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Abstract

Synchronization of quantum mechanical systems have in recent years become a well-
discussed topic. The most explored systems are the quantum van der Pol oscillator
[26][12][27] and two-level system (TLS) synchronizing to an external field [29] and syn-
chronizing to another TLS [1]. However, it was claimed that two-level systems do not
have a valid limit cycle [23], and they can therefore not be synchronized. It was suggested
that we could circumvent this problem by realizing a mixed state as an ensemble of pure
states [18]. Using quantum trajectory theory (QTT), numerical evidence was found for
the synchronization of a TLS [13]. We want to find an analytic expression for the syn-
chronization observed numerically. In this thesis we develop the framework to do so: We
give results from QTT which helps analyze the model used, and we show how the flow of
the state of a TLS from a QTT model can be easily visualized. Furthermore, we give an
explicit expression for the space of all Hamiltonians giving the same Lindblad equation
for the QTT model used in [13], and give a master equation which can be solved to find
the analytic expression for the synchronization observed numerically.
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Chapter 1

Introduction

Synchronization is the word we use for how oscillating objects adjust their rhythm to
be the same. It is a concept most of us should be familiar with from everyday life:
Examples include fireflies lighting up at the same time, pacemakers keeping the rhythm
of those with irregular heartbeats, and many more. However, not all objects can be
synchronized. The objects that can be synchronized are called self-sustained oscillators
and are mathematically described as a dynamical system with a so-called limit cycle.

In recent years there has been interest in synchronization of quantum mechanical sys-
tems. From the classical theory of synchronization, the van der Pol oscillator is one of
the prime examples [21, section 7.1.1]. It has therefore been a natural choice to see if
one could possibly synchronize a quantum mechanical van der Pol oscillator [26][12][27].
Besides the van der Pol oscillator, it is natural to study the synchronization of the least
complex quantum system, namely a two-level system (TLS). Both two-level systems syn-
chronizing to an external field [29] and synchronizing to another two-level systems [1].
However, it has later been claimed that two-level systems do not have a valid limit cycle
[23], and they can therefore not be synchronized. A counter claim was then made [18]
where it was argued that a mixed state is an ensemble of pure states, and such an ensemble
can make up a valid limit cycle. This has later been verified experimentally [28].

Quantum trajectory theory (QTT) gives a framework for extracting possible trajec-
tories all resulting in the same Lindblad equation. Using quantum trajectory theory,
synchronization of a two-level system coupled to an external field was observed numer-
ically in [13]. It would now be interesting to see if we can find an expression for the
synchronization observed numerically. In this thesis we develop the framework to do so:

• We give an overview of QTT as described in [4] before we give our own results in
QTT. These results will help analyze the model we want to use. The results we give
tell us that we can always choose the environment in a QTT model with two-level
environment to be in the state |0⟩. We also show how we can achieve small jumps
in a QTT model, and we show that for a two-level environment, we can only get a
single Lindblad operator. We also show how to recover the Lindblad equation with
a non-zero system Hamiltonian, as well as how the representation of the interaction
Hamiltonian will not effect the results of a QTT model. Finally, we give an easy way
of reading out the interaction Hamiltonian for a QTT model, whenever we know
what Lindblad equation we want.

3



• To help better understand how the state of a TLS flows for a QTT model, we have
visualized the flow for the model given in [13]. We also show how this flow can be
projected down from the Bloch sphere to the plane through two different projection,
the stereographic projection and the Winkel tripel projection.

• We realized that there are multiple Hamiltonians that give the same Lindblad equa-
tion in a QTT model. We give an explicit expression for the space of all Hamiltonians
giving the same Lindblad equation for the QTT model used in [13]. We also discuss
how the space of Hamiltonians would look in a scenario with a different choice of
Lindblad equation.

• Most importantly, we give a master equation which can be solved to find the analytic
expression for the synchronization observed numerically. The master equation is a
difference equation which relates the probability density of the state of a TLS at a
given time step. We hope that we can take the limit of the time step going to zero,
and then end up with a differential equation for the probability density.

1.1 Outline of thesis
This thesis is about synchronization of two-level quantum systems. To understand what
this means, we need to go through what we mean by synchronization and how we can
observe synchronization in a quantum system. We begin by explaining what we mean by
synchronization in chapter 2. In this chapter, we will work classically and only give an
overview as the field is both large and demanding in terms of mathematical background.

Next, we will explain in chapter 3 why we can use quantum trajectory theory to observe
synchronization in quantum systems. The quantum trajectory theory is based on a review
article by Brun [4]. We also give results of our own, which are not covered by Brun’s article.

After this, we will in chapter 4 go through what other researchers have done. We will
focus on two articles and an earlier master thesis. The first article by Roulet and Bruder
[23] argues that synchronization of a two-level system is impossible, and say that one has
to at least have a three-level system. The next article by Parra-López and Bergli [18]
argues that it is possible to synchronize a two-level system. The master thesis by Longva
[13] builds on the idea by Parra-López and Bergli that a two-level system can indeed be
synchronized, and implements numerically the ideas from the article by Brun [4]. Longva
argues for why he has numerically observed synchronization of a two-level system.

In chapter 5 we give the expression for a master equation for the probability density
of the state of a TLS. The dynamics of the TLS is given by the QTT model described in
the thesis by Longva. For the same model, we visualize the flow of the state of the TLS
on the Bloch sphere. We also visualize the flow when projected through a stereographic
projection and a Winkel tripel projection. We end the chapter by analyzing the dimen-
sionality of the space of Hamiltonians giving rise to the Lindblad equation used in the
thesis by Longva.

Finally, in chapter 6 we summarize what we have found and give ideas for what to
look at next.
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1.2 Prior knowledge, notation and abbreviations
Throughout the text, it is assumed that the reader has a good understanding of two-level
quantum systems (often written as TLS on short form), and a basic understanding of
open quantum systems and the Lindblad equation. If this is not the case, I do not have
any extensive literature other than what I have used myself, such as [24] and [17].

The following abbreviations are used throughout the thesis:
TLS - two-level system
POVM - positive operator-valued measure
QTT - quantum trajectory theory

The following notations are used throughout the thesis:

• If we have two systems A and B, which are in the states |n⟩ and |m⟩ respectively,
then we denote the state of the combined system AB by any of the following:
|nm⟩ = |n⟩ |m⟩ = |n⟩ ⊗ |m⟩.

• For a TLS, the eigenstates of σx are denoted by |↑x⟩ = |x+⟩ and |↓x⟩ = |x−⟩, where
we assume σx |↑x⟩ = |↑x⟩ and σx |↓x⟩ = − |↓x⟩. Equivalently, the eigenstates of σy
are denoted by |↑y⟩ = |y+⟩ and |↓y⟩ = |y−⟩, where we assume σy |↑y⟩ = |↑y⟩ and
σy |↓y⟩ = − |↓y⟩.

• For a separable Hilbert space, an (orthonormal) basis will be denoted by any of the
following: {|k⟩} = {|k⟩}k = {|k⟩}k∈I for an index set I.

• := means left side defined as right side, and =: means right side defined as left side.
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Chapter 2

A brief overview of synchronization

Synchronization is a quite general concept, and one everyone should be accustomed with.
Intuitively, we understand synchronization as an adjustment of rhythms of oscillating
objects due to their weak interaction. Examples are many and varied, which puts into
perspective how general the theory of synchronization is. Examples include circadian
rhythms in animals, unison applause at a concert, pacemakers for those with irregular
heartbeats and many more. We will in this chapter define what we mean by synchro-
nization, give examples and non-examples of synchronization, and explain how we can
achieve synchronization in presence of noise. We begin by looking at Christiaan Huygens’
observation of synchronization of two pendulum clocks, before we proceed to define the
necessary conditions for synchronization to occur. We then go through a way of visual-
izing when we achieve synchronization, explaining frequency locking, phase locking and
going through what an Arnold tongue is. We end the chapter by looking at phase slips
and what we would mean by synchronization in presence of noise. The entirety of this
chapter is based on the book Synchronization: A Universal Concept in Nonlinear Sciences
by Pikovsky, Rosenblum and Kurths [21].

2.1 Historical example of synchronization
We can actually get some insight to what synchronization should be by looking at the
etymology of the word. It comes from the greek words χρόνος (chronos, meaning time)
and σύν (syn, meaning together). It therefore means “happening at the same time”.
We are therefore looking at phenomena that in some sense have dynamics that makes us
think of them as “occurring at the same time”.

As told in the book by Pikovsky, Rosenblum and Kurths [21], the Dutch researcher
Christiaan Huygens was (probably) the first scientist to observe and describe the phe-
nomenon of synchronization. His first mention of synchronization was in a letter he wrote
to his father, in 1665, where he wrote that he observed how two pendulum clocks synchro-
nized to each other. In his memoirs, Horologium Oscillatorium [9], he describes how two
pendulum clocks hanging from a common support beam have oscillations that coincide,
but move in opposite directions:

. . . It is quite worth noting that when we suspended two clocks so constructed
from two hooks imbedded in the same wooden beam, the motions of each
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pendulum in opposite swings were so much in agreement that they never
receded the least bit from each other and the sound of each was always heard
simultaneously. Further, if this agreement was disturbed by some interference,
it reestablished itself in a short time. For a long time I was amazed at this
unexpected result, but after a careful examination finally found that the cause
of this is due to the motion of the beam, even though this is hardly perceptible.
The cause is that the oscillations of the pendula, in proportion to their weight,
communicate some motion to the clocks. This motion, impressed onto the
beam, necessarily has the effect of making the pendula come to a state of
exactly contrary swings if it happened that they moved otherwise at first, and
from this finally the motion of the beam completely ceases. But this cause is
not sufficiently powerful unless the opposite motions of the clocks are exactly
equal and uniform.

Huygens had described mutual synchronization, and he had also explained why it hap-
pened: The two pendulum clocks were coupled through the beam, synchronizing them
in anti-phase due to the weak interaction between the clocks. Moreover, when the two
clocks were synchronized, a small perturbation of any one of them would not effect the
long term dynamics, i.e. the two clocks fall back to their synchronized state.

After Huygens, many other examples of synchronization have been described (see [21]
for many detailed examples). The two pendulum clocks Huygens observed were in other
words not special. As we want to describe synchronization, we first need to find out which
objects can actually be synchronized. This is what we will do in the next section.

2.2 Necessary conditions for synchronization
From the example in the previous section (mutual synchronization of two pendulum
clocks), we can try to give a verbose meaning to the phenomenon that is synchronization:
We understand synchronization as an adjustment of frequency of oscillating objects due
to their weak interaction. We now need to describe what we mean by an oscillating object,
the frequency of an oscillating object, adjustment of frequency, and weak interaction of
oscillating systems.

Oscillating object and frequency

An oscillating system is intuitively a system that swings back and forth. To be more
precise, the system has some state which it always comes back to: It can pass the state
quickly or stay in (or close to) the state for a longer time, but it always returns. A natural
example is a pendulum: Let us imagine a pendulum moving back and forth in a plane,
and choose a coordinate system (x, y) such that if the pendulum does not move at all,
it has the x-coordinate zero. If the pendulum is put into motion and only experiences
gravitational force, it will keep on moving in positive and negative x-direction, always
passing x = 0. If it also experiences drag force(s), then the energy will dissipate over
time, but it will still continue to oscillate around the point x = 0.
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It turns out that not every oscillator can be synchronized. If we take the example
with the pendulum that only experience gravitational force, then a perturbation (in form
of for instance a push) which increases the total energy of the system will change the
amplitude of the oscillations. This is different from that of the pendulum clocks Huygens
observed. This is closer to that of someone building up speed on a swing. Systems
like these can experience resonance, which is easily confused with synchronization. To
get the amplitude back to the original value, we need a dissipation of energy. Taking
the pendulum as example again, this would mean including drag force(s). This would,
however, again differ from the pendulum clocks as all the energy will dissipate and the
system will come to a halt. We therefore need to add some kind of internal energy source
of the system, in such a way that the oscillations stays stable. By stable we mean that the
energy of the pendulum does not keep increasing up to infinity, neither does it decrease
such that the motion stops. Instead, the pendulum keeps on oscillating. Moreover, we
want the system to fall back to this stable oscillation after any small1 perturbation.

The type of system we have now described is close to those we are after: We are after
systems that have stable oscillations, i.e. oscillatory objects experiencing dissipation, with
an internal source of energy, such that after any small perturbation the object returns
to the same stable oscillatory motion after some time. Since synchronization is all about
how the natural frequency of the oscillatory object changes according to an external signal
with a different frequency, we need the oscillatory object to have a well-defined frequency.
We therefore restrict ourselves to look at oscillatory objects with periodic oscillations.
Finally, we would not want the oscillations to be dependent on the initial conditions.
That is, the periodic oscillatory motion should only depend on the internal parameters of
the system.

We summarize all the traits we have discussed. We are after systems with the following
traits:

1. The system is an oscillating object with periodic oscillations.

2. The oscillating object experiences dissipation of energy.

3. The oscillating object has an internal energy source which keeps the oscillations
stable.

4. For any (small) perturbation of the objects motion, the system will fall back into
the stable periodic oscillation it had originally.

5. Lastly, the object’s stable periodic oscillation is independent of initial conditions
and only depends on the internal parameters of the object.

When all this is satisfied, we have what is called an self-sustained oscillator.
1The word small is not well-defined here. If we again use the pendulum clock as an example, the idea

is that if we force the pendulum of the clock to be stationary at x = 0 and then release it, there will
be no non-trivial oscillation: The clock will stay still with the pendulum at x = 0. We have thus forced
the clock to not move. We want to avoid this type of perturbation and will therefore be vague and say
“small”.
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Mathematically, we can describe a self-sustained oscillator in the following way: Let

dx

dt
= f(x), x = (x1, . . . , xM)

be an M -dimensional system of ordinary differential equations, such that it is dissipative
and autonomous. Suppose that the system has a stable periodic solution x0, i.e. a period
T0 such that x0(t + T0) = x0(t) for all time points t. If we look at the trajectory of the
stable periodic solution x0 in phase space,2 it will be an isolated, closed and attractive
curve. This is called a limit cycle. By isolated we mean that there are no other closed
and attractive trajectories infinitely close to it. By attractive we mean that any point in
phase space close enough to the limit cycle will converge (but never touch) to the limit
cycle3. A point moving along the limit cycle will represent the self-sustained oscillator.

Weak interaction of oscillating systems

Synchronization happens when a self-sustained oscillator (or several of them) interact
with an external force (or if they are weakly coupled, and thus “feel” each other). In the
example with two pendulum clocks hanging from a common support beam observed by
Hyugens, the beam could bend. That is it could vibrate slightly, moving from left to
right. Thus the motion of one pendulum was transmitted through the beam to the other
pendulum. This is the type of weak interaction we are after.

It is not easy to define what we mean by “weak interaction”, but we can give an
example from Pikovsky, Rosenblum and Kurths [21] where the interaction is two strong.
Say, for instance, that the pendulums of two pendulum clocks are connected with a rigid
rod (see Figure 2.1). Then the two pendulums are forced to oscillate with the same
frequency. They move synchronously, but we do not want to call this synchronization
as they trivially have the same frequency. We instead think of the two pendulum clocks
as non-decomposable. By non-decomposable we mean that we cannot think of them as
two separate self-sustained oscillators. Another example by Pikovsky, Rosenblum and
Kurths [21] of a non-decomposable system is the hare–lynx cycle. The population of both
the hare and the lynx oscillates with an approximate frequency, but it is not possible to
separate the two systems. In other words, we must think of them as two components of
an oscillator that vary synchronously.

Adjustment of frequency

We think of synchronization as adjustment of rhythms due to an interaction. Let us
again look at the example with two pendulum clocks. If we isolate the clocks, we can
measure their natural frequency f1 and f2, respectively. Even if the clocks are made to
have the same frequency, there is always a tiny difference such that ∆f = f1 − f2 ̸= 0.

2By phase space we mean the space of all the variables x. This will for us be equivalent to the state
space.

3We have not defined what we mean by close enough, but intuitively it mean that if there is only a
single limit cycle for our system, then any point not on the limit cycle is close enough. If we have more
than two isolated closed trajectories, where at least one of them is a limit cycle, it could be the case that
there is only a subset of points in phase space that are attracted.
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Figure 2.1: Two pendulum clocks connected with a rigid rod. This is an example of to
strong coupling, and we do not call this synchronization. The figure is taken from the
book by Pikovsky, Rosenblum and Kurths [21].

We then hang the clocks from the same beam. We can then measure their frequencies,
F1 and F2, when they are hanging from the beam. If the beam is not rigid, so that the
clocks are weakly coupled, and the frequency detuning ∆f is not to large, we will see
that the measured detuning ∆F ≈ 0. We call this frequency locking and say that
the pendulum clocks are synchronized. We can plot the measured detuning ∆F against
the natural detuning ∆f . This will give us a region for ∆f where ∆F is zero, which is
the synchronization region. We generally expect this region to increase with the coupling
strenght. (This is described in more detail later and in Figure 2.2.)

We can define another quantity which helps analyse synchronization, namely the phase.
The phase of a self-sustained oscillator is defined to be a function ϕ of the state of the
oscillator (i.e. a point in the phase space of the oscillator) to the real numbers, such that
it is linear in time, and whenever we take a point on the limit cycle and return after one
period, the phase has increased by 2π. Mathematically, if we denote the phase space (i.e.
the state space) of the self-sustained oscillator by M , then we have ϕ :M → R such that
dϕ
dt

= ωt (i.e. linear in time) and ϕ(x(t + T0)) = ϕ(x(t)) + 2π whenever x(t) ∈ M is on
the limit cycle and T0 is the period of the self-sustained oscillator. The phase can also be
defined for a periodic force Fe = ϵ sin (ωt+ ϕ0). Here, ϵ is the strength of the force, ω is
the angular frequency and ϕ0 is the initial phase. We would then say that the phase of the
force is ϕe = ωt+ϕ0. If we have a self-sustained oscillator with phase ϕ, perturbed by this
external force, then frequency locking would mean that the phase difference ∆ϕ = ϕ− ϕe
would become constant. This is called phase locking. A nice property of the phase can
be seen if we go back to the example with the two pendulum clocks again. When the
two clocks are synchronized, we can observe either in-phase synchronization or anti-phase
synchronization. In-phase synchronization means that both pendulum attains their right
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(a) (b) (c)

Figure 2.2: Figure 2.2a shows the difference of the frequencies of the driven oscillator Ω
and the external force ω. The strength of the force ϵ is held constant. We see that for
small detuning ∆ω = ω0 − ω, we have frequency locking Ω − ω = 0. The dashed line
shows ω0 − ω vs. ω). When synchronization breaks down we see that the force is too
weak to synchronize the oscillator, but it pushes the frequency of the system towards its
own frequency. Figure 2.2b shows the synchronization region as a function of both the
external frequency ω and the strength of the force ϵ. The region of synchronization is
marked in Figure 2.2c and is referred to as the Arnold tongue. The figure is taken from
the book by Pikovsky, Kurths and Rosenblum [21].

maximum amplitude at the same time, then their left maximum amplitude at the same
time, and so on. In other words, the motion is the exact same. For the phase this means
that ∆ϕ = 0, modulo 2π. Anti-phase synchronization means that when one attains the
right maximum amplitude, the other attains the left maximum amplitude at the same
time. This mean that ∆ϕ = π, modulo 2π, so the phase detuning is shifted by π. This
cannot be observed by just looking at the frequency detuning and we are thus able to
distinguish between different synchronization regimes.

2.3 Visual description of synchronization, phase slips
and synchronization in presence of noise

We would like to have an easy way of determining if we have synchronization. We have
mentioned how synchronization is dependent on the frequency detuning and the cou-
pling/interaction strength. Let us assume that we have an external periodic force with
angular frequency ω. Let ω0 be the natural (angular) frequency of the self-sustained os-
cillator. If we call the oscillator under influence of the external force the driven oscillator,
and let Ω be the observed angular frequency of the driven oscillator, then we have syn-
chronization whenever Ω = ω. In the terms introduced earlier, the driven oscillator is
frequency locked to the external force.

If we keep the interaction strength, denoted by ϵ, of the external fixed, we can ex-
periment with different detuning ∆ω = ω0 − ω to see when the synchronization regime
stops. This will give us Figure 2.2a. If we instead visualize the synchronization region as
a function of ω and ϵ, we will get the Arnold tongue in Figure 2.2c. Putting both figures
together, we get Figure 2.2b. These figures help visualize when we have synchronization.
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(a) (b)

Figure 2.3: Frequency–detuning curves for noisy oscillators. The angular frequency of
the driven oscillator Ω is the average observed frequency. Figure 2.3a shows how a self-
sustained oscillator in presence of bounded noise which is weaker than the external force
can still be synchronized. The region of synchronization will however be smaller than
without the noise. On the other side, Figure 2.3b shows how unbounded noise or noise
stronger than the force means that frequency locking only happens when the detuning
∆ω = ω0 − ω = 0. If the noise is not to strong, we can almost get synchronization (the
bold line), but when the noise gets stronger, synchronization is completely destroyed. The
figure is taken from the book by Pikovsky, Kurths and Rosenblum [21].

It is interesting to note what happens at the end of the synchronization region. We
imagine moving from outside the synchronization region of the Arnold tongue towards
the synchronization region in Figure 2.2c. Outside the synchronization region, the phase
difference grows to infinity, however this growth is not uniform. It turns out that when
we are close to the region of synchronization, the phase stays almost constant before it
rapidly changes by 2π. This jump is what we call a phase slip: The driven oscillator is
almost phase locked, but ends up slipping and rapidly increasing by 2π. The closer we
get to the region of synchronization, the longer the phase difference seems constant.

Phase slips are also common occurrences in the presence of noise. A self-sustained
oscillator in presence of noise will not have a proper limit cycle. However, if we take
the limit when the strength of the noise goes to zero, it does have a limit cycle. This
means that in the presence of noise, the phase will not grow linearly. The randomness will
accumulate in the phase. If we think of the driven oscillator again, the phase difference
will stay close to constant, but it now has a stochastic contribution. It the strength of the
noise is bounded and less than the strength of the force, then the phase will only fluctuate
about a stable constant value. On the other hand, if the strength of the noise is unbounded
(e.g. gaussian) or bounded but stronger than the force, then phase slips can occur. We
note that even tough the self-sustained oscillator has a well-defined angular frequency ω0

(defined from the limit cycle when there is no noise), we can only talk about an average
observed angular frequency Ω for the driven oscillator. Figure 2.3 shows what happens in
the two cases: If the noise is smaller than the force, we will have a region of synchronization
which is smaller than the one without noise. If the noise is unbounded/stronger than the
force, we will only have full frequency locking when ω0 = ω. If the noise is not to large we
can get close to synchronization, and when the noise grows we see that synchronization
is destroyed.
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Chapter 3

Overview and results from quantum
trajectory theory

When we try to synchronize a quantum mechanical system, we need to add dissipation. A
natural way to do this is by letting the system be open, such that the system interacts with
the environment. If we do not have a simple model for the environment, the interaction
quickly becomes complicated. If we let ρ(t) denote the mixed state of the system at time
t, and assume that the Markovian approximation1 holds, then we can find the equation

dρ

dt
= − i

ℏ
[H, ρ] +

∑
k

Γk
2

(
2LkρL

†
k − L†

kLkρ− ρL†
kLk

)
,

often called the Lindblad equation, for the time evolution of the mixed state [22, section
3.5]. The first term − i

ℏ [H, ρ] is the normal unitary time evolution of the isolated system
(with Hamiltonian H). The other terms describe interaction with the environment. The
operators Lk are know as Lindblad operators, and Γk ≥ 0 are the rate of which the
interaction happens. The sum goes over all k Lindblad operators.

We can think of the Lindblad equation as a dynamical system, where the mixed state
of the system ρ is the variable. The problem with using the mixed state is that it only
correspond to statistical ensemble of pure states. Moreover, there is not a unique way
of writing the mixed state [17, theorem 2.6]. When talking about synchronization, this
means that not only can we only talk about synchronization of a statistical ensemble
(i.e. a convex combination of pure states), but the ensemble is not unique. This is where
the idea of trajectory theory comes in: Each trajectory can be thought of as the time
evolution of the system, which on average can trace out a limit cycle of a self-sustained
oscillator in the presence of noise. For further details, see [13]. We will base the theory
in this section solely on the review article by Brun [4] and our own derivations.

1We will say that a quantum system is Markovian if it is local in time, i.e. ρ(t + dt) is completely
determined by ρ(t). The Markovian approximation is that we can neglect the memory of the environment.
In other words, it is not possible to see the effects of the system on the environment [22, section 3.5].
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Measure environment

|f0⟩ |f1⟩
|E⟩

|ψ⟩System interacts
with environment

U(θ)

|E⟩|E⟩. . .

Environment

δt

Figure 3.1: Schematic diagram of the QTT model we use. The environment consist of
infinitely many two-level systems, all in the same state |E⟩, which do not interact with each
other. The system is also a two-level system, but in a state |ψ⟩. The system time evolves
over some transient time δt, before it interacts with a single environment TLS. After the
interaction, the environment is immediately measured in a chosen basis {|f0⟩ , |f1⟩}, and
then discarded. This process is then repeated for as long as we desire: The system is time
evolved, then it interacts with the environment, then the environment is measured, and
the cycle repeats. The transient time δt is always the same. The Hamiltonian governing
the transient time evolution of the system, HS, is also the same for every time step. The
interaction is for every step modelled by a unitary transformation U(θ), which depends on
a parameter θ. Before the process begins, the common environment state, |E⟩, must be
decided. The measurement basis {|f0⟩ , |f1⟩} must also be the same for every time step.

3.1 What is quantum trajectory theory?
The quantum trajectory theory we present is based on the review article by Brun [4]. The
theory is more vast and general than what we present, and Brun give references to other
literature in his article.

We begin with our system |ψ⟩ placed in a very specific environment: The environment
will be an ensemble of quantum systems in the same state |E⟩. After some transient
time δt, a single environment state will interact with the system. This happens over a
short time θ. (Right now, the interaction time will be denoted by θ, but note that the
meaning of θ will change later on.) Then, the single environment state is measured in a
chosen basis {fk}k∈I . This will collapse the state of the system. The state then evolves
for the same transient time δt before again interacting with a single environment state
|E⟩ for some time θ, before the environment is measured in the same basis as before. This
cycle is repeated indefinitely. Figure 3.1 visualizes this when both the system and the
environment consists of two-level systems. The time evolution during the transient time
is governed by a system Hamiltonian HS, which gives some unitary time evolution Ũ(δt).
The interaction with the environment is modeled to happen so fast that we can neglect
the system Hamiltonian fully, and only focus on the interaction Hamiltonian HI . This
interaction will give some unitary time evolution U(θ).
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3.2 Why we choose to use quantum trajectory theory

A B

AB

A B

ρA ρB

ρ

ρ′A = trA ρ ρ′B = trB ρ

Uρ′BU
†

Measure O

Figure 3.2: System A and B interact and
become an entangled system AB. Whatever
is done with system B after entanglement,
on average, measurement on system A will
yelled the same result.

When using quantum trajectory theory, we
make a weak measurement as to not dis-
turb the system “to much”. Still, the sys-
tem will “jump” to a pure state, tracing out
a path on the surface of the Bloch sphere.
We are not able to see this solving the Lind-
blad equation, but we will explain how the
average will give the same result.

See figure 3.2 for visual representation
of the following explanation. We have a
two-level system, A, which interact with
the environment; another two-level system
B. The interaction results in a density ma-
trix ρ for the entangled system. After the
interaction, we can either measure system
B, or just discard it. Say we measure the
environment B and use this knowledge to
update the reduced density matrix ρ′A. A
measurement on system A after this up-
date will give us some result ã. We can
repeat this procedure to obtain an average
⟨ã⟩.

On the other hand, if we let the environment B evolve and measure system A, we
will obtain a result b̃. Repeating this procedure to obtain an average ⟨b̃⟩, we will have
⟨b̃⟩ = ⟨ã⟩. Thus, on average, we will measure the same.

In our case, QTT will trace out different paths each time we repeat the experiment.
On average, these paths will give the same result as solving the Lindblad equation. More
important is the fact that the representation of the density matrix is not unique. This
means that even if it contains all possible information about measurement results, it does
not contain the information about paths. This is the reason we use trajectory theory: To
get the statistic of all the possible paths the system can trace out for a given Lindblad
equation.

3.3 Weak measurement and POVMs
A nice property of the quantum trajectory theory is that each measurement can be thought
of as being weak. By weak, we will mean the same as Brun describes in his article [4],
namely that the information gained is in average small, but the disturbance of the state
is also small. As a measure of information, we use the Shannon entropy [17, chapter 11],

S = −
∑
i

pi log2 pi,
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where pi is the probability of i-th measurement outcome2. To describe what we mean by
weak measurement, we will first calculate the Shannon entropy for a projective measure-
ment on a TLS. Next, we take a quick detour through the topic of Positive Operator-Valued
Measure (abbreviated POVM) [20, section 9.5][17, section 2.2.6].

A projective measurement3 is written mathematically as a set of (orthogonal) projec-
tion operators {Pi}i∈I such that

∑
i Pi = 1. The index set I has cardinality less than or

equal to the dimension of the Hilbert space of the system. If we choose to measure a TLS
in a basis, the projective measurement is thus given by {P1, P2}, where P2 := 1−P1. De-
noting the probability of getting outcome 1 and 2 by p1 and p2, respectively, the Shannon
entropy is given by

Sproj = −p1 log2 p1 − p2 log2 p2 = −p1 log2 p1 − (1− p1) log2 (1− p1).

Elementary calculus gives us that this Shannon entropy is a concave function which is
minimal for p1 = 0, 1 with value Sproj = 0, and maximal for p1 = p2 = 1

2
with value

Sproj = 1 (see appendix A.3). After the measurement, the state is left in an eigenstate of
P1 or P2 (depending on the outcome of the measurement), so repeating the measurement
will result in the same outcome. In other words, measuring the state will make the state
jump to one of the eigenstates. If the state of the system before measurement is far from
either eigenstates (i.e. p1 = p2 = 1

2
), then the information gained is large, but the jump

is also large. We want to (on average) avoid these large jumps such that we disturb the
trajectory as little as possible. This is where POVMs come in to the picture.

Although the name positive operator valued measure suggests a broader theory, we
will only be interested in the finite case described in the book by Nielsen and Chuang
[17, section 2.2.6]. Nielsen and Chuang defines a POVM to be a set of positive operators
{En}n∈I such that

∑
n∈I En = 1 (the index set I is taken to be finite). If the system

we are looking at is in a state |ψ⟩, then the probability of measurement outcome n will
be pn = ⟨ψ|En|ψ⟩. The state after measurement can be interpreted in different ways:
If the POVM comes from a set of measurement operators, i.e. En = M †

nMn, then the
state after measurement will be |ψ⟩n = Mn |ψ⟩ /pn. If we are only given the POVM
(without any set of measurement operators), we can always define Mn =

√
En (since En

is a positive operator) and use the set of Mn’s as measurement operators. Then the state
after measurement will be |ψ⟩n =

√
En |ψ⟩ /pn. A more general explanation of POVM

can be found in [15, section 13.2.2].
We will go through two examples given in the article by Brun [4] which illustrates

weak measurements. The intermediate steps and arguments can be found in appendix
A.3. The first one is the POVM {E1, E2} where

E1 = |0⟩ ⟨0|+ (1− ϵ) |1⟩ ⟨1| , E2 = ϵ |1⟩ ⟨1| ,

and ϵ≪ 1. We see that both E1 and E2 are positive and E1+E2 = 1, so this is a POVM.
Letting the system be in a state |ψ⟩ = α |0⟩+ β |1⟩, we can calculate the probabilities

p1 = ⟨ψ|E1|ψ⟩ = 1− ϵ|β|2 and p2 = ⟨ψ|E2|ψ⟩ = ϵ|β|2,
2The Shannon entropy we use in this text is only defined for discrete probability distributions.
3Projective measurements are far better described in the book by Nieslen and Chuang [17, section

2.2.5], and we will only use the bare minimum needed to describe the Shannon entropy of a two-level
system.
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and Shannon entropy SPOVM = −(1− ϵ|β|2) log2 (1− ϵ|β|2)− ϵ|β|2 log2 (ϵ|β|2). The Shan-
non entropy is always close to zero, so we gain very little information. We let the actual
measurements be given by the square root of the elements in the POVM, i.e

M1 = |0⟩ ⟨0|+
√
1− ϵ |1⟩ ⟨1| , M2 =

√
ϵ |1⟩ ⟨1| .

The state after measurement will then be either

|ψ⟩1 =
M1 |ψ⟩√
⟨ψ|E1|ψ⟩

=
α |0⟩+

√
1− ϵβ |1⟩√

1− ϵ|β|2
or

|ψ⟩2 =
M2 |ψ⟩√
⟨ψ|E2|ψ⟩

= |1⟩ (up to a phase factor)

with probability p1 = 1− ϵ|β|2 and p2 = ϵ|β|2, respectively. On average the state changes
only slightly, but every so often, we expect a large jump to the state |1⟩.

The second example is the POVM {E ′
1, E

′
2} where

E ′
1 =

1 + ϵ

2
|0⟩ ⟨0|+ 1− ϵ

2
|1⟩ ⟨1| , E ′

2 =
1− ϵ

2
|0⟩ ⟨0|+ 1 + ϵ

2
|1⟩ ⟨1|

and ϵ ≪ 1. We again see that both E ′
1 and E ′

2 are positive and E ′
1 + E ′

2 = 1, so this is
also a POVM. Letting the system again be in a state |ψ⟩ = α |0⟩+ β |1⟩, we can calculate
the new probabilities

p′1 = ⟨ψ|E ′
1|ψ⟩ =

1 + ϵ(|α|2 − |β|2)
2

,

p′2 = ⟨ψ|E ′
2|ψ⟩ =

1 + ϵ(|β|2 − |α|2)
2

.

and new Shannon entropy

S′
POVM =− 1 + ϵ(|α|2 − |β|2)

2
log2

1 + ϵ(|α|2 − |β|2)
2

− 1 + ϵ(|β|2 − |α|2)
2

log2
1 + ϵ(|β|2 − |α|2)

2

=1− 1

2
log2 (1− ϵ2(2|α|2 − 1)2)− ϵ(2|α|2 − 1)

2
log2

1 + ϵ(2|α|2 − 1)

1− ϵ(2|α|2 − 1)
.

This Shannon entropy is, contrary to the previous example, always close to one. We
again let the actual measurements be given by the square root of the elements in the
POVM, i.e

M ′
1 =

√
1 + ϵ

2
|0⟩ ⟨0|+

√
1− ϵ

2
|1⟩ ⟨1| , M ′

2 =

√
1− ϵ

2
|0⟩ ⟨0|+

√
1 + ϵ

2
|1⟩ ⟨1| .

