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Preface

I Introduction

This monograph sets forth the results of a study of the geometry of a simplex, multiply-
cut by hyperplanes, and its implications for constrained optimization. Chapter 1
presents basic cases about the polytope which results when a simplex is cut by either
one or two hyperplanes, having designated feasible and infeasible sides. The polytope
of study is the part of the simplex remaining feasible to all cuts.

Proceeding in Chapter 2, the study examines the geometry of a polytope after mul-
tiple cuts of a simplex, and specifies a test in the form of an existence theorem to deter-
mine whether or not k+1 cuts each deleting one vertex of a simplex Sk in k dimensions,
together delete the entire simplex. This result is important in the subsequent determi-
nation of the vertex and edge counts of a polytope with arbitrary cuts. As well, this
Chapter presents an efficient algorithm for determining the status — uncut, partially
cut, or completely cut — for any sub-simplex of the original simplex.

Chapter 3 addresses attention to the vertex and edge counts of a polytope result-
ing from cutting a simplex. At first, two cuts operate, and either they intersect within
the simplex, or they do not. In the former case, the number of vertices and edges is a
simple consequence of a result in Chapter 1. In the latter case, the incremental number
emerges in the presentation. An extension to the many cut scenario ensues, with pair-
wise intersecting allowed within a simplex, to provide a closed formula for vertices and
edges.

Chapter 4 discusses the ‘beta problem,’ an optimization problem involving a feasible
simplex constrained by inequalities among disjoint sets of the variables. The theory de-
veloped earlier for a simplex with cuts naturally finds a way to illuminate the features of
this problem. For added interest, coefficients of the defining matrix are considered un-
certain, and thus subject to probability distributions. The gist of the Chapter comprises
these and related ideas, with examples.

As one commonly applies the simplex method to solve such ‘beta problems,’ he nec-
essarily considers quotient distributions on the variables appearing in the pivot equa-
tions. For reference, therefore, the study attaches an Appendix which provides statistics
for a few of the more commonly encountered quotient distributions.
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Preface iii

II Literature review

The contributions of many authors converge to the present work. Recommended read-
ing includes these studies.

Books and monographs by these authors are the first and best comprehensive source
on ideas related to the present work. (Gale 1960; Ford, Jr. and Fulkerson 1962; Isaacson
and Keller 1966; Feller 1967; Mangasarian 1969; Tutte 1969; Stoer and Witzgall 1970;
Feller 1971; Tutte 1971; Operations Research 1973; Hall, Jr. 1986; Grünbaum 2003). As
well, these conference proceedings are deserving of study. (IBM Corporation, Data Pro-
cessing Division 1964; University of Oklahoma 1971). Further, this thesis merits atten-
tion. (Telgen 1979)

These papers address various aspects of polytope geometry, including analysis of
vertices, edges, and paths. (Gale 1956; Balinski 1961; Klee 1964; Klee 1966b; Klee and
Witzgall 1968; Manas and Nedoma 1968; Grünbaum 1970; Balinski and Russakoff 1972;
Bolker 1972; Philip 1972; Mattheiss 1973; Silverman 1973a; Silverman 1973b; Adler,
Dantzig, and Murty 1974; Balinski 1974; Burdet 1974; Klee 1974; Greenberg 1975; Za-
slavsky 1975; Bolker 1976; Dyer and Proll 1977; Klee 1978; Epelman 1979)

These papers address polytope diameters, heights, maximal path lengths. (Klee 1965;
Klee and Walkup 1967; Saigal 1969; Adler 1974; Adler and Dantzig 1974; Padberg and
Rao 1974; Lawrence, Jr. 1978; Von Hohenbalken 1978; Walkup 1978)

These papers look to linear programming and related topics. (Klee 1966a; Klee 1967;
Klee and Minty 1972; Niedringhaus and Steiglitz 1978; Telgen 1978; Orden 1980)

This paper examines probabilistic aspects of polytope selection. (Kelly and Tolle
1981)
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Chapter 1

Fundamental cases:
one and two cuts of a simplex

This chapter discusses the geometry of an n-dimensional simplex Sn intersected by one,
then two, cuts of hyperplanes.

1 One cut of a simplex

To begin, consider the case of one cut. Two geometric objects are of interest — the closed
convex polytope P, which is the intersection of Sn and the cut C, and the closed polytope
Qp remaining after the truncation of p simplex vertices.

The principal results of this Chapter are embodied in the twelve theorems and re-
lated corollaries. The first two theorems discuss the basic geometry of P and Qp; the
third discusses the number of components of the various dimensions of the class of
polytopes of which both P and Qp are examples; the fourth discusses the net number
of additional components when passing from Sn to Qp by means of the hyperplane cut.
Theorem 5 establishes the number of vertices and edges of the resulting polytope after
several mutually independent cuts, that is, for cuts which do not intersect among them-
selves within Sn. Theorems 6, 7, and 8, relate to the cardinality of vertices and edges
when Sn is cut by two hyperplanes, allowing for the possibility that the cutting planes
may themselves intersect within Sn. Theorem 9 observes the indifference of cutting or-
der on the computation of vertices and edges. Theorems 11 and 12, which are converses,
present in greater detail, the set of possible polytopes when two planes cleave a simplex.

To continue, let Sn be a simplex of n dimensions, consisting of the convex closure of
n + 1 points. Assume that a cutting hyperplane C intersects Sn with p points on one
side, and consequently with n − p + 1 points on the other side. By convention, call the
side of the p points the infeasible halfspace HI, and the other side, including the cut, the
feasible halfspace HF. The p points will be said to be made infeasible, deleted, excised,
truncated, cut, or cleaved, by C equivalently.

1



Fundamental cases: one and two cuts of a simplex 2

The first result is that the topology of Sn ∩ C = P is the cross product topology of
Sp−1 and Sn−p. Formally,

Theorem 1.1.
P = Sp−1 × Sn−p

Proof. Let x =
∑n

0 aipi be a point of C given in terms of its barycentric coordinates
on the vertices {pi} of Sn. Then x ∈ P ⇐⇒ ai > 0,∀i. Let b : =

∑p−1
0 ai, implying

1 − b =
∑n

p ai. Now, b lies in (0, 1) for x in some open neighborhood N of P, with
C ⊃ N ⊃ P, because otherwise x ∈ Sn−p or x ∈ Sp−1. Let the projections of x into Rp−1

and Rn−p, the hyperplanes containing Sp−1 and Sn−p, respectively, be

(v, w) =

(
1
b

p−1∑
0

aipi,
1

1 − b

n∑
p

aipi

)

Then

F : N → Rp−1 × Rn−p,

defined by

F(x) = (v, w)

is a bicontinuously differentiable function (a diffeomorphism) of N onto the image of
N. Furthermore, F restricted to P is Sp−1 × Sn−p. Observe that F is linear if and only if b

is constant on C, a condition equivalent to parallelism among Rp−1, C, and Rn−p.

The second result is that the topology of Sn ∩HF = Qp is the cross product topology
Sp × Sn−p. Formally,

Theorem 1.2.
Qp = Sp × Sn−p

Proof. Let the cut C delete p + 1 vertices from Sn+1. Then P = Sn+1 ∩ C = Sp × Sn−p

by Theorem 1.1. Choose one of the deleted vertices of Sn+1, say p0, and call the convex
closure of the remaining n+1 vertices Sn. Let HF be the feasible halfspace of C, restricted
to the hyperplane of Sn. It remains to demonstrate that Qp = Sn ∩HF is diffeomorphic
to Sn+1 ∩ C. To that end, let x =

∑n+1
0 aipi be a point of C in barycentric coordinates

on the vertices {pi} of Sn+1. Then x ∈ P ⇐⇒ ai > 0,∀i. Now, a0 < 1 for x in some
open neighborhood N of P, C ⊃ N ⊃ P, because otherwise x = p0. Let the projection of
x from p0 into Rn, the hyperplane containing Sn, be

w =
1

1 − a0

n+1∑
1

aipi



Fundamental cases: one and two cuts of a simplex 3

Then

G : N → Rn,

defined by

G(x) = w

is a bicontinuously differentiable function (a diffeomorphism) of N onto the image of
N. Furthermore, G restricted to P is Sn × HF. Observe that G is linear — in fact is
an expansion mapping by the factor 1/(1 − a0) — if and only if a0 is constant on C, a
condition equivalent to parallelism between C and Rn, which can obtain only if p =

0.

Corollary 1.3.
Qp = Qn−p

Proof. Observe that the cross product is commutative.

The next concern is to investigate the geometry of P and Qp, that is, to determine the
nature and arrangement and count of the components of the various dimensions. The
task is essentially the same for both P and Qp, insofar as they are both cross products of
simplexes, differing only in the dimension of one factor.

Theorem 1.4. There are

An(p, j) =

j∑
i=0

[C(p + 1, i + 1)C(n − p + 1, j − i + 1)]

=
1
j!

dj

dsj
hA(s)

∣∣∣∣
0+

faces of dimension j in Qp = Sp × Sn−p, where the terms of the summation give the count of
faces Si × Sj−i, and

HA(s) =
1
s2

[
(1 + s)p+1 − 1

] [
(1 + s)n−p+1 − 1

]
Furthermore,

n∑
j=0

An(p, j) =
[
2p+1 − 1

] [
2n−p+1 − 1

]
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Proof. Let Qp = Sp × Sn−p be the general case. A j-dimensional face of Qp is a set
Si × Sj−i, for 0 6 i 6 j, where Si ⊂ Sp and Sj−i ⊂ Sn−p. There are C(p + 1, i + 1) ways
that one may select Si within Sp, and C(n − p + 1, j − i + 1) ways that one may select
Sj−i within Sn−p. Hence there are C(p + 1, i + 1)C(n − p + 1, j − i + 1) ways to generate
Si × Sj−i, and

An(p, j) =

j∑
i=0

C(p + 1, i + 1)C(n − p + 1, j − i + 1)

ways to generate a j-dimensional face. But this summation is the j-th term (starting with
the zeroth) of the convolution of the two series {C(p + 1, i + 1)} and {C(n − p + 1, i + 1)},
the terms of which represent the ways of selecting Si from Sp and Sn−p, respectively.
Now,

fs =
1
s

[
(1 + s)p+1 − 1

]
and

gs =
1
s

[
(1 + s)n−p+1 − 1

]
are the generating functions of the cited series, hence

hA(s) = fsgs

=
1
s2

[
(1 + s)p+1 − 1

] [
(1 + s)n−p+1 − 1

]
is the generating function of the convolution. Consequently, the series of component
counts

{An(p, j)} =

{
1
j!

dj

dsj
hA(s)

∣∣∣∣
0+

}
,

and the total number of components of all dimensions

n∑
j=0

An(p, j) = hA(1)

=
[
2p+1 − 1

] [
2n−p+1 − 1

]
As an alternative to this iterative development of An(p, j) one can opt for a recursive

development. This latter approach and its reconciliation with the former offer addi-
tional insights into the structure of Sp × Sn−p.
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Corollary 1.5.

