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Abstract

The Standard Model (SM) has been successful in describing the particles and interactions

that we know of today with great precision. We know however that it is not the ultimate

theory since it does not, for example, describe gravity nor accommodate dark matter.

Among the various beyond Standard Model (BSM) theories, we concentrate on extensions

which predict one or several neutral massive spin-1 gauge bosons, Z ′. Monte Carlo

simulations are important for making predictions and interpreting measurements based

on data from the ATLAS detector at the LHC. A method called signal reweighting is used

to produce a Z ′ signal from an existing Drell-Yan simulation, thus avoiding simulating a

large number of Z ′ events based on various models depending on many parameters. The

signal reweighting method is extended to use the next-to-leading order PowhegPythia8

Drell-Yan sample. We obtain promising results when comparing the signal reweighted

Z ′ sample to a fully simulated Pythia8 Z ′ sample in Run 2 at
√
s = 13 TeV with 58.5

fb−1 of data. The signal reweighted Z ′ samples are also used in Run 3 on top of data

and SM backgrounds at
√
s = 13.6 TeV corresponding to 26.1 fb−1 of data collected by

ATLAS in 2022. An attempt to apply signal reweighting to a Sherpa Z + jets sample is

also performed but the information from the event generator is found to be insu�cient.
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Chapter 1

Introduction

At the Large Hadron Collider at CERN the data collected from the proton-proton (pp)

collisions in the ATLAS detector is used to test Standard Model (SM) predictions in

particle physics, and to search for new physics beyond the Standard Model (BSM). The

SM has been studied with great precision, but we know that is not the �nal theory as

both gravity and dark matter are not accommodated. We are interested in BSM models

which predict new neutral gauge bosons, Z ′, which are present in several dark matter or

grand uni�cation models. Monte Carlo (MC) simulations of pp collisions in the ATLAS

detector are compared with real data in order to test SM predictions and to search for

new physics. The simulations of the SM and BSM processes are therefore important to

make accurate predictions and for our understanding of the SM.

In this thesis we will study a method called signal reweighting to produce BSM Z ′

simulations from SM Drell-Yan simulations in a dilepton �nal state. Signal reweighting

is a method that is much less computationally expensive than if we would simulate the

Z ′ samples every for every mass point, and are therefore useful when studying a wide

variety of Z ′ models depending on many parameters and each of which predict a di�er-

ent Z ′ mass. An tool used for applying signal reweighting to Pythia8 samples, called

the LPXSignalReweightingTool, will be extended to include the signal reweighting of a

PowhegPythia8 Drell-Yan sample. In addition an attempt to extend it to reweighting a

Sherpa Z + jets sample will be made. The results of the signal reweighting with Powheg-

Pythia8 will be compared to fully simulated Z ′ samples from Pythia8 in Run 2 and also

include a comparison of data and MC in Run 3 with signal reweighted Z ′ samples.

The structure of the thesis is as follows. In the next chapter we will introduce the SM

1



2 CHAPTER 1. INTRODUCTION

and some BSM Z ′ models, and describe how these hypothetical particles are produced

in pp collisions at the LHC. In Chapter 3 we describe how the outcome of a pp collision

(called an event) is modeled with MC simulations. We describe the ATLAS detector in

Chapter 4 together with samples that are used for the signal reweighting. In Chapter

5 the Z ′ signal reweighting method is described in detail and extended such that it can

be used on the next-to-leading order (NLO) PowhegPythia8 simulation. The attempt

to extend the signal reweighting to Sherpa Z + jets, allowing up to 5 jets in the �nal

state, is described in Chapter 6. The results of the signal reweighting of PowhegPythia8

are presented in Chapter 7 where it is compared to fully simulated Z ′ Pythia8 samples.

Finally, a �rst look at Run 3 data at 13.6 TeV is made. Data are compared to SM

simulations, including Z ′ produced from the reweighting work presented in this thesis.



Chapter 2

The Standard Model and beyond

in pp collisions

2.1 The Standard Model

The Standard Model (SM) [1, 2, 3, 4, 5, 6] describes the particles and the interactions

between the particles that we know of today, and is build up from the symmetry group

GSM = SU(3)C × SU(2)L × U(1)Y , (2.1)

where every interaction is described by the di�erent groups. The subscript C stands for

color, L for left-handed and Y for hypercharge. It is build up of three forces, the electro-

magnetic force with Quantum electrodynamics (QED), the strong force with Quantum

chromodynamics (QCD) described by the group SU(3)C and the weak force (W), and

where the electromagnetic and weak force uni�es to the electroweak force (EW) described

by the product of groups SU(2)L × U(1)Y . The SM does not describe the gravitational

force. The SM has been successful in describing how all the known particles interact

with great precision. Before we describe the particles and forces we will explain what are

called Feynman diagrams that are both useful to visualize a process and to assist in the

calculation of observables from the theory. We will use the Feynman diagrams actively

when describing the SM.

3



4 CHAPTER 2. THE STANDARD MODEL AND BEYOND

2.1.1 Feynman diagrams

The SM is mathematically described with Quantum Field Theory (QFT) [7] where every

particle has its own �eld, and the excitations of the �elds are the particles. The kinematics

of the �elds are described by the Lagrangian density L. In perturbation theory the

Lagrangian can be expanded such that it can be formulated diagrammatically with what

are called Feynman diagrams. An example of a Feynman diagram is shown Figure 2.1

where we read the diagram from left to right which is the direction of time1. In Figure

2.1 two particles, an electron (e−) and position (e+) represented as lines meet in a point

called an interaction vertex annihilation. From this interaction a photon γ is produced

and propagated to another point where an electron and positron are produced. This

way of representing a process is both visual and practical since all particles and points

have their own mathematical expressions called Feynman rules that are used to calculate

observables, and which are derived from the Lagrangian L. The Feynman diagrams

consist of lines and nodes, where the lines denote the particles and the nodes denote

the interactions. Every line and node represent a mathematical expression constructed

using Feynman rules. The Feynman rules are used to calculate di�erent observables of

the theory such as the di�erential cross section of a process. The advantages of these

Feynman diagrams is that the calculations in the theory become more systematic and

that the Feynman diagrams visualize the process at the same time. We will therefore

make active use of Feynman diagrams to describe the interactions in the SM. Before

we go into detail about the interactions we will �rst review the di�erent particles and

interactions in the SM.

e−

e+

γ

e−

e+time

Figure 2.1: The Feynman diagram showing the process e−e+ → γ → e−e+ with the time
going from left to right as indicated by the arrow.

1The time direction of every Feynman diagram in this thesis will be from left to right
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Figure 2.2: Table of the particles in the Standard Model [8].

2.1.2 Interactions and particles

In the SM there are two di�erent kinds of particles called fermions and bosons. The

fermions are particles that make up what we see around us, while the bosons are the

mediators of the forces between the di�erent particles. We will �rst describe the fermions

before we go on to the bosons. Figure 2.2 shows all the fundamental particles that we

know of today.

The fermions can be grouped together into particles known as quarks and leptons.

There are six quarks in the SM called the up (u), down (d), charm (c), strange (s), top

(t) and bottom (b) quark. The quarks comes in three generations as seen in Figure 2.2

and where each generation consists of an up- and down-type quark (not to be confused

by the up and down quark). The up-type quarks have electric charge +2/3 while the

down-type quarks have electrical charge −1/3. Quarks are not observed freely, but are

grouped together with other quarks to make up what we call hadrons. The proton and

neutron are examples of the hadrons and the proton consists on average of two up-quarks

and a down-quark, while the neutron consists on average of two down-quarks an one

up-quarks. The quarks are subject to the strong force, contrary to the leptons, which

together with electrons build the atoms.
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The leptons also comes in three generations, where each generation has one charged

and one neutral particle. The charged particles are the electron (e−) (1st generation),

the muon (µ−) (2nd generation) and the tau τ− (third generation) and the corresponding

neutral particles are the electron neutrino (νe), the muon neutrino (νµ) and the tau

neutrino (ντ ).

Every fermion has a corresponding anti-particle that has the opposite electric charge

to its particle.

2.1.3 Quantum electrodynamics

Quantum electrodynamics (QED) is the force that acts between charged particles and

is mediated by the photon which is the generator in the U(1) group. There are no self

interactions with the photon since it has no electric charge and the U(1) group is abelian.

The conserved quantity in QED is the electric charge. Figure 2.3 shows the annihilation

of a fermion f with an anti-fermion f to the photon γ.

f

f

γ

Figure 2.3: The QED interaction vertex

2.1.4 Quantum chromodynamics

In Quantum chromodynamics (QCD) the force carriers are eight gluons corresponding to

the generators of the SU(3)C group and are spin-1 bosons. The SU(3)C group describing

QCD is a non-abelian, and as a consequence the gluons can interact with each other in

so-called self-interactions. The interaction vertices in QCD are shown in Figure 2.4 where

2.4b and 2.4c are self-interactions, and Figure 2.4a is a quark anti-quark annihilation to

a gluon.
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q

q

g

(a) qq → g

g

g

g

(b) gg → g

gg

g g

(c) gg → gg

Figure 2.4: The QCD interaction vertices

In QCD the conserved quantity is the color charge where a quark carries a color c, an

anti-quark carries an anti-color c and a gluon carries in general a combination of color-

anticolor c1c2. There are three di�erent color charges called red (r), green (g) and blue

(b) and the corresponding anti-color charges anti-red (r), anti-green (g) and anti-blue (b).

The color charges can be represented as colored lines on the sides of the quark �avour as

seen in Figure 2.5.

q

q

g

(a) qq → g

g3

g1

g2

(b) g1g2 → g3

g3

g1

g2

g4

(c) g1g2 → g3g4

Figure 2.5: Color Feynman vertices

The colors charges for the particles in Figure 2.5a, 2.5b and 2.5c are shown in Eq.

(2.2), (2.3) and (2.4) respectively.

Figure 2.5a : q : r q : g g : rg (2.2)

Figure 2.5b : g1 : rb g2 : bg g3 : rg (2.3)

Figure 2.5c : g1 : rb g2 : br g3 : gr g4 : rg (2.4)

2.1.5 The Electroweak interaction

In the electroweak theory there are four force carriers which are the neutral photon γ and

the Z and the chargedW± bosons, where the weak interactions are mediated through the

Z and W± bosons . The conserved quantity in weak theory is the weak isospin. Figure
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2.6 shows the di�erent interactions in EW theory involving fermions. The photon γ and

Z boson can only interact with charged particles as shown in Figure 2.6a. The W+ and

W− bosons can interact with a neutrino and a lepton as shown in Figure 2.6b, and with

quarks as shown in Figure 2.6c, where the subscript u and d on the quarks denote that

they are a down- and up-type quark respectively.

f

f

γ, Z

(a) ff → γ, Z

l+

νl

W+

(b) l+νl → W+

qu

qd

W+

(c) quqd → W+

Figure 2.6: The interaction vertices involving fermions in EW theory.

The SU(2)L×U(1)Y group describing EW theory consist of the abelian group U(1)Y

and the non-abelian group SU(2)L and we will consequently get some self-interaction

vertices between the bosons in EW theory which are shown in Figure 2.7.

W+

W−

γ, Z

(a) W+W− → γ, Z

W+

W−

γ, Z

γ, Z

(b) W+W− → γγ, ZZ, γZ

W+

W−

W+

W−

(c) W+W− → W+W−

Figure 2.7: The self-interaction vertices in EW theory.

2.1.6 The Higgs mechanism

The SU(2)L × U(1)Y group spontaneously brake down to the U(1)QED group in what

is known as the Brout-Englert-Higgs mechanism [5, 6] which is responsible for giving

mass to the fermions and bosons in the SM. The Higgs particle was discovered in 2012

by ATLAS [9] and CMS [10] and was the �nal member of the SM to be experimentally

observed. The weak interaction vertices involving the Higgs boson are shown in Figure
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2.8.

H

f

f

(a) H → W+W−, ZZ

H

W+, Z

W−, Z

(b) HH → W+W−, ZZ

H

H

W+, Z

W−, Z

(c) HH → W+W−, ZZ

H

H

H

(d) H → HH

H

H

H

H

(e) HH → HH

Figure 2.8: Interaction vertices involving the Higgs boson

2.2 Beyond Standard Model - Z ′ models

There are several phenomena that the SM cannot explain. It does not describe the

gravitational interaction, and is unable to account for dark matter in a way which is

consistent with all current observations. There exist many so-called Beyond the Standard

Model (BSM) theories that aim to solve one or several problems with the SM. One BSM

extension to the SM adds new neutral massive spin-1 gauge bosons called Z ′ bosons.

Many BSM models have the Z ′ boson included in their extension such as grand uni�ed

theories (GUT) and some dark matter models, where the Z ′ plays a role of the mediator.

We will study the Sequential Standard Model (SSM) Z ′ model and the E ′
6 Z

′ models
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[11, 12, 13] in this thesis. There have been several searches [14, 15, 16, 17, 18] and studies

[19, 20, 21, 22, 23] of the Z ′ boson at the Large Hadron Collider in general and ATLAS

in particular. Before we study these models we will study how a general Z ′ model is

build up by describing its Lagrangian L. When adding a Z ′ boson to the SM the GSM

symmetry group from Eq. (2.1) is extended by adding a U(1) group, and the symmetry

with a Z ′ extension therefore becomes

SU(3)c × SU(2)L × U(1)Y → SU(3)c × SU(2)L × U(1)Y × U ′(1). (2.5)

The interactions between a Z ′ boson and fermions in a neutral current can be sum-

marized in the Lagrangian

LZ′ = gZ′fγµ(zfLPL + zfRPR)fZ
′
µ = gZ′Jµi Z

′
µ, (2.6)

which describes how the Z ′
µ interacts with the fermion �elds f and f . The coupling

constant gZ′ describes the strength while the operators PL and PR project the left- and

right-handed part of a �eld and are called chiral projection operators. The constants zfL

and zfR are called the left- and right-handed chiral charges of the fermions. If zfL ̸= zfR

we call it a chiral theory. The Z ′ boson interactions with fermions are described by the

values of the coupling constant gZ′ and the left- and right-handed chiral charges zfL and

zfL to all the SM fermions.

2.2.1 The Sequential Standard Model

The �rst model we will describe is the Sequential Standard Model (SSM). Here the Z ′

is similar to the SM Z boson. In the SSM the coupling constant gZ′ and left and right

handed chiral charges zLf and zRf describing the theory are the same as those of the Z

boson in the SM and are given as

gZ =
e

sin θW cos θW
(2.7)

zfL = t3f − qf sin
2 θW (2.8)

zfR = −qf sin2 θW , (2.9)
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where θW is the weak mixing angle, t3f is the 3rd component of the weak isospin and qf

the charge of the fermion. The only di�erence between a SSM Z ′ and the SM Z boson is

the mass of the Z ′ boson, mZ′ that can be di�erent from the Z boson mass mZ = 91.1876

GeV. The SSM model is called a toy model since it is not renormalizable when coupling

to SM fermions. It can be made a renormalizable theory if it couples to exotic fermions.

The width of the ZSSM boson as compared to its mass is assumed to be the same as for

the Z boson and is approximately 3% of its mass.

2.2.2 The E ′
6 model

The E6-inspired Z
′ models [11, 12, 13, 24] are motivated from the uni�cation of all the

forces and is therefore called a Grand Uni�ed model. The forces are uni�ed at higher

scales in the E6 group which comes from a superstring theory in 10 dimensions formulated

in the E8 × E8 group. One of the E8 groups breaks down to the E6 group that we will

schematically study the symmetry breaking with and shown in Figure 2.9. In the �rst

symmetry breaking the E6 group breaks down to SO(10)× U(1)ψ, where the U(1)ψ and

gives the Z ′
ψ boson.

E6

SO(10)× U(1)ψ

SU(4)× SU(2)L × SU(2)R

SU(3)c × U(1)B−L

SU(5)× U(1)χ

GSM

∪

U(1)3R

Figure 2.9: Schematic diagram showing the decomposition of the E6 group, where GSM

is the SM group

The SO(10) group can then break down in two di�erent ways. In the �rst branch

to the right in Figure 2.9 it breaks down to SU(5)× U(1)χ and where the SU(5) group

breaks down to the SM group GSM in Eq. (2.1). The extension to the SM group in

this branch leads to two new Z ′ bosons, Z ′
ψ and Z ′

χ. These two Z
′ bosons can at lower
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energies mix via a mixing angle θE6 and give one Z ′(θE6) boson given as

Z ′(θE6) = Z ′
ψ cos θE6 + Z ′

χ sin θE6 . (2.10)

The parameter describing these models are [24]

gZ′ =

√
5

3
gZ sin θW =

√
5

3
g tan θW (2.11)

zfL =
qψfL
2
√
6
cos θE6 −

qχfL
2
√
10

sin θE6 (2.12)

zfR =
qψfR
2
√
6
cos θE6 −

qχfR
2
√
10

sin θE6 , (2.13)

where qψfL,R and qχfL,R gives the fermionic charges under U(1)ψ and U(1)χ. The mixing

angle θE6 is a free parameter of the model and can therefore be varied together with the

Z ′ boson mass. Table 2.1 the values of θE6 in the some of the most traditional models

together with corresponding values of sin(θE6) and cos(θE6). Z
′
ψ and Z ′

χ corresponds to

θE6 = 0 and π/2 respectively.