The state after measurement will then be either

|ψ′⟩1 =
M ′

1 |ψ⟩√
⟨ψ|E ′

1|ψ⟩
=
α
√
1 + ϵ |0⟩+ β

√
1− ϵ |1⟩√

1 + ϵ(|α|2 − |β|2)
or

|ψ′⟩2 =
M ′

2 |ψ⟩√
⟨ψ|E ′

2|ψ⟩
=
α
√
1− ϵ |0⟩+ β

√
1 + ϵ |1⟩√

1 + ϵ(|β|2 − |α|2)
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with probability p′1 =
1+ϵ(|α|2−|β|2)

2
and p′2 =

1+ϵ(|β|2−|α|2)
2

, respectively. Both of the POVMs
we have looked at are considered by Brun as being weak. The first example only changes
the state slightly on average, but has a tendency to do large jumps with a very small
probability. The information gained is always close to zero. The second example always
changes the state, but never in large jumps. The information gained is always close to
one. This might seem contradictory to what we stated before: The information gained
from a weak measurement should on average be small, but here it is comparable to the
projective measurement. One way to interpret this is to use Neumark’s theorem explained
below: The POVM is realized as a projective measurement on an extension of the Hilbert
space (e.g. an environment). The information gained from the environment is large, but
the information about the system is still small.

So far we have seen that if we use a POVM, we can get weak measurements. We have yet
to explain what this has to do with trajectory theory. The relation between the two comes
from a mathematical theorem sometimes called Neumark’s theorem (or Naimark’s dilation
theorem). The mathematical statement is (as always) densely formulated [19, theorem
4.6], but the main idea is that any POVM can be realized as a projective measurement on
an extension of the Hilbert space [22, section 3.1.4] [20, chapter 9.5]. In other words, we
let our system interact with an environment and then do a projective measurement on the
environment. This is exactly what we are doing in quantum trajectory theory! Letting
the interaction between the system and environment be weak, and happen over a short
time span, we can measure the environment and only perturb the system very slightly.

3.4 Time evolution in quantum trajectory theory coin-
cides with the Lindblad equation

We will now go into the actual dynamics of the model and show that time evolution in
quantum trajectory theory coincides with the Lindblad equation. We begin by assuming
the system Hamiltonian is zero in this section, and in the next section we will include
a non-zero Hamiltonian for the system. The setup is as follows (see also Figure 3.1):
Our system is in a state |ψ⟩ which lies in a Hilbert space HS. The system is in contact
with an environment. The environment consists of equal non-interacting systems all in
the same state |E⟩. Each single environment system is thus described by a Hilbert space
HE. An environment system interacts with the actual system over a short time, before
the environment system is measured. The actual system then evolves over some transient
time δt before a new environment system interacts with the actual system over a short
time again. The interaction time, and transient time between interactions, are always the
same. The measurement done on the environment system after interaction is always the
same. The interaction is described by a Hamiltonian H ∈ B(HS ⊗ HE), which can be
written

H = HS ⊗ 1+HI + 1⊗HE.

To get as quickly as possible to the result, we assume that both HS = 0 and HE =
0. The time evolution is then given by U(θ) = exp (−iθHI). The parameter θ takes
into account both time and interaction strength. We Taylor expand the time evolution
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U(θ) = 1 − iθHI − θ2

2
H2
I + O(θ3). Let |Ψ⟩ = |ψ⟩ ⊗ |E⟩ be the state of the system and

environment before interaction, and ρS = |ψ⟩ ⟨ψ| and ρ = |Ψ⟩ ⟨Ψ| be the density matrix
of the system and system coupled with environment, respectively. As we are trying to
recover the Lindblad equation from the time evolution, we calculate the reduced density
matrix of the system after time evolution

ρ′S = trenv (UρU
†).

We find

UρU † =

(
1− iθHI −

θ2

2
H2
I +O(θ3)

)
ρ

(
1− iθHI −

θ2

2
H2
I +O(θ3)

)†

= ρ− iθ(HIρ− ρH†
I ) +

θ2

2

(
2HIρH

†
I −HIHIρ− ρH†

IH
†
I

)
+O(θ3)

= ρ− iθ[HI , ρ] +
θ2

2

(
2HIρHI −H2

I ρ− ρH2
I

)
+O(θ3),

which already has a familiar shape close to the Lindblad equation. The partial trace is
easily computed if we can separate the system and environment. We can achieve this
separation by writing the interaction as a sum of operators4 HI =

∑
j Aj ⊗ Bj, where

Aj ∈ B(HS) and Bj ∈ B(HE). Hence, exploiting the hermiticity of HI ,

ρ′S =trenv (UρU
†)

=ρS − iθ
∑
j

trenv([Aj ⊗Bj , ρ])

+
θ2

2

∑
jl

trenv

(
2(Aj ⊗Bj)ρ(Al ⊗Bl)

† − (A†
jAl ⊗B†

jBl)ρ− ρ(A†
jAl ⊗B†

jBl)
)
+O(θ3).

To calculate the partial trace5, let {|n⟩}n∈I be an orthonormal basis for HE with |E⟩
being one of the basis vectors. We see that

trenv([Aj ⊗Bj, ρ]) =
∑
n

(Aj |ψ⟩ ⟨n|Bj|E⟩) ⟨ψ|
=δEn︷ ︸︸ ︷
⟨E|n⟩− |ψ⟩

=δnE︷ ︸︸ ︷
⟨n|E⟩ (⟨ψ|Aj ⟨E|Bj|n⟩)


=

Aj =ρS︷ ︸︸ ︷
|ψ⟩ ⟨ψ| ⟨E|Bj|E⟩

−

 =ρS︷ ︸︸ ︷
|ψ⟩ ⟨ψ|Aj ⟨E|Bj|E⟩


= [Aj, ρS] ⟨E|Bj|E⟩ .

Similar calculation gives

trenv[(A
†
jAl ⊗B†

jBl)ρ] = A†
jAlρS

〈
E|B†

jBl|E
〉
,

trenv[ρ(A
†
jAl ⊗B†

jBl)] = ρSA
†
jAl

〈
E|B†

jBl|E
〉
.

4This is always possible as B(H) is a vector space for any Hilbert space H and thus has a basis which
we can expand each operator in. To avoid limit arguments, we note that we will only need the result we
find for finite dimensional Hilbert spaces.

5We again note that we let the Hilbert spaces be finite dimensional to avoid limit arguments.
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However

trenv[(Aj ⊗Bj)ρ(Al ⊗Bl)
†] =

∑
n

(Aj |ψ⟩ ⟨n|Bj|E⟩)
(
⟨ψ|A†

l

〈
E|B†

l |n
〉)

= Aj |ψ⟩ ⟨ψ|A†
l

〈
E

∣∣∣∣∣B†
l

∑
n

|n⟩ ⟨n|Bj

∣∣∣∣∣E
〉

= Aj |ψ⟩ ⟨ψ|A†
l

〈
E|B†

lBj|E
〉
,

where we have used that
∑

n |n⟩ ⟨n| = 1. In total, the time evolved density matrix is
given by

ρ′S =ρS − iθ
∑
j

[Aj, ρS] ⟨E|Bj|E⟩

+
θ2

2

∑
jl

(
2AlρSA

†
j − A†

jAlρS − ρSA
†
jAl

)〈
E|B†

jBl|E
〉
+O(θ3).

We now define a matrixM with entriesMlj =
〈
E|B†

jBl|E
〉
. We immediately have thatM

is hermitian and therefore diagonalizable with real spectrum. We write M =
∑

k λkµkµ
†
k

where λk ∈ R and µk are the k-th eigenvalue and eigenvector, respectively. We then define
the operators Lk =

∑
j(µk)jAj (where (µk)j denotes the j-th element of the eigenvector

µk) and factors Γk(θ) =
θ2λk
δt

. If we assume that6 ∑
j[Aj, ρS] ⟨E|Bj|E⟩ = 0, then

ρ′S − ρS =
θ2

2

∑
jl

(
2AlρSA

†
j − A†

jAlρS − ρSA
†
jAl

)
Mlj +O(θ3)

=
θ2

2

∑
jl

[
2AlρSA

†
j

(∑
k

λkµkµ
†
k

)
lj

− A†
jAlρS

(∑
k

λkµkµ
†
k

)
lj

− ρSA
†
jAl

(∑
k

λkµkµ
†
k

)
lj

]
+O(θ3)

=
1

2

∑
k

θ2λk

[
2

(∑
l

(µk)lAl

)
ρS

(∑
j

(µk)jAj

)†

−

(∑
j

(µk)jAj

)†(∑
l

(µk)lAl

)
ρS

− ρS

(∑
j

(µk)jAj

)†(∑
l

(µk)lAl

)]
+O(θ3)

and thus
ρ′S − ρS
δt

=
∑
k

Γk(θ)

2

(
2L†

kρSLk − LkL
†
kρS − ρSLkL

†
k

)
+O(θ3).

6This can always be done, as we show in later (see section 3.5.3).
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We have thus recovered the Lindblad equation if Γk(θ) converges to some constant
rate Γk for each k, i.e. limδt→0 Γk(θ) = Γk.

3.4.1 Dimension of θ

We will briefly go through the possible dimensionality of θ. We know that the time
evolution governed by a time independent Hamiltonian can be written as an exponential
of the Hamiltonian operator. In our case, we have either exp (−iθH) or exp (−iθH/ℏ).
The exponent must be dimensionless, and since the dimensions of ℏ are energy times time,
θH must either be dimensionless or have dimension energy times time. Let us look at the
two different cases.

The Hamiltonian always has dimensions energy, so if θH is dimensionless, then θ must
have dimensions 1/energy. Since we can write H =

∑
j Aj ⊗ Bj in QTT, we can choose

to put all the dimensions into the Bj’s. That is, we let Aj be dimensionless and Bj have
dimensions energy. Then Mij =

〈
E|B†

jBi|E
〉

will have dimensions energy squared, and
we can therefore say that the eigenvalues of the matrix M , λk, have dimensions energy
squared. Thus θ2

δt
λk will have dimension 1/time, i.e. dimensions of a rate.

If θH/ℏ is dimensionless, then θ must have dimensions time. The matrix M is in this
case multiplied by ℏ2, and hence λk

ℏ2 will have dimensions 1/time squared. This means
that θ2

δt
λk
ℏ2 has dimensions 1/time again. We therefore have a rate, as expected.

To be explicit, the parameter θ = θ(t) always has an implicit time dependence such
that θ ∼

√
δt, but has dimensions either time or 1/energy. This is what we mean when

we say that the parameter θ decides the strength of the interaction, as well as the time
the interaction takes.

3.5 Other results in quantum trajectory theory
In the previous section we assumed that both HS = 0 and HE = 0. We will in this section
show some results not covered in the article by Brun [4]. Among the results we show, we
will go into detail on how we can recover the effective Hamiltonian of the system. We
relay on the fact that {σi}3i=0 = {1, σx, σy, σz} is a basis for B(C2), i.e. the bounded linear
operators on two-level systems. These operators have the important property of being
both unitary and hermitian. Moreover, {σi}3i=1 are traceless. Using the fact that they
form a basis, we will write the interaction Hamiltonian as HI =

∑3
i,j=1 hijσi ⊗ σj. Since

the interaction Hamiltonian is hermitian, we immediately have hij ∈ R.
The article by Brun [4] has more theory and many more examples than what we present

here. We have only presented what we think is necessary. We have also excluded some
details. For instance, Brun notes that the discarded environment still has entanglement
which can effect the system. We are only interested in the ideal case in this text and have
therefore chosen not to emphasize points like these.

21



3.5.1 We can always choose the environment to be in the state
|0⟩

In general, we can let the two-level environment of the model be in any initial state |E⟩,
as long as everyone of them is in the same state. This might first look like we have
an independent parameter, but we can always assume the environment is in the state
|E⟩ = |0⟩. If this was not the case, we know that |E⟩ = U |0⟩ with U = |E⟩ ⟨0|+

∣∣E⊥〉 ⟨1|.
To see how the dynamics change, we let the interaction Hamiltonian be given by HI =∑3

i,j=1 hijσi ⊗ σj. We have not included terms of the form σi ⊗ 1 or 1 ⊗ σi as these
are encapsulated in the Hamiltonians of the system and environment, respectively. Now,
this can again be written as HI =

∑
iAi ⊗ Bi where Ai = σi and Bi =

∑
j hijσj.

Then Bi |E⟩ = BiU |0⟩, so we can define a new operator B′
i = BiU . Since any unitary

operator on a TLS can be written as U = 1 cos (ϕ)+ in ·σ sin (ϕ) (see appendix A.1) and
σiσj = δij1+iϵijkσk, we can end up picking up a term proportional to the identity 1. This
in undesirable as it should be encapsulated in the Hamiltonian of the environment. We
therefore redefine the interaction Hamiltonian to be H ′

I =
∑3

i,j=1 h
′
ijσiσj, where h′ij are

taken from BiU =
∑3

i=0 h
′
ijσi (taking σ0 := 1). The leftover terms h′0j1 ⊗ σj are added

to the Hamiltonian of the environment.

3.5.2 The choice of measurement basis will decide the jump

In section 3.3 on weak measurement we saw two different examples of weak measurement:
One where we on average only change the state slightly, but occasionally the state makes a
larger jump, and an other where we only change the state slightly. We want to see when we
get the different cases for our model, a two-level system interacting with an environment
consisting of only two-level-systems. Let the system be in a state |ψ⟩ = a |0⟩ + b |1⟩, the
environment in the state |0⟩ (as explained in the previous section, we can always assume
this), and the interaction be U(θ) = e−iθHI with HI being the interaction Hamiltonian.
After interaction the entangled state will be

U(θ) |ψ⟩ ⊗ |0⟩ = a′ |00⟩+ b′ |10⟩+ c |01⟩+ d |11⟩ .

As the interaction is supposed to be weak/happen in a short time span (which is modelled
by the parameter θ), we can compute the Taylor expansion of U(θ) ≈ 1 − iθHI , to find
that the entangled state should only have changed slightly. That is, we approximately
have

a′ ∝ a(1− θ), b′ ∝ b(1− θ), c ∝ θ, d ∝ θ.

If we choose a (orthonormal) measurement basis {|f0⟩ , |f1⟩}, we can find the change

of basis matrix B =

(
α0 α1

β0 β1

)
, such that |fk⟩ = B |k⟩ for k = 0, 1. Expressing the

environment in the measurement basis, the time evolved state is given by

U(θ) |ψ⟩ ⊗ |0⟩ = (a′ |0⟩+ b′ |1⟩)(α0 |f0⟩+ α1 |f1⟩) + (c |0⟩+ d |1⟩)(β0 |f0⟩+ β1 |f1⟩)
= [α0(a

′ |0⟩+ b′ |1⟩) + β0(c |0⟩+ d |1⟩)] |f0⟩
+ [α1(a

′ |0⟩+ b′ |1⟩) + β1(c |0⟩+ d |1⟩)] |f1⟩ .
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The state after measurement is therefore either

|ψ⟩0 =
α0(a

′ |0⟩+ b′ |1⟩) + β0(c |0⟩+ d |1⟩)
√
p0

, or

|ψ⟩1 =
α1(a

′ |0⟩+ b′ |1⟩) + β1(c |0⟩+ d |1⟩)
√
p1

,

with pk = [αk(a
′ |0⟩ + b′ |1⟩) + βk(c |0⟩ + d |1⟩)]†[αk(a′ |0⟩ + b′ |1⟩) + βk(c |0⟩ + d |1⟩)] for

k = 0, 1. As a′ |0⟩ + b′ |1⟩ is close to |ψ⟩ (as we assume that θ is small), it is the term
βk(c |0⟩+ d |1⟩) that will give us jumps.

Let us look at the very specific case when

α0 =
√
1− ν2, α1 = ν, β0 = ν, β1 = −

√
1− ν2,

where 0 ≤ ν ≤ 1. Then we have

|ψ⟩0 ≈
√
1− ν2(a(1− θ) |0⟩+ b(1− θ) |1⟩) + ν(θ |0⟩+ θ |1⟩)

N0

, or

|ψ⟩1 ≈
ν(a(1− θ) |0⟩+ b(1− θ) |1⟩)−

√
1− ν2(θ |0⟩+ θ |1⟩)

N1

,

where N0 and N1 are normalization constants. Hence, if ν ≪ θ ≪ 1, then
√
1− ν2(1− θ) ≈ 1, νθ ≈ 0, ν(1− θ) ≈ ν,

√
1− ν2θ ≈ θ,

so
|ψ⟩0 ≈ a |0⟩+ b |1⟩ and |ψ⟩1 ≈

c |0⟩+ d |1⟩
Ñ1

,

where Ñ1 is a new normalization constant. This can be a large jump depending on the
constants c and d. If we want to avoid large jumps, we need to have θ ≪ ν. When this
is the case, both

|ψ⟩0 ≈ a |0⟩+ b |1⟩ and |ψ⟩1 ≈ a |0⟩+ b |1⟩ .

3.5.3 n-level environment can only give n− 1 Lindblad operators

Let the environment be an n-level system and choose any initial state |E⟩. Let time
evolution be given by U(θ) = e−iθH , where H =

∑
j Aj⊗Bj is the full Hamiltonian of the

system, H = HS⊗1+HI+1⊗HE. We will first show that we can redefine the Hamiltonian
such that we can assume ⟨E|Bj|E⟩ = 0, and therefore

∑
j[Aj, ρS] ⟨E|Bj|E⟩ = 0.

Define A := −
∑

j Aj ⟨E|Bj|E⟩. As we are only interested in the interaction with the
environment, we can then redefine H ′ = H +A⊗ 1 =

∑
j A

′
j ⊗B′

j. Then
〈
E|B′

j|E
〉
= 0,

and thus
∑

j[A
′
j, ρS]

〈
E|B′

j|E
〉
= 0.

We now show how we in specific cases can restrict the number of possible Lindblad op-
erators. We can find an orthogonal basis {|E⟩ , |k⟩ : k = 1, . . . , n−1} for the environment,
such that

Mij =
〈
E|(B′

j)
†B′

i|E
〉
=

n−1∑
k=1

=:v∗kj︷ ︸︸ ︷〈
E|(B′

j)
†|k
〉 =:vki︷ ︸︸ ︷
⟨k|B′

i|E⟩+
〈
E|(B′

j)
†|E
〉 =0︷ ︸︸ ︷
⟨E|B′

i|E⟩ .
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We define the vectors
(
vk,1, . . . , vk,n−1

)T . Denoting these vectors by |vk⟩ and exploiting
the (Dirac-)notation, we see that the matrix M can be represented as an outer product

M =
∑
k

|vk⟩ ⟨vk| =
∑
k

⟨vk|vk⟩ |v′k⟩ ⟨v′k| ,

where |v′k⟩ = |vk⟩ /
√

⟨vk|vk⟩. We cannot right away assume ⟨v′k|v′l⟩ = 0, but whenever this
is the case, we have diagonalized the matrix M . Hence, whenever M is diagonalized, M
can maximally have n− 1 non-zero eigenvalues. For a TLS,

Mij =
〈
E|(B′

j)
†B′

i|E
〉
=

=:v∗j︷ ︸︸ ︷〈
E|(B′

j)
†|E⊥〉 =:vi︷ ︸︸ ︷〈

E⊥|B′
i|E
〉
+
〈
E|(B′

j)
†|E
〉 =0︷ ︸︸ ︷
⟨E|B′

i|E⟩ .

In other words, M = |v⟩ ⟨v| is already diagonalized. Hence, for a TLS, we therefore
conclude that we always have only a single non-zero eigenvalue, and therefore only a
single Lindblad operator.

3.5.4 Recovering the Lindblad equation with Hamiltonian of the
system

We want to end this chapter by elaborating on the assumption that
∑

j Aj ⟨E|Bj|E⟩ = 0
and say how we can recover the Lindblad equation including the Hamiltonian of the
system

dρS
dt

= −i[HS, ρS] +
1

2

∑
k

Γk

[
2LkρSL

†
k − L†

kLkρS − ρSL
†
kLk

]
. (3.1)

The calculations are given in detail in appendix B. If
∑

j Aj ⟨E|Bj|E⟩ = 0, then equation
(3.1) is easily recovered (see section B.2). However, this assumption is not necessarily
true. We argued that we could use an effective interaction Hamiltonian H ′

I = HI−A, but
what happens to the dynamics of the system? It is not easy to answer this question in
general. We therefore look at a specific example: Choose |E⟩ = |0⟩, HI =

∑
ij hijσi ⊗ σj,

Ai = σi, Bi =
∑

j hijσj, and A =
∑

iAi ⟨0|Bi|0⟩. If we go through the calculations, we
end up with

ρ′S := trenv
(
U(θ) |Ψ⟩ ⟨Ψ|U(θ)†

)
=ρS − iθ

∑
i

hi3[Ai, ρS] + θ2
[
LρSL

† − 1

2
L†LρS −

1

2
ρSL

†L

]
+ θ2

∑
ij

hi3hj3

[
AiρSAj −

1

2
AiAjρS −

1

2
ρSAiAj

]
+O(θ3).

The calculations are given in section B.1.
The problem is now to handle the two terms containing A, namely −iθ

∑
i hi3[Ai, ρS]

and θ2
∑

ij hi3hj3
[
AiρSAj − 1

2
AiAjρS − 1

2
ρSAiAj

]
. To ensure that

lim
δt→0

θ2

δt
̸= 0,±∞,
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we must have
lim
δt→0

θ ∝
√
δt.

This again means that −i θ
δt

∑
i hi3[Ai, ρS]

δt→0−−−→ ±∞ unless either
∑

i hi3[Ai, ρS] = 0 or
each hi3 is dependent on the time step δt. This is the same as demanding hi3 = 0 for
all i or letting them be dependent on the time step δt. The first case, hi3 = 0 for all i,
would mean that both problematic terms are zero. We look at what happens if we let them
depend on the time step δt. Then we must have limδt→0

θ
δt
hi3 = 0, and as limδt→0 θ ∝

√
δt,

we have to demand limδt→0 hi3 ∝ (δt)a where a ≥ 1
2
. If we have a = 1

2
, then the first term

stays and the latter disappears. If not, then both disappears.
It is therefore possible to recover the Lindblad equation, at least in this very specific

case. We can even combine this result with the time evolution during the transient time,
and we will still recover equation (3.1). This is shown in section B.3.

3.5.5 Independence in choice of Hamiltonian representation

It is actually possible to show that the Lindblad operator is independent of the repre-
sentation of H. It is namely possible to define the partial trace of an operator in such
a way that it is both linear and well-defined [2]. Let therefore H =

∑
j Aj ⊗ Bj and

H =
∑

k Ck ⊗Dk be two representations of H. Then

trenv(H) = trenv

(∑
j

Aj ⊗Bj

)
=
∑
j

trenv(Aj ⊗Bj) =
∑
j

Aj tr(Bj),

trenv(H) = trenv

(∑
k

Ck ⊗Dk

)
=
∑
k

trenv(Ck ⊗Dk) =
∑
k

Ck tr(Dk),

which means that all representations will give the same result. For U = exp(−iθH) we
have

U |Ψ⟩ ⟨Ψ|U † =

(
1− iθH − θ2

2
H2 +O(θ3)

)
|Ψ⟩ ⟨Ψ|

(
1+ iθH − θ2

2
H2 +O(θ3)

)
= |Ψ⟩ ⟨Ψ|+ iθ [|Ψ⟩ ⟨Ψ| , H] + θ2

(
H |Ψ⟩ ⟨Ψ|H − 1

2
H2 |Ψ⟩ ⟨Ψ| − 1

2
|Ψ⟩ ⟨Ψ|H2

)
+O(θ3).
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If the Hamiltonian has a representation H =
∑

j Aj ⊗ Bj, we get (using the notation
from [2] with K as the Hilbert space of the environment and |Ψ⟩ = |ψ⟩ ⊗ |E⟩)

trenv ([|Ψ⟩ ⟨Ψ| , H]) = trenv

(
|Ψ⟩ ⟨Ψ|

∑
j

Aj ⊗Bj − |Ψ⟩ ⟨Ψ|
∑
j

Aj ⊗Bj

)
=
∑
j

trenv (|Ψ⟩ ⟨Ψ|Aj ⊗Bj − (Aj ⊗Bj) |Ψ⟩ ⟨Ψ|)

=
∑
j

∑
k

(
K⟨k|(|ψ⟩ ⊗ |E⟩)(⟨ψ| ⊗ ⟨E|)Aj ⊗Bj |k⟩K

− K⟨k| (Aj ⊗Bj) (|ψ⟩ ⊗ |E⟩)(⟨ψ| ⊗ ⟨E|) |k⟩K
)

=
∑
j

(
|ψ⟩ (⟨ψ|Aj ⊗ ⟨E|Bj) |E⟩K

− K⟨E| (Aj |ψ⟩ ⊗Bj |E⟩) ⟨ψ|
)

=
∑
j

(|ψ⟩ ⟨ψ|Aj ⟨E|Bj|E⟩ − ⟨E|Bj|E⟩Aj |ψ⟩ ⟨ψ|)

=
∑
j

⟨E|Bj|E⟩ [|ψ⟩ ⟨ψ| , Aj] ,

where we have used that {|k⟩} is an orthonormal basis for K containing |E⟩, and that
(⟨Ψ|) |k⟩K |f⟩ = ⟨Ψ| (|f⟩ ⊗ |k⟩) = ⟨ψ|f⟩ ⟨E|k⟩ for all system states |f⟩, so (⟨Ψ|) |k⟩K =
⟨E|k⟩ ⟨ψ|, and finally that K⟨k|(|ψ⟩ ⊗ |E⟩) = ⟨k|E⟩ |ψ⟩. The same argument also gives

trenv
(
H2 |Ψ⟩ ⟨Ψ|

)
=
∑
ij

⟨E|BiBj|E⟩AiAj |ψ⟩ ⟨ψ| ,

trenv
(
|Ψ⟩ ⟨Ψ|H2

)
=
∑
ij

⟨E|BiBj|E⟩ |ψ⟩ ⟨ψ|AiAj.

For the last term, we get

trenv (H |Ψ⟩ ⟨Ψ|H) =
∑
ij

∑
k

K⟨k|(Ai |ψ⟩ ⊗Bi |E⟩)(⟨ψ|Aj ⊗ ⟨E|Bj) |k⟩K

=
∑
ij

∑
k

(Ai |ψ⟩ ⟨k|Bi|E⟩)(⟨ψ|Aj ⟨E|Bj|k⟩)

=
∑
ij

Ai |ψ⟩ ⟨ψ|Aj

〈
E

∣∣∣∣∣Bj

∑
k

|k⟩ ⟨k|Bi

∣∣∣∣∣E
〉

=
∑
ij

⟨E|BjBi|E⟩Ai |ψ⟩ ⟨ψ|Aj.
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Hence,

trenv
(
U |Ψ⟩ ⟨Ψ|U †)

= |ψ⟩ ⟨ψ|+ iθ trenv ([|Ψ⟩ ⟨Ψ| , H])

+ θ2 trenv

(
H |Ψ⟩ ⟨Ψ|H − 1

2
H2 |Ψ⟩ ⟨Ψ| − 1

2
|Ψ⟩ ⟨Ψ|H2

)
+O(θ3)

= |ψ⟩ ⟨ψ|+ iθ
∑
j

[|ψ⟩ ⟨ψ| , Aj] ⟨E|Bj|E⟩

+ θ2
∑
ij

⟨E|BjBi|E⟩
(
Ai |ψ⟩ ⟨ψ|Aj −

1

2
AjAi |ψ⟩ ⟨ψ| −

1

2
|ψ⟩ ⟨ψ|AjAi

)
+O(θ3).

(3.2)

Suppose now that the first order term was zero, i.e.
∑

j [|ψ⟩ ⟨ψ| , Aj] ⟨E|Bj|E⟩ = 0, and
let H =

∑
k Ck ⊗Dk be another representation of the Hamiltonian. Then we must have

0 =
∑
j

[|ψ⟩ ⟨ψ| , Aj ] ⟨E|Bj |E⟩ = trenv ([|Ψ⟩ ⟨Ψ| , H]) =
∑
k

[|ψ⟩ ⟨ψ| , Ck] ⟨E|Dk|E⟩ .

In other words, if one representation gives zero, all other representations must also give
zero. Contrapositively, if one representation gives non-zero, all other representations must
also give non-zero.

We have included two explicit examples in appendix B.4 showing that the representa-
tion does not matter.

3.5.6 Easy calculation of Hamiltonian

We go back to our starting point, H =
∑

ij hijσi⊗ σj =
∑

i σi⊗
(∑

j hijσj

)
, σz |0⟩ = |0⟩,

Ai = σi, and Bi =
∑

j hijσj. Since we want the first order term in equation (3.2) to be
zero, we compute ⟨0|Bi|0⟩ = hi3 and define A := −

∑
iAi ⟨0|Bi|0⟩ = −

∑
iAihi3. Then,

as explained in the beginning of this section, we change to the Hamiltonian

H ′ = H − A⊗ 1 =
∑
i

(Ai ⊗Bi − Ai ⊗ 1hi3)

=
∑
i

Ai ⊗
(
hi3 − hi3 hi1 − ihi2
hi1 + ihi2 −hi3 − hi3

)
=
∑
i

Ai ⊗
(

0 hi1 − ihi2
hi1 + ihi2 −2hi3

)

=
∑
i

Ai ⊗

=:B′
i︷ ︸︸ ︷[

hi1σx + hi2σy − 2hi3

(
0 0
0 1

)]
.
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We have now expressed the transformed Hamiltonian with a representation of the form

H ′ =
∑

ij h
′
ijσi ⊗ sj, where s1 = σx, s2 = σy and s3 =

(
0 0
0 1

)
. We compute

B′
jB

′
i =

(
0 h′j1 − ih′j2

h′j1 + ih′j2 −2h′j3

)(
0 h′i1 − ih′i2

h′i1 + ih′i2 −2h′i3

)
=

(
(h′j1 − ih′j2)(h

′
i1 + ih′i2) h′i3(h

′
j1 − ih′j2)

h′j3(h
′
i1 + ih′i2) (h′i1 − ih′i2)(h

′
j1 + ih′j2) + h′j3h

′
i3

)

and hence
〈
0|B′

jB
′
i|0
〉
=

=:k∗j︷ ︸︸ ︷
(h′j1 − ih′j2)

=:ki︷ ︸︸ ︷
(h′i1 + ih′i2) =Mij. We therefore have|k1|2 k1k

∗
2 k1k

∗
3

k2k
∗
1 |k2|2 k2k

∗
3

k3k
∗
1 k3k

∗
2 |k3|2

 =M = λ

|µ1|2 µ1µ
∗
2 µ1µ

∗
3

µ2µ
∗
1 |µ2|2 µ2µ

∗
3

µ3µ
∗
1 µ3µ

∗
2 |µ3|2


and we can therefore read straight out what h′ij must be.
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Chapter 4

Quantum synchronization of two-level
systems

As we mentioned in the introduction, there has in recent years been interest in synchro-
nization of quantum mechanical systems. The quantum mechanical van der Pol oscillator
is one of the more studied examples [26][12][27], along side two-level systems [29][1].

In this chapter, we will look at two articles and one master thesis. The first article
by Roulet and Bruder [23], titled “Synchronizing the Smallest Possible System”, finds
that the smallest quantum system that can be synchronized is a three-level system. In
particular, they conclude that it is impossible to synchronize a TLS. The next article by
Parra-López and Bergli [18] shows how it actually does make sense to synchronize a TLS.
This is done by interpreting the mixed state as an ensemble of pure states, where the
ensemble can have a valid limit cycle. Finally, the thesis by Longva [13] uses quantum
trajectory theory to numerically compute the synchronization regime of a TLS.

4.1 Can two-level systems be synchronized?
The article by Roulet and Bruder [23] concludes that two-level systems cannot be syn-
chronized. Their goal is to find the smallest possible quantum system that can be syn-
chronized. As is standard, they represent a TLS on the Bloch sphere and use that any
unitary operation on the TLS will be a rotation around some axis n on the Bloch sphere,
visualised in Figure 4.1 (see appendix A.1 for mathematics behind this). They argue that
if one tries to add a dissipative map to the Hamiltonian of the TLS, to get a self-sustained
oscillator, then we will only end up with the trivial limit cycle that stays at either n or
−n. We quote the first part of this argument here before we try to break it down:

...To make contact with the standard paradigm of synchronization, we first
need to establish a valid limit cycle for the self-sustained oscillator. Specifi-
cally, adding loss and gain to the dynamics of the qubit, we look for a fixed
point of the dissipative map that does not possess any phase preference. That
the phase of the limit cycle needs to be free is a sine qua non condition that
ensures that any perturbation neither grows nor decays, which is the essence
of synchronization.
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|ψ⟩rot
|ψ⟩

n

Figure 4.1: Rotation of a state |ψ⟩ around an axis n on the Bloch sphere due to a unitary
operator, e.g. a time-evolution.

To add loss and gain to the dynamics of the TLS is a correct idea, but it is not easy to
understand what is meant by “... look for a fixed point of the dissipative map that does
not possess any phase preference. ...”. The argument continues in the following way:

In the case of a qubit, any state belonging to the space Hqubit can be written
as ρ̂qubit = (1̂+ m⃗ · σ⃗)/2, where |m⃗| ≤ 1 is maximized for pure states that lie
on the surface of the Bloch sphere. This implies that the set of states invariant
under rotations with respect to the axis n⃗ satisfy m⃗ = λn⃗ with −1 ≤ λ ≤ 1.
In other words, they correspond to probabilistic mixtures of the eigenstates
|±n⃗⟩, which are lying exactly on the rotation axis where the phase variable is
not defined. Any attempt with qubits is thus bound to fail due to the absence
of a phase-symmetric state that is different from the extremal eigenstates. ...

It is true as they say that the set of states invariant under rotations with respect to the axis
n is {λn⃗ : −1 ≤ λ ≤ 1}, and of these, only ± |n⟩ are pure. What is confusing is that the
states on a limit cycle need not be independent of the phase. It is therefore not obvious
why they are looking for a “phase-symmetric state”. Moreover, they have excluded all
possibility of mixed states. This is the idea behind the article by Parra-López and Bergli.

Before we move on to the article by Parra-López and Bergli, we will try to look a bit
closer at what Roulet and Bruder might have meant. When they say “... look for a fixed
point of the dissipative map that does not possess any phase preference. ...”, they might
have meant that they look for a limit cycle of the dynamic, when including dissipation,
such that the phase defined from the limit cycle is linear in time. If this is the case, we
must assume that the dissipative map adds both loss and gain. If this is not the case,
we would only have dissipation of energy, so we obviously do not have a self-sustained
oscillator. It is also not obvious what is meant by “... the phase of the limit cycle needs to
be free ...”. They do not say what it needs to be “free” from, and we know that the phase
of a limit cycle is defined to be linear. That is, the phase of a limit cycle is defined after
the limit cycle of a system is defined, and the phase is then defined to be a function ϕ
from the phase space to R+, i.e. (x(t)) 7→ ϕ(x(t)), such that if we start at some point
x(0) in phase space at time t = 0, and return to this point x(T ) = x(0) at time t = T ,
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then ϕ(x(0)) = 0 and ϕ(x(T )) = ϕ(x(0)) = 2π. The function ϕ should also be linear in
time [21, section 7.1]. Pikovsky, Kurths and Rosenblum do talk about the phase being free
[21, section 2.2.2], but they focus on the fact that a perturbation just adds (or subtracts)
a constant term to the phase. That is, the perturbation in the phase neither grows nor
decays.

