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Abstract

Current treatment regimens have been effective in suppressing the progres-
sion of HIV. They prevent transmission and support people living with HIV
to lead healthy lives. However, there are numerous clinical, social, and struc-
tural reasons that make people stop their treatment. HIV can re-surge after
the treatment is stopped, which can also contribute to drug resistance and pre-
vent further treatment. This is one reason why the search for an HIV cure
is still essential for global public health. One major obstacle to developing a
cure for HIV is the presence of what is called latent HIV reservoirs in the body.
While CD4+ T-cells (one type of immune cell) are the most widely recognized
reservoir, macrophages (another type of immune cell) have also been shown to
contribute to the HIV reservoir. This thesis provides two novel mathematical
models to understand the role macrophages play in the development of HIV
pathogenesis. Both models start out with a reservoir of infected macrophages
and the absence of infected CD4+ T-cells, reflecting the scenario where an
individual with HIV stops treatment and that treatment has been fully effec-
tive in eliminating infected CD4+ T-cells. The two models differ in how the
virus spreads, also called a transmission route. To focus solely on the role of
macrophages, the first model only considers infections caused by macrophages.
On the other hand, the second model also takes into account the transmission
route between CD4+ T-cells. We study the stability of both systems around
equilibrium points. This helps us know whether the disease would die out or es-
tablish itself and propagate further in the body. In both models, we have shown
that a stable productive equilibrium point is attained under certain conditions.
This proves that macrophages can indeed be a source of HIV persistence, which
in turn undermines the importance of further study on macrophages for the
ultimate goal of finding an HIV cure.



Acknowledgements

Dedicated to a close one whose fear of having contracted HIV was almost like a
death sentence for them.

1



Contents

1 Introduction - Defining the biological context 3
1.1 What is HIV? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Antiretroviral therapy . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The current need for an HIV cure . . . . . . . . . . . . . . . . . . 4
1.4 Macrophages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Mode of transmission . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Model I 9
2.1 Derivation of Model I . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Reproduction number . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Equilibrium points . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Model II 20
3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Non-dimensionalized formulation . . . . . . . . . . . . . . . . . . 22
3.3 Reproduction number . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Equilibrium points . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Numerical investigation . . . . . . . . . . . . . . . . . . . . . . . 35

3.6.1 Parameter estimates . . . . . . . . . . . . . . . . . . . . . 35
3.6.2 Solution modeling . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Discussion 41

Appendices 43
.1 Non-dimensionalization of Model II . . . . . . . . . . . . . . . . . 44
.2 Proof that P0 is non-negative . . . . . . . . . . . . . . . . . . . . 45
.3 Proof that V (X) is positive when X ̸= E1 . . . . . . . . . . . . . 46

2



Chapter 1

Introduction - Defining the
biological context

In this chapter, we will provide an overview of key biological concepts that are
essential for understanding the derivation of the mathematical models. Each
concept is given its own section. Subsequently, we present a brief summary of
two relevant studies that were conducted earlier on this topic. In this summary,
we describe the methodology and results of these studies and compare them
with the current work. We define all field-specific terms, particularly those
originating from biology, in text when they first appear. When they reappear
throughout this text, we refer to the glossary defined at the end of this work.

1.1 What is HIV?

Human immunodeficiency virus (HIV) is a virus that targets the body’s immune
system, in particular the white blood cells known as CD4+ T-cells. HIV is the
virus that can lead to Acquired Immune Deficiency Syndrome (AIDS). However,
not everyone with HIV has AIDS. AIDS can be viewed as the most advanced
stage of HIV, and a common diagnosis criterion for AIDS is having a CD4+
T-cell count of less than 200 cells per mm3 [24]. According to [25], more than
38 million people around the world have been living with HIV by the end of
2021.

There is currently no cure for HIV. One of the biggest challenges for devel-
oping an HIV cure is HIV’s ability to remain persistent in dormant immune cells
[11] creating the so-called HIV reservoir. An HIV reservoir is a group of immune
cells that are infected by HIV but are not actively reproducing the virus. The
reservoir is heterogeneous and persistent, consisting of different types of immune
cells [17]. While treatment for HIV has been successful in suppressing the virus,
it does not eliminate those reservoirs [28].
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1.2 Antiretroviral therapy

Antiretroviral therapy is a treatment regimen for HIV. It consists of at least two
different drugs and targets the viral load in the body during its various stages.
This therapy is effective in reducing HIV in the body to undetectable levels. At
this point, the virus cannot be transmitted to another individual [4].

The treatment involves taking a pill, which contains multiple drugs, daily.
It usually takes about six months before the treatment gets the virus under
control. However, viral rebound—the state when the virus repopulates in the
body after it has been suppressed—can be observed when treatment is stopped
[23]. In most cases, this requires treatment for the duration of one’s life.

This rebound has been attributed to the presence of HIV reservoirs in the
body. These reservoirs often go undetected by the body’s own immune system
and can escape ART [29]. HIV reservoirs are one of the main challenges to
finding a cure for HIV.

However, if the treatment effectively suppresses the virus and stops trans-
mission, is there still a need to develop an HIV cure?

1.3 The current need for an HIV cure

Structural factors are social determinants of health that are beyond an individ-
ual’s control and exert external pressure on patients with HIV. Poverty and lack
of access to healthcare are two major structural factors that stand as barriers
between HIV patients and treatment [8].

Even in the absence of such structural factors, there are social and clinical
reasons that may also influence a patient to stop their treatment. Stigma and
discrimination can lead to feelings of shame and guilt, which may be soothed
by distancing oneself from treatment. Mental health issues such as depression
and anxiety can also make it difficult for people living with HIV to adhere to
their treatment regimen, which can be rigid and continuous [22].

Some clinical factors that cause people to stop their treatment include toxic-
ity caused by the drug [26], oral barriers to taking drugs such as gastroenteritis
and pancreatitis, and surgical procedures [21]. Patients may also discontinue
their therapy for a host of clinical reasons, such as complex regimens, and low
health literacy [20].

These factors lead to a high treatment drop-out rate and make it relevant
to further study HIV to find a cure [20]. We claim that understanding the role
of macrophages as an HIV reservoir is a prerequisite for developing a cure for
HIV.

1.4 Macrophages

Macrophages are a type of white blood cells in the immune system. They occur
in almost all tissues of the body [6], and they develop in the bone marrow from
cells known as monocytes [6]. After the monocytes leave the bone marrow and
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circulate in the blood, they enter body tissues where they evolve to become
macrophages [6].

Macrophages possess numerous characteristics that make them good candi-
dates for an HIV reservoir. They have a long lifespan [19], which allows the
virus to persist in the body for a long period of time. Moreover, they can also
resist the virus-induced cytopathic effects [14]. This allows them to survive after
being infected with the virus.

In addition to that, macrophages are tissue-dependent and terminally differ-
entiated; they reach the end of their development potential and can no longer
divide. Depending on which tissue in the body they reside in, macrophages
take different forms and adapt to the local environment. Some examples of
macrophages in different tissues are alveolar macrophages in the lungs, Kupffer
cells in the liver, and microglial macrophages in the central nervous system and
the brain [6]. The latter is considered to be an immune-privileged compartment.

Immune-privileged compartments are anatomical regions that are naturally
less subject to immune responses than most other areas of the body [3]. The
creation of immune-privileged compartments is partly done through the blood-
brain barrier. This barrier is a highly selective border that prevents elements
from the circulating blood from entering the extracellular fluid of the central
nervous system, where neurons reside [30]. The process of differentiation from
macrophage to microglial gives macrophages access to an immune-privileged
compartment through the blood-brain barrier. This allows macrophages to be
carriers of HIV and go undetected by the immune system.

The persistence of this HIV reservoir in the brain has also been shown to
cause comorbidities. Comorbidities are the simultaneous presence of two or more
diseases that are not necessarily caused by one another but might have the same
risk factors. HIV-infected microglia cause inflammation, which in turn leads to
symptoms such as confusion and forgetfulness, an inability to concentrate, and
mood disorders such as anxiety and depression [15].

In summary,

long life-span cytopathic resistance presence in immune-privileged areas

are some characteristics that macrophages have which makes them contributors
to HIV pathogenesis. In what ways can a singular macrophage interact with
other immune cells in the body to spread HIV?

1.5 Mode of transmission

A mode of transmission is a mechanism that describes how new infections are
formed. To study the different modes of transmissions, the following population
groups are considered:

1. Macrophages

• Susceptible (healthy)
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• Infected

2. CD4+ T-cells (abbreviated as T-cells)

• Susceptible (healthy)

• Infected

3. Virus particles

Among these population groups, there are two main modes of transmission.
One mode is when a free virus particle − virion − particle infects a susceptible
cell. This is referred to as cell-free transmission. On the other hand, cell-to-cell
transmission happens when an infected cell infects a susceptible cell.

Cell-cell transmission has been shown to be the most prominent transmission
mode for HIV [7]. It has a higher transmission rate in comparison. Moreover, it
takes multiple virion particles to infect a single cell [27], rendering it less efficient
than cell-to-cell transmission. Finally, this mode also allows viral infections to
spread in a more subtle manner, making them less likely to be detected by the
immune system than cell-free transmission [31]. With that in mind, this study
only considers cell-to-cell transmission modes.