An(p, j) = C(n + 2, j + 2) − [C(p + 1, j + 2) + C(n − p + 1, j + 2)]

= An+1(0, j + 1) − [Ap(0, j + 1) + An−p(0, j + 1)]

Proof. As before, let a hyperplane cut truncate p vertices of Sn. Then by Theorems 1.1
and 1.2, the intersection with the cut is P = Sp−1 × Sn−p, and the polytope remaining
after the cut is Qp = Sp× Sn−p. One is therefore able to generate a formula for An(p, j),
the count of components of dimension j in P, in terms of An−1(p − 1, j). Specifically,

An(p, j) = C(n + 1, j + 1) + An−1(p − 1, j) − C(p, j + 1)

= An(0, j) + An−1(p − 1, j) − Ap−1(0, j),

where the first term of the summation is the number of components of dimension j in
Sn, the second term is the number of components of dimension j added by the cut, and
the third term is the number of components of dimension j deleted by the cut. The
recursions begin with

An(0, j) = C(n + 1, j + 1)

and

A0(1, j) = 0,

which by the recursion implies

An(n + 1, j) = 0

By Theorem 1.4, however, it follows that
j∑

i=0

C(p + 1, i + 1)C(n − p + 1, j − i + 1)

= C(n + 1, j + 1)+

j∑
i=0

C(p, i + 1)C(n − p + 1, j − i + 1) − C(p, j + 1)

must be a binomial coefficient identity. Demonstration of this fact relies on the more
common identity (couched in the incumbent notation)

j+1∑
i=−1

C(p + 1, i + 1)C(n − p + 1, j − i + 1) = C(n + 2, j + 2),

readily proved by induction. This summation is, however, simply the expression for
An(p, j), with an additional term at the beginning and at the end. Hence an alternate
form for An(p, j) is

C(n + 2, j + 2) − [C(p + 1, j + 2) + C(n − p + 1, j + 2)],

from which the more complex identity above follows directly.
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An alternative argument for this formula lends some insight into the process of
determining the count of extreme points. Let Qp be given by the barycentric coordi-
nates induced by those of its factors, Sp and Sn−p. Specifically, let (a0, a1, . . . , ap) and
(b0, b1, . . . , bn−p) have all non-negative coordinates, with

p∑
i=0

ai =

n−p∑
j=0

bj = 1,

be representations of Sp and Sn−p. Then the (n + 2)-tuple

(a0, a1, . . . , ap, b0, b1, . . . , bn−p)

is a point of Qp. The j-faces of Qp, consequently, are the linear combinations of the
coefficients, with n − j of them held at zero. Now there are

C(n + 2, n − j) = C(n + 2, j + 2)

ways to distribute n − j zeros among n + 2 coefficients. However, any way which
distributes only zeros to either the first p+ 1 coefficients or the last n−p+ 1 coefficients
(meaning all the variable entries to either the first or last group) is not allowable, because
the groups respectively must sum to one. Therefore, there are

C(n − p + 1, j + 2) + C(p + 1, j + 2)

disallowed combinations.

Corollary 1.6.

An(p, j) = C(n + 2, j + 2)

= An+1(0, j + 1) if j > max(p, n − p)

Otherwise,

An(p, j) < An+1(0, j + 1)

Proof. This assertion follows directly from Corollary 1.5, noting that the terms in the
brackets are zero if j > p, or if j > n − p, respectively.

This result has paradoxical overtones, because it states that An(p, j) is diminished
from the simple expression An+1(0, j + 1) if and only if a component of dimension j

exists properly in at least one of the factors Sp or Sn−p.
Six additional results derive directly from Theorem 1.4. They are listed here as Corol-

laries.

Corollary 1.7.
An(p, j) = An(n − p, j)
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Corollary 1.8.
An(p, 0) = (p + 1)(n − p + 1)

Corollary 1.9.
An(p, 0) = (n + 1) + An−2(p − 1, 0)

Corollary 1.10.

An(p, 1) =
n

2
(p + 1)(n − p + 1)

=
n

2
An(p, 0)

Corollary 1.11.
An(p, 1) = C(n + 1, 2) +

n

n − 2
An−2(p − 1, 1)

Corollary 1.12.
An(1, 1) = n2

Corollary 1.13. The mean dimension of components of Qp = Sp × Sn−p, is

∂

∂s
hA(s)

∣∣∣∣ 1
hA(1)

or

(
(n − 2)2n+1 − 2

)
−

(p − 3)2p + (n − p − 3)2n−p

(2p+1 − 1) (2n−p+1 − 1)

Corollaries 1.8 and 1.10, giving the counts of vertices and of edges, respectively, in
Qp, are important to the sequel.

The next business of this Chapter concerns the development of formulas parallel
to those of Theorem 1.4 and its Corollaries, relating to the net number of components
added when passing from Sn to Qp = Sp × Sn−p by means of a hyperplane cut C.

Theorem 1.14. There are

Bn(p, j) = C(n + 1, j + 2) − [C(p + 1, j + 2) + C(n − p + 1, j + 2)]

= An(0, j + 1) − [Ap(0, j + 1) + An−p(0, j + 1)]

=
1
j!

dj

dsj
hB(s)

∣∣∣∣
0+

faces of dimension j in net addition when passing from Sn to Qp = Sp × Sn−p, where

HB(s) =
1 + s

s2 [(1 + s)p − 1] [(1 + s)n−p − 1]
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Furthermore,

n∑
j=0

Bn(p, j) = 2(2p − 1)(2n−p − 1)

Proof. The net addition of components of dimension j when cutting p vertices from Sn

is

Bn(p, j) = An(p, j) − C(n + 1, j + 1)

= An−1(p − 1, j) − C(p, j + 1)

by the recursion relation. In words, Bn(p, j) equals either the j-faces of Qp less the j-faces
of Sn, or the j-faces of P = Sn ∩C less the j-faces of the truncated Sp−1. By Corollary 1.5,

Bn(p, j) = C(n + 2, j + 2) − [C(p + 1, j + 2) + C(n − p + 1, j + 2)] − C(n + 1, j + 1)

= C(n + 1, j + 2) − [C(p + 1, j + 2) + C(n − p + 1, j + 2)]

The generating function hB(s) of {Bn(p, j)} is likewise the difference of hA(s) and

1
s

[
(1 + s)n+1 − 1

]
,

which is the generating function of {C(n + 1, j + 1)}. Thus,

hB(s) =
1
s2

[
(1 + s)p+1 − 1

] [
(1 + s)n−p+1 − 1

]
−

1
s
(1 + s)n+1

=
1 + s

s2

[
(1 + s)p − 1

][
(1 + s)n−p − 1

]
Consequently, the total net number of components added of all dimensions

n∑
j=0

Bn(p, j) = hB(1)

= 2[2p − 1][2n−p − 1]

Following now is a series of Corollaries parallel to those to Theorem 1.4, starting
with the second. The parallel development of the first has been included in the just
completed proof of Theorem 1.14.

Corollary 1.15.

Bn(p, j) = C(n + 1, j + 2)

= An(0, j + 1) if j > max(p, n − p)

Otherwise,

Bn(p, j) < An(0, j + 1)
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Proof. Note that

Ap(0, j + 1) + An−p(0, j + 1) = 0 ⇐⇒ j > max(p, n − p),

exactly as in Corollary 1.5.

A comment parallel to that of Corollary 1.6, about paradoxical overtones, applies
here. Bn(p, j) is diminished from the simple expression An(0, j + 1) if and only if a
component of dimension j exists properly in at least one of the factors Sp or Sn−p.

Six additional results derive directly from Theorem 1.14. They are listed here as
Corollaries.

Corollary 1.16.
Bn(p, j) = Bn(n − p, j)

Corollary 1.17.
Bn(p, 0) = p(n − p)

Corollary 1.18.
Bn(p, 0) = (n − 1) + Bn−2(p − 1, 0)

Corollary 1.19.

Bn(p, 1) =
n

2
p(n − p)

=
n

2
Bn(p, 0)

Corollary 1.20.
Bn(p, 1) = C(n, 2) +

n

n − 2
Bn−2(p − 1, 1)

Corollary 1.21.
Bn(1, 1) = C(n, 2)

Corollary 1.22. The mean dimension of components added in passing from Sn to Qp = Sp ×
Sn−p, is

∂

∂s
hB(s)

∣∣∣∣ 1
hB(1)

or

(
(n − 3)2n − 3

)
−

(p − 3)2p + (n − p − 3)2n−p

(2p − 1) (2n−p − 1)
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Corollaries 1.17 and 1.19, giving the net additions of vertices and of edges, respec-
tively, in passing from Sn to Qp, are important to the sequel.

The results of the first four theorems extend easily to a simple class of polytopes
formed by multiple cuts of Sn. The class is defined by the condition that no point of
Sn be infeasible to more than one of the cuts. Henceforth, cuts which satisfy this cri-
terion will be termed vertex independent. Under this assumption, the various cuts have
independent effect on the number of components of any dimension in the resulting
polytope. Formally, one has

Theorem 1.23. If k hyperplanes, no pair of which intersect within Sn, cut {pi} vertices, respec-
tively, from Sn, then the resulting polytope Pn,k({pi}) has

An(0, j) +

k∑
i=1

Bn(pi, j)

components of dimension j, 0 6 j 6 n.

Proof. The terms of the summation are the independent increments induced by the re-
spective cuts, by Theorem 1.14.

Corollary 1.24. Pn,k({pi}) has (n + 1) +
∑k

i=1 pi(n − pi) vertices.

Corollary 1.25. Pn,k({pi}) has
n

2
[
(n + 1) +

∑k
i=1 pi(n − pi)

]
edges.

2 Two cuts of a simplex

At this juncture it is natural to extend the theory of cutting a simplex to the case of two
cuts, without the restriction that the cuts not intersect within the simplex. One approach
is to consider an arbitrary cut of Qp = Sp × Sn−p, which, as has been developed, is the
result of cutting Sn once. The questions arise: How many new vertices appear in the
cutting hyperplane?, and how many net vertices accrue in the course of truncating Qp?
The remainder of this Chapter addresses these and related questions.