As a final remark, from the text in the article by Roulet and Bruder, it could seem like
their interpretation of phase space is different from how we interpret it. Even though the
book by Pikovsky, Kurths and Rosenblum works classically (instead of quantum mechani-
cally), they explicitly state that phase space and state space is the same thing [21, section
2.1.2], and that phase space is the space of all variables x in the differential equation giv-
ing rise to the limit cycle [21, section 7.1.1]. For a TLS under unitary time-evolution, the
phase space will therefore be the same as the state space, namely {|ψ⟩ ∈ C2 : ⟨ψ|ψ⟩ = 1}.
There is no doubt that the Bloch sphere is a representation of the state space of a TLS
[17]. However, the use of the spin equivalent of the Husimi Q representation looks similar
to treatments in phase-space formulation of quantum mechanics [6].

4.2 Limit cycle for two-level system constructed from
pure states

The article by Parra-López and Bergli [18] discusses how a two-level system can be syn-
chronized, contrary to the conclusion drawn by Roulet and Bruder [23].

They begin by explaining how a TLS can be thought of as having a valid limit cycle:
To make the calculations easier, they choose a system Hamiltonian Ĥ0 =

ℏ
2
ω0σ̂z, where ω0

is the natural frequency that the Bloch vector precesses around the z-axis with. Letting
ρ̂′ = 1

2
(1+m′ · σ̂) (where m′ is the Bloch vector of the system), they change to a rotating

frame ρ̂ = T̂ω0 ρ̂
′T̂ †
ω0

= 1
2
(1 +m · σ̂), where T̂ω0 = ei

ω0
2
σ̂zt. The Lindblad equation in the

rotating frame is
dρ̂

dt
=

Γg
2
D[σ̂+]ρ̂+

Γd
2
D[σ̂−]ρ̂

where Γg and Γd are the gain and damping rates, D[Ô]ρ̂ = Ôρ̂Ô† − 1
2
{Ô†Ô, ρ̂} is the

Lindblad superoperator, and σ̂+ and σ̂− are the ladder operators for the system, σ̂± =
1
2
(σ̂x ± iσ̂y). Solving for a fixed point, i.e. ρ̂ = 0, m = 0, they find

mx = 0; my = 0; mz =
Γg − Γd
Γg + Γd

.

The extremal points, i.e. the points mz = 1 (corresponding to Γg ̸= 0 and Γd = 0) and
mz = −1 (corresponding to Γg = 0 and Γd ̸= 0), are excluded as these are pure states and
will only give trivial limit cycles (same argument as Roulet and Bruder). However, Parra-
López and Bergli suggest that the mixed states can be used. To quote, the mixed state is
“... not a superposition and our system is for sure in any of those pure states, but only in
one of them at the same time.” They go on explaining that if we build up the mixed state
as mixture of pure states on the plane orthogonal to the z-axis and at the same height as
the mixed state (see Figure 4.2). Letting this be their choice of limit cycle, they continue
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Figure 4.2: Limit cycle of a TLS. A mixed state on the z-axis can be thought of as a
convex combination of the pure states with the same z-value. Taken from [18].

by adding a periodic signal, Ĥsignal = iℏ ϵ
4
(eiωtσ̂− − e−iωtσ̂+). This signal is the same that

Roulet and Bruder uses [23], i.e. a classical external force with frequency ω and strength
ϵ. Taking the original Lindblad equation (the non-rotated frame corresponding to ρ̂′),
they rotate the Lindblad equation by T̂ω = ei

ω
2
σ̂zt to find (see appendix A.2)

ρ̂

dt
= − i

2
[∆σ̂z + ϵσ̂y, ρ̂] +

Γg
2
D[σ̂+]ρ̂+

Γd
2
D[σ̂−]ρ̂,

where ∆ := ω0 − ω and ρ̂ = T̂ωρ̂T̂
†
ω. They solve for the steady state ρ̇ = 0, and when

transforming back to the non-rotating frame they find that m′
x and m′

y will vary in time
with the frequency of the signal, ω. They conclude that this means that the system phase
locks to the external signal.

Parra-López and Bergli have thus describe how a TLS can in fact be synchronized,
contrary to the analysis by Roulet and Bruder. We will now move on to the master thesis
by Longva [13].

4.3 Using quantum trajectory theory to construct the
ensemble

The work done by Longva [13] continues on the result by Parra-López and Bergli [18],
i.e. that two-level systems can indeed be synchronized. Although Parra-López and Bergli
have argued that a TLS can be synchronized, they state that they are working with mixed
states. Since a non-pure mixed states does not tell us which pure states it is made up of,
there could be doubts as to how the synchronization can actually be achieved. Longva’s
idea is therefore to use quantum trajectory theory (from chapter 3) to explicitly find the
limit cycle numerically.

To get both gain and dampening, Longva needs at least a three-level system environ-
ment in his quantum trajectory (as explained in section 3.5.3). He instead chooses to
use a two-level system as environment, but he lets the interaction alternate between gain
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(a) Our TLS is in contact with a bosonic field.

p−

p+

Γ+Γ−

(b) We can study the transition directly.

Figure 4.3: We model the transitions with a bosonic field to the left, and to the right we do
not assume any model for the environment. Left figure: The probability of transitioning
to the excited state is given by |⟨1, n− 1|Hint|0, n⟩|2, and the probability of transitioning
to the ground state is given by |⟨0, n+ 1|Hint|1, n⟩|2. Here, n is the number of excitations
in the field of the mode with correct energy, and Hint models the interaction between the
field and the TLS. We have Hint = g−a + g+a

† where a and a† are ladder operators and
g± ∝ σ±. As a |n⟩ =

√
n |n− 1⟩ and a† |n⟩ =

√
n+ 1 |n⟩, the transition probabilities will

be proportional to n and n+ 1. (See [11, chapter 15.4] for more details.)
Right figure: Let p− and p+ be the probabilities of being in the ground- and excited
state, respectively, and Γ+ and Γ− be the transition rate of absorption (excitation) and
emission of the TLS, respectively. If we want equilibrium, we must have detailed balance,
p−Γ+ = p+Γ−.

and loss. Since Longva is after the same type of Lindblad equation as Parra-López and
Bergli [18], he wants Lindblad operators L+ ∝ σ+ and L− ∝ σ− (where plus and minus
refers to gain and loss, respectively). Longva therefore calculates that he needs interaction
Hamiltonians Hint± = 1

4
(σx ⊗ σx ± σy ⊗ σy).

The Lindblad operators from the QTT, using the Hamiltonians Hint± , take the form

L± =

√
θ2±
2δt
σ±. As the variable θ± depends on both time and the rate in the Lindblad

equation, Longva needs to make sure that it takes the correct value to represent the
Lindblad equation he is after,

ρ̇ =
Γ+

2
D[σ+]ρ+

Γ−

2
D[σ−]ρ.

Longva chooses to set θ± =
√
Γ±θ, where θ is purely a time variable which satisfy

limδt→0

√
θ2

δt
= 1. To choose Γ± in a reasonable way, he uses a statistical mechanical

approach: He lets E0 and E1 denote the energy of the ground- and excited state, re-
spectively, ∆E := E1 − E0, and β = 1

kBT
where kB is the Boltzmann constant and T is

the temperature of the system. Longva then choose p0 = 1
Z
e−βE0 and p1 = 1

Z
e−βE1 to

be the probability of finding the system in the ground- and excited state, respectively,
where Z = e−βE0 + e−βE1 is the canonical partition function. He then assumes that the
environment can be modeled as a bosonic field, e.g. photons as excitation of the field
in some mode. The energy needed to excite the TLS/that the TLS can excite the field
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with will be ∆E. Since we are working with bosons, the number, n, of excitations of the
mode(s) with the correct energy will be Bose-Einstein distributed

n =
1

eβ∆E − 1
.

We also have that the transition rates Γ+ and Γ− are proportional to n and n − 1,
respectively (with the same proportionality constant). Figure 4.3a tries to illustrate the
transition. Hence,

Γ+ =
1

eβ∆E − 1
and Γ− =

eβ∆E

eβ∆E − 1
.

(Most of the derivation can be found in chapter 15 of the book by Bellac [11].) We could
alternatively follow the diagram in Figure 4.3b. Here, p− and p+ are the probabilities of
being in the ground- and excited state, respectively, and Γ+ and Γ− are the transition rate
of absorption (excitation) and emission of the TLS, respectively. If we want equilibrium,
we must have detailed balance

p−Γ+ = p+Γ−.

Moreover, we have that p+ = p1 and p− = p0.
Longva goes on to describe how we should update the state. After interaction with

H±, the state of the system and environment will be

|Ψ′⟩ = c00 |00⟩+ c01 |01⟩+ c10 |10⟩+ c11 |11⟩
=
∣∣ψ′

+

〉
⊗ |x+⟩+

∣∣ψ′
−
〉
⊗ |x−⟩ ,

where cij ∈ C are constants dependent on the time-evolution with H±, and
∣∣ψ′

+

〉
:=

1√
2
[(c00+ c01) |0⟩+(c10+ c11) |1⟩] and

∣∣ψ′
−
〉
:= 1√

2
[(c00− c01) |0⟩+(c10− c11) |1⟩]. Note that

the subscript ± in
∣∣ψ′

±
〉

correspond to the measurement |x±⟩, not the interaction H±!
Longva continues finding the probabilities of measuring |x±⟩ by tracing out the system,
finding that he will measure |x±⟩ with probability p± =

〈
ψ′
±|ψ′

±
〉
. Thus, the system state

will after the interaction be updated to

|ψ′⟩ = 1
√
p±

∣∣ψ′
±
〉

when the environment is measured to be in |x±⟩ with probability p±. Longva notes that
the same analysis can be done if we measure in y- or z-basis, or any other measurement
basis for that matter.

Longva then explains how he simulates the evolution of the system as follows:

1. He begins with the system in an initial state |ψ0⟩, which he connects to the envi-
ronment, |Ψ⟩ = |ψ0⟩ ⊗ |E⟩.

2. The time-evolution is then calculated for the interaction H± (H+ is used if we are
on an even number of previous interactions, and H− is used if we are on an odd
number of previous interactions). That is, |Ψ′⟩ = U±(θ) |Ψ⟩ is calculated. (Here
U±(θ) = eiθHint± .)
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3. The environment is measured in the basis {|f+⟩ , |f−⟩}, giving an outcome |ψ′
0⟩.

4. Finally, time-evolution is then calculated for the system Hamiltonian H (this can
include the external signal) giving the new state |ψ1⟩.

5. We return to the first step with |ψ1⟩, and go through the algorithm until we have
calculated the desired number of steps |ψN⟩.

This only gives one trajectory, and since the system is inherently stochastic, Longva
simulates multiple trajectories to gather statistics.

Longva has now laid out the groundwork for his numerical simulations. As a proof of
concept, he compares it to the analytical solution from the corresponding Lindblad equa-
tion. He does this by calculating the average density matrix of the trajectory simulations,
ρ(n) = 1

S

∑S
j ρj(n), where the index j is the j-th trajectory out of the S trajectories sim-

ulated, and ρj(n) = |ψn⟩ ⟨ψn| where |ψn⟩ is from the j-th trajectory simulation. He finds
that the average density matrix matches the density matrix computed from the Lindblad
equation better and better when increasing the number S of trajectories simulated.

Confident that the QTT approach works, Longva introduces the same signal Hamil-
tonian as Parra-López and Bergli, Hsignal = iℏ ϵ

4
(eiωtσ− − e−iωtσ+), and transforms to

the rotating frame using Tω = ei
ω
2
σzt. Simulating the system, he finds that the system

synchronizes the same way as a classical system with noise: At no point does he get
full synchronizations, as phase slips occur, but he finds clear regions where the measured
frequency of the system is very close to the frequency of the signal. One of his best result
is shown in Figure 4.4.
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Figure 4.4: Taken from the master thesis by Longva [13]. See the thesis for full explanation
of the figure. The figure shows how a TLS is almost frequency locked to an external field.
The figure is created by doing simulations of the system for a QTT model.
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Chapter 5

Analysis on synchronization of
two-level systems using quantum
trajectory theory

In this chapter we will present our results and analysis. There are three main topics we
want to discuss

1. Is there an analytic expression for the synchronization we observe numerically (cf.
what Longva finds in his thesis [13])?

2. How can we most easily visualize the trajectory traced out by the quantum trajec-
tory theory?

3. When recovering the Lindblad equation from the trajectory theory, there seems to
be a freedom in choice of interaction Hamiltonian, initial state and measurement
basis. Does there exist a clever description of the space of stochastic processes (i.e.
interaction Hamiltonian, initial state and measurement basis) that give rise to the
same Lindblad equation?

The analysis we do will only concern the system, without any external signal. As in the
chapter on quantum trajectory theory, we assume the system is a two-level system in a
state |ψ⟩, and the environment consists of two-level systems all in the same state |E⟩.

5.1 Deriving a master equation for the stochastic pro-
cess araising from the quantum trajectory theory

Quantum trajectory theory, as described in chapter 3, gives us a stochastic process for
the time evolution of the state of our system. We want to describe this stochastic process
through a master equation. The setup is the same as before: We have a system (not
necessarily a TLS in general) in a state |ψ⟩, which interacts with an environment consisting
of systems all in the same state |E⟩. We denote the time evolution during the transient
time between interactions by Ũ(δt) and the time evolution during the interactions by
U(θ). After each interaction the environment system is measured in a basis {|fi⟩}i∈I .
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Up to now, we have only formulated the QTT for environments with finite dimensional
Hilbert space. We therefore assume that the index set I is finite.

If we stay this general to begin with, we do not get a lot of information: Letting
the system be an m-level system and denoting the state of the system after the n-th
measurement by |ψ⟩n, we know that

U(θ)
(
Ũ(δt) |ψ⟩n−1 ⊗ |E⟩

)
=

m∑
k=1

∑
i∈I

cki |m⟩ |i⟩ .

We can therefore derive a general expression for |ψ⟩n, but to compute anything we need
to know U(θ), Ũ(δt), |E⟩ and the initial state of the system |ψ⟩. We will therefore look
at the model proposed by Longva in his thesis [13]. Computations and minor details are
given in appendix C.

5.1.1 A single step of QTT for a specific model

We begin by looking at the first step of the QTT algorithm for the model proposed in the
thesis by Longva [13].

In his thesis, Longva find evidence for synchronization of a TLS numerically. He
chooses to model the TLS using quantum trajectory theory: The TLS is in an environment
consisting of two-level systems all in the state |E⟩ = |0⟩. The system Hamiltonian is
HS = ℏ

2
ω0σz and the environment Hamiltonian is HE = 0. As we saw in section 3.5.3,

choosing the environment to be a TLS forces the recovered Lindblad equation to have only
a single Lindblad operator. This means that his environment can only either give or take
energy from the system, and not both. This can therefore not be a self-sustained oscillator.
Longva thus chooses to a model switching between two interaction Hamiltonians,

HI± =
1

4
(σx ⊗ σx ± σy ⊗ σy) , (5.1)

between each interaction. These interaction Hamiltonians are shown to give rise to Lind-
blad operators L+ = σ+ and L− = σ−. The measurement basis is chosen to be the
x-basis1, |↑x⟩ = |0⟩+|1⟩√

2
and |↓x⟩ = |0⟩−|1⟩√

2
.

We begin by looking at the case HS = 0. The time evolution is given by the unitary
operators

U±(θ) = exp (−iθHI±).

To find the eigenstates and corresponding eigenvalues of the interaction Hamiltonians
HI± , we can use functional calculus [17, section 2.1.8] to compute U±(θ) |ψ⟩ ⊗ |E⟩. Here
|ψ⟩ = α |0⟩+ β |1⟩ is the state of our TLS. After measurement of the environment in the

1Note that we here have chosen the convention σz |0⟩ = |0⟩.
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x-basis, the system will be in the state

|ψ′⟩ =



(α−iβ sin θ
2)|0⟩+(β cos θ

2)|1⟩√
1+2 Im(α∗β) sin θ

2

, if interaction H+
int and measure |↑x⟩ ,

(α cos θ
2)|0⟩+(β−iα sin θ

2)|1⟩√
1+2 Im(αβ∗) sin θ

2

, if interaction H+
int and measure |↓x⟩ ,

(α+iβ sin θ
2)|0⟩+(β cos θ

2)|1⟩√
1+2 Im(αβ∗) sin θ

2

, if interaction H−
int and measure |↑x⟩ ,

(α cos θ
2)|0⟩+(β+iα sin θ

2)|1⟩√
1+2 Im(α∗β) sin θ

2

, if interaction H−
int and measure |↓x⟩ .

(5.2)

We have here used that σz |0⟩ = |0⟩, but if we use σz |0⟩ = − |0⟩ we will only get a phase
factor −1 on the two states corresponding to the interaction HI+ . The calculations can
be found in appendix C.1

5.1.2 Master equation for the model proposed by Longva

We now want to find a master equation for the model proposed by Longva, i.e.

HI± =
1

4
(σx ⊗ σx ± σy ⊗ σy) .

This is not to be confused with the Lindblad master equation: We already know that
quantum trajectory theory with HI± will give back the Lindblad equation

dρ

dt
= − i

ℏ
[HS , ρ] +

Γ+

2

(
2L†

+ρL+ − ρL+L
†
+ − L+L

†
+ρ
)
+

Γ−
2

(
2L†

−ρL− − ρL−L
†
− − L−L

†
−ρ
)
,

where HS = ℏ
2
ω0σz, L± = σ± and Γ± are the respective rates whose values are decided

by the parameter θ. We are instead after an equation telling us the probability of being
in a state after a given time. This is closer to how we recover the diffusion equation from
random walk: For random walk in one dimension, we let u(x, t) be the probability of a
random walker being at position x at a time t. If the time step ∆t and physical step ∆x
possible for the random walker are discretized, then the following differential equation
holds true:

u(x, t+∆t) = pu(x−∆x, t) + qu(x+∆x, t).

Here, p is the probability of the walker taking a step ∆x, and q = 1− p is the probability
of the walker taking a step −∆x. Taking the limit of ∆t and ∆x going to zero, in such a
way that (∆x)2

∆t
goes to a constant, we can recover the diffusion equation in one dimension,

∂u(x, t)

∂t
= −2C

∂u(x, t)

∂x
+D

∂2u(x, t)

∂x2
.

The constants C and D arises when taking the limit. Details and calculations are given
in appendix C.2.

Given the state after n+1 measurements, |ψ⟩n+1, we therefore want to see how many
possible states |ψ⟩n that can have evolved to this state. It is not difficult to show that
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if each step must follow equation (5.2), then there are only two possible states that can
give |ψ⟩n+1. The calculation is given in appendix C.1.3 and give

αn =
αn+1 ± iβn+1 tan

θ
2√∣∣αn+1 ± iβn+1 tan

θ
2

∣∣2 + |βn+1|2
cos2 θ

2

βn =

βn+1

cos θ
2√∣∣αn+1 ± iβn+1 tan

θ
2

∣∣2 + |βn+1|2
cos2 θ

2

(5.3)

if the interaction is HI+ , and

αn =

αn+1

cos θ
2√∣∣βn+1 ± iαn+1 tan

θ
2

∣∣2 + |αn+1|2
cos2 θ

2

βn =
βn+1 ± iαn+1 tan

θ
2√∣∣βn+1 ± iαn+1 tan

θ
2

∣∣2 + |αn+1|2
cos2 θ

2

(5.4)

if the interaction is HI− . The ± corresponds to measuring |↑x⟩ and |↓x⟩, respectively.
Let u(|ψ⟩ , t) be the probability of the system being in the state |ψ⟩ at time t. Similarly

to a random walk, we can write the different equation for each step in the QTT model.
They are

u(|ψ⟩n+1 , t+ (δt+ θ)) = p+,0u(
∣∣ψ(0)

〉
n
, t) + p+,1u(

∣∣ψ(1)
〉
n
, t), and

u(|ψ⟩n+1 , t+ (δt+ θ)) = p−,0u(
∣∣ψ(0)

〉
n
, t) + p−,1u(

∣∣ψ(1)
〉
n
, t),

and correspond to the interaction HI+ and HI− , respectively. If |ψ⟩n+1 = αn+1 |0⟩ +
βn+1 |1⟩ is known, then

∣∣ψ(0)
〉
n

and
∣∣ψ(1)

〉
n

are given by equation (5.3) and (5.4). The
probabilities are given by p±,i = n

〈
ψ(i)|ψ(i)

〉
n for i = 0, 1. If we look at two consecutive

interactions, HI+ followed by HI− , we find

u(|ψ⟩n+2 , t+ 2(δt+ θ)) =p+,0u(
∣∣ψ(0)

〉
n+1

, t+ (δt+ θ)) + p+,1u(
∣∣ψ(1)

〉
n+1

, t+ (δt+ θ))

(5.5)

=p+,0
[
p−,0u

(∣∣ψ(0,0)
〉
n
, t
)
+ p−,1u

(∣∣ψ(0,1)
〉
n
, t
)]

(5.6)

+ p+,1
[
p−,0u

(∣∣ψ(1,0)
〉
n
, t
)
+ p−,1u

(∣∣ψ(1,1)
〉
n
, t
)]
. (5.7)

Next would be to do as shown in appendix C.2 with the diffusion equation, to find a
differential equation when taking the limit δt→ 0. As of now this has not been done yet,
but it would be a perfect thing to do in the future.

5.2 Flow of the state of the two-level system on the
Bloch sphere when applying quantum trajectory
theory

To get an intuition for how the TLS evolves as we trace out its trajectory, we would like
to visualize the flow of the state. That is, we would like to visualize how the state changes
similarly to visualizing the velocity field of a flow. This also limits what type of systems
we can visualize: The state space of a two-level system can be visualized as a unit sphere,
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known as the Bloch sphere [17, exercise 2.72]. For an n-level system with n > 2 however,
the state space has more than three complex dimensions. We are therefore not able to
visualize the state space in its entirety, even when taking phase factors and normalization
into account.

For a general QTT model of a TLS (i.e. a sequence of n-level environments all in the
same state |E⟩, interaction Hamiltonian HI and unitary evolution U(θ) = exp (−iθHI),
and a chosen measurement basis {|fi⟩}i∈I), we find the flow of the TLS on the Bloch
sphere by calculating dn

dθ
. Here n is the Bloch vector of a state |ψ⟩, where |ψ⟩ is the state

after a step of the QTT model. In other words, we take a state |ϕ⟩, let the state |ϕ⟩ |E⟩
evolve to U(θ) |ϕ⟩ |E⟩, and are then left with the TLS in the state |ψ⟩ after measurement
of the environment. Each possible measurement will give its own Bloch vector, so each
measurement will correspond to a unique flow. We will now calculate the vector flow for
the model presented in the thesis by Longva [13]. Various steps in the calculations and
minor details can be found in appendix D.

5.2.1 State flow for the model proposed by Longva

In the QTT model proposed by Longva [13], we let the environment be in the state |E⟩
and let the interaction Hamiltonian be given by HI± = 1

4
(σx ⊗ σx ± σy ⊗ σy), where we

alternate between the positive and negative interaction between each step. The measure-

ment basis is |fk⟩ =

{
|x+⟩ , k = 0

|x−⟩ , k = 1
. We let n = ⟨ψ|σ|ψ⟩ be the Bloch vector of the

state of the TLS (before evolution). For unitary evolution U(θ) = exp (−iθHI), the Bloch
vector after a measurement of |fk⟩ will in general have the form

nk =
U + θV +O(θ2)√

|U |2 + 2θV · U +O(θ2)
,

where the index k tells us the measurement result and

U = | ⟨fk|E⟩ |2n, V = 2Re

(
i
∑
j

⟨fk|Bj|E⟩∗
〈
ψ|A†

jσ|ψ
〉
⟨fk|E⟩

)
.

Here we assume that the interaction Hamiltonian is written on the form HI± =
∑

j A
±
j ⊗

B±
j for some operators A±

j and B±
j . Taking the derivative with respect to θ we find that

the flow evaluated at θ = 0 is given by
dnk

dθ
=

1

|U |
(V − n(V · n)). (5.8)

Defining A±
1 = 1

4
σx, A±

2 = ±1
4
σy, B±

1 = σx and B±
2 = σy, it is not difficult to show that

U = 1
2
n and

V T =
1

4



(
0, −nz + 1, ny

)
, k = 0 and Hint+(

0, nz − 1, −ny
)
, k = 1 and Hint+(

0, −nz − 1, ny

)
, k = 0 and Hint−(

0, nz + 1, −ny
)
, k = 1 and Hint−

.
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The normalized the Bloch vector, given by equation (5.8), is then

(
dnk

dθ

)T
=

1

2



(
−nynx, −nz + 1− n2

y, ny(1− nz)
)
, k = 0 and Hint+(

nynx, nz − 1 + n2
y, ny(−1 + nz)

)
, k = 1 and Hint+(

nynx, −nz − 1 + n2
y, ny(1 + nz)

)
, k = 0 and Hint−(

−nynx, nz + 1− n2
y, ny(−1− nz)

)
, k = 1 and Hint−

. (5.9)

The details of this argument can be found in section D.1.
We will most often simulate our QTT model, which means that setting θ = 0 would

not work: We need a finite non-zero value for θ. We can still approximate the flow by
assuming it follows equation (5.9), but we would like to have control over the error we
are making. We can therefore compute the full Bloch vector. Although not difficult, it is
time consuming to compute the actual Bloch vector, i.e. without approximating. This is
done in appendix D.2. We then find that the non-normalized Bloch vector is

ñk =
1

2



 (α∗β + αβ∗) cos θ
2

i(αβ∗ − α∗β) cos θ
2
+ |β|2 sin θ

|α|2 − |β|2 cos θ − i(α∗β − αβ∗) sin θ
2

 , k = 0 and Hint+ (α∗β + αβ∗) cos θ
2

i(αβ∗ − α∗β) cos θ
2
− |β|2 sin θ

|α|2 − |β|2 cos θ + i(α∗β − αβ∗) sin θ
2

 , k = 1 and Hint+ (α∗β + αβ∗) cos θ
2

i(αβ∗ − α∗β) cos θ
2
− |α|2 sin θ

|α|2 cos θ − |β|2 − i(α∗β − αβ∗) sin θ
2

 , k = 0 and Hint− (α∗β + αβ∗) cos θ
2

i(αβ∗ − α∗β) cos θ
2
+ |α|2 sin θ

|α|2 cos θ − |β|2 + i(α∗β − αβ∗) sin θ
2

 , k = 1 and Hint−

with norm

∥ñk∥ =
1

2


1− i sin θ

2
[α∗β − αβ], k = 0 and Hint+

1 + i sin θ
2
[α∗β − αβ], k = 1 and Hint+

1 + i sin θ
2
[α∗β − αβ], k = 0 and Hint−

1− i sin θ
2
[α∗β − αβ], k = 1 and Hint−

.
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The derivatives are give by

dñk

dθ
=

1

2



 −(1/2)(α∗β + αβ∗) sin θ
2

−(1/2)i(αβ∗ − α∗β) sin θ
2
+ |β|2 cos θ

|β|2 sin θ − (1/2)i(α∗β − αβ∗) cos θ
2

 , k = 0 and Hint+ −(1/2)(α∗β + αβ∗) sin θ
2

−(1/2)i(αβ∗ − α∗β) sin θ
2
− |β|2 cos θ

|β|2 sin θ + (1/2)i(α∗β − αβ∗) cos θ
2

 , k = 1 and Hint+ −(1/2)(α∗β + αβ∗) sin θ
2

−(1/2)i(αβ∗ − α∗β) sin θ
2
− |α|2 cos θ

−|α|2 sin θ − (1/2)i(α∗β − αβ∗) cos θ
2

 , k = 0 and Hint− −(1/2)(α∗β + αβ∗) sin θ
2

−(1/2)i(αβ∗ − α∗β) sin θ
2
+ |α|2 cos θ

−|α|2 sin θ + (1/2)i(α∗β − αβ∗) cos θ
2

 , k = 1 and Hint−

and

∥ñk∥
dθ

=
1

2


−i cos θ

2
[α∗β − αβ], k = 0 and Hint+

i cos θ
2
[α∗β − αβ], k = 1 and Hint+

i cos θ
2
[α∗β − αβ], k = 0 and Hint−

−i cos θ
2
[α∗β − αβ], k = 1 and Hint−

.

We can put all of this together to find the actual Bloch vector

dnk

dθ
=

dñk

dθ
∥ñk∥ − ñk

d∥ñk∥
dθ

∥ñk∥2
.

The final expressions are not very readable and do not give much insight. The interested
reader can themselves put everything together. What is interesting to note however, is
that if we put θ = 0 we do indeed recover equation (5.9) as we should. It is therefore no
problem to approximate nk with equation (5.9) for small θ.

We now move on to visualizing the flow of the state given in equation (5.9).

5.2.2 Visualization of state flow on the sphere and in the plane

Figure 5.1 shows the flow of the state given in equation (5.9) for the interaction HI+ and
measurement of |↑x⟩. We have here assumed that n =

(
0, 0, 1

)
corresponds to the

state |0⟩, so σz |0⟩ = |0⟩. The state flow for the other interactions and measurements can
be found in appendix D.4. As the Bloch sphere is a three dimensional object, it is not
trivial to interpret the flow from the figure. For interaction HI+ and measurement |↑x⟩,
the state will flow in circles first going towards the state |↓y⟩, then towards the state |1⟩,
next towards the state |↑y⟩, and then finally towards the state |0⟩. We see that the state
moves slowly close to |0⟩, and fast close to |1⟩. For a state at |0⟩ we have n =

(
0, 0, 1

)
.

Plugging this into the flow equation (5.9) gives dn
dθ

= 0. It is interesting to note that if
the state is not exactly |0⟩, but closer to |↓y⟩, then it will actually move around the entire
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Figure 5.1: The flow of the state given by equation (5.9) for k = 1 andHI+ , i.e. interaction
Hamiltonian HI+ and environment measured to be in the state |↑x⟩. The flow goes in
circles always ending up at the state |0⟩. The state |0⟩ is a fixed point where there is no
flow.
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Figure 5.2: Stereographic projection of the flow of the state given by equation (5.9) for
k = 1 and HI+ , i.e. interaction Hamiltonian HI+ and environment measured to be in the
state |↑x⟩. This is the same flow as depicted in Figure 5.1. We have here used n = (1, 0, 0)
as the north pole and only show the south half of the sphere. We will get the exact same
figure using n = (−1, 0, 0) as the north pole and depicting only the south half of the
sphere in this case. It is now easier to see the path which a state flows: It will move in
a circle towards the state |0⟩ where it stops completely. The flow is fast close to |1⟩ and
slow close to |0⟩.

Bloch sphere to reach the state |0⟩. That is, it will not take the shortest path to |0⟩. The
state will instead evolve around the Bloch sphere. The figures for the other interactions
and measurements show the same trend, but the flow changes direction and fixed point.

As we noted above, interpreting a three dimensional flow is not always obvious. Since
the surface of a sphere is a two dimensional object, we will instead project the surface
down to the plane. The procedure for doing this is explained in appendix D.3.

The first projection we have done is a stereographic projection [7, chapter 1, section
3]. The calculations and explenation for stereographic projection is given in appendix
D.3.1. Figure 5.2 shows how the flow in Figure 5.1 with nx ≥ 0 is mapped down to the
unit disc through a stereographic projection. The flow on the Bloch sphere at nx ≤ 0
turns out to be the exact same after projecting. It is now easier to see that a state will
go in a circle and end up at the fixed point |0⟩. The flow is slow close to the state |0⟩ and
increases until it reaches a maximum at |1⟩. For the other interactions and measurements
we see a similar trend. Figures for the other interactions and measurements can be found
in appendix D.4.

Next we did Winkel tripel projection [10]. The calculations and explenation for the
Winkel tripel is given in appendix D.3.2 and D.3.3. The Winkel tripel uses a parameter
φ0 which specifies the line of latitude that has true scale. Figure 5.2 shows how the flow
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Figure 5.3: Winkel tripel projection of the flow of the state given by equation (5.9) for
k = 1 and HI+ , i.e. interaction Hamiltonian HI+ and environment measured to be in the
state |↑x⟩. This is the same flow as depicted in Figure 5.1 and we have used cos (φ0) = 2/π,
where φ0 is the standard parallel for the equirectangular projection (see appendix D.3.3
for full explanation). We now get the full flow, contrary to the stereographic projection
we showed in Figure 5.2. We again see the circular flow in the middle of the figure. The
flow to the left in the figure also follows a circular motion which continues at the right
side.

46



in Figure 5.1 for cos (φ0) = 2/π. Again, we see in the middle that a state will flow in a
circle towards the state |0⟩. On each side of the figure we see how a state will again flow
in a circle towards the state |0⟩, but this time we must understand that the states jumps
from the left edge to the right edge of the figure. The flow is slow close to the state |0⟩ and
increases until it reaches a maximum at |1⟩. For the other interactions and measurements
we see a similar trend. Figures for the other interactions and measurements can be found
in appendix D.4.

5.3 Dimension analysis of the stochastic processes giv-
ing rise to the same Lindblad equation

There are two main ideas we want to explore:

• Are we able to describe the space of Hamiltonians giving rise to the same dynamics
governed by the the same Lindblad equation.

• Does there exist different Hamiltonians and measurement basis which gives the same
stochastic process?

For a given Lindblad operator L we are interested in knowing all sets {H, |fE⟩}, which
generates all possible paths (i.e. stochastic processes) that give the same result as the
Lindblad equation (see Figure 5.4). Note that eiϕL will give the same Lindblad equation
as L:

dρ

dt
= −i[HS, ρ] +

1

2

[
2(eiϕL)ρ(eiϕL)† − (eiϕL)†(eiϕL)ρ− ρ(eiϕL)†(eiϕL)

]
= −i[HS, ρ] +

1

2

[
2LρL† − L†Lρ− ρL†L

]
.

We have not taken this into account as of yet, but it means that even more stochastic
processes can be thought of as giving the same dynamics as the Lindblad equation.