There are several routes within cell-to-cell transmission mode. The following
table describes how the two target cells (macrophages and T-cells) interact with
each other and with one another in the context of HIV pathogenesis.

Table 1.1: Transmission routes

Macrophage T-cell

Macrophage Virological synapse Virological synapse
T-cell Phagocytosis Virological synapse

The above table can be read as follows:
An infected macrophage can spread the virus to a susceptible macrophage

through virological synapses [31]. A virological synapse is an organized cellular
junction, and HIV has been shown to instigate the formation of these junctions
between the infected (donor) and uninfected (target) cells to allow cell-to-cell
transmission. [13] The formation of virological synapses is also a mechanism of
HIV spread between T-cells, and from macrophages to T-cells [13] [10]. On the
other hand, an infected T-cell can transmit HIV to a susceptible macrophage
through the process of phagocytosis. Phagocytosis is a mechanism performed
by macrophages where they engulf an infected cell—in this case, an infected
T-cell. However, when phagocytosis is unsuccessful, this process can lead to the
infection of macrophages.

To simplify the model, the production of infected cells through the process
of phagocytosis is assumed to be negligible. This is a reasonable assumption, as
the number of macrophages is relatively small compared to that of T-cells, and
inefficient phagocytosis is a relatively ineffective transmission route compared
to the formation of virological synapses.
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1.6 Previous work

In their work on modelling the effects of latency reversing agents on macrophages
[12], the authors use a nonlinear dynamical system to model the dynamics of
infected macrophages in the brain. They make a distinction between latently
infected macrophages and productively infected macrophages. Latently infected
macrophages are those which carry the virus but are not currently producing
it, whereas productively infected macrophages are active producers of the virus.
Their paper focuses on the brain as this is an immune-privileged compartment,
as we have seen in section 1.4. The model produces the overarching obser-
vation that effective drug treatment can suppress productively infected brain
macrophages but leaves a residual latent viral reservoir in brain macrophages.
This conclusion supports the hypothesis that macrophages play a key role in
maintaining an HIV infection, and that an HIV cure is contingent on under-
standing HIV reservoirs further. Our study and the aforementioned one differ
in two key areas:

1. We will not consider latently infected macrophages as a different infection
state. We propose only two states: susceptible and infected. This is a
simplification as the work done by [12] also shows how the dynamics of
the model differ between latently and productively infected macrophages.

2. We will consider two population cell groups: macrophages and T-cells.
Since our study aims to primarily highlight the role macrophages have in
the pathogenesis of HIV, we are interested in studying how this cell group
interacts with the dominant HIV cell target, which are T-cells.

Another major influence was the study done by [18]. The authors develop
an HIV model that includes the infection of T-cells and macrophages via cell-
free virus infection and cell-to-cell viral transmission. The modeling study shows
that the infection of macrophages can contribute to the low viral load persistence
during drug therapy. It supports the claim that improving drug responsiveness
in mixed target cells (T-cells and macrophages) might be crucial for the elimi-
nation of HIV from infected individuals. While we both carry out a study of a
nonlinear dynamical system with two-target cells groups, the models differ by
the following elements:

1. We do not consider cell-free transmission. The reason for this simplifica-
tion is elaborated on in section 1.5, while the cited model includes virus
particles as an additional variable to the model.

2. We include the birth routes arising from macrophages (an infected macrophage
can infect a susceptible macrophage and a susceptible T-cell), while the
referenced paper focuses primarily on birth routes from infected T-cells
and virus particles.

Both of the works mentioned in this section have been strong inspirations
to us. While each model has a different approach, they key outtake is that
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macrophages play an important role in helping HIV persist in the body, and
thus stand in the way of obtaining an HIV cure. With this review on previous
work concluded, we are now ready to introduce our first model.
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Chapter 2

Model I

The first proposed mathematical model considers two target population cells:
macrophages and T-cells, each of which has two states: susceptible and infected.
To undermine the role of macrophages in the spread of HIV pathogenesis, this
model only considers transmission routes caused by those cells. The highlighted
transmission routes are considered in this model:

Table 2.1: Transmission routes for Model I

Macrophage T-cell

Macrophage Virological synapse Virological synapse
T-cell Phagocytosis Virological synapse

In this chapter, we will introduce the first mathematical model. To do
so, we define the variables, parameters and formulate the model as a system
of nonlinear differential equations. Then we derive the reproduction number
of this system. We compute the equilibrium points and study their stability.
Finally, we wrap the chapter by a section summarizing the findings and coming
up with a conclusion.

2.1 Derivation of Model I

One of the most fundamental models in the field of epidemiology is the Kermack-
McKendrick SIR model [16]. It compartmentalizes people into one of three
categories: those who are Susceptible to the disease, those who are currently
Infectious, and those who haveRecovered, hence the name. Our proposed model
is a variation of this foundational model. We also propose a compartmental
model. However, instead of considering HIV infection on a population level, we
consider it on a micro scale. Our population groups are immune cells, and the
interactions are not between two individual people, but between two individual
cells.
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The model we will derive describes the time evolution of four dependent
variables given in Table 2.2. We define initial conditions in Table 2.3. The
initial number of infected T-cells is set to zero to eliminate the contribution of
T-cells to HIV pathogenesis. This condition allows us to focus primarily on the
contribution macrophages can make to the evolution of the virus. A schematic
drawing of the system is given in Figure 2.1.

Table 2.2: Variables of Model I

Variable Description

x = x(t) number of susceptible macrophages
y = y(t) number of infected macrophages
u = u(t) number of susceptible T-cells
v = v(t) number of infected T-cells

Table 2.3: Initial Conditions for Model I

Symbol Description

x0 initial number of susceptible macrophages
y0 initial number of infected macrophages
u0 initial number of susceptible T-cells
v0 = 0 number of infected T-cells

Figure 2.1: Illustration of Model I

The parameters that govern this system can be qualitatively split into three
categories: birth parameters, death parameters, and interaction parameters.
Birth parameters describe epidemiological birth—how cells are populated in
the system. Death parameters describe epidemiological death—how cells are
eliminated from the system; and finally, interaction parameters describe how
cells interact with each other and with one another.

10



There are two birth parameters. The first one, s1, represents the production
rate of susceptible macrophages. This is the body’s known natural rate of
producing new macrophages in the bone marrow. The second birth parameter,
s2, is the equivalent of s1 but for T-cells. In other words, s2 is the production
rate of susceptible T-cells in the body.

The death parameters d1, d2 and d3 represent the death rates of susceptible
and infected macrophages, susceptible T-cells, and infected T-cells, respectively.
Since macrophages resist the cytopathic effects of the virus, and can reside in
an immune-privileged compartment, the death rate of susceptible and infected
macrophages is assumed to be the same, d1. However, the death rate of infected
T-cells d3 is assumed to be greater than or equal that of healthy T-cells d2 since
infected T-cells are more likely to be detected and thus eliminated by other
immune cells than their healthy counterparts.

Interaction parameters are categorized into contact rates and efficiency rates.
The contact rate is the rate at which a given cell encounters another. The effi-
ciency rate describes how epidemiologically successful this contact is in transmit-
ting the virus to the encountered cell. This model considers encounters among
two macrophages, governed by the contact rate c1 and the efficiency rate e1,
and between one macrophage and one T-cell, governed by the contact rate c2
and the efficiency rate e2. Biologically, these interaction parameters model the
process of forming virological synapses between the cell populations. Table 2.4
summarizes the parameters in the model. The conditions on the parameters are
derived from what is biologically plausible. Later in this paper when we perform
some numerical investigations in Section 3.6, the sources and claims supporting
those conditions are specified.

Table 2.4: Parameters of Model I

Parameter Description Conditions

s1 production rate of susceptible macrophages / ml / day > 0
s2 production rate of susceptible T-cells / ml / day > 0
d1 natural death rate of macrophages / ml / day ∈ [0.1%, 5%]
d2 natural death rate of T-cells / ml / day ∈ [0.1%, 5%]
d3 death rate of infected T-cells ≥ d2
e1 transmission efficiency rate between two macrophages ∈ [0.001%, 0.01%]
e2 transmission efficiency rate between one macrophage and one T-cell ∈ [0.001%, 0.01%]
c1 contact rate between two macrophages ∈ [0.1%, 50%]
c2 contact rate between one macrophage and one T-cell ∈ [0.1%, 50%]

After having defined the mathematical context around this model, we now
formulate it as a dynamical system.
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2.2 Formulation

The model can be described as a system of nonlinear differential equations. The
“dot” symbol represents the time derivative of the four dependent variables.

ẋ = s1 − e1c1xy − d1x

ẏ = e1c1xy − d1y

u̇ = s2 − e2c2uy − d2u

v̇ = e2c2uy − d3v

(2.1)

We rewrite (2.1) in matrix form using the following matrices. First we define
our vector of unknowns X, and then we define a function F which depends on
X.

X :=


x
y
u
v

 , F (X) :=


s1 − e1c1xy − d1x

e1c1xy − d1y
s2 − e2c2uy − d2u

e2c2uy − d3v

 .