Model θE6 sin θE6 cos θE6

Z ′
S 0.6293π 3

√
6

8
-
√
10
8

Z ′
I 0.7098π

√
5
8

-
√

3
8

Z ′
N -0.0804π −1

4

√
15
4

Z ′
ψ 0 0 1

Z ′
η 0.2098π

√
3
8

√
5
8

Z ′
χ 0.5π 1 0

Table 2.1: Di�erent values for θE6 for some traditional Z ′ models, including the special
cases of Z ′

ψ and Z ′
χ from Figure 2.9.

The relative width of the Z ′
ψ an Z

′
χ bosons are 0.5% and 1.2% of their mass respectively.

2.2.3 Minimal Z ′ models

We will now describe the breakdown in the other branch to the left of Figure 2.9 that

gives what we call minimal models and are described by a small number of parameters.

In this branch the SO(10) group breaks �rst down to the SU(4) × SU(2)L × SU(2)R
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group, where U(1)3R is a subgroup of SU(2)R and 3R is the third component of the

right-handed weak isospin. The Z ′
3R boson that comes from this symmetry breaking is

an example of a model where the left-right symmetry violation in the SM gets restored.

Finally the SU(4) group breaks down to SU(3)C×U(1)B−L where B−L is the conserved

quantum number describing the di�erence between the baryon (B) and lepton (L). These

two di�erent models are examples of minimal models which describe the model with the

fewest possible parameters. These parameters are the Z ′ mass and two e�ective coupling

constants. The two e�ective coupling constants are gBL, the coupling constant to the

Z ′
B−L boson and gY the coupling constant to the the weak hypercharge Y . Instead of

using gBL and gY we use the ratio of them to the SM Z coupling constant gZ and we

write them as

g̃B−L =
gBL
gZ

(2.14)

g̃Y =
gY
gZ
. (2.15)

It is useful to reparameterize the g̃B−L and g̃Y in terms of two independent parameters γ′,

which is the strength between the Z ′ and the SM Z boson, and θMin that is the mixing

angle between the generators of the B−L and the weak hypercharge Y gauge group. We

can then rewrite the coupling constants in Eq. (2.14) and (2.15) as

g̃B−L = γ′ cos θMin (2.16)

g̃Y = γ′ sin θMin. (2.17)

Table 2.2 shows the values for these two parameters in some minimal models. We

observe that the Z ′
χ from the �rst branch is a minimal model.

Model γ′ sin θMin cos θMin

Z ′
B−L

√
5
8
sin θW 1 0

Z ′
χ

√
41
24
sin θW

√
25
41

−
√

16
41

Z ′
3R

√
25
12
sin θW

√
1
5

−
√

4
5

Table 2.2: Di�erent values for γ′ and θMin for some Minimal Z ′ models

We have now studied the E6 and SSM Z ′ model in some detail. In the next section
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we will introduce the kinematics of a collision between protons.

2.3 Z ′ production in pp collision

In this section we will introduce the needed theory to study pp collisions in the ATLAS

detector. We will �rst describe the relevant variables used to describe pp collisions before

describing the kinematics of a particle.

2.3.1 Z ′ production in pp collisions

Now we will explain important variables when studying pp collision where the protons

collide in bunches with many particles. The number of collisions that can be detected

over a given time is

N = σ

∫
L(t)dt, (2.18)

where σ is the total cross section and L(t) is the instantaneous luminosity that is given

as

L =
n1n2

4πσxσy
f (2.19)

where σx,y is the beam size, f is the frequency of bunch crossings and n1,2 is the number

of particles in the two colliding bunches of particles. The cross section describes the

probability that an interaction can happen and is given as

σ =

∫
dσ

dΩ
dΩ, (2.20)

where dσ
dΩ

is the di�erential cross section that is given as

dσ

dΩ
=

1

F

dN

dΩ
. (2.21)

The di�erential cross section describes the N number of particles that are scattered in a

solid angle dΩ per unit time per unit �ux F .

The picture of the proton is more complex than what we described in Section 2.1.2.

In addition to the valence quarks which are the two up-quarks and the down-quark, the

proton consist of other quarks called sea quarks and other gluons, and we call them all

partons. The interacting partons each carry a fraction of the momentum of the proton.
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The probability that a parton of given �avour carries a fraction x of the proton is described

by the Parton Distribution Functions (PDFs). The PDFs for two di�erent values of the

momentum transfer is shown in Figure 2.10.

Figure 2.10: The PDFs for the partons in the proton for two values of the momentum
transfer Q. The x-axis shows the fraction x while the y-axis shows the product xf(x,Q2)
of the fraction x and the density function for a parton carrying the momentum [25].

The Z ′ production in a pp collision is shown in the process in Figure 2.11 with two

incoming protons with momentum p1 and p2 respectively. The Z
′ boson is produced from

the anhilation of a quark and anti-quark from the protons and decays to a di-lepton pair

l+l−. The hadrons formed from the quarks that do not take part in the Z ′ production

are denoted X.
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x1p1

x2p2

Z ′

l−

l+

p1

X

p2

X

Figure 2.11: The Drell-Yan process of a Z ′ production decaying to a di-leptpn pair from
a quark and anti-quark from the protons p1 and p2 respectively. The fraction of the
momentum of the quark and anti-quark from the protons are x1 and x2 respectively. The
quarks not taking part in the Z ′ production form hadrons that are denoted X.

The di�erential cross section of the Drell-Yan process with respect to the fractions of

momentum x1 and x2 of the protons is [7]

dσ(p(p1) + p(p2) → Z ′ → l+l− +X)

dx1dx2
=

∑
i

σ(qiqi → Z ′ → l+l−+X)qi(x1)qi(x2), (2.22)

where sum i is over the quark �avours and σ is the cross section of the s-channel process

qiqi → Z ′ → l+l− +X. The PDFs of the quark and anti-quark with �avour i are qi(x1)

and qi(x2) respectively. We will now shortly describe the kinematics of a particle.

2.3.2 Kinematics of a of particle

The kinematic of a particle is de�ned by the energy E, momentum p⃗ = (px, py, pz) and the

mass of the particle. The energy and momentum of a relativistic particle can in special

relativity [26] be written as

E = γmc2 and p⃗ = γmβ⃗, (2.23)

where c is the speed of light and γ is the Lorentz factor given as

γ =
1√

1−
(
v
c

)2 . (2.24)
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We will use natural units from now on where we set the speed of light c and Plank's

constant ℏ equal to one, and use GeV as units for the energy, momentum and the mass of

a particle. The energy and momentum can be combined into what is called the four-vector

pµ =
(
E, px, py, pz

)
, (2.25)

which when contracted with itself gives

p2 = pµpµ = E2 − p2 = m2, (2.26)

This is a Lorentz invariant quantity and is conserved. The component of the momentum

that is in the xy-plane is called the transverse momentum and is de�ned as

pT =
√
p2x + p2y = p sin θ, (2.27)

where θ is the polar angle that goes around the z-axis as shown in Figure 2.12 and p is

the magnitude of the momentum. By using the transverse momentum together with Eq.

(2.26) we can de�ne the transverse energy as

ET =
√
m2 + p2T . (2.28)

Now that we have described the kinematics we can continue to study the collision of

two particles in the next section.

2.3.3 Collision of two particles

We will now describe the collision of two particles in the center of mass (CoM) frame where

the total momentum vector of the two particles equals zero. If the two particles travel

along the z-axis as shown in Figure 2.12 in opposite directions, their four-momentum in

CoM becomes

pµ1 = (E1, 0, 0, p) and pµ2 = (E2, 0, 0,−p), (2.29)
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and the sum of their four-momenta becomes the initial four-momentum P µ = (E1 +

E2, 0, 0, 0). The squared of the initial four-momentum becomes

P 2 = P µPµ = (E1 + E2)
2 ≡ s, (2.30)

where s = (p1 + p2)
2 is a Mandelstam variable and is the square of the CoM energy

√
s.

In the LHC, since the colliding particles are hadrons, the collision involves interactions

amongst the constituent quarks and gluons and so many particles may emerge from each

collision. If for example a Z boson is produced in the collision, and it decays to a di-

lepton pair, we can reconstruct the mass of the Z boson from the invariant mass of the

two leptons l1 and l2 it decays to, that is de�ned as

ml1l2 =
√

(El1 + El2)
2 − (p⃗l1 + p⃗l2)

2. (2.31)

Figure 2.12: View of the geometry of a cylindrical detector where two particles travel in
opposite directions and collide along the z-axis [27]

We have now studied how proton collisions happen and will in the next chapter see

how pp collisions are studied at the Large Hadron Collider and in the ATLAS detector.

Before we study pp collisions in the ATLAS detector we will see how pp collisions are

generated in simulations.



Chapter 3

Event generators

Particle collisions in high energy physics are modelled using Monte Carlo event genera-

tors. These software packages simulate on a statistical basis the behaviours of particles

predicted by theoretical models. The output of event generators can be studied on their

own or can further be simulated in a �digital twin" of a detector such as ATLAS. The sim-

ulation of the pp collisions for di�erent processes and the di�erent stages of the collision

evolution will be explained in Section 3.1. The event generators that will be important

for this thesis are Pythia8, Powheg and Sherpa, and will be shortly described in Section

3.2. The outcome of the event generation is stored in what is called an event record and

we will study the HepMC event record in Section 3.3. This will be important for the

signal reweighting in Section 5.

3.1 Event generation

The generation of an event is often done in a time-ordered way which is equivalent

to the transverse momentum ordering. This means that the processes which have the

outgoing particles with the highest transverse momentum are modelled �rst followed by

the processes with lower transverse momentum. Another word for this ordering is the

hardness of the collision which typically is quanti�ed by the transverse momentum of the

particles. The time-ordering does not necessary go in the direction from past to future,

but follows the hardness of the processes. The time-ordering generally follows how well

the physics is understood in the process. We will now take a brief look at the di�erent

stages in the time-ordering of the event generation based on the collision in Figure 3.1

19
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from Pythia8 that shows the process pp→ tt. The hardness scale in Figure 3.1 starts in

the middle of the circle where the hardest scattering happens and then the hardness of the

processes decreases radially outwards. We will therefore describe the hardest scattering

�rst followed by the other stages in the time-ordered way.

Figure 3.1: Schematic diagram of the time-ordering of a pp→ tt process from Pythia8[28].

1. In the hardest scattering one parton from each proton collides and produces a

few outgoing particles. The incoming partons are chosen based on the parton

distribution functions of the protons. The kinematics of the outgoing partons are

calculated from the matrix element of the hard scattering in perturbation theory.

The hardest scattering process in Figure 3.1 is pp→ tt + X, where X are particles

that coms from the parton showering. The hard scattering is shown in the circle

which surrounds dσ̂0 in the middle of the big circle. The top and anti-top quarks

are outgoing particles from the hard scattering and are shown as thick black lines

with arrows and are connected to the hardest scattering.

2. One or several particles from the hardest scattering can be a short-lived resonance

like the Z or W± boson or top quarks. These resonances will then decay to other
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more stable particles. In Figure 3.1 the top and anti-top quark are unstable and

their decays are shown as red dots that are connected to the top and anti-top

quarks.

3. Fixed-order corrections can be included in the matrix-element corrections in QCD

or EW in perturbation theory. Most commonly the hard scattering is calculated in

leading order (LO) or next-to-leading (NLO) in EW and QCD.

4. The incoming partons to the hardest scattering can radiate other partons and pho-

tons and is known as initial-state radiation (ISR). In Figure 3.1 the ISR is shown

with the blue lines. Due to the Fermi motion of the particles inside the proton, the

incoming particles also gets some transverse momentum added because of this and

is called primordial kT .

5. The outgoing particles and resonances from the hardest scattering can also radiate

other particles and is known as �nal-state radiation (FSR). Figure 3.1 shows the

FSI as red lines.

6. In addition to the ISR and FSR, multiple partons from the beam remnants can

further scatter in what are known as Multiple Parton Interactions (MPI). Figure

3.1 shows the MPI as the circles that surrounds MPI.

7. Color dipoles begins to form after the MPI and resonance decays stage. These color

dipoles are de�ned by color connections in the leading-color approximation, i.e the

Nc → ∞ limit. The color connections are shown in the innermost shaded circle.

8. The strong interaction con�nes the QCD partons into color-singlet known as strings,

or clusters in the small-mass limiting cases. The leftover partons from the beams

are also combined into beam remnants. In Figure 3.1 the strings are shown in the

the striped arcs. The beam remnants are shown as the two pink circles lying on

opposite side of the big circle. The partonic and hadronic parts of the schematic

diagram in Figure 3.1 are separated by the shaded blue rings before the blue and

green circles and triangles.

9. The strings then fragment into hadrons and are shown as the blue circles for the

mesons or triangles for the baryons and are called the primary hadrons in Figure

3.1.
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10. When multiple identical particles are close in phase space this leads to increased

Bose-Einstein e�ects and a suppression of Fermi-Dirac e�ects that is shown in the

outermost circle.

11. The primary hardrons from the fragmentation can decay to secondary hadrons and

are shown in the dark green circles or triangles in Figure 3.1.

12. The primary and secondary hadrons can in densely populated regions re-scatter,

re-annhilate, and/or recombine with each other to produce other hadrons. Figure

3.1 shows these hadronic reinteractions in the light green circles.

3.2 Event generators

A number of di�erent event generators are used in High Energy Physics to generate events

that can then be simulated in a detector model. Here we will only talk about the most

common event generators used in ATLAS.

3.2.1 Pythia8

PYTHIA8[28] is a general purpose Monte Carlo event generator that produces high-energy

collisions between electrons, protons, photons and nuclei. It models all the steps that were

described in Section 3.2 from the hard scattering until the fragmentation and decays of

the �nal state hadrons. The hard scattering can be calculated at both leading-order and

next-to-leading order in perturbation theory [29]. However, the NLO matrix element

can also be merged into Pythia8 in the hardest scattering with either MC@NLO[30] or

POWHEG. Pythia8 has over 200 scattering processes from both SM and BSM.

3.2.2 Powheg

The POWHEG[31, 32, 33] method is a general framework for implementing NLO QCD and

EW calculations into parton showers. POWHEG is short for Positive Weight Hardest

Emission Generator and only generates the hardest radiation using the NLO matrix

elements. The output form the hardest radiation is then passed on to other Shower Monte

Carlo programs where the showering is done. The events are produced with a method
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that produces positive event weights in NLO, whereas other NLO event generators (such

as Sherpa) produce a large fraction of negatively weighted events.

3.2.3 Sherpa

Sherpa[34] is another general purpose Monte Carlo event generator that generates high-

energy collision events in hadron-hadron, lepton-hadron and lepton-lepton colliders. Sherpa

is organised as di�erent modules that are collected in a framework. Sherpa can simulate

multi-jet events in �nal state, and as rarer and rarer processes are persued, accurately

modelling such backgrounds is becoming increasingly important to accurately describe

the complexity of events at the LHC. The NLO merging with Powheg fail to describe

the multi-jet �nal state [35]. Sherpa has therefore developed its own technique for multi-

jet merging at NLO called MEPS@NLO. In NLO Sherpa generation there is however a

large fraction of negative weights that comes from e�ects when calculating the di�erential

cross section at higher order, but there exist methods to reduce the amount of negative

weights[36].

3.3 HepMC - Event record

The output information from the event generation is stored in what is called the event

record. Every event generator has its own internal event record. HepMC[37, 38, 39] is a

general event record that is independent of any event generator and experiment and is

commonly used in the High Energy Physics community. We will describe how the HepMC

event record is structured and introduce some of the features that will be important when

discussing signal reweighting and color �ows in for the Chapter 5 and Chapter 6.

3.3.1 Event record

In particle physics a collision process is typically visualized as a diagram that shows the

particles that interact in di�erent parts of the process and is illustrated in the left diagram

in Figure 3.2. In HepMC the collision process is represented in an event record which

connects event vertices where the interactions happen in a graph structure as shown in

the right graph in Figure 3.2. A vertex lists the incoming and outgoing particles from an

interaction. In Figure 3.2 the incoming and outgoing particles are represented with edges,
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and the interaction is represented as nodes. A vertex will generally not correspond to an

interaction vertex in a Feynman diagram, but must rather be thought of as a collection

of di�erent processes that transform the incoming particles into the outgoing particles.

Figure 3.2: Visualization of a collision process (left) and the HepMC representation of it
in the event record (right) from [38].

Figure 3.3 shows an example of an event vertex from the HepMC event record in

Pythia8. The event vertex shows an incoming proton from a pp collision and a collection

of outgoing quarks and gluons. We will study this event vertex in more detail to learn

how to read the information in an event vertex.

Figure 3.3: Example of a Pythia8 event vertex with a unique vertex barcode (purple
box) with 1 incoming particle and 11 outgoing particles (blue box). Each row represent
a particle and has a unique barcode (orange box) and the particle type (red box) is
represented with PDG ID codes (see Table 3.1 ). The status codes (yellow box) gives
more information about which stage the particle is in (see Table 3.2). The kinematics of
the particles (green box) is of the form (px, py, pz, E) in units of GeV. Finally, the barcode
for the event vertex where the particle decays is provided (brown box).

The colored boxes in Figure 3.3 shows the di�erent types of information in the event
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vertex. The number of incoming (I) and outgoing (O) is shown in the blue box. Every

event vertex has its own unique barcode as shown in the purple box. The rows in Figure

3.3 each represents a particle where the orange box shows the unique particle barcode.

The particle type is identi�ed by what is called the PDG ID number that follows the

Particle Data Group numbering scheme[40] and is shown in the red box. Table 3.1 shows

some examples of the PDG ID codes for some common particles. The kinematics for

every particle is given in the green box where the four columns show the four-momentum

in the form (px, py, pz, E) in units of GeV. The numbers in the yellow box are used to

identify which stage of the event generation process the particle is in and is called a status

code. Table 3.2 shows some relevant status codes that will be used in Chapter 5. The

information about where we can �nd the particle next in the event record is shown in the

brown box which gives the vertex barcode where that particle decays.

