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Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the University of Oslo, under the supervision of Professor
Luiza Angheluta.

The thesis is a collection of five papers, presented in chronological order
of writing. The common theme to them is the dynamics and/or nucleation of
topological defects in non-linear fields. The thesis includes an introduction to
topological defects in superfluid Bose-Einstein condensates and active liquid
crystals. This is followed by a discussion of the individual research papers and
the connection between them. In addition to the five attached papers, I have
coauthored two additional papers.
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Abstract
We study the nucleation and dynamics of topological defects in two-dimensional
superfluid Bose-Einstein condensates and active liquid crystals. Using the
property that these are emergent states of matter with broken rotational
symmetry, we formulate a generic mathematical framework that we use to
describe the properties of the corresponding topological defects. The active
liquid crystals consist of micro-organisms that have an intrinsic activity which is
injecting energy into the system. When the intrinsic energy production is large
enough, it will result in the spontaneous creation of topological defects. These
defects are localized sources of long-range elastic distortions which generate
large-scale flows. We are able to solve the flow equations for isolated defects in
the limit of point-like defects with an idealized far-field structure that is subject
to both friction and viscous dissipation. The induced flow feeds back into the
evolution equation for the order parameter of the liquid crystal and has effects
on the motion of the defects by making them self-propelled and by mediating
effective interactions between them. In contrast, the Bose-Einstein condensate
is a passive system where energy is injected by externally applied potentials.
One way to create defects is by stirring the condensate with a moving potential.
Quantum vortices are then nucleated in pairs and shed from the stirring potential.
We show how the defect nucleation and motion are determined by the evolution
of the superfluid wave function. In this thesis, we demonstrate that even though
the energy is injected and transported differently in these two systems, there
are similarities in the fundamental mechanisms for the nucleation of topological
defects and in the correspondence between defect kinematics and the evolution
of the order parameter.
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Sammendrag
I denne avhandlingen studerer vi nukleasjonen og dynamikken til topologiske
defekter i to dimensjonale Bose-Einstein kondensater og aktivt flytende krystaller.
Disse systemene er resultatet av det samme symmetribrudet, noe vi utnytter til å
beskrive dem ved hjelp av det samme matematiske rammeverket, of bruker dette
til å studere systemenes topologiske defekter. Den aktive flytende krystallen er
bygget opp av mikroorganismer som har en iboende aktivitet som tilførrer energi
til systmemet. Om den iboende energi-injeksjonen er sterk nok vil man få spontan
dannelse av topologiske defekter. Disse defektene er lokaliserte kilder til langt
rekende elastiske deformasjoner som stresser materialet og genererer strømninger.
Vi løser strømningsligningene for isolerte defekter, under antagelen om at
defektene er punktlignende med idealiserte fjernfelt. Vi inkluderer både friksjon
og viskøs dissipasjon. De induserte strømningene mates inn i likningnene som
beskriver utviklingen til den flytende krystallens ordensparameter, og påvirker
dermed hvordan defektene beveger seg ved å gjøre dem selvdrevne og formiddle
interaksjoner mellom dem. I kontrast er Bose-Einstein kondensatet et passivt
system der vi må tilføre energi eksternt ved å røre med et tidsavhengig potensiale.
Dette resulterer i at kvantifiserte virvler blir produsert i par og slippes fra
potensialet. Vi viser hvordan nukleasjonen og bevegelsen til defektene er knyttet
til utviklingen av den superflytende bølgefunksjonen. I denne avhandlingen
demonstrerer vi at selv om energien er tilført og transportert forskjellig i disse
to systemene så er det likheter i de fundamentale mekanismene for defekt
nukleasjon og i korrespondansen mellom defektkinematiken og utviklingen av
ordensparameteren.
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Chapter 1

Introduction

The natural world is separated into many length scales where the interactions
on the small scales determine the behavior on the larger scales. New phenomena
emerge on the large scale due to the interaction of many microscopic constituents
on a smaller scale. For example, ocean waves are macroscopic patterns emerging
when a macroscopic number of air and water molecules interact with each other
but will have no meaning in systems consisting of only a few molecules [8]. It is,
in principle, possible to derive all laws of science from the interactions on the
smallest length scales, which to the current date are the fundamental particles
that are described by the standard model of particle physics.

In practice, however, this is an impossibly hard problem, and in fact, it is
not even needed. Biologists do not use the standard model of particle physics to
explain moose-three scattering. At each new level of complexity, new laws, con-
cepts, and generalizations are required to describe the system [8]. In condensed
matter physics, we often want to bridge the description on the microscopic scale
with the observed dynamics on the macroscopic scale. This is a formidable task.
Luckily, not all details of the interactions between the microscopic constituents
are important when looking at the collective properties of a system consisting of
a large number of them [9]. Because of this, one can construct simplified models
that include the most relevant information that survives the coarse-graining
while ignoring the small-scale details. In some cases, we rely on the underlying
broken symmetries and conservation laws to describe the emergent behavior on
the macroscopic scale [9, 10].

Symmetries are fundamental properties that govern macroscopic behaviors
and provide a key to connecting systems that have different microscopic units.
In other words, the shared symmetries allow us to use the same framework to
study two systems that at first glance seem to be unrelated, like active matter
and Bose-Einstein condensates (BEC). Active matter is a term that refers to
systems that are built up of many self-driven units, e.g. bacteria or migrating
cells. Bose-Einstein condensate is a quantum state formed in ultra-cold Bose
gasses. Even though one bacteria and one boson are quite different, the broken
symmetries in the active nematic and the Bose-Einstein condensate are the
same so the macroscopic systems can be described in a similar way. That
we can use a shared macroscopic description to study systems that have dif-
ferent microscopic descriptions is something we are going to explore in this thesis.

Ordered systems will in general not be perfectly homogeneous but will
contain defects that are sources of distortions, stresses, and flows. Order goes
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1. Introduction

hand in hand with symmetry and topology, which is why the defects that locally
tear the order are known as topological defects. These are defects in the system’s
order that are protected by topological constraints [9, 11]. Even though the
defects are localized on small scales they induce global effects. Some examples
of topological defects are dislocations in crystals [12–14], disclinations in liquid
crystals [15, 16] and cosmic strings [17]. These defects and interactions between
them are important for many of the properties we see in condensed matter.
In Bose-Einstein condensates the defects are driving a chaotic state known as
quantum turbulence [18], and contribute to the persistence of large-scale currents
[19]. Topological defects also play a prominent role in many biological processes
like the Hydra morphogenesis [20], where during the regeneration of a hydra
topological defects are acting as organization centers for the development of
body parts like the hydra’s foot and mouth.

Topological defects are the fingerprints of an ordered state, and in general,
emerge in systems where the ground state is degenerate [21]. A way of making
them is by rapidly cooling down a system from a disordered state. In such a
process there will be formed patches of ordered domains with defects emerging be-
tween the domains due to incompatibility in the local ordering. The formation of
defects during the cooling and relaxation to an equilibrium of a high-temperature
disordered state is well studied [22]. The nucleation mechanisms we have focused
on in this thesis are instead that of non-equilibrium-driven states, where there
is a lot of research activity to better understand fundamental mechanisms [23,
24]. The driving mechanisms of the active liquid crystal and the Bose-Einstein
condensate differ. In the active system, the energy injection happens at the single
particle scale where the self-driven active particles consume energy from the en-
vironment, e.g. by eating, and turning it into mechanical energy. If the intrinsic
activity of the particles is large enough the system spontaneously creates topo-
logical defects [24, 25]. In the Bose-Einstein condensate, the driving mechanism
is external and happens on a scale that is larger than that of the single parti-
cle. This could be done either by stirring the condensate or by rotating it [26–29].

Once the defects are formed, they will move around in the systems and
interact with each other. In both systems, defect motion is determined by the
evolution of the ordered system. In active fluids, due to intrinsic activity, any
distortion in the order will induce spontaneous flows. This flow makes the
defects self-propelled and mediates interactions between them. We have explored
different hydrodynamic dissipative effects like friction with the substrate and
viscosity, and studied how they impact self-propulsion and spontaneous flow
profiles around the defects. By using an idealized minimal model for the defects’
structure, we are able to get insight into the mechanism behind the effects
observed in numerical and experimental works.

In this thesis, we put forward a unified mathematical framework to study
the defect dynamics and nucleation processes in Bose-Einstein condensates and
active liquid crystals, taking advantage of their similar rotational symmetries.
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Structure of the thesis

There are unanswered questions about the defect nucleation and kinematics in
both these systems. That we are able to describe the systems using the same
frameworks illustrates that these problems are not isolated and that we can
get insight into the systems by taking advantage of the knowledge that has
been developed in both fields. The formalism that we present was developed for
tracking defects, and we show that we can use it to extract additional information
about the nucleation process. Since the broken rotational symmetry that is
shared by these systems is common in physics the themes that are discussed
here are not restricted to these two systems.

1.1 Structure of the thesis

The thesis is article-based and is divided into two parts. The first part, referred
to as the main text, is a theoretical introduction to the framework we are using
in the articles. This is meant as a companion for the articles in which the reader
can find additional information if they want some additional explanations of a
concept. The second part is the attached papers. The structure of the main text
is as follows:

Chapter 2 is a theoretical prelude, where we introduce some important
concepts that are used throughout the thesis. We start by introducing the
concept of symmetries and order parameters before we have a brief introduction
to equilibrium statistical mechanics. This is followed by a discussion of
hydrodynamics and the chapter ends with an introduction to complex analysis.
Chapter 3 introduces the Gross-Pitaevskii theory for Bose-Einstein condensates
of weakly interacting Bose gasses. We start by motivating the Gross-Pitaevskii
equation from the second-quantized many-body Hamiltonian of a weakly
interacting Bose gas and discuss some properties of this equation. Then we
use this system to introduce the concept of topological defects which we give a
general treatment before looking at some model-dependent properties like the
far-field energy. In Chapter 4 we introduce the two models for active matter
that we have used in this thesis, namely the active nematic and an active polar
model. We here take advantage of the fact that the defects in the Bose-Einstein
condensate are very similar to the ones in the active matter models which makes
this discussion brief. In Chapter 5 we discuss the numerical methods we have
used. We then summarise the papers and give possible outlooks in Chapter 6
before we conclude in Chapter 7.

1.2 Notation

The notation used in the papers varies. In the main text, we will stick to the
following standard convention. Vectors like v are given in bold font and the
corresponding length is given as v. We have two exceptions to this notation; In
Chapter 4 we introduce a complex field u, therefore to distinguish the complex
field from the length of the vector we will in this chapter use |u| for the latter,
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1. Introduction

and in n Chapter 3 we introduce the vector field Ψ⃗ which has been given the
arrow notation to easier distinguish it from all the other ψ fields in the chapter.

The i’th Cartesian component of the vector field v is written as vi, and
repeated indices are summed over. The dot product is therefore written as
v · u = viui. The partial derivative with respect to the i’th Cartesian coor-
dinate is written as ∂i = ∂

∂xi
and the partial derivative with respect to time

is written ∂t. We are going to use the convention that differential operators
are only acting on the symbol to their immediate right. We therefore have
that ∂if∂jg = (∂if)(∂jg). Also, note that ∂ will also be used to denote the
boundary of a domain D as ∂D. From the context, the distinction should be clear.

For tensors of rank 2 or higher, we do not have any special notation. These
will mostly be written as Greek letters like σ and Ω or as capital letters like
E and Q. The dot product will mean contraction over the last index so
(∇ · Q)i = ∂jQij . Two rank 2 tensors written next to each other denote a
standard matrix multiplication given in index notation as (QE)ij = QikEkj .

The imaginary unit is written as i. The distinction with the i’th Cartesian
component should be clear from the context. For coordinates in the complex
plane, we use z = x+iy and its complex conjugate z̄ = x−iy with the derivatives
given as 2∂z = ∂x − i∂y. Complex fields will either appear as Greek letters
like ψ or as a complex velocity u = ux + iuy. For complex conjugates, we use
the bar notation z̄ for fields denoted by Latin letters and a star ψ∗ for the
ones denoted with Greek. This is to easier distinguish the complex conjugate
of the complex field ψ∗ from the Fourier transform ψ̃ and the quantum operator ψ̂.

For labeling individual defects in a set of N we will use Greek letters. The
charge of the vortex labeled α is, therefore, qα. For vector quantities, like the
defect velocity vα, the label is written as an exponent to avoid confusion with
the Cartesian components. To label quantities related to microscopic particles,
we will use Greek letters in a parenthesis. The director of the particle labeled
α in an active nematic is therefore written as ñ(α). Here the tilde is used to
distinguish microscopic from macroscopic quantities. We do not use the Einstein
summation convention for these indices. Note that we also use α as the activity
parameter in Chapter 4.

In Chapter 3 we are going to encounter some quantum operators. We have
given these small hats ψ̂. The Fourier transform of the function f is written as
F [f ] with the inverse F−1[f̃ ]. We use the following convention

f̃(k) = F [f ](k) =
∫
drf(r)e−ik·r, (1.1)

f(r) = F−1[f̃ ](r) = 1
(2π)d

∫
dkf̃(k)eik·r. (1.2)

Here, d is the dimension, which is mostly going to be d = 2.
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Chapter 2

Preliminaries

This chapter will give a short overview of some concepts that are used throughout
the thesis. We start with a short discussion about what is meant by symmetry,
ordered system, and order parameters. This is followed by an introduction to
statistical mechanics and mean field theory before we discuss hydrodynamic
models and give the example of a simple fluid. The last part of this chapter is a
short introduction to complex analysis.

2.1 Symmetry, order and order parameters

Symmetry We say that a system has a symmetry if it stays the same (i.e. is
invariant) after some transformation. E.g a system with rotational symmetry
looks the same after you rotate it. Symmetries can be either continuous or
discrete. The difference can be illustrated by a circle and a square. The circle
has a continuous rotational symmetry since it can be rotated by any angle
and it will still look the same, while the square has a discrete symmetry since
it is only invariant to rotations that are a multiple of π/2. We can say that
the circle is more symmetric than the square since it is invariant under more
transformations.

Symmetries are very important in condensed matter physics because they
have consequences for the physical properties of the system, and it is often,
but not always, the thing that distinguishes different phases [11]. This is the
case when a liquid freezes to a crystalline solid, as illustrated in Fig. 2.1. The
fluid phase where the particles are randomly placed is shown in Fig. 2.1 a)
and Fig. 2.1 b) shows a solid crystal where the particles are situated on a
triangular lattice defined by the lattice vectors a and b which are of equal
length. The fluid has here more symmetries than the solid. This might be
hard to see from the figure since the solid has clear symmetries to translations
by multiples of the lattice vectors and it is invariant to rotations of π/3. The
fluid however has continuous rotational and translational symmetries, because
wherever we are in the fluid it will look the same. These symmetries do not
show up in the microstate in Fig. 2.1a), but in the macroscopic state that is
the result of averaging over many microstates that are prepared similarly. This
averaging process is known as an ensemble average [11, 30], and is going to
be discussed further in the next section. Since the particles in the fluid are
randomly placed the average number density ⟨n⟩ = n0 will be a constant of
space, and is therefore symmetric to all rotations and translations. If we take the
ensemble-averaged number density of the crystal it is more probable that the par-
ticles are on the lattice sites so this structure will show up also after averaging [11].

5



2. Preliminaries

a)

a

b)

b

Figure 2.1: a) the position of particles in a two-dimensional isotropic liquid is
random. b) after freezing the particles are ordered on a lattice characterized by
the lattice vectors a and b.

As discussed above a symmetry leaves the system invariant under some
transformation. These transformations belong to some group G [9]. A group G
is a set with a multiplication operator · that satisfies [31]

1. The group is closed under multiplication. Meaning that for g, h ∈ G implies
g · h ∈ G.

2. Associativity of multiplication so that for g, h, k ∈ G we have (g · h) · k =
g · (h · k).

3. There exists an identity element e ∈ G which has the property that for any
g ∈ G we have e · g = g · e = g.

4. For all g ∈ G there exists an inverse g−1 ∈ G so that g−1 · g = g · g−1 = e.

Note that in general the multiplication operator is not required to commute, so
the relation g · h = h · g is therefore not guaranteed to hold. One example of a
group is the integers Z under addition +. Here the inverse of g is −g and the
identity is 0. Another example is the set of real numbers excluding zero, R/0,
under multiplication. In this group, the inverse of g is 1/g and the identity is 1.
The first example here is a discrete group, while the second is a continuous group.

We mentioned that the transformations that leave the system invariant can
be described by a group. For example, the fluid mentioned above has rotational,
reflection, and translational symmetries. In n dimensions this corresponds to
the O(n) group which includes both continuous rotation and reflection, and the
translation group T . The product of these is known as the Euclidean group
[9]. After the transition to the crystal phase, these symmetries are broken and
replaced by discrete symmetries represented by discrete groups.
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Equilibrium statistical mechanics and mean-field theory

In this thesis, we have mostly been concerned with systems that have a
broken O(n) symmetry. The representation of this group is real matrices
with determinant ±1 and the multiplication operator is standard matrix
multiplications[31]. A subgroup of O(n) is SO(n) which describes rotations
and is represented by matrices with determinant 1. In two dimensions, SO(2),
this group is isomorphic to the group U(1) which is represented by all complex
numbers of length 1.

Order parameter When the liquid freezes and becomes a crystal its con-
tinuous rotational and translational symmetries are broken, and the result is
a new phase with discrete symmetries. The particles have gone from being
anywhere in space with equal probability, to being in the positions of the
lattice sites. To characterize this new ordered phase, we can introduce an order
parameter. This is a parameter that is constructed in such a way that it is
zero in the disordered phase and non-zero in the ordered phase. During the
fluid-solid phase transition illustrated in Fig. 2.1 the order parameter is the
average number density subtracted from the number density of the fluid, i.e
⟨δn(r)⟩ = ⟨n(r)⟩ − n0 =

∑
G nGe

iG·r [9]. We have here written it in terms of
its Fourier series with G being the reciprocal lattice vectors to highlight the
spatial dependence. Since ⟨δn(r)⟩ is real the Fourier coefficients have to fulfill
n∗

G = n−G. The Fourier representation also makes the translational symmetry of
the crystal clear because the dot product of a lattice vector T with a reciprocal
lattice vector G is T ·G = 2πN with N being an integer. The system is therefore
invariant under uniform translation with a lattice vector r → r + T.

In the above example, the order parameter was a real scalar field. A phase
transition where the order parameter is instead a vector is the transition from
a paramagnetic to a ferromagnetic phase. In the paramagnetic phase all the
magnetic moments are randomly oriented and the average magnetic moment ⟨m⟩
vanishes. The ferromagnetic phase emerges when the magnetic moments start
to align and point out a direction, giving a non-zero averaged moment. Since
one direction is pointed out the system has now lost its rotational symmetry, i.e.
the O(n) symmetry has been broken.

2.2 Equilibrium statistical mechanics and mean-field theory

Many systems in nature are impossible to study by directly considering the
dynamics of their microscopic constituents [11, 30]. It is for example impossible
to know the position and momentum of all air molecules in a balloon. Intuitively
it is also not very important, we do not observe that the balloon behaves
strikingly differently just because one of the molecules is shifted a micrometer
to the left. What is more important for the balloon is the volume of air
inside it, the temperature of the air, and its pressure. This is an example of a
thermodynamic or macroscopic description, while the position and momentum
of the air molecules are examples of a microscopic description. Other examples
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2. Preliminaries

of macroscopic quantities are the tension in the balloon and the mean mag-
netization in a ferromagnet. There are a lot of interesting phenomena that
only emerge in a macroscopic system like waves in a fluid, phonons in a solid,
and the crystallization of water when it freezes. Such phenomena do not show
in the dynamics of single particles, but emerge when many of them are interacting.

Statistical mechanics is the field of physics that bridges these scales and
tries to describe the macroscopic system that emerges from the dynamics of its
microscopic constituents. In order to do so one does not try to describe the
system in detail, but instead describes the average behavior of many systems
that are prepared in a similar way [11, 30]. Such a collection of similar systems is
known as an ensemble. Three very important ensembles in statistical mechanics
are the microcanonical-, the canonical-, and the grand canonical ensemble. In
this section, we will limit our discussion to the canonical ensemble and discuss
how we can use its probability density to find thermodynamic quantities. The
canonical ensemble consists of systems that are in thermal equilibrium with a
heat bath of temperature T and can exchange energy with this bath [11, 30]. The
probability of one microstate µ̃ at a given temperature T is for such a system
given as [32]

P(µ̃) = Z−1e−βH̃(µ̃), (2.1)
Where β = 1/(kBT ) is the Boltzmann constant and H̃(µ̃) is the energy of the
microstate. The partition function Z−1 comes into the theory as a normalization
constant.

This normalization constant turns out to be the most important quantity
in equilibrium statistical mechanics because if we know it, we will be able to
calculate thermodynamic quantities like the free energy, entropy, and pressure [9,
11, 30]. Since the probability is normalized the partition function can be found
by summing over all the possible microstates. It is therefore given as

Z = Tr(e−βH̃(µ̃)) =
∑

µ̃

e−βH̃(µ̃), (2.2)

with the sum being over all microstates. This can usually not be solved, except
for some idealized systems. From eq. (2.1) we can find the average energy of the
system, i.e the internal energy U , by calculating the expectation value

U = ⟨E⟩ =
∑

µ̃

H̃(µ̃)e−βH̃(µ̃)Z−1 = −∂β lnZ. (2.3)

Another macroscopic quantity that is useful to describe a macroscopic system
is the entropy S. The entropy of a system of N equally likely microstates is
−kB ln(1/N). Noticing that P = 1/N is the probability of one microstate we
can write the entropy as S = −kB⟨ln(P)⟩. This expression can be generalized
to systems where the microstates have different probabilities and we get [11]

S = −kB⟨ln(P)⟩ = −kB

∑

µ̃

P(µ̃) ln(P(µ̃)). (2.4)

8
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Using the probability density from eq. (2.1) it follows that the entropy of the
system is

S = U

T
+ kB ln(Z). (2.5)

Since we know the internal energy and the entropy we can find the Helmholtz
free energy from the thermodynamic relation [11, 30]

F = U − TS = −kBT lnZ. (2.6)

As demonstrated the partition function Z provides the information needed to
derive the equilibrium thermodynamics of the system.

2.2.1 Fields

Some of the fluctuations of a system happen on the mesoscale, which is small
compared to the macroscale, but large compared to the microscale. When
working with these types of properties it is useful to construct a field. We can
construct a field by coarse-graining [9, 32], meaning that instead of working with
the microscopic variables, like the momentum or spin of individual particles, we
divide the system up in boxes and average a function of them, the microscopic
order parameter ϕ̃, over the box. The tilde is used to distinguish the microscopic
order parameter, which is a function of the microscopic variables, from the coarse-
grained order parameter ϕ which is averaged. We assume that the number of
particles in each box is so large that ϕ can be treated as a continuous field. When
doing this mapping from the microscopic description to the field description the
partition function is mapped to [32]

Z =
∫

Dϕ(r)e−βH[ϕ(r)], (2.7)

with the mesoscopic Hamiltonian H. The symbol Dϕ(r) denotes a path integral
over all possible functions ϕ.

Finding a precise form of the mesoscopic Hamiltonian is in general quite hard,
and in addition, it does not simplify the partition function. It is therefore desirable
to construct an effective Hamiltonian. We construct the effective Hamiltonian
with a series expansion in ϕ and its gradients by writing all terms that satisfy
the microscopic and spatial symmetries and then truncating the expansion at a
given order. A much-used effective Hamiltonian is the ϕ4 Hamiltonian, where
we truncate the expansion to the fourth order and keep up to the second order
in gradients

H[ϕ] =
∫
dr[rϕ2 + gϕ4] +

∫
drk|∇ϕ|2. (2.8)

When truncating the expansion at the fourth order the coefficient g has to be
positive to ensure that the energy is bounded from below.

9



2. Preliminaries

Mean-field theory The simplest estimate for the partition function is to only
include the most probable value of the order parameter. This is what is known as
the mean-field theory, and it is often the first approach one uses to describe phase
transitions [9, 32]. The Gross-Pitaevskii theory described in the next chapter is
an example of a mean-field theory and we are going to use the mean-field free
energy when discussing a hydrodynamic model for the active matter in Chapter
4. In this approximation, the free energy and the Hamiltonian become the same
and we therefore have [9]

F [ϕ] =
∫
dr[rϕ2 + gϕ4] +

∫
drk|∇ϕ|2. (2.9)

The state ϕ will be the one that minimizes the free energy [9]. The interaction
term punishes spatial variations, making the ground state homogeneous. The
lowest energy state is thus the constant ϕ that minimizes the free energy density

f [ϕ] = rϕ2 + gϕ4, (2.10)

which is found to be

ϕ =
{

0, r > 0,
±
√

−r/(2g), r < 0.
(2.11)

The free energy provides a continuous phase transition at r = 0 where the order
parameter ϕ obtains a non-zero value. The profile of f [ϕ] is plotted in Fig. 2.2
for r below and above the critical value, showing the change in the location of
the minima. One often assumes that r is linearly dependent on the temperature
and changes sign for T = Tc [9]. The order parameter close to the order/disorder
phase transition then goes as ϕ ∼ (T − Tc)1/2. It turns out that the critical
exponent that is found using the mean field approximation is exact in 4 or
more spatial dimensions. For lower dimensions the neglected fluctuations are
important and give corrections to this [9]. These corrections can be found by for
example renormalization.

2.3 Hydrodynamics of a simple fluid

Hydrodynamic model for an isotropic fluid In the above section, we had
a brief introduction to equilibrium statistical mechanics and thermodynamics.
Most of the work in this thesis is done out of equilibrium either by driving the
system with an external potential or because the system is active. Systems that
are out of equilibrium, but where each point in space is close to thermodynamic
equilibrium can be described by hydrodynamical models [9]. These are models
that aim at describing the low-frequency, long-wavelength modes in a system. By
long wavelength and low frequency, we refer to modes that have a wavelength that
is much bigger than the mean free path for particles λ and are slow compared to
the characteristic time of particle collisions τ . Because of this every cycle of the
modes contains a large number of single-particle interactions on the microscale,
ensuring that locally the system is close to thermodynamic equilibrium and
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Figure 2.2: Plot of the free energy density f [ϕ] for r < 0 (solid), r = 0 (dashed)
and r > 0 (dotted). The minimum of the free energy is displaced from ϕ = 0 to
two degenerate minima at ϕ±

√
−r/2g when r changes sign. We have set g = 1

that we can treat the modes as perturbations to the equilibrium [9]. We are
here going to introduce the main ideas behind these types of models through
the practical example of a simple isotropic fluid following the discussions in [9, 10].

It is typically few variables that support these low-frequency large wavenumber
disturbances because most disturbances will have frequencies proportional to τ−1.
The variables that are guaranteed to have the desired properties are conserved
densities and broken-symmetry elastic variables. For the isotropic fluid, there
is no broken symmetry variable. However, there are five conserved quantities.
These are mass, momentum (in 3 dimensions), and energy. The conservation
laws for the conserved densities are respectively [9, 10]

∂tρ+ ∇ · g = 0, (2.12)
∂tg + ∇ · π = 0, (2.13)
∂tϵ+ ∇ · jϵ = 0, (2.14)

with the densities being the mass density ρ, momentum density g and the energy
density ϵ. Note that the momentum density g acts as a current for the mass
density ρ. The other currents are the momentum current tensor π and the
energy current jϵ. If we Fourier transform these conservation equations in time
and space it hints that the frequencies ω will go to zero with the wavenumber q,
which means that the long wavelength modes are slow [9, 11].

11



2. Preliminaries

Having the currents our next step is to relate them to their conjugate
thermodynamic fields. We do this by using the following thermodynamic identity
for the simple fluid [9, 10]

Tds = dϵ− µdρ− v · dg. (2.15)

In this section µ is the chemical potential per unit mass. From this, we can
identify the thermodynamic fields as temperature T , chemical potential per unit
mass µ, and velocity v. Taking the time derivative of this identity and using the
conservation laws given in eq. (2.12 - 2.14) we get

T∂ts = −∇ · jϵ + µ∇ · g + vi∂jπij , (2.16)

and the spatial derivative is

Tv · ∇s = v · ∇ϵ− µv · ∇ρ− vivj∂igj . (2.17)

Adding these two equations and using the product rule for differentiating we
find the relation

T
[
∂ts+ ∇ · (vs+ T−1Q)

]
= −Q·T−1∇T−(g−ρv)·∇µ−(πij −pδij −vjgi)∇jvi.

(2.18)
This is the entropy production equation with the term in the bracket on the left-
hand side being the change of the entropy density, s, where the entropy current
is given as vs+T−1Q. We have used that the pressure is p = µρ+Ts+ g · v − ϵ
and identified the heat current as Q = jϵ − µ(g − ρv) − vϵ+ (v · g)v − v · πT [9].
Integrating eq. (2.18) over a large volume and removing the surface terms we get

T
dS

dt
=
∫
dr
(
−Q · T−1∇T − (g − ρv) · ∇µ− (πij − pδij − vjgi)∇jvi

)
, (2.19)

with S being the total entropy.

We can now find the reversible relations between the currents and fields by
noting that for reversible processes the entropy is constant. This means that the
integrand on the right-hand side has to vanish, which gives the equations

g = ρv, (2.20)
πij = pδij + ρvivj , (2.21)

jϵ = (ϵ+ p)v. (2.22)

Inserting the first two of these into the conservation equations of density and
momentum, eq. (2.12) and (2.13), we get after some work the following relations

∂tρ+ ∇(ρv) = 0, (2.23)

∂tv + (v · ∇)v = −1
ρ

∇p. (2.24)
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Hydrodynamics of a simple fluid

This is the mass conservation equation and the Euler equation for an ideal/dissi-
pationless fluid [33].

We now want to find how this is modified when we include the dissipative
modes. These are the irreversible modes that we can find by considering relations
between fields and currents that transform with the opposite sign [9]. We start
by rewriting eq. (2.19) to

T
dS

dt
=
∫
dr
(
−Q · T−1∇T + σ′

ji∇jvi

)
, (2.25)

Here σ′ is the dissipationless part of the momentum current tensor. We have here
used that the momentum is given as g = ρv also when we include dissipation [9].
As discussed above the dissipative relations will be between the currents and
the fields which transform with opposite signs under time reversal. Here Q and
v change sign under time reversal while σ and T do not. There will therefore
be a coupling between Q and T , and one between σ′ and v. To find how these
relations look we have to argue based on the physics and symmetry of the system.

A constant temperature cannot be the source for a heat current so Q has to
be proportional to the gradient of T [9]. Since the fluid is isotropic the relation
takes the form

Q = −κ∇T, (2.26)
with κ being positive to ensure that currents flow from hot to cold regions and
that this term in the entropy production is positive. Similarly, the stress tensor
σ′ is invariant to translations and is, to first order, proportional to the gradient
of the velocity [9, 33]. In addition, when the fluid is in uniform rotation there
should be no internal friction in it so the stress has to vanish. These constraints,
in addition to the fluid being isotropic, means that the dissipative part of the
stress tensor has to have the form

σ′
ij = η(∂ivj + ∂jvi − 2

3δij∇ · v) + ζδij∇ · v, (2.27)

with the constants η and ζ being the shear and bulk viscosity respectively [33].

Navier-Stokes We can now write down the equations of motion for the fluid.
To make them easier to work with we are going to simplify them by assuming
that the fluid is incompressible, i.e. ρ is constant. The equations for mass and
momentum conservation then become

∇ · v = 0, (2.28)
ρ∂tv + ρ(v · ∇)v = −∇p+ η∇2v. (2.29)

This is the incompressible Navier-Stokes equation [33]. Flows described by
these equations are fully characterized by the geometry of the system and one
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2. Preliminaries

dimensionless number known as the Reynolds number. The Reynolds number
Re = UL/ν gives the ratio between the advective part and the viscous part of
the equation. Here U is a typical velocity, L is a typical length, and ν = η/ρ is
the kinematic viscosity. If the Reynolds number is low it is the dissipation that
dominates the dynamics. Disturbances in the flow are then quickly removed by
the dissipation and the fluid can be described by the Stokes equation

η∇2v = ∇p. (2.30)

This equation is relevant when discussing flows in biological active matter since
it often occurs at low Reynolds number [34]. In the other limit when the flow
has a high Reynolds number the inertial part of the Navier-Stokes equation
dominates and the system is said to be turbulent.

The Navier-Stokes equation is going to turn up in both the systems we are
considering in this thesis. For the active fluids that we discuss in Chapter 4
we couple the Navier-Stokes equation with an evolution equation for the order
parameter. Here the flow field advects and rotates the order parameter, while
the order parameter is a source of stress and in that way influences the flow.
For the Bose-Einstein condensate discussed in Chapter 3 we will show that in
some limits, we can map the equation for the complex order parameter ψ into
the Navier-Stokes equation, and identify that the viscosity is due to interactions
with a thermal cloud.

General hydrodynamics In systems with broken symmetry, one will also
get modes that are related to the broken symmetry. These are the so-called
Goldstone modes, which are related to the Goldstone theorem that states that
when a continuous symmetry is broken the low wavenumber excitations in the
symmetry direction should have long periods [11]. When we know the broken
symmetries and the conservation laws we can find the hydrodynamic description
by using the following recipe. First, we identify conserved densities and broken
symmetry variables and their related currents. When this is done we write out
the thermodynamics of the system and identify the conjugated fields related to
the currents. The last step is then to find the constituent relations. This is the
relationship between the currents and the thermodynamic fields, which can be
either reversible or irreversible [9]. The reversible relations are between fields and
currents that transform with the same sign under time reversion. These modes
are non-decaying and responsible for the propagating modes. One can often
obtain these relations from invariance arguments [9]. The irreversible relations
are between fields and currents that transform with the opposite sign. These are
the dissipative modes.

Reduction to two dimensions We are for the most part interested in two-
dimensional systems. We can motivate effective two-dimensional flow equations
by considering the flow in a Hele-Saw cell as depicted in Fig. 2.3. The cell
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consists of two plates that are parallel with a gap of 2h between them. We
assume that the gap is much smaller than the sides of the cell, and we also
assume that the Reynolds number is low so that we can describe the system as
a Stokes flow

∇ · v = 0, (2.31)
∇p− η∇2v = f(r). (2.32)

Here f is a driving force. The center of the cell is set at z = 0 so that the
boundaries are at z = ±h, the center is thus the xy-plane. We first consider the
incompressibility condition and take the variations in the z direction to happen
on the scale h while variations in the xy-plane happen on a scale L which we
assume to be much larger. Doing a scaling analysis we then get

∇∥ · v∥ + ∂zvz ∼ v∥
L

+ vz

h
= 0 =⇒ vz ∼ v∥

h

L
, (2.33)

whereby v∥ we refer to the velocity vector that is parallel to the plates and
∇∥ = ∂xex +∂yey is the differential operator in this plane. Using the assumption
L ≫ h we neglect vz. It then follows from eq. (2.32) that the pressure gradient
and the driving force are balancing in the z direction.

z

z=-h

z=h

x

Figure 2.3: Sketch of the Hele-Shaw cell. The cell consists of two parallel plates
with a distance 2h between them. We consider a flow in such a system in the
limit that the plates are infinite in size.

Another consequence of L being so large compared to h is that we can
approximate the flow as being a Poiseuille flow of the form [35]

v∥(r) ≈ 3
2h2 u(x, y)(h2 − z2), (2.34)
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where u is the flow after averaging out the z direction. Inserting this into the
Stokes equation for the velocity parallel to the plate we find

∇∥p− η
3

2h2 (h2 − z2)∇2
∥u(x, y) − η

3
h2 u(x, y) = f∥(r). (2.35)

We now integrate out the z dependence from −h to h so that the equation
becomes [35]

Γu(x, y) − η∇2
∥u(x, y) = −∇∥p+ F, (2.36)

where Γ = 3η/h2 is an effective friction coefficient and F is the effective two-
dimensional force. We will for the most part in this thesis be in two dimensions
so we will not carry the notation ∇∥ any further. Here we did the reduction of
dimensionality using a Hele-Shaw cell. Notice that the we can arrive at eq. (2.36)
as long as the flow in the xy-plane can be written as

v∥(r) = u(x, y)Z(z), (2.37)

with Z(z) being non-linear in z. The above discussion is thus relevant for more
systems than the one we discuss here.

2.4 Complex integration

When solving the flow equations around the topological defects in the active
matter with nematic and polar symmetries in Paper (I) and (V) we make use of
the fact that we can map the two-dimensional integral into an integral in the
complex plane and write the integrals on the form

I(r) =
∫ ∞

0
dr′G(r′)

∮

C

dẑf(ẑ, r′, r). (2.38)

Here C is the unit circle in the complex plane, and r is the position in space
that we evaluate the integral. The integration variables are written in terms of
complex polar variables z′ = r′ẑ with ẑ = eiθ′ . In this section, we introduce and
motivate the integration techniques that we employ to solve the path integral
over the complex variable ẑ. We are not going to do any rigorous proofs.

Residual integration Given a function f(z) of the complex variable z we want
to find the path integral over the curve C in the complex plane. I.e. we want to
evaluate ∮

C

dzf(z). (2.39)

If the function f(z) is analytical in the space bounded by the curve C the integral
vanishes due to Cauchy’s integral theorem [36]. Suppose now that f(z) has a
singularity at the point z = z0 inside of the contour C. We are going to assume
C to be a circle of radius R. If C is not a circle to start with we can map the
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integral to an integral over the curve C1 which is a circle, i.e. we want to show
that ∮

C

dzf(z) =
∮

C1

dzf(z), (2.40)

for the paths C and C1 shown in Fig. 2.4 a). To do this, we consider the integral
over the edge of the two domains D1 and D2 which are drawn in Fig. 2.4 b).
Note that C1 has here been reversed. Since there is no singularity inside either
of the domains we have that

∮

∂D1

dzf(z) +
∮

∂D2

dzf(z) = 0. (2.41)

Since we integrate both ways on the lines l1 and l2 the integral over them cancels.
The above expression reduces to

∮

C

dzf(z) −
∮

C1

dzf(z) = 0. (2.42)

C

z0

C1

a)

C

z0

-C1

b)

D

D1

2

l

l

1

2

Figure 2.4: When integrating a function f(z) on a curve C that encircles a
point z0 where f is singular we can map this to the integral on the circle C1
containing z0. a) shows a general surface C and the circle C1, while in b) we
show the construction of two domains D1 and D2. Since the two domains do
not contain any singularity the integral over their boundaries vanishes. When
we add these two integrals we integrate back and forth on the lines l1 and l2 so
those disappear. This shows that the integral over C and C1 is equal.

Now consider the integral over the circle C1. Because of the singularity at
z0, we can not use Cauchy’s theorem, so we need another trick to perform this
integration. We can start by finding the Laurent series of f around the point z0

f(z) =
∞∑

n=0
ak(z − z0)k +

∞∑

m=1

bm

(z − z0)m
. (2.43)

Inserting this into the integral we find
∮

C1

dzf(z) =
∮

C1

dz

( ∞∑

k=0
ak(z − z0)k +

∞∑

m=1

bm

(z − z0)m

)
. (2.44)

17



2. Preliminaries

The integral over the first sum vanishes because this is analytic in the entire
domain. Changing variables to w = z − z0 and then using that R is constant on
C1 we have dw = d(Reiθ) = Reiθidθ, so that we can write the integral as

∮

C1

dzf(z) =
∞∑

m=1
ibmR

1−m

∫ 2π

0
dθeiθ(1−m). (2.45)

The integral over the angle θ vanishes unless m = 1. We then get
∮

C1

dzf(z) = 2πib1, (2.46)

so the problem is reduced to finding the coefficient b1 which is known as the
residue of f(z) at the point z0 [36].

