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Abstract

In this paper we study the Cauchy problem for the wave equation with
space-time Lévy noise initial data in the Kondratiev space of stochastic
distributions. We prove that this problem has a strong and unique C2-
solution, which takes an explicit form. Our approach is based on the use
of the Hermite transform.
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1 Introduction

The purpose of this paper is to solve stochastic wave equations of the form

∂2U

∂t2
(t, x)−∆U(t, x) = F (t, x), t > 0, x ∈ Rn

U(0, x) = G(x), x ∈ Rn

∂U

∂t
(0, x) = H(x), x ∈ Rn. (1.1)

Here ∆U(t, x) =
∑n
i=1

∂2U
∂x2

i
(t, x) is the Laplacian with respect to x =

(x1, . . . , xn) ∈ Rn and F (t, x), G(x) and H(x) are given stochastic distribution
valued (i.e. (S)−1-valued) functions. The stochastic distribution space (S)−1

is the Lévy white noise analogue of the standard Kondratiev spaces (S)−1 (see
Section 2.2 for definitions). In particular, equation (1.1) contains the special
case where G(x) = H(x) = 0 and

F (t, x) =
•
η(t, x) =

∂n+1η

∂t∂x1 . . . ∂xn
(t, x)

and is the space-time Lévy white noise (η(t, x) is the space-time Lévy pro-
cess/field).

We show that (1.1) has a unique (S)−1-valued solution U(t, x) (under certain
smoothness conditions on F,G and H). See Theorems 3.7, 3.15 and 3.18.

Stochastic partial differential equations driven by classical Brownian space-
time white noise were first studied by Walsh [W]. He considered a different

1



solution concept than ours: A solution U(t, x) = U(t, x, ω) in the sense of Walsh
is a classical distribution with respect to t and x for a.a. ω, and it satisfies the
equation in classical distribution sense, for a.a. ω.

Our solution U(t, x) = U(t, x, ω) on the other hand, is a stochastic distri-
bution in ω, for each t and x, and it satisfies the equation in the strong sense
with respect to t and x, as a stochastic distribution valued (i.e. (S)−1-valued)
function.

With this last solution concept in mind, the stochastic wave equation driven
by the classical Brownian white noise was solved for n = 1 and n = 3 by
Jacobsen [Ja]. Our paper may be regarded as a Lévy white noise analogue of
[Ja], extended to all n = 1, 2, 3, . . ..

In order to achieve the corresponding existence and uniqueness results, we
need a multi-parameter Lévy white noise calculus, including the method of
Hermite transform. This is given in Section 2 and 3. We believe that this
general machinery is useful for a large class of stochastic partial differential
equations driven by Lévy space-time noise, and it is therefore of independent
interest. Finally, in Section 3 we state and prove our existence and uniqueness
results for equation (1.1).

2 Framework

In this section we recall some definitions and results in [LØP], which will be
used later on to solve the Cauchy problem for the wave equation driven by
Lévy white noise. We adopt the presentation and notation in [HØUZ], where
the authors deal with Gaussian white noise theory. As basic references to white
noise theory we recommend the worth reading books [HKPS], [Ku] and [O].

2.1 d-parameter Lévy process, chaos expansion

In this paper we are primarely interested in (d-parameter) pure jump Lévy
processes without drift.

A Lévy process η(t) on R+ is defined to be a stochastic process with inde-
pendent and stationary increments starting at zero, i.e. η(0) = 0. Such a process
possesses a càdlàg version (see [B]). The general structure of a Lévy process η(t)
is described by the celebrated Lévy-Khintchine formula, that is, η(t) is uniquely
determined in distribution by its characteristic function

E exp(iλη(t)) = exp(−tΨ(λ));λ ∈ R (2.1)

with characteristic exponent

Ψ(λ) = iaλ+
1
2
σ2λ2 +

∫
R
(1− eiλz + iλzχ{|z|<1})ν(dz), (2.2)

for constants a ∈ R and σ ≥ 0. The measure ν is called Lévy measure, which
gives information about the size and kind of the jumps of η(t). The reader, who
wants to know more about Lévy processes, is referred to [B] and [Sa].

From now on we solely consider pure jump Lévy processes without drift.
Such processes can be looked upon as elements of the Poisson space S̃(X) (see
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[LØP]). We briefly explain the construction of the space S̃(X). For details we
refer to [LØP].

As is common we indicate by S p(Rd), d ∈ N, the space of tempered distribu-
tions. S p(Rd) is the dual of the space of rapidly decreasing functions or Schwartz
space S(Rd) (see for definitions [GV]). Let us choose the Hermite functions, de-
noted by {ξn}n≥0, as a complete orthonormal system of L2(R). The Schwartz
space S(Rd) can be topologized by the following compatible system of norms

‖ϕ‖2
γ :=

∑
α∈Nd

(1 + α)2γ(ϕ, ξα)2L2(Rd), γ ∈ Nd0,

where ξα :=
∏d
i=1 ξαi and (1+α)2γ :=

∏d
i=1(1+αi)2γi for α = (α1, ..., αd) ∈ Nd

and γ = (γ1, ..., γd) ∈ Nd0. Further, denote by ‖ϕ‖γi
a numbering of the norms

in (2.1.2). Then we obtain a sequence of non-decreasing pre-Hilbertian norms
‖ϕ‖p , p ∈ N, on the Schwartz space, by defining ‖ϕ‖p =

∑p
i=1 ‖ϕ‖γi

. These
norms are equivalent to the norms

‖ϕ‖q,∞ := sup
0≤k,|γ|≤q

sup
z∈Rd

∣∣∣(1 + |z|k)∂γϕ(z)
∣∣∣ , q ∈ N0,

where ∂γϕ = ∂|γ|

∂z
γ1
1 ...∂z

γd
d

ϕ for γ = (γ1, ..., γd) ∈ Nd0 with |γ| := γ1 + ...+ γd.

In the sequel, let X = Rd×R0, where R0 := R − {0}. We define the space
S(X) by

S(X) :=
{
ϕ ∈ S(Rd+1) : ϕ(z1, ..., zd, 0) = (

∂

∂zd+1
ϕ)(z1, ..., zd, 0) = 0

}
.