Quarks

d 1
u 2
s 3
c 4
b 5
t 6

Diquarks

(ud)1 2103

Hadrons

p 2212

Leptons

e− 11
µ− 13
τ− 15

Gauge bosons

g 21
γ 22
Z 23
W+ 24

Table 3.1: Relevant PDG ID codes for di�erent particles [40].
Anti-particles have negative numbers

As an example of how to use the event record with all this information we can look in

the �rst particle in the event record in Figure 3.3. There we see a proton (PDG ID 2212)

which is incoming from the beam (Stat 4) and decays in the event vertex −310 which

is the barcode of the vertex itself since it decays there. If we look at the kinematics of

the proton we also see that it comes from the beam since it has an energy of 6.5 TeV,

which is exactly half of the energy of the LHC CoM energy of
√
s = 13 TeV. It has no

momentum in x- or y-direction. We will use the event record actively in Chapter 5 to

trace particles in an event through di�erent processes.
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1-9 : stage of event generation
1 : a �nal-state particle
4 : an incoming beam particle

21 - 29 : particles of the hardest subprocess
21 : incoming
22 : intermediate (intended to have preserved mass)
23 : outgoing

41 - 49 : particles produced by initial-state-showers
44 : outgoing shifted by a branching

51 - 59 : particles produced by �nal-state-showers
51 : outgoing produced by parton branching

61 - 69 : particles produced by beam-remnant treatment
61 : incoming subprocess particle with primordial kT included
62 : outgoing subprocess particle with primordial kT included
63 : outgoing beam remnant

Table 3.2: Relevant status codes for di�erent processes[41].

Other kinds of information from the event generators can also be included in the event

record like the color �ow information which will be further described in the next section.

3.3.2 Color �ow

In the event generation the color charges for every quark, anti-quark and gluon is stored

in the event record. In HepMC this information is stored in color �ows in the Flow class

[42]. A color �ow contains all the particles that have the same color. The event generators

use the leading color approximation, where the number of colors goes towards in�nity,

Nc → ∞. This means that every color �ow in a diagram will have an unique label. We

will illustrate how the color �ows are stored in HepMC with the s-channel diagram in

Figure 3.4.

qi

qi

g

qf

qf

Figure 3.4: Feynman diagram of process qiqi → g → qfqf with the color charges are
denoted on the side of the particle lines.
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In this diagram we have two di�erent color �ows labeled red and green, which would be

labeled with integers in the HepMC Flow class. The quarks carries color, the anti-quark

carries anti-color and the gluon carries both carries color and anti-color as explained in

Section 2.1.4. The color �ow contains the particles that have the same color label and

are ordered in the direction of the color. The color �ows red and green are therefore

red : qf → g → qi (3.1)

green : qi → g → qf . (3.2)

We will come back to the color �ow in Section 6.1 and Chapter 6 where we will use the

color �ow information in an attempt to do signal reweighting with Sherpa.
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Chapter 4

Z ′ production in pp collisions

Capturing and reconstructing the fragments emerging from the Large Hadron Collider

(LHC) collisions require large and complex detectors which are constructed around each

collision point. ATLAS is the largest of the LHC detectors. In this chapter we will

describe how it works and how di�erent particles interact with it. We will then brie�y

describe how the generated events from the last chapter are simulated in the detector.

We will also describe the simulated samples that are of particular importance in this

thesis: Pythia8 Z ′ boson production in pp collisions with the Z ′ decaying to a dilepton

pair, qq → Z ′ → l+l−; and the Drell-Yan sample qq → γ, Z → l+l− that will be used

in the signal reweighting and is simulated with PowhegPythia8. Both these MC samples

will be described and corrected with higher order corrections in Section 4.3. The event

selection for the electrons and muons are described in Section 4.4.

4.1 The ATLAS detector

The ATLAS detector is a multipurpose particle detector and is one of the LHC detectors

at CERN. The LHC accelerates protons to an energy of 6.5 TeV in opposite directions in

a 27 km ring located ∼ 100 m underground. The two proton beams collide at four points

around the ring where the detectors ATLAS, CMS, ALICE and LHCb are located. The

ATLAS detector has a cylindrical symmetry in both the forward and backward direction

relative to the LHC beam axis. The ATLAS detector uses the right handed coordinate

system with origin in the interaction point (IP) and is shown in Figure 2.12. The z-

axis is in the direction of the beam while the x-axis is orthogonal to the beam at the
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IP and points towards the center of the LHC ring. The y-axis is both orthogonal to

the x- and y-axis and points in the upward direction from the IP. The transverse plane

with origin in the IP is spanned by the x- and y-axis and is described in cylindrical

coordinates with the azimuthal angle ϕ and radius r in addition to the polar angle θ

around the z-axis. In particle physics we often use the pseudorapidity η instead of the

polar angle θ: as η = − ln(tan(θ/2)). Finally the angular distance ∆R is de�ned as

∆R ≡
√
(∆ϕ)2 + (∆η)2.

Figure 4.1 shows a schematic view of the di�erent subdetectors in the ATLAS detector.

The innermost area around the beam pipe is called the inner detector (ID) and consists

of tracking detectors which are restricted to |η| < 2.5. The ID consist of three layers

of detectors with the pixel detectors closest to the beam surrounded by semiconductior

tracker and the transition radiation tracker as the outermost detector. Outside the ID

there is a superconducting solenoid which provides a 2 T axial magnetic �eld. The

electromagnetic (EM) and hadronic calorimeters surround the solenoid and are restricted

to |η| < 4.9. Generally speaking only muons and neutrinos are able to penetrate all the

layers of the calorimeter, so an external muon spectrometer (MS) forms the outermost

layers of the detector. It covers |η| < 2.7. The MS consists of detectors that can activate

the trigger when a muon is detected, and can also precisely track the trajectories of

muons, in addition to the tracking of the muon in the ID. Three toroidal magnets are

used to determine the momentum of the muons in their magnetic �eld. One of the toroidal

magnets surrounds the center of the detector and consist of eight coils and is called the

barrel toroidal. The other two are at each of the ends and of the detector and are called

the end-cap toroids and consist of eight coils each. The triggering in the MS is used to

determine which events that are kept for analysis based on some criteria to determine if

the event is interesting to keep or not.

Particles that are detected in the ATLAS detector interact di�erently in the di�erent

subdetectors. Figure 4.2 shows the schematic of a portion of the transverse plane of the

detector and illustrates how di�erent particles are identi�ed. The inner detector measures

the trajectory of electrically charged particles such electrons, muons, protons, charged

kaons and pions. They leave bent tracks from their interaction with the magnetic �eld

from the superconducting solenoid. The momentum and the charge of the particles can be

determined from the curvature of the tracks. Particles that interact electromagnetically
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Figure 4.1: Schematic view of the ATLAS detector with the di�erent subdetectors[43]

are detected in the EM calorimeter. The electron and the photon are stopped in the

EM calorimeter through EM showers and their energy gets absorbed and measured.

Protons and muons loose little energy in the EM calorimeter. The hadronic calorimeter

is designed to measure the energy of hadrons such as protons, neutrons, kaons and pions.

Such particles produce showers in the hadron calorimeter and their energy is absorbed and

measured. It is particularly important for reconstructing particle jets which are associated

with high momentum quarks and gluons. Muons and neutrinos are not stopped in the

ATLAS detector. The momenta of the muons is however determined from the curvature

of the tracks they leave behind in the inner detector and in the muon spectrometer. The

neutrinos are not detected in any of the subdetectors in ATLAS since they interact weakly

with matter. Since overall each collision event must have net zero transverse momentum,

the presence of undetected particles with signi�cant energy can be readily inferred as

�missing energy".

The LHC operates in di�erent periods called runs and undergoes upgrades between

them. During Run 2 from 2015 to 2018 the LHC produced collisions at the CoM energy
√
s = 13 TeV and the ATLAS detector collected 139 fb−1 of data. The protons in the

LHC ring are not in a continuous beam, but are bunched together with empty gaps

between the bunches. In each bunch there were 1.1 · 1011 protons in Run 2 and the time
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Figure 4.2: Schematic view of the transverse plane of the ATLAS detector that illustrates
how di�erent particles interact with the ATLAS detector[43]

between each bunch collision was 25 ns where on average 30 collisions occur in every

bunch. In other words there were 40 millions collisions happening each second. It is not

possible to store all this data so the triggering described above is needed to �lter out the

interesting events.

4.2 Event simulation

The interaction of particles generated in the event generators in the detector can be simu-

lated in a �digital twin" of the detector with GEANT4[44]. The simulated energy deposits

can then be �digitized" leading to a data format which looks like the digital output of the

real detector. These can then be reconstructed in the same way as the real data, produc-

ing events that can be analysed in exactly the same way as real data, but which, unlike

real data, have known provenance and associated ground truth. This enables Standard

Model predictions from the event generators to be compared with collected data.



4.3. DATA AND MONTE-CARLO SAMPLES 33

4.2.0.1 Detector simulation

The generated events are stored in a HepMC �le with the truth information of the par-

ticles containing the history of the interactions in the generation. Since many generated

particles will be outside of the �ducial volume of the detector, some cuts are done to

the particle before they are simulated [45]. Not all stable particles are simulated in the

detector. Stable particles in the detector are de�ned as particles that have a life time

cτ > 10mm. The generated events are then run through detector simulations in AT-

LAS. The detector simulation is done with GEANT4 [44] that simulates the geometry

of ATLAS. This is the most computationally expensive part of the simulations and take

about 80 % of the total CPU time. There does also exist fast simulations [46] that is

less computationally expensive, but does not simulate the detector output as accurately.

The output from the detector simulation is stored in a �hits" �le that is a collection of

the truth information and the collection of hits in each subdetector. A hit is an energy

deposit in a subdetector that is stored with position and time. The next step is to convert

these hits in the detector to something that mimic the output from collected data.

4.2.0.2 Digitization

The hits �le from the detector simulation is the input into the ATLAS digitization soft-

ware that converts the hits into detector responses called digits. This procedure is done

to mimic what happens in the detector for collected data. A digit is produced when the

voltage or current output in a readout channel rises above a prede�ned threshold over

a time window. In some subdetectors the digit is described with the shape over some

time-window, while in others it is only recorded if a threshold is exceeded within a time

window.

4.3 Data and Monte-Carlo samples

In this section we will describe the data and simulations that will be used for the signal

reweighting, and the processes that contribute a dilepton �nal state. We use only MC

simulations from the mc16e period in Run 2 since it is the only period we have fully

simulated Z ′ Pythia8 samples. The MC samples are simulated at
√
s = 13 TeV and are

scaled to the integrated luminosity 58.5 fb−1 that was collected during the mc16e period.
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For Run 3 we use both data and simulations from 2022 where 26.1fb−1 of data that is used

for analysis was collected at
√
s = 13.6 TeV. The MC samples from Run 3 are therfore

scaled to 26.1fb−1.

4.3.1 Simulated Z ′ samples used in Run 2

In a dilepton �nal state the Z ′ production process is shown in leading order in Figure

4.3. It shows the process where a quark q and anti-quark q from the protons annihilate

to a Z ′ boson that decays to a lepton pair l−l+.

q

q

Z ′

l−

l+

Figure 4.3: Z ′ production process

The Z ′ signal simulated samples we will use to compare to the signal reweighted

samples obtained using the procedure in Chapter 5 are LO Pythia8[47] Z ′ samples which

has the signal process in Figure 4.3. The only available Z ′ samples are based on the Z ′
χ

model where a 3 TeV-Z ′ leads to e+e− and µ+µ− �nal states from the 2018 mc16e period.

Table A.3 in Appendix A.2 describes the samples in more detail.

4.3.2 Samples used for Z ′ signal reweighting in Run 2 and 3

In the next chapter we will do signal reweighting of a Drell-Yan (γ∗, Z∗) background sam-

ple to a Z ′ signal sample. The Drell-Yan sample we will use is a fully PowhegPythia8[48]

simulated sample where the matrix element is generated in NLO by Powheg and the par-

ton showering is done by Pythia8. We will study the signal process of the PowhegPythia8

Drell-Yan sample in Section 5.3.1. Tables A.1 and A.2 in Appendix A.1 describe the sam-

ples from Run 2 in more detail. A fully simulated PowhegPythia8 Drell-Yan sample will

also be used for signal reweighting in Run 3.
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4.3.3 Background samples used in Run 3

In addition to the Drell-Yan background sample there are several other background pro-

cesses in a di-lepton �nal state that we will shortly describe here. The other background

processes are diboson, single top, tt and W + jets. The diboson and W + jets samples

are simulated with Sherpa while single top and tt are simulated with PowhegPythia8.

4.3.3.1 Top

The production of a top-antitop (tt) pair can produce a di-lepton pair in the �nal state

through a decay from twoW bosons as shown in Figure 4.4. The top quark almost always

decays to a W boson and bottom quark. The two W bosons then decays leptonically and

gives a di-lepton pair in �nal state. Figure 4.4a shows the tt production from two gluons

while Figure 4.4b shows a gluon decaying to the tt.

g

t

g

t

t

b

b

W−

W+

l−

νl

l+

νl

(a) Production of tt from two

gluons.

q

q

g
t

t

b

b

W−

W+

l−

νl

l+

νl

(b) Production of tt from the

decay of a gluon.

Figure 4.4: Production of tt from two gluons (a) and the decay of a gluon (b).

The production of a top/antitop quark together with a W boson can also give a

di-leption in the �nal state as shown in Figure 4.5 and 4.6 and are called single top

processes. In Figure 4.5 the top quark is produced in two diagrams involving a gluon,

while in Figure 4.6 there are no gluons involved in the top production. The top quark in

all these diagrams decay to a W+ boson which decays leptonically together with the W−

boson that is not shown in the diagrams.
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b

g

b

W−

t

(a) The single top produc-

tion in a s-channel diagram
involving a gluon.

tg

t

W−b

(b) The single top produc-

tion in a t-channel diagram
involving a gluon.

Figure 4.5: The single top production involving a gluon in a s-channel (a) and t-channel
(b).
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(a) The single top produc-

tion in a s-channel diagram.

u d

W+

b t

(b) The single top produc-

tion in a t-channel diagram.

Figure 4.6: The single top production involving in a s-channel (a) and t-channel (b).

4.3.3.2 Diboson

A production of two bosons can decay to a di-lepton pair as shown in Figure 4.7. Figure

4.7a shows the production of two Z bosons, 4.7b the production of a Z boson and W+

boson and 4.7c the production of aW+ andW− boson. At least one Z boson must decay

leptonically in Figure 4.7a, while the Z boson in Figure 4.7b must decay leptonically and

both W+ and W− must decay leptonically in Figure 4.7c. The subscript u and d on the

quarks means that the quark/antiquark is an up- or down-type quark.
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(a) Production of two Z
bosons where at least one of

the boson decay leptonically.
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(b) Production of a Z bo-
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(c) Production of a W+ bo-

son and W− boson where

both bosons decay leptoni-

cally.

Figure 4.7: Production of diboson showing ZZ (a), ZW+ (b) and W+W− (c).

4.3.3.3 W + jets

The last background we will look at is W + jets which can be described by the same

diagrams in Figure 4.5 and 4.6, but where the top quark does not decay to a W boson.

Then there is only one W boson that decays leptonically, giving one lepton. The quark

can however be misidenti�ed as a lepton in the detector where it makes a jet. The jet is

then called a fake lepton.

We will now describe how higher order corrections can be applied to an already gen-

erated sample which we will make use of in Chapter 7.
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4.3.4 Higher order corrections

Higher order corrections can also be applied to the MC samples after the event generation.

To correct to higher orders than provided by the event generators we apply k-factors that

we need for the Run 2 MC samples in a comparison. A k-factor is the ratio of the

di�erential cross section in the signal process calculated in the order we want to correct

to, divided by the di�erential cross section for the signal process in the sample. The

k-factor is an event-by-event scale factor. The k-factors we will use are calculated from

the LPXKfactorTool[49]. We need to apply k-factors to the LO Pythia8 Z ′ and the

NLO PowhegPythia8 Drell-Yan samples so that we compare them in equal order when

we do signal reweighting. We apply a LO → NNLO QCD k-factor to the LO Pythia8

Z ′ samples and a NLO → NNLO QCD k-factor to the NLO PowhegPythia8 Drell-Yan

sample. There do not exist any EW k-factors for the simulated Z ′ sample. Since both

Pythia8 Z ′ and the PowhegPythia8 Drell-Yan samples are simulated at LO in EW we

will not apply any EW k-factors to the PowhegPythia8 Drell-Yan samples either.

4.4 Event selection in Run 2

Most of the event selection criteria for the electron and muon candidates in Run 2 in the

�nal state are taken from [14] and are described below.

The electron candidates reconstructed from tracks in the ID and must deposit energy in

EM calorimeters. They must have ET > 30 GeV and |η| < 2.47 in order to pass through

the �ne-granularity region of the EM calorimeters. In addition the electron candidates

in the region between the barrel and the end cap of the EM calorimeter corresponding

to the region 1.37 < |η| < 1.52 are excluded. The candidates should also pass the

`medium' electron working point which has an identi�cation and reconstruction e�ciency

for electrons above 92 % for ET > 80 GeV.