We restrict ourselves to look at the situation when both system and environment are
two-level systems. Let a Lindblad operator of the form L =

√
θ2λ
δt

∑
i µiσi be given. We

know H =
∑

j Aj ⊗ Bj. We choose to work in the basis {1, σi : i = 1, 2, 3}, and as we
are not interested in term of the form 1⊗σi (evolution concerning only the environment)
or σi ⊗ 1 (evolution concerning only the system), the Hamiltonian is given by H =∑3

i,j=1 hijσi ⊗ σj. As we want the given Lindblad operator L we choose Ai = σi and
Bi =

∑
j hijσj.

We can always assume the environment is in the state |E⟩ = |0⟩. If this was not the
case, we know that |E⟩ = U |0⟩ with U = |E⟩ ⟨0|+

∣∣E⊥〉 ⟨1|. Hence, Mij =
〈
E|B†

jBi|E
〉
=〈

0|U †B†
jBiU |0

〉
and we can thus define B′

i = BiU =
∑

j h
′
ijσj. We then have, since
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Stochastic processes B, holding H
constant and varying basis |fE⟩.

A point corresponds to
a stochastic process B,
generated by the tuple (H, |fE⟩).

A stochastic process B,
generated by two different tuples,(
H1,

∣∣∣f (1)
E

〉)
and

(
H2,

∣∣∣f (2)
E

〉)
.

Figure 5.4: Hypersurface of all stochastic processes B “equivalent” to the Lindblad equa-
tion with a given Lindblad operator L. Each process is generated by a Hamiltonian H
and measurement basis {|fE⟩}. For now, we assume that environment is a TLS; This
means that we only need to specify |fE⟩, as the basis then will be given by {|fE⟩ , |fE⟩⊥}.
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B†
i = Bi and σkσl = δkl1+ iϵklmσm,

⟨0|BjBi|0⟩ =

〈
0|(
∑
k

hjkσk)(
∑
l

hilσl)|0

〉
=
∑
kl

⟨0|hjkhilσkσl|0⟩

=
∑
kl

hjkhil(δkl1+ iϵklm ⟨0|σm|0⟩) =
∑
k

hjkhik + i(hj1hi2 − hj2hi1),

where we have used that ⟨0|σx|0⟩ = ⟨0|σy|0⟩ = 0 and ⟨0|σz|0⟩ = 1. Furthermore,

M = λ |µ⟩ ⟨µ| = λ

|µ1|2 µ1µ
∗
2 µ1µ

∗
3

µ2µ
∗
1 |µ2|2 µ2µ

∗
3

µ3µ
∗
1 µ3µ

∗
2 |µ3|2


as well as Mij = ⟨0|BjBi|0⟩ =

∑
k hjkhik + i(hj1hi2 − hj2hi1). As L is known, M is also

known. Hence, we have nine equation for the nine unknowns hij: We demand that M is
equal to ∑

k h1kh1k
∑

k h2kh1k + i(h21h12 − h22h11)
∑

k h3kh1k + i(h31h12 − h32h11)∑
k h1kh2k + i(h22h11 − h21h12)

∑
k h2kh2k

∑
k h3kh2k + i(h31h22 − h32h21)∑

k h1kh3k + i(h32h11 − h31h12)
∑

k h2kh3k + i(h32h21 − h31h22)
∑

k h3kh3k

 .

(5.10)

5.3.1 Example: The model proposed by Longva

In his thesis [13], Longva shows that the Hamiltonian HI± = 1
4
(σx ⊗ σx ± σy ⊗ σy)

corresponds to the Lindblad operator L± = σ± = 1
2
(σx ± iσy) with rate Γ± =

√
θ2

δt
in the

QTT framework. We will now start with the Lindblad operator L = σ+ = 1
2
(σx ± iσy)

and rate Γ = θ2

δt
2, and see exactly which Hamiltonians H corresponds to L. From the

QTT framework we demand (see section 3.4)

Γ =
θ2

δt
λ, L =

∑
j

µjAj,

where λµµ† = M and Mij =
〈
ψ
∣∣∣B†

jBi

∣∣∣ψ〉. As we noted above, we will try the repre-
sentation HI =

∑
ij hijσi ⊗ σj =

∑
j Aj ⊗ Bj with Aj = σj and Bj =

∑
iHijσi. Then

µ ∝
(
1, i, 0

)T , and thus µ = 1√
2

(
1, i, 0

)T and λ = 2. This gives

M = λ |µ⟩ ⟨µ| =

1 −i 0
i 1 0
0 0 0

 .

Setting M equal to equation (5.10), we go through the process of solving for the different
values of hij. This is done in appendix E. We find that the Lindblad equation with
Lindblad operator L and rate Γ must come from a Hamiltonian on the form

H = h(σx ⊗ σx + σy ⊗ σy)±
√
1− h2(σx ⊗ σy − σy ⊗ σx),
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where h ∈ [−1, 1]. This means that the subspace of the Hamiltonians generating this
Lindblad operator is one dimensional, even though we have nine possible parameters to
tweak and only six equation to satisfy.

From the equations in (5.10), we see that we have nine non-linear equations with nine
unknowns. Furthermore, for the Lindblad operator we have three complex numbers µi
and one real number λ. Since ∥µ∥ = 1, we should have six numbers that determines the
matrix M . It therefore sounds like we have nine unknown parameters with six numbers
determined by them. This should give us three independent parameters. However, we
have seen from the above example that we can find at least one case where we only have
a single degree of freedom. It is not difficult to find other cases with decreased degree
of freedom. Take for instance L = 0. This can only be achieved by hij = 0 for all i, j.
This is due to the diagonal equations

∑
j h

2
ij = 0 and that hij ∈ R. As we have seen,

the diagonal equations are quite restricting whenever they are equal to zero. Take for
instance

∑
j h

2
2j =

∑
j h

2
3j = 0 and

∑
j h

2
1j = λ. Then h2j = h3j = 0 for j = 1, 2, 3 and

we get a two parameter family of solutions, h11 ∈ [−λ, λ], h12 ∈ [|h11| − λ, λ− |h11|] and
h13 = ±

√
1− h211 − h212.

As far as we can see, there is no obvious way of telling the dimensionality of solutions
for a given choice of Lindblad operator.
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Chapter 6

Discussion

When we began working on this thesis, our goal was to continue the work by Longva [13]
and find an analytical expression for the synchronization he observed numerically. As we
saw in section 5.1 we found a master equation for the probability density of state of a TLS
modeled the same way as in the thesis by Longva. Our idea is to use the same approach
as when deriving the diffusion equation, and solve a differential equation instead.

Although we have not yet found an analytical expression for synchronization in the
model given by Longva, we have developed the groundwork to do so. In section 3.5 we
have given several results making computation easier and building understanding for the
QTT framework. We saw that for a QTT model with two-level environment, we can
always choose the environment to be in the state |0⟩. This means that we can remove the
freedom in the choice of the environment state. We also saw that for a TLS, to achieve
small jumps of the system state when measuring the environment, we should choose a
measurement basis not containing the environment state |E⟩. We did a specific example
where the environment was in the state |0⟩. For this example we saw that choosing the
measurement basis to be {|0⟩ , |1⟩} would occasionally result in large jumps of the system
state. Next, we showed that an two-level can only give a single Lindblad operator in the
QTT framework. For an n-level environment we saw that the matrix M , which was used
to determine the Lindblad operators, would maximally give n − 1 Lindblad operators
whenever we could argue that it was diagonalized. We then went on to show how we can
recover the Lindblad equation when we have a system Hamiltonian HS ̸= 0. This was
not done in the article by Brun [4], and we saw that we need the interaction Hamiltonian
to have a specific form as to not pick up an extra term not in the Lindblad equation.
After this, we showed that the representation of the interaction Hamiltonian does not
matter. In other words, both HI =

∑
j Aj ⊗ Bj and HI =

∑
j Cj ⊗ Dj will give the

same Lindblad equation. This also means that for a QTT model of a TLS with two-level
environment, the representation HI =

∑3
i=1 hijσi ⊗ σj can always be chosen. Finally, we

ended by showing an easy way of determining the interaction Hamiltonian whenever we
had a specific Lindblad operator in mind. This was shown when we had a TLS and a
two-level environment.

Going back to chapter 5 visualized how the state of a TLS, modeled the same way
as in the thesis by Longva, would flow on the Bloch sphere. We realized that a three-
dimensional flow is not trivial to interpret and therefore showed how we could map the
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flow on the Bloch sphere down to the plane. We gave both a stereographic projection as
well as a Winkel tripel projection. From these projections it is easy to see that the model
chosen by Longva results in the state flowing in circles on the Bloch sphere for all four
different flow regimes. If we looks at a single flow in particular, we see that it flows to a
fixed point. The flow is slow close to this point, and fast the further away from the point
we are.

Lastly, we realized how several interaction Hamiltonians can give rise to the same
Lindblad equation. We looked at the model proposed by Longva in particular and found
all the possible Hamiltonians giving the same Lindblad equation, as the model by Longva.
We saw that the dimensionality of the space of Hamiltonians giving the same Lindblad
equation is not necessarily given by counting the number of free variables. As and example,
for a TLS with two-level environment, the space of Hamiltonians can have dimension 0,
1 and 2, depending on the chosen Lindblad equation.

6.1 Future work
Now that we have laid down the groundwork, the next thing to look at would be a solution
to the master equation (5.5) given in section 5.1. We would need to take the limit when
the interaction time goes to zero. When doing this for the random walk/diffusion case,
we need to make sure that the probabilities have a specific form (see appendix C.2). This
should also be the case for our master equation. The restriction on the probabilities will
most likely turn out naturally when taking the limit. If we manage to find the limit when
time goes to zero, we are left with a differential equation for the probability density. We
would then need to solve this differential equation. This differential equation would also
hopefully give insight to the limit cycle of the system. When all of this is done, we will
still need to add the system Hamiltonian HS. Furthermore, to observe synchronization,
we would also need to add the signal Hamiltonian described by Longva. We can then
compare our results with those Longva obtain numerically.

There are many minor details we would have liked to explore. These are not necessarily
important, but interesting nonetheless:

• Although intuitive, it would be nice to confirm that QTT does indeed give a Markov
process. We say intuitive as each step in a QTT model is determined from the
current state. There should therefore be no dependence on the previous state of the
system, i.e. we have a Markovian process.

• The QTT framework described in the article by Brun [4] seem to suggest that the
matrix M , defined in section 3.4, should be positive. Since the eigenvalues of the
matrix determines the rate, it would make sense that they are positive. However,
this was never shown or explicitly claimed in the article by Brun.

• In the QTT framework we say that all environment states are in the same state |E⟩,
but experimentally we know that there will be noise which can interfere with this
assumption. It could therefore be an idea to build the framework up again, but this
time with a stochastic element in each environment state. We could then see how
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this will change the dynamics of the system, and if we still recover the Lindblad
equation.

• In both the article by Rolet and Bruder [23], and the article by Parra-López and
Bergli [18], it is claimed that the solution to the Lindblad equation is a fixed point.
Although this is true, it is not shown that this fixed point in attractive in the sense
that all other density matrices will converge to this fixed point. This means that
neither article has excluded the possibility that the dynamical system given by their
Lindblad equation has a valid limit cycle. It would therefore be interesting to see if
it is possible to determine if there is a valid limit cycle.

• In the QTT model proposed by Longva [13], he determines the rates of the Lindblad
equation by looking at excitations in a field. This lets him determine the rates by
the temperature. This is a valid approach, but it implicitly assumes that the envi-
ronment can be modeled as a field. However, he know exactly how the environment
is modeled: It is described by two-level systems all in the state |0⟩, and not a field.
It would therefore make sense to find the rates determined by this environment
instead.

• It feels intuitive that switching between interaction Hamiltonian HI± = 1
4
(σx ⊗

σx ± σy ⊗ σy) should give the same Lindblad equation as if we chose an interaction
Hamiltonian for a four-level system instead. It is therefore interesting to verify that
this is actually the case.

• In the beginning of chapter 3 we calculated the entropy of different measurements.
As of now, we have not calculated the entropy for the QTT model. We could
therefore get new insight from the entropy. For instance, we could verify that our
choice of measurement basis gives small jumps, and that it is the best basis to
choose.

• We discuss in appendix D.3 how our choice of mapping is not the only one. It is
possible there are better ways of visualizing the flow by projecting it down to a
plane. What is more, we saw that when computing the Jacobian of the coordinate
transform, we let the radius r of the Bloch sphere vary, even though we knew r = 1.
We would therefore like to find out what we actually mean when we choose to let r
be free, before we choose r = 1.
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Appendix A

Rotating frame in quantum mechanics
and entropy calculations

A.1 Unitary operator and rotations
We will here who that a unitary operator on a two-level system will always correspond to
a rotation around an axis of rotation n on the Bloch sphere. This is (as we will see later
on) the same as showing that the most general unitary operator on a single q-bit can be
written as

U = 1 cos (φ) + in · σ sin (φ) = eiφn·σ, (A.1)

modulo an irrelevant overall phase, where n = (nx, ny, nz) is a three-vector with unit
norm and σ = (σx, σy, σz) are the Pauli matrices. We start by observing that

(n · σ)2 =nx(nxσxσx + nyσxσy + nzσxσz) + ny(nxσyσx + nyσyσy + nzσyσz)

+ nz(nxσzσx + nyσzσy + nzσzσz)

=(n2
x + n2

y + n2
z)I + nxny{σx, σy}+ nxnz{σx, σz}+ nzny{σz, σy}

=1,

so

eiφn·σ =
∞∑
k=0

1

k!
(iφn · σ)k =

∞∑
k=0

(−1)k

(2k)!
φ2k(n · σ)2k + i

∞∑
k=0

(−1)k

(2k + 1)!
φ2k+1(n · σ)2k+1

= 1 cos (φ) + in · σ sin (φ).

Thus the right hand side of equation (A.1) is shown.
We know that any unitary operator U can be written as U = eiH (see theorem 2.5.8

in Murphy [16]). It is not hard to check that span{1, σx, σy, σz} = B(C2)sa, i.e. the
hermitian (same as self-adjoint) operators on the Hilbert space we are working on, C2. (If

H =

(
a b1 + ib2

b1 − ib2 c

)
, a, b1, b2, c ∈ R,

choose numbers c0 = a+c
2

, c3 = a−c
2

, c1 = b1 and c2 = −b2, and observe that H =

c01 + c1σx + c2σy + c3σz.) Let φ :=
√
c21 + c22 + c23 and define n = (c1, c2, c3)/φ. Then

55



∥n∥ = 1 and, as [I, σi] = 0, U = eic0eiφn·σ. This was exactly what we wanted to show
in equation (A.1). Next, we will see that this actually corresponds to a rotation of 2φ
around the axis n. First a direct and convoluted approach, and then an abstract but
perhaps more elegant way.

Rodrigues’ rotation formula

We know that the density operator of a two-level system can be written as

ρ =
1

2
(1+ r · σ)

where σ = (σx, σy, σz) = (σ1, σ2, σ3) is a vector containing the Pauli matrices, and r is the
Bloch vector, and with time-evolution UρU † [17, section 2.4 and exercise 2.72]. We will
calculate the time-evolution for U = eiφn·σ directly and end up with Rodrigues’ rotation
formula [5] (called rotation formula in [8]),

UρU † = (1 cos (φ) + in · σ sin (φ))

(
1+ r · σ

2

)
(1 cos (φ)− in · σ sin (φ)) .

Using the relation σiσj = δij1+ iϵijkσk, we begin by calculating

(n · σ)(r · σ) =

(r·n)1︷ ︸︸ ︷
(r1n1σ

2
1 + r2n2σ

2
2 + r3n3σ

2
3)+(r1n2

iσ3︷︸︸︷
σ1σ2+r2n1

−iσ3︷︸︸︷
σ2σ1)

+ (r1n3 σ1σ3︸︷︷︸
−iσ2

+r3n1 σ3σ1︸︷︷︸
iσ2

) + (r2n3 σ2σ3︸︷︷︸
iσ1

+r3n2 σ3σ2︸︷︷︸
−iσ1

)

=(r · n)1+ i [(r2n3 − r3n2)σ1 − (r1n3 − r3n1)σ2 + (r1n2 − r2n1)σ3]

=(r · n)1+ i(r × n) · σ,

which gives

[(n ·σ)(r ·σ), (r ·σ)(n ·σ)] = (r ·n)1+ i(r×n) ·σ− (r ·n)1− i(n×r) ·σ = 2i(r×n) ·σ

and

(n · σ) (r · σ) (n · σ) = (n · σ) ((r · n)1+ i(r × n) · σ)
= (r · n) (n · σ) + i (n · σ) ((r × n) · σ)

= (r · n) (n · σ) + i

 r·(n×n)=0︷ ︸︸ ︷
(n · (r × n))1+ i

(n·n)r−(n·r)n︷ ︸︸ ︷
(n× (r × n)) ·σ


= (r · n) (n · σ)− (((n · n)r − (n · r)n) · σ)
= 2(r · n) (n · σ)− (r · σ) .

Here we have used that a · (b×c) = b · (c×a) = c · (a×b), n×n = 0, and a× (b×c) =
(a · c)b− (a · b)c for three dimensional vectors a, b, c [14].
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Hence,

U (r · σ)U † = (1 cos (φ) + in · σ sin (φ)) (r · σ) (1 cos (φ)− in · σ sin (φ))

= (r · σ) cos2 (φ) + i sin (φ) cos (φ)[(n · σ)(r · σ), (r · σ)(n · σ)]
+ (n · σ) (r · σ) (n · σ) sin2 (φ)

= (r · σ) cos2 (φ) + 2i2 sin (φ) cos (φ)(r × n) · σ
+ (2(r · n) (n · σ)− (r · σ)) sin2 (φ)

= (r · σ) cos (2φ)− sin (2φ)(r × n) · σ + 2(r · n) (n · σ) sin2 (φ)

= (r cos (2φ) + (1− cos (2φ))(r · n)n+ (r × n) sin (2φ)) · σ.

The expression which is dotted with σ is sometimes referred to as Rodrigues’ rotation
formula [5], and corresponds to a 2φ rotation of r around n.

n× r

n

r⊥

r
r∥

rrot

2φ

Figure A.1: Help figure for Rodrigues’ rota-
tion formula. The vector r is rotated by 2φ
around n. r⊥ and r∥ are the perpendicular
and the parallel component of r, respectively,
when compared to n. rrot is the rotation of
r around n.

To see this we first decompose r into
components parallel and perpendicular to
n,

r = r∥ + r⊥,

where the component parallel to n is r∥ =
(r ·n)n, and the component perpendicular
to n is

r⊥ = r−r∥ = r−(r ·n)n = −n×(n×r).

(To keep track of the different variables and
what happens to them, we have tried to
visualize them in Figure A.1.) Both n ×
r and n × (n × r) can be thought of as
r⊥, but rotated anticlockwise by π

2
and π

radians, respectively about n, so that their
magnitudes are equal to r⊥. Denoting the

rotated vector r by rrot, we know that the component parallel to n stays constant, i.e.
r∥,rot = r∥. The perpendicular component will however be rotated by

r⊥,rot = cos (2φ)r⊥ + sin (2φ)n× r⊥.

Moreover, since n and r∥ are parallel, we have n× r∥ = 0 so

n× r⊥ = n× (r − r∥) = n× r − n× r∥ = n× r.

Now the full rotated vector is
rrot = r∥,rot + r⊥,rot.

Hence

rrot = r∥ + cos (2φ)r⊥ + sin (2φ)n× r

= r∥ + cos (2φ)(r − r∥) + sin (2φ)n× r

= cos (2φ)r + (1− cos (2φ))r∥ + sin (2φ)n× r

= cos (2φ)r + (1− cos (2φ))(n · r)n+ sin (2φ)n× r,

which is the formula we were after.
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Another approach

We will now take another approach. Assume that n =
(
0, 0, 1

)T . Then we can compute
that

U (r · σ)U † = (r cos (2φ) + (1− cos (2φ))(r · n)n+ (r × n) sin (2φ)) · σ

=

rxry
rz

 cos (2φ) +

 0
0
rz

 (1− cos (2φ)) +

 ry
−rx
0

 sin (2φ)

 · σ

=

rx cos (2φ) + ry sin (2φ)
ry cos (2φ)− rx sin (2φ)

rz

 · σ,

which we recognize as a rotation of 2φ around the z-axis. For a general n, we just create
an orthonormal coordinate system nx, ny, nz, with nz := n. The rotation will then look
like

U (r · σ)U † =

rx cos (2φ) + ry sin (2φ)
ry cos (2φ)− rx sin (2φ)

rz

 ·

σnx

σny

σnz

 ,

where σni
:= ni · σ.

A.2 Rotation of the Lindblad equation
We often change reference frame to rotating reference frames. We want to see what the
Lindblad equation looks like in the rotated reference frame. Let therefore T = eiφn·σ be
the rotation we want, and recall the Lindblad equation [11, chapter 15]

ρ̇ = − i

ℏ
[H, ρ] +

∑
k

Γk
2
D[Lk]ρ,

where ρ = 1
2
(1+ r · σ) is our mixed state, ρ̇ = dρ

dt
is the time derivative, H is the system

Hamiltonian, ℏ is Planck’s constant divided by 2π, Lk is the k-th Lindblad operator, Γk
is the rate of the k-th Lindblad operator, and D[Lk]ρ := 2LkρL

†
k − L†

kLkρ− ρL†
kLk is the

Lindblad superoperator.
The mixed state in the rotated frame is given by TρT † =: ρ′, and hence

dρ′

dt
= Ṫ ρT † + T ρ̇T † + TρṪ †.

We calculate

d

dt
e±iφ(t)n·σ =

d

dt
(1 cosφ(t)± in · σ sinφ(t)) = −1φ̇(t) sinφ(t)± in · σφ̇(t) cosφ(t)

= ±iφ̇(t)n · σ (1 cosφ(t)± in · σ sinφ(t)) = ±iφ̇(t)n · σe±iφ(t)n·σ,
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where we have used that (n · σ)2 = 1. Thus

Ṫ ρT † + TρṪ † = iφ̇(t)n · σ

=ρ′︷ ︸︸ ︷
TρT †−iφ̇(t)n · σ

=ρ′︷ ︸︸ ︷
TρT † = iφ̇(t)[n · σ, ρ′].

For the final term, T ρ̇T †, we need to calculate T [H, ρ]T † and T (D[Lk]ρ)T
†. Observe that

we for any operator O have

TOρT † = TOT †TρT † = TOT †ρ′,

and likewise TρOT † = ρ′TOT † since TT † = T †T = 1. This means that T [H, ρ]T † =
[THT †, ρ′] and

T (D[Lk]ρ)T
† = 2TLkT

†ρ′TL†
kT

† − TL†
kT

†TLkT
†ρ′ − ρ′TL†

kT
†TLkT

†.

The rotated Lindblad equation is therefore

ρ̇′ =iφ̇(t)[n · σ, ρ′]− i

ℏ
[THT †, ρ′]

+
∑
k

Γk
2

(
2TLkT

†ρ′TL†
kT

† − TL†
kT

†TLkT
†ρ′ − ρ′TL†

kT
†TLkT

†
)
.

Let us now calculate a specific example from the article by Parra-López and Bergli
[18]: Let H = H0 +Hsignal, where H0 = ℏ

2
ω0σz and Hsignal = iℏ ϵ

4
(eiωtσ− − e−iωtσ+), and

σ± = 1
2
(σx ± iσy). Let the original Lindblad equation be

ρ̇ = − i

ℏ
[H, ρ] +

Γg
2
D[σ+]ρ+

Γd
2
D[σ−]ρ,

where Γg and Γd models gain and damping rates, respectively. Finally, let the rotation
be given by T = ei

ω
2
σzt. Then, using Rodrigues’ rotation formula found in appendix A.1,

Tσ±T
† = T

1

2
(σx ± iσy)T

† =
1

2
(TσxT

† ± iTσyT
†)

=
1

2

1
0
0

 cos (ωt)−

0
1
0

 sin (ωt)

 · σ ± i

0
1
0

 cos (ωt) +

1
0
0

 sin (ωt)

 · σ


=

1

2
([σx cos (ωt)− σy sin (ωt)]± i [σy cos (ωt) + σx sin (ωt)])

=
1

2
(cos (ωt)± i sin (ωt))σx ±

1

2
i (σy cos (ωt)± i sin (ωt))σy

= e±iωtσ±,

and hence T (D[σ±]ρ)T
† = D[σ±]ρ

′. This calculation also gives

THT † = T

(
ℏ
2
ω0σz + iℏ

ϵ

4
(eiωtσ− − e−iωtσ+)

)
T † =

ℏ
2
ω0σz + iℏ

ϵ

4
(σ− − σ+) =

ℏ
2
ω0σz + iℏ

ϵ

2
σy.

Putting everything together, we get

ρ̇′ = i
ω

2
[σz, ρ

′]− i

ℏ

[
ℏ
2
ω0σz + iℏ

ϵ

2
σy, ρ

′
]
+

Γg
2
D[σ+]ρ

′ +
Γd
2
D[σ−]ρ

′

= − i

2
[∆σz + ϵσy, ρ

′] +
Γg
2
D[σ+]ρ

′ +
Γd
2
D[σ−]ρ

′,

where we have defined ∆ := ω0 − ω.
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A.3 Shannon entropy for a two-level system

Projective measurement

The Shannon entropy for a (finite) discrete probability distribution with probabilities
(p1, . . . , pn) is given by [17, section 11.1]

S = −
n∑
i=1

pi log2 pi.

If we measure an observable for a two-level system, we will mathematically apply one of
the two (orthogonal) projection operators P1 and P2 := 1− P1. The projection operator
will be P1 = |ϕ⟩ ⟨ϕ| where |ϕ⟩ is an eigenstate of the observable. The probability for
outcome 1 and 2 can be written as p1 and p2 := 1 − p1, respectively. Thus the Shannon
entropy is given by

Sproj = −p1 log2 p1 − p2 log2 p2 = −p1 log2 p1 − (1− p1) log2 (1− p1).

Before we analyze the Shannon entropy, we show that loga x = logb x
logb a

for x, a, b ∈ (0,∞):
As loga x = c for some c ∈ R, we have

x = ac

logb a
c = logb x

c logb a = logb x

c =
logb x

logb a
.

Hence, loga x = logb x
logb a

, and for b = e and a = 2 we get log2 x = lnx
ln 2

.
We therefore have

Sproj = −p1
ln p1
ln 2

− (1− p1)
ln (1− p1)

ln 2
=

1

ln 2

[
p1 ln

1− p1
p1

− ln (1− p1)

]
. (A.2)

We calculate the derivatives
dSproj

dp1
=

1

ln 2

[
1

1− p1
+ ln

1− p1
p1

+ p1

(
− 1

1− p1
− 1

p1

)]
=

1

ln 2
ln

1− p1
p1

and
d2Sproj

dp21
=

1

ln 2

(
− 1

1− p1
− 1

p1

)
= − 1

p1(1− p1) ln 2
.

The extreme point is given by dSproj
dp1

= 0, i.e. p1 = p2 = 1
2
. As p1 ∈ [0, 1], we see that

d2Sproj
dp21

< 0 for p1 ∈ (0, 1), which means that the Shannon entropy is strictly concave.
Furthermore,

Sproj(p1 = 0) = Sproj(p1 = 1) = − 1

ln 2
lim
p1→0

p1 ln p1 = − 1

ln 2
lim
p1→0

ln p1
1/p1

= − 1

ln 2
lim
p1→0

1/p1
−1/p21

= 0,

where we have used L’Hôpital’s rule, and

Sproj(p1 = 1/2) =
1

ln 2

[
1

2
ln

1− 1
2

1
2

− ln

(
1− 1

2

)]
= − 1

ln 2
ln

1

2
= 1.
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POVM measurement

We look at the examples given in section 3.3. The first example of a POVM was {E1, E2}
where

E1 = |0⟩ ⟨0|+ (1− ϵ) |1⟩ ⟨1| , E2 = ϵ |1⟩ ⟨1|

and ϵ≪ 1. To see that they are positive operators, we let |ψ⟩ = α |0⟩+ β |1⟩ be a general
state of a TLS and compute [17, section 2.1.6]

p1 = ⟨ψ|E1|ψ⟩ = |α|2 + (1− ϵ)|β|2 = 1− ϵ|β|2 ≥ 0

p2 = ⟨ψ|E2|ψ⟩ = ϵ|β|2 ≥ 0.

The Shannon entropy is calculated by

SPOVM = −(1− ϵ|β|2) log2 (1− ϵ|β|2)− ϵ|β|2 log2 (ϵ|β|2)

= − 1

ln 2

[
(1− ϵ|β|2) ln (1− ϵ|β|2) + ϵ|β|2 ln (ϵ|β|2)

]
=

1

ln 2

[
ϵ|β|2 ln

(
1− ϵ|β|2

ϵ|β|2

)
− ln (1− ϵ|β|2)

]
. (A.3)

For 0 < x ≤ 2 we have lnx =
∑∞

n=1(−1)n+1 (x−1)n

n
= (x − 1) +O((x − 1)2), and thus we

can approximate

SPOVM ≈ − 1

ln 2

[
(1− ϵ|β|2)(1− ϵ|β|2 − 1) + ϵ|β|2 ln (ϵ|β|2)

]
= −ϵ|β|

2

ln 2

− ≈1︷ ︸︸ ︷
(1− ϵ|β|2)+ ln (ϵ|β|2)


≈ ϵ|β|2

ln 2

[
1− ln (ϵ|β|2)

]
.

Since limx→0 x lnx = 0, we have SPOVM ≪ 1 for ϵ≪ 1. We can also see that the Shannon
entropy is small by finding the maximum information: Comparing equation (A.2) for Sproj

with equation (A.3) for SPOVM, we see that they are equal if we put p1 = ϵ|β|2. Thus

dSPOVM

d|β|2
=
dSPOVM

d(ϵ|β|2)
d(ϵ|β|2)
d|β|2

=
ϵ

ln 2
ln

1− ϵ|β|2

ϵ|β|2
.

Since 0 ≤ |β|2 ≤ 1 and we assume ϵ ≪ 1, we can safely assume that |β|2 < 1
2ϵ

, which
means that SPOVM has maximum and minimum for |β|2 = 0, 1, i.e.

SPOVM(|β|2 = 0) = − 1

ln 2
lim

|β|2→0
ϵ|β|2 ln (ϵ|β|2) = 0,

SPOVM(|β|2 = 1) = −(1− ϵ) log2 (1− ϵ)− ϵ log2 ϵ.

Since 0 < − ln (1− ϵ) ≪ 1 and limϵ→0 ϵ ln ϵ = 0, we can again conclude that the informa-
tion gained is very small.
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The small information gain is good, but we need to know where the state ends up
after measurement. This is unfortunately one of the downsides with a POVM. Following
postulate 3 in the book by Nielsen and Chuang [17], we need to build up each POVM
with measurement operators. In his article [4], Brun states that this can be done by
knowing a set of operators Ank such that each element in a POVM {En}n is given by
En =

∑
k A

†
nkAnk. As A†A is a positive operator for any operator A [17, exercise 2.25],

the construction Brun suggest will be valid as long as
∑

n

∑
k A

†
nkAnk = 1. However,

it is not obvious how a measurement should (mathematically) be done (at least not in
the context given in the literature [17][20][22][11]. On the other hand, we do know that
any positive operator can be written uniquely as the square of another positive operator,
En = AnAn whereAn =

√
En is positive [16, theorem 2.2.1]. Following the book by Nielsen

and Chuang [17, section 2.2.6], the set {An} describes a measurement with POVM {En},
and the state after measurement will be

|ψ⟩n =
An |ψ⟩√
⟨ψ|En|ψ⟩

.

For the POVM in our example, it is easy to check that

A1 = |0⟩ ⟨0|+
√
1− ϵ |1⟩ ⟨1| , A2 =

√
ϵ |1⟩ ⟨1| ,

are positive and the square root of E1 and E2, respectively, and hence the state after
measurement will be either

|ψ⟩1 =
A1 |ψ⟩√
⟨ψ|E1|ψ⟩

=
α |0⟩+

√
1− ϵβ |1⟩√

1− ϵ|β|2
or

|ψ⟩2 =
A2 |ψ⟩√
⟨ψ|E2|ψ⟩

=

√
ϵβ |1⟩√
ϵ|β|

≃ |1⟩ (up to a phase factor)

with probability p1 = 1− ϵ|β|2 and p2 = ϵ|β|2, respectively. On average the state changes
only slightly, but every so often, we expect a large jump to the state |1⟩.

The second example is the POVM {E ′
1, E

′
2} where

E ′
1 =

1 + ϵ

2
|0⟩ ⟨0|+ 1− ϵ

2
|1⟩ ⟨1| , E ′

2 =
1− ϵ

2
|0⟩ ⟨0|+ 1 + ϵ

2
|1⟩ ⟨1|

with square roots

A′
1 =

√
E′

1 =

√
1 + ϵ

2
|0⟩ ⟨0|+

√
1− ϵ

2
|1⟩ ⟨1| , A′

2 =
√
E′

1 =

√
1− ϵ

2
|0⟩ ⟨0|+

√
1 + ϵ

2
|1⟩ ⟨1|

and ϵ ≪ 1. It is again easy to see that A′
1 and A′

2 are positive and the square root of
E ′

1 and E ′
2, respectively. We again let |ψ⟩ = α |0⟩+ β |1⟩ be a general state of a TLS and

compute the probabilities

p′1 = ⟨ψ|E ′
1|ψ⟩ =

1 + ϵ

2
|α|2 + 1− ϵ

2
|β|2 = 1 + ϵ(|α|2 − |β|2)

2
,

p′2 = ⟨ψ|E ′
2|ψ⟩ =

1− ϵ

2
|α|2 + 1 + ϵ

2
|β|2 = 1 + ϵ(|β|2 − |α|2)

2
.
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The Shannon entropy is

S′
POVM =− 1 + ϵ(|α|2 − |β|2)

2

log2 (1+ϵ(|α|2−|β|2))−1︷ ︸︸ ︷
log2

1 + ϵ(|α|2 − |β|2)
2

−1 + ϵ(|β|2 − |α|2)
2

log2 (1+ϵ(|β|2−|α|2))−1︷ ︸︸ ︷
log2

1 + ϵ(|β|2 − |α|2)
2

=− 1 + ϵ(|α|2 − |β|2)
2

log2 (1 + ϵ(|α|2 − |β|2))

− 1 + ϵ(|β|2 − |α|2)
2

log2 (1 + ϵ(|β|2 − |α|2)) +

=1︷ ︸︸ ︷
1 + ϵ(|α|2 − |β|2) + 1 + ϵ(|β|2 − |α|2)

2

=1− 1

2
log2


1−ϵ2(|α|2−|β|2)2︷ ︸︸ ︷

(1 + ϵ(|α|2 − |β|2))(1 + ϵ(|β|2 − |α|2))


− ϵ(|α|2 − |β|2)

2
log2

1 + ϵ(|α|2 − |β|2)
1 + ϵ(|β|2 − |α|2

=1− 1

2
log2 (1− ϵ2(2|α|2 − 1)2)− ϵ(2|α|2 − 1)

2
log2

1 + ϵ(2|α|2 − 1)

1− ϵ(2|α|2 − 1)
,

where we have used that |α|2 + |β|2 = 1. We calculate the first and second derivative,

dS ′
POVM

d|α|2
=− 1

2 ln 2

1

1− ϵ2(2|α|2 − 1)2
[
−2ϵ2(2|α|2 − 1)2

]
− ϵ log2

1 + ϵ(2|α|2 − 1)

1− ϵ(2|α|2 − 1)
− ϵ(2|α|2 − 1)

2 ln 2

[
2ϵ

1 + ϵ(2|α|2 − 1)
− −2ϵ

1− ϵ(2|α|2 − 1)

]
=
2ϵ2

ln 2

(2|α|2 − 1)

1− ϵ2(2|α|2 − 1)2
− ϵ log2

1 + ϵ(2|α|2 − 1)

1− ϵ(2|α|2 − 1)

− ϵ2

ln 2

(2|α|2 − 1)

1− ϵ2(2|α|2 − 1)2
[
1− ϵ(2|α|2 − 1) + 1 + ϵ(2|α|2 − 1)

]
=− ϵ log2

1 + ϵ(2|α|2 − 1)

1− ϵ(2|α|2 − 1)

and

d2S ′
POVM

d(|α|2)2
=− ϵ

ln 2

[
2ϵ

1 + ϵ(2|α|2 − 1)
− −2ϵ

1− ϵ(2|α|2 − 1)

]
= − 2ϵ2

ln 2

[
1− ϵ(2|α|2 − 1) + 1 + ϵ(2|α|2 − 1)

1− ϵ2(2|α|2 − 1)2

]
= − 4ϵ2

ln 2

1

1− ϵ2(2|α|2 − 1)2
.