S(X) is a (countably Hilbertian) nuclear space with respect to the restriction
of the norms ‖·‖p, since it is a closed subspace of S(Rd+1). It turns out that
S(X) is even a nuclear algebra, that is, S(X) is in addition a topological algebra
with respect to the multiplication of functions. In the following, λ×d will stand
for the Lebesgue measure on Rd and ν for a Lévy measure on R0. We set
π = λ×d × ν. We shall note that one could replace ν by a Radon measure on a
topological space to develop a more general theory. This can be done without
significant changes in our approach. It can be easily shown that there exists an
element 1⊗ ·

ν in S p(X) such that〈
1⊗ ·

ν, φ
〉

=
∫
X

φ(y)π(dy)

for all φ ∈ S(X), where
〈
1⊗ ·

ν, φ
〉

= (1⊗ ·
ν)(φ) is the action of 1⊗ ·

ν on φ. We

use the suggestive notation
·
ν to indicate that

·
ν is the Radon-Nikodym derivative

of ν in a generalized sense. Further, we define the closed ideal Nπ of S(X) by

Nπ := {φ ∈ S(X) : ‖φ‖L2(π) = 0}.

Finally, the space S̃(X) is defined as the quotient ring

S̃(X) = S(X)/Nπ.

The space S̃(X) forms a (countably Hilbertian) nuclear algebra with the follow-
ing compatible system of norms∥∥∥φ̂∥∥∥

p,π
:= inf

ψ∈Nπ

‖φ+ ψ‖p , p ∈ N,
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see [LØP].

Denote by S̃ p(X) the dual of S̃(X). The Bochner-Minlos theorem ensures the
existence of a probability measure µ on the Borel sets of S̃ p(X) such that its
characteristic functional is Poissonian with intensity π, i.e. for all φ ∈ S̃(X) we
have that∫

eSp(X)

ei〈ω,φ〉dµ(ω) = exp
(∫

X

(eiφ − 1)dπ
)
, (2.3)

where 〈ω, φ〉 = ω(φ) is the action of ω ∈ S̃ p(X) on φ ∈ S̃(X). We call the
probability measure µ on Ω = S̃ p(X) a Lévy white noise probability measure. We
shall only mention here that µ satisfies the first condition of analyticity and that
it is non-degenerate (see Lemma 2.1.5 and Remark 2.1.6 in [LØP]). The first
property is essential for the existence of certain symmetric polynomials Cn(ω),
called generalized Charlier polynomials (see [KDS]): Let α(x) = log(1 + x)
and assume φ ∈ S̃(X) satisfies φ(x) > −1 (modulo Nπ). The function α is
holomorphic at zero and invertible. Further, set ẽ(φ, ω) = exp〈ω,α(φ)〉

Eµ[e〈ω,α(φ)〉]
. Then

the exponential ẽ(φ, ω) can be expanded into a power series at zero in terms of
generalized Charlier polynomials Cn(ω), i.e.

ẽ(φ, ω) =
∑
n≥0

1
n!
〈
Cn(ω), φ⊗n

〉
, (2.4)

for all φ in an open neighbourhood of zero in S̃(X), where φ⊗n ∈ S̃(X)b⊗n
(n-th symmetric tensor product of S̃(X) with itself). The elements of this
space can be interpreted as functions f ∈ S(Xn) modulo Nπ×n such that f =
f(x1, ..., xn) is symmetric with respect to the variables x1, ..., xn ∈ X. The
system {

〈
Cn(ω), φ(n)

〉
: φ(n) ∈ S̃(X)b⊗n, n ∈ N0} forms a total set in L2(µ) and

for all n, m, φ(n) ∈ S̃(X)b⊗n, ψ(m) ∈ S̃(X)b⊗m the orthogonality relation∫
eSp(X)

〈
Cn(ω), φ(n)

〉〈
Cm(ω), ψ(m)

〉
dµ(ω) = δn,mn!(φ(n), ψ(n))L2(Xn) (2.5)

is fulfilled. Now, for functions f : Xn −→ R, define the symmetrization (f)∧ of
f by

(f)∧(x1, ..., xn) :=
1
n!

∑
σ

f(xσ1 , ..., xσn),

where the sum runs over all permutations σ on {1, ..., n}. Then a function
f : Xn −→ R is symmetric, if and only if f̂ = f . Define L̂2(Xn, π×n) as the
space of all symmetric functions on Xn, being square integrable with respect
to π×n. The orthogonality relation (2.5) and the density of S(X) in L2(X,π)
(see [LP]) enables us to extend the functional 〈Cn(ω), fn 〉 from fn ∈ S̃(X)b⊗n
to fn ∈ L̂2(Xn, π×n). Further, we can indentify the polynomial C1(ω) with
ω − 1⊗ ν̇ (see [LP]). Thus we obtain by (2.5) the isometry∫

eSp(X)

〈ω − 1⊗ ν̇, f〉2 dµ(ω) = ‖f‖2
L2(π) (2.6)
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for all f ∈ S̃(X). Next define for Borelian Λ1 ⊂ Rd, Λ2 ⊂ R0 with π(Λ1×Λ2) <
∞ the random measures

N(Λ1,Λ2) := 〈ω, χΛ1×Λ2〉 and Ñ(Λ1,Λ2) := 〈ω − 1⊗ ν̇, χΛ1×Λ2〉 .

Their characteristic functions show that N is a Poisson random measure and
Ñ is the corresponding compensated Poisson random measure, where π is the
compensator of N(Λ1,Λ2). So we can naturally define the stochastic integral of
φ ∈ L2(π) with respect to Ñ by∫

X

φ(x, z)Ñ(dx, dz) := 〈ω − 1⊗ ν̇, φ〉 . (2.7)

Based on (2.7) we finally define the d−parameter Lévy process or space-time
Lévy process, denoted by η(x), to be a càdlàg version of the random field

η̃(x) :=
∫
X

χ[0,x1]×...×[0,xd](y) · zÑ(dy, dz) for x = (x1, ..., xd) ∈ Rd,

where [0, xi] is interpreted as [xi, 0], if xi < 0 and where it is assumed that the
second moment with respect to the Lévy measure ν exists.