The muon candidates are reconstructed by matching tracks in the ID to tracks recon-

structed in the MS. The muon candidate must have pT > 30 GeV and |η| < 2.5. The

muon candidates must also pass the `high pT ' identi�cation working point. It ensures

optimal resolution for muons with high pT and is speci�ed by at least 3 hits in each of

the three layers of precision tracking chambers in the MS.
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Some cuts are common for both electron and muon candidates. One of them is that the

longitudinal impact parameter z0 is required to satisfy |z0 sin θ| < 0.5 mm. In addition

the electron (muon) candidate must have a signi�cance of the transverse parameter that

satis�es |d0/σ(d0)| < 5(3). The electrons should pass the `gradient' isolation working

point. For the muons the isolation requirement is that the summed scalar pT inside a

cone or size ∆R = 0.3 should be less than 6 % of the pT of the muon candidate.

In the �nal state the candidates in the pair needs to have the same �avor. However an

electron pair is not required to have opposite charge because of the probability of charge

misidenti�cation for high-ET electrons. For muons the opposite charge requirement must

be satis�ed.

The event selection for 3 and 4 leptons in the �nal state will not be considered in this

study, due to the minimal number of such events. The �nal requirement for the events

considered in this study is that the invariant mass of the pair should satisfy the invariant

mass criteria, mll > 120 GeV, slightly above the Z-peak.

4.5 Event selection in the electron channel in Run 3

The event selection criteria for the electron candidates in the Run 3 �nal state are almost

the same as for Run 2. The electron candidates reconstructed from tracks in the ID and

must deposit energy in EM calorimeters. They must have pT > 30 GeV and |η| < 2.47 in

order to pass through the �ne-granularity region of the EM calorimeters. In addition the

electron candidates in the region between the barrel and the end cap of the EM calorimeter

corresponding to the region 1.37 < |η| < 1.52 are excluded. The longitudinal impact

parameter z0 is required to satisfy |z0 sin θ| < 0.5 mm. In addition the electron candidate

must have a signi�cance of the transverse parameter that satis�es |d0/σ(d0)| < 5. An

electron pair is not required to have opposite charge because of the probability of charge

misidenti�cation for high-pT electrons. The �nal requirement for the events considered

in this study is that the invariant mass of the electron pair should satisfy the invariant

mass criteria, mee > 180 GeV, slightly above the Z-peak.
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Chapter 5

Z ′ Signal reweighting with Powheg

In this chapter we will extend the LPXSignalReweightingTool [24] to apply signal reweight-

ing to a PowhegPythia8 Drell-Yan di-lepton invariant mass distribution rather than the

Pythia8 Drell-Yan distribution described in Section 5.1. The motivation for doing sig-

nal reweighting on PowhegPythia8 is because there are no available ATLAS Pythia8

Drell-Yan samples available for Run 2 and 3. Another reason is that the hard process is

calculated in next-to-leading order in QCD for PowhegPythia8 while it is calculated at

leading order for Pythia8. The PowhegPythia8 Drell-Yan distribution is therefore more

accurately modelled than the Pythia8 Drell-Yan distribution. The truth information

from the HepMC event record will be important for extending the LPXSignalReweight-

ingTool [24]. In the two �rst sections we will explain how the signal reweighting is done

for Pythia8 and how we need to change the LPXSignalReweightingTool to apply signal

reweighting to a PowhegPythia8 sample.

5.1 LPXSignalReweightingTool

The LPXSignalReweightingTool is a software tool within the ATLAS software that uses

the truth information from the HepMC event record to calculate per-event weights to

transform a LO Pythia8 Drell-Yan sample to a BSM Z ′ sample. This is known as signal

reweighting and avoids having to produce and fully reconstruct many new MC samples

(many models, masses, ...), which is computationally expensive. The scale factor is

calculated at truth level but is applied to the reconstructed sample. We do therefore

not need to simulate any new signal samples other than the Drell-Yan sample that is

41
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anyway needed for background modelling. The LPXSignalReweigtingTool was originally

written to reweight LO Pythia8 Drell-Yan as input sample. In Chapter 5 we will extend

the LPXSignalReweightingTool to also reweight NLO PowhegPythia8 Drell-Yan samples,

and describe the attempt that was made to use NLO Sherpa Z + jets in the next chapter.

We will therefore describe the LPXSignalReweingTool in greater detail there, and only

describe the basics of the tool here.

5.1.1 Z ′ reweighting scale factor

The scale factor that is used to reweight a Drell-Yan distribution to a Drell-Yan + Z ′

distribution is

SFSM+BSM =
dσ
dt̂

(
qq → γ, Z, Z ′ → l−l+

)
dσ
dt̂

(
qq → γ, Z → l−l+

) , (5.1)

and is the ratio of the di�erential cross section of the s-channel diagram in Figure 5.1,

where where t̂ is the Mandelstam [7] variable de�ned as t̂ = (q − l−)2 = (q − l+)2. The

denominator in Eq. (5.1) is the di�erential cross section for the SM process qq → γ, Z →
l−l+, while the numerator is the di�erential cross section for the SM + BSM process

qq → γ, Z → l−l+. The scale factor SFSM+BSM is applied to every reconstructed event

in a histogram like e.g the invariant mass distribution.

q

q

γ∗, Z∗, Z ′

l−

l+

Figure 5.1: The Drell-Yan s-channel diagram that is used to calculate the scale factor
per event where either the photon, Z boson or Z ′ boson is the propagator.

The scale factor that is used to reweight a Drell-Yan distribution to only a Z ′ distri-

bution is

SFBSM =
dσ
dt̂

(
qq → Z ′ → l−l+

)
dσ
dt̂

(
qq → γ, Z → l−l+

) , (5.2)

where the photon and Z boson are not included in the di�erential cross section in the

numerator. We can use these di�erent modes in Eq. (5.1) and (5.2) depending on what

we want to reweight to. The scale factor in Eq. (5.1) and (5.2) needs the kinematics of
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the incoming quarks q and q, the intermediate particles γ, Z and Z ′ and the �nal state

leptons l− and l+. We also need to know the couplings to the Z ′ model. In the next

section we will go throught how this information can be found. We will further work on

this in Section 5.1.2 in more detail.

5.1.2 Finding the information for the LPXSignalReweighitng-

Tool

We need to specify the Z ′ model we are reweighting to in the scale factor in Eq. (5.1)

or (5.2). The LPXSignalReweighitngTool supports various E6 inspired and the SSM Z ′

models for now. It can however be extended to any Z ′ model when we know the coupling

constant gZ′ and the left and right handed chiral charges zfL and zfR to the fermions from

the Lagrangian in Eq. (2.6). Table 2.1 lists the values of the coupling constant gZ′ and

the chiral charges for the E6 model.

We also need to specify the kinematics and �avours for the incoming quarks qq, the

intermediate γ or Z boson and the �nal state leptons l−l+ from the s-channel process

in Figure 5.1. This information is needed to calculate the scale factor. We get this

information from the HepMC event record of the LO Drell-Yan Pythia8 sample. More

precisely, we get it by looping over the di�erent event vertices that follow the di�erent

stages in the event generation from Section 3.1. In the next chapter we will see how this is

done in detail in order to adjust the LPXSignalReweightingTool to do signal reweighting

of NLO PowhegPythia8 Drell-Yan samples. First, let us give some details about the

LPXKfactorTool that allows taking into account higher order corrections.

5.1.3 LPXKfactorTool

The LPXKfactorTool [49] is used to account for higher order corrections for Monte Carlo

simulations with a scale factor. These scale factors are called k-factors and are the ratio

between the higher order cross sections compared to the cross section at the order that

the sample is generated at. As an example a k-factor can correct a LO Pythia8 sample

to a NLO sample. The LPXKfactorTool uses the invariant mass of the �nal state lepton

to calculate a scale factors. The k-factor is therefore not constant, but is a function of

the invariant mass. [49]
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5.2 Pythia8

In Section 5.1 we described in general how the scale factor (Eq. (5.2)) from the LPXSig-

nalReweightingTool is used to signal reweight a Pythia8 Drell-Yan distribution to a Z ′

distribution. We will now go in more detail on how the scale factor is calculated from

the event record of a Pythia8 sample. This section will therefore help us to extend the

LPXSignalReweightingTool to apply Z ′ signal reweighting to a PowhegPythia8 Drell-

Yan distribution in Section 5.3. The structure of this section will closely follow the

time-ordering in the event generator described in Section 3.1, starting from the hard

scattering. When we analyze the event record we make use of the PDG ID codes and the

status codes summarized in Table 3.1 and 3.2, respectively.

5.2.1 Signal process

The hard subprocess, also known as the signal process, is where we �nd the quarks

and the Z boson needed to calculate the scale factor (Eq. (5.2)) in the LPXSignal-

ReweigthingTool. An example of a signal process vertex is shown in Figure 5.2 where a

quark-antiquark pair (PDG ID 1 and −1) annihilates into a Z boson (PDG ID 23).

Figure 5.2: Example of signal process vertex dd→ Z in the event record in Pythia8.

The quarks and antiquark dd are incoming particles into the hard subprocess (Stat 21)

and will be used to calculate the scale factor (Eq. (5.2)) from the LPXSignalReweight-

ingTool. The outgoing Z boson is an intermediate particle from the hardest scattering

(Stat 22) that will also be used to calculate the scale factor. We have now found both the

incoming dd pair and the intermediate Z boson in the event record. We need to follow

the Z boson further in the event record to �nd the �nal-state leptons. Summarized, the

signal process in a Pythia8 Drell-Yan event can be represented as

qq → Zq, (5.3)
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where Zq denotes that the Z boson is produced from a quark-antiquark annihilation. The

process in Eq. (5.3) can also be represented as the Feynman vertex in Figure 5.3, and is

the �rst vertex of the s-channel diagram in Figure 5.1.

q

q

Z

Figure 5.3: The Feynman vertex of the Z boson production process in Eq. (5.3).

5.2.2 Initial state showers

The Zq boson from the signal process is not unique for calculating the scale factor (Eq.

(5.2)) from the LPXSignalReweightingTool. After the signal process the Zq boson decays

several times in the event record which is shown in the event vertices in Figure 5.4, 5.5

and 5.6. These decays are branchings from the initial state showers (Stat 44) and change

the kinematics of the Zq boson. In the last branching in Figure 5.6 the outgoing Z boson

has primordial kT (Stat 62) included as explained in Section 3.1.

Figure 5.4: The �rst initial state branching of the Zq boson to the Zb1 boson in the event
record in Pythia8.

Figure 5.5: The second initial state branching of the Zq boson to the Zb1 boson in the
event record in Pythia8.
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Figure 5.6: The fourth and �nal state branching of the Zq boson into the �nal Zl boson
that decays to a lepton pair in the event record in Pythia8.

The outgoing Z boson from Figure 5.6 is the Z boson that decays to the lepton pair

and will be labeled Zl. Summarized, the process of initial state showering in n branching

of the Zq boson is

Zq → Zb1 → ...→ Zbn → Zl, (5.4)

where Zbn is the nth and �nal branched Z boson and Zl is the Z boson that decays

to the lepton pair.

5.2.3 Decay of Z boson and �nal state showers

The leptons that are used to calculate the scale factor appear in the event record after the

�nal-state showers from the decay of the Zl boson. An example of the Zl boson decaying

to an electron and a positron (PDG ID 11 and −11) in the event record is shown in

Figure 5.7, while the radiation of a photon (PDG ID 22) from the positron is shown in

the event vertex in Figure 5.8.

Figure 5.7: An event vertex showing the Zl boson decaying to an electron pair in the
event record in Pythia8.

Figure 5.8: An event vertex showing the radiation of a photon from the positron in the
event record in Pythia8.
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The �nal state positron that we use to calculate the scale factor is the outgoing

positron (Stat 1) from the event record in Figure 5.9. Radiation of photons may also

happen to the electron.

Figure 5.9: The event vertex with the �nal state positron in the event record in Pythia8.

Generally we can write the decay of the Zl boson to a lepton pair l
−l+ withm radiated

photons as

Zl → l−l+γ1...γm, (5.5)

where γm is the mth radiated photon. The energy/momentum of the photon in Figure

5.8 is negligible compared to that of the positron. This is generally the case, so we can

ignore the photon radiation in the process Eq. (5.5) such that it simpli�es to the process

Zl → l−l+. (5.6)

The process in Eq. (5.6) can be represented as the Feynman vertex in Figure 5.3, and

is the second vertex of the s-channel diagram in Figure 5.1.

l+

l−

Zl

Figure 5.10: The Feynman vertex for the Z boson decay process in Eq. (5.6)

This ends the search to �nd the particles needed for the LPXSignalReweightingTool.

In the next subsection we will put together the pieces in order to calculate the scale

factor.
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5.2.4 Combining the Z production and Z decay vertices

We can now combine the Z production vertex in Figure 5.3 with the Z decay vertex in

Figure 5.7 to make the s-channel diagram in Figure 5.11. This is the Feynman diagram

that the LPXSignalReweightingTool uses to calculate the di�erential cross section in the

scale factor. The Zq/l boson in Figure 5.11 denotes that we can either use the Zq boson

from the production vertex, or the Zl from the decay vertex to calculate the di�erential

cross section in the scale factor. The LPXSignalReweightingTool uses the Zq boson to

calculate the scale factor for Pythia8.

q

q

Zq/l

l−

l+

Figure 5.11: The s-channel Feynman diagram obtained from combining the Z production
vertex and the Z decay vertex in Figure 5.3 and 5.10 respectively.

5.2.5 Calculating the scale factor

We have now found all the particles that we need to calculate the scale factor for this

Pythia8-generated event. These are listed with their kinematics in Table 5.1. The in-

variant mass of the �nal state e+e− pair in this event is mee = 87.92 GeV and is close to

the Z boson mass. The �nal information we need to calculate the scale factor is the Z ′

model and the Z ′ mass that we set ourselves.

Particle
(
000px, py, pz, E

)
[GeV]

d
(
000 0, 0, 12.94, 12.94

)
d

(
000 0, 0, -149.37, 149.37

)
Zq

(
000 0, 0, -136.44, 162.31

)
e−

(
-8.83, -40.11, -56.16, 69.57

)
e+

(
11.46, 45.15, -81.21, 93.63

)
Table 5.1: The kinematics of the particles from the event record used to calculate the
scale factor.
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Table 5.2 shows the scale factors SFBSM from Eq. (5.2) for this event in the Z ′
SSM ,

Z ′
χ and Z

′
ψ models at mZ′ = 87.92 GeV in Table 5.2b and mZ′ = 3000 GeV in Table 5.2b.

The Z ′ width, ΓZ′ and the ratios ΓZ′/mZ′ are also listed in Table 5.2a and 5.2b. We see

that the ratios ΓZ′/mZ′ are in good agreement with the theoretical ratios 3% (Z ′
SSM),

1.2% (Z ′
χ) and 0.5% (Z ′

ψ) between the width and the mass of the Z ′ boson as given in

Section 2.2.1 and 2.2.2.

The scale factors calculated at mZ′ = 87.92 GeV are larger compared to the scale

factors calculated at mZ′ = 3000 GeV in Table 5.2a and 5.2b, respectively. This is

expected since mZ′ = 87.92 GeV is equal to the invariant mass of the �nal state electron

pair, mee = 87.92 GeV where there are many events in the Z ′ resonance. While mZ′ =

3000 GeV is far from the invariant mass of the �nal state electron pair where there are

fewer events. We can generally say that events with invariant mass close to the Z ′ mass are

up-weighted, while events with invariant mass far from the Z ′ mass are down-weighted.

Model ΓZ′ [GeV] ΓZ′/mZ′ [%] SFBSM

Z ′
SSM 2.42 2.76 8.80

Z ′
χ 1.02 1.16 15.29

Z ′
ψ 0.42 0.48 12.62

(a) mZ′ = 87.92 GeV

Model ΓZ′ [GeV] ΓZ′/mZ′ [%] SFBSM

Z ′
SSM 95.22 3.17 4.95 ·10−9

Z ′
χ 37.06 1.24 1.51·10−9

Z ′
ψ 16.88 0.56 2.10·10−10

(b) mZ′ = 3000 GeV

Table 5.2: Ths scale factors SFBSM , Z ′ width and the ratio ΓZ′/mZ′ for di�erent Z ′

models at mZ′ = 87.92 GeV (a) and mZ′ = 3000 GeV (b).

We have now shown how the LPXSignalReweightingTool uses the event record to cal-

culate the scale factor for one event that is applied to the kinematics variables to reweight

a Drell-Yan distribution to a Z ′ distribution. In the next section we will extend the signal

reweighting method that we have presented here to signal reweight PowhegPythia8 Drell-

Yan distributions and give an example on how the whole signal reweighted distribution

might look like.

5.3 PowhegPythia8

In this section we will extend the signal reweighting method used in LPXSignalReweight-

ingTool to a PowhegPythia8 Drell-Yan sample. The PowhegPythia8 Drell-Yan sample
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has NLO order QCD signal processes while the Pythia8 Drell-Yan sample has LO signal

processes. Consequently there will be a di�erence in how we �nd the Z production ver-

tex in PowhegPythia8 compared to Pythia8. We studied the event record in detail for

Pythia8 Drell-Yan samples, and will not go in such detail here whenever it is not needed.

5.3.1 Signal process

We need to use another method to �nd the Z production vertex in the signal process in

NLO PowhegPythia8 compared to what we did for Pythia8. We see this in Figure 5.12

which shows an example of a signal process in the PowhegPythia8 Drell-Yan sample with

an incoming quark pair uu (PDG ID 2 and −2), and a gluon (PDG ID 21) and Z boson

(PDG ID 23) as outgoing particles. The signal process in PowhegPythia8 has an extra

outgoing gluon compared to the signal process in Pythia8. As a consequence of the extra

gluon we cannot any longer represent Figure 5.12 directly as a Z production vertex from

the annihilation of two quarks like we did for Pythia8 in Section 5.2.1.