As 0 ≤ |α|2 ≤ 1 we immediately see that S ′
POVM is symmetric about |α|2 = 1

2
and

d2S′
POVM

d(|α|2)2 < 0 for all values of |α|2, so the Shannon entropy is a concave function. Next, we
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find that

dS ′
POVM

d|α|2
= 0

1 + ϵ(2|α|2 − 1)

1− ϵ(2|α|2 − 1)
= 1

ϵ(2|α|2 − 1) = −ϵ(2|α|2 − 1)

4|α|2 = 2,

so |α|2 = 1
2

is a maximum (since the Shannon entropy is concave). We calculate

S ′
POVM

(
|α|2 = 1

2

)
= 1 and

S ′
POVM

(
|α|2 = 1

)
= S ′

POVM

(
|α|2 = 0

)
= 1− 1

2
log2 (1− ϵ)− ϵ

2
log2

1 + ϵ

1− ϵ
.

Since ϵ≪ 1 we see that the entropy is always very close to 1.
The state after this measurement will be either

|ψ′⟩1 =
A′

1 |ψ⟩√
⟨ψ|E ′

1|ψ⟩
=

√
1+ϵ
2
α |0⟩+

√
1−ϵ
2
β |1⟩√

1+ϵ(|α|2−|β|2)
2

=
α
√
1 + ϵ |0⟩+ β

√
1− ϵ |1⟩√

1 + ϵ(|α|2 − |β|2)
or

|ψ′⟩2 =
A′

2 |ψ⟩√
⟨ψ|E ′

2|ψ⟩
=

√
1−ϵ
2
α |0⟩+

√
1+ϵ
2
β |1⟩√

1+ϵ(|β|2−|α|2)
2

=
α
√
1− ϵ |0⟩+ β

√
1 + ϵ |1⟩√

1 + ϵ(|β|2 − |α|2)
.

Both these POVMs are considered by Brun as being weak. One of them only changes
the state slightly on average, but has a tendency to do large jumps with a very small
probability. The other one always changes the state, but never in large jumps.
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Appendix B

Different ways of recovering the
Lindblad equation

The Taylor series, around the point t = 0, of a time dependent operator A(t) is given by

∞∑
k=0

tk

k!

dkA(t)

dtk
|t=0.

In our case, we have U(θ) = exp (−iθH), and hence the Taylor series will be

∞∑
k=0

(−iH)k

k!
θk.

Up to second order we get U(θ) = 1− iHθ − H2

2
θ2 +O(θ3).

B.1 Time evolution with sum of two operators

General approach

Let us begin completely general and let the time evolution be given by U(θ) = e−iθ(H1+H2),
where H1 and H2 are just two operators. We will later let them be hermitian, but for
now, they need not be. The system is in a state |ψ⟩ and coupled with an environment in
state |E⟩. The coupled state is denoted by |Ψ⟩ = |ψ⟩ ⊗ |E⟩. Then we have

U(θ) |Ψ⟩ ⟨Ψ|U(θ)† = |Ψ⟩ ⟨Ψ| − iθ
[
(H1 +H2) |Ψ⟩ ⟨Ψ| − |Ψ⟩ ⟨Ψ| (H1 +H2)

†]
+
θ2

2

[
2(H1 +H2) |Ψ⟩ ⟨Ψ| (H1 +H2)

†

− (H1 +H2)
2 |Ψ⟩ ⟨Ψ| − |Ψ⟩ ⟨Ψ| (H†

1 +H†
2)

2
]
+O(θ3).

(B.1)

Next would be to take the partial trace over the environment. To get an explicit expres-
sion, we assume H1 =

∑
j Aj ⊗ Bj, H2 =

∑
l Cl ⊗Dl, and let {n}n∈I be an orthonormal
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basis for the environment containing |E⟩. Then the partial trace of the first order term
in θ will be∑

j

∑
n

(Aj |ψ⟩ ⟨n |Bj|E⟩) ⟨ψ| ⟨E|n⟩+
∑
l

∑
n

(Cl |ψ⟩ ⟨n |Dl|E⟩) ⟨ψ| ⟨E|n⟩

−
∑
j

∑
n

|ψ⟩ ⟨n|E⟩
(
⟨ψ|A†

j

〈
E
∣∣∣B†

j

∣∣∣n〉)−∑
l

∑
n

|ψ⟩ ⟨n|E⟩
(
⟨ψ|C†

l

〈
E
∣∣∣D†

l

∣∣∣n〉)
=
∑
j

Aj |ψ⟩ ⟨ψ| ⟨E |Bj|E⟩+
∑
l

Cl |ψ⟩ ⟨ψ| ⟨E |Dl|E⟩

−
∑
j

|ψ⟩ ⟨ψ|A†
j

〈
E
∣∣∣B†

j

∣∣∣E〉−
∑
l

|ψ⟩ ⟨ψ|C†
l

〈
E
∣∣∣D†

l

∣∣∣E〉 .
The partial trace of the second order term in θ will be

2 trenv

[
(H1 +H2) |Ψ⟩ ⟨Ψ| (H1 +H2)

†
]
−trenv

[
(H1 +H2)

2 |Ψ⟩ ⟨Ψ|
]
−trenv

[
|Ψ⟩ ⟨Ψ| (H†

1 +H†
2)

2
]
.

The first of these three terms gives

trenv
[
(H1 +H2) |Ψ⟩ ⟨Ψ| (H1 +H2)

†]
= trenv

[
H1 |Ψ⟩ ⟨Ψ|H†

1 +H1 |Ψ⟩ ⟨Ψ|H†
2 +H2 |Ψ⟩ ⟨Ψ|H†

1 +H2 |Ψ⟩ ⟨Ψ|H†
2

]
=
∑
jk

∑
n

(Aj |ψ⟩ ⟨n |Bj|E⟩)
(
⟨ψ|A†

j

〈
E
∣∣∣B†

j

∣∣∣n〉)
+
∑
jl

∑
n

(Aj |ψ⟩ ⟨n |Bj|E⟩)
(
⟨ψ|C†

l

〈
E
∣∣∣D†

l

∣∣∣n〉)
+
∑
lj

∑
n

(Cl |ψ⟩ ⟨n |Dl|E⟩)
(
⟨ψ|A†

j

〈
E
∣∣∣B†

j

∣∣∣n〉)
+
∑
lk

∑
n

(Cl |ψ⟩ ⟨n |Dl|E⟩)
(
⟨ψ|C†

l

〈
E
∣∣∣D†

l

∣∣∣n〉)
=
∑
jk

Aj |ψ⟩ ⟨ψ|A†
j

〈
E

∣∣∣∣∣B†
j

∑
n

|n⟩ ⟨n|Bj

∣∣∣∣∣E
〉

+
∑
jl

Aj |ψ⟩ ⟨ψ|C†
l

〈
E

∣∣∣∣∣D†
l

∑
n

|n⟩ ⟨n|Bj

∣∣∣∣∣E
〉

+
∑
lj

Cl |ψ⟩ ⟨ψ|A†
j

〈
E

∣∣∣∣∣B†
j

∑
n

|n⟩ ⟨n|Dl

∣∣∣∣∣E
〉

+
∑
lk

Cl |ψ⟩ ⟨ψ|C†
l

〈
E

∣∣∣∣∣D†
l

∑
n

|n⟩ ⟨n|Dl

∣∣∣∣∣E
〉

=
∑
jk

Aj |ψ⟩ ⟨ψ|A†
j

〈
E
∣∣∣B†

jBj

∣∣∣E〉+
∑
jl

Aj |ψ⟩ ⟨ψ|C†
l

〈
E
∣∣∣D†

lBj

∣∣∣E〉
+
∑
lj

Cl |ψ⟩ ⟨ψ|A†
j

〈
E
∣∣∣B†

jDl

∣∣∣E〉+
∑
lk

Cl |ψ⟩ ⟨ψ|C†
l

〈
E
∣∣∣D†

lDl

∣∣∣E〉 .
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The second of these three terms gives

trenv
[
(H1 +H2)

2 |Ψ⟩ ⟨Ψ|
]

= trenv
[
H2

1 |Ψ⟩ ⟨Ψ|+H1H2 |Ψ⟩ ⟨Ψ|+H2H1 |Ψ⟩ ⟨Ψ|+H2
2 |Ψ⟩ ⟨Ψ|

]
=
∑
jk

AjAk |ψ⟩ ⟨ψ| ⟨E |BjBk|E⟩+
∑
jl

AjCl |ψ⟩ ⟨ψ| ⟨E |BjDl|E⟩

+
∑
lj

ClAj |ψ⟩ ⟨ψ| ⟨E |DlBj|E⟩+
∑
lk

ClCk |ψ⟩ ⟨ψ| ⟨E |DlDk|E⟩ .

The third and last of the three terms will similarly give

trenv

[
|Ψ⟩ ⟨Ψ| (H†

1 +H†
2)

2
]

=
∑
jk

|ψ⟩ ⟨ψ|A†
jA

†
k

〈
E
∣∣∣B†

jB
†
k

∣∣∣E〉+
∑
jl

|ψ⟩ ⟨ψ|A†
jC

†
l

〈
E
∣∣∣B†

jD
†
l

∣∣∣E〉
+
∑
lj

|ψ⟩ ⟨ψ|C†
lA

†
j

〈
E
∣∣∣D†

lB
†
j

∣∣∣E〉+
∑
lk

|ψ⟩ ⟨ψ|C†
l C

†
k

〈
E
∣∣∣D†

lD
†
k

∣∣∣E〉 .
Putting all this into equation (B.1) we see that there is not much information to be gained.
If we want to recover the Lindblad equation we need to assume more about the operators
Aj, Bj, Cl, Dl, H1 and H2. We therefore move on to a much more specific case.

Choosing a basis

Back in chapter 3 on trajectory theory we said we could assume
∑

j[Aj, ρS] ⟨E|Bj|E⟩ = 0
for H =

∑
j Aj ⊗Bj. We will now take a close look at this.

Let H =
∑3

i,j=1 hijσi ⊗ σj and define Ai = σi. If we let the environment be in the

state |E⟩ = |0⟩ and σ3 |0⟩ = |0⟩, then
∑

iAi

〈
0|
∑

j hijσj|0
〉
=
∑

iAihi3 and we can define
A :=

∑
i hi3Ai ⊗ 1. Let us define

H ′ := H − A =
∑
i

Ai ⊗

=:Bi︷ ︸︸ ︷[
hi1σ1 + hi2σ2 − 2hi3

(
0 0
0 1

)]
.

H ′ is the dynamics we want, so we look at the time evolution with H, U(θ) = e−iθH =
e−iθ(H

′+A), to see if we can remove A somehow. If [H ′, A] = 0, then we could split the
exponential, but

[H ′, A] =

[∑
i

Ai ⊗Bi,
∑
j

hj3Aj ⊗ 1

]
=
∑
ij

hj3[Ai ⊗Bi, Aj ⊗ 1]

and

[Ai ⊗Bi, Aj ⊗ 1] = (Ai ⊗Bi)(Aj ⊗ 1)− (Aj ⊗ 1)(Ai ⊗Bi)

= AiAj ⊗Bi − AjAi ⊗Bi = [Ai, Aj]⊗Bi

= [σi, σj]⊗Bi = 2iϵijkσk ⊗Bi.
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This means that

[H ′, A] =
∑
ij

hj32iϵijkσk ⊗Bi

= 2i (h13(σ3 − σ2)⊗B1 + h23(σ1 − σ3)⊗B2 + h33(σ2 − σ1)⊗B3) ̸= 0.

We again denote the system state by |ψ⟩ and the coupled state by |Ψ⟩ := |ψ⟩ ⊗ |E⟩. As
U(θ) = 1− iθ(H ′ +A)− θ2

2
(H ′ +A)2 +O(θ3) and (H ′ +A)† = H† = H = H ′ +A, we get

U(θ) |Ψ⟩ ⟨Ψ|U(θ)† = |Ψ⟩ ⟨Ψ| − iθ([H ′, |Ψ⟩ ⟨Ψ|] + [A, |Ψ⟩ ⟨Ψ|])

+ θ2(H ′ + A) |Ψ⟩ ⟨Ψ| (H ′ + A)− θ2

2
(H ′ + A)2 |Ψ⟩ ⟨Ψ|

− θ2

2
|Ψ⟩ ⟨Ψ| (H ′ + A)2 +O(θ3)

= |Ψ⟩ ⟨Ψ| − iθ([H ′, |Ψ⟩ ⟨Ψ|] + [A, |Ψ⟩ ⟨Ψ|])

+ θ2
[
(H ′ |Ψ⟩ ⟨Ψ|H ′ +H ′ |Ψ⟩ ⟨Ψ|A+ A |Ψ⟩ ⟨Ψ|H ′ + A |Ψ⟩ ⟨Ψ|A)

− 1

2

(
(H ′)2 |Ψ⟩ ⟨Ψ|+H ′A |Ψ⟩ ⟨Ψ|+ AH ′ |Ψ⟩ ⟨Ψ|+ A2 |Ψ⟩ ⟨Ψ|

)
− 1

2

(
|Ψ⟩ ⟨Ψ| (H ′)2 + |Ψ⟩ ⟨Ψ|H ′A+ |Ψ⟩ ⟨Ψ|AH ′ + |Ψ⟩ ⟨Ψ|A2

) ]
+O(θ3).

H ′ was chosen such that trenv[H
′, |Ψ⟩ ⟨Ψ|] = 0 and trenv[A, |Ψ⟩ ⟨Ψ|] =

∑
j[Aj, |Ψ⟩ ⟨Ψ|]hj3.

This was done to ensure that
∑

j Aj ⟨E|Bi|E⟩ = 0. Moreover, since {H ′, A} |ψ⟩ ⟨ψ| occurs
in the equation above, we calculate

{H ′, A} =
∑
ij

hj3{Ai⊗Bi, Aj ⊗1} =
∑
ij

hj3{σi, σj}⊗Bi =
∑
ij

hj32δij1⊗Bi = 2
∑
i

hi31⊗Bi.

Hence

trenv
(
U(θ) |Ψ⟩ ⟨Ψ|U(θ)†

)
=ρS − iθ(

=0︷ ︸︸ ︷
trenv[H

′, |Ψ⟩ ⟨Ψ|] + trenv[A, |Ψ⟩ ⟨Ψ|])

+ θ2
[
trenv (H

′ |Ψ⟩ ⟨Ψ|H ′ +H ′ |Ψ⟩ ⟨Ψ|A+ A |Ψ⟩ ⟨Ψ|H ′ + A |Ψ⟩ ⟨Ψ|A)

− 1

2
trenv

(
(H ′)2 |Ψ⟩ ⟨Ψ|+H ′A |Ψ⟩ ⟨Ψ|+ AH ′ |Ψ⟩ ⟨Ψ|+ A2 |Ψ⟩ ⟨Ψ|

)
− 1

2
trenv

(
|Ψ⟩ ⟨Ψ| (H ′)2 + |Ψ⟩ ⟨Ψ|H ′A+ |Ψ⟩ ⟨Ψ|AH ′ + |Ψ⟩ ⟨Ψ|A2

) ]
+O(θ3).
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Grouping term only containing A, only containing H ′, and mixing A and H ′, we get

trenv
(
U(θ) |Ψ⟩ ⟨Ψ|U(θ)†

)
=ρS − iθ trenv[A, |Ψ⟩ ⟨Ψ|] + θ2 trenv

(
H ′ |Ψ⟩ ⟨Ψ|H ′ − 1

2
(H ′)2 |Ψ⟩ ⟨Ψ| − 1

2
|Ψ⟩ ⟨Ψ| (H ′)2

)
+ θ2 trenv

(
A |Ψ⟩ ⟨Ψ|A− 1

2
A2 |Ψ⟩ ⟨Ψ| − 1

2
|Ψ⟩ ⟨Ψ|A2

)
− θ2

2
trenv ({H ′, A} |Ψ⟩ ⟨Ψ|+ |Ψ⟩ ⟨Ψ| {H ′, A})

+ θ2 trenv (H
′ |Ψ⟩ ⟨Ψ|A+ A |Ψ⟩ ⟨Ψ|H ′) +O(θ3)

=ρS − iθ
∑
i

hi3[Ai, ρS] + θ2

Lindblad operator from H′︷ ︸︸ ︷
λ

[
LρSL

† − 1

2
L†LρS −

1

2
ρSL

†L

]

+ θ2

[∑
ij

hi3AiρShj3Aj −
1

2

∑
ij

hi3hj3AiAjρS −
1

2
ρS
∑
ij

hi3hj3AiAj

]
− θ2 trenv ({H ′, A} |Ψ⟩ ⟨Ψ|)

+ θ2


=0︷ ︸︸ ︷∑

i

⟨E|Bi|E⟩Ai ρS
∑
j

hj3Aj +
∑
i

hi3AiρS

=0︷ ︸︸ ︷∑
j

⟨E|Bj|E⟩Aj

+O(θ3).

Setting in for the anti-commutator gives

trenv
(
U(θ) |Ψ⟩ ⟨Ψ|U(θ)†

)
=ρS − iθ

∑
i

hi3[Ai, ρS] + θ2
[
LρSL

† − 1

2
L†LρS −

1

2
ρSL

†L

]
+ θ2

∑
ij

hi3hj3

[
AiρSAj −

1

2
AiAjρS −

1

2
ρSAiAj

]
− 2θ2

∑
i

hi3 ⟨E|Bi|E⟩ ρS +O(θ3).

We know
∑

i ⟨E|Bi|E⟩Ai = 0, but since Ai = σi are linearly independent, we must have
⟨E|Bi|E⟩ = 0 for each i. In other words,

ρ′S := trenv
(
U(θ) |Ψ⟩ ⟨Ψ|U(θ)†

)
=ρS − iθ

∑
i

hi3[Ai, ρS] + θ2
[
LρSL

† − 1

2
L†LρS −

1

2
ρSL

†L

]
+ θ2

∑
ij

hi3hj3

[
AiρSAj −

1

2
AiAjρS −

1

2
ρSAiAj

]
+O(θ3).

The problem is now to handle the two terms containing A, namely −iθ
∑

i hi3[Ai, ρS] and
θ2
∑

ij hi3hj3
[
AiρSAj − 1

2
AiAjρS − 1

2
ρSAiAj

]
. We need limδt→0

θ2

δt
̸= 0,±∞, and thus

limδt→0 θ ∝
√
δt. This again means that −i θ

δt

∑
i hi3[Ai, ρS]

δt→0−−−→= ±∞ unless either
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∑
i hi3[Ai, ρS] = 0 or is dependent on the time step δt. This is the same as demanding

hi3 = 0 for all i or letting them be dependent on the time step δt. The first case, hi3 = 0
for all i, would mean that both problematic terms are zero. We look at what happens if
we let them depend on the time step δt. Then we must have limδt→0

θ
δt
hi3 = 0, and as

limδt→0 θ ∝
√
δt, we have to demand limδt→0 hi3 ∝ (δt)a where a ≥ 1

2
. If we have a = 1

2
,

then the first term stays and the latter disappears. If not, then both disappears.

B.2 Recovering the Lindblad equation for both time
steps δt and θ

We now compute the full time evolution of one single step, i.e. time evolution of TLS
only, followed by interaction between environment and system. Let U(θ) = exp (−iθHI)

and Ũ(δt) = exp (−iδtHS) be the time evolution operator for the interaction and the
transient time, respectively. Here, HS := HS ⊗ 1 is the system Hamiltonian and HI =∑

j Aj ⊗ Bj is the interaction Hamiltonian between system and environment. Let |Ψ⟩ =
|ψ⟩ ⊗ |E⟩ be the initial state. We assume that we apply the two operators in suc-
cession and calculate the reduced density matrix of the system after time translation,
trenv

[
U(θ)Ũ(δt) |Ψ⟩ ⟨Ψ| Ũ(δt)†U(θ)†

]
. To recover the Lindblad equation, we know that

we need the second order Taylor expansions of U(θ). For the time evolution of the system
alone, we only need the first order Taylor expansion of U(δt). These are given by

U(θ) = 1− iθHI +
θ2

2
(−iHI)

2 +O(θ3)

= 1− iθ
∑
j

Aj ⊗Bj −
θ2

2

∑
ij

AiAj ⊗BiBj +O(θ3)

and

U(δt) = 1− iδtHS +O(δt2).

Hence

U(θ)U(δt) =1− iδtHS − iθ
∑
j

Aj ⊗Bj − θδt
∑
j

Aj ⊗BjHS

− θ2

2

∑
ij

AiAj ⊗BiBj +
θ2δt

2
i
∑
ij

AiAj ⊗BiBjHS +O(θ3, δt2)
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and

U(θ)Ũ(δt) |Ψ⟩ ⟨Ψ| Ũ(δt)†U(θ)†

= |Ψ⟩ ⟨Ψ|+ iδt |Ψ⟩ ⟨Ψ|HS + iθ
∑
j

|Ψ⟩ ⟨Ψ|A†
j ⊗B†

j − θδt
∑
j

|Ψ⟩ ⟨Ψ|HSA
†
j ⊗B†

j

− θ2

2

∑
ij

|Ψ⟩ ⟨Ψ|A†
iA

†
j ⊗B†

iB
†
j −

θ2δt

2
i
∑
ij

|Ψ⟩ ⟨Ψ|HSA
†
iA

†
j ⊗B†

iB
†
j

− iδtHS |Ψ⟩ ⟨Ψ|+O(1, δt2) + θδtHS |Ψ⟩ ⟨Ψ|
∑
j

A†
j ⊗B†

j

+O(θ, δt2) + i
θ2δt

2
HS |Ψ⟩ ⟨Ψ|

∑
ij

A†
iA

†
j ⊗B†

iB
†
j +O(θ2, δt2)

− iθ
∑
j

Aj ⊗Bj |Ψ⟩ ⟨Ψ|+ θδt
∑
j

Aj ⊗Bj |Ψ⟩ ⟨Ψ|HS

+ θ2
∑
j

Aj ⊗Bj |Ψ⟩ ⟨Ψ|
∑
j

A†
j ⊗B†

j + iθ2δt
∑
j

Aj ⊗Bj |Ψ⟩ ⟨Ψ|
∑
j

HSA
†
j ⊗B†

j

+O(θ3, 1) +O(θ3, δt)

− θδt
∑
j

Aj ⊗BjHS |Ψ⟩ ⟨Ψ| − iθ(δt)2
∑
j

Aj ⊗BjHS |Ψ⟩ ⟨Ψ|HS

− iθ2δt
∑
j

Aj ⊗BjHS |Ψ⟩ ⟨Ψ|
∑
j

A†
j ⊗B†

j +O(θ2, δt2) +O(θ3, δt) +O(θ4, δt2)

− θ2

2

∑
ij

AiAj ⊗BiBj |Ψ⟩ ⟨Ψ| − i
θ2δt

2

∑
ij

AiAj ⊗BiBj |Ψ⟩ ⟨Ψ|HS

+O(θ3, 1) +O(θ3, δt) +O(θ4, 1) +O(θ4, δt)

+
θ2δt

2
i
∑
ij

AiAj ⊗BiBjHS |Ψ⟩ ⟨Ψ|+O(θ2, δt2) +O(θ3, δt)

+O(θ3, δt2) +O(θ4, δt) +O(θ4, δt2)

+O(θ3, δt2).

This might look long and ugly, but it is nothing more than writing out all terms that are
of interest to us. Letting ρ′S denote the reduced density matrix after the time evolution,
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and letting {n}n∈I be an orthonormal basis for the environment containing |E⟩, we have

ρ′S =trenv

(
U(θ)Ũ(δt) |Ψ⟩ ⟨Ψ| Ũ(δt)†U(θ)†

)
= |ψ⟩ ⟨ψ|+ iδt |ψ⟩ ⟨ψ|HS + iθ

∑
j

|ψ⟩ ⟨ψ|A†
j

〈
E|B†

j |E
〉

− θδt
∑
j

|ψ⟩ ⟨ψ|HSA
†
j

〈
E|B†

j |E
〉
− θ2

2

∑
ij

|ψ⟩ ⟨ψ|A†
iA

†
j

〈
E|B†

iB
†
j |E
〉

− θ2δt

2
i
∑
ij

|ψ⟩ ⟨ψ|HSA
†
iA

†
j

〈
E|B†

iB
†
j |E
〉

− iδtHS |ψ⟩ ⟨ψ|+ θδtHS |ψ⟩ ⟨ψ|
∑
j

A†
j

〈
E|B†

j |E
〉

+ i
θ2δt

2
HS |ψ⟩ ⟨ψ|

∑
ij

A†
iA

†
j

〈
E|B†

iB
†
j |E
〉

− iθ
∑
j

⟨E|Bj|E⟩Aj |ψ⟩ ⟨ψ|+ θδt
∑
j

⟨E|Bj|E⟩Aj |ψ⟩ ⟨ψ|HS

+ θ2
∑
i,j

∑
n

⟨n|Bi|E⟩Ai |ψ⟩ ⟨ψ|A†
j

〈
E|B†

j |n
〉

+ iθ2δt
∑
i,j

∑
n

⟨n|Bi|E⟩Ai |ψ⟩ ⟨ψ|HSA
†
j

〈
E|B†

j |n
〉

− θδt
∑
j

⟨E|Bj|E⟩AjHS |ψ⟩ ⟨ψ| − iθ(δt)2
∑
j

⟨E|Bj|E⟩AjHS |ψ⟩ ⟨ψ|HS

− iθ2δt
∑
i,j

∑
n

⟨n|Bi|E⟩AiHS |ψ⟩ ⟨ψ|A†
j

〈
E|B†

j |n
〉

− θ2

2

∑
i,j

⟨E|BiBj|E⟩AiAj |ψ⟩ ⟨ψ| − i
θ2δt

2

∑
i,j

⟨E|BiBj|E⟩AiAj |ψ⟩ ⟨ψ|HS

+
θ2δt

2
i
∑
i,j

⟨E|BiBj|E⟩AiAjHS |ψ⟩ ⟨ψ|

+O(1, δt2) +O(θ, δt2) +O(θ2, δt2) +O(θ3, δt2) +O(θ4, δt2)

+O(θ3, 1) +O(θ3, δt) +O(θ4, δt) +O(θ4, 1).

Up to this point there has not been many assumptions. However, to not get in trouble
like in the previous section, we assume

∑
j Aj ⟨E|Bj|E⟩ = 0. We will again use the fact

that ∑
n

⟨n|Bi|E⟩ ⟨E|Bj |n⟩ =
∑
n

⟨E|Bj |n⟩ ⟨n|Bi|E⟩ = ⟨E|Bj

∑
n

|n⟩ ⟨n|Bi |E⟩ = ⟨E|BjBi|E⟩ .
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Finally, as we noted in section 3.4, we must have H†
I = HI . We can therefore mix adjoints

to recover what we want. Then, excluding the terms O(θm, δtn),

ρ′S = |ψ⟩ ⟨ψ|+ iδt |ψ⟩ ⟨ψ|HS + 0− 0− θ2

2

∑
ij

|ψ⟩ ⟨ψ|AiAj ⟨E|BiBj|E⟩

− θ2δt

2
i
∑
ij

|ψ⟩ ⟨ψ|HSA
†
iAj

〈
E|B†

iBj|E
〉

− iδtHS |ψ⟩ ⟨ψ|+ 0 + i
θ2δt

2
HS |ψ⟩ ⟨ψ|

∑
ij

AiAj ⟨E|BiBj|E⟩

− 0 + 0 + θ2
∑
i,j

〈
E|B†

jBi|E
〉
Ai |ψ⟩ ⟨ψ|A†

j

+ iθ2δt
∑
i,j

⟨E|BjBi|E⟩Ai |ψ⟩ ⟨ψ|HSAj

− 0− 0− iθ2δt
∑
i,j

⟨E|BjBi|E⟩AiHS |ψ⟩ ⟨ψ|Aj

− θ2

2

∑
i,j

〈
E|B†

iBj|E
〉
A†
iAj |ψ⟩ ⟨ψ| − i

θ2δt

2

∑
i,j

⟨E|BiBj|E⟩AiAj |ψ⟩ ⟨ψ|HS

+
θ2δt

2
i
∑
i,j

⟨E|BiBj|E⟩AiAjHS |ψ⟩ ⟨ψ| .

We will eventually divide by δt and take the limit δt→ 0. Since we want limδt→0
θ2

δt
to be

equal to some non-zero constant, all the terms proportional to θ2δt will go to zero. We
therefore exclude these from now on. Defining ρS := |ψ⟩ ⟨ψ| and

〈
E|B†

jBi|E
〉
=: Mij =∑

k λkµkiµ
∗
kj as we did in section 3.4, with Lk :=

∑
i µkiAi, we get

ρ′S = ρS − iδt[HS, ρS]−
θ2

2

∑
i,j

[
ρSA

†
iAjMji − 2AiρSA

†
jMji + A†

iAjρSMji

]
= ρS − iδt[HS, ρS]−

θ2

2

∑
k

λk

[
ρSL

†
kLk − 2LkρSL

†
k + L†

kLkρS

]
and

ρ′S − ρS
δt

= −i[HS, ρS] +
θ2

2δt

∑
k

λk

[
2LkρSL

†
k − L†

kLkρS − ρSL
†
kLk

]
.

Taking the limit δt→ 0 we get the Lindblad equation back:

dρS
dt

= −i[HS, ρS] +
1

2

∑
k

Γk

[
2LkρSL

†
k − L†

kLkρS − ρSL
†
kLk

]
.

B.3 Recovering the Lindblad equation for general case
We are now interested in putting the two previous results together: We saw that we could
recover the Lindblad equation for a redefined interaction Hamiltonian H ′

I in section B.1,
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and we saw that the full time translation under only the redefined Hamiltonian would
give the full Lindblad equation in section B.2. However, we would like to see that we get
the same result if we add the system Hamiltonian in the time evolution U(θ), and that
the result from section B.1 can be put into the framework of section B.2.

Let U(θ) = exp (−iθ(H ′
S +H ′

I + A)), where H ′
I and A are the same as in section B.1

and H ′
S is the system Hamiltonian (possibly modified in such a way that the limit works

out). If we define A′ := A+H ′
S, then the calculations in section B.1 gives us

trenv
(
U(θ) |Ψ⟩ ⟨Ψ|U(θ)†

)
=ρS + θ trenv[A

′, |Ψ⟩ ⟨Ψ|]

+ θ2 trenv

(
H ′
I |Ψ⟩ ⟨Ψ|H ′

I −
1

2
(H ′

I)
2 |Ψ⟩ ⟨Ψ| − 1

2
|Ψ⟩ ⟨Ψ| (H ′

I)
2

)
+ θ2 trenv

(
A′ |Ψ⟩ ⟨Ψ|A′ − 1

2
(A′)2 |Ψ⟩ ⟨Ψ| − 1

2
|Ψ⟩ ⟨Ψ| (A′)2

)
− θ2

2
trenv ({H ′

I , A
′} |Ψ⟩ ⟨Ψ|+ |Ψ⟩ ⟨Ψ| {H ′

I , A
′})

+ θ2 trenv (H
′
I |Ψ⟩ ⟨Ψ|A′ + A′ |Ψ⟩ ⟨Ψ|H ′

I) +O(θ3).

We know that we need to choose hi3 in such a way that the terms

trenv

(
A |Ψ⟩ ⟨Ψ|A− 1

2
A2 |Ψ⟩ ⟨Ψ| − 1

2
|Ψ⟩ ⟨Ψ|A2

)
,

trenv ({H ′
I , A} |Ψ⟩ ⟨Ψ|+ |Ψ⟩ ⟨Ψ| {H ′

I , A}) , and
trenv (H

′
I |Ψ⟩ ⟨Ψ|A+ A |Ψ⟩ ⟨Ψ|H ′

I)

disappears. We are therefore left with

trenv
(
U(θ) |Ψ⟩ ⟨Ψ|U(θ)†

)
=ρS + θ trenv[H

′
S, |Ψ⟩ ⟨Ψ|] + θ trenv[A, |Ψ⟩ ⟨Ψ|]

+ θ2 trenv

(
H ′
I |Ψ⟩ ⟨Ψ|H ′

I −
1

2
(H ′

I)
2 |Ψ⟩ ⟨Ψ| − 1

2
|Ψ⟩ ⟨Ψ| (H ′

I)
2

)
+ θ2 trenv

(
A′ |Ψ⟩ ⟨Ψ|A′ − 1

2
(A′)2 |Ψ⟩ ⟨Ψ| − 1

2
|Ψ⟩ ⟨Ψ| (A′)2

)
− θ2

2
trenv ({H ′

I , H
′
S} |Ψ⟩ ⟨Ψ|+ |Ψ⟩ ⟨Ψ| {H ′

I , H
′
S})

+ θ2 trenv (H
′
I |Ψ⟩ ⟨Ψ|H ′

S +H ′
S |Ψ⟩ ⟨Ψ|H ′

I) +O(θ3).

Denoting a := limδt→0
θ2

δt
, and the interaction time by δtI , we see that choosing H ′

S =
θ
a
δtIHS gives

ρ′S = ρS +
θ2

a
δtI [H

′
S, ρS] + θ[A, ρS] + θ2

Lindblad operator from H′︷ ︸︸ ︷
λ

[
LρSL

† − 1

2
L†LρS −

1

2
ρSL

†L

]
+O(θ3).