In some cases, we do not need to find the whole series to do this. Suppose
we can write the function as f(z) = h(z)/g(z) with both g(z) and h(z)
being analytic in the interior of C and let g(z) have an n’th order zero
at z = z0 and h(z0) ̸= 0. That g(z) has an n’th order zero means that
g(z0) = ∂zg(z)|z=z0 = ... = ∂n−1

z g(z)|z=z0 = 0. This means that the first n
terms, including the constant, of the Taylor series of g(z) around z0 vanishes so
that we have g = (z − z0)n[gn + gn+1(z − z0)1...] = (z − z0)nG(z), where G(z)
does not have a zero at z0. We can now write f as

f(z) = 1
(z − z0)n

h(z)
G(z) = bn

(z − z0)n
+ bn−1

(z − z0)n−1 +...+ b1
(z − z0)+a0+.... (2.47)

Here we have used that since h(z) is analytic and non-singular in the domain and
G(z) does not have any zeros at z0, we have that the fraction h(z)/G(z) does not
have any singularities in the domain and can be expanded as a Taylor series (no
negative exponent). Since the biggest negative exponent in the Laurent series is
−n we have
f(z)(z− z0)n = bn + bn−1(z− z0) + ...+ b1(z− z0)n−1 +a0(z− z0)n + .... (2.48)

Now we take the derivative of this n− 1 times to find

∂n−1
z [f(z)(z − z0)n] = (n−1)!b1 +n!a0(z−z0)+ (n+ 1)!

2 a1(z−z0)2 +.... (2.49)

If we evaluate this at z0, we get the residual b1 as

b1 = Resz=z0f(z) = 1
(n− 1)! lim

z→z0
∂n−1

z [f(z)(z − z0)n] , (2.50)

which we can put into eq (2.46) to get an expression for the integral. In some
cases, the function f has more than one pole inside the contour C. It is then
straightforward to generalize this discussion and show that the integral becomes

∮

c

dzf(z) = 2πi
k∑

i=0
Resz=zif(z), (2.51)

where z0, ..., zk are the zeros of f encapsulated by the contour. This is known as
the residue theorem [36].
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Branch cuts Some complex functions are multi-valued. Let us consider the
function f(z) =

√
z. Using the polar representation we can write z = |z|eiθ

and the function takes the form f(|z|, θ) =
√

|z|eiθ/2. Notice that θ = 0 and
θ = 2π is the same point in space, but inserted into f gives f(|z|, 0) =

√
|z| and

f(|z|, 2π) = −
√

|z|. Therefore if we follow any path that encircles z = 0, which
is a branch point, we find that the value of the function will differ depending on
how many times the path circles the origin [37]. Since a function should not
have more than one value at each point we need to define a branch cut where
we specify what the value of the function is in order to make it uniquely defined.
This is similar to how we define the square root of a positive real number to be
positive. The placement of the branch cut is arbitrary as long as it extends from
a branch point. For the above example, we can set f(z) positive on the real axis.
Another typical example of a multi-valued function is the complex logarithm
ln(z).

a

Im

Re

C

C2

C1

Figure 2.5: Sketch of the contour C and the keyhole contour around the branch
cut (dashed line). We map the integral around C in eq. (2.52) to an integral
around the keyhole, which consists of two circles C1 and C2 centered at the
branch points z = 0 and a, and the line connecting the circles being ϵ above and
below the branch cut.

Here we are going to show a method for solving some integrals that contain
a branch cut. Consider the complex function

f(z) = 1√
z
√
z − a

. (2.52)

This function has two branch points at z = 0 and z = a which we have assumed
to be real. We can therefore make it single-valued by taking a branch cut from
0 to a [37]. Suppose now that we want to consider the integral over a contour C
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that encapsulates the branch points as shown in Fig. 2.5. To solve the integral
∮

C

dzf(z) (2.53)

we use Cauchy’s theorem to map it into an integral over the contour made up of
the two circles C1 and C2 and the lines connecting them. The circles have radius
ϵ and the lines are ϵ above and below the branch cut. We can now decompose
the integral into

∮

C

f(z) =
∫

C1

dzf(z) −
∫

C2

dzf(z) +
∫ a−iϵ

−iϵ

dzf(z) +
∫ iϵ

a+iϵ

dzf(z). (2.54)

In the limit of ϵ → 0 the integrals over the circles C1 and C2 vanish. We can
show this by considering the one centered at a and changing the variable to
z′ = z − a. The integration variable, z′ is on the circle C2 and can therefore be
written as z′ = ϵeiθ. The integral over the circle C2 in the limit that its radius ϵ
goes to zero is then

lim
ϵ→0

∮

C2

dz′ 1√
z′√z′ + a

= lim
ϵ→0

∫ 2π

0
dθ

ϵieiθ

√
ϵeiθ

√
a

∼ lim
ϵ→0

√
ϵ = 0, (2.55)

and similarly for the integral over C1. Using now that f(z) is positive above the
branch cut and negative below, we can write the integral as

∮

C

dzf(z) = −2
∫ a

0

dx√
x

√
x− a

, (2.56)

which we can solve. In Paper (I) and (V) we do a similar construction to solve
the complex part of integrals that have the form shown in eq. 2.38.
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Chapter 3

Bose-Einstein Condensates and
Topological Defects

In this chapter, we are going to introduce the Bose-Einstein Condensate (BEC)
and discuss some of its properties. The condensation of particles following
Bose-Einstein statistics is due to the quantum properties of the gas [11]. At
low temperatures, the BEC can be described by a semi-classical mean-field
approach. We start our discussion by motivating the Gross-Pitaevskii equation
as the conservative dynamics of a grand canonical Hamiltonian. We then discuss
the BEC’s ground state and linear excitations. After this, we introduce the
concept of topological defects in BECs before we make a brief generalization of
their properties focusing on BEC and nematic liquid crystals. After introducing
the topological defects, we will discuss a scheme for tracking their position and
use this to derive their kinematics. The chapter then ends with a discussion of
vortex kinematics.

3.1 Bose-Einstein condensation and the Gross-Pitaevskii
equation

Bose-Einstein condensates form in gasses of particles obeying Bose-Einstein
statistics when they are cooled below a critical temperature Tc [11]. This phase
is characterized by having a macroscopic occupation of the ground state N0,
meaning that the fraction of particles in the ground state N0/N stays finite in
the thermodynamic limit N → ∞. The Bose gas can in the second quantization
be described by a grand canonical Hamiltonian given by [38–40]

K̂ = Ĥ − µN̂ =
∫
dr
[
ℏ2

2m∇Ψ̂†(r) · ∇Ψ̂(r) + U(r)Ψ̂†(r)Ψ̂(r) − µΨ̂†(r)Ψ̂(r)
]

(3.1)

+1
2

∫
dr
∫
dr′Ψ̂†(r)Ψ̂†(r′)v(r − r′)Ψ̂(r)Ψ̂(r′),

where Ψ̂(r), Ψ̂†(r) are the bosonic field operators, µ is the chemical potential,
m is the particle mass, v(r − r′) is the two-body interatomic potential and
U(r) is an external potential, e.g., a harmonic trap. The field operator can be
decomposed into Ψ̂ = ψ̂ + ϕ̂, with ψ̂ and ϕ̂ being the operators for the ground
state and excited states respectively.

Below the critical temperature for condensation the occupation of the ground
state has become macroscopic ⟨ψ̂ψ̂†⟩ = N0 ≫ 1 making it much larger than the

21



3. Bose-Einstein Condensates and Topological Defects

commutator [ψ̂, ψ̂†] = 1. Because of this, the mistake we make by ignoring the
commutation relation is negligible and we can replace the quantum field with
a complex field ψ. This approximation where we treat the ground state as a
classical field is known as the Bogoliubov prescription [38]. If we in addition
neglect all the excited states, the Hamiltonian becomes

K =
∫
dr
[
ℏ2

2m∇ψ∗ · ∇ψ + (U − µ)|ψ|2 + g

2 |ψ|4
]
. (3.2)

We have here assumed that the gas is dilute so that the two-body interaction
potential is well described by a delta function v(r − r′) = gδ(r − r′), with g being
the interaction strength. The BEC at zero temperature satisfies conservative
dynamics and we can find the evolution equation of the macroscopic wave
function as [39]

iℏ∂tψ = δK

δψ∗ =
[
− ℏ2

2m∇2 + U − µ+ g|ψ|2
]
ψ. (3.3)

This is known as the Gross-Pitaevskii equation (GPE). Note that the complex
wave function ψ = |ψ|eiϕ has in the ground state a coherent phase and therefore
breaks the rotational symmetry of the isotropic gas. The broken symmetry
is here an U(1) symmetry which is isomorphic to SO(2) as discussed in Chapter 2.

The damped GPE As discussed above, one gets the GPE by neglecting the
excited states making it a zero-temperature approximation. At any finite
temperature, there will be some occupation in the excited states and hence
interactions between the condensate and the thermal cloud. One can take these
interactions into account by treating the atoms above an energy cutoff ϵ as a
thermal reservoir which we will refer to as the thermal cloud or the normal
gas. This leads to the Stochastic projected GPE [41, 42], or the Stochastic
GPE [42–44] depending on which assumptions are made for the condensate and
the thermal cloud. Both approaches lead to the dissipation of energy from the
condensate into the normal gas, and when neglecting the noise, both reduces to
the damped GPE (dGPE)

iℏ∂tψ = (1 − iγ)
[
− ℏ2

2m∇2 + U − µ+ g|ψ|2
]
ψ. (3.4)

The parameter γ ≥ 0 is a function of temperature, chemical potential and the
energy of the thermal cloud [45]. It is typically very small γ ≪ 1. The addition
of the damping parameter γ causes energy to dissipate from the system. We can
see this by taking the time derivative of the Hamiltonian and using the dGPE
[46, 47]

∂tK =
∫
dr
(
δK

δψ
∂tψ + δK

δψ∗ ∂tψ
∗ + δK

δU ∂tU
)

22



Ground state and linear modes

=
∫
dr
(
δK

δψ

1 − iγ

iℏ
δK

δψ∗ + δK

δψ∗
1 + iγ

iℏ
δK

δψ
+ δK

δU ∂tU
)

= −2γ
ℏ

∫
dr
∣∣∣∣
δK

δψ∗

∣∣∣∣+
∫
dd|ψ|2∂tU . (3.5)

The first term is negative and will dissipate energy out of the condensate, while
the second term makes it possible to inject energy into the condensate by making
the potential time-dependent. This is utilized in Paper (III) where we use a
repulsive Gaussian stirring potential to study the nucleation of defects. The
repulsive potential reduces the condensate density, |ψ|2, under it. When it
moves, above a critical velocity (see Section 3.2), it pushes a compressible wave
in front of itself while leaving a diluted wake behind [46, 48]. The density |ψ|2
is, therefore, a bit higher in front of the potential where the time derivative
of the potential is positive and lower behind where the derivative is negative.
Stirring the condensate thus leads to additional energy being added. We use
this to make topological excitations in the condensate.

Dimensionless units To make the analysis of the dGPE more convenient, we
will introduce dimensionless units to ease the notation [46, 47]. We, therefore,
set the unit for energy to the chemical potential µ, and the unit for velocity is
set to c =

√
µ/m, which we will see is the speed of the long wavelength linear

excitations [39]. We measure lengths in units of the healing length ξ = ℏ/√mµ.
Having a unit for length and velocity, we get that the unit of time has to be
τ = ξ/c. In these units, the equation reads

i∂tψ = (1 − iγ)
[
−1

2∇2 + U − 1 + g

µ
|ψ|2

]
ψ. (3.6)

We further simplify this by rescaling the wave function to ψ →
√

g
µψ, and thus

obtain a dimensionless equation with the thermal dissipation γ being the only
tunable parameter

i∂tψ = (1 − iγ)
[
−1

2∇2 + U − 1 + |ψ|2
]
ψ. (3.7)

The Hamiltonian in these units becomes

K =
∫
dr
[

1
2∇ψ∗ · ∇ψ + (U − 1)|ψ|2 + 1

2 |ψ|4
]
. (3.8)

3.2 Ground state and linear modes

We are now going to look for the ground state of the system which we can find
by minimizing the Hamiltonian. To find this state, we first rewrite the grand

23



3. Bose-Einstein Condensates and Topological Defects

canonical Hamiltonian eq. (3.2) to

K =
∫
dr
[
ℏ2

2m∇ψ∗ · ∇ψ + µ2

2g

[
g

µ
|ψ|2 + ( 1

µ
U − 1)

]2
]
, (3.9)

by completing the square and ignoring a constant in the energy. We have assumed
that U does not vary in time. We now assume that the ground state is varying
slowly in space so that we can ignore the gradient term. The Hamiltonian is
now lowest when the integrand

µ2

2g [ g
µ

|ψ|2 + ( 1
µ

U − 1)]2 (3.10)

is as small as possible. If U > µ both terms in the bracket are positive so the
minimum is when |ψ|2 = 0, while if U < µ we get that the minimum is

ρT F = |ψT F |2 = µ− U
g

, (3.11)

since this makes the integrand zero. This is the Thomas-Fermi ground state [39,
49]. In Fig. 3.1, we have plotted it against a numerical estimate for the ground
state of a BEC in a harmonic trap.

This approximation is decent in the bulk but breaks down at the edges of
the condensate where the neglected gradients become large. We can see this by
inserting the harmonic potential U ∼ r2 into eq. (3.11). It becomes

ψT F =
√
µ

g

√
1 − r2

R2
T F

, (3.12)

where RT F , known as the Thomas-Fermi radius, is the radius where the ground
state vanishes. The squared gradient of this wave function is

|∇ψT F |2 = µ

g

r2

R4
T F −R2

T F r
2 . (3.13)

This diverges in the limit r → RT F , breaking the assumption that the gradient
term in the Hamiltonian eq. (3.9) is small. We also see from eq. (3.13) that the
approximation holds better in the bulk when the Thomas-Fermi radius is large.
Noticing that if we change the time in the GPE to imaginary time t → iτ the
equation becomes dissipative. We can therefore use the Thomas-Fermi ground
state as a starting point for numerical simulations and find a lower energy state
by evolving the GPE in imaginary time.

Linear exitations We now set U = 0 and consider linear excitations to the
ground state. We start by writing the wave function as [39, 47]

ψ = ψ0 + δψ, (3.14)

24



Ground state and linear modes
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Figure 3.1: Plot of the density of the Thomas-Fermi ground state ρT F (dotted
line) against that of a numerically obtained ground state ρ0 (solid) for a harmonic
potential U ∼ r2. ρ0 is found by evolving the GPE in imaginary time as described
in the text.

with ψ0 = 1 being the homogeneous ground state in dimensionless units and δψ
are linear excitations to this state. Putting this into the dimensionless dGPE we
can find a linear equation for the excitations as

∂tδψ = (i+ γ)
[
−1

2∇2δψ + (U + 1)δψ + δψ∗
]
. (3.15)

Writing the perturbation as plane waves, δψ = u(r)e−iωt + v(r)eiω∗t, doing a
Fourier transform in space and using that eiω∗t and e−iωt are linearly independent
we get the following system of equations

[
ω − (1 − iγ)[ 1

2k
2 + 1] −(1 − iγ)

−(1 + iγ) −ω − (1 + iγ)[ 1
2k

2 + 1]

] [
ũ(k)
ṽ(k)

]
= 0. (3.16)

We are interested in those frequencies that have non-trivial solutions.
Therefore we look for the frequencies where the determinant of this matrix
vanishes. This results in the following dispersion relation

ω = −iγ
(

1 + 1
2k

2
)

+

√
1
2k

2
(

2 + 1
2k

2
)

− γ2. (3.17)

The first term is an exponential damping due to the dissipative factor γ. Notice
that it increases quadratically with wavenumber so that small wavelength
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3. Bose-Einstein Condensates and Topological Defects

perturbations are damped faster. The real part of the dispersion relation is
giving the frequency of the oscillations and can be used to find the velocity of the
waves. In the zero temperature limit γ = 0 the imaginary part of the dispersion
relation vanishes and we get

ω(k) = k

√
1 + 1

4k
2, (3.18)

which is plotted as the solid line in Fig. 3.2. This is called the Bogoliubov
Spectrum [39].
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Figure 3.2: Figure of the dispersion relation (solid line) given in eq. (3.18). The
dashed line is the phonon dispersion ω = k (in dimensionless units) and is due
to the interaction term in the Hamiltonian eq. (3.2). The dotted line is the
spectrum of a free particle ω = k2/2.

By squaring and inserting back the units we can get a better understanding
of where the terms come from

(ℏω)2 = 2gρ0
ℏ2k2

2m +
(
ℏ2k2

2m

)2

. (3.19)

The first term is due to the interaction term in the Hamiltonian eq. (3.2), and in
the next section we are going to show that it is this term that makes the BEC
a superfluid. For small k it is this term that is dominant and the dispersion
relation becomes ω = ck, which is the dispersion relation of acoustic phonons.
We see that the speed of the excitations is c =

√
µ/m, which is what we used

as the unit for velocity when introducing the dimensionless units. In the other
limit of large k, the spectrum becomes that of a free particle ℏω = ℏ2k2/2m.
The small/large k asymptotes are shown as the dashed/dotted line in Fig. 3.2.
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3.3 Hydrodynamic description and superfluidity

In this section, we want to use the dGPE to map the hydrodynamic description
of the condensate into the Navier-Stokes equation eq. (2.29) and introduce the
quantum pressure discussed in Paper (IV). To do this, we will use the Madelung
transform ψ = √

ρeiϕ [39, 42], with ρ = |ψ|2 being the condensate density
and ϕ being the argument of the wave function. At zero temperature, γ = 0,
the condensate density is a conserved quantity that satisfies the conservation
equation [39]

∂tρ+ ∇ · J = 0. (3.20)
Using the GPE to find an expression for ∂tρ, we get that the conserved current
density is

J = Im(ψ∗∇ψ) = ρ∇ϕ = ρv, (3.21)
where we have identified the superfluid velocity as v = ∇ϕ. That the velocity
field can be written as the gradient of a scalar field is something we will discuss
more in the next section. If we now insert the Madelung transformation into
the dGPE, multiply with ψ∗, and use that the real and the imaginary part are
independent, we get the equations

∂tρ+ ∇ · (ρv) = 2γρ(1 − Ueff ), (3.22)

∂tϕ = 1 − Ueff + ρ+ γ

2ρ∇ · (ρv). (3.23)

Notice that eq. (3.22) shows that the consequence of having non-zero γ is that
the particle number is not conserved. The source term on the right-hand side
drives the system towards particle number equilibrium with the thermal cloud
[42, 47], which is reached when Ueff = 1 or Ueff = µ in real units. The effective
potential is

Ueff = v2

2 + U + ρ− 1
2

∇2√
ρ

√
ρ
, (3.24)

with the last part being the quantum pressure. This pressure is usually small
unless ρ changes rapidly [42]. We use the quantum pressure in Paper (IV) to
visualize the non-linear excitations that are created during an annihilation event.

Taking now the gradient of eq. (3.23), we get

∂tv = −∇v2

2 − ∇(U + ρ) + 1
2∇∇2√

ρ
√
ρ

+ γ

2ρ∇∇ · (ρv). (3.25)

Assuming there are no phase singularities so that we can neglect terms that
include the curl of the velocity and that the condensate is slowly varying, we
arrive at [42, 46]

∂tv − v · ∇v = −∇(U + ρ) + γ

2 ∇2v. (3.26)

This is the Navier-Stokes equation with the pressure (U + ρ) and the viscosity
ν = γ/2. In the zero temperature limit γ = 0 this reduces to the Euler equation
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for an ideal fluid [39]. The related Hamiltonian can be found by inserting the
Madelung transformation into eq. (3.8)

K =
∫
dr
[

1
2ρv

2 + 1
8

|∇ρ|2
ρ

+ Uρ+ (ρ2 − 1)2
]
. (3.27)

Note that here, U is not restricted to be stationary and so including it in the
quadratic term as we did in eq. (3.9) would lead to an additional −U2 term
that we cannot remove. The first term in the Hamiltonian is the kinetic energy,
the second gives the energy due to density distortions, the third is the energy
due to the external potential and the last term is balancing the interaction and
chemical potential [46, 47].

Superfluidity That the hydrodynamic equations reduce to the Euler equation
for ideal fluids in the limit when the velocity is curl-free and the density is slowly
varying hints at another property of the weakly interacting BEC, namely, its
ability to sustain frictionless flows at zero temperature. This ability is due to
the interaction term in the Hamiltonian, and we will show here that a BEC
consisting of non-interacting free particles will not experience any superfluidity.
We start by assuming that the BEC is at zero temperature, γ = 0, and flowing
in a tube at velocity v. If there is friction between the condensate and the walls,
this will induce energy into the BEC, but since this is a quantum fluid the energy
has to be induced in the form of elementary excitations [40, 50]. In the system
that is moving with the liquid, the excitation has an energy ϵ(P) and momentum
p, so that the energy and momentum of the fluid become E = ϵ(p) + E0 and
P = p in this reference frame. We now transform to the frame that is stationary
with respect to the tube. The energy and momentum in the new frame is

E′ = E + P · v + 1
2Mv2, (3.28)

P′ = p +Mv, (3.29)

with M being the mass of the condensate. We have here used the transformation
laws for a fluid, where the first follows from the kinetic term in the Hamiltonian
eq. (3.27) and the second is trivial. The energy of the excitation in the frame
where the tube is stationary is then

ϵ(p) + p · v. (3.30)

In order for the creation of excitations to be spontaneous the energy has to be
lowered after its creation. We, therefore, get the requirement

ϵ(p) + p · v < 0. (3.31)

This means that the lowest velocity that can spontaneously create excitations is
given as

vc = min
p

ϵ(p)
p
. (3.32)
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This is the Landau critical velocity [40, 47, 50]. From eq. (3.19) we find that we
can write the energy spectrum of the excitations as

ϵ(p) = p√
2m

√
p2

2m + 2gρ0 (3.33)

in physical units.

In Fig. 3.3 we have plotted ϵ(p)/p setting 2m = ρ0 = 1 for different values of
g. Using this energy spectrum, we see that ϵ/p has a minimum at p = 0 so that
the critical velocity becomes

vc = c. (3.34)

Here c =
√
µ/m is the velocity we used to make the dGPE, eq. (3.7), dimen-

sionless, and we saw in the previous section that it is the velocity of the long
wavelength excitation. If we ignore the interaction and instead use the dispersion
relation for free particles ℏω = ℏ2k2/2m, we get vc = 0, which can also be seen
from Fig. 3.3. The ideal Bose gas is thus not a superfluid [50].
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Figure 3.3: Plot of ϵ/p for different values of the interaction strength g. The
minimum at p = 0 decreases with g and for non-interacting particles, g = 0, the
minimum goes to zero, meaning that the ideal BEC is not a superfluid. We have
fixed the parameters to 2m = ρh = 1. Figure inspiration from [47].

This critical velocity holds well also for condensates that are stirred by a
weak Gaussian potential [47, 48, 51, 52]. That is a potential of the form

Us = gse
−(r−rs)2/d2

s . (3.35)
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If the potential strength gs is not too large, the potential will only be able to
create perturbations in the form of phonons. However, if gs and ds are large
enough, it will also be able to excite topological defects in the form of quantized
vortices into the condensate. Since the vortices are non-linear excitations, it is
hard to find an analytical expression for the critical velocity for vortex formation.
It can be done in the limit of solid/impenetrable obstacles [53–55], but for
penetrable obstacles like the Gaussian it has to be measured experimentally or
numerically [23, 56]. In Paper (III) we study numerically the onset of nucleation
close to the critical point, with a focus on how the phase slip forms and develops
a core.

3.4 Topological defects

We are now going to consider the topological defects in a BEC, which take
the form of quantized vortices. From the hydrodynamic description, we saw
that the superfluid velocity is the gradient of the phase v = ∇ϕ. This has the
consequence that the vorticity ω = ∇⊥ · v, with ∇⊥ = (∂y,−∂x) is the rotated
gradient, has to vanish unless the phase is singular. These singular points are
the topological defects of the condensate. If we consider an integral of the phase
around a closed curve C, the integral has to be an integer multiple of 2π due to
the wavefunction being single-valued. We can then define the topological charge
q as [9, 39, 40, 46, 47]

∫

C

dϕ =
∫

C

dl · ∇ϕ = 2πq. (3.36)

Moreover, as long as ϕ is smooth, we can deform C continuously without changing
the integral because it can only take discrete values. In the same way, we can not
change the result by applying continuous deformations on the phase θ. It can
only change discontinuously as we move the curve through the phase singularity.
Imagine now that we shrink the contour to a point without moving it through
any discontinuities in the phase. For eq. (3.36) to hold when C is shrunk to a
point, the gradient has to become infinitely large, meaning that this point is a
phase singularity [21]. If there is more than one singularity inside the curve, we
continuously deform the curve into smaller curves, Ci, containing one singularity
each. The integral then becomes

∫

C

dl · ∇ϕ =
∑

i

∫

Ci

dl · ∇ϕ = 2π
∑

i

qi, (3.37)

meaning that the topological charge is additive. The sum is here over all defects
contained in C. Eq. (3.36) is a topological constraint on the singularity, which
is why we call it a topological defect. This constraint also implies that the
defects of the lowest charge are stable because there is no way for them to
gradually decrease in strength. They can only be removed by migrating out of
the condensate or by annihilation with an oppositely charged defect.
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3.4.1 Minimal manifold and homotopy theory

For a two-dimensional BEC, the topological defects are points-like [9, 21],
because we can continuously deform the loop into a point. In three dimensions
the vortex is line-like, which can be seen from a similar argument. Consider a
point defect in the condensate. If we now put a loop C around the vortex and
assume that the integral of the phase around the loop is 2πq with q non-zero.
It is now fairly easy to deform the loop to a point that does not contain the
singularity by deforming out of the plane. The integral over the loop is then
zero since it is over a point that is not singular. Since the integral can only
change value discretely when the line goes through a singularity, it means that
it also had to start out as zero. This is a contradiction, which implies that there
is no point defect for a complex order parameter in three-dimensional space. If
we instead start out with a line defect centered in the loop, then there is no way
to continuously deform the path C so that it does not contain the singularity,
without passing through the line.

We want to discuss what types of defects are stable for a general order
parameter, and start by introducing an order parameter space M which is the
ground state manifold of the order parameter [9, 21]. By ground state manifold
we mean the space of parameters that leaves the equilibrium energy invariant,
which for vector order parameters will be the angles. For a two-dimensional
vector order parameter M is then the unit circle S1, while for a three-dimensional
order parameter, it is the unit sphere S2. In general a n dimensional vector order
parameter M is the n dimensional unit sphere Sn−1, provided that the order
parameter has the symmetries of a normal vector. For a vector order parameter
with the minimal manifold being the unit sphere, Sn−1, the dimension of the
defect core will be set by the dimension of the order parameter n, and the
dimension of the space d. For the condensate n = 2 since the wave function can
be mapped to a two-dimensional vector order parameter.

From the dimension of the space d and the dimension of the defect core
dc one can define the codimension d′ = d − dc [9, 21]. When the minimal
manifold is Sn−1 the defect is stable if d′ = n. From this, we see that in two
dimensions, d = 2, with a two-dimensional order parameter, n = 2, dc = 0
should be stable and the defect is thus point-like. In three dimensions dc = 1
should be stable, corresponding to a line-like defect. The line defect has to
either form a loop or extend to the edges of the system in order for the defect to
be topologically protected by eq. (3.36). We also see that if we have a three-
dimensional vector order parameter in three dimensions, then the topological
defects would be point-like with core dimension dc = 0. The codimension of
the defects is a fast way of determining its stability, but it does not always
work if the minimal manifold of the order parameter is not Sn−1. An example
of this is the existence of line defects, d′ = 2, in three-dimensional nematics,
where the order parameter is the director field with n = 3. The reason for
this is that the order parameter of the nematic is headless vectors, meaning
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that they are symmetric to rotations of π instead of 2π. The minimal manifold
is therefore not S2, but P2 which is the sphere with antipodal points identified [9].

To get insight into why the defects are stable, consider a map from coordinate
space to the order parameter space. In three dimensions this could just be the
angles of the order parameter, ϕ and θ, evaluated at some position in space.
In order for the defect to be topologically protected the map from a line or
surface in the d dimensional coordinate space to the n − 1 dimensional order
parameter space (minimal manifold) has to be impossible to shrink down to
a point by doing continuous deformations. If we use the angles ϕ and θ to
map a curve in coordinate space to the order parameter space, it will map to
a closed curve. Why an order parameter with the minimal manifold S2 has
no stable line defects in three dimensions can then be seen from Fig. 3.4 a).
Any closed curve on the two-sphere can be "rolled" off to one of the poles and
shrunk to a point. The point represents a homogeneous order parameter in
real space. A point defect in this order parameter is stable since if one puts
a closed surface around the defect, then the angle of the order parameter on
the surface will map out the entire two-sphere. It is not possible to shrink
the surface covering the two-sphere down to a point by continuously deforming it.

The line defects in the three-dimensional nematic are stable because antipodal
points on P2 are identified, which allows us to make closed curves on the surface
that it is not possible to remove continuously. These are the curves that start at
one pole and end on the other as shown in Fig. 3.4 b). These curves are the maps
from paths that encircle the 1/2 defects. Interestingly in the three-dimensional
nematic, only the 1/2 defect is stable [9]. This is because the integer defects
can be deformed to a point and all half-integer defects, i.e. the ones that cir-
cle multiple times around the P2, can be deformed continuously to the 1/2 defect.

a) b)

Figure 3.4: a) shows a closed curve on S2. This curve can be continuously
deformed to a point and is therefore not a defect. b) shows a closed curve P2
which we are not able to deform into one point since the endpoints are identified.
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Homotopy theory Above we discussed that when we map a closed loop or
surface around a topological defect in coordinate space to the minimal manifold,
it results in a closed loop or surface that is impossible to remove by continuous
deformations. This allows us to use homotopy theory to classify and identify
topological defects [9, 11, 21, 57]. Two curves f1 and f2 are homotopic if we
can continuously deform them into each other. The loop shown in Fig. 3.4 a) is
therefore homotopic with a point placed anywhere on the sphere, corresponding
to a state where all the vectors in real space are parallel. For the two-dimensional
Bose-Einstein condensate, all curves in real space that do not circle a vortex will
map to a curve on the minimal manifold that is homotopic to a state where the
wave function is a constant.

Topological defects can be classified by the homotopy class of the surface that
it maps out in the minimal manifold. For example, the homotopy class of point
defects in the two-dimensional BEC is indexed by the winding number, because
this gives how many times the curve wraps S1 [9]. If the order parameter has the
minimal manifold S2 all maps from closed loops will be homotopic since they can
be deformed to a point. If we instead put a closed surface around the defect, we
find that the homotopy classes are indexed by how many times the map covers S2.
The nice thing about the homotopy classes is that they give a straightforward
way of adding defects. Consider two defects in the two-dimensional condensate
with winding numbers +2 and −1. In order parameter space this corresponds to
one curve that loops around S1 two times counterclockwise and one curve that
loops around once clockwise. Deforming these paths into each other, we find
that this is the same as looping around once counterclockwise, i.e. a +1 defect.

So the paths of the homotopy classes have an operator, the combination of
curves in the above example, that acts on two elements and returns a curve of
a different homotopy class. It turns out that the set of homotopy classes is a
group [9]. Moreover, the group associated with the loops around S1 is simply
the signed integers Z with normal addition, so to combine defects in this order
parameter, we just add the winding numbers. This is the main advantage of
homotopy theory, we get a group structure that tells us how defects are combined
[9, 57]. We can now define the first homotopy group of the minimal manifold
M, which we write as π1(M), as the group associated with closed curves in M.
For a three-dimensional vector order parameter all loops are equal so we have
π1(S2) = 0, i.e. the group only consists of one element, the identity. The m’th
homotopy group of the manifold M, πm(M), is the group associated with the
closed m dimensional surface in M. If M is the two-sphere then π2(S2) = Z,
and in general for the i spheres we have that

πi(Si) = Z, (3.38)
πj(Si) = 0, i < j. (3.39)

This is why the stable defects in such systems are those where d′ = n. Since
the only stable line defect in the three-dimensional nematic is the 1/2 it follows
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that the first homotopy group is the integers modulo 2, π1(P2) = Z2 [9]. For
two-dimensional nematics, the minimal manifold is the unit circle with opposite
points identified, P1. Here all loops with half-integer winding numbers are stable
and the first homotopy group is Z [9]. We are going to come back to these
defects in the next chapter.

3.4.2 Core structure and far-field energy

As we have seen, the vortices are singularities in the phase. To avoid diver-
gences in the energy the superfluid density ρ has to go to zero at the defect’s
position. The region where the defect goes from the far-field value, which
for a homogeneous condensate in dimensionless units is ρ = 1, to zero at the
singularity is called the core of the defect. Having zero density is energetically
unfavorable so the core region will not extend far into the condensate. From
the Hamiltonian eq. (3.9), the energy penalty of a core with radius ℓc is in two
dimensions proportional to µ2ℓ2

c/(2g), which has to be balanced by the kinetic
term which for a linear increase in |ψ| from 0 to the far-field value given by the
Thomas-Fermi ground state is proportional to µℏ2/(2mg). This should balance
so the core size is roughly ℓc ∼ ℏ/√µm, i.e., it is of the of size with the healing
length.

The core structure of the defects is given by the Gross-Pitaevskii equation.
Consider a stationary vortex of charge q centered at the origin in an otherwise
unperturbed condensate in two dimensions. The stationary GPE is

[
−1

2∇2 − 1 + |ψ|2
]
ψ = 0. (3.40)

To solve this, we will assume that the vortex is radially symmetric and use
the ansatz ψ0(r, θ) = χ(r)eiqθ [21, 39]. Writing the stationary GPE in polar
coordinates, we find

−1
2

(
∂2

r + 1
r
∂r + 1

r2 ∂
2
θ

)
[χ(r)eiqθ] − χ(r)eiqθ + χ3(r)eiqθ = 0. (3.41)

This we can rewrite to

r2∂2
rχ(r) + r∂rχ(r) − q2χ(r) = 2rχ(r)(χ2(r) − 1), (3.42)

with the boundary conditions χ(0) = 0 and limr→∞ χ(r) = 1. This equation
is not analytically solvable, but close to the singularity we can neglect the
right-hand side. The resulting equation is

r2∂2
rχ(r) + r∂rχ(r) − q2χ(r) = 0. (3.43)

This is the Euler-Cauchy equation [36]. Using the boundary condition, χ(0) = 0,
we find that it has the solution χ(r) = Λr|q|, where Λ is a constant that can be
determined numerically. In Ref. [42] they found that the constant for |q| = 1 is

34



Topological defects

Λ2 ≈ 0.68.

We can find an approximation of the core structure of the form [21, 58]

χ2
0(r) = A(r)

B(r) = a0 + a1r + a2r
2

1 + b1r + b2r2 , (3.44)

by matching the asymptotes (i) χ2(r → 0) = Λ2r2 and (ii) χ2(r → ∞) = 1. We
find that the core is approximately given as

χ2
0(r) = Λ2r2

1 + Λ2r2 , (3.45)

which has the correct asymptotic behavior. This can be seen in Fig. 3.5 where we
have plotted this approximation against the profile from a numerical simulation.
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Figure 3.5: Plot of the analytical estimate of the core function χ0(r) (dotted)
obtained by matching the asymptotes against the vortex profile χ(r) (solid)
taken from numerical simulations.

Far-field energy From the discussion in sec. 3.4.1, we saw that we could
combine two vortices of charge +1 into one vortex of charge +2, and in a similar
way, a charge +2 vortex can split up into two defects of charge +1. We now want
to consider the energy of these vortices to see whether it is favorable to have one
vortex of higher charge or many single-charged ones. We start by considering
the far-field energy around a vortex of charge q in an otherwise homogeneous
condensate. Subtracting the ground-state energy we find that it is

K −K0 =
∫
dr1

2∇ψ∗ · ∇ψ, (3.46)
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in dimensionless units. Inserting that outside of the defect core the wave function
is ψ = eiϕ the energy becomes

K −K0 = 1
2

∫
dr∇e−iϕ · ∇eiϕ = 1

2

∫
dr(∇ϕ)2. (3.47)

To evaluate this integral, we need to get an expression for the angle ϕ. Such an
expression can be found from eq. (3.36) by taking the domain C to be a circle of
radius r centered at the defect position. Assuming that the defect is the only
perturbation in an otherwise unperturbed condensate, we then find

∇ϕ(r, θ) = q

r
θ̂. (3.48)

Here, θ̂ is the azimuthal unit vector. Inserting eq. (3.48) into eq. (3.47) and
changing to polar coordinates, we get

K −K0 = π

∫ R

Rc

dr
q2

r
= q2π ln

(
R

Rc

)
, (3.49)

where R is the system size and Rc ∼ ξ is the radius of the core [21, 46]. Notice
that this energy is proportional to the square of the vortex charge q2. This is also
the case if we include the core contribution to the energy [21], and consequently,
only the single charge defects are stable while defects of higher charge tend to
split up into vortices of unit charge. In the next section, we are going to show
that these smaller vortices of the same charge repel each other.

3.5 Vortex tracking

We are now going to discuss a method for tracking topological defects that is due
to Halperin [59] and Mazenko [60, 61]. There are multiple ways of motivating
this method. The approach used by Halperin [59] was to identify the defects as
zeros in the wave function and map them with a delta function. Mazenko later
extended this approach and found an expression for the velocity of the defects,
which can then be used to derive the kinematic equations of the vortices [60, 61].
We are here going to show how Halperin and Mazanko motivated this formalism,
and how we can use it to derive the kinematic equations of the vortices. In
Paper (IV) an alternative approach is given which also works for defects of higher
charge in addition to a generalization to arbitrary dimensions. We start out the
motivation by writing the order parameter as a vector-field Ψ⃗ = (ψ1, ψ2), with
the components ψ1 and ψ2 being the real and imaginary part of ψ respectively.
Here we show the method in two dimensions, but it is possible to extend it to
arbitrary dimensions.
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3.5.1 Motivation and defect kinematics

We start by noting that the number density of topological defects, n =∑
α δ(r − rα(t)), can be written as

∑

α

δ(r − rα(t)) = |D|δ(Ψ⃗), (3.50)

where we have changed the variables from position space {r} to the order
parameter space by using the transformation law for delta functions. Here rα is
the position of the defect labeled α and D is the determinant of the Jacobian
for the transformation from the variables (ψ1, ψ2) to (x, y) given by

D =
∣∣∣∣
∂xψ1 ∂xψ2
∂yψ1 ∂yψ2

∣∣∣∣ = ∂xψ1∂yψ2 − ∂yψ1∂xψ2 = ϵij∂iψ1∂jψ2. (3.51)

Inserting the linear core approximation, it is straightforward to show that for
vortices of charge ±1, D will have the same sign as the topological charge.
We can therefore replace the number density with the vortex charge density,
ρv =

∑
α qαδ(r − rα(t)) and find

ρc =
∑

α

qαδ(r − rα(t)) = Dδ(Ψ⃗). (3.52)

The topological charge is a conserved quantity so the singular topological charge
density satisfies the equation

∂tρc = −∇ · jc. (3.53)

We can also derive a conservation equation for the D field by taking the time
derivative

∂tD = −∇ · jD, (3.54)

with jD
i = −ϵijϵmn(∂tψm)(∂jψn). Multiplying eq. (3.54) with δ2(Ψ⃗) and using

the product rule we find

∂tρv −D∂tδ
2(Ψ⃗) = −∂i(jD

i δ
2(Ψ⃗)) + jD

i ∂iδ
2(Ψ⃗), (3.55)

where we have used eq. (3.52) to identify ρc. We now consider the last term on
the right-hand side. Notice that we can rewrite this to

jD
i ∂iδ

2(Ψ⃗) = ϵijϵkl∂jΨk∂tΨl∂iΨm
d

dΨm
δ2(Ψ⃗)

= ϵkl (ϵij∂iΨm∂jΨk) ∂tΨl
d

dΨm
δ2(Ψ⃗)

= −D∂tδ
2(Ψ⃗), (3.56)

where in the last step we have used that the tensor ϵij is anti-symmetric to
remove vanishing terms. Putting this result into eq. (3.55), we get

∂tρv = −∂i(jD
i δ

2(Ψ⃗)), (3.57)
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and identify the singular defect density current as

jc = jD
i δ

2(Ψ⃗) =
∑

α

qα
j(D)(rα)
D(rα) δ2(r − rα), (3.58)

where we have used the transformation law for delta functions and used that qα

has the same sign as D. An alternative expression for this current is

jc =
∑

α

qαvαδ(r − r(α)(t)), (3.59)

which follows from eq. (3.52). We can now identify the defect velocity as

vα = jD

D
|rα . (3.60)

Writing now the D field and its current in complex form,

D = ϵij
2i ∂iψ

∗∂jψ, (3.61)

jD
i = ϵijIm(∂tψ∂jψ

∗), (3.62)

we can use eq. (3.60) and the dGPE eq. (3.7) to derive an expression for the
vortex kinematics.