Figure 5.12: The event vertex showing the signal process uu→ gZ in the event record in
PowhegPythia8.

The signal process in the Figure 5.12 is not the only type of signal processes that

exist in a NLO PowhegPythia8 sample. There are in total four di�erent types of signal

processes which are

qq → Z (5.7)

qq → gZ (5.8)

qg → qZ (5.9)

qg → qZ. (5.10)

The signal process in Eq. (5.7) is the same as the Pythia8 signal process, while the
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signal processes in Eq. (5.8) - (5.10), involving a Z and an additional parton, are not in

LO Pythia8. We will see in the next section how we can extract the Z production vertex

from the signal processes in Eq. (5.8) - (5.10).

5.3.2 Finding the Z production vertex

To �nd the Z production vertex we �rst need to represent the signal processes in Eq.

(5.8) - (5.10) as t-channel Feynman diagrams as shown in Figure 5.13. Figures 5.13a

and 5.13b show the t-channel diagrams of the signal process in Eq. (5.8), while Figures

5.13c and 5.13d show the t-channel diagram of Eq. (5.9) and (5.10) respectively. We will

come back the signal process in Eq. (5.8) which can be represented in the two di�erent

t-channel diagrams in Figures 5.13a and 5.13b.

q

qint

q

g

Z

(a) qq → gZ

q

qint

q

g

Z

(b) qq → gZ

q

qint

q

g

Z

(c) qg → qZ

q

qint

q

g

Z

(d) qg → qZ

Figure 5.13: Feynman diagrams for the di�erent signal processes in Eq. (5.8) - (5.10).

The intermediate particle in each of the Feynman diagrams in Figures 5.13 is the

quark qint. We can now �nd the Z production vertex qqintZ in the Feynman diagrams

in Figure 5.13a and 5.13c and the vertex qqintZ in Figure 5.13b and 5.13d. Figure 5.14

shows these Z production vertices where the qint quark is time-ordered such that the Z

production vertices are quark-anitquark annihilations.
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qint

q

Z

(a) The time-ordered Z production

vertex from the Feynman diagrams in

Figure 5.13a and 5.13c.

qint

q

Z

(b) The time-ordered Z production

vertex from the Feynman diagrams in

Figure 5.13b and 5.13d.

Figure 5.14: The time-ordered Z production vertices from the Feynman diagrams in
Figure 5.13.

The two time-ordered Z production vertices from Figure 5.14 can be represented as

the processes

qqint → Zq (5.11)

qqint → Zq, (5.12)

where Zq denotes that the Z boson is produced from a quark-antiquark annihilation. We

have now found the Z production vertices from the signal process in PowhegPythia8.

The next step is to �nd the Z decay vertex. The initial-state branching of the Zq boson

is the same as for Pythia8 in Section 5.2.2. We will therefore jump right to the decay

and �nal state radiation in the next section.

5.3.3 Decay of Z boson and �nal-state radiation

In PowhegPythia8 the Z boson decay and the �nal-state radiation take place in one event

vertex as shown in Figure 5.15. This is slightly di�erent compared to Pythia8 where the

decay and the �nal-state radiation takes place in multiple event vertices as explained in

Section 5.2.3. The Z boson (PDG ID 23) in Figure 5.15 decays to an electron-positron

pair (PDG ID 11 and −11 with Stat 1) and two photons (PDG ID 22). There is also

another electron pair (Stat 3), but this is only used as a documentation entry. We will

therefore use the electron pair with Stat 1 in the LPXSignalReweightingTool since it is

the �nal stare particles.
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Figure 5.15: The event vertex showing the Z boson decaying to an electron pair and two
radiated photons in PowhegPythia8.

We can now write the general process for the Z boson decay with �nal state radiation

like we did for Pythia8 in Eq. (5.5). The kinematics of the photons in Figure 5.15 are

tiny compared to the electron-positron pair and we can therefore neglect the photons.

The simpli�ed process of Eq. (5.5) is then approximated to the Z boson decay process

in Eq. (5.6) which is represented as the decay vertex in Figure 5.15.

5.3.4 Combining the Z production and Z decay vertices

The Z boson production and Z decay vertices can now be combined like we did for Pythia8

in Section 5.2.4. We found three di�erent Z production vertices for PowhegPythia8. The

Z boson production vertices are qqint → Z and qintq → Z from Figure 5.14a and 5.14b

respectively, and the production vertex qq → Z from Figure 5.3. Figure 5.16 shows the

three s-channel diagrams we get when we combine these Z boson production vertices

with the Z boson decay vertex Zl → l−l+ in Figure 5.10.
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qint

q

Zq/l

l−

l+

(a) qqint → Zq/l → l−l+

qint

q

Zq/l

l−

l+

(b) qqint → Zq/l → l−l+

q

q

Zq/l

l−

l+

(c) qq → Zq/l → l−l+

Figure 5.16: The s-channel Feynman diagrams we get when combining the Z boson decay
vertex in Figure 5.10 with the Z boson production vertex in Figure 5.14a (a), 5.14b (b)
and 5.3 (c).

The Zq/l boson in Figure 5.16 denotes that we can either use the Zq boson from the

production vertex, or the Zl boson from the decay vertex to calculate the di�erential cross

section in the scale factor in Eq. (5.2), page 42. The intermediate quark qint and anti-

quark qint are not listed in the event record, and so their four-momentum are not known.

We can however calculate the four-momentum of qint and qint from the four-momentum

conservation in the Z boson production vertices in Figure 5.16a and 5.16b respectively

as

pµqint = pµZq/l − pµq (5.13)

pµqint = pµZq/l − pµq . (5.14)

The four-momentum of the intermediate quarks in Eq. (5.13) and (5.14) depend on

whether we choose the Zl boson or the Zq boson. In Section 7.1 we will investigate how

the scale factor changes based on whether we choose the Zq boson before the initial-state

radiation, or the Zl boson after the initial-state radiation in the LPXSignalReweighting-

Tool to calculate the four-momentum in Eq. (5.13) and (5.14). We will also investigate

how the scale factor changes based on whether we choose the t-channel in Figure 5.13a
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or 5.13b for the events with the signal process qq → gZ.

Table 5.3 summarizes the signal processes and their corresponding s-channel processes.

The implementation of PowhegPythia8 into the LPXSignalReweightingTool will therefore

consist of looping over the events and, based on the signal process, the corresponding s-

channel process in Table 5.3 will be used to calculate the scale factor.

Signal process s-channel process

qq → Zq qq → Zq/l → l−l+

qq → gZq qqint → Zq/l → l−l+

qq → gZq
qqint → Zq/l → l−l+

qqint → Zq/l → l−l+

qg → qZq qqint → Zq/l → l−l+

qg → qZq qqint → Zq/l → l−l+

Table 5.3: Overview over the signal processes in PowhegPythia8 and their corresponding
s-channel processes.

5.3.5 Calculating the scale factor

We have now found all the particles that we need to calculate the scale factor for this

PowhegPythia8 event. The particles are listed with their kinematics in Table 5.4. The

steps to calculate the scale factor follow the same procedure as in Section 5.2.5 with the

exception of the uint quark in Table 5.4. The signal process in this event is uu → gZ

from Figure 5.12 and we choose the uint quark from the s-channel process in Table 5.3.

The uint kinematics is calculated from Eq. (5.14) in this example, where the Zl boson is

choosed in this example. The invariant mass of the �nal state e+e− pair in this event is

mee = 223.30 GeV. The �nal information we need to calculate the scale factor is the Z ′

model, and the corresponding couplings, and the Z ′ mass that we set ourselves.
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Particle
(
000px, py, pz, E

)
[GeV]

u
(
0000 0, 0, 218.90, 218.90

)
uint

(
0 -0.42, -14.41, -123.69, 24.53

)
Zl

(
0 -0.42, -14.41, 95.21, 243.43

)
e−

(
0 46.68, -13.68, 157.76, 165.08

)
e+

(
-47.08, -0.65, -62.38, 78.15

)
Table 5.4: The kinematics of the particles from the event record used to calculate the
scale factor.

Table 5.5 shows the scale factors SFBSM from Eq. (5.2) for this event in the Z ′
SSM ,

Z ′
χ and Z

′
ψ model at mZ′ = 223.30 GeV in Table 5.5a and mZ′ = 3000 GeV in Table 5.5b.

The Z ′ width, ΓZ′ and the ratios ΓZ′/mZ′ are also listed in Table 5.5a and 5.5b. We see

that the ratios ΓZ′/mZ′ are in good agreement with the theoretical ratios 3% (Z ′
SSM),

1.2% (Z ′
χ) and 0.5% (Z ′

ψ) in Section 2.2.1 and 2.2.2, page 10 and 11.

The scale factors calculated at mZ′ = 223.30 GeV are larger compered to the scale

factors calculated atmZ′ = 3000GeV in Table 5.5a and 5.5b respectively. This is expected

since mZ′ = 223.30 GeV is equal to the invariant mass of the �nal state e+e− pair,

mee = 223.30 GeV where there are many events. While mZ′ = 3000 GeV is far from the

invariant mass of the �nal state e+e− pair where there are few events. We can generally

say that event with invariant mass close to the Z ′ mass are up-weighted, while events with

invariant mass far from the Z ′ mass are down-weighted form the discussion in Section

5.2.5.

Model ΓZ′ [GeV] ΓZ′/mZ′ [%] SFBSM

Z ′
SSM 6.20 2.78 162.14

Z ′
χ 2.60 1.16 83.59

Z ′
ψ 1.07 0.48 227.92

(a) mZ′ = 223.3 GeV

Model ΓZ′ [GeV] ΓZ′/mZ′ [%] SFBSM

Z ′
SSM 95.22 3.17 3.93 ·10−6

Z ′
χ 37.06 1.24 3.68·10−7

Z ′
ψ 16.88 0.56 2.04·10−7

(b) mZ′ = 3000 GeV

Table 5.5: The scale factors SFBSM , Z ′ width and the ratio ΓZ′/mZ′ for di�erent Z ′

models at mZ′ = 223.3 GeV (a) and mZ′ = 3000 GeV (b)
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We have now extended the LPXSignalReweightingTool to use the event record for

PowhegPythia8 to calculate the scale factor that is applied to the kinematical variables

to reweight a Drell-Yan distribution to a Z ′ distribution. Figure 5.17 shows an example of

signal reweighing of the whole invariant mass distribution where Figure 5.17a shows the

PowhegPythia8 Drell-Yan distribution that is used to calculate the scale factor and Figure

5.17b shows the signal reweighted Z ′ distribution on top of the Drell-Yan distribution.

(a) The PowhegPythia8 Drell-Yan in-

variant mass distribution that is used

to calculate the scale factor.

(b) The PowhegPythia8 Drell-Yan in-

variant mass distribution (blue) with

the signal reweighted Z ′ distribution
(green) on top.

Figure 5.17: The PowhegPythia8 Drell-Yan invariant mass distribution (blue) (a) used for
signal reweghting and the signal reweighted Z ′ (green) on top of the Drell-Yan distribution
(blue) (b).

In the next section we will try to extend the signal reweighting method that we have

presented here to signal reweight a Sherpa Z + jets distribution, and explain why it is

harder to do it there.
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Chapter 6

Z ′ signal reweighting with Sherpa - an

attempt

In this chapter we will present an attempt to extend the LPXSignalReweightingTool to

apply signal reweighting to a Sherpa Z + jets distribution rather than the Pythia8 or

PowhegPythia8 Drell-Yan distribution described in Section 5.1 and 5.3 respectively. The

motivation for doing signal-reweighting on Sherpa is because it can simulate multi-jet

events and therefore model LHC events more accurately. The hard process is also calcu-

lated in NLO in QCD as for PowhegPythia8. The color �ow information from the HepMC

event record will be important for the attempt to extend the LPXSignalReweightingTool.

In the �rst section we will study the signal process in Sherpa and explain why the method

we used to reweight PowhegPythia8 is not suitable to apply signal reweighting to a Sherpa

Z + jets distribution. The issue is �nding the Z production vertex, as is explained in Sec-

tion 6.2. Signi�cant e�ort was expended to develop a method for unambiguously locating

the Z production vertex in Sherpa events. The method developed for this thesis uses

the color �ow information from the event generators together with methods from graph

theory to �nd the Z production vertex. In Section 6.3 we will describe the challenges we

met when trying to use this method on the color �ows from Sherpa. Lets us �rst look at

the signal process in Sherpa.

59
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6.1 Signal process

We need to use another method to �nd the Z production vertex in the signal process in

Sherpa compared to what we did for PowhegPythia8 and Pythia8. We see this in Figure

6.1 which shows an example of a signal process in the Sherpa Z + jets sample with two

incoming partons, a down quark (PDG ID 1) and a gluon (PDG ID 21), and �ve outgoing

particles, one down quark, two gluons and an e−e+ pair (PDG ID 11 and -11). The Z

boson is not shown in the event record in Sherpa, but the e+e− decayproducts of the Z

boson (Figure 6.1).

Figure 6.1: The event vertex showing the signal process dg → dgge−e+ in the event
record in Sherpa.

The signal process in Sherpa has two extra outgoing partons, making it a Z + 3jets,

compared to the signal process in PowhegPythia8, which is at most Z + 1jet. As a

consequence of the two extra partons we can represent Figure 6.1 in 28 di�erent Feynman

diagrams as shown in Figure 6.2 using CompHEP [50]. The method we used to �nd the

Z production vertex from the annihilation of a pair quark-antiquark in PowhegPythia8,

see Section 5.3.2, will not work here because of the large number Feynman diagrams and

therefore the many di�erent Z production vertices. In other words we can not �nd the

Z production vertex unambiguously with the method we used with PowhegPythia8. The

signal process in Figure 6.1 is also only one of many di�erent signal processes, initiated

by other pairs of partons. We will therefore need a more general way to reconstruct the

Feynman diagram from the event vertex than with PowhegPythia8. We will make use

of a method based on the color �ow information from the event record, �rst descried in

Section 3.3.2, to �nd a general method to reconstruct the signal process.
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Figure 6.2: The 28 di�erent LO Feynman diagrams of the signal process dg → dggZ
generated by CompHEP [50].

6.2 Finding the Z production vertex

In Section 3.3.2 we described how the event generators store the information about the

colors for the di�erent partons as color �ows as illustrated in Figure 3.4. We will now

describe how we can use this color �ow information to reconstruct the Feynman diagram

for an event vertex and thus �nd the Z boson production vertex. This method uses

the color �ow from QCD to obtain the reconstructed Feynman diagram. We will show

in Subsections 6.2.2 and 6.2.3 that both Feynman diagrams and color �ows are two

di�erent types of graphs that can be related, which is central to the method. To do

this it is necessary to introduce some concepts from graph theory that will be used in

Section 6.2.1. In Section 6.2.5 we will study two examples where the color �ows are used

to reconstruct Feynman diagrams, where the highlighted Feynman diagram in Figure 6.2

will be the �nal example.

6.2.1 Introduction to Graph theory

We will in this section introduce the graph theory needed to understand how Feynman

diagrams and color �ows are connected to each other and are based on the references

[51, 52]. Graphs are used in many di�erent problems to represent and describe how

di�erent entities relate to one another, and can be visualized as a set of dots and lines
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between the dots. Graphs are used to model relationships in everything from the atoms

in molecules to bus stops in a city. In the last few years techniques have been developed

to allow neural networks to learn from and process data that is represented as graphs, in

so-called graph neural networks (GNNs). In particle physics graphs are used to visualize

particle interactions in the form of Feynman graphs and these are the graphs that we

will study in this chapter. We will split up the description of graphs into undirected

and directed graphs, concepts that will be explained in Subsections 6.2.1.1 and 6.2.1.4

respectively. The examples that we use in these sections will be relevant for the Feynman

diagrams and color �ows respectively.

6.2.1.1 Undirected graphs

An undirected graph G is de�ned as a pair G = (V,E) with a set of nodes V and a set

of edges E. The edges e ∈ E is a pair e = (n1, n2) of nodes n1, n2 ∈ V where the order

of the nodes in the edges does not matter, i.e e = (n1, n2) = (n2, n1). A graph can be

represented as a picture with dots and lines where the dots represent the nodes and the

lines that connects the dots are the edges as shown in Figure1 6.3. Figure 6.3 shows the

star graph S4
2 with the nodes V = {n1, n2, n3, n4} and edges E = {e1 = (n1, n2), e2 =

(n1, n3), e3 = (n1, n4)}. We will use the star graph in Figure 6.3 to introduce some

terminology to describe how the nodes in a graph are connected to each other that we

need for later use.

The S4 graph is called a tree since it has no loops in it. If two nodes share an edge we

say that those nodes are adjacent to each other. In Figure 6.3 the node n1 is adjacent to

n2, n3 and n4. The set of nodes that are adjacent to a node n is called the neighborhood

of n and denoted N(n).

1All the diagrams in this chapter is made using the TikZ package in LATEX
2A star graph S4 has a single common connecting node, and the number indicates the total number

of nodes.
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n2

n3

n1
n4

e1

e2

e3

Figure 6.3: The star graph S4 with 4 nodes and 3 edges.

The neighborhood of n1 is therefore N(n1) = {n2, n3, n4} and for the other nodes

N(n2) = {n1}, N(n3) = {n1} and N(n4) = {n1}. The number of nodes that are adjacent
to a node n is called the degree of n and denoted d(n). The degree of a node n is therefore

equal to the size of the neighborhood of n, i.e d(n) = |N(n)|. In Figure 6.3 the degree of

the respective nodes are d(n1) = 3, d(n2) = 1, d(n3) = 1 and d(n4) = 1. We have now

introduced the necessary terminology that enables us to describe how the nodes in an

undirected graph are connected. Next we will describe some methods that can be used

to study the connections in a graph.