This gives us a good indication that we will get back the correct Lindblad equation when
we also do the time evolution of Ũ(δt).
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We have

U(θ)Ũ(δt) |Ψ⟩ ⟨Ψ| Ũ(δt)†U(θ)† = Ũ(δt) |Ψ⟩ ⟨Ψ| Ũ(δt)†

− iδtHSŨ(δt) |Ψ⟩ ⟨Ψ| Ũ(δt)†

+ iδtŨ(δt) |Ψ⟩ ⟨Ψ| Ũ(δt)†HS +O((δt)2).

As all terms except ρS in Ũ(δt) |Ψ⟩ ⟨Ψ| Ũ(δt)† are O(θ), they will all disappear in the limit
when multiplied with δt. In other words,

ρ′S = trenv

(
U(θ)Ũ(δt) |Ψ⟩ ⟨Ψ| Ũ(δt)†U(θ)†

)
= trenv

(
Ũ(δt) |Ψ⟩ ⟨Ψ| Ũ(δt)†

)
− iδt[HS, ρS] +O(θ2δt) +O((δt)2)

= ρS − i

(
θ2

a
δtI + δt

)
[H ′

S, ρS]− iθ[A, ρS] + θ2λ

[
LρSL

† − 1

2
L†LρS −

1

2
ρSL

†L

]
+O(θ3) +O(θ2δt) +O((δt)2).

When the limit is taken over the sum of interaction time and transient time going to zero,
we see that we recover the Lindblad equation

dρS
dt

= −i[HS, ρS] +
1

2

∑
k

Γk

[
2LkρSL

†
k − L†

kLkρS − ρSL
†
kLk

]
.

B.4 Examples showing that the representation of the
Hamiltonian does not matter

B.4.1 Same basis, but not “fully reduced”

Say we want a Lindblad equation with the Lindblad operator L = σx + iσy = 2σ+ with
rate Γ = θ2

δt
. As always, we start with a unitary operator of the form U(θ) = e−iθ

∑
j Aj⊗Bj .

We know that L =
∑

j µkjAj and Γ = θ2

δt
λk, where λk and µk are the eigenvalues and

normalized eigenvectors, respectively, of the matrix M =
∑

k λkµkµ
∗
k, where we define

Mij =
〈
E|B†

jBi|E
〉
. Furthermore, since we have two-level environment we know that

there is only one (non-zero) eigenvalue with corresponding eigenvector. Choosing A1 =
B1 = σx and A2 = B2 = σy, we calculate

⟨0|σxσx|0⟩ = ⟨0|1|0⟩ = 1, ⟨0|σyσx|0⟩ = ⟨0| − iσz|0⟩ = −i,
⟨0|σxσy|0⟩ = ⟨0|iσz|0⟩ = i, ⟨0|σyσy|0⟩ = ⟨0|1|0⟩ = 1.

Hence
M =

(
1 −i
i 1

)
,

which we quickly check has normalized eigenvectors and eigenvalues

µ1 =

(
1/
√
2

i/
√
2

)
, µ2 =

(
1/
√
2

−i/
√
2

)
, λ1 = 2, λ2 = 0
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respectively. Hence, we only get a single non-zero Lindblad operator

L′ =
∑
j

µ1jAj =
1√
2
(σx + iσy)

with rate Γ′ = θ2λ1
δt

= 2 θ
2

δt
. This gives the Lindblad equation we where after.

We now ask the following: What if H =
∑

j Aj ⊗ Bj has another representation,
H =

∑
j′ Aj′ ⊗Bj′? Will we still get the same Lindblad operator? Let us look at a “silly”

example: Take A1 = A2 = σx, A3 = σy, B1 = 2σx, B2 = −σx and B3 = σy. Then

H =
∑
j′

Aj′ ⊗Bj′ = σx ⊗ (2σx) + σx ⊗ (−σx) + σy ⊗ σy = σx ⊗ σx + σy ⊗ σy,

which is the same Hamiltonian as before, and should therefore give the same dynamic.
We calculate

⟨0|(2σx)(2σx)|0⟩ = 4 ⟨0|1|0⟩ = 4, ⟨0|(−σx)(2σx)|0⟩ = −2 ⟨0|1|0⟩ = −2, ⟨0|σy(2σx)|0⟩ = 2 ⟨0| − iσz |0⟩ = −2i,

⟨0|(2σx)(−σx)|0⟩ = −2 ⟨0|1|0⟩ = −2, ⟨0|(−σx)(−σx)|0⟩ = ⟨0|1|0⟩ = 1, ⟨0|σy(−σx)|0⟩ = −⟨0| − iσz |0⟩ = i,

⟨0|(2σx)σy |0⟩ = 2 ⟨0|iσz |0⟩ = 2i, ⟨0|(−σx)σy |0⟩ = −⟨0|iσz |0⟩ = −i, ⟨0|σyσy |0⟩ = ⟨0|1|0⟩ = 1.

Hence

M =

 4 −2 −2i
−2 1 i
2i −i 1

 ,

which we quickly check has eigenvectors and eigenvalues

µ1 =

−2/
√
6

1//
√
6

−i/
√
6

 , µ2 =

 0

1/
√
2

i/
√
2

 , µ3 =

 1/
√
3

1/
√
3

−i/
√
3

 , λ1 = 6, λ2 = 0, λ3 = 0

respectively. Again, we only get a single non-zero Lindblad operator

L′′ =
∑
j′

µ1j′Aj′ =
1√
6
(−2σx + σx − iσy) =

1√
6
(−σx − iσy),

with rate Γ′′ = θ2λ1
δt

= 6 θ
2

δt
. Since the Lindblad equation does not care about the phase

factor of the Lindblad operator, we are again left with the same Lindblad equation.

B.4.2 Different basis

As above, we take the same Hamiltonian, representation and Lindblad operator, and ask
the same question. That is L = σx + iσy = 2σ+, Γ = θ2

δt
, H = σx ⊗ σx + σy ⊗ σy and the

question “What if H =
∑

j Aj ⊗Bj has another representation, H =
∑

j′ Aj′ ⊗Bj′? Will
we still get the same Lindblad operator? ”

Define S1 := σy + σz and S2 := σy − σz. Then {1, σx, S1, S2} is a basis of hermitian
operators (since S†

i = σ†
y ± σ†

z = σy ± σz = Si) and

H = σx ⊗ σx +
1

2
(S1 + S2)⊗

1

2
(S1 + S2) = σx ⊗ σx +

1

4
(S1 ⊗ S1 + S2 ⊗ S1 + S1 ⊗ S2 + S2 ⊗ S2)
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gives the Hamiltonian expressed in this new basis. Let us choose

A1 = σx, A2 = A4 = S1/4, A3 = A5 = S2/4,

B1 = σx, B2 = B3 = S1, B4 = B5 = S2.

As σiσj = δij1+ iϵijkσk and [σiσj] = 2iϵijkσk, we get

S1S2 = (σy + σz)(σy − σz) = σ2
y + [σz, σy]− σ2

z = −2iσx, S2S1 = (S1S2)
† = 2iσx,

σxS1 = σx(σy + σz) = iσz − iσy = −iS2, S1σx = (σxS1)
† = iS2,

σxS2 = σx(σy − σz) = iσz + iσy = iS1, S2σx = (σxS2)
† = −iS1.

Moreover, Si |0⟩ = σy |0⟩ ± σz |0⟩ = i |1⟩ ± |0⟩ and S2
i = σ2

y ± {σy, σz} + σ2
z = 21, since

{σi, σj} = 2δij1. Hence,

⟨0|σxσx|0⟩ = 1 ⟨0|S1σx|0⟩ = i ⟨0|S2|0⟩ = −i ⟨0|S1σx|0⟩ = −i ⟨0|S2σx|0⟩ = −i ⟨0|S1|0⟩ = −i ⟨0|S2σx|0⟩ = −i
⟨0|σxS1|0⟩ = −i ⟨0|S2|0⟩ = i ⟨0|S1S1|0⟩ = 2 ⟨0|S1S1|0⟩ = 2 ⟨0|S2S1|0⟩ = 2i ⟨0|σx|0⟩ = 0 ⟨0|S2S1|0⟩ = 0

⟨0|σxS1|0⟩ = −i ⟨0|S2|0⟩ = i ⟨0|S1S1|0⟩ = 2 ⟨0|S1S1|0⟩ = 2 ⟨0|S2S1|0⟩ = 2i ⟨0|σx|0⟩ = 0 ⟨0|S2S1|0⟩ = 0

⟨0|σxS2|0⟩ = i ⟨0|S1|0⟩ = i ⟨0|S1S2|0⟩ = −2i ⟨0|σx|0⟩ = 0 ⟨0|S1S2|0⟩ = 0 ⟨0|S2S2|0⟩ = 2 ⟨0|S2S2|0⟩ = 2

⟨0|σxS2|0⟩ = i ⟨0|S1|0⟩ = i ⟨0|S1S2|0⟩ = −2i ⟨0|σx|0⟩ = 0 ⟨0|S1S2|0⟩ = 0 ⟨0|S2S2|0⟩ = 2 ⟨0|S2S2|0⟩ = 2

and thus

M =


1 −i −i −i −i
i 2 2 0 0
i 2 2 0 0
i 0 0 2 2
i 0 0 2 2

 .

We check that M has normalized eigenvectors

µ1 =
1√
4


0
−1
−1
1
1

 , µ2 =
1√
5


−i
1
1
1
1

 , µ3 =
1√
2


0
1
−1
0
0

 , µ4 =
1√
2


0
0
0
1
−1

 , µ5 =
1

2
√
5


4i
1
1
1
1

 ,

with respective eigenvalues

λ1 = 4, λ2 = 5, λ3 = 0, λ4 = 0, λ5 = 0.

It would seem like this contradicts the fact that we can only have a single non-zero eigen-
value, and therefore only a single Lindblad operator for a two-level system environment.
However, we are left with

L1 =
∑
j

µ1jAj =
1√
4

(
0 · σx +

1

4
(−S1 − S2 + S1 + S2)

)
= 0

and

L2 =
∑
j

µ2jAj =
1√
5

(
−iσx +

1

4
(S1 + S2 + S1 + S2)

)
=

1√
5
(−iσx + σy),
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with rate Γ2 =
θ25
δt

. This again gives back the same Lindblad equation.
To get only a single non-zero eigenvalue for M , we must have ⟨E|Bj|E⟩ = 0. In our

case, we have

⟨0|σx|0⟩ = 0 ⟨0|S1|0⟩ = 1 ⟨0|S2|0⟩ = −1,

but
∑

j Aj ⟨E|Bj|E⟩ = (S1 + S2 − S1 − S2)/4 = 0. We therefore need to change to

A1 = σx, A2 = A4 = S1/4, A3 = A5 = S2/4,

B′
1 = σx, B′

2 = B′
3 = S1 − 1, B′

4 = B′
5 = S2 + 1.

We have

(S1 − 1)(S2 + 1) = S1S2 + S1 − S2 − 1 = −2iσx + 2σz − 1,

(S2 + 1)(S1 − 1) = ((S1 − 1)(S2 + 1))† = 2iσx + 2σz − 1,

(S1 − 1)2 = S2
1 − 2S1 + 1 = 31− 2S1,

(S2 + 1)2 = S2
2 + 2S2 + 1 = 31+ 2S2,

σx(S1 − 1) = −iS2 − σx, (S1 − 1)σx = (σx(S1 − 1))† = iS2 − σx,

σx(S2 + 1) = iS1 + σx, (S2 + 1)σx = −iS1 + σx.

Hence, the missing inner products are

⟨0|σx(S1 − 1)|0⟩ = ⟨0| − iS2 − σx|0⟩ = −i ⟨0|S2|0⟩ = i,

⟨0|σx(S2 + 1)|0⟩ = ⟨0|iS1 + σx|0⟩ = i ⟨0|S1|0⟩ = i,

⟨0|(S1 − 1)(S2 + 1)|0⟩ = ⟨0| − 2iσx + 2σz − 1|0⟩ = ⟨0|2σz|0⟩ − 1 = 1,〈
0|(S1 − 1)2|0

〉
= ⟨0|31− 2S1|0⟩ = 3− 2 ⟨0|S1|0⟩ = 1,〈

0|(S2 + 1)2|0
〉
= ⟨0|31+ 2S2|0⟩ = 3 + 2 ⟨0|S − 2|0⟩ − 1 = 1,

and thus

M ′ =


1 −i −i −i −i
i 1 1 1 1
i 1 1 1 1
i 1 1 1 1
i 1 1 1 1

 .

We check that M has normalized eigenvectors

µ1 =
1√
5


−i
1
1
1
1

 , µ2 =
1√
2


0
0
0
1
−1

 , µ3 =
1√
2


0
1
−1
0
0

 , µ4 =
1

2


0
1
1
−1
−1

 , µ5 =
1

2
√
5


4i
1
1
1
1

 ,

with respective eigenvalues

λ1 = 5, λ2 = 0, λ3 = 0, λ4 = 0, λ5 = 0.
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This shows that there was no contradiction as we get a single Lindblad operator

L =
∑
j

µ1jAj =
1√
5

(
−iσx +

1

4
(S1 + S2 + S1 + S2)

)
=

−i√
5
(σx + iσy)

with rate Γ = θ2λ1
δt

= θ25
δt

.
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Appendix C

Master equation

C.1 Time evolution - direct computations
Let us assume that the interaction between the two systems is given by the Hamiltonian
H±

int = 1
4
(σx ⊗ σx ± σy ⊗ σy). Then the time evolution is given by aplying the unitary

operator
U(θ) = e−iθH

±
int = e−

iθ
4
(σx⊗σx±σy⊗σy).

As σz |0⟩ = − |0⟩ and σz |1⟩ = |1⟩, we get

σx |0⟩ = |1⟩ , σx |1⟩ = |0⟩ , σy |0⟩ = −i |1⟩ , σy |1⟩ = i |0⟩ ,

so

(σx ⊗ σx ± σy ⊗ σy) |00⟩ = |11⟩ ± (−i)2 |11⟩ ,
(σx ⊗ σx ± σy ⊗ σy) |11⟩ = |00⟩ ± i2 |00⟩ ,
(σx ⊗ σx ± σy ⊗ σy) |01⟩ = |10⟩ ± (−i)i |10⟩ ,
(σx ⊗ σx ± σy ⊗ σy) |10⟩ = |01⟩ ± i(−i) |01⟩ ,

Hence, eigenstates for H+
int are {|00⟩ , |11⟩ , |01⟩+|10⟩√

2
, |01⟩−|10⟩√

2
} with respective eigenvalues

{0, 0, 1
2
,−1

2
}, and eigenstates for H−

int are { |11⟩+|00⟩√
2

, |11⟩−|00⟩√
2

, |01⟩ , |10⟩} with respective
eigenvalues {1

2
,−1

2
, 0, 0}. Both sets of eigenstates for orthonormal bases.

To see the time evolution of a state |ϕ⟩, we write |ϕ⟩ =
∑4

j=1 aj |j⟩, where the states
|j⟩ refer to the orthonormal eigenstates of either H+

int or H−
int. Then, by functional calculus

[17, section 2.1.8],

U±(θ) |Ψ⟩ = e−iθH
±
int |Ψ⟩ =

4∑
i=1

aje
−iθλj |j⟩ ,

where λj is the eigenvalue corresponding to |j⟩. Thus,

U+(θ) |Ψ⟩ = a1 |00⟩+ a2 |11⟩+ a3e
− iθ

2
|01⟩+ |10⟩√

2
+ a4e

iθ
2
|01⟩ − |10⟩√

2
, (C.1a)

U−(θ) |Ψ⟩ = a1e
− iθ

2
|11⟩+ |00⟩√

2
+ a2e

iθ
2
|11⟩ − |00⟩√

2
+ a3 |01⟩+ a4 |10⟩ . (C.1b)
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After interaction we measure the environment with σx. We rewrite the time evolved state
as

U±(θ) |Ψ⟩ = c±00 |00⟩+ c±11 |11⟩+ c±01 |01⟩+ c±10 |10⟩
=
(
c±00 |0⟩+ c±10 |1⟩

)
|0⟩+

(
c±11 |1⟩+ c±01 |0⟩

)
|1⟩

=
(
c±00 |0⟩+ c±10 |1⟩

) 1√
2
(|↑x⟩ − |↓x⟩) +

(
c±11 |1⟩+ c±01 |0⟩

) 1√
2
(|↑x⟩+ |↓x⟩)

=
1√
2

[(
c±00 |0⟩+ c±10 |1⟩

)
+
(
c±11 |1⟩+ c±01 |0⟩

)]
|↑x⟩

+
1√
2

[
−
(
c±00 |0⟩+ c±10 |1⟩

)
+
(
c±11 |1⟩+ c±01 |0⟩

)]
|↓x⟩)

=
1√
2

[(
c±00 + c±01

)
|0⟩+

(
c±10 + c±11

)
|1⟩
]
|↑x⟩

+
1√
2

[(
−c±00 + c±01

)
|0⟩+

(
−c±10 + c±11

)
|1⟩
]
|↓x⟩)

=:
∣∣ψ±

↑x

〉
|↑x⟩+

∣∣ψ±
↓x

〉
|↓x⟩ .

The state we transition to after time evolution and measurement on environment is there-
for given by

|ψ′⟩ =



1√
⟨ψ+

↑x ,ψ
+
↑x⟩
∣∣ψ+

↑x

〉
, if interaction H+

int and measure |↑x⟩ ,
1√

⟨ψ+
↓x ,ψ

+
↓x⟩
∣∣ψ+

↓x

〉
, if interaction H+

int and measure |↓x⟩ ,
1√

⟨ψ−
↑x ,ψ

−
↑x⟩
∣∣ψ−

↑x

〉
, if interaction H−

int and measure |↑x⟩ ,
1√

⟨ψ−
↓x ,ψ

−
↓x⟩
∣∣ψ−

↓x

〉
, if interaction H−

int and measure |↓x⟩ .

(C.2)

C.1.1 What happens if we switch convention

Let us now assume σz |0⟩ = |0⟩ and σz |1⟩ = − |1⟩. Then

σx |0⟩ = |1⟩ , σx |1⟩ = |0⟩ , σy |1⟩ = −i |0⟩ , σy |0⟩ = i |1⟩ ,

so

(σx ⊗ σx ± σy ⊗ σy) |00⟩ = |11⟩ ± i2 |11⟩ ,
(σx ⊗ σx ± σy ⊗ σy) |11⟩ = |00⟩ ± (−i)2 |00⟩ ,
(σx ⊗ σx ± σy ⊗ σy) |01⟩ = |10⟩ ± i(−i) |10⟩ ,
(σx ⊗ σx ± σy ⊗ σy) |10⟩ = |01⟩ ± (−i)i |01⟩ .

Hence, the eigenstates are still {|00⟩ , |11⟩ , |01⟩+|10⟩√
2

, |01⟩−|10⟩√
2

} for the positive case and
{ |11⟩+|00⟩√

2
, |11⟩−|00⟩√

2
, |01⟩ , |10⟩} for the negative case. The eigenvalues are here {0, 0, 1

2
,−1

2
}

and {1
2
,−1

2
, 0, 0} for H+

int and H−
int, respectively. This means that the time evolution given
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by equation (C.1) will be the same in both conventions. However,

U±(θ) |Ψ⟩ = c±00 |00⟩+ c±11 |11⟩+ c±01 |01⟩+ c±10 |10⟩
=
(
c±00 |0⟩+ c±10 |1⟩

)
|0⟩+

(
c±11 |1⟩+ c±01 |0⟩

)
|1⟩

=
(
c±00 |0⟩+ c±10 |1⟩

) 1√
2
(|↑x⟩+ |↓x⟩) +

(
c±11 |1⟩+ c±01 |0⟩

) 1√
2
(|↑x⟩ − |↓x⟩)

=
1√
2

[(
c±00 |0⟩+ c±10 |1⟩

)
+
(
c±11 |1⟩+ c±01 |0⟩

)]
|↑x⟩

+
1√
2

[(
c±00 |0⟩+ c±10 |1⟩

)
−
(
c±11 |1⟩+ c±01 |0⟩

)]
|↓x⟩)

=
1√
2

[(
c±00 + c±01

)
|0⟩+

(
c±10 + c±11

)
|1⟩
]
|↑x⟩

+
1√
2

[(
c±00 − c±01

)
|0⟩+

(
c±10 − c±11

)
|1⟩
]
|↓x⟩)

=:
∣∣ψ±

↑x

〉
|↑x⟩+

∣∣ψ±
↓x

〉
|↓x⟩ ,

which shows that the dynamics have slightly changed. Equation (C.2) can be written
in the exact same way, but when unpacking

∣∣ψ±
↑x

〉
and

∣∣ψ±
↓x

〉
one needs to specify which

convention is used.

C.1.2 First step for actual system

The choice of H±
int relies on the assumption that the environment bit is |E⟩ = |0⟩. Let the

system be in the state |ψ⟩ = α |0⟩+ β |1⟩. Then

|Ψ⟩ = |ψ⟩ |E⟩ = α |00⟩+ 0 |11⟩+ 0 |01⟩+ β |10⟩ .
Following the equations for time evolution (C.1), this means

a1 = α, a2 = 0, a3 = β/
√
2, a4 = −β/

√
2

for H+
int and

a1 = α/
√
2, a2 = −α/

√
2, a3 = 0, a4 = β

for H−
int. Thus

c+00 = a1 = α, c+11 = a2 = 0, c+01 =
a3e−iθ/2 + a4eiθ/2√

2
= −iβ sin

θ

2
, c+10 =

a3e−iθ/2 − a4eiθ/2√
2

= β cos
θ

2
,

c−00 =
a1e−iθ/2 − a2eiθ/2√

2
= α cos

θ

2
, c−11 =

a1e−iθ/2 + a2eiθ/2√
2

= −iα sin
θ

2
, c−01 = a3 = 0, c−10 = a4 = β,

which means ∣∣ψ+
↑x

〉
=

1√
2

[(
α− iβ sin

θ

2

)
|0⟩+

(
β cos

θ

2

)
|1⟩
]
,

∣∣ψ−
↑x

〉
=

1√
2

[(
α cos

θ

2

)
|0⟩+

(
β − iα sin

θ

2

)
|1⟩
]
,

∣∣ψ+
↓x

〉
=

1√
2

[(
−α− iβ sin

θ

2

)
|0⟩+

(
−β cos θ

2

)
|1⟩
]
,

∣∣ψ−
↓x

〉
=

1√
2

[(
−α cos

θ

2

)
|0⟩+

(
−β − iα sin

θ

2

)
|1⟩
]
,
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if we use the convention σz |0⟩ = − |0⟩. If we instead use the convention σz |0⟩ = |0⟩, then∣∣ψ+
↑x

〉
=

1√
2

[(
α− iβ sin

θ

2

)
|0⟩+

(
β cos

θ

2

)
|1⟩
]
,

∣∣ψ−
↑x

〉
=

1√
2

[(
α cos

θ

2

)
|0⟩+

(
β − iα sin

θ

2

)
|1⟩
]
,

∣∣ψ+
↓x

〉
=

1√
2

[(
α + iβ sin

θ

2

)
|0⟩+

(
β cos

θ

2

)
|1⟩
]
,

∣∣ψ−
↓x

〉
=

1√
2

[(
α cos

θ

2

)
|0⟩+

(
β + iα sin

θ

2

)
|1⟩
]
.

We see that the only difference is that
∣∣ψ±

↓x

〉
picks up a phase factor of eiπ = −1. So the

convention does not matter up to a phase factor. We calculate the different probabilities:〈
ψ+
↑x |ψ

+
↑x

〉
=

1

2

(∣∣∣∣α− iβ sin
θ

2

∣∣∣∣2 + |β|2 cos2 θ
2

)

=
1

2

(
|α|2 + |β|2 sin θ

2
+ |β|2 cos2 θ

2
− i(α∗β − αβ∗) sin

θ

2

)
=

1

2
+ Im(α∗β) sin

θ

2
,

〈
ψ−
↑x |ψ

−
↑x

〉
=

1

2

(
|α|2 cos2 θ

2
+

∣∣∣∣β − iα sin
θ

2

∣∣∣∣2
)

=
1

2

(
|β|2 + |α|2 sin θ

2
+ |α|2 cos2 θ

2
− i(αβ∗ − α∗β) sin

θ

2

)
=

1

2
+ Im(αβ∗) sin

θ

2
,

〈
ψ+
↓x |ψ

+
↓x

〉
=

1

2

(∣∣∣∣α+ iβ sin
θ

2

∣∣∣∣2 + |β|2 cos2 θ
2

)

=
1

2

(
|α|2 + |β|2 sin θ

2
+ |β|2 cos2 θ

2
− i(αβ∗ − α∗β) sin

θ

2

)
=

1

2
+ Im(αβ∗) sin

θ

2
,

〈
ψ−
↓x |ψ

−
↓x

〉
=

1

2

(
|α|2 cos2 θ

2
+

∣∣∣∣β + iα sin
θ

2

∣∣∣∣2
)

=
1

2

(
|β|2 + |α|2 sin θ

2
+ |α|2 cos2 θ

2
− i(α∗β − αβ∗) sin

θ

2

)
=

1

2
+ Im(α∗β) sin

θ

2
.

We can now update equation (C.2) for the state after measurement,

|ψ′⟩ =



(α−iβ sin θ
2)|0⟩+(β cos θ

2)|1⟩√
1+2 Im(α∗β) sin θ

2

, if interaction H+
int and measure |↑x⟩ ,

(α cos θ
2)|0⟩+(β−iα sin θ

2)|1⟩√
1+2 Im(αβ∗) sin θ

2

, if interaction H+
int and measure |↓x⟩ ,

(α+iβ sin θ
2)|0⟩+(β cos θ

2)|1⟩√
1+2 Im(αβ∗) sin θ

2

, if interaction H−
int and measure |↑x⟩ ,

(α cos θ
2)|0⟩+(β+iα sin θ

2)|1⟩√
1+2 Im(α∗β) sin θ

2

, if interaction H−
int and measure |↓x⟩ .

(C.3)

C.1.3 How many states can evolve to a fixed state?

We have seen what the state looks like after measurement. Now we ask ourselves the
following question: If we after n+ 1 steps have a system in the state |ψ⟩n+1 = αn+1 |0⟩+
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βn+1 |1⟩, what are the possible states |ψ⟩n = αn |0⟩ + βn |1⟩ that could have evolved to
the state |ψ⟩n+1? We know that each step must follow equation (C.3). In other words,
state |ψ⟩n+1 comes for the interaction HI± and measurement of either |↑x⟩ or |↓x⟩. We go
through the four different possibilities.

Assume |ψ⟩n+1 =
1√

⟨ψ+
↑x ,ψ

+
↑x⟩
∣∣ψ+

↑x

〉
, where we have used the notation for equation (C.2).

If we define p+↑ :=
〈
ψ+
↑x , ψ

+
↑x

〉
, we get

αn+1 =
αn − iβn sin

θ
2√

2p+↑

, βn+1 =
βn cos

θ
2√

2p+↑

.

We then solve for αn and βn:

βn =

√
2p+↑ βn+1

cos θ
2

, αn =
√

2p+↑ αn+1 + iβn sin
θ

2
=
√

2p+↑

(
αn+1 + iβn+1 tan

θ

2

)
.

Moreover,

1 = |αn|2 + |βn|2 = 2p+↑

=:f(αn+1,βn+1;θ)︷ ︸︸ ︷[∣∣∣∣αn+1 + iβn+1 tan
θ

2

∣∣∣∣2 + |βn+1|2

cos2 θ
2

]
p+↑ =

1

2f(αn+1, βn+1; θ)
.

We have thus written the probability in terms of αn+1 and βn+1. As we only have one
choice for the values of αn and βn, this shows that we only have one possible choice for
|ψ⟩n.

We can do the exact same computation for the other choices: Assume |ψ⟩n+1 =
1√

⟨ψ+
↓x ,ψ

+
↓x⟩
∣∣ψ+

↓x

〉
. Defining p+↓ :=

〈
ψ+
↓x , ψ

+
↓x

〉
, we get

αn+1 =
αn + iβn sin

θ
2√

2p+↓

, βn+1 =
βn cos

θ
2√

2p+↓

,

and thus

βn =

√
2p+↓ βn+1

cos θ
2

, αn =
√

2p+↓ αn+1 − iβn sin
θ

2
=
√

2p+↓

(
αn+1 − iβn+1 tan

θ

2

)
.

Moreover,

1 = |αn|2 + |βn|2 = 2p+↓

=:f(αn+1,βn+1;θ)︷ ︸︸ ︷[∣∣∣∣αn+1 − iβn+1 tan
θ

2

∣∣∣∣2 + |βn+1|2

cos2 θ
2

]
p+↓ =

1

2f(αn+1, βn+1; θ)
.
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Next, assume |ψ⟩n+1 =
1√

⟨ψ−
↑x ,ψ

−
↑x⟩
∣∣ψ−

↑x

〉
. Defining p−↑ :=

〈
ψ−
↑x , ψ

−
↑x

〉
, we get

αn+1 =
αn cos

θ
2√

2p−↑

, βn+1 =
βn − iαn sin

θ
2√

2p−↑

,

and thus

αn =

√
2p−↑ αn+1

cos θ
2

, βn =
√

2p−↑ βn+1 + iαn sin
θ

2
=
√

2p−↑

(
βn+1 + iαn+1 tan

θ

2

)
.

Moreover,

1 = |αn|2 + |βn|2 = 2p−↑

=:f(αn+1,βn+1;θ)︷ ︸︸ ︷[
|αn+1|2

cos2 θ
2

+

∣∣∣∣βn+1 + iαn+1 tan
θ

2

∣∣∣∣2
]

p−↑ =
1

2f(αn+1, βn+1; θ)
.

Finally, assume |ψ⟩n+1 =
1√

⟨ψ−
↓x ,ψ

−
↓x⟩
∣∣ψ−

↓x

〉
. Defining p−↓ :=

〈
ψ−
↓x , ψ

−
↓x

〉
, we get

αn+1 =
αn cos

θ
2√

2p−↓

, βn+1 =
βn + iαn sin

θ
2√

2p−↓

,

and thus

αn =

√
2p−↓ αn+1

cos θ
2

, βn =
√

2p−↓ βn+1 − iαn sin
θ

2
=
√

2p−↓

(
βn+1 − iαn+1 tan

θ

2

)
.

Moreover,

1 = |αn|2 + |βn|2 = 2p−↓

=:f(αn+1,βn+1;θ)︷ ︸︸ ︷[
|αn+1|2

cos2 θ
2

+

∣∣∣∣βn+1 − iαn+1 tan
θ

2

∣∣∣∣2
]

p−↓ =
1

2f(αn+1, βn+1; θ)
.

We see that in all cases we have a unique state |ψ⟩n.

C.2 Diffusion from random walk
Following [3, section 14.2], we give a heuristic argument for why the random walk con-
verges to a diffusion process when time and space are taken infinitesimal.
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1D case: Let (Xn)n∈N be a stochastic process consisting of i.i.d. Bernoulli r.v.’s with
parameter p, i.e. P (Xn = l) = p and P (Xn = −l) = 1− p =: q, where l > 0 is a distance.
Append X0 = 0 and define Sn :=

∑n
i=0Xi. Then

E[Sn] =
n∑
i=0

E[Xi] =
n∑
i=1

(lp− lq) = nl(p− q) = nl(2p− 1),

E[S2
n] = E[

n∑
i=0

n∑
j=0

XiXj] = E[
n∑
i=1

X2
i ] + 2

∑
i<j

E[Xi]E[Xj] = nl2 + n(n− 1)l2(2p− 1)2,

Var[Sn] = E[S2
n]− E[Sn]

2 = 4nl2pq.

We define a time t := n∆t and a distance ∆x = l. We want lim∆t,∆x→0 Sn to have both first
and second moment. Since the time t should be fixed, we see that n = t/∆t goes to infinity
when ∆t goes to zero. Hence, if Var[Sn] is to converge, we must have lim∆t,∆x→∞

(∆x)2

∆t
=

2D. However, then lim∆t,∆x→∞E[Sn] = lim∆t,∆x→∞
∆x
∆t

= lim∆t,∆x→∞
(∆x)2

∆t
1
∆x

= ∞. We
must therefore demand p = a + b∆x + O((∆x)2), where a, b ∈ R. As all higher order
terms disappear, we simply assume p = 1

2
+ C

2D
∆x, where C ∈ R. Then

lim
∆t,∆x→∞

E[Sn] = lim
∆t,∆x→∞

nl
C

D
∆x =

C

D
D = C,

lim
∆t,∆x→∞

Var[Sn] = lim
∆t,∆x→∞

4nl2(
1

4
− C2

4D2
(∆x)2) = 2D.

We can now look at the probability density of being at position x at time t, denoted by
u(x, t). We must have

u(x, t+∆t) = pu(x−∆x, t) + qu(x+∆x, t).

Hence, as q − p = −C
D
∆x,

u(x, t) +
∂u(x, t)

∂t
∆t+O

(
(∆t)2

)
= p

[
u(x, t) +

∂u(x, t)

∂x
(−∆x) +

∂2u(x, t)

∂x2
(−∆x)2

2!
+O

(
(−∆x)3

)]
+ q

[
u(x, t) +

∂u(x, t)

∂x
∆x+

∂2u(x, t)

∂x2
(∆x)2

2!
+O

(
(∆x)3

)]
= u(x, t) + (q − p)

∂u(x, t)

∂x
∆x+

∂2u(x, t)

∂x2
(∆x)2

2
+O

(
(∆x)3

)
,

and thus

∂u(x, t)

∂t
+O(∆t) = (q − p)

∂u(x, t)

∂x

∆x

∆t
+
∂2u(x, t)

∂x2
(∆x)2

2∆t
+O

(
(∆x)3

∆t

)
∂u(x, t)

∂t
= −2C

∂u(x, t)

∂x
+D

∂2u(x, t)

∂x2
,

where we in the last line have taken the limit when ∆t,∆x → 0. We have found the
diffusion equation!
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3D case: This time we have

P (Xn =

 l0
0

) = p1, P (Xn =

−l
0
0

) = p2, . . . , P (Xn =

 0
0
−l

) = p6.