Kinematics in the frozen core approximation We now going to use eq. (3.60)
to derive a phenomenological model for the motion of N interacting defects, and
we start by assuming that we have an ideal vortex at position rα. We assume
that the wave function has the form ψ = ψ0e

iδϕ+δλ, with ψ0 being the ideal
quasi-static vortex solution, δϕ being perturbations in the phase and δλ being
perturbations in the density. The effect of a finite velocity on the wave function
is important for dissipative models and leads to logarithmic corrections to the
velocity we discuss below [21, 62]. These effects are commonly ignored in order
to make phenomenological models that capture the qualitative behavior of the
defects [63]. Inserting the ansatz into the dGPE eq. (3.7) to get an expression
for the time derivative, we find

∂tψ(rα) = (i+ γ)∇ψ0 · ∇(iδϕ+ δλ)eiδϕ+δλ|rα , (3.63)

where we have used that ψ0(rα) = ∇2ψ0|rα = 0. Inserting this into eq. (3.60)
and using the relation i∂kψ0 = qϵkl∂lψ0 [46], we find that the velocity of the
defect is given as

vα
i = (∂iδϕ− γ∂iδλ+ γqϵij∂jδϕ+ qϵij∂jδλ)r=rα . (3.64)

This derivation was done by Mazenko in Ref. [64] and it shows that the method
reproduces a known result for complex Ginsburg-Landau equations [65].
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If we neglect core deformation and assume that the vortices are well separated
the velocity is only determined by the phase perturbations and becomes

vα =
(
∇δϕ+ γqα∇⊥δϕ

)
r=rα . (3.65)

The velocity is in this limit due to the superfluid velocity v = ∇ϕ induced by
other defects or other sources of perturbations in the condensate. Assuming that
the perturbations are dominated by the presence of the other vortices we write
the wave function close to the defect labeled α as

ψ = χ(|r − rα|)eiqαθαe
i
∑N

β ̸=α
qβθβ . (3.66)

Here, θβ is the polar angle centered at the defect labeled β, and χ(|r − rα|)eiqθα

is the unperturbed wave function ψ0 for the defect labeled α. The phase
perturbation is thus δϕ =

∑N
β ̸=α qβ arctan

(
y−yβ

x−xβ

)
. Inserting this into eq. (3.65)

and evaluating the expression at the position of defect α, we find

vα = −
∑

β ̸=α

qβ
(rα − rβ)⊥

|rα − rβ |2 + γ
∑

β ̸=α

qαqβ
rα − rβ

|rα − rβ |2 . (3.67)

From this equation, we see that the dissipative term makes oppositely charged
vortices attract and like signed vortices repel. Eq. (3.67) is frequently used in the
literature to study, among other things, the inverse energy cascade in quantum
turbulence [66] and expanding vortex clusters [63].

In the γ = 0 limit eq. (3.67) is the same as the Hamiltonian point vortex
model for a classical fluid [46, 66, 67]. In this limit, the equation of motion can
be written as

ẋα = 1
2πqα

∂H

∂yα
, ẏα = − 1

2πqα

∂H

∂xα
, (3.68)

i.e as Hamiltonian dynamics with xα and yα being the conjugate variables. The
Hamiltonian H of the system is

H = −π
∑

α̸=β

qαqβ ln(|rα − rβ |). (3.69)

To model the effects of boundaries and confining potentials on the system one
places image vortices outside the domain to get the boundary conditions right.

Above we have introduced the D field and showed that the vortex density can
be written as ρv = Dδ(2)(Ψ⃗). We used this to derive the point defect dynamics.
One of the major themes in Paper (III) and (IV) is that the D field without the
delta function gives valuable information about the vortices and their interactions.
In addition, this approach can be generalized to any system with a broken O(n)
symmetry as discussed in Paper (IV). We also use this approach to derive a
point defect description of the defects in an active system with a vector order
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parameter in Paper (V). In Ref. [7] we use the D field to estimate the onset of
defect turbulence in an active system with a polar order parameter and manage
to show that this will be asymmetric in the flow alignment parameter (discussed
in the next chapter).
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Chapter 4

Hydrodynamics for Active Fluids

In this chapter, we are going to discuss two hydrodynamic models for active
matter. We will see that there are many similarities between these systems and
the Bose-Einstein condensate we discussed in the previous section. This chapter
starts with an introduction to active fluids, which is followed by a discussion on
active nematics, and then a model for an active polar system.

4.1 Introduction to active fluids

Active matter is an umbrella term for non-equilibrium systems where the smallest
constituents, referred to as active particles, are consuming energy from the
environment and turning it into mechanical stresses and energies [34, 68]. It
is the energy injection on the single particle scale that drives the system out
of equilibrium. This is in contrast to a passive system, like the Bose-Einstein
condensate which where discussed in the previous chapter, where the system
is driven out of equilibrium by an external force. An example of an external
forcing is the stirring potential that we use in Paper (III).

Active matter includes both biological systems like micro-swimmers, flocks
of birds, and mixtures of cytoskeletal filaments and motor proteins [34, 68–71],
and non-living matter like vibrated granular rods, Janus particles, and robots
[72–74]. The interaction between the active particles, either direct or mediated
through a medium, gives rise to self-sustained flows and pattern formations [25,
34, 68]. These interactions result in fascinating collective dynamics, for example,
schools of fish exhibit a polar order that can change direction abruptly and form
vortices in response to predators [34, 75]. Since active particles can exist on very
different scales, have different symmetries, and be submerged in a wide range of
environments, there exist many models to describe their collective motion.

A classical model for studying flocking behavior is the Vicsek model [76]. This
is an agent-based model where the active particles are subject to an alignment
interaction with their neighbors. In two dimensions this is similar to the XY-
model for magnetic systems, but instead of the spins sitting on a lattice, they are
moving with a constant speed in the direction of their polarity. Something that
was surprising with the Vicsek model is that the system can exhibit long-range
order even in the presence of noise to the direction of the particles [76, 77]. This
was surprising because the XY-model does not have long-ranged order at finite
temperatures due to the Mermin-Wagner theorem [9, 78]. Using a hydrodynamic
model for self-propelled polar particles, known as the Toner-Tu model, Toner
and Tu showed rigorously that such systems can form a broken symmetry system
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even in two dimensions [77, 79]. Interestingly, since the "microscopic" particles in
the Toner-Tu model are birds or other flocking animals, the continuum equations
describing the system have terms that are typically not encountered in the
standard passive systems [79]. The Toner-Tu model is described by the following
continuum equations

∂tρ+ ∇ · (ρv) = 0 (4.1)
∂tv + λ1(v · ∇)v + λ2(∇ · v)v + λ3∇v2 = (a− bv2)v − ∇P (4.2)

+DL∇(∇ · v) +D1∇2v +D2(v · ∇)2v + f .

Here ρ is the density satisfying the conservation law, while v is the velocity,
P is the pressure, and f is a noise term. The λ terms on the left-hand side of
eq. (4.2) are a modification to the convective derivative. For Galilean invariant
dynamics, the parameters are fixed to λ1 = 1 and λ2 = λ3 = 0 corresponding to
the material derivative on the right-hand side of the equation. On the right-hand
side, the terms containing a and b give a non-zero velocity in the ordered phase,
similar to the r and g of the ϕ4 Hamiltonian eq. (2.8). The D’s are viscosities
due to the mutual interactions. They cause velocity fluctuations to diffuse into
the fluid.

In dry systems, the interaction between the active particles and the
surrounding fluid is neglected, which breaks the Galilean invariance. The Vicsek
(discrete) model and Toner-Tu (continuum) model are canonical toy models of
dry active matter with polar order [34]. Other models, like the ones we are going
to discuss in the following sections, include the interaction between the active
particles and the surrounding fluid. These are classified as wet.

In addition to the distinction between wet and dry active matter one also
classifies the matter based on the symmetries. Here we will only consider polar
and nematic symmetries. The Toner-Tu model has polar symmetry, meaning
that the particles have a preferred direction, and (when a > 0) the particles tend
to point in the same direction. In the nematic system, the particles are parallel
but do not on average point out a preferred direction. These systems will be
discussed in more depth in the next section.

4.2 Nematic active matter

4.2.1 Hydrodynamic model for active nematic

Many active particles have an elongated shape and on large scales exhibit nematic
order [34, 68]. The nematic order forms in systems consisting of many rod-like
particles that have broken the isotropic phase by aligning [9], as depicted in
Fig. 4.1. This phase can be found in systems where the particles are head-tail
symmetric like in Fig. 4.1 or in systems where the rods have a polarity, but their
heads are randomly oriented so that on average they do not point out a specific
direction. Microscopically we can assign the vector ñ(α) to the rod labeled α to
describe the direction the rod is pointing. Since the rods are head-tail symmetric
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a) n b)

Figure 4.1: Rod-like particles forming an isotropic phase a) where the rods are
randomly oriented and a nematic phase b) where the rods are aligned. The π
symmetric microscopic director ñ of one of the rods is shown in the top right of
a).

the theory should be invariant under the transformation ñ(α) → −ñ(α). A way
of representing this is by defining the Q tensor order parameter which is defined
in such a way that it is invariant to ñ(α) → −ñ(α). In two dimensions the tensor
order parameter takes the form [9]

Q̃ij = V

N

∑

n

(ñ(α)
i ñ

(α)
j − 1

2δij)δ(r − r(α)), (4.3)

with V and N being the system’s volume and the number of nematic particles.
This is a symmetric and traceless tensor, therefore it has only two degrees of
freedom, namely Qxx and Qxy. After coarse-graining, this order parameter
becomes

Qij = S(ninj − 1
2δij). (4.4)

Here n is the coarse-grained nematic director field which is continuous and
varies smoothly on length scales that are long compared to the interparticle
distance. It is still a unit vector that describes the direction of alignment, while
the parameter S gives the magnitude of the order. S is non-zero in the nematic
phase, while in the limit of an isotropic fluid, it tends towards zero.

Having the coarse-grained order parameter, one can construct the Landau-de
Gennes free energy. Since the free energy has to be symmetric under rotations
and translations it has to be constructed using traces of Qp, where p is a positive
integer [9]. We truncate the expansion to the fourth order and include an
interaction term so that the free energy takes the form

F =
∫
dr
[
K|∇Q|2 − g

2Tr(Q2) + 1
4Tr(Q2)2

]
. (4.5)

The term Tr(Q3) is also allowed by the symmetries, but due to the Q being
a symmetric and traceless tensor, this term will always be zero in two dimen-

43



4. Hydrodynamics for Active Fluids

sions. In a three-dimensional model, it has to be included. The first term
is the elastic free energy, where we have assumed a single elastic constant
K so that the penalty for all distortions is treated equally. In general, this
might not be the case. The negative sign in front of the Tr(Q2) term is
chosen so that g is positive in the nematic state. Also, notice that we have
scaled the equation so that the constant in front of the Tr(Q2)2 term is set to 1/4.

From this free energy, we can find the homogeneous equilibrium state. In
this case, we can write the free energy in terms of S

F =
∫
dr
[
−g

8S
2 + 1

64S
4
]
. (4.6)

This is the same as the double well potential that is shown in Fig. (2.2).
Minimizing this with respect to S we find that the equilibrium state fulfills

S0 = 2√
g. (4.7)

Note that contrary to the order parameter in eq. (2.8) S0 has to be positive.

Knowing the equilibrium state is convenient, but an active nematic is
intrinsically an out-of-equilibrium system so we need a hydrodynamic model to
describe the dynamics. The evolution of the Q-tensor can be described by the
Edward-Beris equation for a nematic liquid crystal submerged in a fluid [34, 80,
81]

∂tQ+ u · ∇Q+ ΩQ−QΩ = λEQ− γ−1H. (4.8)
Here u is the velocity of the flow field of the surrounding fluid. The term on
the left-hand side is the corotational derivative which in addition to including
the change in the order parameter due to advection also includes the effect of
vorticity 2Ωij = ∂iuj − ∂jui, which is to rotate the rods. This derivative has the
property that it is both Galilean invariant and invariant to solid body rotations.
On the right-hand side, we find first the flow alignment term λE, with the strain
rate given as 2E = ∂iuj + ∂jui. This term gives the tendency for the rod-like
particles to align with the shear, which is the same effect that is responsible for
timber tending to point in the direction of the flow when moving down a river.
The last term is a minimization of the free energy given through the molecular
field

Hij = δF

δQij
, (4.9)

and the rotational diffusivity γ which sets the relaxation time.

To fully describe the dynamics of the active nematics one needs in addition
to eq. (4.8), a model for the flow field. We will here assume that the flow has a
low Reynolds number and is given as a quasi-two-dimensional incompressible
Stokes flow satisfying the equations

(Γ − η∇2)u = −∇P + ∇ · σa(Q) + ∇ · σp (4.10)
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∇ · u = 0. (4.11)

Here eq. (4.10) is the Stokes equation that we discussed in sec. 2.3 with the
viscosity η and friction with the substrate Γ. The nematic order parameter
affects the flow through the active, σa(Q), and the passive, σp, stress. We will
assume that the active stress is dominant, and neglect the passive stress.

The active stress The only term in the set of coupled equations (4.8)-(4.11)
that is not present for a passive nematic liquid crystal is the active stress σa(Q).
This stress is due to the microscopic constituents being self-propelled. The form
of σa can be motivated from the dynamics of the single particles using Newton’s
third law, which states that the forces the active particle exerts on the fluid
and the forces from the fluid acting on the active particle have to vanish upon
integration [82]. The simplest model that captures this is to consider the rod-like
particles as force dipoles, i.e the rod labeled α aligned parallel to the vector
ñ(α) has a point force, f̃ (α) = f ñ(α), at each end that is equal in magnitude and
oppositely directed. The forces on one rod are shown in Fig. 4.2. The distance
from the center to the forces is a. The forces related to the rod labeled α can be
written as F̃(α)(r) = f ñ(α)[δ(r − r(α) + añ(α)) − δ(r − r(α) − añ(α))]. Summing

n

}

a

f

-f

(α)

(α)

(α)

n

}

a

f

-f

(α)

(α)

(α)

b)

Figure 4.2: Sketch of the force dipole related to one active rod for a) an extensile
and b) a contractile system. The forces f̃ (α) = f ñ(α) and −f̃ (α) are equal in
size and oppositely directed at the distance a from the centre of the rod. The
director ñ(α) is also shown. Here we have given the director a unique direction
in order to give the force in terms of it.

this over all the rods gives the force [82]

F̃a(r) =
∑

α

f ñ(α)[δ(r − r(α) + añ(α)) − δ(r − r(α) − añ(α))] = −∇ · σa, (4.12)

which we have identified as the active force. Next, we use that the derivative
of the delta function is given as ∂jδ(r) = limaj→0[δ(r + ajej) − δ(r − ajej)]/aj .
This means that for small |a| we can approximate the above force density as

(∇ · σa)i = −af∂j

∑

α

ñ
(α)
i ñ

(α)
j δ(r − r(α)). (4.13)
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After coarse-graining, we find that the active stress has this form

σa
ij = α0

(
ninj − 1

2δij

)
= α0Qij , (4.14)

where we have added a constant that vanishes when acted on with the derivative.
Notice that σa is proportional to the Q tensor with the proportionality constant
α0. The sign of this constant is positive for contractile systems and negative
for extensile systems. This expression for the active stress could also have been
motivated by the fact that there is no symmetry or conservation law that rules it
out for the self-propelled system [82]. Note that the activity α can be spatially
varying. The active force in that case is

Fa = ∇α(r) ·Q+ α(r)∇ ·Q. (4.15)

Complex representation In order to reuse some of the insight we got from
the discussion of the Bose-Einstein condensate in the previous chapter we will
map the Q tensor into a complex order parameter. We, therefore, note that the
tensor can be written as

Q = S

2

(
cos(2ϕ) sin(2ϕ)
sin(2ϕ) − cos(2ϕ)

)
, (4.16)

where ϕ is the angle of the nematic director n. We can therefore map it to the
complex order parameter

ψ = Qxx + iQxy = S

2 e
2iϕ, (4.17)

which changes eq. (4.8) so that it reads

∂tψ + u · ∇ψ = λ∂z̄u+ iωψ + ∇2ψ + (1 − |ψ|2)ψ. (4.18)

Similar to what we did to the dGPE, eq. (3.7), we have here chosen new units
to make the equation dimensionless. The time is rescaled using the relaxation
time τ = γ/g and the length is rescaled using the coherence length ξ2 = K/g
[81]. It is this length that sets the size of the defect core in the system. In
addition, the order parameter is rescaled as ψ → √

gψ so that it is normalized
in equilibrium. The flow alignment is then rescaled to λ → λ/

√
g. We have also

introduced the complex derivative ∂z̄ = 1
2 (∂x + i∂y) and the complex velocity

u = ux + iuy. Notice that this equation is very similar to the Gross-Pitaevskii
equation, eq. (3.7), which we discussed in the previous chapter. This becomes
even more apparent when we neglect the effect of the flow field

∂tψ = ∇2ψ + (1 − |ψ|2)ψ. (4.19)

Contrary to the GPE this equation is purely dissipative, which should not be
a surprise since the equation without the flow field is just the relaxation of
the Landau-de Genes free energy eq. (4.5). In the stationary limit ∂tψ = 0 it
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becomes the same as the stationary GPE, eq. (3.40).

We now introduce the rescaled units in the Stokes equation so that it reads

(1 − ζ2∇2)u = −∇P + Fa, (4.20)
∇ · u = 0. (4.21)

We have now neglected the passive stress and defined the active force Fa =
∇·(αQ). The constants here are the rescaled activity α = α0γ/(ΓK) and ζ = ℓd/ξ
being the ratio between the hydrodynamic dissipation length ℓd =

√
η/Γ and

the coherence length ξ. Taking the divergence of eq. (4.20) and using the
incompressibility condition we get the following expression for the pressure

∇2P = ∇ · Fa. (4.22)

Similarly we find the vorticity by applying the rotated divergence −∇⊥ to
eq. (4.20) so that it becomes

(1 − ζ2∇2)ω = −∇⊥ · Fa. (4.23)

We can solve for the velocity, pressure, and vorticity by using the Greens
functions of eq. (4.20) and (4.22). The integrals we need to solve are

P (r) = 1
2π

∫
dr′ ln(|r − r′|)∇′ · Fa, (4.24)

u(r) = 1
2πζ2

∫
dr′K0

( |r − r′|
ζ

)
(Fa(r′) − ∇′P a(r′)) , (4.25)

ω(r) = − 1
2πζ2

∫
dr′K0

( |r − r′|
ζ

)
∇′⊥ · Fa(r′). (4.26)

These are the integrals we consider in Paper (I) and (II). In order to solve these
it is convenient to change to complex variables and rewrite the integrals so they
are of the form

I(r) =
∫ ∞

0
dr′G(r′)

∮

C

dẑf(r′, ẑ, r), (4.27)

where C here is the unit circle in the complex plane. The detailed expressions
for G and f depend on the source of the active force. In the papers, we use ideal
defects as the sources and use the techniques described in Section 2.4 to solve
the integral over ẑ.

Instability due to the activity As mentioned, the active stress destabilizes the
homogeneous nematic state. We can illustrate this by doing a linear stability
analysis around the homogeneous state ψ = 1. We, therefore, write the complex
order parameter as ψ = 1 + δψ, with |δψ| ≪ 1 being linear perturbations. Note
that the velocity u is first order in δψ, which means that the advection term
is second order and can be neglected. In addition, we also neglect the effects
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of flow alignment and only consider perturbations in the phase δϕ to make the
discussion simple. The linearized equation for δψ and its conjugate is

∂tδψ = iω + ∇2δψ − δψ − δψ∗, (4.28)
∂tδψ

∗ = −iω + ∇2δψ∗ − δψ − δψ∗. (4.29)

Subtracting these two equations gives

∂t(δψ − δψ∗) = 2iω + ∇2(δψ − δψ∗). (4.30)

Note that we can write the perturbation as δψ = 2iδϕ so that this becomes

∂tδϕ = 1
2ω + ∇2δϕ. (4.31)

To close this we need to consider the vorticity ω. Using eq. (4.23) we see that it
has the form

(1 − ζ2∇2)ω = 2iα(∂2
x − ∂2

y)δϕ. (4.32)
The vorticity in Fourier space is therefore given as

ω̃(k) = −2α
k2

x − k2
y

1 + ζk2 δϕ̃(k). (4.33)

Fourier transforming eq. (4.31) and inserting the expression for the vorticity we
find

∂tδϕ̃(k, t) = −
(
α

cos 2θk

1 + ζ2k2 + 1
)
k2δϕ̃(k, t), (4.34)

where θk is the angle of the wave vector k. Eq. (4.34) is a differential equation
for each mode k. It has the growth rate

g(k, θk) = −
(
α

cos 2θk

1 + ζ2k2 + 1
)
k2, (4.35)

which is plotted in Fig. 4.3 for both α cos (2θk) = a(θk) > 0 and a(θk) < 0. If the
rate becomes positive, we have that the perturbations with those wave-vectors
grow exponentially in time and are therefore unstable. This is only possible
when

|α| > 1 + ζ2k2, (4.36)
showing that if the activity is large enough the homogeneous nematic phase
becomes unstable to certain wave vectors. Note that this does not mean that
the order parameter goes to zero, i.e. the system still has local nematic order.

A more rigorous stability analysis where they also allowed for variations in S
was performed in Ref. [25] and gave the same result. Notice that the angle of the
unstable modes depends on the sign of the activity. If α > 0 we have instabilities
when cos 2θk < 0 meaning that the most unstable mode is θk = π/2 ± nπ where
n is some integer. Perturbations with these wave vectors are perpendicular
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Figure 4.3: Plot of the growth rate g(k, θk) of the equation for the linear modes
eq. (4.34) for fixed angles θk. When the growth factor is positive the perturbations
grow exponentially making the equation unstable. We have set ζ = 1 while
α cos (2θk) = a(θk) = 2 for the dashed line and a(θk) = −2 for the solid line.

to the director in the homogeneous state. For α < 0 the first unstable mode
is θk = 0 ± nπ corresponding to perturbations parallel to the director of the
homogeneous state. The criterion discussed here is for linear instabilities. If
the activity is high enough, it might be strong enough to spontaneously create
topological defects in the nematic phase, leading up to a chaotic activity-driven
flow state that is termed active turbulence [24, 83].

4.2.2 Nematic defects and their kinematics

The nematic defect One advantage of the complex representation ψ =
(Se2iϕ)/2 in 2D is that it maps the nematic director into an order parameter
space given by the unit disk (S1) where topological defects correspond to vortices,
just like for the Bose-Einstein condensate. However, we do need to keep track
of the winding number q since the nematic orientational field is π symmetric,
and therefore half of the winding number of vortices. Also for this case, the
Landau-de Gennes free energy is such that only the topological defects of the
lowest absolute charge are energetically stable and higher-order defects tend to
split up. The angle of the nematic director thus satisfies

∫

C

dϕ =
∫

C

dl · ∇ϕ = 2πq, (4.37)
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so that the argument of the nematic director around an ideal defect with an
isotropic core is

ϕ = qθ + θ0. (4.38)

Here θ0 is a constant. This constant is important for the dynamics of the
topological defects since it gives the direction of the defect’s polarity [84], which
is illustrated in Fig. 4.4.

e+

a)

e-

e-

e-

b)

Figure 4.4: Sketch of a) the +1/2 and b) the −1/2 topological defects in a
nematic liquid crystal with the polarities e+ and e− drawn in. Notice that the
negative defect has three equivalent polarizations due to its three-fold symmetry.
Figure from Paper (II).

The relation between the polarisation and the phase constant is e+ =
[cos(2θ0), sin(2θ0)] and e− = [cos(2θ0/3), sin(2θ0/3)]. The core structure and
the far-field free energy related to the nematic defect can be found in the limit
of an ideal defect if we neglect the flow field. Since the stationary equation for
the complex field is identical to the stationary GPE, eq. (3.40), the calculations
are identical to Section 3.4.2 and the result is that the complex field has the
form ψ0 = χ(r)e2i(qθ+θ0) for a stationary defect centered at r = 0 [21, 81]. The
core function χ(r) has the asymptotic χ(r) ∼ r for r ≪ 1 and χ(r) = 1 for
r ≫ 1. Using the same argument as for the quantum vortex discussed in Section
3.4.2, we can show that the far-field energy of a nematic defect of charge q is
proportional to q2. This makes the higher-order defects unstable so that they
tend to decay into defects of lower charge.

The defect kinematics Similar to how we motivated the kinematics of the
defects in the Bose-Einstein condensate in Section 3.5 we can also use the
Halperin-Mazenko formalism to find the kinematics of defects in the nematics.
The definition of the D field and its density current stays the same as for the
BEC, with the following expression for the velocity of the defect labeled α

D = ϵij
2i ∂iψ

∗∂jψ, (4.39)

jD
i = ϵijIm(∂tψ∂jψ

∗), (4.40)
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vα = jD

D
. (4.41)

We see that mapping the Q-tensor to the complex order parameter ψ has allowed
us to reuse the same formulas for the D field and its current density from Chapter
3. By using this common formalism, we avoid solving the same problem twice,
and the method gives a general expression for the defect velocity, eq. (4.41), in
terms of two fields, D and jD, that are straightforward to calculate numerically.
As we will see below, eq. (4.41) can be combined with the system-specific
equations of motion and the quasi-static defect approximation to derive an
expression for the defect kinematics. In Paper (III) and (IV), we use the D field
and its current to get insights into the creation and annihilation of defects as
a gradual process of core formation, and demonstrated that the D field also
tracks non-linear excitations. It is important to note that since the D field
also captures non-linear perturbations, it has to be combined with additional
methods to accurately separate smooth perturbations from topological defects.

We can use this to find the equation of motion for a nematic defect of charge
qα that is due to a non-zero velocity field and perturbations in the phase δϕ.
Assuming that the core is not deformed when the defect moves we can use the
ansatz ψ = ψ0(r, θ)e2iδϕ, where ψ0(r, θ) is the quasi-static ideal vortex solution,
which is the same (up to the constant Λ) as the one for the Bose-Einstein
condensate, see sec. (3.4.2), and δϕ represents perturbations in the phase. The
constant phase θ0 is included in δϕ. Inserting this ansatz into eq. (4.18) and
using that the order parameter decays to zero linearly at the phase singularity
we get the following expression for the defect velocity [81]

vα = u(rα) + 4qα∇⊥δϕ+ λG. (4.42)

We have here introduced the vector G = [Re(G), Im(G)] as

G =
{

−Λ−1, ∂z̄ue
−2iδϕ sgn(q) > 0

−Λ−1∂zūe
2iδϕ, sgn(q) < 0,

(4.43)

and used that close to the singularity the wave function has the form ψ0 = Λre2iθ

with Λ being a constant. See Section 3.4.2 for details. Looking at eq. (4.42) we
see that the second term is due to the elasticity of the order parameter, and is
equivalent to the term that in the BEC was due to thermal dissipation. We can
in a similar way relate it to an effective Coulomb interaction between defects in
the system.

The other two terms in eq. (4.42) are due to the non-zero flow field, where the
first term is due to the advection and the last term is due to the flow alignment.
In Paper (I) and (II), we study among other things the active self-propulsion of
isolated defects, which is due to the flow fields the defects themselves induce
through the active stress. To find the active flow field we insert the active stress
of an isolated stationary defect into eq. (4.24) and (4.25) and solve the integrals
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using the methods discussed in sec. 2.4. In addition to making the defects
self-propel the first term in eq. (4.42) allows the defects to interact through
the flow field [81]. We have not considered this for the nematics in the works
presented here, but in Paper (V) we consider this for defects in a polar system.

The effect of vorticity We saw above that the vorticity does not appear in
the equation for the defect velocity. It does however have some effect on the
orientation of the defect. We can show this by first writing the wave function as
ψ = S̃e2iϕ and inserting it into eq. (4.18). After dividing by e2iϕ and separating
the real and the imaginary part of the equation we find the following set of
equations for the phase and the length of the wave function

∂tS̃ = −u · ∇S̃ + ∇2S̃ − 4S̃∇θ · ∇ϕ+ (1 − S̃2)S̃, (4.44)
2S̃∂tϕ = −2S̃u · ∇ϕ+ ωS̃ + 4∇S̃ · ∇ϕ+ 2S̃∇2ϕ. (4.45)

The flow alignment parameter λ is set to zero and S̃ = S/2. We can rewrite the
equation for the angle as

∂tϕ = −u · ∇ϕ+ 1
2ω + 2∇ ln(S̃) · ∇ϕ+ ∇2ϕ. (4.46)

We now consider a positive defect placed at r0. The polarity of this defect is [81]

e+ = ∇ ·Q|r=r0 , (4.47)

where we are going to insert the ansatz ψ = ψ0e
2iδϕ for the complex order

parameter. Here ψ0 is the static vortex profile with the additional assumption
that the defect is oriented in such a way that the defect does not spontaneously
rotate. We show in Paper (II) that this is only true for specific values of θ0 when
the activity α is spatially varying. The deviation from the stable orientations is
therefore taken to be part of δϕ. Inserting this ansatz into eq. (4.47) we find
that the polarisation vector can be written as the complex number

e+ = 2e2iδϕ. (4.48)

Taking the time derivative of this, we find

d

dt
e+ = ė+ = 4ie2iδϕ∂tδϕ+ 4iue2iδϕ · ∇δϕ. (4.49)

We can now use that the angle for the ideal positive defect is assumed not to be
explicitly time-dependent. Using eq. (4.46), neglecting the flow alignment and
keeping only the terms that are due to the flow field we find

ė+ ∼ iωe+, (4.50)

which in real vector notation reads

ė+ ∼ −ωϵ · e+. (4.51)
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Here ϵ is the anti-symmetric tensor. From this, we see the effect of non-zero
vorticity is, not surprisingly, to rotate the polarization of the defect. Doing
the same exercise for the negative defect, we find that the vorticity rotates its
polarity slower by a factor of 1/3. This is used in Paper (II) to discuss how a
spatially varying activity makes the defects rotate. As we see from eq. (4.46)
there will also be contributions from gradients and divergences in the angle.

4.3 Polar active matter

The model that we discussed in the previous section is for an active system with
nematic symmetry and it is well known to capture a lot of the dynamics seen in
many active systems such as bacterial suspensions [34, 68]. In addition to the
half-integer defects discussed in the previous section, there have been observed
defects of charge ±1 in biological systems such as motile bacteria [85, 86] and
cells [87, 88]. The free energy considered in eq. (4.5) is not ideal for studying
the dynamics of ±1 defects, because they are energetically unstable and tend
to decay into defects of charge ±1/2. We, therefore, change the free energy to
allow ±1 defects to be energetically stable.

The particles in a polar system are very similar to the ones in the nematic.
The way they differ is that they have distinct heads and tails, and the interaction
between them favors the heads to point in the same direction as shown in
Fig. (4.5). Microscopically the polar entity labeled α is described by a polar
director p̃(α) which is a unit vector pointing from the tail to the head of the
particle as shown in Fig. 4.5 a). The order parameter of the polar order is the
coarse-grained polarity p, which contrary to the coarse-grained nematic director
n is not a unit vector. The length of p is a measure for the order, and it tends
to zero when the particles are randomly oriented in the disordered phase.

In Ref. [89] they propose a free energy that allows for both ±1 and ±1/2
defects by using the vector order parameter p with the following free energy

Fp =
∫
dr
[
Kp

2 |∇p|2 + Kn

2 (∇Qp)2 + A

2

(
−p2 + p4

2

)]
, (4.52)

with
Qp

ij = pipj − 1
2p

2δij (4.53)

being a "nematic" tensor constructed from the polar order parameter. Note that
since p is not a unit vector, p2 has taken the role of the parameter S. If the
parameter Kp = 0 in the above eq. (4.52) then the lowest energy topological
defects are those of charge ±1/2. In the other limit, with Kn = 0, the lowest
order topological defects are ±1 defects. If both Kn and Kp are non-zero, one
can have coexistence of ±1/2 and ±1 defects. We will mostly consider the case
that has only stable ±1 defects, i.e. Kn = 0, Kp ̸= 0.
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a) p(α) b)

Figure 4.5: The figure shows the polar particles in a) an isotropic phase and b)
a polar phase. The polar particles have a distinct head and tail in contrast to
the nematic particles. The polar director p̃(α) of the particle labeled α is shown
in the top right of a)

These active polar particles can become self-propelled either by swimming in
the surrounding fluid or by interacting with (i.e. walking on) substrate. During
the discussion on the nematic system, we argued that the active force due to the
interaction with the surrounding fluid had to be dipolar because of momentum
conservation. This also holds true for micro-swimmers with polar order. If
we allow the active particles to exchange momentum with the substrate, we
can relax this restriction and include a polar self-propulsion force into the flow
equations. From the above free energy one can then write down a hydrodynamic
model for the evolution of the vector order parameter [89]

∂tp + u · ∇p + Ω · p = λE · p − 1
γ

δFp

δp , (4.54)

(Γ − η∇2)u = Fa − ∇P + Fp, (4.55)
∇ · u = 0. (4.56)

Which, in the "dry" limit, reduces to a form similar to the Toner-Tu model
discussed in sec. 4.1.

The structure of this system of equations is similar to eq. (4.8) - (4.11). It
consists of an equation for the evolution of the order parameter, eq. (4.54),
coupled to the incompressible Stokes equation which governs the flow. From this,
we recognize the terms on the left-hand side of eq. (4.54) to be the corotational
derivative with a term advecting the rods u · ∇p and one that rotates them Ω · p.
On the right-hand side, we have the flow alignment λE · p and the relaxation
of the free energy. Notice that if we neglect the terms that are due to the flow
field, this reduces to the dissipative part of the dGPE eq. (3.7). For the flow
field we have in addition to the dipolar active force Fa = α0∇ · Q included a
polar self-propulsion force Fp = αpp that is due to the polar entities moving
on and exchanging momentum with the substrate. Notice that the role of the
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velocity field in this model is a bit different than that in the Toner-Tu model
given by eq. (4.1) and (4.2). In the model described above, eq. (4.54) -(4.56),
the active polar particles are submerged in a surrounding fluid. The model
does not separate between the velocity of the polar particles and the velocity of
the surrounding fluid but has one velocity field u that describes both. In the
Toner-Tu model, one does not include the surrounding fluid and the velocity v
is that of the active gas. In addition the Toner-Tu model is compressible, while
the polar system is incompressible.

Since the equations for the flow field eq. (4.56) are linear we can consider
the effects of the active dipolar force Fa and the polar self-propulsion force Fp

individually and use the superposition principle when considering the effects of
having both. The flow field and pressure due to the dipolar force are therefore
given as

ua(r) = 1
2πζ2

∫
dr′K0

( |r − r′|
ζ

)
(Fa(r′) − ∇′P a(r′)) (4.57)

P a(r) = 1
2π

∫
dr′ ln(|r − r′|)∇′ · Fa. (4.58)

And similarly for the flow field and pressure due to the polar force. In Paper
(V) we use the active dipolar and polar forces related to single ideal defects and
solve the above integrals to find the induced flow. An interesting result is that
for the dipolar force, we find a flow reversal around the +1 defects in the limit
Γ = 0. We also find that the flow field related to the polar self-propulsion force
is non-decaying in the far-field. This is due to the polar self-propulsion force
which, when neglecting pressure, gives the particles a constant velocity in their
head direction. The homogeneous polar state will therefore in this model have
a constant flow in the direction pointed out by the entities. We also find that,
in the friction-dominated limit, the velocity-mediated interaction between the
defects will not decay with the distance between the defects.

Polar defects As mentioned above when Kp = 0 the free energy in eq. (4.52)
gives nematic defects which are the same as those we discussed in Section 4.2.2.
Setting the parameters to Kn = 0 and Kp > 0 the free energy allows for ±1
defects. These are the same as the defects in the Bose-Einstein condensate, but
the phase gradient ∇ϕ is in this case not the velocity of the fluid. Because of the
coupling with the flow field u the polar defects will behave a bit differently than
the quantized vortices, but their structure is similar so that an ideal stationary
defect of charge q at the origin has the order parameter

p0(r, θ) = χ(r)[cos(qθ + θ0), sin(qθ + θ0)], (4.59)

where the core function χ can be found by doing an analysis similar to that in
Section 3.4.2. The asymptotic behavior is also similar, with χ(r) having a linear
decay to zero in the near field and tending to a constant value in the far-field.
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a) b)

c) d)

Figure 4.6: a)-c) different types of +1 defects. They are respectively the aster
θ0 = 0, the spiral θ0 = π/4 and the vortex θ0 = π/2. Notice that they are
rotationally invariant. d) a −1 defect at angle θ0 = 0.

Fig. 4.6 shows the orientation of the order parameter around ±1 defects.
Notice that the +1 defect is rotationally symmetric, and the constant θ0
distinguishes the different shapes this defect can have. We refer to the defect as
an aster when θ0 = nπ with n being an integer, a vortex for θ0 = (2n− 1)π/2,
and a spiral for all other cases. Contrary to the other defects we have considered
we can’t set the constant θ0 to zero by rotating the reference frame. We can see
this by noting that the order parameter of the positive defect can be written as

p0(r, θ) = χ(r)Rθ0r, (4.60)

with
Rθ0 =

(
cos θ0 − sin θ0
sin θ0 cos θ0

)
(4.61)

being the rotational matrix for a rotation of θ0. If we now rotate the reference
frame by ϑ and use that rotational matrices in two dimensions commute we get
that the vectorial order parameter transforms as

Rϑp0 = χ(r)Rθ0Rϑr = χ(r′)Rθ0r′, (4.62)

where r′ is the position vector in the rotated frame. The +1 defect thus looks
the same after a rotation, which can also be seen from Fig. 4.6. Therefore when
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we consider the flow around polar defects in Paper (V) we have to keep the angle
θ0 when doing the calculations. We find that θ0 does affect the flow and for
certain values, the flow vanishes.

Defect kinematics The kinematics of the polar defects can also be found using
the Halperin-Mazenko formalism. In this case the D field and its current have
the form [7, 60]

D = 1
2!ϵijϵkl∂ipk∂jpl, (4.63)

jD
i = −ϵijϵkl∂tpk∂jpl. (4.64)

Putting this into the expression for the defect velocity, eq. (4.41) or (3.60) we
find that the velocity of the defect labeled α is

vα = u(rα) + 2Kp

γ

∑

β ̸=α

qαqβ
rα − rβ

|rα − rβ |2 . (4.65)

We have here used the quasi-static approximation of the core structure, which is
the same assumption that we made to get eq. (3.67). Similar to that discussion
we have assumed that all perturbations in the order parameter are in the phase
and that they are due to other topological defects in the system. In Paper (V)
we write this in dimensionless form, while here we have kept the units. From
the discussion of the nematic point defect model 4.42 we recognize that the first
term comes from the advection, while the second is from the relaxation of the
free energy. One difference in this model is that the flow alignment does not
appear explicitly in the equation governing the defects’ kinematics. The reason
for this is that the flow alignment term in eq. (4.54) is proportional to p and
goes therefore to zero at the phase singularity.

"Dry"-limit: In the limit of α0 = 0 and η = 0, the defect velocity from eq. (4.65)
reduces to

vα = − 1
Γ∇P p|r=r(α) + 2Kp

γ

∑

β ̸=α

qαqβ
rα − rβ

|rα − rβ |2 . (4.66)

Here we have used that the flow field due to the polar self-propulsion force in
the friction-dominated limit is given as Γu = αpp − ∇P p, and that the polarity
p vanishes at the defect position.

