or completeness
were statistically significant. The same problem of choice of function applies here, where
there is no guarantee that the “correct” function has been tested for, so this is only an
indication that these simplices do not form functionally coherent groups. This finding is
further supported by the fact that the variance was greatly reduced when the type of source
neuron (excitatory or inhibitory) was selected for. This shows that there are other factors
than simplex size which greatly affects the functions of the simplices, such that blindly
grouping them together purely based on their topology in this manner is not particularly
informative of their function. However, as before, the very nature of the question makes
it impossible to falsify. In conclusion, the results here obtained are insufficient to give any
conclusive answers to either of the research questions considered in this project.
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6.2 Limitations

There were a range of other factors limiting the potential scope of this research. We have
primarily looked at dyadic relationships within the simplicial structures, in particular causal
and statistical relationships between the activity of the source and the sink neurons in the
simplices. Yet it is far from certain that the functionality which the simplices facilitate is
observable in terms of these metrics. Indeed, much of the current approach to neuroscience
is focused around more global properties of bigger networks, which can capture emergent
properties of the network dynamics which are not reducible to dynamics at lower scales,
such as the dyadic relationships investigated here. We mainly focused on the source and the
sink neurons, both because these could be treated as the informational bottlenecks in the
simplicial structures, but also because some level of simplification was needed. Yet, it might
well be the case that the function we are searching for is more strongly connected with e.g.
the dynamics of the mediator-neurons.

One must also not forget that the networks studied are highly idealised, and far from
realistic, given that no such structures exist in isolation. It might be that the functionality
of the simplicial structures only becomes visible when these structures form part of bigger
integrated networks. This is a point commonly raised in the literature regarding the need
for new approaches to understanding and analysing the vast amounts of brain data available
[54, 59]. The approach here taken was to look at the function in terms of local relations within
smaller circuits, but we know that not all properties visible at the global scale are reducible
to such low-level properties and interactions [2]. Rather, these are properties which might
emerge as a result of the collective interactions of elements in complex systems. Regarding
this alternative approach to network neuroscience, Sporns writes:

In the case of large networks of neurons, powerful manifestations of “emer-
gent phenomena” are global states of brain dynamics in which large populations
of neurons engage in coherent and collective behavior. Such dynamics emerge
from very large numbers of local interactions that are individually weak and yet
collectively powerful enough to create large-scale patterns. [54, p. 92-93]

Thus, the current findings are insufficient to say anything about the significance of sim-
plices for such higher-level emergent properties.

Related to this, one could imagine that the function of these structures only arise in
the neuromodulatory environments in which they normally exist, due to some more complex
interdependencies. This would be impossible to discover with the current approach. However,
in addition to providing a necessary simplification, the idealisation can nevertheless be useful.
Even if the true function is different in the full neuromodulatory environment, knowing how
the system works in isolation is still valuable. This is similar to how physicists assume
frictionless surfaces and no air resistance. The calculations can then give an upper limit for
e.g. the movement of an object, to which other factors can be added later. Experimentally,
it also provides a way of singling out the effect of different factors. Thus, if we could find
ways of more closely recording the structure and activity in such networks in vivo, we might
be able to get around some of the circularity in the argument outlined in section 2.1.2,
where the aim is to discover the dependencies of function on network structure and the
neuromodulatory environment.

90



Next, it is an important limitation that the information in the networks studied remains
uninterpreted. When talking of function in biological neural networks, we are primarily in-
terested in higher-order cognitive functions, and the uninterpreted sequences of zeros and
ones here investigated are very far from these. Relatedly, we mainly focused on how individ-
ual and isolated spikes in the source neurons affected the dynamics of the other neurons in
the network. Though, as discussed, no information is encoded in such isolated spikes - it is
in the spike series that information exists. Thus, this simplification might have limited the
possibilities of detecting the functionalities searched for.

Finally, one must not forget that all the datasets investigated were simulated data, so
one must be careful with extrapolating the findings from this research to also make claims
about biological neural networks. To do so, additional experimental data from real neural
networks will be necessary.

6.3 Future Research

We have an ever increasing amount of brain-related “big data” available, though neuroscience
still lacks the organising principles and theoretical framework needed to turn this data into
new knowledge and understanding. Thus, in addition to new experimental methods and tools
for analysing the data, the field is also in dire need of theoretical advances which can help
us interpret the data. Neuroscience is by no means unique in this regard, and historically,
other sciences such as physics and chemistry have all gone through similar processes where
new experimental techniques and theories are developed in tandem until a final agreed upon
theoretical framework is reached. Until then, it is unreasonable to judge the methods used
in neuroscience by the same standards as one would in for instance physics, but conversely,
the models derived from them must be treated with a certain care and reservation. What
one must encourage, then, is a mixture of creative and critical voices in the field, where
new methods and frameworks are being suggested, tested and scrutinised. The shift in
focus from correlation towards causation might hopefully provide one such fruitful change in
perspective. It can certainly be argued that causal explanations provide both a stronger link
to the underlying causal mechanisms which we wish to discover, as well as having a much
clearer interpretation than mere correlations do, so should be more conducive to scientific
explanations.