6.2.1.1.1 Line graphs To represent the adjacencies between the edges of an undi-

rected graph G, we can construct a line graph L(G). This L(G) is built from G by

replacing each edge in G by a node, such that the nodes of L(G) are the edges of G. In

addition, if two edges in G have a common node these edges become adjacent to each

other in the line graph L(G) (where these edges are nodes). It is easiest to see this

with the example in Figure 6.4 which shows the star graph S4 in Figure 6.4a and the

corresponding line graph L(S4) in Figure 6.4b.

n2

n3

n1
n4

e1

e2

e3

(a) The star graph S4

e3

e1

e2

(b) The line graph L(S4) of S4

Line graph

Figure 6.4: The line graph L(S4) (b) of the star graph S4 (a)
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In Figure 6.4a the edges e1 = (n1, n2) and e2 = (n1, n3) have the node n1 in common.

Similarly the edges e1 = (n1, n2) and e3 = (n1, n4) have the node n1 in common, and the

edges e2 = (n1, n3) and e3 = (n1, n4) have the node n1 in common. The edges e1, e2 and

e3 are therefore nodes in the line graph in Figure 6.4b that all are adjacent to each other.

The line graph L(S4) in Figure 6.4b is called the triangle graph C3 and is not a tree since

it has a loop. The next operation we will study describes how tree-like a loop graph is

and is called tree decomposition. This operation will enable us to �nd a method to go

back from the line graph L(S4) to a star graph S4 when we know that L(S4) = C3.

6.2.1.2 Tree decomposition of a triangle graph

The tree decomposition T (G) of a graph G is a tree T with a set of bags B as nodes.

A bag is a set of nodes in G that becomes a single node in the tree T . Every node in

G needs to be contained in at least one bag. If two bags contain the same node they

are adjacent to each other in the tree. The bags of a graph can be chosen in many ways

and can therefore give many di�erent tree decompositions of a graph. However, for the

triangle C3 in Figure 6.5 there exist only one tree decomposition which is the one where

all the nodes {n1, n2, n3} are in one bag. Figure 6.5b shows the tree decomposition with

this bag that is the only node.

e3

e1

e2

(a) Triangle graph C3

{e1, e2, e3}

(b) Tree decomposition

e1

e2

e3

(c) Extracted tree, star graph S4

Tree decomp. Extract

Line graph

Figure 6.5: The cycle that shows how to get from the triangle graph C3 (a) to its tree
decomposition (b) to the extracted graph S4 (c) and back to the graph in (a) via the line
graph

We can go back to the star graph S4 in Figure 6.5c by choosing the nodes in the bag
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in the tree decomposition to be the edges in the S4 graph. We will call this process the

extracting of the nodes in a bag. The line graph of S4 is again C3 in Figure 6.5a and we

have now shown how to go back to the star graph S4 from its line graph C3 = L(S4). It

can be summarized as the extracted tree decomposition of the triangle graph C3. In the

next subsection we will extend the tree decomposition to a graph with multiple triangles.

6.2.1.3 Tree decomposition of a graph with multiple triangles

We will �rst see how we can join multiple triangles to one graph with the union operator.

The union of two graphs G and G′ with edges and nodes E,V and E ′,V ′, respectively, is

de�ned as the union of their nodes and edges as G ∪G′ = (V ∪ V ′, E ∪ E ′). Figure 6.6a

and 6.6b shows the two triangles C3 and C
′
3 with the nodes {n1, n2, n3} and {n3, n4, n5}

respectively. The union C3 ∪ C ′
3 is shown in Figure 6.6c where the node n3 joins the

two triangles together since it is common to both triangles. The tree decomposition of

n3

n1 n2

(a) C3

n3

n5 n4

(b) C ′
3

n3

n1

n5

n2

n4

(c) C3 ∪ C ′
3

Union

Figure 6.6: The union C3 ∪ C ′
3 (c) for the two triangles C3 (a) and C

′
3 (b).

C3 ∪ C ′
3 in Figure 6.7a is shown in Figure 6.7b where we again have chosen the bags to

be the two triangles with the nodes {n1, n2, n3} and {n3, n4, n5} respectively. The two

bags are adjacent to each other since they have the node n3 in common and these two

connected bags makes up the tree structure of the tree decomposition. Figure 6.7c shows

the extracted graph of the tree decomposition where the nodes in the bags becomes edges.

The line graph of the extracted tree is again the graph in Figure 6.7c and we have now

completed the cycle as we did in Figure 6.5. This cycle in Figure 6.7 can be extended

to a graph with more than two triangles and will be used later in this chapter. This
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n3

n1

n5

n2

n4

(a) C3 ∪ C ′
3

{n1, n2, n3}

{n3, n4, n5}

(b) T (C3 ∪ C ′
3)

n1 n2

n3

n5 n4

(c) Extracted tree

Tree decomp. Extract

Line graph

Figure 6.7: The cycle that shows how to get from the graph with two triangles (a) to its
tree decomposition (b) to the extracted tree (c) and back to the graph in (a) via the line
graph

concludes the introduction to undirected graphs. In the next section we will introduce

directed graphs which will be used for the color �ows.

6.2.1.4 Directed graphs

A directed graph G is de�ned as a pair G = (V,E) with a set of nodes V and a set of

directed edges E. The edge e⃗ ∈ E is a pair e⃗ = (n1, n2) of nodes n1, n2 ∈ V where the

order of the nodes in the edges does matter, i.e e⃗1 = (n1, n2) ̸= (n2, n1). The order of the

nodes in the edge determines the direction of the edge and is denoted with an arrow as

shown in Figure 6.8. Figure 6.8 shows the directed path P⃗3 with the nodes V = {n1, n2, n3}
and edges E = {e⃗1 = (n1, n2), e⃗2 = (n2, n3)}. We will use the directed path in Figure

6.8 to introduce some terminology to describe how the nodes in a directed graph are

connected to each other, that we will needed later. The directed path P⃗3 can be written

as an ordered list with arrows pointing between the nodes, such as P⃗3 = n1 → n2 → n3.

We say that a node n1 is adjacent to another node n2 if there is an edge between them

and the arrow of the edge is directed from n1 to n2. In Figure 6.8 the node n1 is adjacent

to the node n2, which is itself adjacent to the node n3.

The set of nodes that a node n is adjacent to is called the out-neighborhood of n
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n2

n1

n3

e⃗1

e⃗2

Figure 6.8: The directed path P⃗3.

and denoted N+(n), while the set of nodes that are adjacent to a node n is called the

in-neighborhood of n and denoted N−(n). The out- and in-neighborhood of n2 in Figure

6.8 are N+(n2) = {n3} and N−(n2) = {n1} respectively, while the node n1 only has an

out-neighborhood N+(n1) = {n2} and the node n3 only has a in-neighborhood N
−(n3) =

{n2}. This is the only terminology that we need for a directed graph. In the next section

we will look at the union of directed graphs and how we can transform a directed graph

into an undirected graph.

6.2.1.4.1 Union of directed paths The union of two directed graphs G and G′

with edges and nodes E,V and E ′,V ′ respectively is de�ned as the union of their nodes

and edges as G ∪ G′ = (V ∪ V ′, E ∪ E ′). Figure 6.9a and 6.9b show the two paths

P⃗3 = n1 → n2 → n3 and P⃗2 = n3 → n1 with the nodes {n1, n2, n3} and {n1, n3}
respectively. The union P⃗3 ∪ P⃗2 is shown in Figure 6.9c where the nodes n1 and n3 join

the two paths together since they are common to both paths.

n2

n1

n3

(a) P⃗3

n1

n3

(b) P⃗2

n2

n1

n3

(c) P⃗3 ∪ P⃗2

Union

Figure 6.9: The union P⃗3 ∪ P⃗2 (c) for the two directed paths P⃗3 (a) and P⃗2 (b).

The P⃗3 ∪ P⃗2 graph is a directed triangle C⃗3 graph, and the name for this process of

getting a triangular graph from the union of paths is triangulation. We can make the
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directed triangle an undirected triangle by removing the arrows on the edges as shown in

Figure 6.9.

n2

n1

n3

(a) Directed triangle graph C⃗3

n2

n1

n3

(b) Undirected triangle graph C3

Undirection

Figure 6.10: The undirected triangle C3 (b) of the directed triangle C⃗3 (a)

We have now come back to the triangle graph that we �rst studied in Section 6.2.1.1.1

and in Figure 6.10 and this is the last piece of graph theory that we need to study the

Feynman diagrams and color �ows in the next sections.

6.2.2 Feynman diagrams as graphs

We will �rst see how a Feynman vertex is a graph. The Feynman vertex in Figure 6.11a

has three lines that represent the quark q, anti-quark q and gluon g that have a common

node where they interact. The particle lines are formatted di�erently depending whether

it is a fermion or a boson as described in Section 2.1.2. The formatting is not necessary

for the vertex since the label on the particle line tells which particle it is, but it makes

it easier to read the Feynman diagrams. The particle lines in Figure 6.11a only have a

node where they interact. We can however put a node on the other ends of the lines

where they do not interact with other particles. We can therefore get the graph from the

Feynman vertex if we remove the formatting on the lines and add nodes on the end of

the particle lines as shown in Figure 6.11b. The particle line is an edge in the graph, and

the particles interact if they have a node in common.

The graph in Figure 6.11b is the star graph S4 that we studied in detail in Section

6.2.1.1. The line graph of S4 is the triangle graph in Figure 6.11c with the particles q,q

and g as nodes. The triangle graph will be important for the next section where we will

see how the color �ow is a graph, and how the color �ows in di�erent vertices can be

transformed to Feynman diagrams.
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q

q

g

(a) Feynman vertex qq → g

q

q

g

(b) Star graph S4

q

q

g

(c) The line graph C3 of S4.

Graph Line graph

Figure 6.11: The star graph S4 (b) of the Feynman vertex (a), and the triangle C3 (c) of
the line graph S4

6.2.3 Color �ows as graphs

We showed in the previous section how the Feynman vertex in Figure 6.11 can be trans-

formed to a triangle graph. In this section we will show that color �ows are directed paths

and how the color �ows of a Feynman vertex can be transformed to a triangle graph.

We will only consider the QCD vertices which include three particles from Section 2.1.4

when working with the color �ow. Thus we will not consider the four gluon interaction

gg → gg from Figure 2.4c since it adds some complications, although this could be a

topic for future work. In Section 2.1.4 the color �ow for di�erent vertices was described

and are shown for the three particles in Figure 6.12 with the color �ows added, where

Figure 6.12a shows the g1g2 → g3 vertex, Figure 6.12b shows the qq → g vertex and

Figure 6.12c shows the qq → Z vertex with the respective color �ows represented with

the colored arrows on the side of the particle lines. We listed the colors of the quarks and

gluons in Eq. (2.4) and (2.3) corresponding to Figure 6.12a and 6.12b respectively.

g3

g1

g2

(a) g1g2 → g3

q

q

g

(b) qq → g

q

q

Z

(c) qq → Z

Figure 6.12: Color Feynman vertices

In each of the color vertices in Figure 6.12 the individual color �ows are directed paths

which include the particles with the same colors and follows the direction of the color

�ows. The di�erent color �ows for the vertices in Figure 6.12 can therefore be written as
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the paths

Figure 6.12a : red : g1 → g3, green : g3 → g2, blue : g2 → g1 (6.1)

Figure 6.12b : red : q → g, green : g → q (6.2)

Figure 6.12c : red : q → q. (6.3)

The color �ows represented as ordered lists in Eq. (6.1) - (6.3) will be the starting point

for the next three sections where each of the sets of color �ows will be represented as

graphs which we will also call color �ows.

6.2.3.1 Color �ows in a g1g2 → g3 vertex

We will �rst study the color �ows of the g1g2 → g3 vertex from Figure 6.12a with the

three color �ows red, green and blue given in Eq. (6.1). The color �ows in Eq. (6.1) are

themselves directed paths and are represented as graphs in Figure 6.13a. The nodes in

the graphs are particles from the color �ow, and the direction of the edges follows the

arrows in Eq. (6.1). We will call the directed paths in Figure 6.13 color �ow and denote

them Cred, Cgreen and Cblue.

g1

g3

g3

g2

g2

g1

(a) Cred, Cgreen and Cblue

g3

g1

g2

(b) C = Cred ∪ Cgreen ∪ Cblue

g1

g2

g3

(c) Triangle C3

Union Undirected

Figure 6.13: The individual color �ows (a), the union of them (b) and the undirected
graph of the union (c).

The color �ow graphs Cred, Cgreen and Cblue share some of the particles in pairs. As an

example, g1 is contained in both Cred and Cblue. Therefore, if we connect Cred, Cgreen and

Cblue together it gives us a new color �ow graph C in Figure 6.13b from the union

C = Cred ∪ Cgreen ∪ Cblue. (6.4)
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The color �ow graph C is a directed triangle where the gluons g1, g2 and g3 connect the

color �ow graphs from Figure 6.13a. The edges in C are directed in the same direction.

Removing the direction and the color on the edges in the color �ow graph in Figure 6.13b

results in the undirected triangle C3 in Figure 6.13c. In Section 6.2.2 we showed that a

Feynman vertex could be represented as an undirected triangle C3 like the one in Figure

6.13c. We can therefore use the tree decomposition of C3 (Figure 6.14a) shown in Figure

6.14b and extract it to the star graph in Figure 6.14c.

g1

g2

g3

(a) Triangle C3

{g1, g2, g3}

(b) Tree decomposition

g1

g2

g3

(c) Extracted tree

Tree decomp. Extract

Figure 6.14: Tree decomposition (b) of the triangle C3 (a) and the extracted graph of the
tree decomposition (c).

The �nal step to obtain the Feynman vertex from the extracted tree is to add back

the formatting of a Feynman vertex described in Section 6.2.2 and is shown in Figure

6.15.

g1

g2

g3

(a) Extracted tree

g3

g1

g2

(b) Feynman vertex g1g2 → g3

Formatting

Figure 6.15: The formatting from the extracted tree (a) to the Feynman vertex (b)

We have now shown how the color �ows in Figure 6.13a can be combined together

to the Feynman vertex in Figure 6.12a by using the methods we described in Section

6.2.1. We will do the same for the other two Feynman vertices in Figure 6.12b and 6.12c

respectively, but will skip the details that are the same as in the 3-gluon vertex.
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6.2.3.2 Color �ows in a qq → g vertex

The next vertex we will study is qq → g in Figure 6.12b with the color �ows red and

green in Eq. (6.2). The color �ow graphs Cred and Cgreen of the color �ows are shown in

Figure 6.16a.

q

g

g

q

(a) Cred and Cgreen

g

q

q

(b) Cred ∪ Cgreen

g

q

q

(c) C ∪ Gqq

q

q

g

(d) C3

Figure 6.16: The individual color �ows (a), the union of them (b), the union with gluon
�ow (c) and the undirected graph of the union (d).

The gluon g is a common particle in both Cred and Cblue. We can therefore connect

them to get a new color �ow graph C shown in Figure 6.13b from the union

C = Cred ∪ Cgreen. (6.5)

The color �ow graph C has no triangular shape. However, we can make C triangular if

we add a path from q to q such that all edges point in the same direction as shown in

Figure 6.16c. We call this path a gluon �ow,

Gqq = q → q, (6.6)

since both quarks have the gluon g as a neighbor. From the color �ow graph C in Figure

6.16c we see that g is the in-neighbor of q and the out-neighbor of q. If we use the

notation from Section 6.2.1.4, we can be write it more compactly as

N−
C (q) = g = N+

C (q). (6.7)

From Figure 6.16b we also see that q and q are in di�erent color �ows. We can now

generalize the gluon �ow graph Gqiqj between two quarks qi and qj in a color �ow graph
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C as

Gqiqj =

qi → qj , if N−
C (qi) = N+

C (qj) and qi, qj /∈ same color �ow

∅ , otherwise,

(6.8)

where ∅ is the empty set if the conditions are not satis�ed. We can now remove the colors

and directions of the edges of C ∪ Gqq in Figure 6.16c to get the undirected triangle in

Figure 6.16d. We have now arrived to the same stage as in Figure 6.13d in the g1g2 → g3

vertex. The triangle in Figure 6.16d can be transformed to the vertex qq → g in Figure

6.12b when we follow the same steps as in Section 6.2.3.1 in Figure 6.14 and 6.15. We

have now showed how to go from the color �ow to the Feynman diagram in the Figure

6.12b where we had to introduce the gluon �ow in this section to triangulate the color

�ow graph.

6.2.3.2.1 Color �ow in a qq → Z vertex The �nal vertex qq → Z in Figure 6.12c

has only one color �ow between the quarks in Eq. (6.3). The color �ow Cred is shown in

Figure 6.17a. The Z boson is a colorless particle and is therefore not included in any color

�ow. We can transform the color �ow Cred into a triangle if we join the path q → Z → q

and the color �ow Cred that is shown in Figure 6.17b.

q

q

(a) Cred

Z

q

q

(b) Cred ∪ Bqq

Z

q

q

(c) C3

Undirected

Figure 6.17: The individual color �ow (a), the union with boson �ow (b) and the undi-
rected graph of the union (c).