Recall that the 0-faces (points) and 1-faces (edges) of Qp are of the form S0 × S0,
and of the form S0 × S1 or S1 × S0, respectively. This seemingly trivial comment is
important because it distinguishes these lower dimensional components as the only
ones guaranteed to lie wholly within a copy of one of the factors of Sp × Sn−p. In turn,
this guarantee allows a simpler analysis to determine the vertex and edge counts of the
truncated Qp, than would be required to determine the counts of higher dimensional
components. To derive the benefits of this streamlined theory, the discussion henceforth
focuses on vertices and edges.

Theorem 1.26. The number of vertices in the polytope Q(p, V), which is the intersection of Qp

and a hyperplane cut, is

M(p, V) =

p∑
i=0

Bn−p+1(ri, 0) +

n−p∑
j=0

Bp+1(sj, 0),
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where V is an incidence matrix of vertices of Qp deleted by the cut, and

ri =

n−p∑
j=0

vi,j

and

sj =

p∑
i=0

vi,j

Proof. The polytope Q(p), as stated in Corollary 1.8, has (p + 1)(n − p + 1) vertices,
which viewed symmetrically, are either the p + 1 copies of the vertices of Sn−p or the
n − p + 1 copies of the vertices of Sp. The cut of Qp, therefore, defines new geometry
by specifying which of the (p + 1)(n − p + 1) vertices become infeasible, and by which
remain feasible. One may display this information in an incidence matrix V , of size p+1
by n − p + 1, containing 1’s and 0’s according to whether or not the cut deletes a given
vertex of Qp. The order of the rows and columns of V is immaterial in this instance,
reflecting an arbitrary ordering of the vertices of SP and of Sn−p.

Suppose, now, that the cut of Qp is passed, and therefore each entry of

V = [vi,j], (0, 0) 6 (i, j) 6 (p, n − p)

is assigned the value 1 or 0. Then one may ascertain the number of vertices in the
cutting plane by the following reasoning. Look at a row, say row i, of V , which contains
ri instances of the digit 1. Before the cut, the positions of this row represented vertices
of a simplex Sn−p which contained C(n − p + 1, 2) = An−p(0, 1) edges. After the cut,
however, a simplex Sri−1 containing

C(ri, 2) = Ari−1(0, 1)

edges, became entirely infeasible, and a simplex Sn−p−ri
containing

C(n − p + 1 − ri, 2) = An−p−ri
(0, 1)

edges, remained entirely feasible. Therefore, the residual of edges

An−p(0, 1) − [Ari−1(0, 1) + An−p−ri
(0, 1)]

= ri(n − p + 1 − ri)

= An−p−1(ri − 1, 0)

= Bn−p+1(ri, 0)

were cut by the hyperplane, generating one new vertex at each intersection. This
number is, of course, the count of edges connecting the ri vertices of Sri−1 with the
n − p + 1 − ri vertices of Sn−p−ri

. Similar reasoning applies to a typical column of V ,
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say column j, which contains sj instances of the digit 1. In this direction, the residual of
edges is

Ap−1(sj − 1, 0) = Bp+1(sj, 0),

representing the count of edges between Ssj−1 and Sp−sj
.

Corollary 1.27. The number of edges in Q(p, V) is
n − 1

2
M(p, V).

Proof. The statement is a consequence of the Theorem and of a general result for sim-
ple polytopes, that the number of edges is half the dimension n times the number of
vertices. Demonstration of that fact follows easily from the observations that n edges
emanate from every vertex, and that every edge terminates with two vertices.

The next step is to determine the net effect of the cut of Qp on the count of vertices
and edges in the remaining polytope. To ascertain this number it is only necessary to
subtract from M(p, V) the count of vertices deleted by the cut, which in turn equals
either

∑p
i=0 ri or

∑n−p
j=0 sj.

Theorem 1.28. The net addition to the count of vertices in the formation of the polytope R(p, V)

by intersecting Qp with the feasible halfspace HF of a hyperplane cut is

N(p, V) =

p∑
i=0

Bn−p(ri, 0) +

n−p∑
j=0

Bp+1(sj, 0)

=

p∑
i=0

Bn−p+1(ri, 0) +

n−p∑
j=0

Bp(sj, 0)

Proof.

Bn−p+1(ri, 0) − ri = ri(n − p + 1 − ri) − ri

= ri(n − p − ri)

= Bn−p(ri, 0)

Bp+1(sj, 0) − sj = sj(p + 1 − sj) − sj

= sj(p − sj)

= Bp(sj, 0)

Corollary 1.29. The net addition of edges in forming R(p, V) is
n

2
N(p, V).

The next result is the focal theorem of this sequence.

Theorem 1.30. T(p, V) = An(p, 0) + N(p, V) is the total number of vertices in R(p, V).

Proof. An(p, 0) is the number of vertices in Qp, and N(p, V) is the increment by means
of the second cut.
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Corollary 1.31. L(p, V) =
n

2
T(p, V) is the total number of edges in R(p, V).

Observe, now, that R(p, V) is independent of the order in which one considers the
two cuts of Sn. Thus if the second cut, considered above, alone deletes q vertices of Sn,
and if the first cut, considered above, induces the incidence matrix W on the resulting
Qq in producing R(q, W), then one has,

Theorem 1.32. R(q, W) = R(p, V)

Proof. Omitted

Corollary 1.33. T(q, W) = T(p, V)

Corollary 1.34. L(q, W) = L(p, V)

Owing to considerations of linearity, it is not in general possible arbitrarily to select
vertices of Qp for deletion or inclusion by a cut. The discussion continues by examining
the necessary restrictions imposed on the incidence matrix V by these considerations.
The first of two relevant observations is that the deletion of any two vertices of differing
row and column be accompanied by the deletion of at least one of the vertices at the
junctions of the respective rows and columns.

A consequence of this analysis, and the second of the two observations, is that of
any two rows (or of any two columns) the union of two rows (columns) is one of the
rows (columns) and the intersection of the two is the other. In this sense union is under-
stood to mean element-by-element logical ‘or,’ and intersection is understood to mean
element-by-element logical ‘and.’

Lemma 1.35. If, in an incidence matrix V , vi1,j1 = vi2,j2 = 1, with i1 6= i2 and j1 6= j2, then
either vi1,j2 = 1 or vi2,j1 = 1, or both. Equivalently, if vi1,j1 = vi2,j2 = 0, with i1 6= i2 and
j1 6= j2, then either vi1,j2 = 0 or vi2,j1 = 0, or both.

Proof. Indirect
Assume that vi1,j1 and vi2,j2 of the incidence matrix V are deleted, with i1 6= i2 and j1 6=

j2. Assume also that vi1,j2 and vi2,j1 are not deleted. It follows that the lines (which are
not edges of the polytope) connecting vi1,j1 with vi2,j2 , and vi1,j2 with vi2,j1 , intersect at a
point which is both feasible and infeasible. Simply stated, the face defined by these four
vertices is a [two-dimensional, topological] square, and it is impossible to cut diagonally
opposite corners of a square (recalling the assumption of convexity) without excising a
third corner.

Theorem 1.36. One can order the rows (columns) of an incidence matrix V to satisfy a transi-
tive inclusion relation, by which is meant that if row (column) Vi1 includes row (column) Vi2 ,
then

vi2,j = 1 =⇒ vi1,j = 1,∀j
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and

vi,j2 = 1 =⇒ vi,j1 = 1,∀i;

equivalently,

vi1,j = 0 =⇒ vi2,j = 0,∀j

and

vi,j1 = 0 =⇒ vi,j2 = 0,∀i

Alternatively, one can order the rows (columns) so that

vi1,j1 = 1 =⇒ vi2,j2 = 1, for (i2, j2) 6 (i1, j1);

equivalently,

vi1,j1 = 0 =⇒ vi2,j2 = 0, for (i2, j2) > (i1, j1)

Proof. Indirect
If the hypothesized relationship were not true, then there would exist a situation of

vi1,j1 = vi2,j2 = 1

and

vi1,j2 = vi2,j1 = 0,

by which line of analysis cannot occur.

Remark. This relationship between rows (columns) induces an order relation among
all rows (columns) with those of a greater number of 1’s including (conventionally —
or else excluding) those of a lesser or equal number of 1’s. This transitive relation is
anti-symmetric to that implied in noting the number of 0’s in a row (column.) This
observation is necessarily true because the number of 1’s and 0’s in a row (column) is
fixed. Furthermore, any analysis which holds for the subset of 1’s must also hold for the
subset of 0’s, because it is a matter of choice which side of a cut is called feasible.

The discussion concludes by developing the converse to Theorem 1.36, a result
which is of interest in its own right.

Theorem 1.37 (Converse of Theorem 1.36). If V is a p + 1 by n − p + 1 matrix of ones and
zeros such that vi1,j1 = 1 implies vi2,j2 = 1 for (i2, j2) 6 (i1, j1) [equivalently, such that vi1,j1 = 0
implies vi2,j2 = 0 for (i2, j2) > (i1, j1),] or if V can be put into this form by a permutation of
rows and columns, then V is an incidence matrix.
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Proof. Assume that the p + 1 by n − p + 1 matrix V of ones and zeros is such that
vi1,j1 = 1 implies vi2,j2 = 1 for (i2, j2) 6 (i1, j1) [equivalently, such that vi1,j1 = 0 implies
vi2,j2 = 0 for (i2, j2) > (i1, j1).] The task is to produce the parameters of a hyperplane
which when cutting Sp × Sn−p induces the incidence matrix V . Let the points of Sp and
Sn−p have barycentric coordinates (a0, a1, . . . , ap) and (b0, b1, . . . , bn−p), respectively.
Then the points of Sp×Sn−p are (n + 2)-tuples (a0, a1, . . . , ap, b0, b1, . . . , bn−p), with the
coordinates summing to 2. One additional independent linear relation on these points,
for example, the relation

p∑
i=0

ciai +

n−p∑
j=0

djbj = 2

determines a hyperplane. In the case that (c0, c1, . . . , cp, d0, d1, . . . , dn−p) consists of all
1’s except for a single 0, the hyperplane is an (n − 1)-face of Qp; for the points of Qp the
above sum does not exceed 2. Now, since the vertices of Sp× Sn−p have ai = bj = 1 for
some pair (i, j), with other coordinates zero, the task reduces to finding coefficients {ci}

and {dj} such that vi,j = 1 implies ci + dj > 2, and such that vi,j = 0 implies ci + dj < 2.
A solution is provided by ci = 1 − i and dj = i

(
VT

j

)
+ 1

2 , where i
(
VT

j

)
is the index of the

first zero in the j-th column VT
j of V , (and where i

(
VT

j

)
= p + 1 if VT

j consists entirely of
ones.)