We obtain the following system:

Ẋ = F (X). (2.2)

After having derived the system and written it in matrix form, we carry out
a qualitative study. First, we compute the disease-free equilibrium and use the
next-generation matrix method to derive the reproduction number. We find
all equilibrium points in the system and define their admissibility criteria. Ad-
missibility criteria refer to a set of biological constraints to distinguish between
physically plausible scenarios and those that are pure mathematical artifacts.
We study the asymptotic local and global stability of the equilibrium points and
correlate the stability conditions with the reproduction number.

Before proceeding with the qualitative study of the above system, we make
and prove an observation based on the decoupled nature of the first two equa-
tions in (2.1).

Lemma 1. The asymptotic behavior of solutions to the system can be restricted
to the following region:

Γ =

{
X ∈ R4

+ : X(1) +X(2) =
s1
d1

}
.

Proof. Observe that the first two equations of the system are decoupled from
the two other variables:

ẋ = s1 − e1c1xy − d1x

ẏ = e1c1xy − d1y.
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Adding those two equations gives us:

ẋ+ ẏ = s1 − d1(x+ y) ⇐⇒
d

dt
(x+ y) = s1 − d1(x+ y).

Let z := x+ y, then the above can be rewritten as:

ż = s1 − d1z.

Let z̃ := z − s1
d1
, then ˙̃z = ż and the equation can be further reduced to

˙̃z = s1 − d1

(
z̃ +

s1
d1

)
⇐⇒

˙̃z = −d1z̃.

Using the characteristic polynomial to solve this differential equation, we get
that:

z̃ = Ce−d1t

where C is a constant. By back substitution, we get:

x+ y =
s1
d1

+ Ce−d1t.

As t → ∞, x+ y → s1
d1
. This completes the proof.

With that in mind, we will later only consider initial conditions that are in
Γ.

2.3 Reproduction number

The reproduction number, usually denoted by R0, is a key epidemiological pa-
rameter that describes how contagious the infection is. It is defined as the
average number of secondary infections that result from one infected agent in
an otherwise completely susceptible population. The basic reproduction number
is one of the conceptual cornerstones of mathematical epidemiology [2]. As such,
the derivation of this reproduction number is a major part of this study. We
will derive the reproduction number using the next generation matrix technique
described in [5].

A pre-requisite to computing the reproduction number of this system is to
get the disease-free equilibrium point. This point is characterized by having the
infection state to be zero. The infected state XI is given by

XI =

(
y
v

)
.

13



Note that the components ofXI correspond to the number of infected macrophages
and infected T-cells. Setting the left-hand side of the system (2.2) to zero and
using that XI is equal to zero, we obtain the following equilibrium point:

E1 =


s1
d1

0
s2
d2

0

 .

After calculating the disease-free equilibrium point, we proceed to calculate the
reproduction number of this system.

The first step is to consider the infected subsystem, which models the pro-
duction of new infections, and linearize it around the disease-free equilibrium.
The linearized infected subsystem can be written as:

ẊI = LIXI (2.3)

where

LI :=

( e1c1s1
d1

− d1 0
e2c2s2

d2
−d3

)
.

We obtain LI by considering the differential equations for y and v in (2.1), and
substituting the values of x and u by their corresponding values in E1. This
step linearizes the original system as the nonlinear terms xy and uv have now
become functions of only y and v, respectively. From an epidemiological per-
spective, this subsystem describes the potential for the initial spread of infected
macrophages and infected T-cells when they are introduced into a fully sus-
ceptible population of healthy cells. There is an implicit assumption that the
change in the susceptible population is negligible during the initial spread [5].

After getting the matrix of coefficients LI , we decompose it as T +Σ where
T represents the transmission matrix, and Σ the transition matrix to obtain:

T :=

( c1e1s1
d1

0
c2e2s2

d2
0

)
Σ :=

(
−d1 0
0 −d3

)
.

Using this decomposition, we can proceed as follows.

LI = T +Σ

= (TΣ−1 + I)Σ

= (I −K)Σ

where

K = −TΣ−1 =

( c1 e1 s1
d1

2 0
c2 e2 s2
d1 d2

0

)
.
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The matrix K is called the next-generation matrix as defined in [5]. This name
derives from the entries of K representing the expected number of infected cells
produced by a single infected cell. These infected cells represent the second (or
next) generation of infections. Table 2.5 gives the epidemiological interpretation
of the matrices used to construct K.

Table 2.5: Interpretation of matrices

Value Description

Tij rate of infected cell type j produced by one infected cell type i [5]
−Σ−1

ij expected time that an infected cell type j will spend being infected cell type i [5]

With that interpretation in mind, it is apparent that −Σ−1
ij is zero whenever

i differs from j since an infected macrophage (respectively, T-cell) would never
become an infected T-cell (respectively, macrophage). Moreover, since individ-
ual cells do not “recover”, death is the only mechanism to escape an infected
state. Hence, the only non-zero entries in −Σ−1 are the death rates of respective
cell types. The two non-zero entries in T correspond to the two viable modes
of transmission:

1. An infected macrophage can infect a susceptible macrophage.

2. An infected macrophage can infect a susceptible T-cell.

The second column of T being zero indicates that there are no infections gen-
erated by T-cells. This will be the main difference between the two models
proposed, where in the second model, T-cells can infect each other. With the
epidemiological construction of T and −Σ−1 in mind, Kij is thus the expected
number of infected “offspring” with state i at infection produced by an infected
cell of type j. Therefore, the reproduction number R0 is defined to be the
largest eigenvalue of K. Since K is a diagonal matrix, its eigenvalues are 0 and
c1 e1 s1
d1

2 > 0. Hence,

R0 =
c1e1s1
d21

. (2.4)

We have now computed the reproduction number of (2.2). Taking a closer look
at the parameters involved in R0 (and given by Table 2.4), we substitute the
minimal and maximal values of c1 and e1 to bound our reproduction number in
the following interval:

10−8 s1
d21

≤ R0 ≤ (5× 10−7)
s1
d21

. (2.5)

Written this way, we can see that a key value in determining the HIV spread
potential of this model is s1

d2
1
. This value represents the relative presence of

macrophages in the body, where they get created through the source s1 and
cleared out at a rate of d1.

We now proceed to find other equilibrium points of this model.
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2.4 Equilibrium points

In addition to the disease-free equilibrium E1, the system admits another equi-
librium point:

E2 =


d1

c1 e1
s1
d1

− d1

c1 e1

− c1 d1 e1 s2
c2 e2 (d1

2−c1 e1 s1)−c1 d1 d2 e1

− c2 e2 s2 (d1
2−c1 e1 s1)

d3 (−c2 d1
2 e2+c1 d1 d2 e1+c1 c2 e1 e2 s1)

 .

We call E2 the productive equilibrium point, since both infected values (y
and v) are non-zero. Thus, this equilibrium point describes a state where the
infection is maintained by both cell types. The admissibility criteria for the
equilibrium points are simply that each component is non-negative, i.e. Ei ≥ 0.
(Note that Ei ≥ 0 for i ∈ {1, 2} means that Ei(j) ≥ 0 for j ∈ {1, 2, 3, 4}.)

E1 satisfies the admissibility criteria without the need to impose any addi-
tional constraints on the parameters. However, for E2 the following constraint
needs to be imposed:

d21 − c1e1s1
!
≤ 0

Reformulating this constraint in terms of the reproduction number R0, the
following admissibility condition for E2 is obtained:

d21(1−R0) ≤ 0 ⇐⇒ R0 ≥ 1.

This is significant as it implies that when R0 < 1, the only equilibrium point
the system has is the disease-free equilibrium. So in that case if we show that
E1 is stable, then the system will always tend to the disease-free equilibrium
regardless of where we start out. In the next section, we will formalize the
previous claim and prove stability results for both E1 and E2.

2.5 Stability analysis

To study the local asymptotic stability of those two equilibrium points, consider
the Jacobian matrix of the system (2.2) given by:

JX := ∇F (X) =


−d1 − c1 e1 y −c1 e1 x 0 0

c1 e1 y −d1 + c1 e1 x 0 0
0 −c2 e2 u −d2 − c2 e2 y 0
0 c2 e2 u c2 e2 y −d3

 .

Lemma 2. The disease-free equilibrium point E1 is locally asymptotically stable
if and only if R0 < 1.

Proof. The eigenvalues of JX evaluated at E1, written as JE1
, are given by the

following vector:
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eig(JE1
) =


−d1
−d2
−d3

−d1(1−R0)


The local asymptotic stability criterion is that all eigenvalues need to have
negative real parts. Hence, E1 is locally asymptotically if and only if R0 < 1.

Lemma 3. The productive equilibrium E2 is locally asymptotically stable if and
only if R0 > 1.

Proof. Similarly to the previous proof, we compute the eigenvalues of JE2
and

define the vector eig(JE2
) as:

eig(JE2
) =


−d1
−d3

d1(1−R0)
c2e2d1(1−R0)

c1e1
− d2


The third eigenvalue is negative if and only if R0 > 1. With R0 > 1, the fourth
eigenvalue is also guaranteed to be negative. Hence, E2 is locally asymptotically
stable when R0 > 1. If R0 is equal to 1, the third eigenvalue is zero, rendering
the point not locally asymptotically stable. We do not consider the case when
R0 < 1 as the point is not admissible in that case.

2.6 Conclusion

The model (2.2) we have considered in this chapter primarily tries to answer
the following question:

Does there exist a scenario where an infected set
of macrophages can by themselves corroborate an
HIV infection and maintain the disease over time?