In conclusion we state a chaos expansion result in terms of generalized Char-
lier polynomials (see Theorem 2.2.1 in [LØP]). For this purpose we have to
introduce some notation.

In the following we denote by J = (NN
0 )c the collection of all sequences

α = (α1, α2, ...) with finitely many non-zero elements αi ∈ N0. Next define
Index(α) = max{i : αi 6= 0} and |α| =

∑
i αi for α ∈ J .

Now, we need two families of orthogonal polynomials. First, let {ξk}k≥1 be
the Hermite functions as before. Further, take a bijection h : Nd −→ N. Then
we define the function ζk(x1, ..., xd) = ξi1(x1) · ... · ξid(xd), if k = h(i1, ..., id) for
ij ∈ N. Thus {ζk}k≥1 forms an orthonormal basis of L2(Rd).

We intend to construct the second family of orthogonal polynomials. For
this reason we impose the following integrability condition on the Lévy measure
(see [NS]): For every ε > 0 there exists a λ > 0 such that∫

R\(−ε,ε)
exp(λ |z|)ν(dz) <∞. (2.8)

This condition entails the existence of all moments ≥ 2 with respect to the Lévy
measure ν. Let {lm}m≥0 be the orthogonalization of {1, z, z2, ...} with respect
to the innerproduct of L2(%), where %(dz) = z2ν(dz). Then the polynomials

pm(z) :=
1

‖lm−1‖L2(%)

z · lm−1(z)

constitute a complete orthogonal system in L2(ν) (see [ØP]). In view of the
following we shall stress that we could also have chosen any orthogonal basis in
S(X) ⊂ L2(ν) for d = 0 to represent pm(z). This choice would cancel condition
(2.8). However we use pm(z) to simplify the notation. Now define the bijective
map

κ : N× N −→ N; (i, j) 7−→ j + (i+ j − 2)(i+ j − 1)/2. (2.9)
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Then, if k = κ(i, j) for i, j ∈ N, let

δk(x, z) = ζi(x)pj(z).

Further, we set Index(α) = j and |α| = m for α ∈ J and introduce the function
δ⊗α given by

δ⊗α((x1, z1), . . . , (xm, zm)) =

δ⊗α1
1 ⊗ . . .⊗ δ

⊗αj

j ((x1, z1), . . . , (xm, zm)) = δ1(x1, z1) · . . . · δ1(xα1 , zα1)

· . . . · δj(xα1+...+αj−1+1, zα1+...+αj−1+1) · . . . · δj(xm, zm),

where the terms with zero-components αi are set equal to 1 in the product
(δ⊗0
i = 1). Then we define the symmetrized tensor product of the δk‘s, denoted

by δb⊗α, as

δ
b⊗α((x1, z1), . . . , (xm, zm)) = (δ⊗α)∧((x1, z1), ..., (xm, zm))

= δ
b⊗α1
1 ⊗̂ . . . ⊗̂δb⊗αj

j ((x1, z1), ..., (xm, zm)).

Finally, we define for α ∈ J

Kα(ω) :=
〈
C|α|(ω), δb⊗α〉 ,

where K0(ω) := 1.

With the above notation we are ready to state the following chaos expansion
result (see [LØP]).

Theorem 2.1. The family {Kα}α∈J forms an orthogonal basis in L2(µ) with
norm expression

‖Kα‖2
L2(µ) = α! := α1!α2!...,

for α = (α1, α2, ...) ∈ J . Thus, every F ∈ L2(µ) can be uniquely represented as

F =
∑
α∈J

cαKα

where cα ∈ R for all α and where we set c0 = E[F ].
Moreover, the following isometry holds:

‖F‖2
L2(µ) =

∑
α∈J

α!c2α.

2.2 Kondratiev spaces, Levy white noise, Hermite trans-
form

First we recall the construction of some stochastic test function spaces and dis-
tribution spaces (see [LØP]), which are Lévy versions of the Kondratiev spaces,
originally studied in [K]. More information about these spaces in the Gaussian
setting can be found in [AKS] and [KLS].
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Choose 0 ≤ ρ ≤ 1, k ∈ N0 and define for an expansion f =
∑
α∈J cαKα

∈ L2(µ) the norm

‖f‖2
ρ,k :=

∑
α∈J

(α!)1+ρ c2α(2N)kα,

where (2N)kα = (2 · 1)kα1(2 · 2)kα2 ...(2 ·m)kαm , if Index(α) = m.
Further, set (S)ρ,k = {f : ‖f‖ρ,k < ∞} Then we define the test function

space (S)ρ by

(S)ρ =
⋂
k∈N0

(S)ρ,k,

We topologize this space by the projective topology.
Analogously, define for a formal expansion F =

∑
α∈J bαKα the norms

‖F‖2
−ρ,−k :=

∑
α∈J

(α!)1−ρ c2α(2N)−kα, k ∈ N0.

Let (S)−ρ,−k = {F : ‖F‖−ρ,−k < ∞} and define the stochastic distribution
space (S)−ρ by

(S)−ρ =
⋃
k∈N0

(S)−ρ,−k,

endowed with the inductive topology. The space (S)−ρ is the dual of (S)ρ in
virtue of the action

〈F, f〉 =
∑
α∈J

bαcαα!

for F =
∑
α∈J bαKα ∈ (S)−ρ and f =

∑
α∈J bαKα ∈ (S)ρ . For general

0 ≤ ρ ≤ 1 we have the following chain of spaces

(S)1 ⊂ (S)ρ ⊂ (S)0 ⊂ L2(µ) ⊂ (S)−0 ⊂ (S)−ρ ⊂ (S)−1

The space (S) := (S)0 resp.(S)∗ := (S)−0 is a Lévy version of the Hida test
function space resp. Hida stochastic distribution space. See [HKPS] and [HØUZ]
for related spaces in Gaussian and Poissonian analysis.