Chapter 2

General cases: the polytope
after several cuts to a simplex

This Chapter delves into the geometric description, or specification, of the polytope re-
maining after cutting a simplex by several hyperplanes. As heretofore, it is assumed
that cuts of Sn are vertex independent. The challenge is to convert an algebraic descrip-
tion of a simplex and cuts into information about the inclusion, partial inclusion, or
deletion, of the various components of Sn by the cuts.

1 Geometry of a multiply-cut simplex

To begin, assume m + 1 cutting hyperplanes of Sn, with no redundancy. Assume fur-
ther that t vertices of Sn remain feasible to all cuts, so that the correspondingly spanned
simplex St−1 remains feasible, along with all of its components. Since t vertices of Sn

are within this region of feasibility to all cuts, and consequently since n − t + 1 vertices
are outside the region, the specification of the polytope depends on the partial inclu-
sion or deletion of the components of positive dimension belonging to the simplex Sn−t

spanned by these latter vertices. There are(
sn−t+1 − 1

)
− (n − t + 1) = 2n−t+1 − (n − t + 2)

such components.
The task of determining the partial inclusion or deletion of the components of Sn−t

is rendered easier by the observation of two facts. The first is the trivial point that
if a component Sk ⊂ Sn−t is deleted, then so are the components of Sk of all lower
dimensions. The second, deserving of more rigor, is that under some conditions the
elimination of the boundary of Sk implies the elimination of Sk itself. Formally, then,

Lemma 2.1. If fewer than k + 1 cuts eliminate the boundary of Sk, then these cuts together
eliminate Sk.

16
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Proof. Indirect
Assume to the contrary that there exists a feasible point interior to Sk. Then con-

vexity assures that the entire feasible region is interior to Sk. Furthermore, the feasible
region must be bounded solely by the cuts, insofar as the boundary of Sk is infeasible.
But this condition is impossible because at least k + 1 hyperplanes of dimension k − 1
are needed to bound a compact region.

This Lemma suggests another, more powerful, result.

Lemma 2.2. If fewer than j + 1 cuts eliminate the boundaries of all components {Sj} ⊂ Sk, i.e.,
eliminate all components {Sj−1} ⊂ Sk, then these cuts together eliminate Sk.

Proof. By Lemma 2.1 the cuts eliminate all components {Sj}. Iterating the argument k− j

additional times provides the desired conclusion.

The task at hand, in consequence of these facts, reduces to the verification of whether
or not components of Sn−t, typically Sk, partially excluded by k + 1 different cuts of the
k + 1 vertices, are in fact totally excluded.

An algorithm for the systematic efficient determination of the specification of the
polytope now suggests itself. Begin by examining the components of dimension m in
Sn−t. These components have their vertices cut by m + 1 distinct hyperplanes. Those
components which are totally excluded by the respective cuts will, of course, have to-
tally excluded components of all lower dimensions. For those which are not totally
excluded, continue by examining the m + 1 boundary components of dimension m − 1,
the vertices of each of which are cut by m separate hyperplanes. Proceed through the
tree structure, examining all components of lower dimensions. Upon completion of the
analysis for dimension one, therefore, the inclusion status of all components for which
the vertices are separately deleted will be known, from which the status of all remaining
components of Sn−t, and thus of Sn, may be inferred.

The analysis also suggests a classification system for polytopes so generated,
wherein a polytope is included in Class Ki if no component of dimension i is completely
eliminated from Sn. Clearly, Ki ⊂ Kj if i 6 j.

Consider an algebraic description of a system of a simplex and cuts. For the pur-
poses of this discussion, it will be assumed that the system is in the following standard
barycentric format.

1. The vertices of Sn are the unit vectors in (n+1)-dimensional Euclidean space Rn+1,
with the simplex given as the convex linear closure of these points. If X be a vector
in the space, therefore, then the simplex is defined as the set{

X
∣∣ X > ∅ and ETX = 1

}
,

where E is the vector of all ones. Conventionally, an order relation between vectors
shall be assumed to apply to each pair of elements.
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2. The cuts are the inequalities of the vector relation CX 6 E, where C is m + 1 by
n + 1. Observe that even though the right hand side is in normalized form, the
matrix C is not necessarily unique, for

BiX =
1

1 − a

(
Ci − aET

)
X 6 1

also suffices as an inequality, for any real parameter a < 1. A canonical form for
C may be imposed by the requirement CE = E, which is the condition that all cuts
of Sn pass through E.

If a system be presented for analysis in general rectangular coordinates, however, a
straightforward transformation identifies an equivalent barycentric system. Specifically,
let

{
Y0, Y1, . . . , Yn

}
be the vertices of the simplex Sn ⊂ Rn. Then the linear transforma-

tion Y = F(X) defined by F =
(
Y0Y1 · · · Yn

)
: Rn+1 → Rn, maps the unit vectors of Rn+1

onto the vertices of Sn. Assuming that these vertices are in general position, i.e., that F is
of full rank, then Y = G(X) is invertible, where G is F restricted to the hyperplane of the
unit vectors. In particular, S = G−1(Y) is given by the solution to

(
EYT

)T
=
(
EFT
)T

X. For
proof that

(
EFT
)T is invertible, assume without loss of generality that

{
Y0, Y1, . . . , Yn

}
are linearly independent. Then the null space of

(
EFT
)T consists only of the zero vector,

because together ETX = 0 and FX = ∅ imply(
Y1 − Y0) x1 +

(
Y2 − Y0) x2 + · · ·+

(
Yn − Y0) xn = ∅,

which implies x1 = x2 = · · · = xn = 0, which in turn implies x0 = 0.
Next assume that the cuts in the same rectangular coordinates are given by DY 6

K. Then the induced cuts are DFX 6 K with ETX = 1. Equivalently, a representative
transformed cut is (

DiF − (ki − 1)ET
)
X = CiX 6 1

with ETX = 1, which is a cut in standard form. Letting

C =
(
C0

TC1
T · · ·Cm

T)T
,

the full standard set is then CX 6 E with ETX = 1. Now, according to the hypothesized
form of the system, not more than one cut can excise a particular vertex of Sn. This
condition is evidenced in the standard barycentric format by the requirement that only
one entry in any given column of C may be greater than 1. Assuming, then, that the
cuts are in general position, meaning both that C is of full rank and that no cut passes
through a vertex of Sn, all entries of C not greater than 1 are properly less than 1.

The attention of the development now passes to the central issue of the Chapter
— the construction of a test which informs whether or not the k + 1 cuts of a simplex
Sk, cutting one vertex each, together delete the entire Sk. To simplify notation, Sk is
abstracted from its role as a component of Sn by looking to the restriction of the system
to the subspace Rk+1 of Rn+1 spanned by Sk and the origin. The vertices are labeled 0
through k, as are the corresponding cuts. In standard barycentric coordinates, then, one
has the following system.
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1. x1 + x2 + · · · + xk = 1, written ETX = 1. This equation defines a hyperplane in
(k + 1)-dimensional space.

2. x0 > 0, x1 > 0, . . . , xk > 0, written X > ∅. These inequalities define a simplex in
the above hyperplane.

3. Additionally,

c 0,0x0 + c 0,1 + · · ·+ c 0,k 6 1
c 1,0x0 + c 1,1 + · · ·+ c 1,k 6 1
. . .
ck,0x0 + ck,1 + · · ·+ ck,k 6 1,

the system written CX 6 E. These inequalities are the cuts of the simplex. On
occasion, the i-th cut will be denoted as CiX 6 ei = 1.

Assume that the i-th cut deletes the i-th vertex of the simplex, and no other. Hence,
ci,i > 1, and ci,j < 1 for i 6= j. Further, assume that C−1 exists, a condition equiva-
lent to the requirement that the columns (or rows) of C be in general position, i.e., be
non-co[hyper]planar. Observe that the system may be written more compactly in block
matrix notation as (

EICT
)T

X {= > 6}
(
1 ∅T ET

)T

or as (
E(¬I)CT

)T
X {= 6 6}

(
1 ET ET

)T
,

where (¬I) in the latter representation symbolizes the complement identity matrix, with
diagonal elements of zero and off-diagonal elements of one. The representations are
equivalent because xi > 0 and

∑k
j=0 xj = 1 ⇐⇒

∑ı̂,k
j=0 sj 6 1 and

∑k
j=0 xj = 1, wherein

the appearance of ı̂ indicates omission of the term having index i.

2 An existence theorem

A preliminary result, presented as a Lemma, concerns the issue of possible values for
W = C−1E.

Lemma 2.3. If ETW = ETC−1E 6 1, and if W > ∅, then W > ∅.

Proof. Indirect
Without loss of generality, assume W0 = 0. Then satisfaction of the zeroth constraint

provides

k∑
j=0

c0,jwj =

k∑
j=1

c0,jwj = 1
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But c0,j < 1 for j 6= 0, and each wj > 0. Therefore,

k∑
j=1

c0,jwj <

k∑
j=1

wj 6 1,

implying 1 < 1, an absurdity.

The next result, an existence theorem, also specifies the test of whether or not the
cuts delete all of Sk.

Theorem 2.4. If W = C−1E, then no point satisfies the system(
EICT

)T
X {= > 6}

(
1 ∅T ET

)T ⇐⇒ 0 6 ETW = ETC−1E < 1 and W > ∅

Proof. The proof is segmented into three disjoint and exhaustive cases.
1. ETW > 1
2. ETW < 1 and some wi < 0
3. ETW < 1 and W > ∅

In Case 3, 0 6 ETW, and thus Lemma 2.3 implies W > ∅. In Cases 1 and 2, a point Y

satisfying the system will be specified. In Case 3, it will be demonstrated indirectly that
no such point exists.