The key phrase in the above question is “by themselves”. In an actual
situation, there are many more contributing factors. Other contributing factors
can be virus particles, T-cells and other types of immune cells that can propagate
the infection. However, if we theoretically assume that those contributions are
negligible, we were still able to derive conditions for a locally stable productive
equilibrium point. Another key phrase is “exist a scenario”. We have shown
that when R0 > 1, the productive equilibrium is locally asymptotically stable.
However, is there a biological plausibility that R0 can in fact attain values
greater than 1?

To answer this question, we use the inequality for R0 given by (2.5), and
observe that the upper bound attains its minimum when s1 is minimized and
d1 maximized. We vary the death parameter d1 along the sample values: 0.001,

17



0.006, 0.011, . . . , 0.046, and consider different values of s1. The values of s1 are
estimates based on the parameter value given in [18], where s1 ≈ 10. We plot
the values of the lower and upper bound with respect to d1. The plots are given
in Figure 2.2. The lower bound is less than 1 in all of the cases. However, the
upper bound attains values of greater than 1 in all of those cases except when
s1 = 1. Therefore, it is reasonable to assume that R0 > 1 can be biologically
attainable. In other words, it is biologically plausible for this system to have
a locally stable productive equilibrium point, indicating that an infection can
incur and be sustained over time.

These results complement those found in the previous work discussed in
section 1.6 where macrophages have been shown to be able to maintain and
propagate HIV infection. What we have argued here is that they are also able
to do so even in the absence of other agents. While this isolation is purely theo-
retical, it helps emphasize the role macrophages by removing the contributions
of other factors to the infection. In the next chapter, we will add one of those
contributing factors, namely T-cells, and study how the dynamics of the system
change.
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(a) (b)
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(i) (j)

Figure 2.2: Plotting the lower and upper bounds (semilogy) of R0 over several
values of s1 and d1. The death rate d1 increases within its range along the
x−axis. On the right are the lower bounds of R0, while on the left are its upper
bounds. Red points indicate values less than 1, while green dots indicate values
greater than 1.
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Chapter 3

Model II

This model builds on the first one by considering an additional infection route.
The new infection route is between infected and susceptible T-cells. As this is
one of the primary ways HIV spreads in the body, we are interested in includ-
ing it in this model. The table below highlights the three different cell-to-cell
transmissions taken into account.

Table 3.1: Transmission routes for Model II

Macrophage T-cell

Macrophage Virological synapse Virological synapse
T-cell Phagocytosis Virological synapse

To bring the focus back to the role of macrophages in HIV pathogenesis, the
initial number of infected T-cells is assumed to be zero, while that of infected
macrophages is assumed to be greater than zero. We have seen in the conclusion
of the previous chapter that macrophages alone can be sufficient to induce and
maintain an HIV pathogenesis. What we are trying to dig deeper into in this
chapter is understanding how potent macrophages can be as HIV reservoirs, and
in their role in triggering something like a chain reaction by infecting T-cells,
and letting the infected T-cells become the primary propagator of the virus.
By deriving a mathematical model to describe those dynamics, we aim to gain
further understanding on the role of macrophages by considering a more realistic
biological context.

To achieve that, we will formulate and derive a system of nonlinear differen-
tial equations to model the dynamics highlighted in Table 3.1. As we are consid-
ering another transmission route compared to (2.2), we will non-dimensionalize
the system for the purpose of simplification. We will then identify one key pa-
rameter and re-write the system in a way that highlights the significance of this
parameter. This will be the final version of the system. As in the previous
chapter, we will compute the reproduction number and equilibrium points. We
will study the admissibility of those points, and stability of the derived system
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around them. We will perform some numerical investigations to complement the
qualitative study. Finally, we will answer the questions posed in the previous
paragraph in reference to the results obtained.

3.1 Formulation

We start this section by a sketch to illustrate the birth, death and transition of
our two cell populations. The sketch is given in Figure 3.1.

Figure 3.1: Illustration of Model II

The epidemiological birth and death of the target cells follows from the pre-
vious model with one additional birth route. The constants e3 and c3 are two
new parameters that, respectively, represent the efficiency and contact rates be-
tween T-cells. The model can be described by a system of nonlinear differential
equations as follows:

ẋ = s1 − e1c1xy − d1x

ẏ = e1c1xy − d1y

u̇ = s2 − e2c2uy − e3c3uv − d2u

v̇ = e2c2uy + e3c3uv − d3v.

(3.1)

This system includes three non-linear terms, e1c1xy, e2c2uy and e3c3uv, in
comparison with the first model, which only includes the first two non-linear
terms.

To highlight the biological significance of the death parameters d2 and d3,
we rewrite d3 as:

d3 = d2 + εd2

where ε ∈ [0, 1]. Recall that d2 and d3 represent the respective death rates of
susceptible and infected T-cells. This models the cytopathic on infected T-cells
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(which reduces their lifespan) and also the fact that an infected T-cell is more
likely to be recognized and eliminated by other immune cells.

We re-write the system in matrix form, using the vector of unknowns X as
defined in (2.2). We define the function G as follows:

G(X) :=


s1 − e1c1xy − d1x

e1c1xy − d1y
s2 − e2c2uy − e3c3uv − d2u

e2c2uy + e3c3uv − (d2 + εd2)v

 .

We obtain the following system:

Ẋ = G(X). (3.2)

Now that we have formulated our model, we proceed with the non-dimensionalization
process.

3.2 Non-dimensionalized formulation

We non-dimensionalize the system to reduce the number of parameters and
obtain the following system. Note that we use the same symbols for the non-
dimensionalized variables as their dimensionalized counterparts in the interest
of not introducing too many variables. The detailed step-by-step process is
described in Appendix .1.

ẋ = 1− xy − α1x

ẏ = xy − α1y

u̇ = 1− α2uy − uv − u

v̇ = α2α3uy + α3uv − (1 + ε)v.

(3.3)

In matrix form, we have

Ẋ = G(X),where G(X) =


1− xy − α1x
xy − α1y

1− α2uy − uv − u
α2α3uy + α3uv − (1 + ε)v

 . (3.4)

This system gives rise to three non-dimensionalization parameters α1, α2 and
α3, in addition to the parameter ε. The system has been reduced from having
10 parameters to four. Table 3.2 below defines those parameters in terms of the
dimensionalized ones.
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Table 3.2: Parameters for Model II

Parameter Value Meaning

α1
d1

d2
> 0 relative death rate of macrophages and T-cells

α2
e2c2s1

d2
2

> 0 macrophage contribution to the relative birth and death of T-cells

α3
e3c3s2

d2
2

> 0 T-cell contribution to the relative birth and death of T-cells

ε ∈ [0, 1] relative death rate of infected T-cells to their susceptible counterparts

As a final step in deriving our model, we re-write the non-dimensionalization
parameters as functions of one another to highlight the significance of the pa-
rameter α1.

α2 = bα2
1, where b =

e2c2s1
d21

> 0

α3 = aα2
1, where a =

e3c3s2
d21

> 0.

The system becomes:

Ẋ = G(X),where G(X) =


1− xy − α1x
xy − α1y

1− bα2
1uy − uv − u

abα4
1uy + aα2

1uv − (1 + ε)v

 . (3.5)

Written this way, the term α1 appears to be of major significance to the study
of this model. Biologically, α1 represents the relative death rate of susceptible
macrophages to that of T-cells. The below table translates threshold values of
α1 to their biological interpretation.

Table 3.3: Threshold values of α1

α1 Interpretation

= 1 healthy macrophages and T-cells have the same lifespan
> 1 healthy T-cells live longer than healthy macrophages
< 1 healthy T-cells live shorter than healthy macrophages

We observe one more property of our parameters, particularly a and b, which
we will make use of later on.

We relate the parameters a and b in the following way using biologically
observed phenomena:

a ≥ O(104) · b. (3.6)

We provide the following evidence to back up this observation. Note that

a

b
=

e3c3s2
e2c2s1

.
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According to [18], s2
s1

= O(103). This means that T-cells are generated in the
body at a much higher rate than macrophages. Since the number of T-cells is in
the order of 103 as high as that of macrophages, the contact rate between two
T-cells −c3− will be higher than the contact rate between one T-cell and one
macrophage −c2− by at least an order of 102. Since e2, e3 ∈ [0.001%, 0.01%],
we get e3

e2
is at most of order 10−1, and hence we get the required result.

Now that we have gained some more understanding about all the parameters
of the system (3.5), we carry out a qualitative study of the model, where we
compute the reproduction number, find equilibrium points, and study their
stability.

3.3 Reproduction number

We follow the same steps as in the derivation of the reproduction number for
the previous model, given in Section 2.3. Namely, we use the next generation
method described in [5]. The first step is finding the disease-free equilibrium,
which is given by:

E1 =


1
α1

0
1
0

 .

We then derive the infected subsystem by considering the equations for y and v
and substituting the values of x and u by their corresponding values in E1. We
obtain the following:

ẊI = GIXI (3.7)

where

GI =

(
1
α1

− α1 0

aα1
4 b −1− ε+ aα1

2

)
.