We now take the "compressible" limit by neglecting the incompressibility
constraint, hence the pressure gradients. The velocity of the defect, eq (4.65),
reduces to the Coulomb-like interaction between defects given by

vα = 2Kp

γ

∑

β ̸=α

qαqβ
rα − rβ

|rα − rβ |2 . (4.67)
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Kinematics of a dipole If we have two defects of opposite charge at position
r− (−1 defect) and r+ (+1 defect), we can subtract their kinematic equations
eq. (4.65) to find an equation for the dipole displacement vector R = r− − r+

Ṙ = u(r−) − u(r+) − 4Kp

γ

R
R2 . (4.68)

The effect of the polar flow field is discussed in Paper (V), we see there that
the effective defect-defect interaction mediated through this flow field is only
dependent on the orientation of R, and not its length. This is in contrast to the
passive attraction and the dipolar active flow field which both decay as 1/R. We
further show that the distance-independent interaction enhances the annihilation
rate of the dipole. If we neglect the effect of the flow field, we find that the
evolution of R is described by a differential equation in this form

Ṙ = −C

R
. (4.69)

This is equivalent to the Coloumb interaction in two dimensions, meaning that
the topological defects are in the quasi-static approximation following similar
dynamics as electrically charged particles. The winding number, which is ±1,
has taken a similar role as the electric charge. The solution of eq. (4.69) is of
the form

R(t) =
√
B −At. (4.70)

In Paper (V) we use linear regression to find the constants A and B that best
match the results from a numerical simulation during a dipole annihilation
with and without the polar self-propulsion force. We can find the coefficients
analytically in an infinite system but in the numerical simulations, we get
modifications due to the periodic boundary conditions. We also find that if we
include the self-propulsion force R does not follow a curve of the form given in
eq. (4.70).
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Chapter 5

Numerical Methods
Here we are going to discuss the numerical methods that we have used in the
different papers, namely finite element and pseudo-spectral methods. We are
here restricting the discussion to two dimensions.

5.1 Finite elements

The finite elements method is a method for solving differential equations that we
used to solve the Stokes equations for the active flows in Paper (I) and (II). We
are here going to show the main ideas behind this method by using the Poisson
equation as an example. To make the discussion easier we restrict ourselves to
homogeneous Dirichlet boundary conditions. The Poisson equation reads

−(κ∇2u) = f, in Ω (5.1)
u = 0, on ∂Ω. (5.2)

Here, Ω ⊂ R2 is the domain of interest and ∂Ω is the boundary of this domain.
To solve this, we multiply the equation with a test function v and integrate the
equation over the domain [90]. After an integration by parts, it reads

∫

Ω
drκ∇u · ∇v =

∫

Ω
drfv. (5.3)

The test function v is an element of a test function space Vt, while our trial
function u is in the trial function space V. When we have homogeneous Dirichlet
conditions the trial and test spaces are the same [90], and have the restriction
that the functions have to go to zero on the boundary.

The problem now is to find the function u so that eq. (5.3) is satisfied for all
test functions v in the space V. To solve this on a computer we discretize the
function spaces. Any function in the discrete function space Vd can be written
as a linear combination of the basis functions Ni. Our trial function u is now
written on the form u = ujNj . Since eq. (5.3) should hold for any v ∈ Vd we
need to show that it holds for all the basis functions. We, therefore, get the N
equations ∫

Ω
drκui∇Ni · ∇Nj =

∫

Ω
drfNj . (5.4)

This can be written in matrix form as

Au = f , (5.5)
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with Aij =
∫

Ω drκ∇Ni · ∇Nj , ui = ui and fi =
∫

Ω drfNj . The problem is now
reduced to a linear set of equations. For this to be easy to solve, we need a
smart choice of the discrete function space Vd and its basis functions Ni.

The finite element method provides a way of constructing the discrete basis.
The space and basis are constructed by first dividing the domain Ω into cells.
In two dimensions, a popular choice for the shape of the cells is triangular,
but other shapes are also popular and give different types of advantages and
disadvantages [90]. Fig. 5.1 a) shows how a circular domain can be divided up
into a mesh of triangular cells. When this is done, one defines a local function
space Vl for each of the cells and constructs the discrete function space Vd as the
collection of the local ones [90]. The basis functions live only inside the local func-

a) b)

Figure 5.1: a) division of a circular domain into triangular cells. b) a triangular
cell with nodes on the vertices.

tion spaces and each function in Vd is constructed by linear combinations of these.

A popular choice of basis functions is linear Lagrangian functions. For the
triangular cells, this basis is constructed by putting a node on each vertex as
shown in Fig. 5.1 b) and choosing a basis of three functions that is zero on
two of the nodes and one on the last. For example if the element has nodes on
(0, 0), (0, 1) and (1, 0) the basis will be [90]

f1(x, y) = 1 − x− y, (5.6)
f2(x, y) = x, (5.7)
f3(x, y) = y. (5.8)

For higher-degree polynomials, one simply puts more nodes on the elements.
Once the basis vectors for each element are chosen, one has to stitch them
together. For the piecewise linear functions described above one only needs to
identify all the nodes, but other types of functions might require more care.
The functions that are constructed by the piecewise linear basis are continuous.
We can see this if we consider two neighboring elements that share two nodes
and one edge. Since the basis functions are linear polynomials that have the
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same value on the nodes they will also be equal on the entire line connecting
the nodes. The function constructed by them is therefore continuous. The
derivative is however not, and one should therefore be careful with taking
second-order derivatives of functions in this space. Once the basis is created, one
can calculate the matrix A in eq. (5.5) and solve the linear set of equations. Note
that since all basis functions only live on one element the matrix A will be sparse.

In paper I and II we used finite elements to solve the set of equations

(
Γ − η∇2)u = F − ∇p, (5.9)

∇ · u = 0, (5.10)

with u = 0 on the boundary. Here u is the unknown velocity field, p is an
unknown pressure, and F is a known source. The first equation is a vector
equation while the second is a scalar equation. We, therefore, need two sets
of function spaces, the vector space V and the scalar space Q[90]. Both these
spaces have corresponding trial and test spaces. Note that the pressure p is an
unknown and is a linear trial function while the velocity u is a vectorial trial
function. We now multiply eq. (5.9) and eq. (5.10) with a vector test function b
and a scalar test function q respectively. We then integrate over all of the space
and do integration by parts

Γ
∫

Ω
dru · v + η

∫

Ω
dr∂iuj∂ivj −

∫

Ω
drp(∇ · v) =

∫

Ω
drF · v (5.11)

∫

Ω
drq∇ · u = 0. (5.12)

The surface term has been taken care of by the boundary condition (remember
that v = 0 on the Dirichlet boundary). We add these equations and end up with

Γ
∫

Ω
dru · v +η

∫

Ω
dr∂iuj∂ivj −

∫

Ω
drp(∇ · v) +

∫

Ω
drq∇ · u =

∫

Ω
drF · v. (5.13)

We now do the same as we did for the Poisson equation. That is, we write u
and p as a linear combination of the basis vectors and use that eq. (5.13) should
hold for v and q being any of the basis vectors. When implementing this, we use
a mixed function space W which contains the functions in V and Q and let the
open source package FEniCS construct and solve the linear set of equations [90].
We only need to decide which function spaces we want to use. For this equation,
we have chosen to use Taylor-Hood elements where the vector space is piecewise
quadratic and the scalar space is piecewise linear. This is chosen because this
construction is known to be Stokes stable, i.e., it is known to be able to solve
eq. (5.13) when Γ = 0 [90].
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5.2 Pseudospectral methods and exponential time
differentiation

When working with periodic boundary conditions on a uniform grid, we can
take advantage of the ease of finding derivatives of functions in Fourier space.
Considering the derivative of the function f(x) we can expand it in Fourier space
to find

∂if(x) = 1
(2π)2 ∂i

∫
dkf̃(k)eik·r = 1

(2π)2

∫
dkikif̃(k)eik·r, (5.14)

which means that the Fourier transform of ∂if(x) is ikif̃(k). This can be
exploited to map an ordinary differential equation into N equations for the
Fourier modes. For example the Poisson equation, eq. (5.1), can be solved in
Fourier space as

ũ(k) = 1
κk2 f̃(k), (5.15)

for k > 0. Note that the Poisson equation with periodic boundary conditions
can only be solved up to a constant term that is given as the zero mode,
u0 = ũ(k = 0), meaning that an additional condition to set this. We need to
solve the Poisson equation to find the pressure when solving the hydrodynamic
equations for the active systems discussed in Chapter 4. The zero mode is then
a constant term in the pressure and has no physical effect. We therefore set it
to zero.

In addition to making the process of solving ODEs simple, the Fourier
transform can be used to solve partial differential equations (PDE) by mapping
them into ODEs for the Fourier modes. A simple example of this is the diffusion
equation

∂tu(r, t) = D∇2u(r, t), (5.16)

which in Fourier space takes the form

∂tũ(k, t) = −Dk2ũ(k, t). (5.17)

This can be solved exactly. Given some initial conditions ũ(k, t = 0) = ũ0(k) it
has the solution ũ(k, t) = ũ0(k)e−Dk2t.

We are however going to consider non-linear equations that can not be solved
analytically. Consider an equation of the form [46, 47, 91]

∂tψ(r, t) = ω(∇)ψ(r, t) +N(ψ, t), (5.18)

where ω(∇) is a linear differential operator and N(ψ, t) is the non-linear part of
the equation. In Fourier space, this equation takes the form

∂tψ̃(k, t) = ω̃(k)ψ̃(k, t) + Ñ(ψ, t). (5.19)
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We now have one ODE for each Fourier node. Note that the linear part of
these equations is stiff (unstable when using explicit methods) for large k, and
therefore requires some extra care. We will take advantage of the fact that
the linear part is exactly solvable, using what is known as an exponential time
differencing scheme (ETD)[91].

We start by multiplying eq. (5.19) by the integrating factor e−ω̃(k)t so that
it becomes

∂t(ψ̃e−ω̃t) = e−ω̃tÑ(ψ, t). (5.20)

We now integrate this equation from t to t+ ∆t. After some work, it takes the
form [46, 47, 91]

ψ̃(t+ ∆t) = eω̃∆tψ̃(t) + eω̃∆t

∫ ∆t

0
dτe−ω̃τ Ñ(ψ, t+ τ), (5.21)

so the problem is now reduced to finding an approximation for the integral of
the function e−ω̃τ Ñ(ψ, t). To do this, we are going to use a scheme analogous to
the improved Euler method [91]. We start by evaluating the integral assuming
that N(t+ τ) = N0 is a constant in the interval τ ∈ (0,∆t). Doing this we get

ã(t+ ∆t) = eω̃∆tψ̃(t) + Ñ0
ω̃

(
eω̃∆t − 1

)
. (5.22)

We could stop here and use ã(t+ ∆t) as the value for ψ̃(t+ ∆t). That is the
integration scheme known as the ETD1 scheme [91]. We are instead going to
use ã to get a better guess for N(t+ τ) to improve the numerical integration.
We then assume that N is linear in the interval of integration, so it is given by
N(ψ, t+ τ) = N0 +N(a(t+ ∆t), t+ ∆t)τ/∆t. Performing the integral we get
the following two-step scheme [46, 47, 91]

ã(t+ ∆t) = eω̃∆tψ̃(t) + Ñ0
ω̃

(
eω̃∆t − 1

)
, (5.23)

ψ̃(t+ ∆t) = ã+ (N(ã, t+ ∆t) −N0) 1
ω̃

((
eω̃∆t − 1

) 1
ω̃∆t − 1

)
. (5.24)

This is the ETDRK2 scheme. It is in a similar way possible to use higher order
Runge-Kutta schemes to integrate eq. (5.21).

We have used the above scheme to solve the dGPE eq. (3.7) and to simulate
the active nematic eq. (4.8) and the active polar system 4.54. For the active
nematic, we use the scheme in Paper (IV) to look at how the active stress drives
the system from an initially homogeneous nematic state with small perturbations
in the phase to a defect-driven turbulent state. In Paper (V) we use this scheme
to compare the annihilation of a defect dipole in a system with the polar self-
propulsion force and one without. The defects are here initialized as phase
singularities with a linear core. We then evolve the equation for a time of order
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the relaxation time, τ = γ/A, with the flow field set to zero to let the cores form.
We can do this because the equation is dissipative and will evolve to a lower
energy state and form the proper core function for the defects. For both the
active nematic and the polar active matter we find the flow fields and pressures
by solving the equations directly in Fourier space. For the BEC in Paper (III)
and (IV) we evolve the dGPE in imaginary time to find the lowest energy state.
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Chapter 6

Papers: Summary and Outlook
In this chapter, we summarise the papers and present an outlook for the direction
of future works.

6.1 Paper I

Title : Flow around topological defects in active nematic films

Summary: The dynamics of the topological defects play a prominent role
in the two-dimensional active nematic in the defect-laden turbulent phase.
These defects are point-like, but unless they are screened by the presence of
other defects, their presence will affect the entire system. The active stress
creates a flow whenever there are inhomogeneities in the order parameter Q,
and the presence of topological defects is therefore related to a non-zero flow.
In this paper, we studied the flow field due to individual ideal point defects of
charge ±1/2 in an active nematic by solving the incompressible Stokes equation
eq. (4.20) analytically in an infinite system and numerically for bounded systems
of radius R. This was done by putting the Q tensor related to an ideal defect,
see Section 4.42 and 3.4.2, into the equations for the flow field. This setup has
previously been studied for systems with no friction [92], and here we extend
the analysis to also include the friction with the substrate Γ.

Including the friction has some notable effects on the flow for systems that are
large compared to the hydrodynamic dissipation length R ≫ ℓd =

√
η/Γ, which

is illustrated in the self-propulsion of the +1/2 defect. Due to its asymmetry in
the axis defined by its polarization, there is a net active force acting on the +1/2
defect which induces a non-zero velocity at its core. The defect will therefore
move either in the direction of its polarity for a contractile system α0 > 0 or
opposite this direction for an extensile system α0 < 0. When ignoring the friction
term Γ = 0 Ref. [92] found that the self-propulsion velocity is proportional to
the system size R. When we include friction, we only get this behavior for small
systems R ≪ ℓd where the viscous effects are dominating. For large systems
R ≫ ℓd the friction with the substrate becomes important and the velocity
saturates to a value proportional to ℓd. We, therefore, expect the corrections to
Ref. [92] to become important when the distance between defects is large. That
is, in systems where the density of defects is low. In addition to affecting the
magnitude, the size of the system also affects the shape of the flow field. The
flow fields created around the defects form two counter-rotating vortices around
the +1/2 defect and six around the −1/2 defects. In the frictionless limit, the
flow field has the same shape regardless of the value of R and the system size
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only controls the magnitude of the velocity. When friction Γ is included one sees
that the shape of the vortices changes, so that when R grows they get more elon-
gated. In the infinite system limit the vortices extends to infinity and do not close.

In addition to finding the flow fields in the point defect approximation, we
also look at core effects for the self-propulsion of the +1/2 defect. We do this
by using the linear core approximation, where we assume that the parameter S
is constant in the far-field and goes to zero linearly in the near field over the
size of the coherence length ξ. Analytically, we can solve the equations at the
phase singularity to get the self-propulsion velocity in the limit of an unbounded
defect. The result is written as a function of the ratio ζ = ℓd/ξ and in the limit
ξ ≪ ℓd we find that the defect speed becomes, in dimensional units,

v = π

4
α0
Γℓd

[
1 +

(
C1 + C2 ln

(
ξ

ℓd

))
ξ

ℓd

]
, (6.1)

with C1 and C2 being two constants. This converges to the point defect value in
the limit of ξ → 0.

Outlook In this paper, we studied the self-induced flow fields that are created
around topological defects. To get analytically tractable results, we neglected
that the non-zero flow will deform the defects which again will modify the flow
that we found and the effects of the passive stress. It would thus be interesting
to find the corrections to this.

Something else that we have neglected in the work considered here is that the
defects have a non-zero velocity. As mentioned in the main text, the movement
of a defect in a dissipative field tends to deform it which, in addition to affecting
the active flow, leads to a velocity-dependent mobility [21, 62, 93]. This effect
will lead to corrections to the self-induced velocity of the +1/2 defects and it
would be interesting to consider what these effects are.

6.2 Paper II

Title: Defect self-propulsion in active nematic films with spatially-varying
activity

Summary: In Paper (I) we studied the flow field and self-propulsion for
lone defects in an active nematic system where the activity α0 was assumed to
be constant. In this follow-up paper, we looked at the effects of making this
parameter spatially varying. This was inspired by recent work where they use
spatially patterned activity to control the motion of topological defects [94–96].
We wanted to see how much of this dynamic could be described by considering
the self-induced flow of idealized point defects. We, therefore, considered two
setups that are analytically tractable. In the first setup, the activity had a
constant gradient in the x direction, while in the second there was an interface
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between two regions with different activities. In both cases, we considered ideal
coreless defects placed at the origin in an otherwise unperturbed nematic and
neglected that the self-induced flow fields will deform the defect.

For the first setup, we found that the self-propulsion of the positive defect
is only determined by the local activity at its center. The constant gradient
induces a circular flow around the +1/2 defect if the polarization is not pointing
parallel or anti-parallel to the gradient. This has the effect of turning the defect
and we found that the flow tends to reorient the defect so that it points opposite
to the gradient. If the local activity is positive, it will tend to rotate so that it
eventually moves down the gradient. If the activity is negative, the defect will
eventually move up the gradient. In both cases, it is moving so that the absolute
value of the local activity is lowered. So the effect of the gradient is to rotate
the +1/2 defect so that it will move to regions with lower absolute activity
and thus reduce the self-propulsion speed. For the −1/2 defect, the constant
gradient does not induce any non-zero velocity or vorticity at the center so it
stays stationary also in this case.

In the second setup, we had to neglect the pressure contributions to be able to
get analytic solutions. The results show that the self-propulsion and reorientation
of both defects are affected. For the positive defect, it tends to slow down and
reorient so that it points perpendicular to the interface. The negative defect
starts to rotate towards a preferred orientation relative to the interface. If it
has this orientation, which depends on the sign of activity, it becomes attracted
to the interface, while other orientations become repelled. Note that when the
interface is steep, it will produce strong flows so the approximation that the
flow does not affect the shape of the defects only holds when it is far from the
interface.

Outlook Here we considered the self-induced flow and vorticity at the center of
ideal defects in an active system with spatially varying activity. As mentioned,
we neglect the deformation of the Q tensor here due to the flow field and only
consider an ideal defect profile in an infinite system. In the case of the sharp
active interface, there will be large stresses on the interface which will effectively
induce anchoring conditions on the nematic director. This will deform the defects
profile and have an effect on the flow and the motion of the defect and it would
therefore be interesting to consider the effects of this. Numerically it would be
interesting to imprint different geometries in the activity and study how this is
affecting the dynamics of the defects.

6.3 Paper III

Title: Precursory patterns to vortex nucleation in stirred Bose-Einstein
condensates
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Summary: The Halperin-Mazenko formalism is very good for tracking
topological defects, but it requires us to evaluate a delta function to get the defect
density eq. (3.52). However, we can get a lot of information on the nucleation
and kinematics of the defects using the D field alone. This is beneficial because
it does not require us to introduce a singular field. In this paper, we studied
defects that are nucleated in a Bose-Einstein condensate described by the Gross-
Piteavskii theory, see Chapter 3. The defects were nucleated by stirring the BEC
with a Gaussian stirring potential, U = U0e

−(r−r0)2/d2 , and we studied how the
D field and its conserved current shows the formation of the defect core prior
to the defect nucleation. The idea is that since D is a conserved quantity and
we know it is non-zero in the core of topological defect, then D and its current
J(D) should capture the formation of the defect cores prior to the nucleation
of the phase singularities and thereby act as a precursory event. We looked at
two different coupling strengths for the potential, one that is weakly coupled
U0 = 0.8µ and one that is strongly coupled U0 = 10µ. For the strongly coupled
potential, the nucleation of the vortices is proceeded by the formation of a halo
in the D field at the edge of the potential. At the same time, a phase slip is
formed in the depleted region under the potential. If the velocity is below a
critical velocity, one reaches a steady state where the phase slips are formed, but
they never migrate to the bulk. These unshed phase slips are known as ghost
vortices [97]. If the stirring velocity is higher than a critical velocity, the phase
slips detach and move towards the edge. While the phase slips move to the edges
the halo in the D field forms two blobs, which the phase slips eventually migrate
into. For the weakly coupled potential, the D field shows the formation of two
cores under the potential before the phase slip is formed. The cores are then
created before the phase slip occurs and act as a precursor event. In this case,
there is no steady state where the phase slip remains stable under the potential.
Once they are formed inside the cores, the defects are shed. The conserved
current J(D) plays an important role in the formation of the cores since it is
this current that creates the cores in the D field that will eventually harbor the
phase singularities.

Outlook In this paper, we used the D field to study the nucleation of topological
defects in a stirred Bose-Einstein condensate, with a focus on the formation of
the defect’s core and the role of the conserved current J(D). Once the defects
are nucleated, they are going to interact with perturbations in the condensate,
both linear and non-linear. Both defects and non-linear excitations are captured
by the D field and its conserved current, and it would therefore be interesting
to use this formalism to study their interactions in detail.

6.4 Paper IV

Title: A unified field theory of topological defects and non-linear local
excitations
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Summary: The topic of this paper is a generalization of the formalism we
used in Paper (III). Here we motivated the use of a coarse-grained topological
density field to study topological defects and non-linear local excitations in a
system with broken O(n) symmetry. This field is proportional to the D field
that we discussed in Section 3.5, and we generalize this density and its current
to d spatial dimensions for a n dimensional order parameter giving a general
expression for the velocity of the defects. To illustrate the versatility of the
method we used it to study dipole annihilation in a Bose-Einstein condensate,
the onset of active turbulence in an active nematic, and the nucleation of
dislocations in the phase field model.

For the onset of active turbulence, we initialized a homogeneous nematic state
with small perturbations in the angle of the director. The active stress enhances
the initial perturbations and creates periodic arches, i.e., smectic-like distortions
in the nematic field. When these arches appear the continuous translational
symmetry of the homogeneous state becomes broken, and we can describe the
newly formed periodic arched state by constructing a new order parameter. The
periodic arch state has dislocations, which are topological defects in the order
parameter of this state. These dislocations act as sources for the nucleation of
±1/2 defects in the nematic order. When the ±1/2 defects are nucleated the
system goes into an active turbulent regime and the periodic order is melted in
addition to the global orientational order.

This approach shows the route to active turbulence through competing
symmetries. The onset of the turbulent state is here mediated by an intermedi-
ate striped phase, when the periodic arches are destroyed by the "splitting" of
its dislocations into ±1/2 defects, which changes the global symmetry of the
system. This route to active turbulence fits well with the usual interpretation
of defect nucleation being favored in areas of high elastic energy [68], since
the dislocations in the arches are areas with substantial deformations in the
Q-tensor. These gradients are further enhanced by the active stress, leading
up to the creation of the ±1/2 defects. Note that the mechanism for the
nucleation of defects is different when friction with the substrate is neglected
[68, 98]. Also in this case there are formed arches/walls in the nematic or-
der and the defects are formed on the walls, without being seeded by dislocations.

For the dipole annihilation in the Bose-Einstein condensate, we initialized a
dipole and evolved the system with the dGPE, and visualized the coarse-grained
topological density field and the related velocity field. After the annihilation event,
the depleted region in the condensate, corresponding to the overlapping defect
cores that previously harbored the phase singularities, is no longer protected
and diffuses into the condensate as a shock wave. The D field still captures
the shock wave created during the annihilation and shows how it diffuses away
into the condensate. The last example concerns dislocations in the phase field
crystal where we also look at precursory patterns prior to nucleation, and the
breakdown of this description when the underlying translational order is melted.
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6. Papers: Summary and Outlook

For the phase field crystal, we also consider defects that have an anisotropic core
structure.

Outlook The coarse-grained topological density current gives information about
the nucleation process and acts as a precursor. In the example of the active
nematic, we saw that the precursor event for the defect nucleation was to first
break the translational symmetry by forming periodic arches. Evolving this in
time we saw the formation of topological defects in the arched phase which were
nucleated at the location where the defects in the nematic eventually nucleated,
which in turn melted the order parameter of the arches. This suggests that
there might be a hierarchy of topological defects. With this, we mean that the
defects in an ordered system with some broken symmetry can act as seeds for
defects of another ordered phase, restoring one of the broken symmetries of
the former ordered system and melting the order parameter. This hierarchical
structure is also hinted at in the three-dimensional APFC model where the
grain boundaries of a bicrystal are created at the same location as a disclination
network in the single crystal which simultaneously melts the crystal order. It
would be interesting to see if other systems with multiple broken symmetries
have the same hierarchical structure in the nucleation of defects, with defects in
one order parameter spawning defects in another with more symmetries.

6.5 Paper V

Title: Spontaneous flows and dynamics of full-integer topological defects in
polar active matter

Summary: In the last paper, we solved the flow equations around ideal point-
like topological defects of charge ±1 in the polar model described in Section
4.3, for both the dipolar active force α0∇ ·Qp and for the polar self-propulsion
force αpp. The dipolar active force gives a circular flow field around the +1
defects which vanishes for ideal asters or vortices, while the flow field around the
−1 defect gets divided into eight regions of oppositely signed vorticity. In the
limit where friction was neglected, we find that there should be a flow reversal
around the +1 defect. The flow equations do not give the scale of the reversal
since in the limit of point defects there is no length scale in the problem. We
expect the reversal to happen on the scale of the neglected core size, which is
confirmed numerically by averaging the flow fields around defects in large-scale
simulations of eq. (4.54) -(4.56). We also found the flow field related to the polar
self-propulsion force and saw that the flow induced by this force is non-decaying
in the far-field.

In the last part of the paper, we considered a pair of oppositely charged point
defects in an otherwise unperturbed system in the friction-dominated limit, and
study how the defects interact through the activity-induced flow by evaluating
the flow field at the positions of the defects. For the dipolar active force, the
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Paper V

interaction decays as 1/R, with R being the distance between the defects. We
also find that the interaction due to the polar self-propulsion is non-decaying in
the far-field, and showed that this non-decaying interaction leads to enhanced
defect annihilation. Simulations with and without the polar self-propulsion force
show that it tends to speed up the annihilation rate, and we believe that this
is the main mechanism behind the suppression of the defect density when this
force is included.

Outlook In the first part of this paper, we studied the flow fields around the
topological defects in a system of an individual coreless defect in a system with
constant activity and friction with the substrate. There has been recent work
on the active nematic where they vary the substrate geometry, which effectively
makes the activity and friction spatially dependent [99]. It would be interesting
to study the effects a spatially varying friction would have on the flow due to the
polar self-propulsion force around single defects, and the effects on the dynamics
of a pair of oppositely charged defects.

In the second part, we evaluated the flow field of a defect dipole at the center
of the positions of the defects to consider the defect-defect interaction mediated
through the flow. Here, we restricted ourselves to the friction-dominated limit,
neglecting the effects of viscosity. It would therefore be interesting to see whether
the viscous effects have any large impact on the results, especially once the
distance between the defects becomes small. It would also be interesting to
extend the analysis to N vortices of arbitrary charge to get a point defect model.
For the superfluid and the active nematic, it is possible to coarse-grain the point
defect model into a hydrodynamic description of the defect gas [81, 100]. It
would be interesting to consider a similar construction for this polar system and
see how including the polar self-propulsion flow modifies the behavior compared
to the active nematic.
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Chapter 7

Conclusion

We have seen that the topological defects in weakly interacting Bose-Einstein
condensates and active matter with nematic and polar symmetries can, in two
dimensions, be described using the Halperin-Mazenko formalism where the
defects are tracked by introducing the defect density field D and its current
jD. This formalism allows us to derive the defect’s equation of motion using
the quasi-static core approximation, and study the defect nucleation through
the localization of the D field at the cores of the defects. We can use the same
formalism because the ordered phase in these systems is due to the underlying
rotational symmetry (SO(2)) and tied to the ϕ4 free energy, which makes it
possible to map their order parameters into each other. However, there are
important dynamical differences that are reflected in the defect kinematics,
nucleation, and interactions.

We saw in Chapter 3 that in the mean-field approximation, the dynam-
ics of the Bose-Einstein condensate at zero temperature is conservative and
dictated by the grand canonical Hamiltonian. To include interactions with
the equilibrium thermal cloud, we introduced a dissipative part through a
constant thermal drag γ. Using the Halperin-Mazenko formalism and the
quasi-static core approximation, we find a kinematic model for the motion of the
defects as discussed in Chapter 3 and Paper (III). We see that the distinction
between the dissipative and conservative parts of the dGPE is reflected in the
defect kinematics, i.e. γ introduces a Coulomb-like interaction between the de-
fects, while the conservative part reproduces the Hamiltonian point defect model.

The hydrodynamics of active fluid, as discussed in Chapter 4, is described
in terms of the dissipative dynamics of the Q tensor/p vector order parameter
coupled with a Stokes flow. Similar to the BEC system, we used the Halperin-
Mazenko formalism to show how this hydrodynamic description determines the
motion of the defects. In addition to the Coulomb-like interaction due to the
dissipative dynamics, the defects are moved by fluid flows. This flow field is
coupled to the order parameter through configurational stresses so that the
presence of defects causes flows that move defects and mediate interactions
between them. In Paper. (I), (II) and (V) we studied the active flow induced by
the defects, in order to get insight into their dynamics. Topological defects are
non-linear excitations in the order parameter making them challenging to study,
especially in the active turbulent regime where the density of defects is high.
For analytical traceability, we, therefore, assumed idealized, pointwise defects to
study the spontaneous flows due to their far-field structure.
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7. Conclusion

In Paper. (I), and (II) we studied the flow field due to isolated ±1/2 defects
in an active nematic. In Paper. (I) we found that the hydrodynamic length
scale ℓd set by friction and viscosity, plays an important role for the defect
self-propulsion speed and the far-field flow profile. In Paper (II) we study the
defects self-propulsion and how they tend to rotate in a system where the activity
is spatially varying. In Paper (V) one of the themes was the flow induced by ±1
defects and the effects of the activity-induced flow fields on the defect-defect
interaction. Here we studied the flow fields of ±1 defects subject to both the
active stress and the self-propulsion force. We predicted a flow reversal of the
chiral active flow around a +1 defect in the limit of zero friction, and non-local
mutual interaction between defects due to the self-propulsion force. Even
though there may be corrections due to the defect core, our analysis was able to
reproduce phenomena reported in previous numerical and experimental studies.
For example, in Paper. (II) we predicted how ±1/2 defects reorient to a preferred
direction as they approach an activity interface, as observed in numerical studies
[101, 102]. Also, we theoretically predicted the accumulation of −1/2 defects next
to an activity interface [94] and in Paper. (V) we predicted the suppression of ±1
defects by the polar self-propulsion force [7]. The last effect is due to a non-local
defect-defect interaction mediated through the flow field, while the two first ef-
fects are consequences of a spatially dependent activity as discussed in Paper (II).

In Chapter 3, we saw that the coarse-grained topological density field D is a
conserved quantity. This is utilized in Paper (III) and (IV) where we study the
defect nucleation as a process where the D field becomes localized around the
defect cores, and the annihilation process where the D field disappears while
the core diffuses into the bulk. The homogeneous nucleation of defects in these
two systems looks a bit different, but they have much in common. Firstly, we
need energy to be injected. In the Bose-Einstein condensate, the particles are
passive so we need to inject the energy externally, e.g., by stirring it with a
potential, while for the active fluids the energy injection happens at the single
particle scale which comes into the hydrodynamic description as the active stress.
Secondly, there has to be a seed for the defects to form, which for the active fluid
is given by the initial perturbations. These perturbations grow into a striped
phase with dislocations, and these dislocations then act as seeds for the defect
nucleation. In the condensate, the defects are created by the potential. When
the nucleation happens, it is in both systems shown as a gradual process where
the D field localizes into the cores. The phase singularities are either created
inside the cores or move into them from the depleted region under the potential.

In this thesis, we have bridged the fields of active matter and Bose-Einstein
condensates using the Halperin-Mazenko formalism as a unified framework for
studying the topological defects resulting from the broken SO(2) symmetry. As
discussed in Paper (IV) the theoretical formalism presented in this thesis can be
extended to arbitrary dimensions. An interesting venue for further research is to
extend the derivations beyond the frozen core approximation. It is an elegant,
versatile, and minimal formalism that can be applied across several systems,
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something we exemplify by using it to mathematically bridge the systems of
active liquid crystals and superfluids.
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We study the active flow around isolated defects
and the self-propulsion velocity of +1/2 defects in
an active nematic film with both viscous dissipation
(with viscosity η) and frictional damping Γ with a
substrate. The interplay between these two dissipation
mechanisms is controlled by the hydrodynamic
dissipation length �d = √

η/Γ that screens the flows.
For an isolated defect, in the absence of screening from
other defects, the size of the shear vorticity around
the defect is controlled by the system size R. In the
presence of friction that leads to a finite value of �d, the
vorticity field decays to zero on the lengthscales larger
than �d. We show that the self-propulsion velocity of
+1/2 defects grows with R in small systems where R<
�d, while in the infinite system limit or when R � �d, it
approaches a constant value determined by �d.

1. Introduction
Active matter consists of collections of individuals that
dissipate energy taken from the environment to generate
motion and forces and self-organize into a rich variety
of ordered phases. Many active systems exhibit nematic
order interrupted by orientational defects and advected
by spontaneous flows driven by intrinsic activity of the
self-propelled individuals. This behaviour is found in
reconstituted systems, such as mixtures of cytoskeletal
filaments and motor proteins [1–4], bacterial suspensions
[5,6] and cell sheets [7,8], as well as synthetic systems,
like vertically vibrated layers of granular rods [6,9].

2022 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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Figure 1. Flow streamlines (white arrow) around a+1/2 defect forα < 0 obtained from (a) full solution and (b) asymptotic
one. The nematic director field is shown in black lines and the background colour map denotes vorticity. To show the structure
of the near-field, the vorticity scale is saturated at±0.2 in (a) and at±0.1 in (b). (c) Cross section of vorticity obtained from the
exact solution (solid blue line) and the asymptotic limit (dotted black line) at x = 0 as a function of y. (d) Cross section of the
velocity obtained from the exact solution (solid blue line) and the asymptotic limit (dotted black line) at y = 0 as a function of
x. (Online version in colour.)

A central feature of active nematics is the feedback between active stresses, which distort
orientational order and the spontaneous flow generated by such distortions. In hydrodynamic
descriptions [6], the active stress σ a

ij exerted by elongated active entities on the surrounding fluid
is proportional to the nematic order parameter tensor Qij, namely σ a

ij = α0Qij [10,11]. The activity
coefficient α0 embodies the microscale biomolecular processes that convert chemical energy into
mechanical forces, and depends on the concentration of active entities, which in general may
vary in space and time [12,13]. The sign of α0 distinguishes between contractile (α0 > 0) stress
generated by ‘puller’ swimmers, such as the algae Chlamydomonas, versus extensile (α0 < 0)
stress generated by ‘pusher’ swimmers, e.g. most flagellated bacteria. Its magnitude controls the
strength of the active flow. Fluctuations in orientational order yield active stresses and associated
flows, which can in turn enhance the orientational distortions. The resulting feedback loop
destabilizes the nematic order, driving the system to a state of self-sustained spatio-temporally
chaotic flow, with proliferation of topological defects, and termed active turbulence [14,15].

The lowest-energy orientational defects in nematic films have half-integer topological charge
and opposite sign. The +1/2 defects have a comet-like shape, while the −1/2 defects have a
tri-fold symmetry (figures 1 and 2). Defects strongly disrupt orientational order and induce long-
range nematic distortions. In active systems, such distortions generate flows with symmetry and
profiles controlled by the defect geometry. The nematic distortion created by a +1/2 defect yields
an active flow that is finite at the defect core. A +1/2 defect then rides along with the flow it
itself generates, behaving like a motile particle with a non-vanishing self-propulsion velocity va+,
even in the absence of external drive [12,16]. On the other hand, the active backflow generated
by a −1/2 defect vanishes at the core due to the defect’s threefold symmetry (figure 2). Thus
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Figure 2. Flow streamlines (white arrow) around a−1/2 defect forα < 0 obtained from (a) full solution and (b) asymptotic
one. The nematic director field is shown in black lines and the background colour map denotes vorticity. To show the structure
of the near-field, the vorticity scale is saturated at±0.2 in (a) and at±0.1 in (b). (c) Cross section of vorticity obtained from the
exact solution (solid blue line) and the asymptotic limit (dotted black line) at x = 0 as a function of y. Note that the vortices
changes sign rapidly at origin due to its multi-valued phase (see equation (4.6)). (d) Cross section of the velocity obtained from
the exact solution (solid blue line) and the asymptotic limit (dotted black line) at y = 0 as a function of x. (Online version
in colour.)

−1/2 defects behave like passive particles and have no spontaneous motility in the absence of
external driving. A simple estimate demonstrates that va+ is directed along the polar axis of the
+1/2 defect and is proportional to the activity α0. In an extensile medium +1/2 defects self-propel
in the direction of the head of the comet, while in a contractile system they move towards the
comet’s tail [12,16,17]. The direction of motion of +1/2 defects can then be used as a metric for
determining the nature of active stress in the system. Such measurements have, for instance,
revealed the surprising dominance of extensile stresses in confluent tissue composed of tightly
bound contractile individual cells [18–22].

The flow generated by defects and the resulting propulsive speed of the +1/2 also
vary depending on the dissipative processes at play in the system and the role of
fluid incompressibility. Specifically, important differences exist between ‘dry’ systems, where
dissipation is dominated by friction Γ with a substrate or an external medium [23,24] and
‘wet’ systems, where dissipation is mainly controlled by viscosity η, resulting in long-range
hydrodynamic effects [14,17,24,25]. In incompressible wet systems, activity is also a source of
pressure gradients, which in turn contribute alongside with the nematic distortion to the self-
motility of positive defects. In the limit of viscous dominated flows with no friction with the
substrate, the self-propulsion speed scales as |va+| ∼ (|α0|/η)�, where � is a length scale given by
the system size for an isolated defect [17] or by the mean separation between defects, which is,
in turn, controlled by the active length scale �a = √

K/|α0|, with K the nematic stiffness [17]. In
overdamped (dry) systems, where viscosity is negligible compared with frictional damping with
the substrate, |va+| ∼ |α0|/(ξΓ ), where ξ is the nematic coherence length [23,24,26]. A complete
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Figure 3. The self-propulsion speed of a +1/2 defect as function of �d/ξ in an unbounded system. The line is the exact
analytical solution, while the dotted line shows the asymptotic scaling with �d , i.e. vaxη∼ �d for �d > ξ . The grey area
corresponds to the overdamped limit, where essentially vax depends solely on friction. (Online version in colour.)

calculation of the active flows associated with defect configurations and of the propulsive speed
of the +1/2 defect that bridges between the two limits is, however, not available. The need for such
a calculation is further motivated by recent work that has shown that tuning frictional damping
relative to viscous dissipation leads to different dynamical regimes and ordering behaviour of
interacting defects [27].

In this paper, we present a detailed calculation of the flow around isolated ±1/2 defects
and of the defect’s self-propulsion velocity in an incompressible nematic film. We incorporate
both viscous dissipation and frictional damping and examine the interplay between the two,
as well as the long-range hydrodynamic effects arising from incompressibility. We evaluate the
+1/2 self-propulsive speed |va+| as a function of the hydrodynamic dissipation length �d = √

η/Γ ,
which measures the competition between viscous dissipation and frictional damping. The result
is summarized in figure 3. When dissipation is controlled by friction (�d � ξ ), one recovers the
simple dimensional estimate |va+| ∼ |α0|/(ξΓ ). We show, however, that to obtain this result it is not
sufficient to consider the far flow field which diverges near the defect, but one must resolve the
full flow field near the defect core. On the other hand, when viscous stresses dominate, the defect
propulsive speed depends on the order of limits. If Γ = 0 from the outset, then a simple estimate
yields va

x ∼ r due to the long-range nature of defect distortions. This limit, however, corresponds
to a ‘floating’ layer and does not describe experimental situations where the active nematic film
is supported by a substrate [25] or in contact with other fluids. It has been argued before that this
unbounded growth should be cut off either by the system size or by the defect separation [17]. Our
work shows that a finite friction cuts off the large-scale divergence of the defect self-propulsion
speed at the scale �d, with |va+| ∼ (|α0|/η)�d in the limit ζ = �d/ξ � 1, where viscous dissipation
exceeds frictional drag and provides an analytical expression for the defect self-propulsion over
all values of friction and viscosity. We find that the structure of the flow field around a defect
is also affected by the competition between viscosity and friction. At distances large compared
with �d, the flow velocity decays in the far-field as ∼ 1/r, due to friction with the substrate [25].
At distances smaller than �d, viscous dissipation dominates and smooths out the velocity field
near the defect core. Our work is relevant to defects in thin film of microtubule nematics on a
substrates, as well as to dense cell layers.