Case 1 —
Define V as follows. Let V = max(W, ∅). That is, if wj 6 0, let vj = 0; if wj > 0,

let vj = wj. Then let Y =
[
(1/
(
ETV

)]
V . That is, let yj =

[
1
/∑k

i=0 vi

]
vj,∀j. Note that

ETV > 1, and ETY = 1. Furthermore, Y > ∅.
Two categories of constraints must be satisfies: those corresponding to indices {j} for

which vj = 0, and those corresponding to indices {j} for which vj > 0. (Recall that the
i-th constraint is the one which deletes the i-th vertex.) First, assume without loss of
generality, that v0 = 0. Then

k∑
j=0

c0,jyj = c0,0y0 +

k∑
j=1

c0,jyj

= 0 +

k∑
j=1

c0,jyj

But, c0,j < 1 for 1 6 j 6 k, and yj > 0,∀j. Therefore,

k∑
j=0

c0,jyj <

k∑
j=1

yj = 1
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Next, assume without loss of generality, that vj = 0, 0 6 j 6 l − 1, and that vj > 0,
l 6 j 6 k, for 1 6 l 6 k. In particular, observe that vk > 0. Then,

k∑
j=0

ck,jyj =

l−1∑
j=0

ck,jyj +

k∑
j=l

ck,jyj

= 0 +

k∑
j=l

ck,jyj

=

[
1
/ k∑

i=l

wi

]
k∑

j=l

ck,jwj

=

[
1
/ k∑

i=l

wi

][
1 −

l−1∑
j=0

ck,jwj

]

(because
∑k

j=0 ck,jwj = 1)

6

[
1
/ k∑

i=l

wi

][
1 −

l−1∑
j=0

wj

]

(because
∑k

i=l wi > 0, and both ck,j < 1 and wj 6 0 for 0 6 j 6 l − 1)

6 1

(because
∑k

j=0 wj > 1 and
∑k

i=l wi > 0.)

Case 2 —
Define V as follows. Let V = min(W, ∅). That is, if wj > 0, let vj = 0; if wj < 0,

let vj = wj. Then let Y =
[
(1/
(
ETV

)]
V . That is, let yj =

[
1
/∑k

i=0 vi

]
vj,∀j. Note that

ETV < 1, and ETY = 1. Furthermore, Y > ∅.
Two categories of constraints must be satisfies: those corresponding to indices {j} for

which vj = 0, and those corresponding to indices {j} for which vj < 0. (Recall that the
i-th constraint is the one which deletes the i-th vertex.) First, assume without loss of
generality, that v0 = 0. Then

k∑
j=0

c0,jyj = c0,0y0 +

k∑
j=1

c0,jyj

= 0 +

k∑
j=1

c0,jyj
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But, c0,j < 1 for 1 6 j 6 k, and yj > 0,∀j. Therefore,

k∑
j=0

c0,jyj <

k∑
j=1

yj = 1

Next, assume without loss of generality, that vj = 0, 0 6 j 6 l − 1, and that vj < 0,
l 6 j 6 k, for 1 6 l 6 k. In particular, observe that vk < 0. Then,

k∑
j=0

ck,jyj =

l−1∑
j=0

ck,jyj +

k∑
j=l

ck,jyj

= 0 +

k∑
j=l

ck,jyj

=

[
1
/ k∑

i=l

wi

]
k∑

j=l

ck,jwj

=

[
1
/ k∑

i=l

wi

][
1 −

l−1∑
j=0

ck,jwj

]

(because
∑k

j=0 ck,jwj = 1)

6

[
1
/ k∑

i=l

wi

][
1 −

l−1∑
j=0

wj

]

(because
∑k

i=l wi < 0, and both ck,j < 1 and wj > 0 for 0 6 j 6 l − 1)

< 1

(because
∑k

j=0 wj < 1 and
∑k

i=l wi < 0.)

Case 3 —
Assume the existence of a point Y, with Y > ∅ and ETY = 1, such that CY 6 E. Look

at any point Z = aW + (1 − a)Y for which a > 1. Then Z is infeasible to all constraints;
that is, CZ = aCW + (1 − a)CY > aE + (1 − a)E = E, insofar as CW = E, 1 − a < 0, and
CY 6 E. However, if the coefficient a is chosen so that

a = min
j|yj>xj

yj

yj − wj

,
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then a > 1, and the resulting Z is feasible to any constraint Ci such that

a =
yi

yi − wi

Furthermore, Z > ∅ and ETZ < 1, implying 0 6 ETZ < 1.
The demonstration begins by observing that the domain of definition for the coeffi-

cient a is non-void, for otherwise Y 6 W, implying ETY 6 ETW < 1. Next observe that
a > 1, since yj > wj > 0 gives yj > yj − wj > 0, which in turn gives

yj

yj − wj

> 1

Now, Z > ∅, with zi = 0 if

a =
yi

yi − wi

Note that

zj =

awj + (1 − a)yj = (yj − wj)

[
yj

yj − wj

− a

]
if yj > wj

yj + a(wj − yj) if yj 6 wj

The former expression is non-negative because yj − wj > 0, and because the coefficient
a is the minimum of expressions of the form

yj

yj − wj

The latter expression is non-negative because yj > 0, a > 0, and yj − wj 6 0. Further-
more,

zi = awi + (1 − a)yi

=
yi

yi − wi

wi −
wi

yi − wi

yi

= 0

Additionally, ETZ < 1, because ETZ = aETW + (1 − a)ETY, and a > 0, ETW < 1, and
ETY = 1, giving ETZ < a + (1 − a) = 1.

Finally, CiZ < ei = 1, establishing the contradiction, because
k∑

j=0

ci,jzj 6
ı̂,k∑
j=0

ci,jzj

6
ı̂,k∑
j=0

zj

< 1

insofar as zj > 0 and ci,j < 1, for i 6= j.
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Corollary 2.5. If k = 1, the determining condition for the deletion of an edge of Sn is

0 < w0 + w1 <
1
|C|

(c0,0 − c0,1 − c1,0 + c1,1)



Chapter 3

Vertex and edge counts
of a multiply-cut simplex

The machinery now exists to enable the determination of the number of vertices and
edges in the polytope remaining after multiple hyperplane cuts of disjoint vertex sets
from a simplex. The discussion first turns to the familiar case of two cuts of Sn, then
later addresses the general case of many cuts using the results and insights of the earlier
analysis for inspiration. In course, the development presents an algorithm for determin-
ing these vertex and edge counts. Subsequently appear closed formulas in the special
case of a Class K2 polytope.

1 Two cuts intersecting

Consider again the case of two cuts of Sn as developed following Theorem 1.23. At
that time the concept of the incidence matrix V was introduced, describing the result
of cutting Qp = Sp × Sn−p with a hyperplane cut. Insofar as Qp itself is the result
of cutting p vertices from Sn, V provided the necessary information about cutting Sn

twice. No restrictions were placed on the manner in which Qp could be cut, and thence-
forth formulas were developed showing the counts of vertices and edges of the residual
polytope Rp,V . Specifically, Theorem 1.30 and its Corollary gave this information.

At that stage of analysis, though, two lingering problems deterred the quest for fur-
ther generalization. First, after the cut of Qp, the convenient cross product structure
was lost, leaving no ready format for cataloging the vertices of Rp,V , such as V was used
for Qp. Second, each cut of Sn was treated in sequential fashion, a fact which ignored
a desired indifference in the order of cutting. Theorem 1.32 and its Corollaries duly
noted the irrelevance of the cutting order, yet the two descriptive matrices V and W of
Qp and Qq, respectively, were generally incomparable. They were not even the same
size, transposition notwithstanding, unless either q = p or q = n − p. Given these
difficulties, then, the analysis of further arbitrary cutting of Sn beyond two cuts would
seem intractable by this methodology. A way clear exists, however, by accepting the

25
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assumption of vertex independent cuts.
In this configuration, only disjoint sets of vertices of Sn can be deleted by the several

cuts. Two or more cuts are, however, permitted to intersect within Sn. In fact, most
of the interesting examples of the theory include some such intersection. This simpli-
fying assumption permits the adoption of a more concise array representation for the
information displayed by the incidence matrix V , and in the process allows a symmetric
treatment of the cuts in a manner amenable to generalization in the number of cuts. This
concise form will be called the reduced incidence matrix (occasionally henceforth RIM,)
and will be denoted by the symbol U. Now, this matrix U will be shown to be an invert-
ible function of the incidence matrix V in the case of two cuts (the only condition under
which V is defined.) Hence no information shall be lost in going to the new format. Ad-
ditionally, U has the property that it is independent of the order in which the two cuts
have been placed, except for insignificant transposition owing to the order in which the
cuts are identified. Furthermore, U is easily generalized to cases of more than two cuts
in a way that retains all of the necessary information for the complete determination of
the geometry of the residual polytope.

The development of U begins with an investigation into the effect on V of the re-
striction that the two cuts of Sn delete no common vertex. Insofar as V is a matrix of
information about the inclusion/exclusion status of the vertices of Qp following a cut,
and since Qp is a polytope resulting from the truncation of p vertices from Sn, it is rea-
sonable to initiate this inquiry by taking a closer look at the construction in Theorem 1.2,
which established the geometry of Qp as Sp × Sn−p. In this construction, p + 1 vertices
were excised from Sn+1 by a hyperplane cut, creating P = Sp × Sn−p in the cutting
plane, by Theorem 1.1. After selecting an arbitrary p0 from the deleted vertices, it was
then demonstrated that the polytope Qp remaining in the opposing Sn after the cut was
a homeomorphic image of P. In the ensuing discourse relating to Qp and V , it was nei-
ther necessary to recognize the distinction in Qp between those vertices original to Sn

and those introduced by the cut, nor to recall the vertices deleted by that cut.
In the present circumstance, however, it becomes desirable to retain the geometry

of Qp embedded in Sn, and to discriminate among those three disjoint sets of vertices.
Consider Sn+1 as in the construction, with vertices {p0, p1, . . . , pn+1}, wherein the first
p + 1 of these are deleted by the cut C. Now, the vertices of P are the intersections of
C with the various edges terminating in one infeasible vertex and one feasible vertex.
For convenience, relabel the feasible vertices of Sn as {q0, q1, . . . , qn+1}. Then a vertex of
P, say wi,j, (0, 0) 6 (i, j) 6 (p, n − p), is the intersection of C with the edge connecting
pi with qj. By the homeomorphism, the vertices are mapped into the corresponding
vertices {vi,j} of Qp in the simplex Sn opposite p0. Observe, however, that the vertices
{w0,j}, 0 6 j 6 n − p, pass to qj, and the vertices {wi,j}, (1, 0) 6 (i, j) 6 (p, n − p) remain
fixed, because the homeomorphism is a projection of P from p0 into Sn. Consequently,
it is possible to identify a specific vertex of Qp with a position of a p + 1 by n − p + 1
incidence matrix V destined to hold information about a cut of Qp.