We call this path a boson �ow,

Bqq = q → Z → q, (6.9)

since the Z boson is a neighbor to both quarks. We notice that the in-neighborhood of

q is q which we formally write

N−
C (q) = q, (6.10)
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and that both quarks are in the same color �ow. We can now generalize the boson �ow

graph Bqiqj between two quarks/antiquarks qi and qj in a color �ow graph C as

Bqiqj =

qi → Z → qj , if N−
C (qi) = qj and qi, qj ∈ same color �ow

∅ , otherwise

(6.11)

where ∅ is the empty set if the conditions are not satis�ed. We can now remove the colors

and directions of the edges of Cred ∪ Bqq in Figure 6.17b to get the undirected triangle in

Figure 6.17c. We have now arrived to the same stage as in Figure 6.13d in the g1g2 → g3

vertex. The triangle in Figure 6.17d can be transformed to the vertex qq → Z in Figure

6.12c when we follow the same steps as in Section 6.2.3.1 in Figure 6.14 and 6.15. We

have now shown how to go from the color �ow to the Feynman diagram in the Figure

6.12c where we had to introduce the boson �ow in this section to triangulate the color

�ow graph.

6.2.4 Color �ow in Feynman diagrams

We will now summarize what we learned from color �ow graphs of the vertices and show

how it generalizes to Feynman diagrams. We will use all the results obtained so far in

the next section, applying them to two examples. In Section 6.2.3.1 we combined the

color �ows for the di�erent vertices. We can combine the individual color �ows Ci in a

Feynman diagram to the total color �ow

C =
⋃

i∈colors

Ci, (6.12)

where all colors i are distinct since we are working in the leading-color approximation

explained in Section 3.3.2. We can further write the individual color �ows as

Ci = pi1 → pi2 ...→ pin , (6.13)
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where all the particles pi1 , pi2 , ..., pin have the same color. In Section 6.2.3.2 we introduced

the gluon �ow graph Gqiqj in Eq. (6.8)

Gqiqj =

qi → qj , if N−
C (qi) = N+

C (qj) and qi, qj /∈ same color �ow

∅ , otherwise.

If we have a Feynman diagram with multiple gluon �ows we can combine them to the

total gluon �ow

G =
⋃

qi,qj∈Q

Gqiqj , (6.14)

where Q is the set of quarks in the Feynman diagram. Finally, we introduced the boson

�ow graph in the qq → Z, Bqiqj given in Eq. (6.11)

Bqiqj =

qi → Z → qj , if N−
C (qi) = qj and qi, qj ∈ same color �ow

∅ , otherwise.

If we have a Feynman diagram with multiple boson �ow graphs we can combine them to

the total boson �ow

B =
⋃

qi,qj∈Q

Bqiqj , (6.15)

where Q is the set of quarks in the Feynman diagram. We have now summarized the

three di�erent �ows that make up what we will call the particle �ow, as a union of color,

gluon and boson �ows

P = C ∪ G ∪ B. (6.16)

The particle �ow is a directed graph made up of triangles from the vertices in the Feynman

diagram. The last step we need to do is to transform the particle �ow graph to an

undirected graph, and make a tree decomposition of it in the same way as we did for

the vertices. We choose the bags of the tree decomposition to be the triangles in the

undirected particle �ow graph. The tree graph is then extracted as we did previously and

formatted such that we get back to the Feynman diagram that the color �ows corresponds.

We have now presented the full framework for how we can use the color �ows from an

event record to reconstruct the Feynman diagrams. We can now apply these tools to

some examples.
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6.2.5 Examples

We will use two di�erent Feynman diagrams as examples to show how their color �ows can

be used to reconstruct the Feynman diagram. The �rst Feynman diagram is a t-channel

diagram. In the second example we will look at a more complex Feynman diagram with

a Z boson that is taken from Figure 6.2 showing the possible Feynman diagrams of the

Sherpa Z + jets signal process in Figure 6.1.

6.2.5.1 t-channel

We will start with a simple example of the t-channel diagram in Figure 6.18 with the

color �ows red and green.

q1

g

q2

q3

q4

Figure 6.18: q1q2 → q3q4

Figure 6.19 shows the individual color �ows Cred and Cgreen. We can combine the color

�ows Cred and Cgreen to the total color �ow C = Cred ∪ Cgreen and this is shown in Figure

6.19b.

q1

g

q2

q3

g

q4

(a) Cred and Cgreen

g

q1

q2

q3

q4

(b) C = Cred ∪ Cgreen

g

q1

q2

q3

q4

Gq3q1

Gq2q4

(c) C ∪ G

g

q1

q2

q3

q4

(d) Undirected

Cred ∪ Cgreen C ∪ G Undirected

Figure 6.19: The individual color �ows (a), the union of them (b), the union with gluon
�ow (c) and the undirected graph of the union (d).
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In Figure 6.19b we �nd the two gluon �ows

Gq3q1 = q3 → q1, since N
−
C (q3) = N+

C (q1) and q1 ∈ Cred, q3 ∈ Cgreen, (6.17)

Gq2q4 = q2 → q4, since N
−
C (q2) = N+

C (q4) and q2 ∈ Cred, q4 ∈ Cgreen, (6.18)

that we can join together to the total gluon �ow G = Gq3q1 ∪ Gq2q4 .

There are no boson �ows in Figure 6.19b so the particle �ow becomes P = C ∪ G and

is shown in Figure 6.19c where the gluon �ows Gq3q1 and Gq2q4 are drawn. The particle

�ow in Figure 6.19c is a directed graph with two triangles. Figure 6.19d shows that it

is an undirected graph. We can now do the tree decomposition of the graph in Figure

6.20a (like we did in Figure 6.7) and is shown in 6.20b. The extracted tree of the tree

decomposition is shown in Figure 6.20c.

g

q1

q2

q3

q4

(a) Undirected

{q1, q3, g}

{q2, q4, g}

(b) Tree decomposition

q1 q3

g

q2 q4

(c) Extracted tree

Tree decomp. Extract

Figure 6.20: The tree decomposition (b) of the undirected (a), and the extracted graph
of the tree decomposition (c).

The �nal step to reconstruct the Feynman diagram from the color �ows in 6.19a is to

apply the formatting described in Section 6.2.2 of the graph in Figure 6.21a. This gives

the Feynman diagram in Figure 6.21b.

The Feynman diagram in Figure 6.21 is exactly the diagram that has the color �ows

that we started out with in Figure 6.18. We have therefore reconstructed the Feynman

diagram from the color �ows in Figure 6.19a.
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q1 q3

g

q2 q4

(a) Extracted tree

q1

g

q2

q3

q4

(b) Feynman diagram

Formatting

Figure 6.21: The formatted Feynman diagram (b) from the extracted tree (a).

6.2.5.2 Sherpa Z + jets signal process

We started this chapter with the aim of �nding a method to reconstruct the Feynman

diagram from its color �ows, and thereby �nding the Z production vertex in that Feynman

diagram. We are now ready to �nd the Z boson production vertex in the Feynman

diagram dg → dggZ in Figure 6.2 that was one of the signal process for a Sherpa Z +

jets sample. In Figure 6.22 this Feynman diagram is drawn with its color �ows.

q1

q2

Z

q3

q4
g1

g2

g3

g4

Figure 6.22: q1g1 → q4g3g4Z

Figure 6.23 shows the individual color �ows Cred, Cgreen, Cblue and Cbrown. We use the

leading color approximation and the color brown is therefore one of these colors since

every color becomes unique. We can combine these color �ows to the total color �ow

C = Cred ∪ Cgreen ∪ Cblue ∪ Cbrown and is shown in Figure 6.23b.
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(a) Cred, Cgreen, Cblue, Cbrown
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g1 q4

(b) C

q1
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g4

q2

q3

g1 q4

Gq2q1

Gq4q3

Bq3q2

Z

(c) C ∪ G ∪ B

q1
g2

g3

g4

q2

q3

g1 q4

Z

(d) Unidrected

Figure 6.23: The individual color �ows (a), the union of them (b), the union with gluon
�ow and boson �ow (c) and the undirected graph of the union (d).

In Figure 6.23b we �nd the two gluon �ows

Gq2q1 = q2 → q1, since N
−
C (q2) = g2 = N+

C (q1) and q2 ∈ Cblue, q1 ∈ Cred, (6.19)

Gq4q3 = q4 → q3, since N
−
C (q4) = g3 = N+

C (q3) and q4 ∈ Cbrown, q3 ∈ Cblue, (6.20)

that we can join together to the total gluon �ow G = Gq3q1 ∪ Gq2q4 . We also �nd one

unique boson �ow

Bq3q2 = q3 → Z → q2, since N
−
C (q3) = q2 and q2, q3 ∈ Cblue, (6.21)

and the total boson �ow is therefore B = Bq2q3 . The particle �ow becomes P = C ∪ G
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where the gluon �ows Gq2q3 , Gq4q3 and boson �ow Bq3q2 are drawn. The particle �ow in

Figure 6.19c is a directed graph with four triangles. Figure 6.23d shows its undirected

graph. We can now do the tree decomposition of the graph in Figure 6.24a and this is

shown in 6.24b. The extracted tree of the tree decomposition is shown in Figure 6.24c

which also is formatted to a Feynman diagram.

The Feynman diagram in Figure 6.24b is exactly the diagram that has the color �ows

that we started out with in Figure 6.18. We have therefore reconstructed the Feynman

diagram from the color �ows in Figure 6.19a, and the Z production vertex is q2q3 → Z,

and is the only place it can be, which was what we wanted to achieve.

q1
g2

g3

g4

q2

q3

g1 q4

Z

(a) Undirected

{q1, q2, g2}

{q2, q3, Z}

{q1, q3, g1}

{g2, g3, g4}

(b) Tree decomposition

q1

q2

Z

q3

q4
g1

g2

g3

g4

(c) Extracted graph with formatting

Figure 6.24: The tree decomposition (b) of the undirected (a), and the extracted graph
of the tree decomposition with formatting (c).

6.2.6 Summary

To summarize we have demonstrated a method that uses the QCD color �ows to unam-

biguously reconstruct Feynman diagrams by using di�erent methods from graph theory.

The Z production vertex used in the signal reweighting method in Section 5.1.2 can

therefore be found once we have the color �ows of the signal process.
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6.3 Color �ows in the Sherpa event record

When investigating the color �ows in the event record in Sherpa we discovered that the

intermediate particles between the incoming and outgoing particles in the signal process

event vertex were not included in the color �ow. Instead the color �ows in Sherpa

contain only the incoming and outgoing particles in the event vertex. Color �ows with

only the incoming and outgoing particles in the event vertex do not contain su�cient

information to reconstruct the Feynman diagram unambiguously. This means that there

is insu�cient information in the color �ows from the Sherpa event record to be able to

use the explicitly method described above to reconstruct the Feynman diagram, and thus

�nd the Z production vertex which is needed for the signal reweighting method.

The many possible Feynman diagrams that can represent a Sherpa Z + jets signal

process makes it therefore di�cult to �nd the Z production vertex.
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Chapter 7

Results

In this chapter we will present and discuss the results following the signal reweighting

of PowhegPythia8 Drell-Yan distributions to Z ′ distributions. In the �rst section we

will investigate the two ambiguities in the PowhegPythia8 signal reweighing method in

described in Section 5.3, namely the use of Zq or Zl in Eq. (5.13) and (5.14), and the

choice of t-channel diagram in Figure 5.13a and 5.13b. After that we will validate the

signal reweighting with di�erent kinematical distributions between the signal reweighted

PowhegPythia8 Z ′
χ and the only available simulated Pythia8 Z ′

χ sample described in

Section 4.3.1. The QCD k-factors from Section 4.3.4 will be applied to every distribution

such that we compare both the signal reweighted and simulated Z ′ distributions inNNLO

order. We will also look at di�erent Z ′ models that we will compared to each other to

see how to di�erentiate between various Z ′ models. In the �nal section Run 3 data will

be compared to background simulations with several signal reweighted Z ′ models on top.

7.1 Comparison between di�erent con�gurations in the

PowhegPythia8 signal reweighting

In Section 5.3.4 we discussed the two possible diagrams that can be used to calculate the

scale factor in the t-channel process qq → gZ. The two Feynman diagrams are shown

in Figure 5.13a and 5.13b, page 51. The Z production vertex for these two diagrams

are qqint → Z and qqint → Z respectively. In Figure 7.1a we compare the reweighted

Z ′ invariant mass distributions when we use the diagram in Figure 5.13a or 5.13b to

calculate the scale factor given in Eq. (5.2), page 42. We see good agreement when

83
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swapping the quark and antiquark in Figure 5.13a and 5.13b to calculate the scale factor.

We also discussed in Section 5.3.4 which Z boson we could use from the event record to

calculate the scale factor. Figure 7.1b shows the Z ′ invariant mass comparison when we

choose either the Zq boson from the Zqq vertex or the Zl boson that decay to the l+l−

pair in the event record. We see an overall good agreement between the Z ′ distribution

with the only di�erence being in the lower masses.
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Figure 7.1: Comparisons of reweighted PowhegPythia8 Z ′ distributions at 3 TeV where
di�erent diagrams (a) and Z bosons (b) has been used to calculate the scale factor

The only visible discrepancy in Figure 7.1 is at low invariant mass where there are some

�uctuations between these two histograms. We can conclude based on the comparisons

in Figure 7.1a and 7.1b that the choice of the diagram in the signal process qq → gZ, and

Z boson in the event record has little in�uence on the results of the signal reweighted Z ′

distributions. From here on we will calculate the scale factor from the diagram in Figure

5.13a for the events with the signal process qqint → gZ, and use the Z boson from the

decay to the lepton pair, and has initial-state radiation included.



7.2. VALIDATION IN THE ELECTRON CHANNEL 85

7.2 Validation in the electron channel

We validate the signal reweighted Z ′ distributions by comparing the the invariant mass,

transverse momentum and pseudorapidity distributions for the signal reweighted and the

simulated Z ′ samples. The samples we use for the validation is the Z ′ signal simulated

sample from Pythia8 in Section 4.3.1 and the PowhegPyhia8 Drell-Yan sample in Section

4.3.2 used for the Z ′ signal reweighting. We do the comparison with samples from the

mc16e period with 58.5 fb−1 with the Z ′
χ model since it is the only available Z ′ signal sim-

ulated Pythia8 sample. The k-factors described in Section 4.3.4 will also be applied. One

way we can test the comparison between two histograms is with a Kolmogorov�Smirnov

test [53]. The Kolmogorov-Smirnov test is used to determine how likely it is that two

histograms have been sampled from the same underlying probability distribution. The

Kolmogorov-Smirnov test returns a p-value being uniformly distributed under a true hy-

pothesis and takes therefore values between 0 and 1. Another method we can use to

compare two histograms is to �t a function to each of the histograms and compare the

�t parameters and results. We �t the invariant histogram using the double-sided Crystal

ball function [54].

7.2.1 Comparison of kinematical variables

We will �rst compare the signal reweighted Z ′ invariant mass distribution from the

PowhegPythia8 Drell-Yan sample to a fully simulated Pythia8 Z ′ sample in the elec-

tron channel. We will �rst see the comparison when no k-factors are applied and is

shown in Figure 7.2. The fully simulated Z ′
χ distribution is therefore in LO while the

signal reweighted Z ′
χ distribution is NLO in QCD. In Figure 7.3 the Kolmogorov-Smirnov

test gives a p-value of 0.9900, and the two histograms are therefore likely to be compat-

ible since the probability of getting a lower p-value from a pair of histograms sampled

from the same distribution is very high. We see however that the signal reweighted Z ′
χ

distribution is consistently above the fully simulated Z ′
χ. We will therefore apply the

k-factors from Section 4.3.4 such that both the fully simulated and the signal reweighted

Z ′ distributions have NNLO order in QCD. Figure 7.3 shows this comparison of the in-

variant mass distributions between the signal reweighted and fully simulated Z ′
χ where

both are in NNLO order in QCD. The ratio plot in Figure 7.3 shows some �uctuations
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between the two histograms, but there is no trend that one distribution is consistently

above the other.
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Figure 7.2: Comparison between simulated (blue) (LO) and signal reweighted (red)
(NLO) Z ′

χ invariant mass distributions in linear (a) and logarithmic (b) scale.
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Figure 7.3: Comparison between simulated (blue) (NNLO) and signal reweighted (red)
(NNLO)Z ′

χ invariant mass distributions in linear (a) and logarithmic (b) scale.
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In Figure 7.3 the Kolmogorov-Smirnov test gives a p-value of 0.9808, and the two

histograms are therefore likely to be compatible since the probability that they are not

compatible is tiny, 1−0.9809 = 0.0191. From now on we will apply the k-factors on other

kinematical variables since it was a better agreement and they are compared at the same

order. Figure 7.4a and 7.4b show the electron leading and subleading pT distributions.

The Kolmogorov-Smirnov test for these histograms gives the p-values 0.8841 and 0.9824,

respectively.
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(a) Comparison between simulated

(blue) and signal reweighted (red) Z ′
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leading electron pT distributions.
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Figure 7.4: Comparison of Z ′
χ leading (a) and electron subleading (b) pT distributions.

The �nal kinematical variable we will test is the pseudo rapidity η. Figure 7.5a and

7.5b shows the leading and subleading η distributions. The Kolmogorov-Smirnov test for

these histograms gives the p-values 0.9343 and 0.6703 respectively. In Figure 7.5b there

is a discrepancy at η = 0, that is the muons in the transverse plane.
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Figure 7.5: Comparison of Z ′
χ leading (a) and subleading (b) η distributions

7.2.2 Fits of invariant mass distribution

We will now use the double-sided Crystal Ball function to do a �t of both the simulated

and the reweighted Z ′
χ invariant mass distributions. Figure 7.6a and 7.6b shows the �t

of the simulated Z ′
χ distribution in logarithmic and linear scale, respectively, around a Z ′

mass of 3 TeV. A chi-squared test between the simulated Z ′
χ distribution and the �tted

function gives χ2/ndf = 1.42.