Note that this is a linearized version of the original system. We decompose
the matrix of coefficients as GI = T + Σ where the so-called transmission and
transition matrices T and Σ are given by:

T :=

(
1
α1

0

aα1
4 b aα1

2

)
Σ :=

(
−α1 0
0 −1− ε

)
The next-generation matrix K is defined as K = −TΣ−1 and is given by:

K =

(
1

α1
2 0

aα1
3 b aα1

2

1+ε

)
.

Since K is a diagonal matrix, its eigenvalues are its diagonal entries. Thus, K
has two positive eigenvalues:

24



R01 =
1

α1
2
,

R02 =
aα1

2

1 + ε
.

The reproduction number R0 is given by:

R0 = max{R01, R02}.

R01 is the reproduction number from macrophage infection, whileR02 is that due
to T-cell infection. The epidemiological interpretation of those values clarify the
reasoning behind those definitions. The numerator of R02 represents the birth
rate of infected T-cells, while the denominator represents the death rate. Hence
if R02 > 1, infected T-cells are being produced at a faster rate than they are
being cleared out, causing the infection to spread. Similarly for when R01 > 1,
infected macrophages are epidemiologically birthed at a higher pace than they
are cleared out. Unlike the first model, both eigenvalues in this case are positive.
From an epidemiological point of view, this reflects that the infection can now
be caused by two different agents, macrophages and T-cells. While in the first
model, the agent of propagation was only one cell type: macrophages.

In the next section, we will derive the equilibrium points of this system and
define their admissibility criteria in relation to the reproduction numbers.

3.4 Equilibrium points

We have already seen that there exists a disease-free equilibrium E1. In addition
to that, the system admits three equilibrium points. The first one is given by:

E2 =


1
α1

0
1+ε
aα1

2

R02 − 1

 .

Since the number of infected macrophages is zero while that of infected T-
cells is greater than zero when R02 is greater than 1, this equilibrium point
represents a state where the infection is only carried out by T-cells. The two
other equilibrium points are given by:

E3 =


x∗

y∗

u∗

v∗

 , E4 =


x∗

y∗

û
v̂
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where

x∗ = α1 > 0

y∗ = R02 − 1

u∗ =
−α1 b+ a

2 a
+

b

2 aα1
+

√
Pε + 1

2 aα1
2

v∗ =
aα1

2

2
−

√
Pε

2
− α1 b

2
+

α1
3 b

2
− 1

2

û = u∗ −
√
Pε

(1 + ε)R02

v̂ = v∗ +

√
Pε

1 + ε
.

Here Pε is a polynomial of the variables a, b and α1, having ε as a parameter.
It is given by this rather complex formula.

Pε = 1 + 2 ε+ ε2 + 2α1 b+ 4α1 b ε+ 2α1 b ε
2 + α1

2 b2 + 2α1
2 b2 ε

+ α1
2 b2 ε2 − 2α1

3 b− 4α1
3 b ε− 2α1

3 b ε2 − 2α1
4 b2

− 4α1
4 b2 ε− 2α1

4 b2 ε2 + α1
6 b2 + 2α1

6 b2 ε

+ α1
6 b2 ε2 − 2 aα1

2 − 2 aα1
2 ε

+ 2 aα1
3 b+ 2 aα1

3 b ε− 2 aα1
5 b− 2 aα1

5 b ε+ a2 α1
4.

For the most of the following study, we will only be interested in the value P0

(i.e. Pε evaluated when ε is equal to zero). Both of the equilibrium points
E3 and E4 have non-zero values for infected T-cells and infected macrophages.
Hence, they both represent states of productive equilibrium, where the disease
is propagated by both types of cells. We summarize all four equilibrium points
in the following table:

Table 3.4: Equilibrium points of Model II

Equilibrium point Interpretation

E1 disease-free equilibrium
E2 T-cell only productive equilibrium
E3 T-cell and macrophage productive equilibrium
E4 T-cell and macrophage productive equilibrium

Upon initial inspection, E3 and E4 seem to be having the same role in the
system. However, as we will see in the upcoming section, they have different
stability properties. We also note the absence of a macrophage-only productive
equilibrium. That point would have been characterized by not having infected
T-cells while having infected macrophages. The absence of such equilibrium is
not surprising. Even in the previous model, where macrophages had a higher role
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in spreading the infection than T-cells did (by not considering the transmission
route between T-cells), the productive equilibrium was maintained by both cells,
and not just by macrophages. These findings complement the biological claim
that it is T-cells that are the primary propagators of HIV in the body, and thus
a sustainable infection is one that presupposes the presence of infected T-cells.

Before we proceed in defining the admissibility criteria for the equilibrium
points E3 and E4, we make the following observation. The proof is given in
Appendix .2.

Lemma 4. P0 is non-negative.

The following lemmas define regions of admissibility for the equilibrium
points. As in the previous chapter, admissibility refers to each component be-
ing non-negative. Doing that allows us to focus on only biologically plausible
scenarios.

Lemma 5. The admissibility region of the equilibrium point E3 falls in the
region {R01 ≤ 1 ≤ R02}.

Proof. For E3 to be of biological significance, all its components need to be non-
negative. Note that y∗ ≥ 0 if and only if R02 ≥ 1. The aim is to show that v∗

is always negative if and only if R01 is greater than 1. To proceed, we simplify
Pε by substituting it with P0. We make the following argument to show that
considering this particular value of ε does not take away from the generality of
the result:

Recall that v∗ represents the number of infected T-cells. Since the death
rate of infected T-cells is given by 1+ε (in the non-dimensionalized system
(3.5)), as ε increases, infected T-cells are being cleared out at a faster rate.
Hence, v∗ decreases. This means that v∗ is maximized when the death rate
of infected T-cells is minimized, which corresponds to ε = 0. If even in
that scenario, where v∗ is maximal, v∗ < 0 then v∗ is guaranteed to remain
negative when ε varies between 0 and 1.

With this simplification in place, we have:

v∗ =
1

2

(
Q−

√
P0

)
where

Q := aα2
1 − 1− α1b+ α3

1b.

If Q < 0, then v∗ < 0 follows readily without needing to impose further con-
ditions. Note that we are implicitly using that P0 ≥ 0 given by Lemma 4 to
guarantee that

√
P0 is a real positive number.

If Q ≥ 0, then:
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Q−
√
P0 < 0 ⇐⇒

Q <
√
P0 ⇐⇒

Q2 < P0 ⇐⇒
Q2 − P0 < 0 ⇐⇒

4aα3
1b(−1 + α2

1) < 0 ⇐⇒
α1 < 1 ⇐⇒

R01 > 1.

This proves that v∗ < 0 if and only if R01 > 1, rendering E3 inadmissible. Hence,
the region of admissibility of E3 is within the domain {R01 ≤ 1 ≤ R02}.

Lemma 6. The admissibility region of the equilibrium point E4 falls in the
domain {min(R01, R02) ≥ 1}.

Proof. The three conditions to check are:

1. y∗ ≥ 0

2. û ≥ 0

3. v̂ ≥ 0

The first condition is straightforward from the fact that R02 is greater than 1.
For the third condition, using the same argument for ε that was made in the
previous lemma, i.e. we consider ε = 0. Assume that Q ≤ 0. Then:

v̂ ≥ 0 ⇐⇒
v∗ + σ ≥ 0 ⇐⇒

1

2
Q+

1

2

√
P0 ≥ 0 ⇐⇒

Q2 − P0 ≤ 0 ⇐⇒
4aα3

1(−1 + α2
1) ≤ 0 ⇐⇒
α1 ≤ 1 ⇐⇒

R01 ≥ 1.

If Q > 0, then

v̂ =
1

2

(
Q+

√
P0

)
≥ 0.

For the second condition, consider ε = 0 based on the following argument:

Recall that û represents the number of susceptible T-cells. Susceptible T-
cells decrease as infected T-cells increase. That is because the interaction
between those two cells convert the susceptible cell into an infected one.
Hence, when the number of infected T-cells is maximized, the number of
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susceptible T-cells is minimized. The number of infected T-cells is maxi-
mized when their death rate is minimized, which corresponds to ε being
zero. Hence, when ε is zero, the number of susceptible T-cells is minimized.
So if we manage to prove that u∗ is non-negative when ε = 0, we are guar-
anteed that u∗ will remain non-negative as ε increases in its domain of
definition.

Assume that R01 < 1, then:

α1 > 1 =⇒
Q > 0 =⇒

−Q <
√
P0 =⇒

−α3
1b+ aα2

1 + α1b+ 1 <
√
P0 =⇒

(−α1b+ a)α2
1 + α1b+

√
P0 + 1 < 2

√
P0 =⇒

−α1b+ a

2a
+

b

2aα1
+

√
P0 + 1

2aα2
1

<

√
P0

R02
=⇒

u∗ <

√
P0

R02
=⇒

û < 0

The second implication follows from observing that Q can be rewritten as in
the equation below, and that R02 > 1 is a necessary condition for admissibility.

Q = (R02 − 1) + b(α3
1 − α1).

Hence we have that shown û ≥ 0 =⇒ R01 ≥ 1.