In §2, we describe the hydrodynamic model. In §§3 and 4, we provide analytical derivations
of closed expressions for the velocity and pressure fields induced by ±1/2 defects in an infinite
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system. One implication of the long-range interactions present in active nematics is that there are
strong finite-size effects on the single defect flow field. This is discussed in §5, where we compare
the analytical predictions with numerical integration of the Stokes equations in a disc of finite
radius. Finally, the main results are discussed with concluding remarks in §6.

2. Hydrodynamic model
We consider a hydrodynamic model of an active nematic that couples flow velocity u(r) to
the nematic order parameter Qij = S(n̂in̂j − 1

2 δij), where S quantifies the degree of order and
n̂(r) = (cos θ (r), sin θ (r)) is the orientational director field with head-tail symmetry. In the simplest
formulation, we consider that the Q-tensor is a minimizer of the de Gennes–Landau free
energy [6]

F =
∫

dr

[
K
2

|∇Q|2 + g
4

(
1 − 1

2
Tr(Q2)

)2
]

, (2.1)

with isotropic elastic constant K> 0 and g the strength of the local ordering potential. The
uniform nematic ordered state corresponds to S2

0 = 1. The flow field satisfies a Stokes equation
that balances forces on a fluid element, given by [6]

(Γ − η∇2)u = α0∇ · Q(r) − ∇p(r), ∇ · u = 0, (2.2)

where Γ is a friction coefficient per unit area, η is the dynamic viscosity and α0 is the activity
parameter, with dimensions of stress. For simplicity, we neglect the elastic stress as being of higher
order in the gradients of Q compared with the active stress and a more important contribution
for nematic textures with many defects. Here, we consider the flow field generated by an isolated
±1/2 defect embedded in an otherwise uniform nematic field.

In two dimensions, the traceless Q-tensor has two independent components and can be
represented equivalently as a complex scalar order parameter ψ = Qxx + iQxy. The configuration
of a defect located at the origin can be written in terms of the ψ-field as ψ(r) = S(r)e2iθ(r), where
r ≡ |r|. The detailed form of core function S(r) depends on the specific terms retained in the
free energy, but it has the important generic asymptotic behaviours that S(r) → 1 for r � ξ and
S(r) ≈ ar/ξ when r → 0, where ξ =√

K/g is the coherence length that sets the scale of the defect
core and a is a numerical constant O(1). Below we set a = 1, without loss of generality. The
coherence length provides an ultraviolet cutoff to separate inner core-solution from outer-core
solution. On long distances, the nematic orientation is a potential field that has a branch cut
starting at the origin where there is an isolated defect of charge q = ±1/2 and can be written
as [24,28]

θ (r) = q arctan
(y

x

)
+ θ0, (2.3)

where θ0 is the uniform background orientation. Without loss of generality, we set θ0 = 0.
We rescale the Stokes equation in units of the nematic relaxation time τ = γ /g (where γ is

the inverse of the rotational diffusivity) and the coherent length ξ , such that the dimensionless
momentum equation takes the form

(1 − ζ 2∇2)u = F± − ∇p̃(r), ∇ · u = 0, (2.4)

where F± = α∇ · Q is the active force generated by a defect. The rescaled activity and pressure
are given by α = α0γ /(Γ K) and p̃ = pγ /(Γ K). The dimensionless parameter ζ =

√
η/(Γ ξ2) = �d/ξ

measures the hydrodynamic dissipation length �d = √
η/Γ in units of the coherent length, ξ . In

the following, we will omit the tilde and all quantities are dimensionless unless otherwise stated.
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The components of the Q tensor for an isolated +1/2 defect are given by Qxx(r) = S(r)(x/r) and
Qxy = S(r)(y/r). The active force density then reduces to

F+(r) =
{

2αex, r → 0,
α
r ex, r � 1.

(2.5)

Similarly, for a negative defect Qxx = S(r)(x/r) and Qxy = −S(r)(y/r), corresponding to an active
force density given by

F−(e) =
{

0, r → 0

−α x2−y2

r3 ex + α
2xy
r3 ey, r � 1.

(2.6)

The solutions for the flow velocity and pressure can be written in terms of the corresponding
Green functions as

u(r) = 1
2πζ 2

∫
dr′K0(

|r − r′|
ζ

)[F±(r′) − ∇′p(r′)] ≡ ua + up (2.7)

and

p(r) = 1
2π

∫
dr′ ln(|r − r′|)∇′ · F±(r′), (2.8)

where ua and up are the contributions to the flow velocity induced by the active stress and
pressure gradients, respectively. Note that the latter also depends (indirectly) on activity. In the
limit of no friction, equations (2.7) and (2.8) reduce to equations (3.7) and (3.8) of [17].

3. Positive nematic defect in an infinite system

(a) Defect self-propulsion
The net active flow at the defect core acts as an advective velocity that propels the defect with a
velocity va, which in turn is controlled by both the active stress and pressure gradients. Thus we
write va = ua(0) + up(0). The flow induced by the active stress at the origin is given by equation
(2.7) evaluated at r = 0. The y-component vanishes due to symmetry considerations, and the
x-component is given by

ua
x(0) = 2α

[
1 − 1

ζ
K1(ζ−1)

]
+ πα

2ζ

[
1 − 1

ζ
(L−1(ζ−1)K0(ζ−1) + L0(ζ−1)K1(ζ−1))

]
, (3.1)

where ζ = �d/ξ , Kn(x) are modified Bessel functions and Ln(x) modified Struve function.
The integral determining the pressure field given by equation (2.8) can be performed by a

mapping to complex coordinates (x′, y′) → (w, w̄), (x, y) → (z, z̄) and then using the substitution to
polar coordinates w = r′ŵ, ŵ = eiθ ′

. This yields

p(r) = − α

2iπ

∫ 1

0
dr′r′

∮

γ

dŵ
(

1
ŵr′(ŵ − zr′−1)

− 1
z̄(ŵ − r′z̄−1)

)

− α

4iπ

∫∞

1
dr′

∮

γ

dŵ
(

1
ŵr′(ŵ − zr′−1)

− 1
z̄(ŵ − r′z̄−1)

)
(3.2)

with γ a contour of unit radius centred at origin. The pole at ŵ = 0 is always inside the unit disc
|ŵ|< 1, whereas the poles at ŵ = zr

′−1 and ŵ = r′z̄−1 are inside the unit disc when |z|< r′ or |z|> r′,
respectively. The contour integrals are then evaluated using the residue theorem. Integrating over

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 A

pr
il 

20
23

 



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210879

..........................................................

r′, we finally obtain

p(r) =
{
αx, r< 1,
αx
r , if r> 1.

(3.3)

Consequently, the defect self-propulsion induced by pressure gradient has only an x-component,
which counteracts that induced by the active stress, and given by

up
x(0) = −α

(
1 − 1

ζ
K1(ζ−1)

)
− πα

4ζ

[
1 − 1

ζ
[L−1(ζ−1)K0(ζ−1) + L0(ζ−1)K1(ζ−1)]

]

= −ua
x(0)
2

. (3.4)

Combining these results, we find that the self-propulsion velocity of an isolated +1/2 defect
oriented along the x-axis is va = va

xê, where va
x has the following scaling form:

va
x = αF(ζ ), (3.5)

where

F(ζ ) =
(

1 − 1
ζ

K1(ζ−1)
)

+ απ

4ζ

[
1 − 1

ζ
[L−1(ζ−1)K0(ζ−1) + L0(ζ−1)K1(ζ−1)]

]
. (3.6)

When ζ � 1, we can simplify the expression by expanding in powers of ζ−1, and, to leading order,
we obtain,

F(ζ ) ≈
ζ�1

π

4ζ
+ 1

2ζ 2 (γ − 1 − ln(2ζ )) − 1
4ζ 2 (2γ − 1 − 2 ln(2ζ )), (3.7)

where γ ≈ 0.577 is the Euler–Mascheroni constant. Similarly, we also take the other limit ζ � 1,
where the scaling function approaches a constant value. The dependence of the scaling function F
on ζ is plotted in figure 4 and its asymptotic scaling at ζ � 1 as F ∼ ζ−1 is included as the dotted
line. We can discuss the implications of these results better when we use dimensional quantities
and write the asymptotic behaviour of the self-propulsion speed as

va
x ≈

{
π
4
α0
Γ �d

= π
4
α0�d
η

, ζ � 1
α0
Γ ξ

, ζ → 0.
(3.8)

As anticipated from dimensional analysis, va
x ∼ (α0/Γ ξ ), in the overdamped limit where

dissipation is controlled only by frictional drag [23,24,26]. In the underdamped limit, where
the effect of drag is much smaller than viscous dissipation, hydrodynamic lengthscale becomes
important in screening the divergence of the self-propulsion speed with system size, such that va

x
scales instead as va

x ∼ α0/
√
ηΓ . In this case, the self-driven motion of +1/2 defect is reduced by

both friction and viscosity.
As discussed in the introduction, the presence of a finite drag always cuts off the large-scale

divergence of the speed of a single defect obtained in a purely viscous two-dimensional layer
at the dissipation length �d. When the flow equations for a thin nematic film of thickness h on
a substrate are derived via a lubrication approximation, the effective friction coefficient relates
to the film thickness and the viscosity of the substrate bulk fluid (oil), and scales as Γ ∼ η̄/h2

[29]. A more detailed calculation relevant to active microtubule suspensions confined between
water and oil shows that the bulk viscosity plays an important role as an additional source of
dissipation in the nematic layer affecting the individual defect self-propulsion [30], as well as the
vortex statistics in the active turbulence regime [31]. Note that [30] shows that the +1/2 defect
speed decays algebraically with the bulk oil viscosity (that controls the drag) in the regime where
the flow dissipation comes from the viscous dissipation in the nematic layer, consistent with our
formulation. When the flow dissipation is dominated by the oil bulk viscosity, there is, however,
a logarithmic decay with increasing oil viscosity and, indirectly, drag.
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(z
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z

~ z

Figure 4. Scaling function F(ζ ) as a function of ζ . The grey region corresponds to the overdamped limit where vax depends
only on friction. The dotted black line is the asymptotic limit for ζ � 1. (Online version in colour.)

(b) Flow field away from the defect
Outside the core, we treat the defect as a point source. From symmetry considerations, the flow
velocity due to σ a is again non-zero only along the x-direction and it is given by

ua
x(r) = α

2πζ 2

∫
dr′

r′ K0

( |r′ − r|
ζ

)
. (3.9)

The flow velocity associated with pressure gradients is finite also in the y-direction and it is
given by

up
i (r) = − α

2πζ 2

∫
dr′K0

( |r′ − r|
ζ

)(
δix

r′ − x′r′
i

r′3

)
. (3.10)

The term proportional to the δ function in equation (3.10) cancels ua
x from equation (3.9), such that

the total active fluid flow is entirely determined by pressure flow, with

ui(r) = α

2πζ 2

∫
dr′K0

( |r′ − r|
ζ

)
x′r′

i
r′3 . (3.11)

To evaluate this integral, we use a complex representation u = ux + iuy and evaluate the resulting
contour integrals as shown in appendix A where we express them in terms of complete elliptic
integrals of first and second kind. We further use the power series representation of these elliptic
integrals, which allows us to write the active fluid velocity as a series expansion in integrals over
the zeroth-order modified Bessel function, namely

u+(r,φ) = α

2ζ 2

∞∑
n=0

(
1 − 2n + 1

2n − 1
e2iφ

)(
(2n − 1)!!

(2n)!!

)2 ∫ r

0
dr′K0

(
r′

ζ

)(
r′

r

)2n+1

+ α

2ζ 2

∞∑
n=0

(
1 − n

n + 1
e2iφ

)(
(2n − 1)!!

(2n)!!

)2 ∫∞

r
dr′K0

(
r′

ζ

)( r
r′
)2n

. (3.12)

The K0(x) integrals are computed in appendix B. After some mathematical manipulations the
velocity reduces to

u+(r,φ) = α

4ζ

[
π

(
I0

(
r
ζ

)
− I2

(
r
ζ

)
e2iφ

)

+
∞∑

k,n=0

(κ+
1 (n, k) + κ+

2 (n, k)e2iφ)
1

(k!)2

(
r

2ζ

)2k+1
⎤
⎦ , (3.13)
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with

κ+
1 (n, k) =

(
(2n − 1)!!

(2n)!!

)2 ( −(4n + 1)(4k + 3)
(n + k + 1)2(2n − 1 − 2k)2

)
(3.14)

and

κ+
2 (n, k) =

(
(2n − 1)!!

(2n)!!

)2 [(2n − 1)(4k(n + 1) + 1 + n) − 4k2](4n + 1)
(n + 1 + k)2(2n − 1 − 2k)2(n + 1)(2n − 1)

. (3.15)

The corresponding vorticity is given by

ω+(r,φ) = − α

8ζ 2 sin(φ)

⎛
⎝4π I1

(
r
ζ

)
+
∑
n,k

[(2k + 1)κ+
1 (n, k)

−(2k + 3)κ+
2 (n, k)]

1
(k!)2

(
r

2ζ

)2k
)

. (3.16)

Both velocity and vorticity are shown in figure 1.

(i) Asymptotic far-field flow

The flow field greatly simplifies in the far-field r/ζ � 1, corresponding to distances much larger
than the hydrodynamic dissipation length. Then, the second term in equation (3.12) vanishes due
to the exponential decay of the Bessel function. In the first integral, we can replace the upper limit
r with ∞ and perform it analytically with the result given as

u+(r,φ) = α

2r

(
e2iφ + 1 +

(
ζ

r

)2
(1 − 3e2iφ)

)
, (3.17)

where we have kept the two first terms in the expansion. The slow 1/r-decay term in equation
(3.17) is independent of viscosity η and identical to the one derived in Ref. [24] in the friction-
dominated regime. Corrections due to viscosity give rise to faster 1/r3 decay. The corresponding
far-field vorticity is

ω+(r,φ) = α

r2 sinφ

(
1 + 3

(
ζ

r

)2
)

. (3.18)

The far-field solutions are singular at the origin, which is not the case for the full series solution
that resolves the near core field. This is demonstrated visually in figure 1c,d where we plot
cross sections of the velocity and vorticity profiles for both the full solution and the far-field
solution. The form of the expressions makes it natural to scale the position, velocity and vorticity
with ζ , ζ/|α| and ζ 2/|α| respectively. The only free parameter is then the sign of α. Panels (a)
and (b) show the flow streamlines and the vorticity field in the background for the full and
the far-field solutions, respectively, for an extensile system (α < 0). The velocity magnitude is
highest near the defect core and decays as a power law following the far-field asymptote. The
velocity streamlines point towards the defect in the right half-plane, and away from the defect in
the left half-plane. For positive α, the flow direction is reversed. In an infinite system, the flow
streamlines around an isolated defect are not closed. On the other hand, as discussed later, in
bounded domains, the system size controls the size of the eddies formed around the defect. For
more realistic configurations with many defects, the system size is typically replaced by the mean
defect separation. It may be that other intrinsic length scales controlled by elastic stresses are also
important in stabilizing finite-size vortices. These effects are left for future investigation.

4. Negative nematic defect in an infinite system
By similar calculations as in §3, we find that the velocity induced by the active stress at the position
of the negative defect vanishes as expected from symmetry consideration. After performing the
integral in the complex plane and subsequently integrating over the integrand with the Bessel
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function, we determine the pressure field induced by the −1/2 defect vanishes inside the defect
core and non-zero outside given by

p(r) =
{

0, r< 1,

−α x3−3xy2

3r3 , r> 1
(4.1)

and its gradient vanishes at the origin, hence no advective pressure-flow of the negative defect.
Thus, an isolated −1/2 defect is stationary in a uniform nematic field, regardless of activity.

(a) Flow field away from the defect
The flow field induced by the −1/2 defect can also be expressed analytically as a series expansion
of the elliptic integrals as detailed in appendix C, with the resulting expression of the velocity
field in the complex representation u− = u−

x + iu−
y given as

u−(r,φ) = − α

2ζ 2

∞∑
n=0

(
(2n − 1)!!

(2n)!!

)2 2n + 1
2n − 1

[
e4iφ 2n + 3

2n − 3
− e−2iφ

] ∫ r

0
dr′K0

(
r′

ζ

)(
r′

r

)2n+1

− α

2ζ 2

∞∑
n=0

(
(2n − 1)!!

(2n)!!

)2 n
n + 1

[
e4iφ n − 1

n + 2
− e−2iφ

] ∫∞

r
dr′K0

(
r′

ζ

)( r
r′
)2n

. (4.2)

The integrals over the Bessel functions are evaluated in appendix B, and the final expression is
then given as

u−(r,φ) = α

8ζ

(
2π
[

I2

(
r
ζ

)
e−2iφ − I4

(
r
ζ

)
e4iφ

]

+
∑
k,n

[κ−
1 (n, k)e−2iφ + κ−

2 (n, k)e4iφ]
2

(k!)2

(
r

2ζ

)2k+1
⎞
⎠ (4.3)

with the coefficients

κ−
1 (n, k) =

(
(2n − 1)!!

(2n)!!

)2 (4n + 1)[4k2 − (2n − 1)(4k + 1)(n + 1)]
(2n − 1)(n + 1)(n + 1 + k)2(2n − 1 − 2k)2 (4.4)

and

κ−
2 (n, k) =

(
(2n − 1)!!

(2n)!!

)2
[

4n(n − 1)
(n + 1)(n + 2)(2n − 1 − 2k)2

− (2n + 1)(2n + 3)
(2n − 1)(2n − 3)(n + k + 1)2

]
. (4.5)

The corresponding vorticity field as function of the polar coordinates follows as:

ω−(r,φ) = − α

8ζ 2 sin(3φ)

⎛
⎝4π I3

(
r
ζ

)
+
∑
k,n

[(2k − 1)κ−
1 (n, k)

−(2k + 5)κ−
2 (n, k)]

1
(k!)2

(
r

2ζ

)2k
)

. (4.6)

(b) Asymptotic far-field flow
As with the +1/2 defect, the far-field asymptotic flow is dominated by the leading order terms in
the expansion, which can also be computed directly from equation (4.2) in the limit of r/ζ → ∞.
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Figure 5. Flow streamlines (black lines) with vorticity as a colour map background generated by a +1/2 (a,b) and a −1/2
(c,d) defect in discs of different radii R for an extensile system (α < 0). (a) and (c) are for R= 1 and (b) and (d) R= 50. (Online
version in colour.)

The result of this calculation is that

u−(r,φ) ≈
r
ζ
�1

= α

2r

[(
ζ

r

)2
(15e4iφ + 3e−2iφ) − (e4iφ + e−2iφ)

]
. (4.7)

As for equation (3.17) the 1/r term here was also obtained in [24]. The vorticity related to this
velocity is

ω−(r,φ) = 3α sin(3φ)
r2

(
5
(
ζ

r

)2
− 1

)
. (4.8)

In this asymptotic approximation, the flow field is singular at the origin. This singularity is
however lifted by the higher order terms in the series expansions, so that the exact flow is smooth
everywhere. Figure 2 shows the flow streamlines with the vorticity field as the colour map for
the asymptotic (in a) and the exact solutions (in b), with the values scaled in the same way as
for figure 1. Cross sections of the vorticity and velocity at y = 0 are plotted in (c,d) showing the
singular behaviour of the asymptotic approximation at the origin, while it captures very well the
far-field behaviour. The plots correspond to an extensile system with α < 0. The sin(3φ) factor in
the vorticity divides the plane in six regions where the sign of the vorticity is altered and making
it multi-valued at the origin. The size of the velocity is zero at origin as we discussed above. It
increases a bit outside before it starts to decay with increasing r following the far-field asymptotic
behaviour.

As for the +1/2 defect, the flow streamlines never closed in an infinite system, thus there are
no finite size vortices. In the next section, we discuss how the picture changes once the defect is
placed in bounded domain.
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Figure 6. Cross sections of the numerically obtained velocity (a,c) and vorticity (b,d) profiles for R= 50 (in units of�d) (orange
dotted lines) are compared with the analytical solution for an infinite system (solid blue lines) for a negative (a,b) and positive
(c,d) defect. x and y are also in units of �d . The dashed black lines are the asymptotic solutions. (Online version in colour.)
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η andΓ and (b)Γ = 0. The black dotted line is a best fit line for the system in (b), it is also plotted for theΓ �= 0 systems
ignoring the constant term. Horizontal dashed lines are the analytical prediction for an infinite system v(a)+ = πα0/(4

√
ητ )

with the rescaled activity |α0| = 1. (Online version in colour.)

5. Isolated defect in a bounded active nematic
The problem of finding the flow field around defects in a bounded domain is challenging to
solve analytically. Thus, we resort to numerical solutions of the Stokes flow given by equation
(2.4) in a disc of radius R using finite-element methods and homogeneous boundary conditions
(zero velocity). In addition, we use the simplification that a single defect is imprinted in an
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uniform nematic field, while the changes in the nematic orientation induced by confinement are
ignored [17].

The Stokes flow equation (2.4) is solved with FEniCS using Taylor–Hood elements, which are
quadratic for the velocity and linear for the pressure and vorticity [32,33].

Figure 1 shows the flow streamlines induced by a single +1/2 (a,b) and −1/2 (c,d) defect in a
disc of radius R for an extensile system for η �= 0 and Γ �= 0. The left and right columns correspond
to R = 1 and R = 50, respectively. In a bounded system, the vortical flows around each defect span
the system size, as also reported in [17] for Γ = 0. However, due to friction with the substrate,
the flow decays on length scales larger than �d. This is evident by comparing the values in the
far-field of vorticity in the left and right columns from figure 5, corresponding to R = 1 (in units
of �d) in (a,c) and R = 50 (in units of �d) in (b,d). We note that the centre of a vortex is not fixed
at the maximum of the vorticity. This is due to the fact that the ±1/2 defects generate shear
flows that localize shear vorticity next to the defect cores. However, unlike curvature vorticity
in rotating flows which peaks at the vortex core, shear vorticity is not necessarily an indication
of the presence of vortices or their location. In fact, with increasing R, the flow gradients near the
defect cores become sharper, the streamlines near the cores are ‘stretched’ in the radial direction,
and the eyes of vortices move further from the origin. In the limit R → ∞, we expect vortices to get
stretched out so that flow streamlines close at infinity, and we recover the analytic flow profiles.

In figure 6, we compare the cross-sectional profiles of velocity and vorticity obtained from
the numerical solution for a large system, R = 50 (�d) to the analytical solutions. The analytical
solutions is obtained by truncating the summation in the full solution at n = 5000 and k = 500 up
to r = 15 and then using the asymptotic solution for r> 15. The plots of velocity in panels (a,c)
show that the numerical and analytical solutions agree very well close to the defect cores, but
deviate from each other near the boundary. This is due to the imposed boundary conditions of
the vanishing velocity field. The vorticity in panels (b,d) agrees well in the entire domain, with a
small boundary effect due to vanishing velocity and vortices spanning the system size. This effect
is perhaps more visible for the negative defect and decreases with increasing R.

The self-propulsion speed va
x of the +1/2 defect is also affected by the system size. If Γ = 0 at

the outset va
x ∼ R, as noted in [17]. Frictional damping screens out this divergence, yielding the

finite value given in equation (3.7) for R → ∞. The numerical calculation shows, however, that
for smaller R there are finite-size corrections to the defect propulsive speed. These are displayed
in figure 7, where we plot |va

x| as a function of R obtained from the numerical solution of equation
(2.4) for different values of η and Γ . The horizontal dashed lines are the analytical solution in
the limit of an infinite system, as given by v

(a)
x ≈ (π/4)(α0/

√
ηΓ ), while the dotted black lines

show the linear scaling with R in the limit of zero friction. We note that viscosity η determines
the slope for R dependence in small systems, while friction Γ controls the cross-over to the
intrinsic constant speed. Note that the asymptotic constant values of va

x agree very well with the
analytical prediction at ζ � 1 because in the numerical computations the vortex core is actually
set to zero (hydrodynamic regime with S = 1). For comparison, we also show in figure 7b the
defect propulsion speed in the absence of friction Γ = 0 from the outset, where the speed increases
linearly with the system size. The dotted black line represents the analytical prediction as found
in [17].

6. Conclusion
In summary, we have evaluated the flow field induced by an isolated ±1/2 defect in an
incompressible active nematic film on a substrate both for an infinite system and a finite-size disc.
While the self-propulsion speed of a +1/2 defect diverges with system size for an isolated film,
we show analytically that the presence of finite substrate friction Γ cures this divergence resulting
in a finite speed v

(a)
x ≈ (π/4)(α0/

√
ηΓ ) = (π/4)(α0/η)�d that increases with the hydrodynamic

dissipation length �d. This is also confirmed numerically in a finite disc with R> �d. For small
discs with R< �d, the active speed scales instead linearly with R.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 A

pr
il 

20
23

 



14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210879

..........................................................

Stable shear vortical flows are formed around the defects. In finite systems, the size of the flow
vortices is controlled by the dissipation length �d, hence spans the whole system if �d >R. The
eye of the vortices shifts away from the defect core with increasing R. For infinite-size systems,
the flow streamlines close at infinity as predicted by the far-field analytical solution. In the same
limit, we showed that the absolute value of the velocity decreases as 1/r for distances that are
large compared with the dissipation length scale, in agreement with previous studies. The 1/r
far-field decay of the flow created by defects may seem surprising as it suggests that a defect acts
like a point force. This behaviour arises from the long-range nature of the distortion of the texture
created by defects. When other defects are present (as required in the plane to guarantee zero net
topological charge), this decay is cut off by the defect separation. In finite domains, it is cut off
by the system size. The 1/r decay indicates, however, that a multi-defect approach is needed to
describe the defect gas, as attempted in [34,35].

In this work, we have neglected the effect of the elastic stress. An interesting extension would
be to study the effects it would have on the flow field, and also considering the effect of having
multiple interacting defects.
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Appendix A. Integrals for the+1/2 defect
Here, we provide the detailed steps that are taken to arrive at equation (3.12) from equation (3.11).
We start by changing to a complex representation u = ux + iuy with complex coordinates z = x + iy
and z′ = x′ + iy′. By changing variables to t = z′ − z, and then to polar coordinates t = r′eiθ = r′ẑ,
we write equation (3.11) as

u = α

4iπζ 2

∫
dr′r′K0

(
r′

ζ

) ∮

γ

dẑ

×
(

r′ẑ2 + zẑ

(r′ + z̄ẑ)
√

ẑ(r′ẑ + z)(r′ + z̄ẑ)
+ 1√

ẑ(r′ẑ + z)(r′ + z̄ẑ)

)
, (A 1)

where γ is the unit circle. We note that the integral over ẑ is over three branch points. ẑ = 0 is
always in the unit circle, ẑ = −z/r is inside when |z|< r and ẑ = −r/z̄ when |z|> r. We consider the
integral over ẑ and start by looking at the last term. Splitting up the square root, we write it as

1√
z̄r′

∮

γ

dẑ
1

√
ẑ
√(

ẑ + z
r′
)√(

ẑ + r′
z̄

) . (A 2)

We see that for all values of r′ we have two branch points inside of the contour. Therefore, we
write the integral as

1√
z̄r′

∮

γ

dẑ
1√

ẑ
√

(ẑ + a)
√

(ẑ + b)
. (A 3)

From here, −a is the branch point inside of the contour, while −b is the point outside of the
contour. We note that the complex numbers a and b have the same argument φ so we can write it
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Im

Re

Y

–a–b

C2
C1

Figure 8. Sketch of the keyhole contour in the complex plane associated with the integral in equation (A 4).

as
1√
z̄r′

∮

γ

dẑ
1√

ẑ
√

(ẑ + aeiφ)
√

(ẑ + beiφ)
. (A 4)

a and b are now either r/r′ and r′/r. If we change our integral variable from ẑ to û = ẑe−iφ , we get

1√
z̄r′

∮

γ

dûeiφ 1√
eiφ û

√
(eiφ û + aeiφ)

√
(eiφ û + beiφ)

= e−iφ/2
√

z̄r′

∮

γ

dû
1√

û
√

(û + a)
√

(û + b)
. (A 5)

Note that all branch points ẑ = 0, −a and −b are now located on the real axis. We now have to
consider what branch cuts we want to use to perform this integral. We consider the integral over
the domain as shown in figure 8. Here, we have cut out a area around the branch cut in order
to avoid problems. The key hole consists of a circle C1 with radius ε around −a, the circle C2
around the origin and the lines connecting them which is ε above or below the real line as shown
in figure 8. Since there are no poles in the domain between the two contours, the integral of them
has to be the same [36]. The contour integral becomes

∫

γ

e−iφ/2
√

z̄r′ dû
1√

û
√

(û + a)
√

(û + b)

=
(∫

−a−iε→−iε
+
∫

iε→−a+iε
+
∫

C1

+
∫

C2

)
e−iφ/2
√

z̄r′
dû√

û
√

(û + a)
√

(û + b)
. (A 6)

When ε→ 0, the integrals over C1 and C2 disappears. The integral above the real line is just above
the branch cut and therefore positive, while the one below is negative. We therefore get

∮

γ

e−iφ/2
√

z̄r′ dû
1√

û
√

(û + a)
√

(û + b)
= −2

e−iφ/2
√

z̄r′

∫ 0

−a
dû

1√
û
√

(û + a)
√

(û + b)
. (A 7)

Evaluating this integral, we obtain

∮

γ

e−iφ/2
√

z̄r′ dû
1√

û
√

(û + a)
√

(û + b)
= 4i

e−iφ/2
√

z̄r′
1√
b

K
( a

b

)
. (A 8)
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Here, K is the complete elliptic integral of the first kind with the power series

K(x) = π

2

∞∑
n=0

(
(2n − 1)!!

(2n)!!

)2
xn. (A 9)

With the double factorial (2n)!! = 2 · 4 · 6 · · · (2n − 2) · 2n.
We now consider the other integral over ẑ in equation (A 1):

∮

γ

dẑ
r′ẑ2 + zẑ

(r′ + z̄ẑ)
√

ẑ(r′ẑ + z)(r′ + z̄ẑ)
. (A 10)

This is not symmetric in the branch points as the other integral was. We can write this as

r′1/2z̄−3/2
∮

γ

dẑ
ẑ1/2(ẑ + eiφr/r′)1/2

(ẑ + eiφr′/r)3/2 , (A 11)

and we can rotate the integral variable to u = ẑe−iφ and get

r′1/2z̄−3/2
∮

γ

dûeiφ û1/2eiφ/2(ûeiφ + eiφr/r′)1/2

(ûeiφ + eiφr′/r)3/2

= r′1/2z̄−3/2eiφ/2
∮

γ

dû
û1/2(û + r/r′)1/2

(û + r′/r)3/2 . (A 12)

Which of the branch points that are inside of the integral depends on the value of r′. If r′ > r then
r/r′ is inside of the units circle. We can then use the same branch cuts and arguments as before
and find

r′1/2z̄−3/2eiφ/2
∮

γ

dû
û1/2(û + r/r′)1/2

(û + r′/r)3/2

= −2r′1/2z̄−3/2eiφ/2
∫ 0

−r/r′
dû

û1/2(û + r/r′)1/2

(û + r′/r)3/2 . (A 13)

We can perform the integral and find that it equals

− 2r′1/2z̄−3/2eiφ/2 2i√
r′/r

[(
2r′

r
− r

r′

)
K

(
r2

r′2

)
− 2r′

r
E

(
r2

r′2

)]
. (A 14)

Here, E(x) is the complete elliptic integral of the second kind with the power series

E(x) = π

2

(
1 −

∞∑
n=1

(
(2n − 1)!!

(2n)!!

)2 xn

2n − 1

)
. (A 15)

The other possibility is that r′ < r. Now it is the −3/2 root that is inside of the integral domain. In
this case, we cannot use the above approach since the integrand does not go to zero when ẑ goes
to r′/r. However, we can use the binomial expansion that is valid for |x|< 1. We have that

r′1/2z̄−3/2eiφ/2
∮

γ

dû
û1/2(û + a)1/2

(û + b)3/2 . (A 16)

Doing a change of variables to h = √
u with dh = du/(2

√
u). We then get (remembering a factor

half since because integrating once around h we have gone twice around u)

r′1/2z̄−3/2eiφ/2
∮

γ

dh
h2(h2 + a)1/2

(h2 + b)3/2 . (A 17)

We have that |h| = 1, a> 1 and b< 1. We therefore write this

r′1/2z̄−3/2eiφ/2
∮

γ

dh
√

a(1 + h2/a)1/2

h(1 + b/h2)3/2 . (A 18)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 A

pr
il 

20
23

 



17

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210879

..........................................................

We now use the binomial expansion

(1 + x)r =
∞∑

n=0

(
r
n

)
xn, (A 19)

and the integral becomes

r′1/2z̄−3/2eiφ/2√a
∮

γ

dh
h

( ∞∑
n=0

(
1/2
n

)(
h2

a

)n)⎛⎝ ∞∑
k=0

(−3/2
k

)(
b
h2

)k
⎞
⎠ . (A 20)

By the residue theorem only the terms where k = n is contributing to the integral. We therefore get

r′1/2z̄−3/2eiφ/2√a
∮

γ

dh
h

( ∞∑
n=0

(
1/2
n

)(−3/2
n

)(
b
a

)n
)

= 2π ir′1/2z̄−3/2eiφ/2√a

( ∞∑
n=0

(
1/2
n

)(−3/2
n

)(
b
a

)n
)

. (A 21)

Inserting the expressions for a and b, we find

2π iz̄−3/2eiφ/2√r
∞∑

n=0

(
1/2
n

)(−3/2
n

)(
r′

r

)2n

. (A 22)

Now we have solved the integral over the angles ẑ. Inserting this into the equation (A1), we find

u = α

4iπζ 2

∫ r

0
dr′r′K0(r′/ζ )

(
2π iz̄−3/2eiφ/2√r

∞∑
n=0

(
1/2
n

)(−3/2
n

)(
r′

r

)2n

+ 4ie−iφ/2
√

z̄r′

√
r′
r

K

(
r′2

r2

))
+ α

4iπζ 2

∫∞

r
dr′r′K0(r′/ζ )

×
(

4ieiφ/2√r
z̄3/2

[(
r
r′ − 2

r′

r

)
K

(
r2

r′2

)
+ 2

r′

r
E

(
r2

r′2

)]

+ 4ie−iφ/2
√

z̄r′

√
r
r′ K

(
r2

r′2

))
(A 23)

Using that z̄ = re−iφ and inserting the expressions for the K and E this becomes

u = α

2ζ 2

∫ r

0
dr′K0

(
r′

ζ

)(
r′

r

)2n+1
(

e2iφ
∞∑

n=0

(
1/2
n

)(−3/2
n

)
+

∞∑
n=0

(
(2n − 1)!!

(2n)!!

)2
)

+ α

2ζ 2

∫∞

r
dr′K0

(
r′

ζ

)( r
r′
)2n

( ∞∑
n=0

[(
(2n − 1)!!

(2n)!!

)2
− 2

(
(2n + 1)!!
(2n + 2)!!

)2 2n + 2
2n + 1

]
e2iφ

+
∞∑

n=0

(
(2n − 1)!!

(2n)!!

)2
)

. (A 24)

We can simplify this by using that

∞∑
n=0

(
(2n − 1)!!

(2n)!!

)2
− 2

(
(2n + 1)!!
(2n + 2)!!

)2 2n + 2
2n + 1

= −
∞∑

n=0

(
(2n − 1)!!

(2n)!!

)2 n
n + 1

, (A 25)

and for the binomial (
1/2
n

)(−3/2
n

)
= −2n + 1

2n − 1

(
(2n − 1)!!

(2n)!!

)2
. (A 26)
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Inserting this we finally arrive at

u = α

2ζ 2

∞∑
n=0

(
(2n − 1)!!

(2n)!!

)2 (
1 − 2n + 1

2n − 1
e2iφ

) ∫ r

0
dr′K0

(
r′

ζ

)(
r′

r

)2n+1

+ α

2ζ 2

∞∑
n=0

(
(2n − 1)!!

(2n)!!

)2 (
1 − n

n + 1
e2iφ

) ∫∞

r
dr′K0

(
r′

ζ

)( r
r′
)2n

. (A 27)

Appendix B. Integrals over the Bessel function
We start a change of variables to r′′ = ζ−1r′, and then evaluate the integrals over the Bessel
functions as

ζ 2n+2
∫ r/ζ

0
dr′′K0(r′′)r′′2n+1

= 1
4

r2n+2n!