One of the fundamental objects in Gaussian white noise analysis is the Gaus-
sian white noise, which can be regarded as the time derivative of Brownian
motion. Similarly to the Gaussian case we can construct the Lévy white noise
on the Hida distribution space (S)∗ (see Definition 2.2.4 in [LØP]). We define
the (d-parameter) Lévy white noise

•
η(x) of the Lévy process η(x) by the formal

expansion
•
η(x) = m

∑
k≥1

ζk(x)Kεκ(k,1)

where ζk(x) is defined by Hermite functions, κ(i, j) is the map in (2.9), m :=
‖z‖L2(ν) and where εl ∈ J is defined by

εl(j) =
{

1 for j = l
0 else , l ≥ 1
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The uniform boundedness of the Hermite functions (see e.g. [T]) implies that
the Lévy white noise

•
η(x) takes values in (S)∗ for all x. Since the d-parameter

Lévy process η(x) can be written as

η(x) =
∑
k≥1

m

∫ xd

0

...

∫ x1

0

ζk(y1, ...yd) dy1 . . . dyd ·Kεκ(k,1) ,

we can interprete
•
η(x) as the time-space derivative of η(x) in (S)∗, i.e.

∂d

∂x1...∂xd
η(x) =

•
η(x) in (S)∗.

Thus we are entitled to call
•
η(x) white noise. Let us note that one can naturally

generalize the concept of Lévy white noise, by defining the ( d−parameter) white

noise
•
Ñ(x, z) of the Poisson random measure Ñ(dx, dz) (see [ØP]). Then

•
η(x)

can be expressed by
•
Ñ(x, z) as

•
η(x) =

∫
R
z
•
Ñ(x, z)ν(dz),

where the right side is given in terms of a Bochner integral with respect to ν.
Next we introduce a (stochastic) Wick product on the space (S)−1 with

respect to the white noise measure µ (see [LØP]). For more general information
about the (Gaussian or Poissonian) Wick product the reader may consult e.g.
[HKPS], [DM].

The Lévy Wick product, denoted by the symbol �, is defined by

(Kα �Kβ)(ω) = (Kα+β)(ω), α, β ∈ J

and extended linearly (see Definition 2.3.1 in [LØP]). Then, e.g., if fn ∈ L̂2(π×n)
and gm ∈ L̂2(π×m) we have

〈Cn(ω), fn〉 � 〈Cm(ω), gm〉 =
〈
Cn+m(ω), fn⊗̂gm

〉
.

Note that the spaces (S)1 , (S)−1 and (S), (S)∗ are topological algebras with
respect to the Lévy Wick product � (see [LØP]). An important feature of the
Wick product is that it can be related to Itô-Skorohod integrals. More precisely,
this relation can be expressed as∫ T

0

Y (t)δη(t) =
∫ T

0

Y (t) � •
η(t)dt, (2.10)

if Y (t) = Y (t, ω) is Skorohod integrable (see [DØP]). The left side is the Skoro-
hod integral of Y (t), whereas the integral on the right is the Bochner-integral
on (S)∗. The Skorohod integral extends the Itô integral in the sense that both
integrals coincide, if Y (t, ω) is adapted.

The Hermite transform was first introduced by Lindstrøm et al. (1991)
[LØU] in the Gaussian and Poissonian case and it has proved to be a useful tool
in the study of stochastic (partial) differential equations (see e.g. [HØUZ]). Its
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definition in the Lévy case is analogous. Let F =
∑
α∈J aαKα ∈ (S)−1 with aα

∈ R. The Lévy Hermite transform of F , denoted by HF , is defined by

HF (z) =
∑
α∈J

aαz
α ∈ C, (2.11)

if convergent, where z = (z1, z2, ...) ∈ CN (the set of all sequences of complex
numbers) and

zα = zα1
1 zα2

2 ...zαn
n ...,

for α = (α1, α2, ...) ∈ J with the convention z0
j = 1. Since

•
η(x) = m

∑
k≥1

ζk(x)Kεκ(k,1) ,

the Hermite transform of the d-parameter Lévy white noise can be calculated
as

H(
•
η)(x, z) = m

∑
k≥1

ζk(x) · zκ(k,1),

which is convergent for all z ∈
(
CN)

c
(the set of all finite sequences in CN ). The

Hermite transform is an algebra homomorphism between (S)−1 and the algebra
of power series in infinitely many complex variables. In particular, it converts
the Wick product into ordinary products, that is

H(F �G)(z) = H(F )(z) · H(G)(z)

for F, G ∈ (S)−1 and all z such that H(F )(z) and H(G)(z) exist. Next, let us
define for 0 < R, q < ∞ the infinite-dimensional neighborhoods Kq(R) in CN

by

Kq(R) = {(ξ1, ξ2, ...) ∈ CN :
∑
α6=0

|ξα|2 (2N)qα < R2}.

We conclude this section with a characterization theorem for the space (S)−1

(compare Theorem 2.6.11 in [HØUZ]).

Theorem 2.2. The following statements hold
(i) Let F =

∑
α∈J aαKα ∈ (S)−1, then there exist q, Mq <∞ such that

|HF (z)| ≤
∑
α∈J

|aα| |zα| ≤Mq(
∑
α∈J

(2N)qα |zα|2) 1
2

for all z ∈
(
CN)

c
. In particular, HF is a bounded analytic function on

Kq(R) for all R <∞.

(ii) Conversely, suppose that g(z) =
∑
α∈J bαz

α is a power series of z ∈
(
CN)

c
such that there exist q <∞, δ > 0 with g(z) absolutely convergent and
bounded on Kq(δ). Then there exists a unique G ∈ (S)−1 such that
HG = g, namely

G =
∑
α∈J

bαKα
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3 The Cauchy problem for the wave equation
driven by Lévy space-time white noise

Partial differential equations perturbed in some way by space-time white noise
appear in many physical and engineering problems. For example the problem
of stabilization of systems in automatic control theory has been investigated for
Gaussian white noise with respect to elliptic, parabolic and hyperbolic partial
differential equations (see [A], [AW]). Other areas are neurophysiology, interest
rate modeling in finance or the study of amorphous thin-film growth (see e.g.
[W], [S] and [BH]). Recently there has been an increased interest in the more
general Lévy noise, see e.g. [M], [AW] and the references therein. One way of
which Lévy noise occurs is in the so-called Schrödinger problem of probabilistic
evolution. While the non-relativistic theory leads to Wiener noise, several rela-
tivistic Hamiltonians are known to generate Lévy noise. We also note that the
Cauchy problem in two dimensions for the wave equation with smooth ordinary
functions as initial data and driven by a Lévy point process has been studied in
[DH].