We rewrite the admissibility regions in terms of the singular reproduction
number R0 and display the results in the Table 3.5. This shows that all produc-
tive equilibrium are admissible only when the reproduction number is greater
than or equal to 1. However, in the study of stability, using the reproduction
numbers R01 and R02, instead of their maximum R0, will prove useful. There-
fore, we also provide a visual illustration of the admissibility regions of the
equilibrium points in terms of R01 and R02, given in Figure 3.2. Inspecting the
figure further, we can see that at most the system can have three equilibrium
points simultaneously. That is because the regions of admissibility of E3 and
E4 are not overlapping.
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Table 3.5: Admissibility regions in terms of R0

Equilibrium point Reproduction number

E1 admissible everywhere
E2 R0 ≥ 1
E3 R0 = R02 ≥ 1
E4 R0 ≥ 1

Figure 3.2: Admissibility regions in terms of R01 and R02

3.5 Stability analysis

We begin this section by computing the Jacobian associated with the system
(3.5).

JX := ∇G(X) =


−α1 − y −x 0 0

y −α1 + x 0 0
0 −α1

2 b u −1− v − α1
2 b y −u

0 aα1
4 b u aα1

2 v + aα1
4 b y −1− ε+ aα1

2 u

 .

Having this matrix in place, we will proceed to prove several local asymptotic
stability properties for the four equilibrium points.

Lemma 7. The disease-free equilibrium E1 is locally asymptotically stable if
and only if R0 < 1.

Proof. The eigenvalues of JE1 are given by the following vector:

eig(JE1
) =


−1
−α1

−−1+α1
2

α1

(1 + ε)(R02 − 1)
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The first two eigenvalues are always negative. The third eigenvalue is negative
if and only if α1 > 1, which is a sufficient and necessary condition for R01 to be
less than one. Moreover, the fourth eigenvalue is negative if and only if R02 is
less than 1.

Lemma 8. When R01 < 1 < R02, the T-cell induced infection state at E2 is
locally asymptotically stable.

Proof. The eigenvalues of JE2
are given by the following vector:

eig(JE2
) =


−α1

1
α1

− α1

−σ+aα1
2

2 (1+ε)
σ−aα1

2

2 (1+ε)


where

σ =
√
4 + 12 ε+ 12 ε2 + 4 ε3 − 4 aα1

2 − 8 aα1
2 ε− 4 aα1

2 ε2 + a2 α1
4

The second eigenvalue 1
α1

−α1 is negative if and only if R01 < 1. If we assume
that σ is non-negative, the third eigenvalue is always negative. Thus the local
asymptotic stability of E2 depends on the fourth eigenvalue being negative; that
is:

σ < aα2
1 ⇐⇒

σ2 < a2α4
1 ⇐⇒

σ2 − a2α4
1 < 0 ⇐⇒

4(1 + ε)3(1−R02) < 0

The last inequality is true if and only if R02 > 1.
Now, we consider the case when σ is an imaginary number. This corresponds

to the polynomial under the square root being negative. In that case, σ is a pure
imaginary number, and the real part of the third and fourth eigenvalues is given

by − aα2
1

2(1+ε) which is negative. Hence, E2 is locally asymptotically stable.

Lemma 9. E3 is not locally asymptotically stable.

Proof. Since R01 < 1 is a necessary condition for the validity of E3, we have
that α1 is greater than 1. One of the eigenvalues of JE3 is α1− 1

α1
> 0, rendering

this point locally unstable.

Conjecture 1. When R01 > 1 and R02 > 1, the productive equilibrium E4 is
locally asymptotically stable.
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Sketch of Proof. We compute the eigenvalues of JE4 and give them in the fol-
lowing vector:

eig(JE4
) =


−1+α1

2

α1

−α1

− 3 ε−σ5+ε σ6+2σ6+ε2+σ1−α1 b ε−σ4−σ3+σ2+2
4 (1+ε)

− 3 ε+σ5+ε σ6+2σ6+ε2+σ1−α1 b ε−σ4−σ3+σ2+2
4 (1+ε)


The first eigenvalue is negative if and only if R01 > 1. The second eigenvalue
is always negative. For the third and fourth eigenvalues, we consider sample
values of the variables a, b, α1 and ε ensuring that all those values fall within
the admissibility domain defined in Lemma 6. We also make use of (3.6) to
inform us about biologically plausible values for a and b. The following sample
values are considered:

ε = 0, 0.25, 0.5, 1

α1 = 0.1, 0.11, 0.12, . . . , 0.99

a = 20001, 30001, 40001, . . . , 990001

b = a/104

We have chosen α1 < 1 to meet the necessary stability requirement that R01 > 1.
We have chosen the minimum value of a to be 20000 to meet the necessary
admissibility requirement that R02 > 1.

The below plots show the maximum value attained by the third and fourth
eigenvalues as ε and α1 vary. The maximum is over all possible values of a and
b as α1 and ε are fixed.

Figure 3.3: Maximum value of the
third eigenvalue as α1 varies

Figure 3.4: Maximum value of the
third eigenvalue as α1 varies

Since the values of both eigenvalues never exceed a negative number, we can
conclude that this equilibrium point is locally asymptotically stable in its region
of admissibility (within those considered values of the parameters).
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We give one more result to show that the disease-free equilibrium is in fact
globally stable.

Lemma 10. There exists a region within the local asymptotic stability region
of E1 where the disease-free equilibrium is globally stable. Recall that the local
asymptotic stability region of E1 is given by {R0 < 1}.

Proof. We will first prove that E1 is Lyapunov stable. To do so, we will construct
a functional V (X) and prove that it is a Lyapunov function. This will give us
Lyapunov stability. To go from Lyapunov stability to global stability, we will
show that the functional is radially unbounded.

Define a functional V as:

V (X) := A

(
x− 1

α1
− 1

α1
ln(α1x)

)
+Ay +B (u− 1− ln(u)) +Bv, (3.8)

where A and B are two positive constants to be defined. This construction has
been inspired by what is called the Volterra-type Lyapunov functions, which
have been shown to be good candidates for Lyapunov functions for the disease-
free equilibrium [9]. The aim is to show that V is a Lyapunov function. For
that to be the case, V needs to satisfy three conditions:

1. V (E1) = 0, and

2. V (X) > 0 for all X ̸= E1, and

3. V̇ := d
dtV (X(t)) < 0.

The first condition comes readily when we substitute X with E1. The second
condition is satisfied and the proof is given in Appendix .3. Before we check for
the third condition, we define the constants A and B to be:

A =
α3
1b

(α1 + 1)(1−R02)
,

B =
α1 − 1

(1 + ε)(1−R02)
.

The assumption that R0 is less than 1 is necessary to guarantee that A and B
are indeed positive. Using the chain rule, we get the following equation for V̇ :

V̇ =− α1 − 1

u(1 + ε)(1−R02)

− u(−1 + α1)(1 + v(1− (1 + ε)R02) + α2
1by(1− (1 + ε)R02)

(1 + ε)(1−R02)

− εvx(α2
1 − 1) + εxyα2

1b(α
2
1 − 1)

x(1 + α1)(1 + ε)(1−R02)

− Mε,α1,b(x)

x(1 + α1)(1 + ε)(1−R02)
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where

Mε,α1,b(x) = α4
1b(1 + ε)x2 − 2(α2

1 + α3
1b+ α3

1bε− 1)x+ α2
1b(1 + ε),

Written this way, we can examine the sign of each expression for V̇ to prove that
V̇ is strictly negative. The first and third expressions being strictly negative
follow readily from the assumptions that R01 < 1 and R02 < 1. The second
expression is non-negative when R02 ≤ 1

1+ε . To examine the sign of the fourth
expression, we consider M as a quadratic polynomial in x. Using the quadratic
formula, M admits two roots r1 and r2 given below:

r1 =
1

α
−
√
(−1 + α) (1 + α) (−1 + α2 + 2α3 b+ 2α3 b ε)− α2 + 1

α4 b (1 + ε)
,

r2 =
1

α
+

α2 +
√
(−1 + α) (1 + α) (−1 + α2 + 2α3 b+ 2α3 b ε)− 1

α4 b (1 + ε)
.

Examining the sign of M , we get that Mε,α1,b(x) > 0 when x ∈ [0, r1].

Therefore, in that region, the fourth component of V̇ is negative. Note that
the second root r2 is rejected since it is greater than 1

α1
, using Lemma 1. This

means that our condition that x ∈ [0, r1] only eliminates values of x that fall
between the two roots.

Let Ω := {X ∈ R4
+ : R01 < 1, R02 ≤ 1

1+ε , x ∈ [0, r1]}. Then V is a Lyapunov
function in Ω. Moreover, since V is radially unbounded (i.e. V (∥X∥) → ∞ as
∥X∥ → ∞). Since x and y are bounded by Lemma 1, ∥X∥ → ∞ if and only if
∥u∥ → ∞ or ∥v∥ → ∞. Hence, V is radially unbounded.

Putting everything together, we have shown that there exists a subdomain Ω
of the local asymptotic stability domain for E1 where the disease-free equilibrium
is globally stable. This means that as long as the initial condition lies within
Ω, we are guaranteed that the system will approach a disease-free state. This
is a useful result especially since Ω only depends on x (and not on y, u or v)
meaning that a certain bound on the initial number of susceptible macrophages
is sufficient to guarantee the disease-free state of the model presupposing that
the reproduction numbers are less than 1.