[
n!2F̃3

(
1 + n, 1 + n; 1, 2 + n, 2 + n;

r2

4ζ 2

)

− 21F̃2

(
1 + n; 1, 2 + n;

r2

4ζ 2

)(
γ + ln

(
r

2ζ

))

+ 2
∂

∂a1
2F̃3

(
a1, 1 + n; 1, 1, 2 + n;

r2

4ζ 2

)
|a1=1

]

= 1
4

r2n+2Fr′<r
(

n,
r
ζ

)
(B 1)

and

ζ 1−2n
∫∞

r/ζ
dr′K0(r′)

(
1
r′

)2n

= 1
4

r−2n+1Γ

(
1
2

− n
)[

4−nΓ

(
1
2

− n
)(

2
(

r
ζ

)2n−1

−4n
2F̃3

(
1
2

− n,
1
2

− n; 1,
3
2

− n,
3
2

− n;
r2

4ζ 2

))

+ 21F̃2

(
1
2

− n; 1,
3
2

− n;
r2

4ζ 2

)(
γ + ln

(
r

2ζ

))

− 2
∂

∂a1
2F̃3

(
a1,

1
2

− n; 1, 1,
3
2

− n;
r2

4ζ 2

)
|a1=1

]

= 1
4

r−2n+1Fr′>r
(

n,
r
ζ

)
. (B 2)

Here, the regularized hypergeometric function is defined as

pF̃q(a1, . . . , ap; b1, . . . , bq; x) = 1
Γ (b1) · · ·Γ (bq)

∞∑
k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

xk

k!
, (B 3)

where (a)k = a · (a + 1) · · · (a + k − 1) is the rising factorial. These expressions can be simplified.
Using that Γ (x) = (x − 1)Γ (x − 1), it follows that the Pochhammer symbol is given as

(a)k = Γ (a + k)
Γ (a)

, (B 4)
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with the derivative

∂a(a)k|a=1 = (a)k(ψ (0)(a + k) − ψ (0)(a))|a=1 = k!(ψ (0)(1 + k) − ψ (0)(1)). (B 5)

Here, ψ (0)(k) is the digamma function, that is the first derivative of the logarithm of the gamma
function. For integer arguments, it is given as

ψ (0)(n) = −γ +
n−1∑
l=1

1
l

. (B 6)

Using the relations above, we find after some algebra that the moments are given by the power
series

Fr′<r
(

n,
r
ζ

)
=

∞∑
k=0

⎡
⎣ 1

(n + k + 1)
− 2

(
γ + ln

(
r

2ζ

))
+ 2

k∑
l=1

1
l

⎤
⎦

× 1
(n + k + 1)(k!)2

(
r

2ζ

)2k
(B 7)

and

Fr′>r
(

n,
r
ζ

)
= 4

∞∑
k=0

⎡
⎣ k∑

l=1

1
l

−
(
γ + ln

(
r

2ζ

))
− 1

2n − 1 − 2k

⎤
⎦ 1

(2n − 1 − 2k)(k!)2

×
(

r
2ζ

)2k
+ 2π

((2n − 1)!!)2

(
r
ζ

)2n−1
. (B 8)

Appendix C. Integrals for the−1/2 defect
Here, we provide details of the calculation leading to equation (4.2). Using the complex
representation with similar coordinate transformations as for the +1/2-defect, the corresponding
active flow velocity, u− = u−

x + iu−
y induced by active stress and pressure gradient from equation

(2.7) reads as

u−= − α

4iπζ 2

∫
dr′r′K0

(
r′

ζ

) ∮

γ

dẑ
ẑ

⎛
⎝ 1

r′ẑ + z

√
r′ẑ−1 + z̄

r′ẑ + z
+ r′ẑ + z

(r′ẑ−1 + z̄)2

√
r′ẑ + z

r′ẑ−1 + z̄

⎞
⎠ . (C 1)

We start by looking at the integral over ẑ and we will first consider the second term:

∮

γ

dẑ
ẑ

r′ẑ + z
(r′ẑ−1 + z̄)2

√
r′ẑ + z

rẑ−1 + z̄
= r′3/2

z̄5/2

∮

γ

dẑ
ẑ3/2(ẑ + z/r′)3/2

(ẑ + r′/z̄)5/2 . (C 2)

Using that z = reiφ and changing variable to u = eiφ ẑ we get

r′3/2

z̄5/2

∮

γ

dẑ
ẑ3/2(ẑ + eiφr/r′)3/2

(ẑ + eiφr′/r)5/2 = r′3/2

r5/2 e4iφ
∮

γ

du
u3/2(u + (r/r′))3/2

(u + (r′/r))5/2 . (C 3)

This integral has three branch points on the real axis. Two of these points are inside the integration
domain and give troubles. If r′ > r we have the two points u = 0 and u = r/r′ inside of the unit
circle. In this case, one uses the same key hole contour technique as (A7) and gets

r′3/2

r5/2 e4iφ
∮

γ

du
u3/2(u + (r/r′))3/2

(u + (r′/r))5/2 = −2
r′3/2

r5/2 e4iφ
∫ 0

−r/r′
du

u3/2(u + (r/r′))3/2

(u + (r′/r))5/2 . (C 4)

Performing this integral, we arrive at

4i
3

e4iφ r′

r2

([
3
( r

r′
)2

− 16 + 16
(

r′

r

)2
]

K

(
r2

r′2

)
+
[

8 − 16
(

r′

r

)2
]

E

(
r2

r′2

))
, (C 5)
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where the functions K and E are defined in appendix A. Now let us look at the integral when
r′ < r. In this case, we can not use the contour approach because the integrand diverges near the
r′/r pole. We, therefore, use the binomial expansion to evaluate this integral. We first change the
variable to h = √

u. The integral is then

r′3/2

r5/2 e4iφ
∮

γ

du
u3/2(u + (r/r′))3/2

(u + (r′/r))5/2 = r′3/2

r5/2 e4iφ
∮

γ

dh
h4(h2 + a)3/2

(h2 + b)5/2 . (C 6)

We have introduced a = r/r′ and b = r′/r and |h| = 1, |b|< 1 and |a|> 1. We therefore write this as

r′3/2

r5/2 a3/2e4iφ
∮

γ

dh
h4(1 + h2/a)3/2

h5(1 + b/h2)5/2

= 1
r

e4iφ
∮

γ

dh
h

⎛
⎝ ∞∑

k=0

(
3/2

k

)(
h2

a

)k
⎞
⎠
( ∞∑

n=0

(−5/2
n

)(
b
h2

)n
)

. (C 7)

The residual theorem makes it so that only the terms with k = n is relevant. The integral finally
becomes

2π i
r

e4iφ
∞∑

n=0

(
3/2
n

)(−5/2
n

)(
r′

r

)2n

. (C 8)

We now turn to the first term in the integral over ẑ in equation (C1). It is

∮

γ

dẑ
ẑ

1
r′ẑ + z

√
r′ẑ−1 + z̄

r′ẑ + z
. (C 9)

We change variables to t = 1/ẑ with dt = −dẑ/ẑ2. In addition there comes a negative sign because
we must reverse the contour. This integral is then

∮

γ

dt
t

1
r′t−1 + z

√
r′t + z̄

r′t−1 + z
, (C 10)

which is same integral as in equation (A10) with z and z̄ interchanged. We can therefore use the
solution we found in appendix A with φ→ −φ. The velocity field is then

u = − α

4iπζ 2

∫ r

0
dr′r′K0

(
r′

ζ

){
2π i

r
e4iφ

∞∑
n=0

(
3/2
n

)(−5/2
n

)(
r′

r

)2n

+ 2π i
r

e−2iφ
∞∑

n=0

(
1/2
n

)(−3/2
n

)(
r′

r

)2n
}

− α

4iπζ 2

∫∞

r
dr′r′K0

(
r′

ζ

){
4i
3

e4iφ r′

r2

([
3
( r

r′
)2

− 16 + 16
(

r′

r

)2
]

K

(
r2

r′2

)

+
[

8 − 16
(

r′

r

)2
]

E

(
r2

r′2

))
+ 4ie−2iφ 1

r

[(
r
r′ − 2

r′

r

)
K

(
r2

r′2

)
+ 2r′

r
E

(
r2

r′2

)]}
. (C 11)

Inserting the expressions for K and E, and using equation (A26) and

∞∑
n=0

(
3/2
n

)(−5/2
n

)
= (2n + 1)(2n + 3)

(2n − 1)(2n − 3)

(
(2n − 1)!!

(2n)!!

)2
. (C 12)

We finally arrive at

u−(r,φ) = − α

2ζ 2

∞∑
n=0

(
(2n − 1)!!

(2n)!!

)2 2n + 1
2n − 1

[
e4iφ 2n + 3

2n − 3
− e−2iφ

] ∫ r

0
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(
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ζ

)(
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r

)2n+1

− α

2ζ 2

∞∑
n=0

(
(2n − 1)!!

(2n)!!

)2 n
n + 1

[
e4iφ n − 1
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− e−2iφ

] ∫∞

r
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(
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ζ

)( r
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. (C 13)
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We study the dynamics of topological defects in active nematic
films with spatially varying activity and consider two set-ups:
(i) a constant activity gradient and (ii) a sharp jump in activity.
A constant gradient of extensile (contractile) activity endows
the comet-like +1/2 defect with a finite vorticity that drives
the defect to align its nose in the direction of decreasing
(increasing) gradient. A constant gradient does not, however,
affect the known self-propulsion of the +1/2 defect and has
no effect on the −1/2 that remains a non-motile particle. A
sharp jump in activity acts like a wall that traps the defects,
affecting the translational and rotational motion of both
charges. The +1/2 defect slows down as it approaches the
interface and the net vorticity tends to reorient the defect
polarization so that it becomes perpendicular to the interface.
The −1/2 defect acquires a self-propulsion towards the
activity interface, while the vorticity-induced active torque
tends to align the defect to a preferred orientation. This
effective attraction of the negative defects to the wall is
consistent with the observation of an accumulation of
negative topological charge at both active/passive interfaces
and physical boundaries.

1. Introduction
Active nematics are collections of elongated apolar particles that
consume energy from their surroundings to generate dipolar
forces that drive self-sustained flows [1]. Much progress in
understanding the rich dynamics of these active liquid crystals
has been achieved through a minimal hydrodynamic theory that
couples orientational order and flow and captures the behaviour
of biological systems from subcellular to multicellular scales [2].

© 2023 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
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Within the biological realm, the active nematic paradigm describes mixtures of cytoskeletal filaments and
motor proteins [3–6], bacterial suspensions [1,7] and confluent cell monolayers [8,9].

What distinguishes the hydrodynamics of active nematics from that of their passive counterparts is
the presence of an active stress generated by active processes, which sets up spontaneous spatio-
temporally chaotic flows [7]. The active stress is given by sa

ij ¼ aQij with Q the nematic order
parameter and α a scalar activity parameter that encapsulates the biochemical processes that generate
active forces [10–13]. It can have either sign: α > 0 corresponds to a system of ‘pullers’ generating
contractile stresses on their surroundings, whereas α < 0 reflects a system of ‘pushers’ and their
induced extensile active stresses. With increasing activity, active flows are induced spontaneously and
create large distortions of the nematic order, including the formation of pairs of topological defects
that sustain active turbulence [3,14].

The lowest energy topological defects in active nematic films have half-integer charge, corresponding
to the comet-shaped +1/2 with polarity e+ defined by a head–tail arrow, and the −1/2 which has
threefold symmetry (see figure 1). These defects disrupt the nematic order locally and induce long-
range distortions in the orientation field, generating active stresses, which in turn lead to spontaneous
active flows surrounding the defects [12,15,16]. There is a net active flow through the core of the polar
+1/2 defect which makes it intrinsically motile and is referred to as the defect self-propulsion. For an
isolated +1/2 defect, the self-propulsion velocity aligns with the polarity vector and, depending on
the contractile/extensile properties of the active nematic, the defect moves in/opposite to the direction
of its polarization. The −1/2 defect does not create any net flow at the defect position and, thus, is
not self-propelled in systems with uniform activity. The motion of defects in the presence of spatially
inhomogeneous activity is far less understood and explored [17].

There are several approaches to realize experimentally systems with spatially dependent activity. In
[18], a varying substrate topography is used to control the frictional damping in a film of a microtubule-
kinesin suspension. This results in spatial variations of the concentration of active agents, thus indirectly
in the local activity. In [19], a similar effect is achieved by manipulating light-sensitive myosin motors
that activate the microtubules. Both studies find that the −1/2 defects localize near the interface
separating the region of higher activity from that of lower activity. In [19], it was reported that the
+1/2 defects are deflected by the active/passive interface. Analytical work based on a hydrodynamic
theory of the defect gas has predicted that a passive/active interface can be used to separate positive
and negative topological charge [17]. Numerical studies of how the defect dynamics is affected by the
spatially dependent activity show that the polarity of the +1/2 defect tends to align parallel to the
activity gradient [19–23], and that the confinement and motion of defects can be manipulated by
varying the steepness of the activity gradients [24,25]. A recent numerical study also shows that
the formation of defect dipoles can be controlled by imprinting special geometries into the activity
profile [22].

In this paper, we provide a theoretical study of how spatially varying activity affects the self-
propulsion and reorientation of isolated topological defects. We consider the representative basic
set-ups where the spatial activity profile is given either by a constant activity gradient (linear profile)
or a sharp interface separating two regions of constant bulk activity (Heaviside function profile). For
constant activity gradients, the +1/2 defect rotates due to a vorticity-induced active torque acting on
the defect polarization until the defect aligns parallel to the activity gradient and moves in the
direction of lower magnitude of activity. Thus the defect slows down. We show analytically that the
vorticity at the +1/2 defect core is proportional to the hydrodynamic dissipation length ‘d ¼

ffiffiffiffiffiffiffiffiffi
h=G

p
,

which measures the strength of viscous dissipation η relative to friction G. Numerical simulations of

e+

e–

e–

e–

(a) (b)

Figure 1. Illustration of (a) the +1/2 defect and (b) the −1/2 defect and their corresponding polarizations for θ0 = 0. The negative
defect has three equivalent polarizations.
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the active flow generated in a disc of radius R show that the vorticity depends on the system size for
small R, and crosses over to the analytically predicted value for large systems. The vorticity field
induced by an activity gradient parallel to the +1/2 defect’s polarization has a quadruple structure
with regions of alternating vorticity. This is confirmed by numerical simulations for a disc geometry
where four vortices are formed around the +1/2 defect. By contrast, the vorticity induced by constant
activity gradients at a −1/2 defect has an eightfold symmetry that leads to eight vortices with
alternating circulation in a finite domain. We also calculate the net translational self-propulsion and
reorientation that both ±1/2 defects acquire near a sharp active/passive interface. The +1/2 defect
slows down as it moves towards the interface, and the vorticity-induced torque tends to reorient it
such that its polarization becomes normal to the interface regardless of the sign of activity. The −1/2
defect also acquires a preferred orientation at the interface, and those that approach the interface with
this stable orientation are then attracted by it.

The structure of the paper is as follows. We start in §2 by introducing the minimal hydrodynamic
model active nematic films on a substrate. In §3, we derive and discuss the self-propulsion and
spontaneous rotation of +1/2 defects in the presence of a constant activity gradient. Section 4 focuses
on the analytical derivation of the self-propulsion and vorticity of ±1/2 defects close to a sharp
active/passive interface. Summary and concluding remarks are presented in §5.

2. Hydrodynamics of active nematics with spatially varying activity
We consider the familiar hydrodynamic model of a 2D active nematics that couples the flow velocity uðrÞ
to the nematic order parameter Qij ¼ Sðn̂in̂j � 1

2 dijÞ, where S quantifies the degree of order and
n̂ðrÞ ¼ ðcos uðrÞ, sin uðrÞÞ is the orientational director field with head–tail symmetry. In the simplest
formulation, the Q-tensor is a minimizer of the de Gennes–Landau free energy [7]

F ¼ Ð dr K
2 j@iQ jkj2 þ g

4 (1� 1
2 Tr(Q

2))2
h i

, ð2:1Þ

with isotropic elastic constant K > 0 and g the strength of the local ordering potential. The uniform
nematic ordered state corresponds to S0 = 2. The flow field satisfies a Stokes equation that balances
forces on a fluid element, given by [7]

(G� hr2)u ¼ r � ½aðrÞQðrÞ� � rpðrÞ, r � u ¼ 0, ð2:2Þ
where G is a friction coefficient per unit area, η is the shear viscosity and α is the activity coefficient, with
dimensions of stress. For simplicity, we neglect the contributions from the passive stresses and flow
alignment to focus, instead, on the active flows generated by an isolated ±1/2 in the presence of non-
homogeneous activity aðrÞ.

We rescale the Stokes equation in units of the nematic relaxation time τ = γ/g (where γ is the nematic
rotational friction) [16,26] and the coherence length j ¼ ffiffiffiffiffiffiffiffiffi

K=g
p

. Different dynamical regimes are then
controlled by one dimensionless number ζ = ℓd/ξ, where ‘d ¼

ffiffiffiffiffiffiffiffiffi
h=G

p
, and the rescaled activity

aðrÞ ! aðrÞg=ðGKÞ. The dimensionless form of the Stokes equation reads as

(1� z2r2)u ¼ F+ �rp, r � u ¼ 0, ð2:3Þ
where the active force field induced by an isolated ±1/2 defect is given by

F+ ¼ QðrÞ � raðrÞ þ aðrÞr �QðrÞ ¼ FI+ þ FB+: ð2:4Þ
The first contribution is an interfacial force FI+ originating from activity gradients. The second term is a
bulk force FB+ due to nematic distortions. The defect self-propulsion velocity v+ is defined as the net
active flow through the defect core, and thus can be computed from the active flow velocity u
obtained from the solution of equation (2.3) evaluated at the origin [26]. Due to viscosity, it depends
nonlinearly and non-locally on the force field through the integral solution of equation (2.3) given by

v+ ¼ 1
2pz2

ð
drK0

r
z

� �
[F+ðrÞ � rpðrÞ] ¼ vI+ þ vB+, ð2:5Þ

where K0(r) is the zeroth order Bessel function which is the Green’s function of equation (2.3) without the
incompressibility constraint. We distinguish the interfacial contributions vI+ from the bulk contributions
vB+. The incompressibility constraint gives rise to pressure gradients which may affect the defect

royalsocietypublishing.org/journal/rsos
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kinematics. The pressure field is the solution of the corresponding Poisson’s equation

r2p ¼ r � F+ðrÞ: ð2:6Þ
The net vorticity at the defect core is also obtained from measuring the vorticity of the flow field induced
by the defect distortion, given by v ¼ @xuy � @yux ¼ �r? � u. Using equation (2.5) and evaluating it at
the defect position r0 ¼ 0, we obtain an expression for the defect vorticity

v+ ¼ � 1
2pz2

ð
drK0

r
z

� �
r? � F+ðrÞ ¼ vI

+ þvB
+: ð2:7Þ

Vorticity is also written as sums of interfacial vI
+ and bulk vB

+ contributions which depend on the defect
polarization e+ and are computed analytically in the next sections.

For isolated ±1/2 point-like defects, we can parametrize the Q-tensor order parameter in the quasi-
static phase approximation as [26]

Q+
xxðrÞ ¼ cosð+fðrÞ þ 2u0Þ and Q+

xyðrÞ ¼ sinð+fðrÞ þ 2u0Þ, ð2:8Þ

where fðrÞ ¼ arctanðy=xÞ is the singular part of the nematic orientation due to a ±1/2 defect located
at the origin, and θ0 is the slowly varying part of the background orientation of the nematic director.
The +1/2 defect has a well-defined polarization which is determined by the background nematic
orientation θ0 as

eþ ¼ r �Q
jr �Qj
� �

r¼0
¼ ½cosð2u0Þ, sinð2u0Þ�: ð2:9Þ

For the −1/2 defect, we can also introduce a polarization vector determined by θ0 and aligning with one
of the principal axes of the threefold symmetry [26]

e� ¼ cos
2u0
3

� �
, sin

2u0
3

� �� �
: ð2:10Þ

Both nematic defects and their respective polarizations are illustrated in figure 1.
It can be shown that a net vorticity at the defect core induces an active torque that tends to rotate the

defect polarization. This follows straightforwardly from taking the time derivative of the polarization in
equations (2.9) and (2.10), and using the evolution of the Q-tensor [17,26] to account for the change in the
background nematic field θ0 due to vorticity as ∂tθ0≈ ω/2. Thus, the evolution of the defect polarization
controlled by vorticity is

_e+ � �3�1=2þqv+e?+, ð2:11Þ

where the defect charge is q = ±1/2 and e? ¼ ½ey, � ex� represents the 90° clockwise rotation of the
polarization vector. For motile defects, there are additional torques due to defect interactions, the
elastic stiffness K or the coupling to the flow alignment [17,26]. Here, we focus on the active torque
induced by a non-zero vorticity which emerges from spatially varying activity alone. In the
subsequent sections, we investigate how this active torque reorients the defect polarization relative to
activity gradients for two set-ups: (i) a constant activity gradient and (ii) an interface with a sharp
jump in activity.

3. Constant activity gradient
We first study the kinematics of an isolated defect in a region where the activity gradient is locally
constant. Without loss of generality, we consider an activity gradient in the x-direction such that the
activity has the linear profile α(r) = α0 + αg x. The defect orientation is arbitrary and controlled by
the background nematic orientation θ0. We demonstrate that a constant gradient αg does not modify
the defect self-propulsion velocity as compared with what was obtained for uniform bulk activity α0.
An activity gradient across the texture of a +1/2 defect generates, however, a flow that may yield a
finite vorticity at the defect core, which tends to align the defect polarization according to equation
(2.11) in the direction of the gradient. The −1/2 defect remains stationary both in its motion
and orientation.

royalsocietypublishing.org/journal/rsos
R.Soc.Open
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3.1. +1/2 defect
The interfacial active force given in equation (2.4) arising from a constant activity gradient αg is

FIþðrÞ ¼ ag[ cosð2u0Þr̂� sinð2u0Þr̂?], ð3:1Þ

where r̂ is the radial unit vector and r̂? ¼ ðŷ, � x̂Þ. This expression corresponds to the Helmholtz
decomposition of FIþ into a curl-free part (� r̂) and a divergence-free part (� r̂?). These two
contributions are plotted in figure 2. The divergence-free part gives a net vorticity at the defect core
which tends to rotate its polarization until it aligns with the activity gradient. This is most easily
demonstrated in the friction-dominated limit where the active flow velocity is Gu ¼ FIþ � rp. The
incompressibility constraint thereby removes the curl-free contribution through the contribution of the
interfacial pressure which is radially symmetric and given by

pIþðrÞ ¼ ag cosð2u0Þðr� LÞ, ð3:2Þ

making the interface flow purely rotational. Here the constant L is a length comparable with the system
size which controls the divergent terms. More generally, to incorporate viscous dissipation we need to
evaluate the integral expression for the defect velocity given in equation (2.5). In an infinite system,
the symmetry of the integrand leads to no contribution to the defect speed from the interfacial active
force, thus vIþ ¼ 0. This contribution may become finite in non-radially symmetric bounded domains.

The contribution from the bulk active force in equation (2.4) reduces to

FBþðrÞ ¼ F0þðrÞ þ agxr �Qþ ¼ F0þðrÞ þ ag
x
r
ðcosð2u0Þx̂þ sinð2u0ÞŷÞ, ð3:3Þ

where F0þðrÞ is the known active force corresponding to a constant activity α0 which leads to a constant
self-propulsion velocity [16,26]. Since the contribution due to activity gradient αg is antisymmetric

(a) (b)
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Figure 2. Interfacial active force field from equation (3.1) induced by a +1/2 defect with (a) θ0 = 0, (b) θ0 = π/8 and (c) θ0 = π/4.
Note that cases (b,c) lead to rotation of the defect together with the nematic field until the defect polarization aligns with the direction
of the activity gradient. The dark solid lines in (a) show the nematic field around the +1/2 defect oriented in the x direction.
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around the defect position, its integral according to equation (2.5) vanishes. Therefore, there is no
contribution from activity gradients to the defect self-propulsion. This is not changed when we add
the gradient of the bulk pressure which is given as

pBþðrÞ ¼ p0þðrÞ þ
ag cosð2u0Þ

6
ðx2 � y2Þ

r
þ 3ðr� LÞ

� �
� ag sinð2u0Þ

3
xy
r

: ð3:4Þ

Here p0þ is the pressure for the constant activity term α0 [16].
Activity gradients induce, however, a vortical flow that is finite at the defect core, resulting in an

angular velocity of the +1/2 defect, given by

vþ ¼
ag

2pz2
sinð2u0Þ

ð
drK0

r
z

� �
1
r
þ x2

r3

� �
, ð3:5Þ

where the first term in the bracket originates from the interfacial active force and the second is due to the
bulk force. The integral can be carried out in polar coordinates, with the result

vþ ¼
3pag

4z
sinð2u0Þ: ð3:6Þ

We can rewrite this equivalently in physical units as

vþ ¼
3pag

4G‘d
sinð2u0Þ ¼

3pag

4
ffiffiffiffiffiffi
Gh

p sinð2u0Þ ¼
3pag

4h
‘d sinð2u0Þ, ð3:7Þ

to highlight that the defect angular velocity scales linearly with the hydrodynamic dissipation length ld,
similar to the self-propulsion speed of a defect in a constant activity [16]. The effect of this vorticity is to
align the polarization so that it is pointing opposite to the activity gradient. This is consistent with recent
numerical results, where defects align normal on soft interfaces separating extensile and contractile
regions [23].

To test the validity of these analytical predictions for a bounded system, we have solved numerically
the Stokes flow from equation (2.3) in a disc of radius R. Equation (2.2) is solved with non-slip boundary
conditions using the finite-element package FEniCS [27,28]. The active stress is computed from the
analytical form of the Q tensor corresponding to a single point defect in a uniform background nematics.

In figure 3, we show that the defect angular velocity is proportional to R for radii smaller than ld, and
crosses over to the asymptotic value for an infinite system given by equation (3.7) at large R. We have also
computed the vorticity field for α0 = 0 and different defect orientations relative to the activity gradient, as
shown in figure 4. When the defect polarization is parallel to the activity gradient (θ0 = 0), we observe a
quadruple structure of the vortical flow. This is consistent with the analytical prediction in the friction-
dominated limit, where the vorticity field away from the defect is determined by the activity gradient αg
as (for α0 = 0)

vþðr, fÞ ¼
ag sinð2fÞ

2Gr
cosð2u0Þ þ

ag

Gr
sinð2u0Þ(1þ cos2ðfÞ), ð3:8Þ
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Figure 3. Magnitude of the angular velocity of the +1/2 defect for different values of dissipation parameters η and G, αg = 1 and
θ0 =−π/4. The dashed horizontal lines are the analytical prediction for an unbounded domain. The dotted lines show the linear
scaling with R and with slopes 1/η.
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where r and ϕ are the polar coordinates centred at the defect position. By contrast, when the defect
polarization is normal to the activity gradient (θ0 = π/2), we obtain a single vortex centred at the core
of the defect.

3.2. −1/2 defect
A similar analytical calculation can be carried out for the −1/2 defect using the parametrization of the Q-
tensor in equation (2.8). The interfacial and bulk components of the active force field are obtained from
equation (2.4) as

FI�ðrÞ ¼
ag

r
[ðxx̂� yŷÞ cosð2u0Þ þ ðyx̂þ xŷÞ sinð2u0Þ] ð3:9Þ

and

FB�ðrÞ ¼
agx
r3

[ðy2 � x2Þðcosð2u0Þx̂þ sinð2u0ÞŷÞ þ 2xyðcosð2u0Þŷ� sinð2u0Þx̂Þ]: ð3:10Þ

From symmetry considerations these forces as well as their curl vanish upon integration. This implies that
a constant activity gradient alone does not induce any self-propulsion of the −1/2 defect nor a rotation of
its orientation. Including the pressure contributions does not alter this effect.
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Figure 4. Active flow streamlines induced by a uniform activity gradient along x-direction with α0 = 0 and by a +1/2 defect with
orientation (a) θ0 = 0, (b) θ0 =−π/4 and (c) θ =−π/40. Since α0 = 0, the flow velocity vanishes at the defect core. The
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predicted theoretically. The fourfold vortex structure is only visible for small values of θ0, i.e. when the defect is closely
aligned with the direction of the activity gradient.
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In the friction-dominated limit and for α0 = 0, we can evaluate the vorticity field, and show that a
constant activity gradient αg induces eight counter-rotating vortices, with a vortical flow given by

v�ðr, fÞ ¼ �
ag cosð2u0Þ

2Gr
ð3 sinð4fÞ � sinð2fÞÞ þ ag sinð2u0Þ

2Gr
(3 cosð4fÞ � cosð2fÞ): ð3:11Þ

The same structure is observed in bounded domains where the vorticity forms vortices of alternating
circulation, as shown in figure 5 for a disc geometry.

4. Activity jump at an interface
We now consider an activity profile corresponding to a sharp interface separating a region of high
activity α0 from a region of low activity α1. Isolated ±1/2 defects are situated at a distance xv from the
interface in the region of high activity, α0, as illustrated in figure 6. The activity profile across this
interface is given by the Heaviside step function

aðrÞ ¼ a0 � DaHðx� xvÞ,
corresponding to a singular activity gradient ∂xα =−Δαδ(x− xv) with Δα = α0− α1 the interfacial jump in
activity. An active/passive interface corresponds to α1 = 0 and Δα = α0. In this case, we find that the self-
propulsion of the +1/2 defect is reduced as the defect approaches the interface. The vorticity-induced
active torque tends to reorient the ±1/2 defects moving toward the interface to preferred orientations
that depend on extensile/contractile activity. The −1/2 defect that already has the selected orientation
is attracted to the wall, while that with different polarizations might be repelled.
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Figure 5. The vorticity field induced by an uniform activity gradient along the x-direction for α0 = 0 and a −1/2 defect with
orientation (a) θ0 = 0 and (b) θ0 =−π/4. The black lines shows the director field.
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Figure 6. Set-up of (a) +1/2 defect and (b) −1/2 defect at a sharp interface separating a region with higher activity α0 from that
with lower activity α1.
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4.1. +1/2 defect
The active force field induced by a +1/2 defect located at a distance xv from a sharp interface is given by

FIþðrÞ ¼ �Dadðx� xvÞ( cosð2u0Þr̂� sinð2u0Þr̂?) ð4:1Þ

and

FBþðrÞ ¼
a0

r
� Da

r
Hðx� xvÞ

� �
êþ: ð4:2Þ

Inserting these expressions in equation (2.5), we obtain the contributions to the self-propulsion velocity
from interfacial and bulk active forces as

vBþ ¼
a0p

4z
êþ � Da

2pz2
êþ
ð
drK0

r
z

� �
Hðx� xvÞ 1r ð4:3Þ

and

vIþ ¼ �
Da

2pz2
êþ
ð1
�1

dyK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

p
z

 !
xvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2v þ y2
p : ð4:4Þ

The first term in the bulk contribution is the well-known constant self-propulsion velocity from a
constant activity α0 [16]. The second term is the additional drift due to the activity jump Δα and
depends on the distance xv from the interface. As we will see below, this contribution suppresses the
defect self-propulsion near the interface.

If we now specialize to the case of an active/passive interface, i.e. Δα = α0. In dimensional units, the
self-propulsion velocity of the +1/2 defect is then given by

vþ ¼ a0

4h
p‘dfþv ðxvÞêþ, ð4:5Þ

with

fþv ðxvÞ ¼ 1� 2
p2

ð1
�1

dy

"
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

q� �
xvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2v þ y2
p þ

ð1
xv

dxK0(r)
1
r

#
: ð4:6Þ

The function fþv ðxvÞ is plotted in figure 7a. We note that the self-propulsion speed vanishes as the defect
hits the interface xv = 0. In other words, the defect slows down as it approaches the interface, and
eventually remains at rest at the interface. We note that equation (4.5) is obtained by incorporating the
incompressibility constraint only in the v0þ term. Additional pressure gradients may arise due to
activity jump. These are, however, difficult to obtain analytically and are not included in this study.

We now compute the vorticity at the defect position to investigate how its contribution to the active
torque tends to reorient the defect as it approaches the interface to a stable orientation. From equation
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Figure 7. Plot of (a) fþv and (b) fþv as functions of the distance xv of the +1/2 defect from the interface. Note that fþv diverges at
xv = 0 due to the bulk terms.
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(2.7), we obtain the following expressions for interfacial and bulk contributions

vI
þ ¼ �

Da

2pz2
sinð2u0Þ

ð1
�1

dy K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

p
z

 !
x2v

ðx2v þ y2Þ3=2
"

þK1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

p
z

 !
x2v

zðx2v þ y2Þ

#
,

ð4:7Þ

and

vB
þ ¼ �

Da

2pz2
sin 2u0

ð1
�1

dy K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

p
z

 !"

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

p �
ð1
xv

dxK0
r
z

� �
x
r3

#
, ð4:8Þ

where the bulk vorticity diverges at xv = 0. The total defect angular velocity is given by the sum of these
two contributions evaluated at the defect core. In dimensional units, it is given by

vþðxv, u0Þ ¼ � Da

2ph
sinð2u0Þfþv ðxvÞ, ð4:9Þ

where the wall-dependence function fþv ðxvÞ is plotted in figure 7b. Hence, near an active/passive interface,
the vorticity-induced rotation is at a rate _u0 ¼ 1

2vþðxv, u0Þ until ω+(xv , θ0) = 0. It is clear from figure 7b that
reorientation only occurs within a distance of order ℓd from thewall. As the +1/2 defect approaches thewall,
fþv increases and eventually diverges at xv→ 0. This means that the defect tends to reorient its polarization
until sin(2θ0) = 0. From the stability criterion that (dω+/dθ0) < 0, this corresponds to the stable orientation
2θ0 = π for α0 < 0 (extensile) and 2θ0 = 0 for α0 > 0 (contractile). In both cases, the defect polarization is
normal to the interface eþ ¼ ½+1, 0� and points away from the interface for extensile systems and into
the interface for contractile systems, respectively. Numerical simulations [19] report that +1/2 defects
tend to reorient and drift parallel to the boundary when the angle between the interface and the
incoming velocity is below a critical value that depends on activity. Above this critical angle, i.e more
head-on collisions, the defect hits the wall and tunnels through it. This effect is probably coming from the
additional contributions to the active torque that are not considered here, namely the interactions
between defects, deformations in the nematic order parameter due to the wall and the coupling to flow
alignment. It is likely that these terms are important close to the interface, both for determining the
defect orientation and the tunnelling effect observed both experimentally and numerically [19].

4.2. −1/2 defect
The components of the interfacial active force due to a −1/2 defect at a distance xv from the activity jump
are given by

FIx� ¼ �
Da

r
dðx� xvÞðx cos 2u0 þ y sin 2u0Þ ð4:10Þ

and

FIy� ¼ �
Da

r
dðx� xvÞð�y cos 2u0 þ x sin 2u0Þ: ð4:11Þ

The corresponding bulk active force is

FBx� ¼ ða0 � DaHðx� xvÞÞ 1r3 ½ðy
2 � x2Þ cos 2u0 � 2xy sin 2u0� ð4:12Þ

and

FBy� ¼ ða0 � DaHðx� xvÞÞ 1r3 ½ðy
2 � x2Þ sin 2u0 þ 2xy cos 2u0�: ð4:13Þ

Using these expressions, and neglecting the contribution from the pressure gradient, the net drift velocity
of the defect can be written as

v�ðxvÞ ¼ � Da

2ph
‘df�v ðxvÞn̂�, ð4:14Þ
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where n̂� ¼ cosð2u0Þx̂þ sinð2u0Þŷ. The function f�v ðxvÞ describes the dependence on the distance xv to the
interface and is given by

f�v ðxvÞ ¼
ð1
1

dyK0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

q
Þ xvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2v þ y2
p

�
ð1
xv

ð1
�1

dxdyK0ðrÞ x
2 � y2

r3
:

It has been evaluated numerically and is plotted in figure 8a. The −1/2 defect acquires a finite self-
propulsion close to the wall in a region of thickness of order ℓd near the activity jump. Its motion is
either towards or away from the boundary, depending on the defect’s orientation and the sign of the
activity.

To see how the −1/2 reorients as it approaches the interface, we evaluate the flow vorticity at the
defect core as a function of the wall distance. Again, there are contributions to the vorticity from both
flows driven by interfacial and bulk forces, given by

vI
� ¼ �

Da

2pz2
sin 2u0

ð1
�1

dy K1
r
z

� ��

� x2v
zðx2v þ y2Þ � K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2

p
z

 !
x2vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2v þ y2
p 3

#
ð4:15Þ

and

vB
� ¼ �

Da

2pz2
sin 2u0

ð
drK0

r
z

� � 
dðx� xvÞ y

2 � x2

r3

þHðx� xvÞ 3xðx
2 � 3y2Þ
r5

!
: ð4:16Þ

Note that the bulk term diverges when xv→ 0. The total angular velocity of the −1/2 defect can then be
written as

v�ðxv, u0Þ ¼ � a0

2ph
sinð2u0Þf�v ðxvÞ: ð4:17Þ

The function fvðxvÞ has been calculated numerically and is shown in figure 8b. The dependence on thewall
distance xv changes sign near the wall, indicating that the vorticity tends to rotate the defect to a preferred
orientation at the wall. The preferred orientation is determined by the stationary condition sin2θ0 = 0, and
the stability criterion (dω−/dθ0) < 0, which implies that θ0 = 0 for α0 < 0 and 2θ0 = π for α0 > 0. In other
words for extensile activity the stable orientation of a −1/2 defect at a sharp active/passive interface
corresponds to a polarization e− = [1, 0]. Therefore, as a result of both their self-induced translational
and rotational motion, in an extensile system −1/2 defects are attracted to a sharp active/passive
interface and orient themselves with one of the three axis normal to the interface. This is consistent
with the accumulation of negative topological charge observed in experiments at active/passive
interfaces [18,19] and near physical walls [29], as well as in simulations [24,25].
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Figure 8. Profile of (a) f�v ðxvÞ and (b) f�v ðxvÞ as function of xv. Note that the function f�v ðxvÞ diverges at xv = 0.
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5. Conclusion
Activity gradients or sharp jumps can guide the motion and orientation of nematic defects. In a constant
activity gradient, +1/2 defects acquire an angular velocity that may rotate their orientation such that the
defect polarization aligns parallel to the activity gradient. The defects then self-propel in the direction of
the gradient, always moving towards regions of lower magnitude of activity, where it is less motile. Thus,
we expect that activity gradients will introduce more circular motion in the trajectories of the +1/2
defects. By contrast, a constant activity gradient yields no net vorticity or active force at the core of
the −1/2 defect, which remains stationary.

We find that the self-propulsion velocity of +1/2 defects moving towards a sharp active/passive
interface is also reduced, and that the defect will eventually stagnate at the wall. By contrast, −1/2
defects acquire a finite propulsion speed in the interfacial region and can overcome the positive
defects, explaining the observation of negative charge accumulation in experiments and simulations
[18,19,24,25,29]. We also predict that the active torque acting on a +1/2 defect that reaches the
interface tends to reorient it toward a preferred polarization that is perpendicular to the interface and
points away/toward it depending on extensile/contractile activity. The vorticity-induced active torque
also acts on the orientation of a −1/2 defect migrating toward interface, by rotating the defect until it
reaches the stable orientation which minimizes the net vorticity at the defect position. We show that a
−1/2 defect with a stable orientation gets attracted to a sharp interface. This stable orientation is
selected by the sign of activity, i.e whether the system is contractile or extensile. Tunnelling across the
interface observed numerically may be due to soft interfaces where the activity gradients are not
sufficiently steep, as well as due to defect interactions and other hydrodynamic effects. Here, we have
neglected additional contributions of pressure gradients induced by activity gradients, as well as
elastic stresses, flow alignment, nematic distortions due to the active/passive interface and defect
interactions, which may change qualitatively the defect dynamics.

Our results offer a simple understanding of the dynamics of nematic defects in the presence of
spatially varying activity. They can provide the starting point for designing structures capable of
controlling defect dynamics and associated active flows.
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Within the Gross-Pitaevskii theory, we study precursory pattern formations to the nucleation of vortex dipoles
in a two-dimensional Bose-Einstein condensate stirred by a Gaussian potential. We introduce a smooth superfluid
vorticity field and its conservative current, which capture very well the gradual process of vortex nucleation as a
mechanism of topological singularities acquiring smooth cores. This is characterized by the localization of the
superfluid vorticity into core regions which harbor the phase slips. For more impenetrable obstacles, we find that
there are additional phase slips that do not acquire cores, thus remaining pinned as ghost vortices to the potential.
We show that the vortex kinematics is slaved to the superfluid vorticity current, which determines not only the
onset of nucleation but also the shedding dynamics.

DOI: 10.1103/PhysRevResearch.5.023108

I. INTRODUCTION

Topological defects are the fingerprints of broken con-
tinuous symmetries and are widely encountered in ordered
systems, such as disclinations in liquid crystals [1,2], disloca-
tions in solid crystals [3–5], orientational defects in biological
active matter [6–8], quantized vortices in quantum fluids
[9–11], or cosmic strings [12]. The formation and dynamics
of topological defects during phase ordering kinetics through
temperature quenches from the disordered phase have been
well studied for decades [13]. Going beyond the relaxation to
equilibrium, more recent theoretical approaches have focused
on the collective behavior in driven ordered systems through
the dynamics of topological defects.

The topological defects in an atomic Bose-Einstein con-
densate (BEC) are quantum vortices where the condensate is
locally melted while loosing its phase coherence. This induces
persistent circulating superfluid flow about the vortex cores
[14]. With the advent of tailored experimental realizations of
BECs comes also a surge in theoretical studies focused on un-
derstanding and tracking nonthermal nucleation and dynamics
of quantized vortices in driven Bose-Einstein condensates.
Two main frameworks are currently applied to study the vor-
tex nucleation in two-dimensional BECs, either by rotating
the condensate [15–17] or by coupling the condensate with
a moving obstacle [18–22]. The nucleation criterion is based
on the energetic argument that the superfluid flow reaches a
critical velocity above which the condensate phase gradient
undergoes phase slips. In rotating BEC systems, vortices of
the same circulation are created when the total amount of
angular momentum exceeds a critical threshold for the vor-
tex formation. Same-sign vortices form at the edge of the

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

condensate and migrate into the bulk, where they eventually
form vortex lattices after reequilibration [15,23–26].

The vortex nucleation in condensates stirred by a moving
obstacle has also been studied [27–31] and observed experi-
mentally [21,22]. Here, the nucleation criterion relies on the
height U0 of the repulsive Gaussian potential representing
the coupling of the stirring obstacle to the condensate. A
hard potential corresponds to an almost impenetrable obstacle
when U0 > μ, where μ is the chemical potential, such that
the condensate density rapidly decreases and nearly vanishes
inside the potential. By contrast, a soft potential corresponds
to a penetrable obstacle for U0 < μ such that the condensate
density is gently depleted inside the obstacle. The onset of
vortex nucleation induced by a hard obstacle occurs when
the local condensate velocity reaches the critical velocity for
phonon emission, whereas for the soft obstacle this is a neces-
sary but not a sufficient requirement [27,28]. Stirring obstacles
are typically modelled as Gaussian potentials with varying
height and width [30,31]. In Ref. [31] the vortex nucleation in-
duced by a repulsive Gaussian potential of different strengths
is studied numerically. It is found that near the critical velocity
for vortex nucleation, the energy gap between the ground state
and the exited state goes to zero as a power law, while ghost
vortices, i.e., phase slips, are formed inside the potential. By
contrast, no such ghost vortices develop in the case of soft
potentials. In addition to tuning the degree of permeability of
the obstacle, different vortex shedding regimes, from vortex
dipoles, pairs, and clusters [32–34], can be induced by varying
the size of the obstacle through the width of the potential,
which also changes the critical stirring velocity [21,35]. Once
vortices are being shed into the condensate they interact with
each other, forming dynamic clusters that sustain energy cas-
cades and two-dimensional quantum turbulence [11,34,36–
39].