Further, we would like to raise two points of concern which has kept reappearing through-
out the work on this project. The first concerns the difficulty of choosing the right level of
analysis for features of a complex system, the second regards the pursuitworthiness of the
simplicial structures, and other similarly motivated structures.

6.3.1 Levels of Description

The challenge of analysing complex systems, such as the brain, at the right level of descrip-
tion, is one that has been mentioned repeatedly throughout the discussions in this project.
This is a problem which appears in all complex systems, and especially in cases such as the
brain, where the causal dependencies between the levels likely work in both directions, such
that properties emerging at certain higher levels might in turn causally influence the prop-
erties at lower levels [9]. Carandini argues that what neuroscience largely lacks is theories
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of how the intermediary levels relates to both the underlying biophysics as well as the emer-
gent functionality of behaviour and other cognitive functions. This corresponds well with
Marr’s computational level, where a complete understanding requires knowledge of how the
algorithms at one level relate to the higher computational purpose of the system. What we
need are bridge principles which can be used to connect these.

Further, there is a crucial difference between reductionism and constructivism, where it
is often tacitly assumed that the former implies the latter, when this is not necessarily the
case. This is not unique to neuroscience, but is something we find in complex systems in
all fields. Writing about similar challenges in physics and chemistry, Andersen poignantly
notes that “[t]he ability to reduce everything to simple fundamental laws does not imply the
ability to start from these laws and reconstruct the universe” [2, p. 393]. This concern is
generally ignored in approaches such as the current project, where we try to recreate higher-
level functionalities from simulations of lower-level dynamics. Regarding this approach in
neuroscience, Carandini writes: “In essence, while we have clear examples of success for
the reductionist approach (from behavior to computations to circuits), the case still needs
to be made for the constructivists’ one (from circuits to computations to behavior)” [9, p.
183]. Thus, we have no guarantee that the function searched for will even appear in such
simulations, since this could be dependent on factors appearing at higher levels. Indeed,
some argue that we cannot even consider the brain in isolation from the body, and that it
could well be the case that features such as cognition only appear in the brain as an embodied
system [49].

Thus, without knowing what the correct level of analysis for the function of interest is, nor
the mapping between the functionalities at the different levels, one is at high risk of not seeing
the wood for the trees. If the aim is to test whether certain circuit motifs are related to certain
behaviours, it is necessary to study this through the intermediate level of computational
purpose. Further, one must be clear on what direction one is working in (reductionism or
constructivism), since neither implies the other, and the necessary bridge principles should
have been established in the right direction beforehand. This is something which was missing
from the current project, where nothing was known about how the functionalities searched
for at the level of circuits really connected to any higher-level properties of interest. Thus,
even if a positive result had been obtained, we would have been unable to interpret its
significance. This is unfortunately not unique to this project, since the lack of known bridge
principles is a general problem in the field. Thus, this somewhat speculative approach will
likely prevail out of sheer necessity in the near future, so we can only encourage a high degree
of scepticism and scrutiny of one’s own results.

6.3.2 Pursuitworthiness

The second concern is that of how one decides what features of a system to study and put
time and money into researching, in other words, how to determine the pursuitworthiness of
a feature. The current project is a good illustration of this, where, based mainly on their
topological neatness, we decided to search for the function of the strictly defined directed
simplices. However, we had little idea about what the correct level of description was for
their function, so a negative result does not hinder us from simply rephrasing the hypothesis
and go searching further at another level or using a different metric.
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In general, we should be very wary of a priori picking out certain networks structures of
interest and then go looking for their functionality. Such an approach, where one goes hunting
for function before determining what function one expects, is usually considered dubious
scientific practice. Firstly, it goes against the Popperian falsificationist ideal of science, where
scientific hypotheses are required to be falsifiable. Secondly, with such an approach, where
numerous different types of functions are iteratively tested for, the likelihood of eventually
committing a type I error becomes increasingly large, as one is bound to eventually find
something which turns up as statistically significant.

At the same time, as mentioned above, neuroscience is in need of new ideas and perspec-
tives, so one should probably be a bit more lenient with the falsifiability here than one would
in other, more established, fields. Indeed, there is a very real tension between stubbornly
refusing to let go of the belief in the importance of a certain feature, and therefore relent-
lessly searching for its function at different levels of description (this would constitute what
Lakatos would call a “degenerate research program”), and the problem that it is impossible
to know a priori what the correct level of description for the function of this feature might
be. Thus, it would be preferable if any further search for the function of directed simplices
in biological networks were supported by additional experimental or theoretical findings.
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