To wrap up this section, we summarize the regions of local stability of the
four equilibrium points in relation to the two reproduction numbers R01 and R02

in the diagram given in Figure 3.5. The equilibrium point E3 is not visualized
below since it’s not locally asymptotically stable anywhere. Unsurprisingly,
those local stability regions for the other three points are not overlapping.
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Figure 3.5: Local stability regions

3.6 Numerical investigation

In this section we will perform some numerical simulations for the solution. The
aim of this section is to complement the stability analysis and to illustrate how
the solution behave as the key parameters, alongside the reproduction numbers
R01 and R02, vary.

First we will estimate the parameters based on existing literature, and then
we will define our initial point. In the following subsection, we will vary the two
variables ε and α1 and plot the solution across the different considered values.
We will describe the plots and relate them to the stability analysis.

3.6.1 Parameter estimates

We begin this section by noting down that estimating parameters for this kind
of study is not a straightforward exercise. Most parameter estimates for HIV
study come from SIV data. SIV (Simian Immunodeficiency Virus) is a virus
that infects monkeys and apes and is closely related to HIV. Because of the
similarities of the two viruses, SIV is often used as a model for studying HIV
[12] [18].

As we have seen in Section 1.4, macrophages are specialized cells that re-
side in specific tissues and adapt to the local environment. This means that a
macrophage residing in the liver might be more susceptible to one residing in
the brain when it comes to transmission efficiency. In addition to that, since
the brain is an immune-privileged compartment, it is likely the case that there
are less T-cells residing in the brain which would in turn affect the values of the
contact rates between macrophages and T-cells. Hence, it is important to high-
light that the estimates given below are a generalization and might not apply
to individual cases. With that said, we believe that there is value to be gained
from performing this simulation to deepen our understanding on the significance
of some key parameters in the model.
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Table 3.6: Parameters Estimates

Parameter Value Source

s1 10 [18]
s2 104 [18]
d1 10−2 [18]
d2

d1

α1
definition

d3 d2 + εd2 definition
e1 3× 10−5 definition
e2 2× 10−5 e2 < e1
e3 10−5 e3 < e2
c1 10−5 [12]
c2 10−4 c2 > c1
c3 10−2 c3 > c2

Table 3.6 gives the parameter estimates we have considered. The values
for d2 and d3 are given in terms of α1 and ε which are the two parameters
that we will vary. According to [1], the efficiency rate of transmission between
macrophages is likely to be higher than that between T-cells. We define e1 to
be 3× 10−5 and choose the values for e2 and e3 such that e1 > e2 > e3. For the
contact rate parameters, since the number of macrophages is less than that of
T-cells, the contact rate between T-cells needs to be higher than that between
macrophages, or between one T-cell and one macrophage. In other words, we
have the following relationship: c3 > c2 > c1. We have chosen c1 to be equal to
10−5 guided by the estimate given in [12], and then chosen the values of c2 and
c3 to be increasingly greater than that of c1.

Now that we have estimates our parameters, we define the initial point:

X0 =


x0

y0
u0

v0

 .

Recall that in Lemma 1, we have shown that the solution needs to lie in Γ as
time goes to infinity. Hence, we have the following constraint:

x0 + y0 =
s1
d1

.

Using the parameter estimates, we get that:

x0 + y0 = 103.

To emphasize the role of infected macrophages, we choose y0 = 750 and u0 =
250. We also start out with an initial value of 0 for infected T-cells so that the
propagation of the virus is only carried out by macrophages. Finally, we choose
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u0 to be 200. Recall that in Section 1.1, this value is the detection limit for
AIDS. Hence, we have:

X0 =


250
750
200
0

 .

In the next section, we will use the parameter estimates and the initial point to
simulate the solution over time.

3.6.2 Solution modeling

We consider the following values for ε and α1:

ε = 0, 0.5, 1

α1 = 0.5, 1, 1.5.

The tables below summarize the values of the reproduction numbers based
on the values of α1 and ε. The reproduction numbers are rounded to the nearest
tenth.

Table 3.7: ε = 0.

α1 0.5 1 1.5

R01 4 1 0.4
R02 0.3 1 2.3
R0 4 1 2.3

Table 3.8: ε = 0.5.

α1 0.5 1 1.5

R01 4 1 0.4
R02 0.2 0.6 1.5
R0 4 1 1.5

Table 3.9: ε = 1.

α1 0.5 1 1.5

R01 4 1 0.4
R02 0.1 0.5 1.1
R0 4 1 1.1

We highlight the combinations of values which give us local asymptotic sta-
bility in the tables below. The highlighted values correspond to the local sta-
bility region for E2.

Table 3.10: ε = 0.

α1 0.5 1 1.5

R01 4 1 0.4
R02 0.3 1 2.3
R0 4 1 2.3

Table 3.11: ε = 0.5.

α1 0.5 1 1.5

R01 4 1 0.4
R02 0.2 0.6 1.5
R0 4 1 1.5

Table 3.12: ε = 1.

α1 0.5 1 1.5

R01 4 1 0.4
R02 0.1 0.5 1.1
R0 4 1 1.1

We will see in the solution plots that for those combinations of ε and α1,
where E2 is locally asymptotically stable, will approach the dimensionalized
value of E2. Recall from the non-dimensionalization process described in Ap-
pendix .1,
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E2 =


s1
d2
x̃

s1
d2
ỹ

s2
d2
ũ

d2

e3c3
ṽ

 ,

where the tilde denotes the non-dimensionalized variable, and E2 is now written
in its dimensionalized form.

We plot the solution over the next 20 years. The plots are given in Figure
3.6, Figure 3.7 and Figure 3.8. In all three figures, where α1 = 1.5, the solution
approached the equilibrium point E2. We can also see that in all the cases, the
number of both susceptible and infected macrophages are similar. Susceptible
macrophages eventually increase to their asymptotic value of 1000, while that of
infected macrophages goes to zero. These findings complement the assumption
that an HIV pathogenesis − if it occurs − needs to be maintained by T-cells.
While macrophages themselves cannot carry out an HIV infection over a long
period of time, they are capable of inducing it by infecting T-cells and then
allowing the infected T-cells to propagate the infection. With these observations,
we conclude this section.

(a) (b)

(c) (d)

Figure 3.6: Plots of cell populations over time where ε = 0.
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(a) (b)

(c) (d)

Figure 3.7: Plots of cell populations over time where ε = 0.5.

(a) (b)

(c) (d)

Figure 3.8: Plots of cell populations over time where ε = 1.
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3.7 Conclusion

In this chapter, we considered a non-linear model (3.5) to supplement that
studied in the first chapter (2.2) by taking into account a more realistic scenario.
While the first model informed us that macrophages can by themselves lead to
a plausible infection steady state, this model tries to shed light on the following
question:

How important of a role do macrophages have in
creating and maintaining an infection state?

By considering the additional transmission route between T-cells, we underlined
that the role of macrophages does not just revolve around how they directly
propagate the virus, but also in how they indirectly do so. A direct propagation
of the virus means that the infection is maintained by a high number of infected
macrophages; on the other hand, an indirect propagation of the virus is con-
cerned with the existence of an infection state independent on the cell type. As
we have noted in Section 3.4, there does not exist an equilibrium point where the
virus is only propagated by macrophages. However, there does exist one where
the virus is only propagated by T-cells, namely E2. Using the terminology of
the preceding sentence, macrophages are indirect propagators of the virus. This
particular equilibrium point was also shown to be locally asymptotically stable,
and in the numerical investigations given in Section 3.6 we saw that there ex-
ist biologically plausible values of the parameters where the local asymptotic
stability of this point is attained.

Going back to the question at hand, we have shown that macrophages have
a major role in creating and maintaining an infection state. The significance of
this role is dependent on how capable macrophages are in infecting the initially
purely susceptible population of T-cells. Efficiency and contact parameters,
especially those between macrophages and T-cells, govern this process. Those
parameters are dependent on where in the body the infection lies, as that will
influence how successful macrophages are in establishing virological synapses
for T-cells, and also how much those two cell types are in contact with each
other. Unsurprisingly, those parameters appear in the reproduction number
R02, and as they increase so does the reproduction number. Finally, we have
also defined conditions where an infection can be maintained. In other words,
when the productive equilibrium E4 is locally stable, an infection state can be
maintained over time as long as our starting point is sufficiently close to the
productive equilibrium.
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Chapter 4

Discussion

Although HIV treatment has been successful in suppressing the disease, a cure
has yet to be found. Consequently, HIV infection is currently a chronic disease.
The presence of HIV reservoirs impedes the development of a cure. These reser-
voirs can cause the infection to re-surge if treatment is paused. Macrophages
have been shown to be constituents of these HIV reservoirs. Therefore, under-
standing the role of macrophages is crucial for understanding the HIV reservoir.

In this study, we employed two mathematical models to gain insight into the
understanding of HIV reservoirs established by macrophages. The first model
poses the question of whether an infected set of macrophages can maintain an
HIV infection over time without the help of other cells, while the second model
is concerned with how important of a role macrophages have in creating and
maintaining an HIV infection state. The latter model supplements the first one
by considering additional infection route: T-cells can spread the infected among
each other. Both models have two cell population groups, namely macrophages
and T-cells. The interpretation of the results of both models are given in sections
2.6 and 3.7. The common conclusion is that macrophages are an important
factor in HIV pathogenesis. Even by themselves, they can potentially induce
and maintain an infection state. However, that role becomes more significant
when we consider a more realistic biological context. This result is consistent
with previous studies such as [12], [18]. What can we take out of this conclusion?