Our approach to solve system (1.1) can be outlined as follows: First we
study the homogenous case, i.e. the forcing term F (t, x) = 0 in (1.1). We
convert (1.1) into a deterministic system of partial differential equations with
complex coefficients, by applying the Hermite transform (2.11). Then, if we
are able to determine a solution of the resulting PDE, we will take the inverse
Hermite transform of it to solve the original equation. Afterwards we consider
the inhomogenous wave equation with initial values equal to zero, i.e. the forcing
term F is a stochastic distribution process and G(x) = F (x) = 0 in (1.1). We
solve this problem in the same manner as in the homogeneous case. Finally, it
is verified that the sum of the solutions of the latter two problems supplies a
solution for the general case.

In Section 3.1 we derive solutions for system (1.1) in the case of space di-
mension 1 and then, in section 3.2, we solve the problem in any dimension
n.

In the following we say that an (S)−1-process F (x) is strongly integrable in
(S)−1 over a 1-dimensional interval I1 if the associated Riemann sums converge
in (S)−1. The limit is written

lim
n→∞

n∑
k=1

F (t∗k)∆t
n
k

(S)−1=
∫
I1

F (t) dt.

For a rectangle, I ⊂ Rn, the integral is defined repeatedly as∫
I

F (x) dx =
∫
In

. . .

∫
I1

F (x) dx1 . . . dxn

We shall follow the common practice to indicate by Ck(G, (S)−1) the space of
continuous functions f : G 7→ (S)−1, which have continuous derivatives up to
order k. Here, G is an open subset of Rn.

Let f : G × Kq(δ) 3 (x, z) 7→ C. The following properties will frequently
occur:

10



P1 f is bounded on every K ×Kq(δ), where K ⊂ G is compact
P2 f is continuous in x for fixed z
P2’ f is continuous in x uniformly over Kq(δ)
P3 f is analytic in z for fixed x

Note that P1 just means bounded in case G is compact.

3.1 1-dimensional wave equation

In this section we investigate the stochastic wave equation in one space dimen-
sion. For this reason we distinguish between the following two subcases of the
problem to obtain the general solution.

3.1.1 Homogenous case

First we solve the initial value problem of the homogeneous wave equation, i.e.
we aim finding a solution for

∂2U

∂t2
(t, x)− ∂2U

∂x2
(t, x) = 0

U(0, x) = G(x), G(x) ∈ C2(R, (S)−1)
∂U

∂t
(0, x) = H(x), H(x) ∈ C1(R, (S)−1) (3.1)

If we apply the Hermite transform to system (3.1) we get

∂2u

∂t2
(t, x)− ∂2u

∂x2
(t, x) = 0

u(0, x) = g(x)
∂u

∂t
(0, x) = h(x) (3.2)

where the functions u, g and h indicate the corresponding Hermite transformed
distributions. The same proof as for Theorem 2.8.1 in [HØUZ] implies that there
exist q and δ such that g ∈ C1(R,C) and h ∈ C2(R,C). By comparing the real
and imaginary parts in system (3.2) we obtain (see e.g. [ES] and [J])

u(t, x) =
1
2
(g(x+ t) + g(x− t)) +

1
2

∫ x+t

x−t
h(s)ds (3.3)

Then the inverse Hermite transform of (3.3) suggests itself as a natural candidate
for a solution of system (3.1). So we have to check the existence of such inverse.
A sufficient condition for the existence is provided by the following result.

Theorem 3.1. Assume X is a function from a bounded, open set D ⊂ R+×Rd
to (S)−1 such that HX solves the Hermite transformed system (3.2) for all
(t, x, z) ∈ D×Kq(δ) for some q <∞, δ > 0. Furthermore let us require that the
partial derivatives ∂

∂tHX(t, x, z), ∂2

∂t2HX(t, x, z) and ∂2

∂x2
j
HX(t, x, z), j = 1, ..., d

satisfy the properties P1, P2 and P3. Then X solves equation (3.1) in the strong
sense in (S)−1.

11



Proof Apply repeatedly the same proof of Lemma 2.8.4 in [HØUZ] to the case
involving higher order derivatives. �

Next, we denote by Ck(G, (S)−1) with open G ⊂ R+ × Rd the space of
functions belonging to Ck. For the proof of the main result of this subsection
we have to make use of the following Lemmas.

Lemma 3.2. The following assertions are equivalent:

(i) Fn → F in (S)−1

(ii) There exist q <∞, δ > 0 such that

sup
z∈Kq(δ)

|HFn(z)−HF (z)| −→ 0

Proof Same as in Theorem 2.8.1 in [HØUZ]. �

Lemma 3.3. Let F : G −→ (S)−1. Then the following are equivalent:

(i) F is continuous
(ii) There exist q <∞, δ > 0 such that HF satisfies P1, P2’ and P3.

Proof Let Vqδ = {f : Kq(δ) → C, supKq(δ) |f | <∞}.
(i)=⇒(ii). Fix an x0 in a compact set K ⊂ G. By Lemma 3.2 we have that

∃q′ ∃δ′ ∀ε > 0∃γ′ > 0

x ∈ B(x0, γ′) ∩G =⇒ sup
z∈Kq′(δ′)

|HF (x)−HF (x0)| < ε.

Hence P2’ holds. By compactness there exist q and δ such that HF (x) ∈ Vqδ
for all x ∈ K. This means P1 holds. P3 follows from Theorem 2.2.

(ii)=⇒(i). Let xn → x in G and Fn = F (xn), F = F (x). By condition P2’
and Lemma 3.2 continuity follows. �

From this argument it also follows that F ∈ Ck(G, (S)−1) if and only if
HF ∈ Ck(G,C) for fixed z ∈ Kq(δ).

Lemma 3.4. Let R ⊃ [a, b] 3 t 7→ F (t) ∈ (S)−1 and suppose there exist q <∞
and δ > 0 such that HF satisfies P1 and P2. Then F (t) is strongly integrable
and

H
∫ b

a

F (t)dt =
∫ b

a

HF (t)dt.

Proof Identical to the proof of Lemma 2.8.5 in [HØUZ]. �

In the homogenous case we attain the following result.