The {(0, j)} positions, 0 6 j 6 n−p, correspond to the feasible vertices {(qj)}, original
to Sn, and the {(i, j)} positions, (1, 0) 6 (i, j) 6 (p, n − p), correspond to the vertices
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at the intersections of the cut of Sn and the edges joining the infeasible {pi} with the
feasible {qj}. The feasible vertices of Sn remaining in Qp, and the corresponding upper
row of the incidence matrix V , will be called interchangeably the simplex base.

The first significant result of this chapter is that if a second cut of Sn, deleting a set
of vertices disjoint from those infeasible to the first cut, deletes a vertex vi,j, (1, 0) 6
(i, j) 6 (p, n − p), then that cut also deletes v0,j. That is, if a second cut deletes any
vertex introduced by the first cut, then the feasible remaining vertex of Sn identified
with that introduced vertex, is also deleted. The result is formally stated as a Lemma.

Lemma 3.1. Let two cuts of Sn delete disjoint sets of vertices {pi} and {qj}. Further, let Qp

be the polytope feasible to one of the cuts, with a corresponding incidence matrix V . Then if the
other cut deletes vi,j, (1, 0) 6 (i, j) 6 (p, n − p), it also deletes v0,j.

Proof. Indirect
Assume otherwise, that v0,j is feasible to the second cut. Since pi is known to be

feasible to that cut, it follows by convexity that the entire edge connecting pi and v0,j =

qj must be feasible, contrary to hypothesis.

This Lemma allows the abbreviation of V to the reduced incidence matrix U, as fol-
lows. First, it is only necessary to retain the columns corresponding to the vertices of
Sn deleted by the second cut, because all other columns must contain only zeros, and
hence hold no information. Second, it is not necessary to retain the initial (zeroth) row,
because it specifies the vertices of Sn deleted by the second cut, and now contains only
ones, and hence holds no information. The matrix thusly trimmed is the reduced inci-
dence matrix. If q be the number of vertices of Sn cut by the second cut, then the RIM
is p by q. Insofar as no information (save the insignificant loss of column ordering) was
lost in the trimming from V to U, the following result obtains.

Theorem 3.2. U is an invertible function of V .

Proof. Omitted

Thus we have developed a condensed format for representing the geometry of a
doubly-cut simplex. The real usefulness of the RIM, though, rests upon two additional
insights relating to the interpretation of its information. The first insight concerns the
indifference of cutting order on the determination of U.

Theorem 3.3. U is independent of cutting order.

Proof. Observe that an entry in U — say at position ui,j — specifies whether or not a ver-
tex in the cutting plane of one cut is deleted or not by the other cut. This determination
is equivalent to specifying whether or not the entire edge connecting vertex i (deleted
by one cut) with vertex j (deleted by the other cut) is completely excised. Accordingly,
the timing of the cuts is irrelevant in the generation of U, with the understanding, of
course, that U represents the equivalence class of matrices under row or column per-
mutation, or transposition, as these specifications are consequences of labeling choice
only.
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The second insight concerns the ability directly to generate U without recourse to V .

Theorem 3.4. U is completely determined by the exclusion status — complete or partial — of
the component simplexes having their defining vertices cut by distinct hyperplanes.

Proof. Insofar as the entries of U depend on the complete or incomplete excision of
edges connecting excised vertices, one may use the test of Theorem 2.4 (specifically,
its Corollary 2.5) for any system in standard barycentric coordinates. The hypothesis
is satisfied insofar as each edge is a one-dimensional simplex, with the two defining
vertices cut by separate hyperplanes.

Note that special care has been taken in the statement of this theorem to remove
specific references to the case of two cuts of Sn. The reason is that for an appropriately
generalized RIM, accommodating more than two cuts, the statement remains true. The
expanded definition of U and proof of the generalized theorem follow the reanalysis, in
terms of the reduced incidence matrix, of the results of Theorem 1.30 and its Corollary,
relating to the counts of vertices and edges in a doubly-cut simplex.

Theorem 3.5 (Symmetric analog of Theorem 1.30).

Tp,q := Tp,V = (n + 1) + [p(n − p) + q(n − q)]

+

{
(n − 1)

p∑
i=1

q∑
j=1

ui,j −

[
p∑

i=1

x2
i +

q∑
j=1

y2
j

]}
,

where xi :=
q∑

j=1

ui,j and yj :=
p∑

i=1

ui,j

Proof. Begin with a statement of Theorem 1.30, then expand.

T(p, V) = An(p, 0) + N(p, V)

= (p + 1)(n − p + 1) +

p∑
i=0

Bn−p(ri, 0) +

n−p∑
j=0

Bp+1(sj, 0)

by Corollary 1.8 and Theorem 1.28

= (p + 1)(n − p + 1) +

p∑
i=0

ri(n − p − ri) +

n−p∑
j=0

sj(p + 1 − sj)

by Corollary 1.17.
In the transition from V to U the row counts remain the same, but the column counts

decrease by one, owing to the omission of the zeroth row. Re-index j over the q vertices
truncated by the second cut, and let xi = ri, yj = sj − 1, (1, 1) 6 (i, j) 6 (p, q), be the
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respective row and column counts in U. Then segregating the contribution from the
zeroth row of V ,

Tp,V = (p + 1)(n − p + 1) + q(n − p − q)

+

p∑
i=1

xi(n − p − xi) +

q∑
j=1

(yj + 1)
(
p + 1 − (yj + 1)

)
= (p + 1)(n − p + 1) + q(n − p − q)

+ (n − p)

p∑
i=1

xi −

p∑
i=1

x2
i + pq + (p − 1)

q∑
j=1

yj −

q∑
j=1

y2
j

= (n + 1) + [p(n − p) + q(n − q)]

+ (n − p)

p∑
i=1

xi + (p − 1)

q∑
j=1

yj −

[
p∑

i=1

x2
i +

q∑
j=1

y2
j

]

Now
p∑

i=1

xi =

q∑
j=1

yj,

as both summations represent the count of unit entries in U. Indicating this value as the
double sum

p∑
i=1

q∑
j=1

ui,j,

and renaming the function Tp,q to reflect the new symmetry, produces the assertion.

Corollary 3.6.
Lp,q := Lp,V =

n

2
Tp,q

It is instructive to examine the terms of the expression for Tp,q in Theorem 3.5, be-
cause these terms reveal something of the nature in which the count of extreme points
builds with increased encroachment of the cutting hyperplanes. Imagine the cutting
hyperplanes positioned outside the simplex, and then moved, or encroached, upon Sn.
Before any encroachment, Sn has, in its pristine form n+1 vertices. This quantity is duly
recorded in the first (parenthesized) term of the expression for Tp,q. When the planes
are passed through the p and q vertices, respectively, of Sn, but as yet do not intersect
between themselves within Sn, the net additional count of vertices in the residual poly-
tope is p(n − p) + q(n − q) by Corollary 1.17. This quantity is duly recorded in the
second [bracketed] term of Tp,q. In consequence, the third {braced} term of Tp,q must
represent the net additional vertices resulting from the next phase of encroachment —
that of allowing the cutting planes a non-void intersection within Sn.

The ensuing discussion addresses an extension of Theorem 3.5 to encompass vertex
counts for a Class K2 polytope, so developed.
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2 Two cuts, pairwise intersecting

Let k vertex-independent cuts delete sets of vertices of Sn containing, respectively,
{p1, . . . , pk} points. Necessarily,

∑k
l=1 pl 6 n + 1. Consider first that no pairwise in-

tersections among the cutting hyperplanes occur within Sn. The polytope is now of
Class K1, and the count of vertices is

(3.1) (n + 1) +

k∑
l=1

pl(n − pl)

by Corollary 1.24. By assumption for a Class K2 polytope only pairs of hyperplanes
can intersect within Sn, not triples, nor quadruples, nor any greater number. Thus the
net addition of vertices to the Class K1 polytope by virtue of such binary interactions
is itself additive over such pairs. So the totality of vertices is the sum of the terms of
Equation (3.1) and terms like the third term of the statement of Theorem 3.5, one for
each pair of intersecting hyperplanes within Sn. In consequence one has the following
statement for the number of vertices in a Class K2 polytope, with its Corollary showing
the number of edges. Herein µ and ν are the indices of the cutting hyperplanes, and
u

µ,ν
i,j is an entry in the corresponding RIM.

Theorem 3.7 (Class K2 Extension).

Tp1,...,pk
:= (n + 1) +

k∑
l=1

pl(n − pl)

+
∑

16µ<ν6k

{
(n − 1)

pµ∑
i=1

pν∑
j=1

u
µ,ν
i,j −

[
pµ∑
i=1

(
x

µ,ν
i

)2
+

pν∑
j=1

(
y

µ,ν
j

)2

]}
,

where x
µ,ν
i :=

pν∑
j=1

u
µ,ν
i,j and y

µ,ν
j :=

pµ∑
i=1

u
µ,ν
i,j

is the number of vertices of the Class K2 polytope.

Proof. Omitted

Remark. Observe that there are
(

k
2

)
terms within the third term, corresponding to the

number of pairs of cuts.

Corollary 3.8.
Lp1,...,pk

:=
n

2
Tp1,...,pk

is the number of edges of the Class K2 polytope.

Formulas for further extensions of these vertex and edge counts to Classes K3, K4,
and higher polytopes are possible, but the results are combinatorially expensive, re-
quiring corresponding incidence arrays of dimensions 3, 4, and higher, and are here
omitted. These results are best found by recursion, using the stated algorithm.



Chapter 4

The beta problem and basic solutions

1 Description of the beta problem

The beta problem is a generic term pertaining to the complex of questions about the fol-
lowing convex set of non-negative variables. This set of relations has n + 1 variables
and m + 1 inequality constraints. The blocks, respectively, have k0, k1, . . . , km variables.
For simplicity, index values on the {bj}, ranging from 1 through n + 1, are omitted from
the matrix.

11. . .1 11. . .1 . . . . . . 11. . .1 = 1
bb. . .b 6 a0

bb. . .b 6 a1

. . . . . .
bb. . .b 6 am

Throughout, the {ai} and the {bj} will be assumed drawn independently from prob-
ability distributions. The distributions of the {ai} will be alike, as will those of the {bj}.
However, the ‘a’ and ‘b’ distributions may differ.