Even though compressibility effects, due to shock waves
and phonons, are particularly important in the nucleation and
the annihilation of vortex dipoles, they are typically over-
looked in the quantum turbulence regime where turbulent
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energy spectra and clustering behavior is attributed mostly to
the mutual interactions between vortices [37,40]. The point
vortex modeling approach has been employed to characterize
different quantum turbulence regimes [41–45]. In point vortex
models, vortices are reduced to charged point particles with an
overdamped dynamics where their velocity is determined by
the mutual interaction potential or external potentials. While
the point vortex approach is suitable for studying collective
vortex dynamics, it cannot model fast processes such as vortex
annihilation or creation events without ad hoc rules since, by
construction, it overlooks the finite vortex core and compress-
ibility effects, which are crucial to fast events.

An accurate, nonperturbative method of deriving the ve-
locity of topological defects directly from the evolution of
the order parameter of the O(2) broken rotational symmetry
has been developed by Halperin and Mazenko [46–48]. Topo-
logical defects are located as zeros in the 2D vector order
parameter, where the magnitude of order vanishes to regular-
ize the core region where the phase of the order parameter
becomes undefined. The defect velocity is determined by the
magnitude of the defect density current at the defect position.
In the frozen-phase approximation, where the phase of the
order parameter is stationary apart from its moving singu-
larities, the vortex kinematics determined by the evolution of
the order parameter reduces to a point vortex model [45,47].
Within the Gross-Pitaevskii theory, the order parameter is the
condensate wave function, and the frozen-phase approxima-
tion is the regime where the dynamics of phonon modes can
be neglected. This is a versatile formalism which has been
applied to various systems, from tracking of point dislocations
[4] and dislocation lines [5] in crystals, point orientational
defects in active nematics [49] and active polar systems [50],
disclination lines in nematic liquid crystals [51] and vortex
lines in BECs [52].

In this paper we adopt the Halperin-Mazenko formalism
to gain further theoretical insights into the process of vor-
tex nucleation as a mechanism by which phase singularities
acquire a finite core to form a vortex. In Sec. II we present
this formalism for two-dimensional (2D) BECs and show that
the defect density field D represents a generalized, smooth
vorticity, defined as the curl of the superfluid current, and its
evolution determines the vortex velocity. This method circum-
vents the need of operating directly with the singularities in
the condensate phase, which are harder to manipulate both
theoretically and numerically. In Sec. III we study the pattern
formations developed in the superfluid vorticity D and its
current density J(D) during the nucleation process and show
that the superfluid vorticity condensed into well-defined cores
which harbor phase slips. In Sec. IV we show that the su-
perfluid vorticity current which determines vortex dynamics
reduces to the point vortex model in the frozen-phase ap-
proximation and derive the kinematics of point vortices in the
presence of both superfluid flow and nonuniform condensate
density. Concluding remarks and a summary are presented in
Sec. V.

II. VORTICES AS MOVING ZEROS

The superfluid flow and the topological structure of a
weakly interacting BEC are described by the evolution of

its macroscopic wave function ψ = |ψ |eiθ , where |ψ | is the
magnitude of the condensate wave function and θ is the con-
densate phase. Disturbances in the condensate phase generate
a superfluid flow with a current (momentum) density

J = |ψ |2∇θ = Im(ψ∗∇ψ ), (1)

such that gradients in the condensate phase define the super-
fluid flow velocity, which is irrotational everywhere except at
the points rα where the condensate phase looses its coherence
and becomes undetermined (singular), namely,

∇ × ∇θ = 2πqαδ
2(r − rα ). (2)

This phase singularity has a topological nature determined by
a 2πqα phase jump upon going counterclockwise around a
loop Cα enclosing it, where qα = ±1 is the topological charge
of the lowest energy quantum vortex, namely,

2πqα =
∮

Cα

dθ =
∮

Cα

dl · ∇θ, (3)

which is equivalent to the differential form in Eq. (2). Thus,
for configurations of well-separated vortices punctuating an
otherwise uniform condensate, the singular vortex charge den-
sity field is a superposition of δ functions centered at the
vortex positions,

ρv (r, t ) =
∑
α

qαδ
2[r − r(α)(t )], (4)

and it represents the singular vorticity field as the curl of
the superfluid flow velocity. From the single-valuedness of
the condensate wave function everywhere, it follows that the
condensate density vanishes where the condensate phase is
undetermined. Hence, quantum vortices are located at zeros
of the condensate wave function ψ as exploited by Halperin
and Mazenko [46,47]. By representing the complex ψ field
as an O(2)-symmetric real vector field �� = [�1;�2], where
�1 = Re(ψ ) and �2 = Im(ψ ), we notice that ��(r) maps a
point r to a point in the (�1, �2) disk centered at the origin
and of unit radius (i.e., the uniform condensate density in
rescaled units). Regions of uniform condensate density map to
the unit circle, whereas vortices located at various positions rα
in the real space reside at the origin of the (�1, �2) disk. The
coordinate transformation between the physical (x, y) space to
the (�1, �2) disk is determined by the Jacobi determinant

D =
∣∣∣∣∂x�1 ∂x�2

∂y�1 ∂y�2

∣∣∣∣ = εi j∂i�1∂ j�2 = εi j

2i
∂iψ

∗∂ jψ, (5)

where εi j is the Levi-Civita tensor and Einstein’s summation
convection is used. The D field is a scalar field that van-
ishes in regions of uniform condensate phase and is non zero
otherwise, as it is the case around vortices. By a coordinate
transformation of the Dirac δ function in Eq. (4), we can
rewrite the singular vortex density in terms of the zeros of
the �� as

ρv (r, t ) = D(r, t )δ2( �� ). (6)

In fact, the D field is a measure of the nonsingular vorticity
as the curl of the superfluid current [52]

εi j∂ jJi = εi jIm(∂iψ
∗∂ jψ ) = 2D. (7)

023108-2
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FIG. 1. Snapshot of (a) D field and (b) condensate density |ψ |2
around a stirring Gaussian potential when vortex dipoles are being
shed. The vector fields are (a) defect current J(D) and (b) director of
the superfluid current J , respectively. Negative vortices move in the
opposite direction of J(D). System size is represented in units of the
healing length.

This is also reflected in the fact that the singular, topological
structure in the condensate phase is regularized by vanishing
density which introduces a finite core size of the condensate
vortices. The D field as a superfluid vorticity locates both
the core and the circulation of the vortices as illustrated in
Fig. 1(a). To show that the D field indeed captures the topolog-
ical phase slips, we integrate Eq. (7) over an area S containing
vortices∫

S
d2rD = 1

2

∫
∂S

dl · J = 1

2

∫
∂S

|ψ |2∇θ · dl. (8)

In the assumption that the contour ∂S enclosing the area S
is sufficiently far away from well-separated vortices, i.e., the
superfluid density equals its uniform bulk value |ψ0|2 = 1
along the integration contour, the above integral reduces to

∫
S

d2rD = π
∑
α∈S

qα, (9)

where the sum is over all vortices inside the contour. Equiva-
lently, integrating the absolute value of D, we obtain instead
the total number N of vortices enclosed by the contour,∫

S
d2r|D| =

∑
α

qα

∫
Sα

d2rD = Nπ, (10)

which is the limit case of a uniform condensate punctuated by
well-separated vortices.

However, the generalized vorticity D field picks up not
only topological defects but any phase gradient (flow) dis-
turbances modulated by the superfluid density, which may
be induced by compressible modes, trapping, or stirring
potentials. These nonsingular contributions become particu-
larly important for the nucleation of vortices as discussed in
Sec. III and have been overlooked in earlier studies using the
Halperin-Mazenko formalism.

Flow disturbances with a topological origin can be disso-
ciated from the rest by the value of the generalized vorticity
determined by the condensate density profile near a vortex.
Namely, if we consider Eq. (8) for a disk S of radius much
smaller than the healing length and centered at an isolated
vortex in an otherwise homogeneous condensate, we find that
the value of the D field reaches in magnitude a value given by

|D0| = �2 ≈ 0.7, (11)

using the near-vortex profile of the condensate |ψ |(r) = �r
[53], and the numerical value for the steepness � of the
density gradients taken from Ref. [39].

This superfluid vorticity is a topologically conserved quan-
tity given by [47]

∂t D = −∂iJ
(D)
i , (12)

with its corresponding superfluid vorticity current

J (D)
i = εi jIm(∂tψ∂ jψ

∗), (13)

determined uniquely by the evolution of the ψ field and ac-
curately tracking the motion of the vortices as also illustrated
in Fig. 1(a) for a snapshot of a stirred condensate with several
dipoles. This current density is nonzero where the superfluid
flow is nonuniform, particularly through the vortex cores
where there are phase slips, as seen in Fig. 1(a). Figure 1(b)
represents a color map of condensate density and the vector
field of the normalized superfluid current showing vortical
flow around vortices for the same snapshot as in panel (a).
The Gaussian stirring potential is the larger indentation in the
condensate density.

When the D field tracks vortices, it determines the topo-
logical invariance of the singular defect charge density ρv ,
namely, that

∂tρv = −∂iJ
(ρv )
i , (14)

with the corresponding singular vortex current density being
(see Appendix)

J(ρv )(r, t ) = J(D)(r, t )δ2( �� )

=
∑
α

qα
J(D)(rα )

D(rα )
δ2(r − rα ). (15)

023108-3



JONAS RØNNING AND LUIZA ANGHELUTA PHYSICAL REVIEW RESEARCH 5, 023108 (2023)

In the frozen-phase approximation, the vortex core is rigid
and the equilibrium vortex wave-function profile remains sta-
tionary in the vortex comoving frame. In this case the vortex
current is identical to the advective current

∑
α qαvαδ2(r −

rα ) [54]. Within this approximation, the velocity is uniform
or slowly varying through the vortex core and given as

vα = J(D)(rα )

D(rα )
. (16)

This relation provides an accurate measurement of the vor-
tex velocity and can be reduced to the point vortex model
as discussed further in Sec. IV. Within the Gross-Pitaevskii
theory, the evolution of the condensate wave function ψ in the
presence of a potential field U (r, t ) containing both a static
trapping potential and a time-dependent stirring potential can
be described by a damped Gross-Pitaevskii equation (dGPE),
which in dimensionless units reads as [11,38,39]

∂tψ = (i + γ )
[

1
2∇2ψ + (1 − U − |ψ |2)ψ

]
, (17)

where the damping coefficient γ is an effective thermal drag
that represents the coupling of the condensate with a static
thermal bath and particle exchanges [55]. The dimensional
units used in the rescaling are given by the chemical potential
μ, the healing length ξ = h̄/

√
mμ and the sound velocity

c = μ/m. The wave function is rescaled in units of
√
μ/g,

where m is the mass of the bosons and g is an effective
scattering parameter for the interactions between bosons.

By inserting Eq. (17) into the conservation law of the D
field in Eq. (12), we express the evolution of the generalized
superfluid vorticity as

∂t D = −1

2
εi j∂i∂kRe(∂kψ

∗∂ jψ ) + εi j

2
∂iU∂ j |ψ |2

+ γ

2
∇2D + 2γD[1 − U − 2|ψ |2]

+ γJ · ∇⊥U + γ

2
εi jIm[∂i∂kψ∂ j∂kψ

∗]. (18)

The first term on rhs is a sink/source superfluid vorticity
coming from the kinetic energy. The second term corresponds
to the coupling with an external potential and gives a nonzero
contribution (as a sink/source) only when the gradient in
the condensate density is normal to the gradient force. The
remaining terms are the different contributions of the thermal
damping to the dissipation of superfluid vorticity, such as
diffusion, sink/sources from the coupling with a potential U ,
and a thermal drag induced by superfluid flow.

Since the condensate density vanishes at the vortex posi-
tion, the only nonzero contribution to the generalized vorticity
current density at the vortex position comes from the kinetic
energy; thus the general formula for the vortex velocity can be
expressed as

vα = i
Re(∇2ψ∗∇⊥ψ ) + γ Im(∇2ψ∇⊥ψ∗)

∇ψ∗ · ∇⊥ψ

∣∣∣∣∣
r=rα

, (19)

and reduces in certain approximations to the point vortex
dynamics as detailed in Sec. IV. However, the sink/source
contribution from the external potential U plays an important
role in the nucleation and shedding of vortices as discussed
next.

FIG. 2. Numerical setup of the condensate in the comoving
frame of the Gaussian potential (uniform flow direction shown by
the arrows). The color map represents the condensate density. The
dotted lines show the thermal buffer interfaces.

III. VORTEX NUCLEATION

To study the onset of vortex nucleation, we consider a
uniform Bose-Einstein condensate at zero temperature that is
coupled with a Gaussian potential moving at a constant speed
V0 along the x axis. Using the Galilean invariance of the GPE
at γ = 0, we can transform it to the comoving frame by boost-

ing the wave function with the phase factor exp(iV0x + iV 2
0
2 t )

to account for the shift in the kinetic energy [56]. The form of
the GPE is invariant under Galilean transformation only when
γ = 0.

In the comoving frame, this is equivalent to having a static
potential in a uniform superfluid flow described by

∂tψ + V0∂xψ = i

[
1

2
∇2 + (1 − |ψ |2) − U0e− (r−r0 )2

d2

]
ψ, (20)

where d is the width of the potential and U0 is the coupling
strength.

In numerical simulations we consider a thermal buffer on
the edge of the periodic domain where the damping coefficient
is nonzero to avoid recirculation of the shed vortex dipoles
and to dampen wave interference as illustrated in Fig. 2. A
similar computational trick was used in previous studies of
the vortex shedding [33] and the formation of a phonon wake
[56]. The width of the stirring potential is set to d = 4, and
we vary its speed V0 and its height U0. We use a rectangular
domain [−128, 128] × [−64, 64] (corresponding to a 512 ×
256 rectangular grid) and a fixed time step dt = 0.01. The
potential is centered in the middle of the domain at (x0, y0) =
(50, 0). For the dissipative buffer we set the thermal drag to
γ (r) = max[γx(x), γy(y)], which is effectively equal to 1, as
shown in Fig. 2. The smooth, but sharp transition between the
buffer and bulk values is mediated by the interfacial profiles
along the x and y directions given by

γx(x) = 1
2 (2 + tanh[(x − wx )/�] − tanh[(x + wx )/�]),

and similarly for γy(y). Here x = ±wx and y = ±wy locate
the positions of the top and bottom buffer interfaces along
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FIG. 3. (a) D field and (b) condensate phase θ around a hard potential at t = 19 prior to a nucleation. Two dipoles of phase slips reside
inside the potential. (c) D field and (d) θ at t = 28 (at the nucleation onset) when one dipole of phase slips have migrated to occupy the two
vorticity blobs. White/black circle is the radius where the potential becomes e−1. The vector field in (a), and (c) represents the superfluid
vorticity current. The potential strength is U0 = 10, and the stirring speed is V0 = 0.4, slightly above the estimated critical speed for this value
of U0, V0c ≈ 0.38.

the x direction, while � is the width of interface. The buffer
parameters are set to wx = 100, wy = 50, and � = 7.

We start by relaxing the initial Thomas-Fermi ground state
in imaginary time to find the steady state at V0 = 0 and then
evolve the condensate wave function according to Eq. (20) for
a given V0. However, since the initial state is not the ground
state of this equation, there will be an initial disturbance form-
ing around the potential which may lead to defect nucleation
even below the critical velocity. Thus we first let the system
relax this initial disturbance before we analyze the nucleation
process. The regime with U0 > 1 (in units of the chemical
potential) corresponds to a hard potential whereby the conden-
sate density almost vanishes inside the obstacle, akin to the
homogeneous boundary condition imposed at an impenetra-
ble boundary which melts the condensate phase coherence at
any stirring velocity. Conversely, for soft-indenting potentials
equivalent to U0 < 1, the condensate density is more gently
depleted such that phase coherence is preserved below a crit-
ical speed. The transition from soft to hard potential obstacle
occurs around U0 ∼ 1, where the potential induces a dipole of
phase slips pinned inside the obstacle [35].

The superfluid vorticity D field and its current density
turn out to be advantageous tools to unravel and explore the
distinct precursory patterns to the onset of vortex nucleation
and shedding for different stirring conditions as discussed
next. For hard potentials, one dipole of phase slips develops
and remained pinned inside the obstacle where the conden-
sate density is close to zero for stirring velocities above and
slightly below the critical value as visualized in Figs. 3(b)

and 3(d) (above the critical velocity) and Fig. 4(b) (below the
critical velocity). However, it turns out that the presence of
this dipole does not necessarily lead to nucleation. From the
profile of the superfluid vorticity D field around the stirring
potential, we can get a more in-depth understanding of the dy-
namical pattern formation leading to the nucleation of a vortex
dipole. Below the critical speed we observe that a steady-state
profile of the superfluid vorticity concentrated in a diffuse halo
surrounding the edge of the potential such that the circulation
changes sign symmetrically about the direction of motion as
shown the Fig. 4(a). In this steady state, the superfluid vor-
ticity current vanishes and results in no shedding event, even
though there is one dipole of phase slips pinned in the middle
of the potential [see Fig. 4(b)]. For this reason, this dipole was
also termed as a ghost vortice in Ref. [31]. Above the critical
velocity, which depends on U0 as studied in Ref. [35], there is
no steady state in the superfluid vorticity. Instead, the diffusive
halo around the potential tends to localize over time into two
blobs of opposite circulation as shown in Figs. 3(a) and 3(c),
corresponding to the formation of two vortex cores. While the
cores are forming on the edge, two dipoles of phase slips have
formed inside the potential, where one detaches and migrates
towards the vorticity cores while the other stays pinned. The
onset of vortex nucleation corresponds to the moment when
the two vorticity cores are hosting one phase slip each. The
subsequent vortex shedding is precisely determined by the
D-field current, which endows the vortices with a net velocity
away from the potential as shown in Fig. 3(c). Thus the vortex
shedding pattern and frequency could be further studied from
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FIG. 4. (a) Steady-state profile of the D field for a hard potential
U0 = 10 with the stirring speed V0 = 0.35 (below the critical value).
(b) Ghost dipole of phase slips inside the hard obstacle.

the D-field current. We also note that this formalism allows us
to make a clear distinction between real versus ghost vortices.
The latter are really due to the hard potential breaking the
phase coherence. It is the second dipole of phase slips which
controls the nucleation process.

As argued earlier, the important distinction of soft and hard
potentials is the presence of ghost vortices. The D field is
a powerful tool to further investigate the influence of ghost
vortices on the nucleation mechanism, which is a challenging
task. We can do this by contrasting it with the scenario where
there are no ghost vortices, as is the case for soft-indenting po-
tentials. Here, the D field develops two smeared-out regions of
superfluid vorticity with alternating circulating and spanning
the stirring potential. This is accompanied by smooth phase
gradients as shown in Figs. 5(a) and 5(b). The locations of the
regions with opposite superfluid vorticity are determined by
the phase gradients through the curl of the superfluid current,
as predicted by Eq. (7). Below a critical speed, this D-field
pattern remains stable with its corresponding vorticity current
J(D) vanishing as illustrated in Fig. 6. Notice that the pattern
in the D field is also symmetric about the direction of motion,
which also determines the orientation of the phase-slip dipole.
At sufficiently high V0 a dipole of phase slips forms inside the
soft potential and corresponds to the localization of the D field
around two blobs with opposite circulation [Figs. 5(c) and
5(d)]. Interestingly, in this case the phase slips develop already

inside the vorticity cores to form vortices. Since the D-field
current tracks the motion of these vortices, it also reveals
the direction in which vortices are being shed, as shown in
Fig. 5(c).

Based on this analysis, we get new insights into the vortex
nucleation as a fundamental gradual process of topological
singularities acquiring a finite core. This basic mechanism is
common to both hard and soft potentials. The main difference
is that for the soft potential, the phase slips develop inside
the vorticity core, whereas for the hard potential, the phase
slips form inside the potential and migrate to vorticity cores.
In this case phase slips can form as ghost vortices without
there being any vorticity localization, as seen in Fig. 4(b). We
have considered the homogeneous vortex nucleation and shed-
ding away from a stirring potential in a uniform condensate.
Because of the symmetry of the initial configuration, only
dipoles are being nucleated and shed. However, a small noise
added to the uniform condensate wave function breaks the
symmetry of the initial state and may lead to vortex nucleation
beyond simple dipoles [32,33]. The nucleation event re-
mains symmetrical through the formation of dipoles of phase
slips inside the potential. However, the shedding can become
more irregular depending on the noise amplitude and stirring
velocity.

To get a more quantitative measure of the nucleation event,
we use the spatial average of the magnitude of the generalized
vorticity |D| as a proxy to the total number of nucleated
vortices. The deviation from the theoretical prediction from
Eq. (10) corresponding to a uniform superfluid punctuated
by well-separated vortices informs us about the presence of
additional density heterogeneities due to compressible modes
or induced by the obstacle potential, as discussed earlier and
shown in Figs. 3–5. In Fig. 7 we have plotted this global
measure as a function of time for a soft versus hard potential
and for different stirring speeds. The integration domain is a
square surrounding the obstacle of size l = 40, i.e., the same
domain that is shown in Figs. 3–6.

Below the critical speed V0 < V0c, the net circulation
plateaus at a value lower than the predicted threshold for
vortices. This corresponds to the regime where superfluid
vorticity is smeared diffusively around the potential in the
absence of any phase slips or vortex nucleation, as is the case
for soft potentials and illustrated in Fig. 7(a).

As V0 approaches the critical speed from below (in the
absence of noise), the net circulation reaches above the 2π
threshold, signaling the presence of a vortex dipole. This is
common to both soft and hard potentials as shown in Figs. 7(a)
and 7(b). Once the nucleated vortex dipole drifts out of the in-
tegration domain, the value of the circulation drops and shows
only the contribution of the vorticity around the potential.
When V0 > V0c, the gradual process of phase slips acquiring
finite cores becomes recurrent and results in repeating vortex
nucleation and shedding. Periodic shedding is observed near
the critical speed, and more irregular shedding occurs with
higher speeds, as shown in Figs. 7(a) and 7(b).

IV. VORTEX KINEMATICS

Using the formalism presented in Sec. II, we now derive
a closed expression for the vortex kinematics in the presence
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FIG. 5. D field with defect current (a), (c) and condensate phase (b), (d) around the soft potential during a dipole nucleation. Before the
phase slips formed, t = 5 (a), (b), the D field spreads diffusively inside the potential. This region condenses into two cores which detach from
the potential after they acquire phase slips at t = 29 (c), (d). Potential strength is U0 = 0.8 and stirring speed is V0 = 0.42, slightly above the
estimated critical value V0c ≈ 0.4.

of both background superfluid flow and heterogeneities in the
condensate density. In this section we also consider the dissi-
pative effect of the thermal drag on the vortex dynamics. First
we consider a uniform condensate punctuated at the origin
with a vortex. The profile of the condensate wave function
near the defect is approximated as ψ0 ≈ reiqθ , where r is the
distance to the vortex with circulation q = ±1 and r 
 1,
which is a solution of the stationary vortex, ∂tψ0 = 0. We now
introduce a smooth phase perturbation ψ (r, t ) = ψ0(r)eiφ(r,t )

which accounts for the net superfluid flow at the vortex posi-
tion while keeping the steady-state density profile. Near the
defect position, the time evolution of the wave function is
dominated by the kinetic energy contribution,

∂tψ |r=0 ≈ (i + γ ) 1
2∇2ψ = (−1 + iγ )∇ψ0 · ∇φeiφ. (21)

Thus, evaluating the vorticity current using the near-vortex
evolution of the condensate wave function we arrive at the
following expression:

J (D)
i = εi j[−ε jkD + γ qεklε jkD)]∂kφ, (22)

which together with Eq. (16) implies that the vortex velocity
is determined by the phase gradients,

vi = (∂iφ + γ qεi j∂ jφ)r=0, (23)

which is the basic overdamped vortex dynamics in the point
vortex model [57,58]. However, this model does not include
the effect of condensate density disturbances due to the pres-
ence of trapping or stirring potentials.

We now apply the same method to compute the contri-
bution of density variations to the vortex velocity. For this,
the wave function is perturbed both in magnitude and phase:

ψ = ψ0eλ+iφ , where φ and λ are smooth real fields [45,48].
The generalized vorticity D field acquires an additional con-
tribution from the density perturbations and is given by

D = e2λ 1

2i
εi j∂iψ0∂ jψ0. (24)

The corresponding vortex velocity becomes

vi = (∂iφ − γ ∂iλ+ γ qεi j∂ jφ + qεi j∂ jλ)r=0, (25)

which is consistent with the dissipative vortex dynamics
obtained by a different approach in Ref. [59]. A similar dis-
sipative dynamics in the absence of density variations has
also been used in Ref. [60] to study the diffusive expansion
of a vortex cluster and compare with experimental observa-
tions. This equation reduces to the expressions obtained in
Refs. [45,48] for γ = 0. In Ref. [45] it was shown that the
density inhomogeneities due to an harmonic trap induces an
orbital motion or a vortex imprinted in the condensate. This
is precisely determined by last term in Eq. (25) due to the
spatial profile of the condensate density. The effect of thermal
drag is that it makes oppositely charged vortices attract each
other according to the third term in Eq. (25). Also, vortices
move down gradients in the background condensate density as
given by the second term. For the harmonic trap this implies
that vortices have instead a spiral motion towards the edge of
the trap.

To illustrate this we track the trajectory of a single vortex
imprinted in a BEC coupled to a harmonic potential. At zero
temperature the vortex moves in a orbit of constant radius
around the center of the harmonic trap. As a dissipative effect
of the effective thermal drag, the vortex acquires a radial
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FIG. 6. (a) Steady-state profile of the D field for a soft potential
U0 = 0.8 at velocity V0 = 0.38 (below the estimated critical value
≈0.4). (b) Smooth-steady-state profile of the condensate phase.

velocity and spirals out towards the edge of the trap. The
angular vθ and radial vr velocity components as functions of
time are shown in Fig. 8. We notice that velocity obtained by
the slope of the vortex trajectory is a noisy signal compared to
the velocity from Eq. (16).

V. DISCUSSION AND CONCLUSIONS

In summary, we have extended the Halperin-Mazenko
formalism to characterize the nucleation and dynamics of
vortices in a stirred Bose-Einstein condensate. We introduce
a smooth superfluid vorticity D field as a topologically con-
served quantity with its associated current density which
tracks all the localized disturbances in the condensate both
singular (vortices) and nonsingular (shock waves and distur-
bances induced by external potentials).

When the uniform condensate is stirred by a Gaussian
potential, the onset to vortex nucleation is signalled by the
precursory pattern formations in the superfluid vorticity D
field which captures the process of phase slips acquiring finite
cores. The D field is nonzero only around the stirring poten-
tial, where it develops two diffusive regions with alternating
vorticity distributed symmetrically about the direction of mo-
tion. This also determines the orientation of the phase slip
nucleating first inside the potential. The onset to nucleation is
signaled by the localization of the superfluid vorticity into two

FIG. 7. Net generalized vorticity for soft potential U0 = 0.8
(a) and hard potential U0 = 10 (b) for different V0 just below (blue),
just above (orange), and well above (green) the critical speed. The
integral is preformed over the area around the potential shown in
Figs. 3 and 5. The dotted line is the expected value corresponding to
a single vortex dipole at the critical speed.

blobs that harbor the dipole of phase slips. While this process
of acquiring a finite core occurs inside the potential, the actual
nucleation is manifested into the condensate by the shedding
of the vortex dipole.

In addition, for the hard potential, the D field localizes
around the rim, signaling the presence of a ghost dipole of
phase slips forming near and above the critical velocity. This
ghost dipole is pinned to obstacle and aligns perpendicular to
the stirring direction. Above the critical velocity an additional
dipole of phase slips develops at the onset of nucleation and
the previous ghost dipole is quickly migrating where vorticity
localizes into vortex cores.

The superfluid vorticity current J(D) plays an important
role during the process of acquiring a core since it develops
the vortex cores harboring phase slips. It also controls the
vortex kinematics and thus is the quantity that dictates the
shedding direction and frequency. From the general relation
to this current density, we derive closed expressions for the
vortex velocity depending on phase gradients and density
disturbances. It is worth noting that the Halperin-Mazenko
formalism may be extended also to analyzing experimental
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FIG. 8. (a) Radial velocity component vr and (b) angular veloc-
ity component vθ of a single vortex in a harmonic potential with
Rt f = 60 obtained from Eq. (16) (blue line) and from tracking the
position of the defect (turquoise diamonds). The thermal drag is set to
γ = 0.05.

data and identifying different types of condensate distur-
bances.
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APPENDIX

Here we derive the expression of the defect density current,

J(ρv )(r, t ) = J(D)(r, t )δ2( �� ),

where δ2( �� ) = δ(�1)δ(�2). We first start by multiplying
Eq. (12) with δ2( �� ),

δ2( �� )∂t D = −(∂iJ
(D)
i

)
δ2( �� )

∂tρv − D∂tδ
2( �� ) = −∂i

(
J (D)

i δ2( �� )
)+ J (D)

i ∂iδ
2( �� ), (A1)

where the last term on the right-hand side can be expressed as

J (D)
i ∂iδ

2( �� ) = εi jεkl∂ j�k∂t�l∂i�m
d

d�m
δ2( �� )

= εkl (εi j∂i�m∂ j�k )∂t�l
d

d�m
δ2( �� ). (A2)

Note that ∂ j and ∂i acting on the same �� component lead to
a vanishing term due to the Levi-Civita tensor. Thus the only
nonzero contributions contain D = εi j∂ j�1∂i�2 and therefore

J (D)
i ∂iδ

2( �� ) = −D∂tδ
2( �� ). (A3)

Inserting this into Eq. (A1), we arrive at

∂tρv = −∂i
(
J (D)

i δ2( �� )
)
,

from which the current density of ρv follows.
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Vidar Skogvoll 1✉, Jonas Rønning 1, Marco Salvalaglio 2,3 and Luiza Angheluta1

Topological defects and smooth excitations determine the properties of systems showing collective order. We introduce a generic
non-singular field theory that comprehensively describes defects and excitations in systems with O(n) broken rotational symmetry.
Within this formalism, we explore fast events, such as defect nucleation/annihilation and dynamical phase transitions where the
interplay between topological defects and non-linear excitations is particularly important. To highlight its versatility, we apply this
formalism in the context of Bose-Einstein condensates, active nematics, and crystal lattices.
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INTRODUCTION
Topological defects are hallmarks of systems exhibiting collective
order. They are widely encountered from condensed matter,
including biological systems, to elementary particles, and the very
early Universe1–8. The small-scale dynamics of interacting
topological defects are crucial for the emergence of large-scale
non-equilibrium phenomena, such as quantum turbulence in
superfluids9, spontaneous flows in active matter10, or dislocation
plasticity in crystals11. In fact, classical discrete modeling
approaches such as point vortex models12 and discrete dislocation
dynamics13 describe turbulence and plasticity in terms of the
collective dynamics of topological defects as interacting charged
points (in 2D) or line defects (in 3D). In most of these theories, the
interactions of topological defects are modeled through the linear
excitations that they induce in the far fields. The physics of events
on short time- and length scales, such as core energies, nucleation
conditions, defect interaction, etc., are often introduced by ad-hoc
rules, such as cut-off parameters, Schmidt stress nucleation
criteria, and defect line recombination rules. However, the
dynamics of these events play a vital role in the transitions
between different dynamical regimes. This is the case, for
example, in stirred Bose-Einstein condensates where different
superfluid flow regimes are observed depending on the size and
speed of the moving obstacle14–19, and where there is a subtle
interplay between vortices and shock waves. Active nematic fluids
are characterized by a dynamic transition to active turbulence at a
sufficiently large activity where the spontaneous flows are
sustained by the creation and annihilation of orientational
defects20,21. During plastic deformation of polycrystals, grains are
progressively fragmented, a process governed by the nucleation
and patterning of dislocations22. A number of macroscopic criteria
exist for the nucleation of topological defects in crystals23–25. Due
to the highly non-linear nature of this process, however, it still
remains poorly understood.
In this paper, we present a formalism to describe the evolution

of ordered systems from the dynamics of their topological defects
and their interactions with smooth but localized excitations. The
versatility of the approach allows us to gain insight into defect
annihilation, the onset of collective behavior, and perspectives on
defect structures. In particular, we apply the method to systems of

increasing topological and dynamical complexity. First, we study
the motion of isolated vortices in Bose-Einstein condensates,
which, in addition to confirming that the method correctly
identifies topological defects and their velocities, sheds light on
changes in quantum pressure arising from the interplay between
phase slips and shock waves. For active nematics, we observe that
the onset of active turbulence as a melting of periodic arches is
signaled by the formation of bound dipoles of nematic defects at
the core of dislocations in the nematic arches. Similarly, bound
dipoles of phase slips are also associated with the nucleation of
dislocations in a crystal lattice.
The proposed approach builds upon the classical method

introduced by Halperin and Mazenko (hereafter called the HM-
method)26,27 to track and derive analytical results for topological
defects. Therefore, in the section “Classical description of
topological defects”, we begin with preliminary details of
homotopy theory for topological defects and how the HM-
method can be used for O(n)-symmetric theories to track their
location and kinematics. In the section “Non-singular defect
fields”, we then develop a non-singular field theory as a
generalization of the HM-method which constitutes our primary
reduced defect field. The method is then applied to the
aforementioned physical systems in the sections “Defect annihila-
tion: vortices in Bose-Einstein condensates”, “Onset of collective
behavior: active nematics”, and “Defect structures: solid crystals”.
For the sake of readability, a rigorous derivation of the theoretical
framework for arbitrary dimensions and details of the numerical
simulations are reported in the Supplementary Notes. Conclusions
and perspectives for further study are outlined in the section
“Discussion”.

Classical description of topological defects
Collective order is typically described by an order parameter field
representative of symmetries and carrying information about
topological defects and smooth, localized excitations. Although
the order parameters are well-established for conventional
systems, one often needs to define them for more exotic
systems28,29. In this paper, we focus on well-known order
parameters for systems with broken O(n) rotational symmetries,
where n is the intrinsic dimension of the order parameter.
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Homotopy theory provides a valuable identification and
classification of topological defects1. The fundamental idea of
homotopy theory is that the order parameter can be mapped onto
a particular topological space R and the homotopy group of R
classify topological defects. For example, in the XY-model of
ferromagnetism, and more generally for any system with O(2)
broken symmetry, the order parameter is mapped by a 2D unit
vector u onto R ¼ S1, the unit circle. On S1, we may define classes
of closed circuits (loops), where loops of the same class are
homotopic, i.e., they can be continuously deformed into each
other. These classes, together with an appropriate binary
operation, define the homotopy group of S1. This group is
isomorphic to Z under addition since the difference between two
loops that are not homotopic is how many times they have looped
around the circle S1. Therefore, in regions of space where u is
continuous and well-defined, a closed circuit ∂M in real space
corresponds to a closed circuit in S1, and the topological charge
stop contained in ∂M is given as an integer by the isomorphism
between homotopy group of S1 and Z. This topological charge is
obtained from u ¼ ðcos θ; sin θÞ, by the contour integral

stop ¼ 1
2π

I
∂M

dθ; (1)

which is invariant under any smooth deformations of ∂M. This
also implies that by shrinking ∂M down to a point and given that
stop is a constant, there must be regions inside ∂M where u is
undefined. These are the topological defects that have a stop
charge. Therefore, topological defects for R ¼ S1 in 2D are points
with their charge determined by corresponding loop integration.
On the other hand, such topological defects (with R ¼ S1) in three
dimensions are lines.
In field theories of symmetry-breaking transitions, the ground

state of the order parameter minimizes a free energy constructed
from symmetry considerations. For broken rotational symmetries,
the order parameter is a vector field Ψ, which in the ordered
(ground) state has a constant magnitude ∣Ψ∣=Ψ0, meaning that
the ground state manifold is Sn�1, where n is the number of
components of Ψ. The link between the order parameter Ψ, and
2D unit vector (director) field u 2 S1 is given by u=Ψ/∣Ψ∣ and
topological defects are located at positions where u is undefined,
which corresponds to ∣Ψ∣= 0 as shown in Fig. 1a, b.
A description of topological defects as zeros of order

parameters in O(n) models and their kinematics was proposed
originally by Halperin and Mazenko in the context of phase-
ordering kinetics26,27 and extended to systems driven out of
equilibrium, such as in stirred Bose-Einstein condensation18,30,31,

active nematics32,33, and deformed crystals34–36. Sticking to O(2)-
symmetry in two dimensions and using the definition of a
topological charge given in Eq. (1), it is possible to express the
topological defect density in terms of the zeros of the order
parameter Ψ26 tracked by Dirac-delta functions as

ρtopðrÞ �
X
α

qαδ
ð2Þðr � rαÞ ¼ DðrÞδð2ÞðΨÞ; (2)

where qα and rα are, respectively, the charge and position of the
topological defect α, δ(2)(Ψ)= δ(Ψ1)δ(Ψ2), and D(r) is the (signed)
Jacobian determinant of the map Ψ,

D ¼ ∂ðΨ1 ;Ψ2Þ
∂ðx;yÞ ¼ ∂xΨ1∂yΨ2 � ∂xΨ2∂yΨ1

¼ 1
2 ϵ

ij~ϵmnð∂iΨmÞð∂jΨnÞ;
(3)

where ϵij are the components of the Levi-Civita tensor in real
space. The Levi-Civita tensor ~ϵ in order parameter space is written
with a tilde to emphasize that it is contracted with the order
parameter Ψ. In the Cartesian space, both ϵ and ~ϵ are simply the
Levi-Civita (permutation) symbols. Note that Eq. (2) is the usual
scaling property of the delta function taking Ψ as input, apart from
the sign of D carrying information of the charge qα of the
topological defects. This result was shown in ref. 26 by considering
as explicit ansatz a negative point defect, but can, in general, be
justified using differential forms. Nominally, the D field in Eq. (3) is
evaluated at the location of the defect only, because of the δ-
function in Eq. (2).