Theorem 3.5. The initial value problem can be uniquely solved in C2(R+ ×
R, (S)−1). Its solution is explicitly given by

U(t, x) =
1
2
(G(x+ t) +G(x− t)) +

1
2

∫ x+t

x−t
H(s)ds

12



Proof Since the classical boundary value problem possesses a unique solution
(see e.g. [ES], [J]), the uniqueness of the solution is a direct consequence of the
characterization theorem (Theorem 2.2).

The proof of the existence of a solution boils down to the verification of
the assumptions of Theorem 3.1. Since

∫ x+t
x−t h(s)ds satisfies P1, P2 and P3

(by Lemma 3.3), u(t, x) comes up to the same properties. Finally, let us rep-
resentively check the conditions for ut(t, x). The other partial derivatives can
be tackled analogously. Differentiation with respect to t on both sides of (3.3)
gives

ut(t, x) =
1
2
(g′(x+ t)− g′(x− t)) +

1
2
(h(x+ t) + h(x− t))

for all z ∈ Kq(δ) with approriately chosen q, δ. By assumption and Lemma 3.3 it
follows that h(x) and g′(x) fulfill P1, P2 and P3 for z ∈ Kq′(δ′) and some q′, δ′.
So ut(t, x) satisfies the requirements of Theorem 3.1, too. Then the existence
of the solution follows.

The claimed smoothness of the solution can be easily seen with the help of
Lemma 3.3. �

3.1.2 Inhomogeneous case

First we look for a solution of the following initial value problem for the inho-
mogeneous wave equation

∂2U

∂t2
(t, x)− ∂2U

∂x2
(t, x) = F (t, x) ∈ C2(R+ × R, (S)−1)

U(0, x) = 0
∂U

∂t
(0, x) = 0 (3.4)

Using again the Hermite transform in (3.4) we obtain

∂2u

∂t2
(t, x)− ∂2u

∂x2
(t, x) = f(t, x) ∈ C2(R+ × R, (S)−1)

u(0, x) = 0
∂u

∂t
(0, x) = 0,

for all z ∈ Kq(δ), where f(t, x) = HF (t, x).
A solution of this initial value problem is given by

u(t, x) =
1
2

∫ t

0

∫ x+(t−s)

x−(t−s)
f(s, y)dyds. (3.5)

See e.g. [ES], [J].
By the same arguments as in the proof of Theorem 3.5 we can deduce the

following result for the particular initial value problem.

Theorem 3.6. The initial value problem (3.4) admits a unique solution in
C2(R+ × R, (S)−1), which has the explicit form

U(t, x) =
1
2

∫ t

0

∫ x+(t−s)

x−(t−s)
F (s, y)dyds.

13



Finally we intend to solve the general initial value problem for the inho-
mogenous wave equation, that is, we study

∂2U

∂t2
(t, x)− ∂2U

∂x2
(t, x) = F (t, x) ∈ C2(R+ × R, (S)−1)

U(0, x) = G(x) ∈ C2(R, (S)−1)
∂U

∂t
(0, x) = H(x) ∈ C1(R, (S)−1) (3.6)

Let us denote by Uh resp. Up the solution in Theorem 3.5 resp. Theorem 3.6.
Then a short calculation shows that U = Uh + Up supplies a solution for (3.6).
It is easily seen that this solution also holds uniquely. Thus we proved

Theorem 3.7. There exists a unique solution of system (3.6) in C2(R+ ×
R, (S)−1). This solution takes the explicit form

U(t, x) =
1
2
(G(x+ t) +G(x− t)) +

1
2

∫ x+t

x−t
H(s)ds

+
1
2

∫ t

0

∫ x+(t−s)

x−(t−s)
F (s, y)dyds

Example 3.8. In the last Theorem chose G(x) = xξ, ξ ∈ L2(µ), H = 0 and
let F (t, x) = φ(t, x) � •

η(t, x) for a not necessarily predictable process φ with
E
∫

R2 φ
2(t, x) d(t, x) < ∞, where

•
η(t, x) is the 2-parameter Lévy white noise.

Then relation (2.10) and Theorem (3.7) entail that

U(t, x) = xξ +
1
2

∫
[0,t)×[x−(t−s),x+(t−s))

φ(s, y) dη(s, y).

3.2 n-dimensional wave equation

As in the deterministic case, we treat the problem differently whether or not
the dimension is odd or even.

Since the change of variables formula holds for Bochner integrals, surface
integrals of continuous (S)−1-valued processes can be defined similarly as for
R-valued ones. For the n-dimensional unit ball ∂Bn = {x ∈ Rn : ‖x‖ ≤ 1} with
boundary ∂Bn this means that∫

∂Bn

F (x) dS(x) =
∫
Q

F ◦ ϕ(θ)m(θ) dθ,

where ϕ : Q → ∂Bn maps Descartian coordinates onto spherical ones and the
Jacobian m is continuous with values in [0, 1]. Unambiguously we can write∫

∂Bn

F (x) dS(x) =
∫
Bn−1

F (x,
√

1− |x|2) dx√
1− |x|2

+
∫
Bn−1

F (x,−
√

1− |x|2) dx√
1− |x|2

.

14



In particular, if F does not depend on xn then∫
∂Bn

F (x) dS(x) = 2
∫
Bn−1

F (x)
dx√

1− |x|2
. (3.7)

We start by proving some lemmas essential for our main results Theorem
3.15 and 3.18.

Lemma 3.9. For a rectangle Q ⊂ Rn, let F map Q into (S)−1 and suppose
there exist q < ∞ and δ > 0 such that HF satisfies P1 and P2. Then F is
strongly integrable over Q and

H
∫
Q

F (x) dx =
∫
Q

HF (x) dx.

Proof Apply Lemma 3.4 repeatedly to

xk 7→
∫
. . .