The convex set without the equality constraint, which specifies a simplex, shall be
termed the uncut polytope. The set is clearly bounded, i.e., is a polytope, if the {bj} and
the {ai} are positive, conditions henceforth assumed, except possibly on sample subsets
of measure zero.

The convex set including the equality constraint shall be termed the cut polytope.
Observe that ki of the {bj} appear in block i, 0 6 i 6 m, corresponding to the i-th
inequality constraint. Obviously,

∑m
i=0 ki = n + 1.

31
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2 Basic solutions of the uncut polytope

A cursory inspection of the uncut polytope constraint set indicates that there are ki + 1
choices of a basic variable associated with inequality constraint i, 0 6 i 6 m. Any of the
ki original (instrumental) variables qualifies, as does the slack variable of the i-th row.
Consequently, there are

(4.1)
m∏

i=0

(ki + 1)

basic solutions. Further, each of these solutions is feasible, given positive {ai} and {bj},
insofar as a given instrumental variable appears in only one row.

The basic solutions may be partitioned into subsets according to the number of slack
variables which are non-basic. This attribute of a solution is called the rank r. Insofar as
there are m+ 1 slacks, clearly there are m+ 2 ranks, 0 6 r 6 m+ 1. Further, within each
rank, solutions may be again partitioned, according to which of the slacks are non-basic.
In rank r, therefore, there are

(
n+1

r

)
of these subsets, each called a node. Finally, within

each node appear the basic solutions, which number

(4.2)
m∏

i=0

ki,

where the index set I is composed of the indices of non-basic slacks at the node. Locally,
the nodes are the cross products of r simplexes of respective dimensions {ki − 1}.

The first result of significance is that the function

Φ(t) =

m∏
i=0

(kit + 1)(4.3)

generates the number of basic solutions by rank. Simply expand

Φ(t) =

m∑
i=0

(ait
i)(4.4)

as a polynomial, and observe that the coefficient of tr is the sum of the r-fold products
of the {ki}, taken over the index subsets of cardinality r. The terms of this summation
on rank r are the various products like that of Equation (4.2), and therefore represent
the numbers of basic solutions at the various nodes. Φ(1) is, of course, the total of basic
solutions, as in Equation (4.1).

Next, consider the neighbors of a chosen basic solution, that is, the set of other basic
solutions which are connected to the chosen solution by an edge of the polytope. To
recognize these connections as edges of the polytope, note that it is necessary to have
observed that all the basic solutions are feasible.
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Neighbors are of two distinct types — those in adjacent ranks and those in the same
rank. Those in adjacent ranks are connected by an edge which is traversed when a
slack variable leaves or enters the basis. A basic solution involving one fewer slack has
higher rank, whereas one involving an additional slack has lower rank. These edges
are called transient edges. The neighbors within the same rank are connected by an
edge which is traversed when an instrumental variable is exchanged for another in the
basis. These edges, called local edges, in addition to lying within a rank, lie also within a
node; otherwise, the instrumental variables would correspond to different blocks, and
the change of basic status of one would require the simultaneous exchange of slack
variables, the transient edge case already considered. Observe that the totality of edges
must be

(4.5)
n + 1

2
Φ(1)

insofar as the embedding of the polytope in Rn+1 insures that n+1 edges emanate from
each basic solution, but a counting of these edges by basic solution tallies each edge
twice.

At this point it may be useful to have some pictorial representation of the set of basic
solutions. For example, take the case of

[k1, k2, k3] = [2, 3, 4]

The value of n therefore is 8. For this case

Φ(1) = 3 · 4 · 5 = 60

basic solutions, so the total of edges is

8 + 1
2

· 60 = 270

Further,

Φ(t) = 1 + 9t + 26t2 + 24t3

= (2t + 1)(3t + 1)(4t + 1)

shows the breakdown of basic solutions by rank.
Local neighbors (connected by local edges) are visited by exchanging the first of two

variables for the other one, or by exchanging the third of four variables for any of the
other three. There is a total therefore of four local edges connecting the focal solution to
others within the node.

Transient neighbors are located by including or excluding a slack variable into or
from the basis. Going first to the lower rank, rank 1, involves the entry of either slack 2
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or slack 0 to the basis, and respectively, the exit of either the third variable in the block
of 4, or the first variable in the block or 2.

Next, going to the higher rank, rank 3, slack 1 must leave the basis. In so doing, any
of the three variables in the block of three may enter. There is a total therefore of five
transient edges connecting the focal solution to those in adjacent ranks. The sum of four
local neighbors and five transient neighbors equals nine, the necessary number of all
neighbors.

3 Edges of the uncut polytope

Next is an analysis of the number of transient edges between ranks and the number of
local edges within the ranks. Generating functions for each shall be presented. Adjoin-
ing each solution in rank i are i solutions in rank i − 1, because a solution in rank i has
i non-basic slacks, and there are consequently i choices of slack to enter the basis.

Recalling that

Φ(t) =

m+1∑
i=0

ait
i

generates these solutions by rank, it follows that

Ψ(t) =

m+1∑
i=0

iait
i = tΦ′(t)(4.6)

generates the transient edges between ranks i and i − 1, or that Φ′(t) alone generates
those between ranks i and i + 1. Further,

Ψ(1) = Φ′(1)

is the total of transient edges.
The local edges can be represented as a residual, considering that of all the edges

connecting with solutions in a rank, some come from the higher rank, and some go to
the lower rank.

Now, (n + 1)ai edges connect totally with rank i solutions, or more carefully stated,
emanate from these solutions. Insofar as (i + 1)ai+1 descend from the higher rank, and
iai descend to the lower rank, it follows that

(n + 1)ai − (i + 1)ai+1 − iai

edges leave and enter within rank i. But these are doubly counted, so half that amount,

bi =
1
2
[(n + 1)ai − (i + 1)ai+1 − iai],
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is the correct count of edges within the rank. Thus

P(t) =

m+1∑
i=1

bit
i

generates these numbers. Note symbol ‘P’ is uppercase Greek Rho.

P(t) =
n + 1

2

m+1∑
i=0

ait
i −

1
2

m∑
i=0

(i + 1)ai+1t
i −

1
2

m+1∑
i=0

iait
i

(recognizing in the second term that am+2 = 0.)

=
n + 1

2
Φ(t) −

1
2t

m+1∑
i=0

iait
i −

1
2
Ψ(t)

(recognizing in the second term that 0·a0t
0 = 0.)

=
n + 1

2
Φ(t) −

1
2t

Ψ(t) −
1
2
tΦ′(t)

=
n + 1

2
Φ(t) −

1
2t

tΦ′(t) −
1
2
tΦ′(t)

=
n + 1

2
Φ(t) −

1
2
Φ′(t)(1 + t)(4.7)

Further,

P(1) =
n + 1

2
Φ(1) − Φ′(1)

is the total number of local edges.
In the example of the preceding section, i.e., [k1, k2, k3] = [2, 3, 4], the generated tran-

sient and local edges are as follows.

Φ(t) = 1 + 9t + 26t2 + 24t3

Φ(1) = 60 basic solutions

Ψ(t) = 9t + 52t2 + 72t3

Ψ(1) = 133 transient edges

P(t) = 10t + 55t2 + 72t3

P(1) = 137 local edges

Therefore, there are

n + 1
2

Φ(1) = Ψ(1) + P(1) = 270 total edges.
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4 Basic solutions of the cut polytope

The initial observation is that the edges of the uncut polytope correspond to the basic
solutions of the cut polytope. This is because the simplex of the top row of the beta prob-
lem constraint set intersects all of the edges [extended] of the uncut polytope. The only
necessary assumption is that all of the {bj} within a row block differ from each other,
so that there is no edge parallel to the cut. In this section we shall assume probability
distributions on the {bj} insuring that two or more of these random variables never be
equal, except possibly on sample sets of measure zero.

In the cutting of a local edge within rank r, one is interested in the probability that
the sum of r random variables of the form q = a/b be less than 1 before the exchange
of one variable for another, and be greater than 1 after the exchange, or vice versa. The
reasoning is that the basic solutions must be on opposite sides of the simplex for the
simplex to cut the intervening edge. Notice that this probability depends only on the
number of variables {q}, so that the probability within a rank of any edge’s being cut is
the same as that for any other edge. Assume the r + 1 variables are coordinate variables
in Rr+1. We may restrict our attention to the non-negative orthant, because we are
herein assuming that the a and b variables are non-negative. The regions of interest
over which we would care to integrate a product density are twofold, recognizing that
indexing is arbitrary.

I(1) :

1̂,r+1∑
i=1

qi < 1 and
2̂,r+1∑
i=1

qi > 1

and

I(2) :

1̂,r+1∑
i=1

qi > 1 and
2̂,r+1∑
i=1

qi < 1

The two hyperplanes,
∑1̂,r+1

i=1 qi and
∑2̂,r+1

i=1 qi, of course, partition the orthant into four
regions, so we may identify the others and give them names. Let

I(0) :

1̂,r+1∑
i=1

qi < 1 and
2̂,r+1∑
i=1

qi < 1

This region includes the origin.

I(3) :

1̂,r+1∑
i=1

qi > 1 and
2̂,r+1∑
i=1

qi > 1
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The analysis is aided by the observation that I(0) can be further partitioned — in
fact cut in two equal pieces — by passing the hyperplane q1 = q2. The resulting two
pieces are simplexes. To see this fact, consider their boundaries. In the one sub-case the
boundaries are the r + 2 hyperplanes

1̂,r+1∑
i=1

qi = 1, q1 = 0, q2 = q1, q3 = 0, . . . , qr+1 = 0

In the other sub-case the boundaries are the r + 2 hyperplanes

2̂,r+1∑
i=1

qi = 1, q1 = q2, q2 = 0, q3 = 0, . . . , qr+1 = 0

Further, the volume of each simplex is 1/(r + 1)! .
Now, assume that each q variable is the quotient of two uniform variables of the

same parameter. (See Appendix A.)
We shall proceed to compute the probability associated with regions I(1) and I(2).

Note that it is not at this point necessary to compute the entire distribution of the sum of
r of these variables. In fact, it would be insufficient to do so, insofar as we are interested
in the interaction between two such summation variables.

From Appendix A, it is known that the product density over the unit hypercube is
uniform, and is 1/2r+1. The regions of interest, I(1) and I(2), are the cross products of
r-simplexes and half lines, less the volumes of the two (r + 1)-simplexes which touch
the origin. Each of I(1) and I(2) for reasons of symmetry has the same probability.