With our conclusion, we aim to further emphasize the need to expand our
knowledge of macrophages and the HIV reservoirs in general. Previous HIV
research has been skewed towards T-cells leaving a big knowledge gap in our
understanding of other contributors. While our models have also shown that
T-cells are the primary propagators of HIV, that does not invalidate the role
of macrophages. By considering an initial starting point with zero infected T-
cells, we have shown that an infection state can still be achieved due to an initial
population of infected macrophages.

We have made two simplifications. The first one is that we have not made
a distinction between latently infected macrophages and productively infected
macrophages. The behavior of macrophages in those states can be different, and
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thus influence the dynamics of the model. The second simplification is that we
have not considered a specific body tissue. Macrophages are highly specialized
cells and they adapt to the local environment they permanently reside in. We
suggest future research to focus on one body tissue, such as the brain. This
would improve parameter estimation, and thus open up the room for further
numerical investigation. Numerical investigation for those models might prove
very useful. As both models contain several nonlinear terms that are the result
of considering a heterogeneous cell population group, an analytical approach is
challenging.

To conclude this work, we provide an overarching summary:

Macrophages are an essential piece of the puzzle when it comes
to finding a cure for HIV. While CD4+ T-cells have been the
main focus of research in the past, recent studies and ours have
demonstrated that macrophages also play a crucial role in the
development of HIV pathogenesis. By understanding the role
macrophages play in HIV pathogenesis, we can develop more
effective treatments and ultimately find a cure for this disease.
Every step we take towards understanding this complex disease
brings us one step closer to finding a cure and changing the lives
of millions of people around the world.
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Appendices
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.1 Non-dimensionalization of Model II

The non-dimensionalization of the system 3.1 is carried out as follows:
Let x0, y0, t0, u0 and v0 be positive constants such that:

x0 =
s1
d2

y0 =
s1
d2

t0 =
1

d2

u0 =
s2
d2

v0 =
d2
e3c3

Then letting x̃ = x
x0
, ỹ = y

y0 , t̃ =
t
t0 , ũ = u

u0 and ṽ = v
v0 , the system can be

re-written in terms of the new variables as:

˙̃x = 1− x̃ỹ − d1
d2

x̃

˙̃y = x̃ỹ − d1
d2

ỹ

˙̃u = 1− e2c2s1
d22

ũỹ − ũṽ − ũ

˙̃v =
e2c2s1
d22

e3c3s2
d22

ũỹ +
e3c3s2
d22

ũṽ − (1 + ε)ṽ

Choose the non-dimensionalization parameters as follows:

α1 =
d1
d2

α2 =
e2c2s1
d22

α3 =
e3c3s2
d22

.

Finally, we get the following non-dimensionalized system:

˙̃x = 1− x̃ỹ − α1x̃

˙̃y = x̃ỹ − α1ỹ

˙̃u = 1− α2ũỹ − ũṽ − ũ

˙̃v = α2α3ũỹ + α3ũṽ − (1 + ε)ṽ

This system now has four parameters instead of ten.
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.2 Proof that P0 is non-negative

Lemma 11. P0 is non-negative.

Proof. First, we consider P0 as a quadratic polynomial in b, with a and α1 as
parameters.

P0(b) = 1 + 2α1b+ α1
2b2

− 2α1
3b− 2α1

4b2 + α1
6b2 − 2aα1

2

+ 2aα1
3b− 2aα1

5b+ a2α1
4

Viewed this way, P0 admits two roots:

b∗1 = − (
√
aα1 − 1)

2

α1 − α1
3

b∗2 = − (
√
aα1 + 1)

2

α1 − α1
3

The following is the sign table for P0:

P0(b)

b01 b02

+ • − • +

The first claim we will prove is that when R01 > 1, P0(b) is always positive.

R01 > 1 =⇒
α1 < 1 =⇒

max(b∗1, b
∗
2) < 0 =⇒
b > max(b∗1, b

∗
2) =⇒

P0(b) > 0.

In what follows, we will assume that R01 ≤ 1. In that case, b02 > b01.
We define g as a function of a, and compute its derivative.

g(a) := a− b∗1

g′(a) = 1−
√
aα1 − 1√

a(−1 + α2
1)

We solve for g′(a) = 0 to get

a∗ :=
1

(1 + α1 − α2
1)

2

The following is the table of variation for the function g:
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g′(a)

g(a)

a∗

+ • −

↗ ↘

Hence, g attains its maximum at a∗. Now we consider g(a∗) as a function of α1:

g(a∗)(α1) =
3α1

3 − α1
4 + α1

(
2
∣∣1 + α1 − α1

2
∣∣− 3

)
− 1

α1 (−1 + α1
2) (1 + α1 − α1

2)
2

We plot this function over various intervals of α1 as described in the figure
below:

(a) α1 ∈ (1, 1.6) (b) α1 ∈ (1.6, 1.62) (c) α1 ∈ (1.62, 1.65) (d) α1 ∈ (1.65, 2)

(e) α1 ∈ (2, 5) (f) α1 ∈ (5, 10) (g) α1 ∈ (10, 1e2) (h) α1 ∈ (1e2, 5e3)

Figure 1: Plotting g(a∗) over several intervals of α1

The function attains a local maximum value in the second chosen interval
where α1 ∈ (1.6, 1.62). In fact, this value is reached when α1 ≈ 1.6180, and its
value is ≈ 8133. As the value of α1 increases, we can see that g(a∗) is negative
and approaches zero. The negative sign of −α4

1 in the numerator eventually
dominates.

By 3.6 since a ≥ O(104)b and maxα1
g(a∗)(α1) < 104, we conclude that

b
!
< b∗1. Hence, P0 is always positive in this case.

.3 Proof that V (X) is positive when X ̸= E1

Lemma 12. V (X), defined in 3.8, is positive positive when X ̸= E1.
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Proof. First we will consider a real-valued function f , with parameter x0, de-
fined as:

f(x) = x− x0 − x0 ln
x

x0
,

where x0 is a fixed given point. We will show that this function admits a local
minimum at x = x0. The derivative of f is given by:

df

dx
= 1− x0

x
.

Solving df
dx = 0, we get that x = x0. The table of variable of f as a function of

x is given below:

f ′(x)

f(x)

x0

− • +

↘ ↗

Hence, f attains its minimum at x = x0, and f(x0) = 0. This proves our first
claim. Observe that V (X) = AfE1(1)(x) +Ay +BfE1(3)(u) +Bv. Since A and
B are positive constants, the functions AfE1(1) and BfE1(3) have the same table
of variation as that of f . Moreover, since y and v are both non-negative, their
minimum is attained when they are zero; i.e. when y = E1(2) and v = E1(3).
This proves that V is positive for all (admissible) X as long as X ̸= E1.
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Glossary

admissibility criteria A set of biological constraints to distinguish between
physically plausible scenarios and those that are pure mathematical arti-
facts. 12, 16, 25

alveolar The name of macrophages residing in the lungs. 5

Antiretroviral therapy A drug-based treatment regimen for HIV. 4

blood-brain barrier A highly selective border that prevents elements from
the circulating blood from entering the extracellular fluid of the central
nervous system. 5

cell-free A transmission mode between one cell and one virion. 6, 7

cell-to-cell A transmission mode between two cells. 6, 7, 20

comorbidities The simultaneous presence of two or more diseases that are not
necessarily caused by one another but might have the same risk factors. 5

cytopathic Cytopathic effects are structural changes that happen to the cell
after having been infected by a virus; those effects can shorten the lifespan
on some infected cells. 5, 11, 21

HIV A virus that targets the body’s immune system, and can cause the disease
known as AIDS. 3, 35

HIV reservoirs A group of immune cells that are infected by HIV but are not
actively reproducing the virus. 1, 4, 7, 20, 41

immune-privileged compartment An anatomical region that is naturally
less subject to immune responses than most other areas of the body. 5, 7,
11, 35

Kupffer The name of macrophages residing in the liver. 5
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latency reversing agents Drugs that can reactivate latent HIV reservoirs
from their dormant state with the aim of making infected cells visible
to the immune system. 7

microglial The name of macrophages residing in the brain and central nervous
system. 5

mode of transmission A mechanism that describes how new infections are
formed. 5

monocytes Monocytes are the state macrophages have before they mature and
specialize. Macrophages are derived from monocytes. 4

next-generation matrix A matrix whose entries represent the expected num-
ber of infected cells produced by a single infected cell. These infected cells
represent the next generation of infections. 15, 24

pathogenesis Development of disease. 1, 10, 20, 38, 41

phagocytosis A mechanism performed by macrophages where they engulf an
infected cell. 6

reproduction number The average number of secondary infections that re-
sult from one infected agent in an otherwise completely susceptible popu-
lation. 13, 15, 16, 24, 40

terminally differentiated Once macrophages mature into specialized cells,
they achieve their final (or terminal) state remain in that state for the
duration of their lifespan. 5

transmission route Mechanism of how the disease spreads. 1, 20, 40

viral rebound The state when the virus repopulates in the body after it has
been suppressed by treatment. 4

virion A free virus particle. 6

virological synapses Organized cellular junctions. HIV has been shown to
instigate the formation of these junctions between the infected (donor)
and uninfected (target) cells to allow cell-to-cell transmission. 6, 11, 40
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