Hence,

E[Sn] =
n∑
i=1

E[Xi] = nl

p1 − p2
p3 − p4
p5 − p6


and

E[SnS
T
n ] = E[

n∑
i,j=0

XiX
T
j ] =

n∑
i,j=0

E[XiX
T
j ] =

n∑
i=1

E[XiX
T
i ] + 2

∑
i<j

E[Xi]E[Xj]
T

= nE[X1X
T
1 ] + n(n− 1)E[X1]E[X1]

T

= nE[

 X2
1,1 X1,1X1,2 X1,1X1,3

X1,2X1,1 X2
1,2 X1,2X1,3

X1,3X1,1 X1,3X1,2 X2
1,3

] + n(n− 1)l2

p1 − p2
p3 − p4
p5 − p6

p1 − p2
p3 − p4
p5 − p6

T

= nl2

p1 + p2 0 0
0 p3 + p4 0
0 0 p5 + p6

+ n(n− 1)l2

p1 − p2
p3 − p4
p5 − p6

p1 − p2
p3 − p4
p5 − p6

T

.

Thus

Var[Sn] = E[SnS
T
n ]− E[Sn]E[S

T
n ]

= nl2

p1 + p2 0 0
0 p3 + p4 0
0 0 p5 + p6

− nl2

p1 − p2
p3 − p4
p5 − p6

p1 − p2
p3 − p4
p5 − p6

T

.

As before, we have

u(x, y, z; t+∆t) =p1u(x−∆x, y, z; t) + p2u(x+∆x, y, z; t)

+ p3u(x, y −∆y, z; t) + p4u(x, y, z +∆z; t)

+ p5u(x, y −∆y, z; t) + p6u(x, y, z +∆z; t),
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so

u(x; t) +
∂u

∂t
∆t+O((∆t)2) =p1

(
u(x; t)− ∂u

∂x
∆x+

∂2u

∂x2
(∆x)2

2!
+O((∆x)3)

)
+ p2

(
u(x; t)− ∂u

∂x
∆x+

∂2u

∂x2
(∆x)2

2!
+O((∆x)3)

)
+ p3

(
u(x; t)− ∂u

∂y
∆y +

∂2u

∂y2
(∆y)2

2!
+O((∆y)3)

)
+ p4

(
u(x; t)− ∂u

∂y
∆y +

∂2u

∂y2
(∆y)2

2!
+O((∆y)3)

)
+ p5

(
u(x; t)− ∂u

∂z
∆z +

∂2u

∂z2
(∆z)2

2!
+O((∆z)3)

)
+ p6

(
u(x; t)− ∂u

∂z
∆z +

∂2u

∂z2
(∆z)2

2!
+O((∆z)3)

)
∂u

∂t
+O(∆t) =

(p2 − p1)
∆x
∆t

(p4 − p3)
∆y
∆t

(p6 − p5)
∆z
∆t

 · ∇u+

p1+p2
2

(∆x)2

∆t
p3+p4

2
(∆y)2

∆t
p5+p6

2
(∆z)2

∆t

 ·

∂2u
∂x2
∂2u
∂y2

∂2u
∂z2


+O(

(∆x)3

∆t
) +O(

(∆y)3

∆t
) +O(

(∆z)3

∆t
).

Defining 2Di = lim∆xi,∆t→0
(∆xi)

2

∆t
and p1 = 1

2
+ C1

2D1
∆x, p2 = 1

2
− C1

2D1
∆x, and so on, we

get

∂u

∂t
= −2

C1

C2

C3

 · ∇u+

(p1 + p2)D1

(p3 + p4)D2

(p5 + p6)D3

 ·

∂2u
∂x2
∂2u
∂y2

∂2u
∂z2

 .
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Appendix D

Flow of a TLS state on the Bloch
sphere

This part of the appendix is dedicated to finding the flow of the state of a TLS for the
model proposed in the thesis by Longva [13]. As we want to represent the flow on the
Bloch sphere, we need to compute the Bloch vector of a TLS. Recall that

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

In the computations that follow, we will use the convention σz |0⟩ = |0⟩.
Given a mixed state ρ = 1

2
(1+n ·σ), where σ =

(
σx, σy, σz

)T , we define the vector
n as the Bloch vector of the TLS. Observe that

tr (ρσj) = tr

(
1

2
(1+

∑
i

niσi)σj

)
=

1

2
tr

(
σj +

∑
i

niσiσj

)
=

1

2
2nj = nj,

as σiσj = 1δij + iϵijkσk and tr (σj) = 0. Hence, for a pure state |ψ⟩ ⟨ψ|, the Bloch vector
can be computed by

n = tr (|ψ⟩ ⟨ψ|σ) = ⟨ψ|σ|ψ⟩ .
Moreover, if |ψ⟩ = α |0⟩ + β |1⟩ is a pure state such that ρ = |ψ⟩ ⟨ψ| = |α|2 |0⟩ ⟨0| +
αβ∗ |0⟩ ⟨1| + α∗β |1⟩ ⟨0| + |β|2 |1⟩ ⟨1|, then the Bloch vector can be expressed by the fol-
lowing:

ρ = |ψ⟩ ⟨ψ| =
(
|α|2 αβ∗

α∗β |β|2
)

=
1

2

(
1 + nz nx − iny
nx + iny 1− nz

)
=

1

2
(1+ n · σ) .

Hence

1 + nz = 2|α|2 nx − iny = 2αβ∗ nx + iny = 2α∗β,

1− nz = 2|β|2 nx = αβ∗ + α∗β iny = −αβ∗ + α∗β,

nz = 2|α|2 − |β|2 nx = 2Re(αβ∗) ny = 2 Im(α∗β). (D.1)

Before we go on to the actual computations, we note that if the state |ψ⟩ is not
normalized, then we can choose to either normalize the state before computing the Bloch
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vector, or first compute a non-normalized Bloch vector before normalizing the Bloch
vector. Let |ψ⟩ = α |0⟩ + β |1⟩ be a state which is not normalized, i.e. |α|2 + |β|2 ̸= 1.
Define ñ := ⟨ψ|σ|ψ⟩. Then

ñx = (α∗ ⟨0|+ β∗ ⟨1|)σx(α |0⟩+ β |1⟩) = (α∗ ⟨0|+ β∗ ⟨1|)(α |1⟩+ β |0⟩) = α∗β + αβ∗,
(D.2a)

ñy = (α∗ ⟨0|+ β∗ ⟨1|)σy(α |0⟩+ β |1⟩) = (α∗ ⟨0|+ β∗ ⟨1|)i(α |1⟩ − β |0⟩) = i(−α∗β + αβ∗),
(D.2b)

ñz = (α∗ ⟨0|+ β∗ ⟨1|)σz(α |0⟩+ β |1⟩) = (α∗ ⟨0|+ β∗ ⟨1|)(α |0⟩ − β |1⟩) = |α|2 − |β|2.
(D.2c)

As all terms are real, the norm is given by

∥ñ∥2 = (α∗β + αβ∗)2 − (−α∗β + αβ∗)2 + (|α|2 − |β|2)2

= (α∗β)2 + 2|α|2|β|2 + (αβ∗)2 −
(
(α∗β)2 − 2|α|2|β|2 + (αβ∗)2

)
+ |α|4 − 2|α|2|β|2 + |β|4

= 2|α|2|β|2 + |α|4 + |β|4

= (|α|2 + |β|2)2. (D.3)

Since ⟨ψ|ψ⟩ = |α|2 + |β|2, we have

n =
⟨ψ|σ|ψ⟩
⟨ψ|ψ⟩

=
ñ

∥ñ∥
.

In other words, it does not matter if we normalize the state before finding the Bloch
vector, or normalize the Bloch vector of the non-normalized state.

D.1 Bloch vector flow for model proposed by Longva
Before we calculate the flow of the Bloch vector for the model proposed by Longva in his
thesis [13], we will go through the general method. Using QTT, we assume that our system
is a TLS1 in a state |ψ⟩, the environment consists of n-level systems all in the same state
|E⟩, the interaction Hamiltonian is on the form HI =

∑
j Aj ⊗Bj and the time evolution

is given by U(θ) = exp (−iθHI), and we have chosen a (orthonormal) measurement basis
{|fk⟩}1≤k≤n. By writing the Taylor expansion of U(θ), the non-normalized state after
measurement outcome k is then given by∣∣ψk〉 := |ψ⟩ ⟨fk|E⟩ − iθ

∑
j

Aj |ψ⟩ ⟨fk|Bj|E⟩+O(θ2).

1As we noted in section 5.2 it is not possible to visualise the entire state space of an n-level system
for n > 2. The argument can be generalized to n-level systems, but this will only give an expression for
the flow of the state. One can only hope to visualize the flow in a subspace of the state space.
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The (non-normalized) Bloch vector of the k-th measurement outcome is then given by

ñk =
〈
ψk|σ|ψk

〉
(D.4)

=| ⟨fk|E⟩ |2
=n, Bloch vector before time evolution︷ ︸︸ ︷

⟨ψ|σ|ψ⟩ (D.5)

+ iθ
∑
j

⟨fk|Bj|E⟩∗
〈
ψ|A†

jσ|ψ
〉
⟨fk|E⟩ (D.6)

− iθ
∑
j

⟨fk|Bj|E⟩ ⟨ψ|σAj|ψ⟩ ⟨fk|E⟩∗ +O(θ2) (D.7)

=:U +

θ2Re (v)=:θV︷ ︸︸ ︷
θv + θv∗ +O(θ2) = U + θV +O(θ2). (D.8)

Before we can take the derivative to find the flow of the state, we need to normalize:

nk =
ñk

∥ñk∥
=

ñk√
ñk · ñk

=
U + θV +O(θ2)√

|U |2 + 2θV · U +O(θ2)

Taking the derivative with respect to θ we find that the flow is given by

dnk

dθ
=
V
√

|U |2 + 2θV · U +O(θ2)− (U + θV +O(θ2))1
2

2V ·U+O(θ)√
|U |2+2θV ·U+O(θ2)

|U |2 + 2θV · U +O(θ2)
.

Since θ ≪ 1 we put θ = 0 to find the main contribution. With this assumption, and
knowing that ∥n∥ = 1 and |U | = | ⟨fk|E⟩ |2|n| = | ⟨fk|E⟩ |2, the flow can be written as

dnk

dθ
=

1

|U |
(V − n(V · n)). (D.9)

We are now ready to tackle the model proposed by Longva.
Let H±

I = 1
4
(σx⊗σx±σy⊗σy) be the interaction Hamiltonian, |E⟩ = |0⟩ be the state of

the environment, and choose measurement basis {|x+⟩ , |x−⟩}, i.e. |fk⟩ =

{
|x+⟩ , k = 0

|x−⟩ , k = 1
.

We define A1 = 1
4
σx, A2 = ±1

4
σy, B1 = σx, B2 = σy, such that HI = A1 ⊗ B1 + A2 ⊗ B2.

This gives us

⟨fk|E⟩ =

{
⟨x+|0⟩ = 1√

2
(⟨0|+ ⟨1|) |0⟩ , k = 0

⟨x−|0⟩ = 1√
2
(⟨0| − ⟨1|) |0⟩ , k = 1

=
1√
2
,

⟨fk|B1|E⟩ = ⟨x±|

0 1
1 0

1
0

=

0
1

=|1⟩︷ ︸︸ ︷
σx |0⟩ =

1√
2
(⟨0| ± ⟨1|) |1⟩ =

{
1/
√
2, k = 0

−1/
√
2, k = 1

,

⟨fk|B2|E⟩ = ⟨x±|

0 −i
i 0

1
0

=

0
i

=i|1⟩︷ ︸︸ ︷
σy |0⟩ =

i√
2
(⟨0| ± ⟨1|) |1⟩ =

{
i/
√
2, k = 0

−i/
√
2, k = 1

,
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〈
ψ|A†

1σ|ψ
〉
=

1

4

〈
ψ|σ†

xσ|ψ
〉
=

1

4

〈
ψ|
(
1, σxσy, σxσz

)
|ψ
〉

=
1

4

(
1, i ⟨ψ|σz|ψ⟩ , −i ⟨ψ|σy|ψ⟩

)
=

1

4

(
1, inz, −iny

)
,

〈
ψ|A†

2σ|ψ
〉
=

1

4

〈
ψ| ± σ†

yσ|ψ
〉
= ±1

4

〈
ψ|
(
σyσx, 1, σyσz

)
|ψ
〉

= ±1

4

(
−i ⟨ψ|σz|ψ⟩ , 1, i ⟨ψ|σx|ψ⟩

)
= ±1

4

(
−inz, 1, inx

)
,

where we have used that σj = σ†
j = σ−1

j , σiσj = 1δij + iϵijkσk and ⟨ψ|σi|ψ⟩ = ni. We
calculate the variables in equation (D.4),

vT =



i
[

1√
2
1
4

(
1, inz, −iny

)
1√
2
+ −i√

2
1
4

(
−inz, 1, inx

)
1√
2

]
, k = 0 and Hint+

i
[
−1√
2
1
4

(
1, inz, −iny

)
1√
2
+ i√

2
1
4

(
−inz, 1, inx

)
1√
2

]
, k = 1 and Hint+

i
[

1√
2
1
4

(
1, inz, −iny

)
1√
2
+ −i√

2
(−1

4
)
(
−inz, 1, inx

)
1√
2

]
, k = 0 and Hint−

i
[
−1√
2
1
4

(
1, inz, −iny

)
1√
2
+ i√

2
(−1

4
)
(
−inz, 1, inx

)
1√
2

]
, k = 1 and Hint−

=
i

8



(
1 + (−i)2nz, inz + (−i), −iny + (−i)inx

)
, k = 0 and Hint+(

−1 + i(−i)nz, −inz + i, −(−i)ny + i2nx

)
, k = 1 and Hint+(

1− (−i)2nz, inz − (−i), −iny − (−i)inx
)
, k = 0 and Hint−(

−1− i(−i)nz, −inz − i, −(−i)ny − i2nx

)
, k = 1 and Hint−

=
i

8



(
1− nz, i(nz − 1), −iny + nx

)
, k = 0 and Hint+(

−1 + nz, i(−nz + 1), iny − nx

)
, k = 1 and Hint+(

1 + nz, i(nz + 1), −iny − nx

)
, k = 0 and Hint−(

−1− nz, i(−nz − 1), iny + nx

)
, k = 1 and Hint−

,

and U = 1
2
n = 1

2

(
nx, ny, nz

)T . Next we compute

V T = 2Re(vT )

=
1

4



(
Re(i(1− nz)), Re(i2(nz − 1)), Re(i(−iny + nx))

)
, k = 0 and Hint+(

Re(i(−1 + nz)), Re(i2(−nz + 1)), Re(i(iny − nx))
)
, k = 1 and Hint+(

Re(i(1 + nz)), Re(i2(nz + 1)), Re(i(−iny − nx))
)
, k = 0 and Hint−(

Re(i(−1− nz)), Re(i2(−nz − 1)), Re(i(iny + nx))
)
, k = 1 and Hint−

=
1

4



(
0, −nz + 1, ny

)
, k = 0 and Hint+(

0, nz − 1, −ny
)
, k = 1 and Hint+(

0, −nz − 1, ny

)
, k = 0 and Hint−(

0, nz + 1, −ny
)
, k = 1 and Hint−

.
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The normalized the Bloch vector for θ = 0, given by equation (D.9), is then

dnk

dθ
= 2(V − n(V · n)).

Since

V · nS =
1

4


0 · nx + (−nz + 1)ny + nynz, k = 0 and Hint+

0 · nx + (nz − 1)ny − nynz, k = 1 and Hint+

0 · nx + (−nz − 1)ny + nynz, k = 0 and Hint−

0 · nx + (nz + 1)ny − nynz, k = 1 and Hint−

=
1

4


ny, k = 0 and Hint+

−ny, k = 1 and Hint+

−ny, k = 0 and Hint−

ny, k = 1 and Hint−

,

we get

(
dnk

dθ

)T
=

1

2



(
0, −nz + 1, ny

)
− ny

(
nx, ny, nz

)
, k = 0 and Hint+(

0, nz − 1, −ny
)
+ ny

(
nx, ny, nz

)
, k = 1 and Hint+(

0, −nz − 1, ny

)
+ ny

(
nx, ny, nz

)
, k = 0 and Hint−(

0, nz + 1, −ny
)
− ny

(
nx, ny, nz

)
, k = 1 and Hint−

=
1

2



(
−nynx, −nz + 1− n2

y, ny(1− nz)
)
, k = 0 and Hint+(

nynx, nz − 1 + n2
y, ny(−1 + nz)

)
, k = 1 and Hint+(

nynx, −nz − 1 + n2
y, ny(1 + nz)

)
, k = 0 and Hint−(

−nynx, nz + 1− n2
y, ny(−1− nz)

)
, k = 1 and Hint−

. (D.10)

As a final remark, we note that the flow vector dnk

dθ
is indeed orthogonal to the Bloch

sphere:

dnk

dθ
·

nxny
nz

 =
1

2


−nyn2

x + (−nz + 1− n2
y)ny + nzny(1− nz), k = 0 and Hint+

nyn
2
x + (nz − 1 + n2

y)ny + nzny(−1 + nz), k = 1 and Hint+

nyn
2
x + (−nz − 1 + n2

y)ny + nzny(1 + nz), k = 0 and Hint−

−nyn2
x + (nz + 1− n2

y)ny + nzny(−1− nz), k = 1 and Hint−

=
1

2


−nyn2

x + (−nz + n2
x + n2

z)ny + nzny(1− nz), k = 0 and Hint+

nyn
2
x + (nz − n2

x − n2
z)ny + nzny(−1 + nz), k = 1 and Hint+

nyn
2
x + (−nz − n2

x − n2
z)ny + nzny(1 + nz), k = 0 and Hint−

−nyn2
x + (nz + n2

x + n2
z)ny + nzny(−1− nz), k = 1 and Hint−

=
1

2


nzny(−1 + nz) + nzny(1− nz), k = 0 and Hint+

nzny(1− nz) + nzny(−1 + nz), k = 1 and Hint+

nzny(−1− nz) + nzny(1 + nz), k = 0 and Hint−

nzny(1 + nz) + nzny(−1− nz), k = 1 and Hint−

= 0.

This fact will be useful when we try to map the flow from the sphere to the plane later
in the appendix.
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D.2 The full Bloch vector for the model proposed by
Longva

Although we have found an approximation for the Bloch vector for small θ, we could
also calculate the full Bloch vector without approximation. We could then get an exact
expression for the error we get by assuming all higher order terms are zero.

We are in the same setting as the previous section. That is, we assume that our system
is a TLS in a state |ψ⟩ = α |0⟩ + β |1⟩, the environment consists of two-level systems all
in the same state |E⟩ = |0⟩, the interaction Hamiltonian is on the form

HI± =
1

4
(σx ⊗ σx ± σy ⊗ σy) =

∑
j

A±
j ⊗B±

j

where A±
1 = 1

4
σx, A±

2 = ±1
4
σy, B±

1 = σx, B±
2 = σy. The time evolution is given by

U(θ) = exp (−iθHI±), and we have chosen a measurement basis {|↑x⟩ , |↓x⟩}, i.e. |fk⟩ ={
|↑+⟩ , k = 0

|↓−⟩ , k = 1
. From appendix C we found that the unitary evolution could be written

as

U±(θ) |ψ⟩ = c±00 |00⟩+ c±11 |11⟩+ c±01 |01⟩+ c±10 |10⟩

=
1√
2

[(
c±00 + c±01

)
|0⟩+

(
c±10 + c±11

)
|1⟩
]
|↑x⟩

+
1√
2

[(
c±00 − c±01

)
|0⟩+

(
c±10 − c±11

)
|1⟩
]
|↓x⟩)

=:
∣∣ψ±

↑x

〉
|↑x⟩+

∣∣ψ±
↓x

〉
|↓x⟩ ,

where

c+00 = α, c+11 = 0, c+01 = −iβ sin θ
2
, c+10 = β cos

θ

2
,

c−00 = α cos
θ

2
, c−11 = −iα sin

θ

2
, c−01 = 0, c−10 = β.

The non-normalized Bloch vector after measurement k, given by equation (D.2), will then
be

ñk =
〈
ψk|σ|ψk

〉
=

{
1
2

[(
c±00 + c±01

)∗ ⟨0|+ (c±10 + c±11
)∗ ⟨1|]σ [(c±00 + c±01

)
|0⟩+

(
c±10 + c±11

)
|1⟩
]
, k = 0

1
2

[(
c±00 − c±01

)∗ ⟨0|+ (c±10 − c±11
)∗ ⟨1|]σ [(c±00 − c±01

)
|0⟩+

(
c±10 − c±11

)
|1⟩
]
, k = 1

=
1

2




(
c±00 + c±01

)∗ (
c±10 + c±11

)
+
(
c±10 + c±11

)∗ (
c±00 + c±01

)
−i
(
c±00 + c±01

)∗ (
c±10 + c±11

)
+ i
(
c±10 + c±11

)∗ (
c±00 + c±01

)∣∣c±00 + c±01
∣∣2 − ∣∣c±10 + c±11

∣∣2
 , k = 0


(
c±00 − c±01

)∗ (
c±10 − c±11

)
+
(
c±10 − c±11

)∗ (
c±00 − c±01

)
,

−i
(
c±00 − c±01

)∗ (
c±10 − c±11

)
+ i
(
c±10 − c±11

)∗ (
c±00 − c±01

)
,∣∣c±00 − c±01

∣∣2 − ∣∣c±10 − c±11
∣∣2

 , k = 1

.
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We now need to calculate all the different terms:(
c+00 + c+01

)∗ (
c+10 + c+11

)
= (α− iβ sin

θ

2
)∗β cos

θ

2
= α∗β cos

θ

2
+ i|β|2 sin θ

2
cos

θ

2
,(

c+00 − c+01
)∗ (

c+10 − c+11
)
= (α + iβ sin

θ

2
)∗β cos

θ

2
= α∗β cos

θ

2
− i|β|2 sin θ

2
cos

θ

2
,(

c−00 + c−01
)∗ (

c−10 + c−11
)
= α∗ cos

θ

2
(β − iα sin

θ

2
) = α∗β cos

θ

2
− i|α|2 sin θ

2
cos

θ

2
,(

c−00 − c−01
)∗ (

c−10 − c−11
)
= α∗ cos

θ

2
(β + iα sin

θ

2
) = α∗β cos

θ

2
+ i|α|2 sin θ

2
cos

θ

2
,

and ∣∣c+00 + c+01
∣∣2 − ∣∣c+10 + c+11

∣∣2 = ∣∣∣∣α− iβ sin
θ

2

∣∣∣∣2 − |β|2 cos2 θ
2

= |α|2 + |β|2(sin2 θ

2
− cos2

θ

2
)− i(α∗β − αβ∗) sin

θ

2
,∣∣c+00 − c+01

∣∣2 − ∣∣c+10 − c+11
∣∣2 = ∣∣∣∣α + iβ sin

θ

2

∣∣∣∣2 − |β|2 cos2 θ
2

= |α|2 + |β|2(sin2 θ

2
− cos2

θ

2
) + i(α∗β − αβ∗) sin

θ

2
,∣∣c−00 + c−01

∣∣2 − ∣∣c−10 + c−11
∣∣2 = |α|2 cos2 θ

2
−
∣∣∣∣β − iα sin

θ

2

∣∣∣∣2
= |α|2(cos2 θ

2
− sin2 θ

2
)− |β|2 + i(β∗α− βα∗) sin

θ

2
,∣∣c−00 − c−01

∣∣2 − ∣∣c−10 − c−11
∣∣2 = |α|2 cos2 θ

2
−
∣∣∣∣β + iα sin

θ

2

∣∣∣∣2
= |α|2(cos2 θ

2
− sin2 θ

2
)− |β|2 − i(β∗α− βα∗) sin

θ

2
.

Then (
c+00 ± c+01

)∗ (
c+10 ± c+11

)
+
(
c+10 ± c+11

)∗ (
c+00 ± c+01

)
= (α∗β cos

θ

2
± i|β|2 sin θ

2
cos

θ

2
) + (αβ∗ cos

θ

2
∓ i|β|2 sin θ

2
cos

θ

2
)

= (α∗β + αβ∗) cos
θ

2
,(

c−00 ± c−01
)∗ (

c−10 ± c−11
)
+
(
c−10 ± c−11

)∗ (
c−00 ± c−01

)
= α∗β cos

θ

2
∓ i|α|2 sin θ

2
cos

θ

2
+ (αβ∗ cos

θ

2
± i|α|2 sin θ

2
cos

θ

2
)

= (α∗β + αβ∗) cos
θ

2
,
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and (
c+00 ± c+01

)∗ (
c+10 ± c+11

)
−
(
c+10 ± c+11

)∗ (
c+00 ± c+01

)
= (α∗β cos

θ

2
± i|β|2 sin θ

2
cos

θ

2
)− (αβ∗ cos

θ

2
∓ i|β|2 sin θ

2
cos

θ

2
)

= (α∗β − αβ∗) cos
θ

2
± 2i|β|2 sin θ

2
cos

θ

2
,(

c−00 ± c−01
)∗ (

c−10 ± c−11
)
−
(
c−10 ± c−11

)∗ (
c−00 ± c−01

)
= α∗β cos

θ

2
∓ i|α|2 sin θ

2
cos

θ

2
− (αβ∗ cos

θ

2
± i|α|2 sin θ

2
cos

θ

2
)

= (α∗β − αβ∗) cos
θ

2
∓ 2i|α|2 sin θ

2
cos

θ

2
.

Hence, using that sin θ = 2 sin θ
2
cos θ

2
and cos θ = cos2 θ

2
− sin2 θ

2

−i
[ (
c+00 ± c+01

)∗ (
c+10 ± c+11

)
−
(
c+10 ± c+11

)∗ (
c+00 ± c+01

) ]
= −i(α∗β − αβ∗) cos

θ

2
± |β|2 sin θ,

−i
[ (
c−00 ± c−01

)∗ (
c−10 ± c−11

)
−
(
c−10 ± c−11

)∗ (
c−00 ± c−01

) ]
= −i(α∗β − αβ∗) cos

θ

2
∓ |α|2 sin θ.

The non-normalized Bloch vector is therefore

ñk =
1

2



 (α∗β + αβ∗) cos θ
2

i(αβ∗ − α∗β) cos θ
2
+ |β|2 sin θ

|α|2 − |β|2 cos θ − i(α∗β − αβ∗) sin θ
2

 , k = 0 and Hint+ (α∗β + αβ∗) cos θ
2

i(αβ∗ − α∗β) cos θ
2
− |β|2 sin θ

|α|2 − |β|2 cos θ + i(α∗β − αβ∗) sin θ
2

 , k = 1 and Hint+ (α∗β + αβ∗) cos θ
2

i(αβ∗ − α∗β) cos θ
2
− |α|2 sin θ

|α|2 cos θ − |β|2 − i(α∗β − αβ∗) sin θ
2

 , k = 0 and Hint− (α∗β + αβ∗) cos θ
2

i(αβ∗ − α∗β) cos θ
2
+ |α|2 sin θ

|α|2 cos θ − |β|2 + i(α∗β − αβ∗) sin θ
2

 , k = 1 and Hint−

. (D.11)

As a sanity check, we check that the norm of the Bloch vector is the same as the norm of
the state after measurement. For the interaction Hi+ ,〈

ψk|ψk
〉
=

1

2

[
(α∓ iβ sin

θ

2
)∗ ⟨0|+ β∗ cos

θ

2
⟨1|
] [

(α∓ iβ sin
θ

2
) |0⟩+ β cos

θ

2
|1⟩
]

=
1

2

[∣∣∣∣α∓ iβ sin
θ

2

∣∣∣∣2 + ∣∣∣∣β cos θ2
∣∣∣∣2
]

=
1

2

[
|α|2 ∓ i sin

θ

2
[α∗β − αβ∗] + |β|2 sin2 θ

2
+ |β|2 cos2 θ

2

]
=

1

2

[
1∓ i sin

θ

2
[α∗β − αβ∗]

]
.
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The norm of the Bloch vector for interaction HI+ is

∥2ñk∥2 =(α∗β + αβ∗)2 cos2
θ

2
+

[
i(αβ∗ − α∗β) cos

θ

2
± |β|2 sin θ

]2
+

(
|α|2 − |β|2 cos θ ∓ i(α∗β − αβ∗) sin

θ

2

)2

=(α∗β + αβ∗)2 cos2
θ

2

− (αβ∗ − α∗β)2 cos2
θ

2
∓ 2i(αβ∗ − α∗β) cos

θ

2
|β|2 sin θ + |β|4 sin2 θ

+ |α|4 + 2|α|2
[
−|β|2 cos θ ∓ i(α∗β − αβ∗) sin

θ

2

]
+

[
|β|2 cos θ ± i(α∗β − αβ∗) sin

θ

2

]2
,

and as
[
|β|2 cos θ ± i(α∗β − αβ∗) sin θ

2

]2
= |β|4 cos2 θ ± 2i(α∗β − αβ∗) sin θ

2
|β|2 cos θ −

(α∗β − αβ∗)2 sin2 θ
2
,

∥2ñk∥2 =(α∗β + αβ∗)2 cos2
θ

2
− (αβ∗ − α∗β)2 cos2

θ

2
− (α∗β − αβ∗)2 sin2

θ

2

+ |α|4 + |β|4 cos2 θ + |β|4 sin2 θ + 2|α|2
[
−|β|2 cos θ ∓ i(α∗β − αβ∗) sin

θ

2

]
∓ 2i(αβ∗ − α∗β)|β|2

[
cos

θ

2
sin θ − sin

θ

2
cos θ

]
=4|α|2|β|2 cos2 θ

2
− ((α∗β)2 − 2|α|2|β|2 + (αβ∗)2) sin2

θ

2
− 2|α|2|β|2 cos θ

+ |α|4 + |β|4 ∓ 2i|α|2(α∗β − αβ∗) sin
θ

2
∓ 2i(αβ∗ − α∗β)|β|2 sin θ

2

=2|α|2|β|2 + 2|α|2|β|2 cos2 θ
2
− ((α∗β)2 + (αβ∗)2) sin2

θ

2
− 2|α|2|β|2

(
cos2

θ

2
− sin2

θ

2

)
+ |α|4 + |β|4 ∓ 2i(α∗β − αβ∗) sin

θ

2

=(|α|2 + |β|2)2 + 2|α|2|β|2 sin2 θ
2
− ((α∗β)2 + (αβ∗)2) sin2

θ

2

∓ 2i(α∗β − αβ∗) sin
θ

2

=1∓ 2i(α∗β − αβ∗) sin
θ

2
− ((α∗β)2 − 2|α|2|β|2 + (αβ∗)2) sin2

θ

2

=

(
1∓ i(α∗β − αβ∗) sin

θ

2

)2

.
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They are therefore equal, just as we wanted. For Hint− we have

〈
ψk|ψk

〉
=

1

2

[
α∗ cos

θ

2
⟨0|+ (β ∓ iα sin

θ

2
)∗ ⟨1|

] [
α cos

θ

2
⟨0|+ (β ∓ iα sin

θ

2
) ⟨1|

]
=

1

2

[∣∣∣∣α cos
θ

2

∣∣∣∣2 + ∣∣∣∣β ∓ iα sin
θ

2

∣∣∣∣2
]

=
1

2

[
|β|2 ∓ i sin

θ

2
[αβ∗ − α∗β] + |α|2 sin2 θ

2
+ |α|2 cos2 θ

2

]
=

1

2

[
1∓ i sin

θ

2
[αβ∗ − α∗β]

]
and

∥2ñk∥2 =(α∗β + αβ∗)2 cos2
θ

2
+

[
i(αβ∗ − α∗β) cos

θ

2
∓ |α|2 sin θ

]2
+

(
|α|2 cos θ − |β|2 ∓ i(α∗β − αβ∗) sin

θ

2

)2

=(α∗β + αβ∗)2 cos2
θ

2

− (αβ∗ − α∗β)2 cos2
θ

2
∓ 2i(αβ∗ − α∗β) cos

θ

2
|α|2 sin θ + |α|4 sin2 θ

+ |β|4 − 2|β|2
[
|α|2 cos θ ∓ i(α∗β − αβ∗) sin

θ

2

]
+

[
|α|2 cos θ ∓ i(α∗β − αβ∗) sin

θ

2

]2
.

As
[
|α|2 cos θ ∓ i(α∗β − αβ∗) sin θ

2

]2
= |α|4 cos2 θ∓ 2i(α∗β−αβ∗) sin θ

2
|α|2 cos θ− (α∗β−
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αβ∗)2 sin2 θ
2
,

∥2ñk∥2 =(α∗β + αβ∗)2 cos2
θ

2
− (αβ∗ − α∗β)2 cos2

θ

2
− (α∗β − αβ∗)2 sin2

θ

2

+ |β|4 + |α|4 cos2 θ + |α|4 sin2 θ − 2|β|2
[
|α|2 cos θ ∓ i(α∗β − αβ∗) sin

θ

2

]
∓ 2i(αβ∗ − α∗β)|α|2

[
cos

θ

2
sin θ − sin

θ

2
cos θ

]
=4|α|2|β|2 cos2 θ

2
− ((α∗β)2 − 2|α|2|β|2 + (αβ∗)2) sin2

θ

2
− 2|α|2|β|2 cos θ

+ |α|4 + |β|4 ± 2i|β|2(α∗β − αβ∗) sin
θ

2
∓ 2i(αβ∗ − α∗β)|α|2 sin θ

2

=2|α|2|β|2 + 2|α|2|β|2 cos2 θ
2
− ((α∗β)2 + (αβ∗)2) sin2

θ

2
− 2|α|2|β|2

(
cos2

θ

2
− sin2

θ

2

)
+ |α|4 + |β|4 ± 2i(α∗β − αβ∗) sin

θ

2

=(|α|2 + |β|2)2 + 2|α|2|β|2 sin2 θ
2
− ((α∗β)2 + (αβ∗)2) sin2

θ

2

± 2i(α∗β − αβ∗) sin
θ

2

=1± 2i(α∗β − αβ∗) sin
θ

2
− ((α∗β)2 − 2|α|2|β|2 + (αβ∗)2) sin2

θ

2

=

(
1± i(α∗β − αβ∗) sin

θ

2

)2

,

which is what we expected. We have thus found

∥ñk∥ =
1

2


1− i sin θ

2
[α∗β − αβ], k = 0 and Hint+

1 + i sin θ
2
[α∗β − αβ], k = 1 and Hint+

1 + i sin θ
2
[α∗β − αβ], k = 0 and Hint−

1− i sin θ
2
[α∗β − αβ], k = 1 and Hint−

.