∫
F (x) dx1 . . . dxk−1

holding (xk+1, . . . , xn) fixed and start with k = 1, i.e., x1 7→ F (x) for fixed
(x2, . . . , xn). �

Lemma 3.10. Suppose F ∈ C(∂Bn, (S)−1). Then
∫
∂Bn F (x) dS(x) ∈ (S)−1

and

H
∫
∂Bn

F (x) dS(x) =
∫
∂Bn

HF (x) dS(x)

Proof Since F ◦ ϕ · m is continuous on Q, Lemma 3.3 and 3.9 shows that∫
Q
F ◦ ϕ(θ)m(θ) dθ ∈ (S)−1 and

H
∫
Q

F ◦ ϕ(θ)m(θ) dθ =
∫
Q

f ◦ ϕ(θ)m(θ) dθ. �

Lemma 3.11. Let G ⊂ Rn be open and Ψ : G×∂Bn −→ Rn and w : G×∂Bn 7→
R both continuous. Suppose there exist q′ <∞, r′ > 0 such that f satisfies P1,
P2’ and P3 on G. Then there exist q, δ such that

x 7−→
∫
∂Bn

f ◦Ψ(x, y)w(x, y) dS(y)

satisfies P1, P2’ and P3.

Proof P1 and P2’ are immediately inherited. Theorem 2.2 assures that HF = f
for some F continuous by Lemma 3.3. Lemma 3.10, applied to the map y 7→
F ◦ Ψ(x, y)w(x, y), shows that

∫
∂Bn F ◦ Ψ(x, y)w(x, y) dS(y) ∈ (S)−1 for every

x and its Hermite transform
∫
∂Bn f ◦ Ψ(x, y)w(x, y) dS(y) is analytic in some

Kq(δ). �

Lemma 3.12. For F ∈ C1(∂Bn × R, (S)−1),

d

dr

∫
∂Bn

F (x, r) dS(x) =
∫
∂Bn

d

dr
F (x, r) dS(x).

Proof By Theorem 2.2 we may as well consider the Hermite transformed equa-
tion. Using P1 and P2 it readily follows from standard theorems governing the
interchange of differentiation and integration of complex valued functions. �
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3.2.1 Odd-dimensional wave equation

In this section the Cauchy problem is considered in odd dimensions.

We first focus on the homogenous case, i.e. the wave equation

∂2U

∂t2
(t, x)−∆U(t, x) = 0

U(0, x) = G(x), G ∈ C(n+3)/2(Rn, (S)−1)
∂U

∂t
(0, x) = H(x), H ∈ C(n+1)/2(Rn, (S)−1) (3.8)

Uniqueness. Assume a solution U to (3.8) exists. Take the Hermite trans-
form of the equation and suppress the dependence on z to get

∂2u

∂t2
(t, x)−∆u(t, x) = 0

u(0, x) = g(x)
∂u

∂t
(0, x) = h(x)

By considering real and imaginary parts separately this problem has the unique
solution (see e.g. [Fo])

u(t, x) = Cn

[
∂

∂t

(
1
t

∂

∂t

)(n−3)2

tn−2

∫
∂Bn

g(x+ ty) dS(y)

+
(

1
t

∂

∂t

)(n−3)/2

tn−2

∫
∂Bn

h(x+ ty) dS(y)

]
,

where Cn is a positive constant only dependent on n. Note also that when n = 3
the differential operator is raised to the power 0 and should be interpreted as
the identity operator. Moreover, u is a bounded analytical function on some
Kq(R) by Theorem 2.2 and the inverse Hermite transform U is unique.

Existence. Lemma 3.12 shows that it is possible to define

U(t, x) = Cn

[
∂

∂t

(
1
t

∂

∂t

)(n−3)/2

tn−2

∫
∂Bn

G(x+ ty) dS(y) (3.9)

+
(

1
t

∂

∂t

)(n−3)/2

tn−2

∫
∂Bn

H(x+ ty) dS(y)

]
. (3.10)

By Lemma 3.10 HU = u. Let us check that the second partial derivatives of u
are continuous in (t, x), analytic in z and bounded on Kt×Kx×Kq(R) where Kt

and Kx are compacts in [0,∞) and Rn respectively. The first order derivatives
are similar/simpler to check. Interchanging differentiation and integration, a
second derivative in xk results in

∂2u

∂x2
k

(t, x) = Cn

[
∂

∂t

(
1
t

∂

∂t

)(n−3)/2

tn−2

∫
∂Bn

∂2

∂x2
k

g(x+ ty) dS(y)

+
(

1
t

∂

∂t

)(n−3)/2

tn−2

∫
∂Bn

∂2

∂x2
k

h(x+ ty) dS(y)

]
. (3.11)
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Carrying out the differentiations in t reveals that (3.11) is a linear combination
of terms of type

tm
∫
∂Bn

yα∂2
k∂

αf(x+ ty) dS(y), f ∈ {g, h}

with m ∈ N and the multi index α, |α| ≤ (n−1)/2. Since g ∈ C(n+3)/2(Rn), the
integrand satisfies P1, P2’ and P3 and similarly for the terms involving h, so,
using Lemma 3.11 with G = R × Rn, Ψ(t, x, y) = x+ ty and w(t, x, y) = tmyα,
∂2
ku also has these properties. Since, finally, ∂2

t u =
∑
k ∂

2
xk
u, Theorem 3.1 shows

that U is the solution to the equation. Finally, as t → 0 the solution and its
time derivative tend to the initial values which follow by the same argument as
in the deterministic case. Thus we have proved the following theorem.

Theorem 3.13. The initial value problem (3.8) can be uniquely solved in C2(R+×
Rn, (S)−1). Its solution is explicitly given by (3.9)

We now turn to the inhomogeneous case and determine the solution of the
initial value problem for the inhomogeneous wave equation

∂2U

∂t2
(t, x)− ∂2U

∂x2
(t, x) = F (t, x) ∈ C(n+1)/2(R+ × Rn, (S)−1)

U(0, x) = 0
∂U

∂t
(0, x) = 0 (3.12)

The Hermite transform converts (3.12) to the system

∂2u

∂t2
(t, x)− ∂2u

∂x2
(t, x) = f(t, x)

u(0, x) = 0
∂u

∂t
(0, x) = 0.