For either, the mass of the base r-simplex is (1/2r)(1/r!) . The mass of the half-line is
1, so the probability of I(0) ∩ I(1) or of I(0) ∩ I(2) is also (1/2r)(1/r!) .

Now the probability of I(0) (recognizing the two (r + 1)-simplex components) is

2 · 1
2r+1(r + 1)!

=
1

2r(r + 1)!

So that of I(1), or of I(2) is

1
2r

1
r!

−
1
2r

1
(r + 1)!

So that of I(0) ∩ I(2) is

p(r) =
1

2r−1

(
1
r!

−
1

(r + 1)!

)
(4.8)

With knowledge of this probability, and of the generating function P(t) for local
edges, and invoking the classical theorem that the expectation of the sum of random
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variables is the sum of the expectations, it will be possible to compute the expected
number of cut local edges. Note that the expectation theorem applies even to variables
which are dependent, which these clearly are (speaking of those variables which are 1
if an edge is cut, 0 otherwise.)

Before that calculation, though, let us perform the similar development for transient
edges. This case is a bit easier, because there is only one region to consider, this because
we are interested in the probability that, for an edge between ranks r − 1 and r,

r−1∑
i=1

qi < 1 and
r∑

i=1

qi > 1

Insofar as we are only considering non-negative variables, it is not necessary to ad-
dress the complementary region, which is void.

The probability of this region is

1
2r−1

1
(r − 1)!

−
1
2r

1
r!

=
1
2r

2
(r − 1)!

−
1
r!

= : q(r)

As noted for local edges, knowledge of this probability, along with the generating
function Ψ(t) for transient edges, allows us to compute the expected number of cut
transient edges.

Of more immediate interest, though, is the expected number of all cut edges, for this
is the expected number of feasible basic solutions to the full beta problem.

This total is

E :=
m+1∑
r=1

[brpr + rarqr],

recalling that the {br} are the coefficients in P(t), and that the {rar} are the coefficients in
tΦ′(t) = Ψ(t), respectively the counts of local and transient edges in and immediately
below rank r. The summation can begin with rank 1 because there are no local edges in
rank 0, and no transient edges below rank 0.

Expanded,

E =

m+1∑
r=1

{
1
2
[(n + 1)ar − (r + 1)ar+1 − rar] ·

1
2r−1

[
1
r!

−
1

(r + 1)!

]
+ rar

1
2r

[
2

(r − 1)!
−

1
r!

]}
Regrouping terms and simplifying,

= (n + 2)

m+1∑
r=1

r

2r(r + 1)!
ar
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or,

E = (n + 2)

m+1∑
r=1

r

r + 1
· 1

2rr!
ar(4.9)

Note that the terms are ‘almost’ the volumes of the (r − 1)-simplexes cut from hyper-
cubes of dimension 1/2.

A trite calculation shows that the expectation of feasible basic solutions for the prob-
lem of Section 2 is 47 11

12 .
As a final note, consider that the terms of Equation (4.9) might possibly relate to the

expected number of cut edges emanating from the various basic solutions of the uncut
polytope, insofar as the coefficients {ar} appear in Equation (4.9). Such is not the case,
as a convenient counterexample illustrates.

Take the basic solution of the Section 2 problem. A simple calculation shows that the
expectation of cut edges emanating from this solution, weighted by s to the lower rank
and by (1 − s) to the upper rank is,

s · 3
8

+
1
2
· 1

6
+ (1 − s) · 5

48

The coefficient in Equation (4.9), however, is

10 · 1
12

=
5
6

.

Hence no choice of s, 0 6 s 6 1, provides an identical coefficient.



Appendix A

Quotient distributions

This appendix presents several results. First calculated are the distributions of four
quotient variables defined on rectangles — specifically, those for which the numerator
and denominator are each chosen independently from either uniform or exponential
distributions. Customarily the distribution functions will be represented as F(t), and
the densities as f(t) : = F′(t). All of these quotient distributions have infinite expecta-
tions. Following, two additional distributions are calculated, these being the respective
minima of several like variables, either quotients of two uniforms or quotients of two
exponentials. These distributions are of interest in the selection of a pivot position in the
operation of the simplex method on the general linear problem, wherein one seeks to
locate the smallest of several ratios. It is noteworthy that when more than one quotient
variable is involved in the choice of a minimum, the expectation does exist. Formula-
tions are presented, along with specific mean values for a few initial dimensions.

Now look at the first case, the ratio of two uniform variables. Let α be uniform on
[0, a], and let β be uniform on [0, b]. Then

F(t) := Pr
{

α

β
6 t

}
= Pr{α 6 tβ}

Easy calculations demonstrate that

F(t) =


bt

2a
if 0 6 t 6

a

b

1 −
a

2bt
if

a

b
< t < ∞

and

f(t) =


b

2a
if 0 6 t 6

a

b
a

2bt2 if
a

b
< t < ∞

40
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Note that the density is continuous, but not differentiable at a/b. Also, observe that the
mean in infinite, because ∞∫

a/b

tf(t) dt

is unbounded.
Next consider the case of the ratio of two exponential variables. To avoid possible

confusion in the ensuing computations between a and α, and between b and β, let x

and y be the respective variables of the sample spaces for α and β. Then,

F(t) = ab

∞∫
0

ty∫
0

exp[−(ax + by)] dx dy

=
1

1 +
b

at

f(t) =

a

b(
1 +

at

b

)2

This distribution, as well, has infinite expectation.
Continuing, consider the ratio of a uniform variable to an exponential variable. Let

α be uniform on [0, a], and β be exponential with density b exp(−bt). Then,

F(t) = 1 −
b

a

a/t∫
0

a∫
ty

exp(−by) dx dy

=
t

ab

[
1 − exp

(
−

ab

t

)]

f(t) =
1

ab
− exp

(
−

ab

t

)(
1
t

+
1

ab

)
Expectation, again, is infinite.

Finally, consider the ratio of an exponential variable to a uniform variable. Let α be
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exponential with density a exp(−at), and β be uniform on [0, b].

F(t) =
a

b

tb∫
0

b∫
x/t

exp(−ax) dy dx

= a +
1

abt
[exp(−abt) − 1]

f(t) =
1

abt2 − exp(−abt)

(
1
t

+
1

abt2

)
Next, let γ = α/β, wherein α and β are independent and uniform, and consider the

distribution of the smallest of j of these identical γ variables.

Pr{min(γ1, γ2, . . . , γj) 6 t} = 1 − Pr{γ1 > t, γ2 > t, . . . , γj > t}

Two cases must be considered —

0 6 t 6
a

b
and

a

b
< t < ∞

In the former domain,

F(t) = 1 −

(
1 −

bt

2a

)j

This formulation is evident when one considers that the mass of a segment [0, t] in any
axis is

t∫
0

f(x) dx =

t∫
0

b

2a
dx

=
bt

2a

In the latter domain,

F(t) = 1 −
( a

2bt

)j

This formulation, again, is evident, considering the mass of a segment [t, ∞), which is

∞∫
t

f(x) dx =

∞∫
t

a

2bx2 dx

=
a

2bt
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To reprise the distribution function, now including the density function —

F(t) =


1 −

(
1 −

bt

2a

)j

if 0 6 t 6
a

b

1 −
( a

2bt

)j

if
a

b
< t < ∞

and

f(t) =


b

2a
· j
(

1 −
bt

2a

)j−1

if 0 6 t 6
a

b

j
( a

2b

)j
(

1
t

)j+1

if
a

b
< t < ∞

For j = 1, which is the minimum of a single γ variable, or the variable itself, the mean
does not exist, as previously observed. However, for j > 1, the mean does exist, and is
calculated herein.

Let m = m1 + m2 be the mean, where

m1 =

a/b∫
0

tf(t) dt

=
a

2b
· j

j−1∑
i=0

Cj−1,i

(
1
2

)i 1
i + 2

m2 =

∞∫
a/b

tf(t) dt

=
a

b
· j

j − 1

(
1
2

)j

, if j > 1, else ∞
A few values of m(j) follow.

j m(j)

1 ∞
2 0.8333 (a/b)

3 0.5313 (a/b)

4 0.4083 (a/b)

5 0.3359 (a/b)

6 0.2866 (a/b)
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Lastly, consider that γi, 1 6 i 6 j is the ratio of two exponential variables, and
look to the analogous computation, that of the distribution of the smallest of these {γi}

variables.

F(t) = 1 − Pr{γ1 > t, γ2 > t, . . . , γj > t}

= 1 −
(a

b

)j
∞∫
t

· · ·
∞∫
t

j∏
i=1

1(axi

b
+ 1
)2 dx1 · · · dxj

= 1 −
1(

at

b
+ 1
)j

f(t) =
a

b
· j(

at

b
+ 1
)j+1

In conclusion,

m =

∞∫
j=0

tf(t) dt

=
b

a
· 1
j − 1

A few values of m(j) follow. Alongside for comparison are the corresponding values
for the quotient of two uniform variables.

exp / exp unif / unif
j m(j) m(j)

1 ∞ ∞
2 1.0000 (b/a) 0.8333 (a/b)

3 0.5000 (b/a) 0.5313 (a/b)

4 0.3333 (b/a) 0.4083 (a/b)

5 0.2500 (b/a) 0.3359 (a/b)

6 0.2000 (b/a) 0.2866 (a/b)

Observe that the ratio of parameters for the exponentials is b/a, whereas for the
uniforms is a/b. This observation conforms to intuition, for the parameters are just
scale factors, with the low parameter exponential and high parameter uniform being
more “spread out” (having higher means.) Note that when a = b, the mean is higher in
the exponential case for two quotients, but is apparently lower for more than two.
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Here is a final note, a preview of work to come. Let Z = X ∩ Y, where X is an expo-
nential random variable, and Y is the one just calculated — the minimum of j quotient
variables, exponential over exponential.

If X is interpreted as a coefficient in a linear functional, corresponding to a pivot
column in an implementation of the simplex method on a linear program, Z = X ∩ Y is
the distribution of the improvement in the objective upon pivoting in that column. Its
distribution is

H(t) =

∞∫
0

f(x)

t/x∫
0

g(y) dy dx

=

∞∫
0

f(x)G

(
t

x

)
dx

where

f(x) = c exp(−cx)

G(y) = 1 −
1(ay

b
+ 1
)j

So,

H(t) = c

∞∫
0

[
1 −

(
bx

at + bx

)j
]

exp(−cx) dx

This integral has no known closed form solution.
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