Moreover,

dñk

dθ
=
1

2



 −(1/2)(α∗β + αβ∗) sin θ
2

−(1/2)i(αβ∗ − α∗β) sin θ
2
+ |β|2 cos θ

|β|2 sin θ − (1/2)i(α∗β − αβ∗) cos θ
2

 , k = 0 and Hint+ −(1/2)(α∗β + αβ∗) sin θ
2

−(1/2)i(αβ∗ − α∗β) sin θ
2
− |β|2 cos θ

|β|2 sin θ + (1/2)i(α∗β − αβ∗) cos θ
2

 , k = 1 and Hint+ −(1/2)(α∗β + αβ∗) sin θ
2

−(1/2)i(αβ∗ − α∗β) sin θ
2
− |α|2 cos θ

−|α|2 sin θ − (1/2)i(α∗β − αβ∗) cos θ
2

 , k = 0 and Hint− −(1/2)(α∗β + αβ∗) sin θ
2

−(1/2)i(αβ∗ − α∗β) sin θ
2
+ |α|2 cos θ

−|α|2 sin θ + (1/2)i(α∗β − αβ∗) cos θ
2

 , k = 1 and Hint−
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and

∥ñk∥
dθ

=
1

2


−i cos θ

2
[α∗β − αβ], k = 0 and Hint+

i cos θ
2
[α∗β − αβ], k = 1 and Hint+

i cos θ
2
[α∗β − αβ], k = 0 and Hint−

−i cos θ
2
[α∗β − αβ], k = 1 and Hint−

and
dnk

dθ
=

dñk

dθ
∥ñk∥ − ñk

d∥ñk∥
dθ

∥ñk∥2
.

Putting θ = 0 we find

ñk =
1

2



 (α∗β + αβ∗)

i(αβ∗ − α∗β)

|α|2 − |β|2

 ,

(α∗β + αβ∗)

i(αβ∗ − α∗β

|α|2 − |β|2

 ,

(α∗β + αβ∗)

i(αβ∗ − α∗β

|α|2 − |β|2

 ,

(α∗β + αβ∗)

i(αβ∗ − α∗β

|α|2 − |β|2

 ,

dñk
dθ

=
1

2



 0

|β|2

−(1/2)i(α∗β − αβ∗)

 , k = 0 and Hint+

 0

−|β|2

(1/2)i(α∗β − αβ∗)

 , k = 1 and Hint+

 0

−|α|2

−(1/2)i(α∗β − αβ∗)

 , k = 0 and Hint−

 0

|α|2

(1/2)i(α∗β − αβ∗)

 , k = 1 and Hint−

,

∥ñk∥ =
1

4
and

∥ñk∥
dθ

=
1

2


−i[α∗β − αβ], k = 0 and Hint+

i[α∗β − αβ], k = 1 and Hint+

i[α∗β − αβ], k = 0 and Hint−

−i[α∗β − αβ], k = 1 and Hint−

.

Thus

dnk
dθ

=



 0

|β|2

−(1/2)i(α∗β − αβ∗)

−

 (α∗β + αβ∗)

i(αβ∗ − α∗β)

|α|2 − |β|2

 −1
2 i[α

∗β − αβ], k = 0 and Hint+

 0

−|β|2

(1/2)i(α∗β − αβ∗)

−

(α∗β + αβ∗)

i(αβ∗ − α∗β

|α|2 − |β|2

 1
2 i[α

∗β − αβ], k = 1 and Hint+

 0

−|α|2

−(1/2)i(α∗β − αβ∗)

−

(α∗β + αβ∗)

i(αβ∗ − α∗β

|α|2 − |β|2

 1
2 i[α

∗β − αβ], k = 0 and Hint−

 0

|α|2

(1/2)i(α∗β − αβ∗)

−

(α∗β + αβ∗)

i(αβ∗ − α∗β

|α|2 − |β|2

 −1
2 i[α

∗β − αβ], k = 1 and Hint−

.
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As |α|2 + |β|2 = 1 we know from equation (D.1) and (D.2) that

dnk
dθ

=



 0

(1− nz)/2

(1/2)ny

−

nxny
nz

 1
2ny, 0

−(1− nz)/2

−(1/2)ny

−

nxny
nz

 −1
2 ny, 0

−(1 + nz)/2

(1/2)ny

−

nxny
nz

 −1
2 ny, 0

(1 + nz)/2

−(1/2)ny

−

nxny
nz

 1
2ny,

=



 −nxny/2
(1− nz − n2y)/2

ny(1− nz)/2

 , k = 0 and Hint+

 nxny/2

−(1− nz − n2y)/2

−ny(1− nz)/2

 , k = 1 and Hint+

 nxny/2

−(1 + nz − n2y)/2

ny(1 + nz)/2

 , k = 0 and Hint−

 −nxny/2
(1 + nz − n2y)/2

−ny(1 + nz)/2

 , k = 1 and Hint−

which, as it should be, is exactly the same as we got in equation (D.10).

D.3 Mapping state flow from the sphere onto the plane
We want to map the vector flow from the Bloch sphere to the plane. Since the vectors
describing the flow are tangent to the surface of the sphere (cf. end of section D.1), they
live in the tangent space of the sphere. We will take a brief detour through the theory
of manifolds so that we easily can see how we transform vector flow from one surface to
another. The notation and ideas will be based on the book by Tu [25].

Let N and M be two manifolds, and let F : N → M be a C∞-map. Given a tangent
vector Xp at the point p ∈ N , we wish to describe Xp on M . This we do through the
push-forward F∗,p : TpN → TF (p)M , given by [25, section 8.2]

F∗,p(Xp)(g) = Xp(g ◦ F ) for all g ∈ C∞(F (p)).

Given a basis { ∂
∂xi

|p}i∈I for TpN and a basis { ∂
∂yj

|F (p)}j∈J for TF (p)M , the push-forward
can be described using the Jacobian,

[F∗,p]i,j =
∂F j

∂xi

∣∣∣
p
.

Hence, the new tangent vector YF (p) := F∗,p(Xp) is given by

YF (p) =


∂F 1

∂x1

∣∣
p

∂F 1

∂x2

∣∣
p
. . .

∂F 2

∂x1

∣∣
p

∂F 2

∂x2

∣∣
p
. . .

...
... . . .

Xp.

With these ideas, we are now ready to transform the vector flow
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D.3.1 Stereographic projection

Let N be the Bloch sphere, i.e. N = S2 ⊆ R3. We want to map the sphere onto a subset
of the plane M ⊆ R2. We begin by exploring the stereographic projection. A stereographic
projection maps the sphere onto R2 by drawing a line through the north pole. The point
on the sphere intersecting the line is mapped to the point in R2 which also intersects the
line. Hence, the points below the equator is mapped to the unit disk in R2, while the
upper half of the sphere is mapped to the rest of R2. We think of the north pole as being
mapped to infinity. This projection is common in complex analysis, and an introductory
book such as [7, chapter 1, section 3] will explain it in further detail.

By looking at the different flows in Figure D.2, we choose to divide the sphere in half
along the great circle intersecting |0⟩ and |↑y⟩. This way, we can visualize the flow on two
discs, and we will see that the flow never leaves the disc where it starts. The projection
mapping with |↑x⟩ as north pole is given by

F :

xy
z

 7→
(
y/(1− x)
z/(1− x)

)
.

We represent the push-forward by the Jacobian

F∗,p =

(
∂
∂x
y/(1− x)

∣∣
p

∂
∂y
y/(1− x)

∣∣
p

∂
∂z
y/(1− x)

∣∣
p

∂
∂x
z/(1− x)

∣∣
p

∂
∂y
z/(1− x)

∣∣
p

∂
∂z
z/(1− x)

∣∣
p

)

=

(
y/(1− x)2

∣∣
p

1/(1− x)
∣∣
p

0

z/(1− x)2
∣∣
p

0 1/(1− x)
∣∣
p

)
.

In our specific case, the flow at p = n =

nxny
nz

 is given by equation (D.10),

Xp =
1

2



(
−nynx, −nz + 1− n2

y, ny(1− nz)
)T

, k = 0 and Hint+(
nynx, nz − 1 + n2

y, ny(−1 + nz)
)T

, k = 1 and Hint+(
nynx, −nz − 1 + n2

y, ny(1 + nz)
)T

, k = 0 and Hint−(
−nynx, nz + 1− n2

y, ny(−1− nz)
)T

, k = 1 and Hint−

. (D.12)
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For HI+ and k = 0, the flow after the stereographic projection is given by

YF (p) =

(
ny/(1− nx)

2 1/(1− nx) 0
nz/(1− nx)

2 0 1/(1− nx)

)
1

2

 −nynx
−nz + 1− n2

y

ny(1− nz)


=

1

2

(
− nxn2

y

(1−nx)2
+

−nz+1−n2
y

1−nx

− nxnynz

(1−nx)2
+ ny(1−nz)

1−nx

)
=

1

2(1− nx)2

(
−nxn2

y + (−nz + 1− n2
y)(1− nx)

−nxnynz + ny(1− nz)(1− nx)

)
=

1

2(1− nx)2

(
−nxn2

y + nxn
2
y + 1− nz − nx − n2

y + nxnz
−nxnynz + ny(1− nz − nx + nxnz)

)
=

1

2(1− nx)2

(
1− nx − nz − n2

y + nxnz
ny(1− nx − nz)

)
. (D.13)

If we let |↓x⟩ represent the north pole instead, then the stereographic projection is
given by

G :

xy
z

 7→
(
y/(1 + x)
z/(1 + x)

)
with Jacobian

G∗,p =

(
∂
∂x
y/(1 + x)

∣∣
p

∂
∂y
y/(1 + x)

∣∣
p

∂
∂z
y/(1 + x)

∣∣
p

∂
∂x
z/(1 + x)

∣∣
p

∂
∂y
z/(1 + x)

∣∣
p

∂
∂z
z/(1 + x)

∣∣
p

)

=

(
−y/(1 + x)2

∣∣
p

1/(1 + x)
∣∣
p

0

−z/(1 + x)2
∣∣
p

0 1/(1 + x)
∣∣
p

)
.

For HI+ and k = 0, the flow at p = n after the stereographic projection is given by

YG(p) =

(
−ny/(1 + nx)

2 1/(1 + nx) 0
−nz/(1 + nx)

2 0 1/(1 + nx)

)
1

2

 −nynx
−nz + 1− n2

y

ny(1− nz)


=

1

2

(
nxn2

y

(1+nx)2
+

−nz+1−n2
y

1+nx
nxnynz

(1+nx)2
+ ny(1−nz)

1+nx

)
=

1

2(1 + nx)2

(
nxn

2
y + (−nz + 1− n2

y)(1 + nx)
nxnynz + ny(1− nz)(1 + nx)

)
=

1

2(1 + nx)2

(
nxn

2
y − nxn

2
y + 1− nz + nx − n2

y − nxnz
nxnynz + ny(1− nz + nx − nxnz)

)
=

1

2(1 + nx)2

(
1 + nx − nz − n2

y − nxnz
ny(1 + nx − nz)

)
. (D.14)

Note that equations (D.13) and (D.14) are equal if we change the sign of nx. This means
that the flow on one side of the sphere mirror the flow on the opposite side. Moreover,
we see that the flow for HI+ and k = 1 is just the negative of the flow for HI+ and k = 0.
The direction of the flow is therefore reversed.
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We can go through the exact same calculations for HI+ and k = 0 and find

Y ′
F (p) =

(
ny/(1− nx)

2 1/(1− nx) 0
nz/(1− nx)

2 0 1/(1− nx)

)
1

2

 nynx
−nz − 1 + n2

y

ny(1 + nz)


=

1

2(1− nx)2

(
−1 + nx − nz + n2

y + nxnz
ny(1− nx + nz)

)
.

and

Y ′
G(p) =

(
−ny/(1 + nx)

2 1/(1 + nx) 0
−nz/(1 + nx)

2 0 1/(1 + nx)

)
1

2

 nynx
−nz − 1 + n2

y

ny(1 + nz)


=

1

2(1 + nx)2

(
−1− nx − nz + n2

y − nxnz
ny(1 + nx + nz)

)
.

We again see that the only difference between Y ′
F (p) and Y ′

G(p) is the sign of nx. Moreover,
we see that the flow for HI− and k = 1 is just the negative of the flow for HI− and k = 0.
The direction of the flow is therefore reversed.

The figures depicting the flow after transformation can be found in the figure section
D.4.

D.3.2 Change of coordinates

The other transformation we want to use (the Winkel tripel projection) assumes that
the sphere is described by a polar angle ϕ and an (angle with respect to polar axis) and
azimuthal angle θ (angle of rotation from the initial meridian plane). We will therefore
find the coordinate transform and Jacobian for spherical coordinates. Letting r denote
the radius of the sphere, cartesian coordinates can be described as

x = r cos θ sinϕ, y = r sin θ sinϕ, z = r cosϕ.

As sin (arccos t) =
√
1− t2,

ϕ = arccos
z

r
θ = sgn (y) arccos

x/r√
1− (z/r)2

= sgn (y) arccos
x√

r2 − z2
, (D.15)

The sgn (y) shows up here since arccos : [−1, 1] 7→ [0, π], and we therefore need to take
into account the sign of y to get [−π, π]. We denote the coordinate transformation by T :
(x, y, z) 7→ (ϕ, θ). If we also use that r =

√
x2 + y2 + z2 we can write θ = arccos x√

x2+y2
.

We can calculate the different derivatives,

∂ϕ

∂x
=

∂

∂x
arccos

z√
x2 + y2 + z2

= − 1√
1− z2

x2+y2+z2

z
−1

2

1

(x2 + y2 + z2)3/2
2x

=
xz

(x2 + y2 + z2)
√
x2 + y2 + z2 − z2

=
xz

r2
√
x2 + y2

,
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∂ϕ

∂z
=

∂

∂z
arccos

z√
x2 + y2 + z2

= − 1√
1− z2

x2+y2+z2

√
x2 + y2 + z2 − z 1

2
1√

x2+y2+z2
2z

x2 + y2 + z2

= −
1− z2

x2+y2+z2√
x2 + y2 + z2 − z2

= − x2 + y2 + z2 − z2

(x2 + y2 + z2)
√
x2 + y2

= − x2 + y2

r2
√
x2 + y2

.

We immediately get ∂ϕ
∂y

= yz

r2
√
x2+y2

. The partial derivative of θ with respect to x is

∂θ

∂x
= sgn (y)

∂

∂x
arccos

x√
x2 + y2

= − sgn (y)√
1− x2

x2+y2

√
x2 + y2 − x1

2
1√
x2+y2

2x

x2 + y2

= −
1− x2

x2+y2√
x2 + y2 − x2

sgn (y) = − x2 + y2 − x2

(x2 + y2)
√
y2

sgn (y) = − y

x2 + y2
.

The two others are

∂θ

∂y
= sgn (y)

∂

∂y
arccos

x√
x2 + y2

= − sgn (y)√
1− x2

x2+y2

x
−1

2

1

(x2 + y2)3/2
2y

=
xy

(x2 + y2)
√
x2 + y2 − x2

sgn (y) =
x

x2 + y2

and ∂θ
∂z

= 0. In total we get

T∗,p =

(
∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

∂θ
∂x

∂θ
∂y

∂θ
∂z

)
=

(
xz

r2
√
x2+y2

yz

r2
√
x2+y2

−(x2+y2)

r2
√
x2+y2

− y
x2+y2

x
x2+y2

0

)
. (D.16)

Before we continue, we give the following observations. Firstly, we could equivalently
have written θ = sgn (x) arcsin y√

r2−z2 , and therefore θ = sgn (x) arcsin y√
x2+y2

. The

Jacobian would be the same:

∂θ

∂x
= sgn (x)

∂

∂x
arcsin

y√
x2 + y2

=
sgn (x)√
1− y2

x2+y2

y
−1

2

1

(x2 + y2)3/2
2x

= − xy

(x2 + y2)
√
x2 + y2 − y2

sgn (x) = − y

x2 + y2

and

∂θ

∂y
= sgn (x)

∂

∂y
arcsin

y√
x2 + y2

=
sgn (x)√
1− y2

x2+y2

√
x2 + y2 − y 1

2
1√
x2+y2

2y

x2 + y2

=
1− y2

x2+y2√
x2 + y2 − y2

sgn (x) =
x2 + y2 − y2

(x2 + y2)
√
x2

sgn (x) =
x

x2 + y2
.
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The second observation is that we have not used that r = 1. The condition r = 1
means that r has no x-, y-, or z-dependence. We therefore have

ϕ = arccos z θ = sgn (y) arccos
x√

1− z2
= sgn (y) arccos

x√
x2 + y2

,

or equivalently θ = sgn (x) arcsin y√
1−z2 = sgn (x) arcsin y√

x2+y2
instead. If we now proceed

naively, we get

∂ϕ

∂x
= 0

∂ϕ

∂y
= 0

∂ϕ

∂z
=

−1√
1− z2

,

but for θ we have the following problem: We have four different expressions with different
x-, y- and z-dependence. We can for instance find

∂θ

∂x
= sgn (y)

∂

∂x
arccos

x√
1− z2

= − sgn (y)√
1− x2

1−z2

1√
1− z2

= − sgn (y)√
1− z2 − x2

,

and at the same time get

∂θ

∂x
= sgn (x)

∂

∂x
arcsin

y√
1− z2

= 0.

To fix this we could try to introduce

x2 = 1− y2 − z2 y2 = 1− x2 − z2 z2 = 1− x2 − y2.

We could therefore say that x, y and z are dependent of each other. However, we then
get in trouble when taking partial derivatives. For instance

∂y2

∂x
=

∂

∂x
(1− x2 − z2) = −2x− ∂

∂x
(1− x2 − y2) = −2x+ 2x− ∂

∂x
(1− x2 − z2) = . . . .

It is not obvious how to introduce the dependence r = 1, so we left with our original find
for the Jacobian given in equation (D.16).

D.3.3 Winkel Tripel projection

The Winkel Tripel projection (of the unit sphere) is given by [10]

x′ =
1

2

[
λ cosϕ0 +

2 cosϕ sin λ
2

sincα

]
, y′ =

1

2

[
ϕ+

sinϕ

sincα

]
,

where sincα := sinα
α

, α := arccos
(
cosϕ cos λ

2

)
, (x′, y′) are the coordinate in the plane, λ

is the longitude relative to the central meridian of the projection2, ϕ is the latitude, ϕ0 is
the standard parallel for the equirectangular projection3. Figure D.1 show how longitude

2The central meridian is the meridian to which the sphere is rotated before projecting
3a standard parallel is a line of latitude that has true scale, and the equirectangular projection maps

the angles straight down to the plane (i.e. x′ = λ and y′ = ϕ).
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Figure D.1: Visual reference for how longitude and latitude are defined. Taken from
https://www.techtarget.com/whatis/definition/latitude-and-longitude (accessed 27.05.23).

and latitude are defined on earth. Our projection will be P : (ϕ, λ) 7→ (x′, y′). We will
therefore need ∂

∂ϕ
1

sincα
and ∂

∂λ
1

sincα
. We have

1

sincα
=

α

sinα
=

α√
1− cos2 α

=
arccos

(
cosϕ cos λ

2

)√
1− cos2 ϕ cos2 λ

2

and

∂

∂ϕ
arccos

(
cosϕ cos

λ

2

)
= − 1√

1− cos2 ϕ cos2 λ
2

(− sinϕ) cos
λ

2
,

∂

∂λ
arccos

(
cosϕ cos

λ

2

)
= − 1√

1− cos2 ϕ cos2 λ
2

cosϕ

(
− sin

λ

2

)
1

2
,

∂

∂ϕ

√
1− cos2 ϕ cos2

λ

2
=

1√
1− cos2 ϕ cos2 λ

2

1

2
2 cosϕ sinϕ cos2

λ

2
,

∂

∂λ

√
1− cos2 ϕ cos2

λ

2
=

1√
1− cos2 ϕ cos2 λ

2

1

2
2
1

2
cos2 ϕ cos

λ

2
sin

λ

2
.
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Hence

∂

∂ϕ

1

sincα
=

sinϕ cos λ
2√

1−cos2 ϕ cos2 λ
2

√
1− cos2 ϕ cos2 λ

2
− arccos

(
cosϕ cos λ

2

) cosϕ sinϕ cos2 λ
2√

1−cos2 ϕ cos2 λ
2

1− cos2 ϕ cos2 λ
2

=
sinϕ cos λ

2
− cosϕ sinϕ cos2 λ

2

sincα

1− cos2 ϕ cos2 λ
2

=
1− cosϕ cos λ

2

sincα

1− cos2 ϕ cos2 λ
2

sinϕ cos
λ

2
,

∂

∂λ

1

sincα
=

cosϕ sin λ
2√

1−cos2 ϕ cos2 λ
2

1
2

√
1− cos2 ϕ cos2 λ

2
− arccos

(
cosϕ cos λ

2

) cos2 ϕ cos λ
2
sin λ

2

2
√

1−cos2 ϕ cos2 λ
2

1− cos2 ϕ cos2 λ
2

=
1
2
cosϕ sin λ

2
− cos2 ϕ cos λ

2
sin λ

2

2 sincα

1− cos2 ϕ cos2 λ
2

=
1

2

1− cosϕ cos λ
2

sincα

1− cos2 ϕ cos2 λ
2

cosϕ sin
λ

2
.

Thus

dx′

dϕ
=

d

dϕ

1

2

[
λ cosϕ0 +

2 cosϕ sin λ
2

sincα

]
=

d

dϕ

1

sincα
cosϕ sin

λ

2

=

− sinϕ

sincα
+

1− cosϕ cos λ
2

sincα

1− cos2 ϕ cos2 λ
2

sinϕ cos
λ

2
cosϕ

 sin
λ

2

=

[
cos λ

2
cosϕ

1− cos2 ϕ cos2 λ
2

+
−1 + 1− cos2 ϕ cos2 λ

2(
1− cos2 ϕ cos2 λ

2

)
sincα

− 1

sincα

]
sinϕ sin

λ

2

=

[
cos λ

2
cosϕ

1− cos2 ϕ cos2 λ
2

− 1(
1− cos2 ϕ cos2 λ

2

)
sincα

]
sinϕ sin

λ

2

=
sin 2ϕ sinλ

1− cos2 ϕ cos2 λ
2

−
sinϕ sin λ

2(
1− cos2 ϕ cos2 λ

2

)
sincα

,

dx′

dλ
=

d

dλ

1

2

[
λ cosϕ0 +

2 cosϕ sin λ
2

sincα

]
=

cosϕ0

2
+

d

dλ

1

sincα
cosϕ sin

λ

2

=
cosϕ0

2
+

 cos λ
2

2 sincα
+

1

2

1− cosϕ cos λ
2

sincα

1− cos2 ϕ cos2 λ
2

cosϕ sin
λ

2
sin

λ

2

 cosϕ

=
cosϕ0

2
+

 cos λ
2

sincα
+

1− cosϕ cos λ
2

sincα

1− cos2 ϕ cos2 λ
2

cosϕ sin2 λ

2

 cosϕ

2

=
cosϕ0

2
+

[
cosϕ sin2 λ

2

1− cos2 ϕ cos2 λ
2

+

(
1− cos2 ϕ cos2 λ

2

)
− cos2 ϕ sin2 λ

2(
1− cos2 ϕ cos2 λ

2

)
sincα

cos
λ

2

]
cosϕ

2

=
cosϕ0

2
+

[
cosϕ sin2 λ

2

1− cos2 ϕ cos2 λ
2

+
cos λ

2
sin2 ϕ(

1− cos2 ϕ cos2 λ
2

)
sincα

]
cosϕ

2
,
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dy′

dϕ
=

d

dϕ

1

2

[
ϕ+

sinϕ

sincα

]
=

1

2
+

1

2

 cosϕ

sincα
+ sinϕ

1− cosϕ cos λ
2

sincα

1− cos2 ϕ cos2 λ
2

sinϕ cos
λ

2


=

1

2
+

1

2

[
sin2 ϕ cos λ

2

1− cos2 ϕ cos2 λ
2

+

(
1− cos2 ϕ cos2 λ

2

)
− cos2 λ

2
sin2 ϕ(

1− cos2 ϕ cos2 λ
2

)
sincα

cosϕ

]

=
1

2
+

1

2

[
sin2 ϕ cos λ

2

1− cos2 ϕ cos2 λ
2

+
cosϕ sin2 λ

2(
1− cos2 ϕ cos2 λ

2

)
sincα

]
,

dy′

dλ
=

d

dλ

1

2

[
ϕ+

sinϕ

sincα

]
=

sinϕ

2

1

2

1− cosϕ cos λ
2

sincα

1− cos2 ϕ cos2 λ
2

cosϕ sin
λ

2

=
sinϕ cosϕ sin λ

2

4

 1

1− cos2 ϕ cos2 λ
2

−
cosϕ cos λ

2

sincα

1− cos2 ϕ cos2 λ
2


=

sin 2ϕ sin λ
2

8

[
1

1− cos2 ϕ cos2 λ
2

−
cosϕ cos λ

2(
1− cos2 ϕ cos2 λ

2

)
sincα

]
.

Putting everything together, we see that we can project the Bloch sphere as(
x′

y′

)
= (P ◦H ◦ T )(n),

where H : (ϕ, θ) 7→ (ϕ − π/2, θ − π) = (φ, λ) and T was defined in equation (D.15). As
the push-forward of H is the identity, we have(

dx′

dθ
dy′

dθ

)
= P∗,H(T (n))T∗,n

dn

dθ
.

Note that the θ we differentiate with respect to here is the time and not the angle in
spherical coordinates. The push-forward of the coordinate transformation was given in
equation (D.16) and the push-forward of the Winkel tripel projection will be

P∗,p =

(
dx′

dλ

∣∣
p

dx′

dϕ

∣∣
p

dy′

dλ

∣∣
p

dy′

dϕ

∣∣
p

)
.

The figures depicting the flow after transformation can be found in the figure section
D.4.

D.4 Full figures of state flow

109



(a) (b)

(c) (d)

Figure D.2: The flow of the state given by equation (5.9) for HI+ . Figure D.2a shows the
flow for k = 0 and Figure D.2b shows the flow for k = 1. To the right in both subfigures
we have removed the opaque color of the Bloch sphere and changed |0⟩ = z, |↑x⟩ = x
and |↑y⟩ = y. The flow goes in circles always ending up at the state |0⟩. The state |0⟩
is a fixed point where there is no flow. We see that the direction of the flow changes
depending on which measurement outcome we get. Figure D.2c and D.2d shows the flow
of the state, given by equation (5.9) for HI− , for k = 0 and k = 1, respectively. We now
see that the fixed point has changed to |1⟩. The flow goes in circles always ending up at
the state |1⟩ this time. We again see that the direction of the flow changes depending on
which measurement outcome we get.
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(a) (b)

(c) (d)

Figure D.3: A stereographic projection of the flow of the state given by equation (5.9)
for HI+ . This is the same flow as depicted in Figure D.2. Figure D.3a shows the flow for
k = 0 and Figure D.3b shows the flow for k = 1. In both subfigures D.3a and D.3b we
have used n = (1, 0, 0) as the north pole and only show the south half of the sphere. We
would get the exact same figure using n = (−1, 0, 0) as the north pole and depicting only
the south half of the sphere in this case. It is here easier to see the path which a state
flows: It will move in a circle towards the state |0⟩ where it stops completely. The flow is
fast close to |1⟩ and slow close to |0⟩. Equation (D.14) gives an explicit expression for the
flow in Figure D.3a. We see that the direction of the flow changes depending on which
measurement outcome we get. Figure D.3c and D.3d shows the flow of the state, given by
equation (5.9) for HI− , for k = 0 and k = 1, respectively. We now see that the fixed point
has changed to |1⟩. The flow goes in circles always ending up at the state |1⟩ this time.
We again see that the direction of the flow changes depending on which measurement
outcome we get. In both subfigure D.3c and D.3d we have again used n = (1, 0, 0) as the
north pole and only show the south half of the sphere. We would get the exact same figure
using n = (−1, 0, 0) as the north pole and depicting only the south half of the sphere in
this case.
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(a) (b)

(c) (d)

Figure D.4: Winkel tripel projection of the flow of the state given by equation (5.9) for
HI+ . This is the same flow as depicted in Figure D.2 and we have used cos (φ0) = 2/π,
where φ0 is the standard parallel for the equirectangular projection. Figure D.4a shows
the flow for k = 0 and Figure D.4b shows the flow for k = 1. We now get the full
flow, contrary to the stereographic projection we showed in Figure D.3. We again see the
circular flow in the middle of the figures. The flow to the left in the figures also follows a
circular motion which continues at the right side. Figure D.4c and D.4d shows the flow
of the state, given by equation (5.9) for HI− , for k = 0 and k = 1, respectively. We now
see that the fixed point has changed to |1⟩. The flow goes in circles always ending up at
the state |1⟩ this time. We again see that the direction of the flow changes depending on
which measurement outcome we get.
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Appendix E

Dimension analysis for the model
proposed by Longva

We want to find all interaction Hamiltonians HI that describe the Linblad equation with
rate Γ = 2 θ

2

δt
and Lindblad operator L = σ+ = 1

2
(σx+iσy). We assumeHI =

∑
ij hijσi⊗σj.

This then gives us µ = 1√
2

(
1, i, 0

)T and λ = 2. Hence,

M = λ |µ⟩ ⟨µ| =

1 −i 0
i 1 0
0 0 0

 .

The system of equation is therefore (either the upper or lower triangle of the matrix in
(5.10))

h211 + h212 + h213 = 1, h21h11 + h22h12 + h23h13 = 0, h21h12 − h22h11 = −1,

h31h11 + h32h12 + h33h13 = 0, h31h12 − h32h11 = 0, h221 + h222 + h223 = 1,

h31h21 + h32h22 + h33h23 = 0, h31h22 − h32h21 = 0, h231 + h232 + h233 = 0.

Observation: Equation nine,
∑3

i=1 h
2
3i = 0, means h3i = 0 for i = 1, 2, 3 (since hij ∈ R).

This is even more general; If
∑

i h
2
ji = 0 for any j = 1, 2, 3, then we must have hji = 0 for

i = 1, 2, 3. In other word, we only have the following equations following equations:

h211 + h212 + h213 = 1, h21h11 + h22h12 + h23h13 = 0, (E.1)
h21h12 − h22h11 = −1, h221 + h222 + h223 = 1. (E.2)

We will now proceed case by case. Assume first h11 = 0. The first part of equation (E.2)
then gives h21h12 = −1, which means we must have h12, h21 ̸= 0. The second part of
equation (E.1) then reads h22 = −h23h13

h12
, and inserting into the second part of (E.2) gives

1

h212
+
h223h

2
13

h212
+ h223 = 1 ⇒ h23 = ±

√√√√1− 1
h212

1 +
h213
h212

= ±

√
h212 − 1

h212 + h213
.

As the relation h212 + h213 = 1 from equation (E.1) tells us that h212, h213 ≤ 1, we must have
h12 = ±1 for h23 to be real. This gives h13 = 0 and h23 = 0, which again means h22 = 0
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from the last part of equation (E.2). All in all, we are left with h12 = ±1, h21 = ∓1,
and all others equal to zero. This means H = ±(σx ⊗ σy − σy ⊗ σx) will give the same
dynamic.

Next, assume h11 = ±1. Then the first part of equation (E.1) gives h12 = h13 = 0.
The last part of equation (E.1) then reads h21 = 0, and the first part of equation (E.2)
reads h22 = ±1. Inserting into the last part of equation (E.2), we get h23 = 0. Hence,
H = ±(σx ⊗ σx + σy ⊗ σy).

We now assume 0 < h211 < 1. Assume further that h12 = 0. The last part of equation
(E.1) reads h21 = −h23h13

h11
, and the first part of equation (E.2) reads h22 = 1

h11
. Putting

this into the last part of equation (E.2) gives

h223h
2
13

h211
+

1

h211
+ h223 = 1 ⇒ h223

=1︷ ︸︸ ︷
(h213 + h211) = h211 − 1,

which is impossible as h23 ∈ R and the above equation means h23 = ±
√
h211 − 1 ∈ C \ R

as h211 < 1. In other words, we cannot have h12 = 0. We therefore look at the case
0 < h211 < 1, h12 ̸= 0 and h13 = 0. Equation (E.1) and (E.2) then give

h12 = ±
√
1− h211, h21h11 = −h22h12, h21h12 + 1 = h22h11.

Hence,

h21h11 = −h21h12 + 1

h11
h12 ⇒ h21

=1︷ ︸︸ ︷
(h211 + h212) = −h12 ⇒ h21 = −h12.

This then gives h22 = h11, which means h221 + h222 = 1. Thus h23 = 0 and we are left with
the solution

H = h11σx ⊗ σx ±
√
1− h211σx ⊗ σy ∓

√
1− h211σy ⊗ σx + h11σy ⊗ σy

= h11(σx ⊗ σx + σy ⊗ σy)±
√
1− h211(σx ⊗ σy − σy ⊗ σx)

for 0 < h211 < 1.
To finish of, we look at the final case: 0 < h211 < 1, h12 ̸= 0 and h13 ̸= 0. We know

h13 ̸= ±1 by the first part of equation (E.1). We have h21h12 = h22h11 − 1 from the first
part of equation (E.2), which means the last part of equation (E.2) is h22h211−h11

h12
+h22h12+

h23h13 = 0. We rewrite and get

h22

=1−h213︷ ︸︸ ︷
(h211 + h212)

h12
+ h23h13 =

h11
h12

⇒ h23 =
h11 − h22(1− h213)

h12h13
.
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We are therefore left with

1 = h221 + h222 + h223 =

(
h22h11 − 1

h12

)2

+ h222 +

(
h11 − h22(1− h213)

h12h13

)2

h212 = (h222h
2
11 − 2h22h11 + 1) + h222h

2
12 +

h211 − 2h11h22(1− h213) + h222(1− h213)
2

h213

h212h
2
13 = h222

1−h213︷ ︸︸ ︷
(h211 + h212)h

2
13 − 2h22h11h

2
13 + h213 + [h211 − 2h11h22(1− h213) + h222(1− h213)

2]

h212h
2
13 = h222(1− h213)(h

2
13 + 1− h213)− 2h22h11(h

2
13 + 1− h213) + (h213 + h211)

0 = h222(1− h213)− 2h22h11 + (h213 + h211 − h212h
2
13).

We solve this quadratic equation:

h22 =
2h11 ±

√
4h211 − 4(1− h213)(h

2
13 + h211 − h212h

2
13)

2(1− h213)

=
h11 ±

√
(h212h

2
13 − h213) + h213(h

2
13 + h211 − h212h

2
13)

1− h213

=
h11 ± h13

√
(h212 − 1) + (h213 + h211 − h212h

2
13)

1− h213

=
h11 ± h13

√
h212(1− h213) +

=−h11−h12︷ ︸︸ ︷
(h213 − 1)+h211

1− h213

=
h11 ± h13

√
h212(1− h213)− h212
1− h213

=
h11 ± h13

√
−h212h213

1− h213
,

which gives us a contradiction as this would mean h22 /∈ R. We must either have h12 = 0
or h13 = 0, which means h13 = 0 by the above argumentation.

All in all, we have shown that L =
√

θ2

δt
2σ+ must come from a Hamiltonian

H = h(σx ⊗ σx + σy ⊗ σy)±
√
1− h2(σx ⊗ σy − σy ⊗ σx),

where h ∈ [−1, 1]. This means that the subspace of the Hamiltonians generating this
Lindblad operator is one dimensional, even though we have nine possible parameters to
tweak and only six equation to satisfy.
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