We can get the pull distribution of the �t if we calculate the di�erence between the

value of the simulated Z ′
χ and the �t in every bin. The normalized pull distribution is

called the residual distribution. Figure 7.7a and 7.7b show the pull and residual distri-

butions respectively. From the residual distribution in Figure 7.7a we see that there are

some discrepancies around the Z ′
χ peak between the �t and the simulated Z ′

χ distribution

that is also visible in the linear �t in Figure 7.6b. To get a better �t we could have used

di�erent combinations of e.g a Crystal Ball and a Gaussian function to take into account

the di�erent resolutions in di�erent parts of the ATLAS detector.
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Figure 7.6: Double-sided Crystal Ball �t of simulated Z ′
χ invariant mass distribution in

logarithmic (a) and linear (b) scale.
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Figure 7.7: Residual (a) and pull (b) distribution of simulated Z ′
χ invariant mass �t

compared to the histogram.

We use the Crystal Ball function again to �t the signal reweighted Z ′
χ invariant mass

distribution. Figure 7.8a and 7.8b shows the �t result in logarithmic and linear scale

respectively. The Chi-squared test of the �t gives χ2/ndf = 0.99. Figure 7.9a and 7.9b

shows the residual and pull distribution of the �t. We see again the discrepancy around

the Z ′
χ peak between the �t and the simulated Z ′

χ distribution in the residual distribution

that is also visible in the linear scale in Figure 7.8b.
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Figure 7.8: Double-sided Crystal Ball �t of the reweighted Z ′
χ invariant mass distribution

in logarithmic (a) and linear (b) scale.
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Figure 7.9: Residual (a) and pull (b) distribution of the reweighted Z ′
χ invariant mass �t.

The �nal comparison in the electron channel is between the �t of the simulated and

signal reweighted Z ′
χ distribution. Figure 7.10a and 7.10b show the comparison in loga-

rithmic and linear scale. We see that the �ts do not completely overlap and one reason

for this might be the �ts fail to describe in Z ′
χ peak as discussed for the simulated and

signal reweighted �ts.
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Figure 7.10: Comparison between �t of simulated and reweighted Z ′
χ invariant mass

distribution

7.3 Validation in the muon channel

We validate the signal reweighted Z ′ distributions by comparing the the invariant mass,

transverse momentum and pseudorapidity distributions for the signal reweighted and the

simulated Z ′ samples. The samples we use for the validation is the Z ′ signal simulated

sample from Pythia8 in Section 4.3.1 and the PowhegPyhia8 Drell-Yan sample in Section

4.3.2 used the Z ′ signal reweighting. We do the comparison with samples from the mc16e

period with 58.5 fb−1 with the Z ′
χ model since it is the only available Z ′ signal simulated

Pythia8 sample. The k-factors described in Section 4.3.4 will also be applied.

7.3.1 Comparison of kinematical variables

We will now compare the signal reweighted Z ′ from the PowhegPythia8 Drell-Yan sample

to a simulated Pythia8 Z ′ sample in the muon channel.

We will �rst see the comparison when no k-factors are applied and is shown in Figure

7.11. The fully simulated Z ′
χ distribution is therefore in LO while the signal reweighted

Z ′
χ distribution is NLO in QCD. In Figure 7.11 the Kolmogorov-Smirnov test gives a

p-value of 0.0401, and the two histograms are therefore not likely to be compatible since

the probability is tiny. We see that the signal reweighted Z ′
χ distribution is consistently
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above the fully simulated Z ′
χ. We will therefore apply the k-factors from Section 4.3.4

such that both the fully simulated and the signal reweighted Z ′ distributions have NNLO

order in QCD.
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Figure 7.11: Comparison between simulated (blue) (LO) and signal reweighted (red)
(NLO) Z ′

χ invariant mass distributions in linear (a) and logarithmic (b) scale.

Figure 7.12 shows this comparison of the invariant mass distributions between the

signal reweighted and fully simulated Z ′
χ where both are in NNLO order in QCD. The

ratio plot in Figure 7.12 shows some �uctuations between the two histograms, but there

is no trend that one distribution is consistently above the other. In Figure 7.12 the

Kolmogorov-Smirnov test gives a p-value of 0.2300, and the two histograms are therefore

be compatible since the probability is not too low.

From now on we will apply the k-factors on other kinematical variables since it was a

better agreement and they are compared at the same order Figure 7.13a and 7.13b shows

the leading and subleading pT distributions. The Kolmogorov-Smirnov test for these

histograms gives the values 0.9035 and 0.2320 respectively. There is some discrepancies

at high pT in both the muon leading and subleading pT distribution and is biggest for

the subleading pT distribution. KS also gives a lower p-value for the muon subleading

compared to the leading pT distribution.



7.3. VALIDATION IN THE MUON CHANNEL 93

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
3−10

2−10

1−10

1

E
ve

nt
s

 3 TeV
χ

simulated Pythia8 Z'

 3 TeV
χ

reweighted PowhegPythia8 Z'

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
 [GeV]µµm

0.6

0.8

1

1.2

1.4

si
m

/r
ew

(a) Comparison between simulated

(blue) and signal reweighted (red) Z ′
χ

invariant mass distributions (log)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.5

1

1.5

2

2.5

3

3.5

4

E
ve

nt
s

, 3 TeV
χ

simulated Pythia8 Z'

, 3 TeV
χ

reweighted PowhegPythia8 Z'

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
 [GeV]µµm

0.6

0.8

1

1.2

1.4

si
m

/r
ew

(b) Comparison between simulated

(blue) and signal reweighted (red) Z ′
χ

invariant mass distributions (lin)

Figure 7.12: Comparison between simulated (blue) (NNLO) and signal reweighted (red)
(NNLO) Z ′

χ invariant mass distributions in linear (a) and logarithmic (b) scale.
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Figure 7.13: Comparison of Z ′
χ leading (a) and subleading (b) pT distributions.

The �nal kinematics variable we will test is the pseudo rapidity η. Figure 7.14a and

7.14b show the muon leading and subleading η distributions. The Kolmogorov-Smirnov

test for these histograms gives the values 0.8346 and 0.9936 respectively, and shows good
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agreement overall.
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Figure 7.14: Comparison of Z ′
χ leading (a) and subleading (b) η distributions.

7.3.2 Fits of invariant mass distribution

We �t the histograms with a Crystal Ball function again. Figure 7.15a and 7.15b show

the �t in logarithmic and linear scale. The �t is not so good and gives a χ2/ndf = 7.3.

One factor for the large χ2/ndf comes from the relative small uncertainties that we can

explain from the large statistics in the simulated Pythia8 Z ′
χ sample shown in Appendix

A.1.

The residual and pull distributions in Figure 7.16a and 7.16b show some structure

which is also an indication that the �t is not so good. We see that there is a shift

between the �t and invariant mass distribution that explains the structure in Figure

7.15b which leads to the structure in the residual and pull distributions in Figure 7.16.

We can explain some of the discrepancies of the �t with the di�erence in muon resolution

in the endcap and barrel region of the ATLAS detector.
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Figure 7.15: Double-sided Crystal Ball �t of simulated Z ′
χ invariant mass distribution in

logarithmic (a) and linear (b) scale.
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Figure 7.16: Residual (a) and pull (b) distribution of simulated Z ′
χ invariant mass �t.

The Crystal Ball �t of the invariant mass distribution of the signal reweighted Z ′
χ is

shown in Figure 7.17a and 7.17b in logarithmic and linear scale. The signal reweighted

Z ′
χ distribution has relative large errors and gives χ2/ndf = 0.84. Figure 7.18a and 7.18b

show the residual and pull distribution of the �t. We see a little discrepancies in the Z ′
χ

peak in the residual distribution that is also visible in Figure 7.17b.
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Figure 7.17: Double-sided Crystal Ball �t of reweighted Z ′
χ invariant mass distribution

in logarithmic (a) and linear (b) scale.
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Figure 7.18: Residual (a) and pull (b) distribution of reweighted Z ′
χ invariant mass �t.

We can now compare the Crystal Ball �t of the simulated and signal reweighted Z ′
χ

invariant mass distributions that is shown in Figure 7.19. The �t of the simulated Z ′
χ

distribution is consistently below the signal reweighted Z ′
χ distribution which we also

observed in Figure 7.12.
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Figure 7.19: Comparison between �t of simulated and reweighted Z ′
χ invariant mass

distribution

7.4 Comparison of di�erent Z ′ models

With the LPXSignalReweightingTool we can choose between the E6 and the SSM Z ′

model described in Section 2.2, and also choose the mass freely. We can therefore compare

di�erent Z ′ models at the same mass. Figure 7.20 shows the comparison of the Z ′
SSM , Z ′

χ

and Z ′
ψ model at 3 TeV in the electron channel. The width follows the ordering explained

in Section 2.2.1 and 2.2.2, i.e ΓZ′
SSM

> ΓZ′
χ
> ΓZ′

ψ
. The asymmetry between di�erent

models can also be studied in order to distinguish between di�erent models.
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Figure 7.20: Comparison of the signal reweighted Z ′
SSM , Z ′

χ and Z ′
ψ invariant mass dis-

tribution at 3 TeV in the electron chennel.

7.5 Z ′ models in Run 3 data and simulation comparison

The LPXSignalReweightingTool can also be used to apply signal reweighting to the fully

simulated PowhegPythia8 Drell-Yan samples produced to match Run 3 data described

in Section 4.3.2, to di�erent Z ′ samples. Figure 7.21 shows a �rst result with signal

reweighted Z ′ in Run 3 in the invariant mass distribution of the electron channel with

the signal reweighted Z ′
SSM , Z ′

χ and Z ′
ψ models at di�erent masses, and are plotted on

top of the SM background described in Section 4.3.3 and compared to data. The data

is collected in 2022 at
√
s = 13.6 TeV where 26.1 fb−1 is used for analysis. In Figure

7.21 the data over 1 TeV is blinded. We see again that the width of the Z ′
SSM , Z ′

χ and

Z ′
ψ resonance at 1 TeV follows the ordering ΓZ′

SSM
> ΓZ′

χ
> ΓZ′

ψ
which is the same as in

Figure 7.20. The Z ′
χ model is plotted with Z ′ mass at 500 GeV, 750 GeV and 1000 GeV,

and the width of the resonance increases as the mass of the Z ′
χ boson increases.
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Chapter 8

Conclusion and outlook

At the LHC the data collected by the ATLAS detector can be compared to MC simula-

tions to test Standard Model predictions. MC simulations can further be used in searches

for new physics beyond the Standard Model. We have in this thesis studied a method

called signal reweighting to produce BSM Z ′ samples from a SM Drell-Yan sample. The

LPXSignalReweightingTool has been extended to include the signal reweighing of a next-

to-leading order PowhegPythia8 Drell-Yan sample that has not been done before. The

results of the signal reweighted Z ′ samples shows some promising results when compared

to fully simulated Z ′ Pythia8 samples produced to match with data taken in 2018 as part

of Run 2 at
√
s = 13 TeV, corresponding to an integrated luminosity of 58.5 fb−1. We also

used the signal reweighting for Run 3 to produce some Z ′ samples that were superimposed

on the comparison between the data and background simulations at
√
s = 13.6 TeV with

26.1 fb−1 of data. This extension to the LPXSignalReweightingTool will be used by the

ATLAS collaboration for further Z ′ studies. An attempt to reweight a Sherpa Z + jets

based sample to Z ′ models was also made using a method involving graphs developed as

a attempt to understand the Sherpa Z + jets generator. This was unsuccessful due to

insu�cient information from the generator, so a statistical or machine learning approach

may be needed to �nd an e�ective method to perform reweighting with Sherpa Z + jets.

The signal reweighting method could be extended to include signal reweighting of new

physics processes other than the Z ′ models discussed. One possibility is to apply signal

reweighting to an already simulated Z ′ + dark matter sample to transform a speci�c

model to another. We also applied the signal reweighting above to MC produced to

match Run 3 data at
√
s = 13.6 TeV collected in 2022 corresponding to 26.1 fb−1, to

101
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produce Z ′ signals on top of data and SM simulated background.
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Appendix A

Monte-Carlo samples

A.1 Monte-Carlo Drell-Yan samples used for signal reweight-

ing

Process Filter Nmc16e
events σgen[fb]

Z → e−e+ 120 GeV < mee < 180 GeV 2.48 · 106 1.7478 · 10−2

Z → e−e+ 180 GeV < mee < 250 GeV 1.50 · 106 2.9212 · 10−3

Z → e−e+ 250 GeV < mee < 400 GeV 2.00 · 106 1.0820 · 10−3

Z → e−e+ 400 GeV < mee < 600 GeV 1.49 · 106 1.9550 · 10−4

Z → e−e+ 600 GeV < mee < 800 GeV 8.50 · 105 3.7401 · 10−5

Z → e−e+ 800 GeV < mee < 1000 GeV 4.20 · 105 1.0607 · 10−5

Z → e−e+ 1000 GeV < mee < 1250 GeV 1.00 · 105 4.2582 · 10−6

Z → e−e+ 1250 GeV < mee < 1500 GeV 9.00 · 104 1.4219 · 10−6

Z → e−e+ 1500 GeV < mee < 1750 GeV 9.00 · 104 5.4521 · 10−7

Z → e−e+ 1750 GeV < mee < 2000 GeV 1.70 · 105 2.2991 · 10−7

Z → e−e+ 2000 GeV < mee < 2250 GeV 9.00 · 104 1.0387 · 10−7

Z → e−e+ 2250 GeV < mee < 2500 GeV 9.00 · 104 4.9400 · 10−8

Z → e−e+ 2500 GeV < mee < 2750 GeV 9.00 · 104 2.4452 · 10−8

Z → e−e+ 2750 GeV < mee < 3000 GeV 9.00 · 104 1.2487 · 10−8

Z → e−e+ 3000 GeV < mee < 3500 GeV 9.00 · 104 1.0029 · 10−8

Z → e−e+ 3500 GeV < mee < 4000 GeV 9.00 · 104 2.9342 · 10−9

Z → e−e+ 4000 GeV < mee < 4500 GeV 9.00 · 104 8.9764 · 10−10

Z → e−e+ 4500 GeV < mee < 5000 GeV 9.00 · 104 2.8071 · 10−10

Z → e−e+ 5000 GeV < mee < 9.00 · 104 1.2649 · 10−10

Table A.1: PowhegPythia8 Drell-Yan samples used for signal reweighting in the electron
channel in Run 2
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Process Filter Nmc16e
events σgen[fb]

Z → µ−µ+ 120 GeV < mµµ < 180 GeV 3.32 · 106 1.7478 · 10−2

Z → µ−µ+ 180 GeV < mµµ < 250 GeV 1.90 · 106 2.9212 · 10−3

Z → µ−µ+ 250 GeV < mµµ < 400 GeV 2.25 · 106 1.0820 · 10−3

Z → µ−µ+ 400 GeV < mµµ < 600 GeV 1.66 · 106 1.9550 · 10−4

Z → µ−µ+ 600 GeV < mµµ < 800 GeV 1.00 · 106 3.7399 · 10−5

Z → µ−µ+ 800 GeV < mµµ < 1000 GeV 4.95 · 105 1.0607 · 10−5

Z → µ−µ+ 1000 GeV < mµµ < 1250 GeV 2.50 · 105 4.2582 · 10−6

Z → µ−µ+ 1250 GeV < mµµ < 1500 GeV 1.70 · 105 1.4219 · 10−6

Z → µ−µ+ 1500 GeV < mµµ < 1750 GeV 1.70 · 105 5.4521 · 10−7

Z → µ−µ+ 1750 GeV < mµµ < 2000 GeV 1.70 · 105 2.2991 · 10−7

Z → µ−µ+ 2000 GeV < mµµ < 2250 GeV 1.70 · 105 1.0387 · 10−7

Z → µ−µ+ 2250 GeV < mµµ < 2500 GeV 1.10 · 105 4.9400 · 10−8

Z → µ−µ+ 2500 GeV < mµµ < 2750 GeV 1.70 · 105 2.4452 · 10−8

Z → µ−µ+ 2750 GeV < mµµ < 3000 GeV 1.70 · 105 1.2487 · 10−8

Z → µ−µ+ 3000 GeV < mµµ < 3500 GeV 1.70 · 105 1.0029 · 10−8

Z → µ−µ+ 3500 GeV < mµµ < 4000 GeV 1.70 · 105 2.9342 · 10−9

Z → µ−µ+ 4000 GeV < mµµ < 4500 GeV 1.70 · 105 8.9764 · 10−10

Z → µ−µ+ 4500 GeV < mµµ < 5000 GeV 1.70 · 105 2.8071 · 10−10

Z → µ−µ+ 5000 GeV < mµµ < 1.70 · 105 1.2649 · 10−10

Table A.2: PowhegPythia8 Drell-Yan samples used for signal reweighting in the muon
channel for the mc16e period in Run 2

A.2 Monte-Carlo Z ′ signal samples

Process Model mZ′ [GeV] DSID Nmc16e
events σgen[fb]

Z ′ → e−e+ Z ′
χ 3000 301216 4.00 · 104 8.102 · 10−7

Z ′ → µ−µ+ Z ′
χ 3000 301221 1.66 · 106 8.045 · 10−7

Table A.3: Pythia8 Z ′ sample for the Z ′
χ model in the electron and muon channel for the

mc16e period in Run 2.
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