A solution of this problem is given by the formula

u(t, x) = Cn

∫ t

0

[(
1
r

∂

∂t

)(n−3)/2

rn−2

∫
∂Bn

f(t− r, x+ ry) dS(y)

]
dr. (3.13)

Using almost the same arguments as in the last section we can conclude

Theorem 3.14. The initial value problem (3.12) can be uniquely solved in
C2(R+ × Rn, (S)−1), by the process

U(t, x) = Cn

∫ t

0

[(
1
r

∂

∂t

)(n−3)/2

rn−2

∫
∂Bn

F (t− r, x+ ry) dS(y)

]
dr.

Again, if we indicate by Uh and Up the corresponding solutions in Theorem
3.13 and Theorem 3.14, one checks that U = Uh +Up gives a unique solution of
the general initial value problem

∂2U

∂t2
(t, x)−∆U(t, x) = F (t, x) ∈ C(n+1)/2(R+ × Rn, (S)−1)

U(0, x) = G(x), G ∈ C(n+3)/2(R2n+1, (S)−1)
∂U

∂t
(0, x) = H(x), H ∈ C(n+1)/2(Rn, (S)−1). (3.14)
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So we obtain

Theorem 3.15. System (3.14) allows a unique C2(R+ × Rn, (S)−1)-solution
of the form

U(t, x) = Cn

{
∂

∂t

(
1
t

∂

∂t

)(n−3)/2

tn−2

∫
∂Bn

G(x+ ty) dS(y)

+
(

1
t

∂

∂t

)(n−3)/2

tn−2

∫
∂Bn

H(x+ ty) dS(y)

+
∫ t

0

[(
1
r

∂

∂t

)(n−3)/2

rn−2

∫
∂Bn

F (t− r, x+ ry) dS(y)

]
dr

}
.

3.2.2 Even-dimensional wave equation

Theorem 3.16. Assume n is even. If G ∈ C(n+4)/2(Rn, (S)−1) and H ∈
C(n+2)/2(Rn, (S)−1) then the solution to the homogeneous problem is

U(t, x) = Cn

{
∂

∂t

(
1
t

∂

∂t

)(n−2)/2

tn−1

∫
Bn

G(x+ ty)√
1− |y|2

dy

+
(

1
t

∂

∂t

)(n−2)/2

tn−1

∫
Bn

H(x+ ty)√
1− |y|2

dy

}
,

where now Cn = 2/[(n − 1)!!ωn+1]. Note that when n = 2 the differential
operator is raised to the power 0 and is the identity operator.

Proof We use the method of descent. Considered in Rn+1 the solution is

U(t, x) = Cn+1

{
∂

∂t

(
1
t

∂

∂t

)(n−2)/2

tn−1

∫
∂Bn+1

G(x+ ty) dS(y)

+
(

1
t

∂

∂t

)(n−2)/2

tn−1

∫
∂Bn+1

H(x+ ty) dS(y)

}
by Theorem 3.13. Since G and H do not depend on the last coordinate, we have
by (3.7)∫

∂Bn+1
G(x+ ty) dS(y) = 2

∫
Bn

G(x+ ty)
dy√

1− |y|2

and similarly for H. By the same argument as in the deterministic case the
limit t→ 0 yields the initial value. �

We turn now to the inhomogeneous case. As in the last section we first
determine the solution of the initial value problem for the inhomogeneous wave
equation

∂2U

∂t2
(t, x)− ∂2U

∂x2
(t, x) = F (t, x) ∈ Cn/2+1(R+ × Rn, (S)−1)

U(0, x) = 0
∂U

∂t
(0, x) = 0 (3.15)
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The Hermite transform converts (3.15) to the system

∂2u

∂t2
(t, x)− ∂2u

∂x2
(t, x) = f(t, x)

u(0, x) = 0
∂u

∂t
(0, x) = 0.

A solution of this problem is given by the Duhamel’s Principle as

u(t, x) =
1
ωn

∫ t

0

(
1
r

(
∂

∂t

)(n−2)/2

rn−1

∫
∂Bn

f(t− r, x+ ry) dS(y)

)
dr. (3.16)

See e.g. [ES], [Fo] or [J].

Theorem 3.17. The initial value problem (3.15) can be uniquely solved in
C2(R+ × Rn, (S)−1), by the process

U(t, x) =
1
ωn

∫ t

0

(
1
r

(
∂

∂t

)(n−2)/2

rn−1

∫
∂Bn

F (t− r, x+ ry) dS(y)

)
dr.

Again, if we indicate by Uh and Up the corresponding solutions in Theorem
3.16 and Theorem 3.17, one checks that U = Uh +Up gives a unique solution of
the general initial value problem

∂2U

∂t2
(t, x)−∆U(t, x) = F (t, x) ∈ Cn/2+1(R+ × Rn, (S)−1)

U(0, x) = G(x) ∈ C(n+4)/2(Rn, (S)−1),
∂U

∂t
(0, x) = H(x) ∈ C(n+2)/2(Rn, (S)−1). (3.17)

So we obtain

Theorem 3.18. System (3.17) allows a unique C2(R+×Rn, (S)−1)-solution of
the form

U(t, x) = Cn

{
∂

∂t

(
1
t

∂

∂t

)(n−2)/2

tn−1

∫
Bn

G(x+ ty)√
1− |y|2

dy

+
(

1
t

∂

∂t

)(n−2)/2

tn−1

∫
Bn

H(x+ ty)√
1− |y|2

dy

}

+
1
ωn

∫ t

0

(
1
r

(
∂

∂t

)(n−2)/2

rn−1

∫
∂Bn

F (t− r, x+ ry) dS(y)

)
dr.

Remark As an alternative approach to solve the stochastic wave equation
(1.1) we shall mention that one could use the S− transform instead of the
Hermite transform (see Remark 3.1.3 in [LØP]). The S−transform is defined
on a certain distribution space similar to (S)−ρ and it has the form

S(F )(φ) = 〈〈F (ω), ẽ(φ, ω)〉〉
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for distributions F and for φ in a neighbourhood of zero in S̃(X). The function
ẽ(φ, ω) is as in (2.4) and 〈〈·, ·〉〉 denotes an extension of the inner product on
L2(µ). By argueing similarly to the preceding proofs, one can attain analogous
results with the help of S.
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cesses on the Poisson space. To appear in Mathematical Scandinavia.

[M] Mueller, C., The heat equation with Lévy noise. Stoch. Proc. Appl. 74, 67-82,
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