RESULTS
Non-singular defect fields
The δ-function in the topological charge density of Eq. (2) locates
the topological defects at singular points where u is undefined. In
O(2) models, however, even though the ground state manifold is
S1, the topological excitations have a finite core over which the
magnitude of the order parameter goes smoothly to zero. This
feature is also seen in physical systems, for instance, in liquid
crystals, where optical retardance is an order parameter that goes
to zero at the core. This has been used to quantify the size and
structure of the defect cores in liquid crystals37. Motivated by this,
we seek to generalize Eq. (2) in a way that will avoid singularities
in the resulting charge density.
Since the equilibrium value Ψ0 of ∣Ψ∣ is constant, the order

parameter effectively resides in D2, the unit disk. We propose in
this paper that the simplest generalization of stop is to consider the
relative area of D2 swept by Ψ on the circuit ∂M. During an

Fig. 1 Different types of excitations in a 2D vector field theory. A+ 1 defect is shown in a the order parameter field Ψ and b in the unit
vector field u=Ψ/∣Ψ∣. Excitations of c the ground state can be categorized into d linear excitations with variations in the orientation of Ψ, (e)
local non-linear excitations for which also the magnitude ∣Ψ∣ varies and f topological defects.
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infinitesimal displacement along ∂M, Ψ sweeps the infinitesimal
area given by half of the parallelogram spanned by Ψ and dΨ. This
(signed) area is given by 1

2~ϵ
mnΨmdΨn, see Fig. 2. The complete area

of D2 is πΨ2
0, and we define the charge s as the area swept by Ψ

relative to the area of D2,

s ¼ 1

πΨ2
0

I
∂M

1
2
~ϵmnΨmdΨn; (4)

where ∂M is defined as in Eq. (1). Naming s a “charge” suggests
that it satisfies a global conservation law, which we shall prove
shortly. The connection between s and stop is made by recognizing
that for a path ∂M in the far field of a topological defect, where
∣Ψ∣=Ψ0, s= stop. To see this, note that if ∣Ψ∣=Ψ0, then the
infinitesimal area swept by Ψ is simply 1

2Ψ
2
0dθ, which inserted into

Eq. (4) gives Eq. (1). Closer to the core, however, the magnitude ∣Ψ∣
decreases and s is no longer an integer, which is why the
associated defect density will give information about the core
extent. Using Green’s theorem, we get

s ¼ 1

2πΨ2
0

I
∂M

~ϵmnΨm∂kΨndl
k ¼

Z
M
d2rρðrÞ; (5)

where ρ(r) is the charge density of s, given by

ρðrÞ ¼ DðrÞ
πΨ2

0

: (6)

Whereas ρtop describes topological defects as point singularities in
the physical space, ρ describes topological defects with a finite
core size.
The time derivative of Eq. (6) gives a continuity equation

∂tρþ ∇ � J ¼ 0; (7)

with the current density determined by the evolution of the order
parameter

Ji ¼ � 1

πΨ2
0

ϵij~ϵmnð∂tΨmÞð∂jΨnÞ: (8)

Thus, ρ is a globally conserved quantity, and the change in s
contained in a circuit ∂M is given by

∂ts ¼ ∂t

Z
M
d2rρðrÞ ¼

Z
∂M

J � dn; (9)

where dn is an infinitesimal surface area normal to the circuit ∂M.
Far away from defects, ∣Ψ∣=Ψ0 and the time evolution of Ψ is
carried by its phase θ(r, t) through Ψ ¼ Ψ0ðcos θ; sin θÞ which can
be inserted in Eq. (8) to show that J= 0. This means that linear
perturbations of the ground state, which affect the orientation of
Ψ only, are not described by the charge density ρ. However, it
describes a certain type of local non-linear perturbations, where
the magnitude is affected; see Fig. 1c–f. We will exemplify this

distinction in the applications. Due to the standard continuity
form of Eq. (7), we can connect it to a velocity field v through the
charge flux ρv. Equation (7) only determines the current ρv up to
an unknown divergence free contribution K, i.e., v ¼ 1

ρ ðJ þ KÞ,
where∇ ⋅ K= 0. However, when ρ ≠ 0, there exists a unique
velocity field v(Ψ) such that the evolution of Ψ can be written in a
generic advection form ∂tΨ+ (v(Ψ) ⋅ ∇ )Ψ= 0, equivalently
expressed as

∂tΨ1

∂tΨ2

� �
þ ∂1Ψ1 ∂2Ψ1

∂1Ψ2 ∂2Ψ2

� �
vðΨÞ1

vðΨÞ2

 !
¼ 0: (10)

This equation can be inverted to uniquely determine v(Ψ) if
detð∂iΨnÞ ¼ DðrÞ≠ 0. To find v(Ψ) where this condition holds true,
i.e., the regions of interest where also ρ(r) ≠ 0 from Eq. (6), it is then
possible to invert Eq. (10). However, it is easier to insert
∂tΨ=− (v(Ψ) ⋅ ∇ )Ψ into the expression J/ρ and see that it is the
solution of Eq. (10). Thus, to fix the gauge on v, we set K= 0 to get
v= v(Ψ) and find

vi ¼ Ji

ρ
¼ �2 ϵ

ij~ϵmnð∂tΨmÞð∂jΨnÞ
ϵij~ϵmnð∂iΨmÞð∂jΨnÞ ; (11)

where it is implied that repeated indices are summed over
independently in the numerator and denominator. It should be
noted that the velocity v only describes the velocity of the defect
density ρ and is not, in general, the same as the advection velocity
of the order parameter. We have only shown that if ρ ≠ 0 in some
region then it is possible to write the evolution of Ψ in this way. If
the actual evolution of Ψ is given as the advection vD of a density
field (i.e., including the term Ψ∇ ⋅ vD), then v ≠ vD, because the
compressible part of the advection will not directly translate into
the motion of topological defects. However, if a localized
topological defect moves without changing its core structure,
i.e., with a frozen core, Eq. (11) will give this velocity in the region
of the core, which we will show in the section “Defect annihilation:
vortices in Bose-Einstein condensates”. While the expression for
the current of D and the velocity equation (11) have previously
been used in the HM-method, several important distinctions can
be highlighted. Firstly, the derivation of the ρ field from the
redefined charge, Eq. (6), shows that the field carries topological
information and does not only serve as auxiliary transformation
determinants of δ-functions. Secondly, the velocity field has
previously only been rigorously shown to apply to topological
defects. In contrast, this derivation also describes the velocity of ρ
for other non-linear excitations. Thirdly, the fixing of the gauge K
has not been adequately addressed in previous works to the
authors’ knowledge. While the derivation above was done for a
n= 2 order parameter in d= 2 spatial dimensions for simplicity,
topological defects exist whenever d ≥ n. Equation (4) can be
generalized to arbitrary dimensions by replacing the integrand

Fig. 2 A continuous field Ψ(r) containing defects with integer charges +1, −1, and +2. The net integer topological charge contained in the
circuits is given by the winding number of the unit vector field u in S1. The (signed) relative area gives the value of s for the circuits spanned
by the order parameter Ψ in D2.
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with the volume of the n-sphere spanned by Ψ= (Ψ1,…,Ψn) and
normalizing by the volume VnΨ

n
0 of the n-sphere. We show in the

Supplementary Notes the formal derivation, and here we state the
result that the charge density becomes

n ¼ 1 : ρi ¼ ∂iΨ
2Ψ0

n � 2 : ρi1 ¼ id�n ¼
Di1 ;¼ id�n
VnΨ

n
0

(12)

with

Di1 ¼ id�n ¼
1
n!
ϵμ1 ¼ μn

i1 ¼ id�n~ϵ
ν1 ¼ νnð∂μ1Ψν1Þ¼ ð∂μnΨνnÞ: (13)

Generalizing the derivation of the defect kinematics, we find
general expressions for the reduced defect velocity field

vμ1 ¼ �n
δ

ν1½
ν01
δν2ν02

¼ δ
νn�
ν0n
ð∂tΨν1Þð∂μ1Ψν01ÞQn

l¼2ð∂μlΨνl Þð∂μlΨν0l Þ
δ

ν1½
ν01
δν2ν02

¼ δ
νn�
ν0n

Qn
l¼1ð∂μlΨνl Þð∂μlΨν0l Þ

; (14)

Special case n ¼ d : vμ1 ¼ �n ϵ
μ1μ2 ¼ μn~ϵν1 ¼ νnð∂tΨν1Þ

Qn
l¼2ð∂μlΨνl Þ

ϵμ1 ¼ μn~ϵν1 ¼ νn
Qn

l¼1 ∂μlΨνl

;

(15)

where [ν1ν2…νn] is the antisymmetrization over the indices ν1ν2…
νn. Equation (15) is the special case of n= d, where the velocity
can be written in a simpler way. Still, Eq. (14) looks complicated
due to the arbitrary number of dimensions and so we have
summarized the most important cases of n ≤ d ≤ 3 in Supplemen-
tary Figure 2 of the Supplementary Notes. Thus, Eqs. (12) and (14)
are the primary general expressions of the reduced defect field.
The equations generalize the description of topological defects in
the HM-method to include both topological defects and non-
linear excitations.
There are two important notes to be made on the general-

ization beyond the case d= n= 2. Firstly, for n ≥ 2, the charge
density is a rank (d− n) tensor that represents the defect density
per n-dimensional volume-oriented normal to the manifold, e.g.,
how the charge density on a 2D surface is expressed in terms of
the normal vector to the surface. The case of n= 1 is special
because densities on one-dimensional manifolds are usually
expressed in terms of the density along the manifold, i.e., the
charge density per length along the curve. Secondly, in the case of
n < d, the gauge K cannot be uniquely determined by looking at
the evolution of Ψ alone. Therefore, another condition is required
to obtain Eq. (14). This condition implies that topological defects
live effectively on a d− n dimensional submanifold and will move
perpendicular to this structure, e.g., how the motion of a line
defect is given by the velocity normal to its tangent vector. Due to
the difference in definitions of the integrals to yield the
topological content, this translates to the velocity being parallel
to the charge density for n= 1 and perpendicular to it for n ≥ 2.
This velocity will be normal to topological structures in the case of
topological lines or walls. While the systems of study in this
manuscript exhibit ground state manifolds with S1 symmetries
(n= 2), the generalization can be directly applied to systems with
n= 1, where the defect density represents domain walls in
interfacial systems such as viscous fingering38, or with n= 3, such
as the 3D Heisenberg model of ferromagnetism, where the defect
density will show emergent magnetic monopoles39. For further
discussions, see the Supplementary Notes.
With the method at hand, we study phenomena involving both

topological charges and non-linear local excitations through the
reduced defect field and the information it conveys, such as the
velocity of topological defects. This is done by considering
progressively such phenomena in three representative systems
with broken O(2) symmetry and featuring increasing complexity in
terms of order parameters and collective behaviors. Both system-
specific information and general behaviors will be outlined. As a
starting point, we consider a Bose-Einstein condensate where the

order parameter is isomorphic to Ψ 2 D2 so that the method can
be directly applied.

Defect annihilation: vortices in Bose-Einstein condensates
Within the Gross Pitaevskii theory of a superfluid Bose-Einstein
condensate (BEC), the condensed bosons are described by a
macroscopic wavefunction ψ, and its evolution can be described
by damped Gross Pitaevskii equation18,40

i_∂tψ ¼ ð1� iγÞ � _2

2m
∇2 þ gjψj2 � μ

� �
ψ; (16)

where g is an effective scattering parameter between condensate
atoms, γ > 0 is an effective thermal damping coefficient and μ is
the chemical potential. The complex condensate wavefunction ψ
is isomorphic to a real 2D vector order parameter Ψ= (Ψ1,Ψ2)
through ψ ¼ Ψ1 þ iΨ2, the norm of which is given by the absolute
value ∣ψ∣. In the equilibrium ground state, the phase of ψ (and
therefore the direction of Ψ) is constant, and the magnitude is
given by jψj ¼ Ψ0 ¼

ffiffiffiffiffiffiffiffi
μ=g

p
. Topological defects in the orienta-

tional (unit vector) field correspond to quantized vortices captured
by the charge density field

ρðψÞðrÞ ¼ gDðrÞ
πμ

: (17)

In this context, the D field (calculated from Ψ) has the physical
interpretation of the generalized superfluid vorticity31. Linear
perturbations of the ground state are phonons, which are
characterized by traveling waves in the phase of the order
parameter ψ, and will not be signaled in the defect density field ρ.
Non-linear local perturbations, e.g., brought on by external stirring
potentials or obstacles, will lead to a decrease in the magnitude of
the order parameter near the obstacle14,16,17,41, leading to an
increase in the quantum pressure, defined as

P ¼ � _2

2m
∇2jψj
jψj : (18)

Such excitations are detected by ρ(ψ), and mediate the nucleation
or annihilation of topological defects. To showcase this, we
simulate a BEC as dictated by Eq. (16) with an initial condition
featuring two vortices at (x, y)= (±5, 0). Numerical details are
reported in the “Methods” section. Dimensionless units are
defined so that ℏ=m= g= μ= 1 and the damping coefficient
is set to γ= 0.1. Figure 3 illustrates the defect density from Eq. (17)
during the fast event of annihilating a vortex with an anti-vortex
due to a small thermal drag.
The velocity field from Eq. (14) is plotted close to vortices and

shows two exciting features. At the beginning of the simulations
(t= 5), the non-uniform velocity over the vortex core indicates the
early core deformation induced by the initial conditions. After this
relaxation, however, vortices retain stationary or rigid cores and
consistently feature a uniform velocity. After the annihilation
event, we can see traces of their diffusive cores in the excitations
produced by the vortex annihilation, as seen by the quantum
pressure in the system, which is shown in Fig. 3c. We will see in
the following that similar traces appear as precursory patterns for
defect nucleation. Moreover, after having dealt with a system with
only one broken symmetry, we now consider systems that have
multiple rotational or translational symmetries.

Onset of collective behavior: active nematics
In this section, we consider the case of an active nematic system.
This system is peculiar as we can construct the defect density from
different order parameters. By applying the proposed formalism
we can investigate the transition among different regimes and the
interplay among defects. Interestingly, we will show that defects in
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one broken symmetry are the nucleation sites of defects for a
separate order.
Within the hydrodynamic approach42, the nematic orientational

order of active matter in two dimensions is described by a rank-2
symmetric and traceless tensor Q determined by the nematic
director n ¼ ðcosðθÞ; sinðθÞÞ

Q ¼ S
n1n1 � 1

2 n1n2
n2n1 n2n2 � 1

2

 !
� Ψ1 Ψ2

Ψ2 �Ψ1

� �
; (19)

where S is an order parameter which is 0 in the disordered phase.
Q is thus related to the D2 order parameter Ψ field by
Ψ ¼ S

2 ðcosð2θÞ; sinð2θÞÞ. The evolution of the Q-tensor follows
dissipative dynamics coupled with an incompressible Stokes flow
with substrate friction43. Details on the evolution equation and its
numerical method are reported in the “Methods” section. The
system is here initialized in a homogeneous nematic phase with
small perturbations in the angle of the director field. These
perturbations are enhanced by the active stress creating a striped
phase that is further destabilized and eventually melts due to the
creation of topological defects leading into active turbulence. The
ground state corresponds to a constant magnitude jΨj � Ψ0 ¼ffiffiffi
B
p

=2 dependent on the parameter B, which is defined in the
“Methods” section. Within the framework introduced in the
section “Non-singular defect fields”, this gives the following
expression for the defect density

ρðQÞ ¼ 4DðrÞ
πB

; (20)

which supports orientational defects with half-integer charge
stop= ± 1/2. In Fig. 4a, we show the nematic orientation θ in the
colorbar to emphasize the breaking of translational symmetry and
the formation of a (transient) striped order. The striped order
arises from modulations in the nematic orientation which, to first
order, do not change the magnitude of the order parameter Ψ.
Thus, these are linear perturbations not signaled by ρ(Q).
The inset of Fig. 4a shows a dislocation in the periodic arches in

the nematic director. To describe these defects, we represent the
parameter Ψ as a complex field ψ= ∣Ψ∣eiθ and decompose it into a

slowly-varying amplitude field of the periodic arch mode as

ψðrÞ ¼ ψ0ðrÞ þ ηkðrÞeik�r þ η�kðrÞe�ik�r; (21)

where ψ0(r), ηk, η−k, are slowly-varying complex fields on the
length scale a0 of the director field modulations. k is the wave
vector of the modulations which is k ¼ 2π

a0
ex due to the initial

condition. We can extract the complex amplitude of a k mode
by a demodulation of ψ,

ηk ¼ hψe�ik�ri; (22)

through the convolution with a Gaussian kernel denoted by 〈 ⋅ 〉,
which filters out the small-scale variations, Eq. (40). The modula-
tion length scale a0 and the equilibrium value η0 of ∣ηk∣ are found
numerically to be a0= 10.6 and η0= 0.20 for the given
parameters. From the order parameter ηk, we can construct the
defect density ρðηkÞ as for the complex wavefunction in the BEC.
This field locates the dislocations from the nematic arches as
shown in panel (b) at t= 240, just prior to the nucleation of
nematic defects.
By also showing the reduced defect field ρ(Q) associated with

the rotational symmetry (Fig. 4c), we clearly notice that each
dislocation detected by ρðηkÞ is a source for the nucleation of a
dipole of half-integer defects. The precursory pattern of the two
bound defects prior to nucleation is similar to the pattern retained
by the dipole annihilation in the BEC. However, for active
nematics, the bound state is associated with a dislocation in the
periodic arches, while for BECs it is a source of quantum pressure.
We observe numerically that the melting of the smectic-like arches
is mediated by the dissociation of the dislocations into dipoles
of ± 1/2 nematic defects. This occurs very fast and simultaneously
at various locations, such that the system quickly transitions to
active turbulence. Notice also that the core size of the dislocations
in the periodic arches is bigger than the core size of the ± 1/2
nematic defects that form in the transition. To quantify such
nucleation events, we compute the defect velocity Eq. (11)
associated to the charged defect density ρ(Q) which is localized in
well-defined blobs of opposite signs around a dislocation as
illustrated in Fig. 4b, c. By averaging the speed around these blobs,
we can track the defect speed v= 〈∣v∣〉 as function of time and
show that prior to dissociation, the defects are in a bound state

Fig. 3 Annihilation of a vortex dipole in a Bose-Einstein condensate. Snapshots of a defect density, b condensate phase arg(ψ), and
c quantum pressure at different times from bottom to top: at t= 5, t= 60 (before annihilation), t= 105 (after) and t= 110. a Defect velocity is
included prior before annihilation. Notice in (b) the large phase gradients after the annihilation due to the induced shock-waves which can
also be seen in the (c) quantum pressure profiles. The plots in column (c) have saturated colorbars because of the singular pressure at the
defect core.
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while afterwards they move apart as ± 1/2 defects with different
speeds as shown in Fig. 4e. Notice that the− 1/2 defect slows
down while the+ 1/2 acquires a net speed related to its self-
propulsion.
To summarize this part, our analysis offers an alternative

perspective on the onset of active turbulence using the presence
of competing symmetries. The transition to a turbulent state from
a periodic arch state seems to be mediated by the dissociation of
one type of topological defect into a different kind associated with
changes in the global symmetries. In the following section, we
study a system where the order parameters with O(n)-symmetry
are found by decomposing a more complicated topological space.

Defect structures: solid crystals
We focus here on the study of defects and collective order in
crystals. The ground state manifold of the crystal can be factorized
in fundamental S1 spaces, which has a straightforward physical
interpretation related to the crystal’s Bravais reference lattice
reflecting the broken translational symmetry. As discussed below,
this implies that a dislocation, i.e., a topological defect in the
crystal, can be represented by bound vortices in the amplitudes of
the fundamental periodic modes. Indeed, by applying the
formalism introduced in the section “Non-singular defect fields”,
analogies with previously discussed systems emerge, as well as
peculiar features that will be discussed in detail.
In the conserved Swift-Hohenberg modeling of crystal lattices,

commonly named phase-field crystal (PFC)44,45, the order para-
meter is a weakly distorted periodic scalar field ψ(r), and can be

approximated as

ψðrÞ ¼ ψþ
XN
n¼1

ηne
iqðnÞ�r; (23)

where ψ and fηngNn¼1 are slowly varying (on the lattice unit length
scale) amplitude fields, and N is the number of reciprocal lattice
vectors fqðnÞgNn¼1 taken into consideration. Disordered or liquid
phases are described by ηn(r)= 0. For a perfect lattice, ψðrÞ ¼ ψ0
and ηn(r)= η0 are constant, and an affine displacement r→ r− u
amounts to a phase change ηn ¼ η0e

�qðnÞ�u. The displacement field
u supports dislocations, which are line topological defects. For a
path ∂M in real space circling one dislocation, the charge is given
by the vector difference between the end and starting point,
namely the Burgers’ vector b,I

∂M
du ¼ �b; (24)

(minus sign by convention). The corresponding dislocation density
tensor αij is defined through the integral of some 2D surface M
bounded by ∂MZ
M
αijn

idS ¼ bj; (25)

where n is the normal vector to the surface element dS. By
multiplying Eq. (24) with a reciprocal lattice vector q(n) of the
structure, we getI

∂M
dðqðnÞ � uÞ ¼ �2πsn; (26)

where sn is an integer by definition of the reciprocal lattice vector.
This shows that the phase of an amplitude θn≡ (−q(n) ⋅ u) is a

Fig. 4 Onset of active turbulence in a nematic liquid crystal mediated by the nucleation of topological defects. a The angle of the nematic
director at t= 240, prior to nucleation of half-integer defects from the unstable periodic arches, and d at t= 260, after nucleation. b The defect
density ρðηkÞ at t= 240, corresponding to the broken translational symmetry, shows the charge signature of dislocations with large core
structures. The dislocation core harbors a bound dipole (inset) shown in (c) the defect density ρ(Q) associated to the nematic order at t= 240,
which splits into fully formed ± 1

2 defects after nucleation as shown in (f) ρ(Q) at t= 260. Panel (e) shows the speed v= 〈∣v∣〉 of the two localized
blobs in the charged defect density ρ(Q) around the nucleation site. After the nucleation event indicated by the dashed line, these correspond
to the speed of the ±1/2 defects.
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topological order parameter that has integer winding numbers,
i.e., θn 2 S1.
The amplitude ηn acts as an order parameter in D2, i.e., ΨðnÞ1 ¼<ðηnÞ and Ψ

ðnÞ
2 ¼ =ðηnÞ. A topological description of dislocations

using the HM-framework has been provided in two and three
dimensions in refs. 34,36. Here, we adopt an alternative and
convenient description using the charge density from Eq. (12),
which is a vector field for 3D lattices

ρ
ðηnÞ
i ¼ DðnÞi

πΨ2
0

; (27)

where

DðnÞ ¼
ð∂yΨðnÞ1 Þð∂zΨðnÞ2 Þ � ð∂yΨðnÞ2 Þð∂zΨðnÞ1 Þ
ð∂xΨðnÞ2 Þð∂yΨðnÞ1 Þ � ð∂xΨðnÞ1 Þð∂zΨðnÞ2 Þ
ð∂xΨðnÞ1 Þð∂yΨðnÞ2 Þ � ð∂xΨðnÞ2 Þð∂yΨðnÞ1 Þ

0
BB@

1
CCA: (28)

By contracting Eq. (25) with qj, we can relate the dislocation
density tensor with the defect charge density in a given
amplitude36

αij ¼ 2d
Nη20

XN
n¼1

DðnÞi qðnÞj ; (29)

where d is the spatial dimension. The amplitudes ηn used to
calculate D(n) are extracted from the phase-field ψ as in Eq. (22),
and only the modes corresponding to the shortest reciprocal
lattice vectors are used to calculate αij.
Next, we focus on two examples to highlight insights obtained

from using this approach. We consider the nucleation of
dislocations in a square lattice from the point of view of its
precursory pattern formations and quantify the dislocation core
size. Then, we consider the classical inclusion problem of a rotated
spherical crystal embedded in another crystal with the same
lattice symmetry, to show how the surface of the inclusion
changes its topology as a function of the lattice misorientation.

Dislocations in 2D square lattices. A minimal PFC free energy
which can be minimized by a square lattice reads46,47

Fsqψ ¼
Z

d2r
1
2
ðL1L2ψÞ2 þ r

2
ψ2 þ 1

4
ψ4

� �
; (30)

where LX ¼ X þ ∇2 and r is a parameter. We recall that PFC
energy functionals describe order–disorder (solid–liquid) phase
transitions. The minimizer field ψ of (30), for certain model
parameters, has a perfect square lattice symmetry with an
accurate two-mode amplitude expansion

ψ ¼ ψþ
X2
n¼1

ηne
iqðnÞ �r þ

X4
n¼3

ηne
iqðnÞ�r þ c.c. ; (31)

where {q(n)}= {(1, 0), (0, 1), (1, 1), (1,− 1)} are the reciprocal lattice
vectors of the square lattice with lengths 1 and

ffiffiffi
2
p

. This sets the
characteristic length a0= 2π of the system, which is the width of
the square unit cell. At equilibrium, the amplitude field ηn goes to
the equilibrium values η1,2→ Asq, η3,4→ Bsq. The characteristic unit
of stress is given by the elastic shear modulus μ ¼ 16B2sq

47. The
dislocation density tensor can be factorized as αij ¼ tiBj , where B
is a 2D Burgers vector density and t the tangent vector to the
dislocation line. In two dimensions, we define t to point out-of-
plane so that the Burgers vector density is given by

B ¼ ðα31; α32Þ; (32)

where αij can be computed by using q(1,2). We initiate a perfect
square lattice of 101 × 101 unit cells and use the sHPFC model of
ref. 48 to apply a local stress in the central region which causes the
nucleation of a dislocation dipole. The PFC deforms gradually,
trying to account for the externally imposed stress, increasing

from linear to non-linear strains until nucleation of a pure ± a0ex
dislocation dipole. Once formed, these dislocations move under
the action of the Peach-Koehler force49, namely they separate at
large speeds due to the external stress and slow down as they
reach the far-field regions of the crystal. Simulation details are
given in the “Methods” section. Figure 5 shows the region of
applied stress during the nucleation event. Like for the nucleation
of nematic defects, the nucleation is singled by a precursory
localized pattern formation in the Burgers vector density, which
corresponds to a bound dipole of phase slips. While variations
only in the phase of the complex amplitudes are associated with
linear elastic perturbations, non-linear elastic strains cause a
decrease in the equilibrium value of the amplitudes50 and so
produce a signal in the reduced defect density given by the
expression of the dislocation density. Thus, the excitations visible
in the dislocation density B prior to nucleation are due to non-
linear elastic strains. From the signal profile, Fig. 5c, we observe
that these large non-linear elastic strains can be connected to a
bound dislocation dipole.
From the defect density corresponding to η1 for q= (1, 0), we

can also determine the average speed v= 〈∣v∣〉 of dislocations
with positive and negative charge before and after nucleation. The
defect speed as a function of time is shown in Fig. 5e. Like for the
nucleation of defects in the active nematic, we observe a speed
build up prior to nucleation succeeded by a relaxation to a
constant speed. Unlike the ±1/2 defects in active nematics,
however, both dislocations are equally mobile in this case.
The Burgers vector density, in addition to describing the

process of nucleation itself, provides us with useful information
about the defect core. To extract the core size directly from the
Burger vector density without free-tuning parameters, we consider
a coarse-grained version of the PFC model, namely its amplitude
expansion (APFC)51,52. This approach gives access to phases and
lattice deformation directly rather than through the demodulation
of Eq. (22). It builds on the definition of a free energy functional Fη
derived from the PFC free energy Fsqψ under the approximation of
slowly-varying amplitudes. We simulate a square lattice hosting
dislocations in a static, periodic configuration, and focus on a
single defect therein. The expression for Fη, the choice of q(n), and
details of the simulation setup are given in the “Methods” section.
For the given lattice structure, the extension of its core depends
on the parameters r0 and s in the free energy Fη. The parameter r0
corresponds to a phenomenological temperature controlling a
first-order order–disorder phase transition at r0 ¼ r0 with r0 the
critical point and ordered (disordered) phase for r0 < r0 (r0 > r0), and
s is a constant scaling the elastic moduli53,54. Δr ¼ r0 � r0 is
referred to as the quenching depth. These parameters affect the
competition among gradient terms and the bulk energy terms in
Fη. Figure 6a, b illustrates two different core sizes for the same
dislocation obtained with different values for r0 and s. They show
the reconstructed densities obtained by computing Eq. (23) with
the numerical solution for the amplitudes (first column), the
Burgers vector density component Bx (second column), a plot of
Bxðx; 0Þ and Bxð0; yÞ (third column, empty symbols) with Gaussian
fits (solid lines). The data fitting is obtained via G expð�x2=2σ2

x �
y2=2σ2

yÞ with G, σx and σy fitting parameters (dashed lines), well
reproducing its shape and allowing for an estimation of the core
size. The definition here introduced for the Burgers vector density
fully characterizes the loss of coherency at the dislocation core.
Importantly, it realizes a spreading of the topological charge at the
core similar to non-singular continuum theories based either on
regularization of singularities55 or within strain-gradient elasticity
theories56,57.
The amplitude expansion defined in Eq. (23), and thus the

density field ψ, correspond to the sum of plane waves (Fourier
modes) which are periodic stripe phases similar to the one shown
in Fig. 4. The dislocation in the crystal then corresponds to the
superposition of defects in such stripe phases. Interestingly,
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dislocations do not necessarily correspond to a defect for all the
coupled stripe phases. Indeed, by applying Eq. (1) to the phase of
the amplitudes one gets −∮q(n) ⋅ u= 2πq(n) ⋅ b. At least for perfect
dislocations, those having a translation vector of the lattice as
Burgers vector, we have that q(n) ⋅ b= 0, for some n. Therefore, at
the dislocation core, a different ordered phase forms as some
amplitudes may have non-singular phases and, in turn, do not
vanish. This differs from the case of dislocations forming in pure
stripe phases, e.g., in Fig. 4, where the single complex amplitude
vanishes, pointing to a disordered phase. In Fig. 6c, the fields
ηne

iqðnÞ�r entering the sum in Eq. (23) are reported. Three out of
four stripe phases (n= 1, 3, 4) vanish at the core, while one (n= 2)
features a small variation of its amplitudes with no topological
content.
The defect core can then be interpreted as a transition region

between two different ordered phases, one of which is present
at the dislocation core only. To explore the analogy with phase
interfaces, we compare its extension with the width of a
solid–liquid (order–disorder) interface, w, which measures the
correlation length for these phases. We find some analogies and
differences in the dependence on the parameters entering the
free energy. Traveling-wave solutions exist for solid–liquid
(order-disorder) interfaces with amplitudes having hyperbolic
tangent profiles, η / ðη0=2Þf1� tanh½ðx � VtÞ=w�g with
w / ffiffiffi

g
p

=ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8r0=9r0

p Þ, V the interface velocity along its
normal and g a parameter in the free energy which multiplies
gradient terms and scales the elastic constants54,58,59 (see also
“Methods”). For a given set of parameters, we determine the
specific amplitude profile and w by fitting the result of
numerical calculations with the hyperbolic tangent profile
mentioned above for an interface with normal along the

x-axis (〈10〉 crystallographic direction, further details are
reported in the “Methods” section, Measuring the size of the
dislocation core through σx and σy from a Gaussian fit as in Fig.
6a, b, we find that it scales linearly with w when varying g, while
a different scaling is observed when varying r0, c.f. Fig. 6d. Here
g is an energy scale associated with amplitudes gradients,
similar to theories based on Ginzburg-Landau energy func-
tionals59. r0, instead, affects the equilibrium values of the
amplitudes, which are qualitatively different for an interface,
where they all vanish in the disordered phase, and a defect,
where some amplitudes are non-zero owing to a non-singular
phase (see Fig. 6c). Also, for r0 ≠ r0, interfaces move, which
affects the width w60. A more detailed analysis would require
finding a solution for the amplitudes’ profile at defects, which
goes beyond the goals of this investigation and will be
addressed in future work.
The evaluation of the Burgers vector density also allows for

the characterization of anisotropies in the behavior of phases at
the core as illustrated in Fig. 6d. σy/σx ≈ 0.75 throughout the
whole range of parameters investigated here as also illustrated
in Fig. 6e. This may be ascribed to the asymmetry introduced by
the specific orientation of the Burgers vector. We conclude that,
for systems described by order parameters as in the phase-field
crystal model, as well as in descriptions exploited in previous
sections, the defect density may be exploited to characterize
the loss of coherency at defects.

Order transition for 3D crystal inclusions. Like the melting of
translational order in the nematic liquid crystal through the
nucleation of defects in the nematic field, the global translational
order in a single crystal is also destroyed under large deformations

Fig. 5 Nucleation of a dislocation dipole in a square PFC model. a The PFC at t= 1600 prior to the nucleation of (b) a dislocation dipole at
t= 1800. Panels (c) and (d) show the x-component Bx of the dislocation density B at t= 1600 and t= 1800, respectively. The magnitude of By
is, in both cases, two orders of magnitude smaller and not shown. e The average speed v= 〈∣v∣〉 at the nucleation site of positive charge (
Bx > 0) and negative charge (Bx < 0) where the dashed line indicates the time of nucleation (see text).
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and rotations. To highlight this, we use a full 3D PFC model
corresponding to a cubic lattice for which the PFC density in the
one-mode approximation reads as

ψðrÞ ¼ ψ0 þ
X

q2Rð1Þbcc

η0e
iqðnÞ�r;

(33)

where Rð1Þbcc are the reciprocal lattice vectors of the bcc Bravais
lattice with unit length47. This sets the length of the bcc unit cell
as a0 ¼ 2π

ffiffiffi
2
p

. We consider spherical inclusions with radius 17a0,
rotated at an angle θrot about the [1, 1, 1]-axis. The initial condition
is relaxed by dissipative dynamics with an appropriate symmetry-
conserving free energy; see further details in the “Methods”
section. We choose three representative angles θrot and calculate
the Frobenius norm jαj ¼ ffiffiffiffiffiffiffiffiffi

αijαij
p

of α at each angle. Since ∣α∣ > 0,
we plot its isosurface at half its maximum value jαjM ¼
maxrðjαjðrÞÞ in Fig. 7 for three representative misorientation
angles θrot. For small lattice misorientations, ∣α∣ ≪ 1, indicating
only slight non-linear elastic excitations (and no fully formed
dislocations) at the interface between the inclusion and the
matrix. As expected, these non-linear strains are largest in the
plane perpendicular to the rotation axis, since the rotation
deformation field scales with distance from the rotation axis.
Notably, we observe a three-fold symmetry in the profile of ∣α∣,
which can be ascribed to the underlying crystallographic
orientation. For larger values of θrot, the non-linear distortions
increase and localize into a network of dislocations. Notice that
such a defect network is determined directly by the Burgers vector
density rather than through arbitrary reconstructions61,62. The
description breaks down at large misorientations, as witnessed by
the decrease in the magnitude of the defect density field since
there is no longer a global translational order. Indeed, large
misorientations lead to the nucleation of grain boundaries which
are fully described by accounting for the bicrystallography of the
two crystals meeting at the interface rather than the deformation
with respect to a reference lattice63. Such a regime shift echoes

the onset of active turbulence in the nematic liquid, where the
description in terms of the order parameter ρðηqÞ also breaks
down.

DISCUSSION
In-depth understanding and tailoring of collective behaviors
require a unified description of defects associated with symmetry
breaking and the non-topological excitations of ground states.
Here, we proposed a systematic way of deriving reduced defect
fields from order parameters associated with O(n) broken
symmetries which captures topological defects, localized non-
linear excitations, and their dynamics. This enables the non-
singular description of defects and their interaction, accounting
for precursory and resulting patterns involving non-topological
excitations. In this way, short-scale interactions between topolo-
gical defects may be more accurately described, since features
such as core overlap and high-energy excitations become more
prominent at shorter length scales. This paves the way for a more
thorough characterization of defect interactions, particularly in
cases where the defects get close or are annihilated, as in the
applications shown above. Moreover, the proposed framework
can be used to study concurrent symmetry breakings and order
transitions. Applications to systems of general interest, such as
superfluids, active nematics, and solid crystals, are shown to
showcase the considered framework, while we envisage applica-
tions in many other contexts.
We have shown that the method accurately tracks topological

defects since these appear as localized blobs in the defect density
field. The associated current density and velocity field determine
the kinematics of the defects, and its utility has been shown to
extend beyond tracking the velocity of topological defects. For
example, in the case of the motion of vortices in a BEC, the
velocity field accounts for both the overall velocity of the defect
and local variations associated with the early-stage rearrange-
ments of the defect core evolving towards its stationary shape.

Fig. 6 Dislocation core size near melting by APFC modeling. a, b Reconstructed density (left), Bx (center), and Bx along x and y direction for
a relatively small and large core size, respectively obtained with a Δr= 10−4, s= 3.16 and b Δr= 10−1, s= 1, with r0= 7.455 × 10−2 the critical
point. Symbols show values from APFC simulations; dashed lines correspond to Gaussian fits. The latter are exploited to quantify the size of
the core in terms of the variance along x and y, namely σx and σy. c Periodic modes ηne

iqn�r þ c.c. for the density in panel (b). d Core size in
terms of σx as a function of the order–disorder correlation length w, for various values of s and r0 (the latter shown by different colors and
symbols). e Comparison of σx and σy as function of w for Δr= 0.00464 and s∈ [10−1, 3.16].
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Thus, the uniformity of the velocity field over the core extent tests
whether the frozen-core approximation1 is valid. For active
nematics and solid crystals, the velocity formula is shown to track
the dynamics of defect dipoles, during, and after the nucleation of
topological defects, pointing at interesting analogies and differ-
ences between processes in different physical systems. The
rigorous derivation of these fields given in the Supplementary
Notes for any dimensions makes the equations readily applicable
to tracking topological defects and localized excitations in general.
We have found interesting features and insights about the

evolution of these systems with broken symmetries. After the
annihilation of the vortex dipole in the BEC, the remaining shock
wave produces a signal in the defect density field that echoes the
charge density pattern of the dipole, remnant also of other similar
observations during mass-driven vortex collision64. In active
nematics, the large cores of the dislocation in the translational
order harbor a bound dipole of orientational defects associated
with the rotational order. This picture presents the idea of a
hierarchy of topological defects, where the defects associated with
one symmetry can spontaneously dissociate into stable defects for
a different symmetry and melt the former ordered state. This is a
non-equilibrium transition that echos the equilibrium Kosterlitz-
Thouless transition for melting of 2D crystals via the hexatic
phase65.
In the case of a 3D crystal, a rotated inclusion was shown to be

described as a network of topological defects (dislocations) up to
a point before these dissociated into other types of defects (grain
boundaries) and the global orientational order was destroyed.
The best topological description of polycrystalline materials is an
open challenge, even though candidates, such as interacting
disconnections63, exist. Applying this formalism to such topolo-
gies is a fascinating avenue of research. Employing the APFC
framework, where the periodic nature of crystal densities is
inherently coarse-grained, we have shown that dislocation cores
in Swift-Hohenberg theories emerge as transition regions from
crystalline to pointwise stripe-like phases. When approaching the
solid–liquid coexistence limit, analogies between the dislocation
core size and the extensions of order-disordered interfaces have
been found.
Finally, while the whole framework is presented for systems

with one broken rotational symmetry, it is a powerful tool that can
be generalized to systems with multiple broken symmetries and
reveal hidden hierarchies of topological defects associated with
each symmetry, laying the foundation for unified theories in
systems characterized by collective behaviors.

METHODS
Bose-Einstein condesates
The damped Gross Pitaevskii equation, Eq. (16), is solved by using
a Fourier pseudo-spectral integration scheme which is described
in detail in ref. 30. We use a periodic grid of size
[− 32, 32] × [− 32, 32] with spatial discretization Δx= Δy= 0.25.
To initialize the dipole we use the ansatz ψ ¼ Π2

α¼1χðjr � rαjÞeiqαθα ,
where rα is the position of the vortex labeled α,
θα ¼ arctan½ðy � yαÞ=ðx � xαÞ�, and

χðrÞ ¼ r; r < 1

1; r > 1

�
: (34)

This order parameter is then evolved in imaginary time, t→ iτ,
with γ= 0 to lower the energy and find a better estimate for the
core structure of the vortices we use as the initial condition.

Active nematic liquid crystals
The evolution of the Q-tensor follows dissipative dynamics
coupled with an incompressible Stokes flow43

∂tQij þ v � ∇Qij � QikΩkj þ ΩikQkj ¼ λW ij þ γ�1Hij; (35)

ðΓ� η∇2Þvi ¼ ∂jðαQjiÞ � ∇p; ∇ � v ¼ 0; (36)

where v is the flow velocity that advects the nematic structure, p is
the fluid pressure, Γ is the friction with a substrate, η is the
viscosity and αQ is the active stress. The vorticity tensor
2Ωij= (∂ivj− ∂jvi) rotates the nematic structure, λ is the flow
alignment parameter which aligns the nematic orientation in the
direction of shear

W ij ¼ Eij þ ðEikQkj þ QikEkjÞ � QlkEklðδij þ QijÞ;
with the trace less strain rate 2Eij= (∂ivj+ ∂jvi− δij∂kvk). The
molecular field

Hij ¼ K∇2Qij þ AðB� 2Q2
kkÞQij: (37)

controls the relaxation to equilibrium with γ as the rotational
diffusivity. We have here assumed a single Frank elastic constant
K, treating splay and bend distortions similarly. The second term in
the molecular field is a relaxation to a homogeneous nematic
state. The parameter A is the quench depth and B sets the value of
the order parameter S0 ¼

ffiffiffi
B
p

in the homogeneous state. We
discretize the above equations on a [−64, 64] × [−64, 64] grid with
spatial discretization Δx= Δy= 0.5, and solve the system using
pseudo-spectral methods. The parameters are set to K= Γ= γ= 1,
A= λ= η= 0.5, B= 2 and α=− 1.4. The initial state is S ¼ ffiffiffi

2
p

with the angle of the director θ being uniformly distributed in the

Fig. 7 Rotated inclusions in the bcc PFC model. The panels show, for three representative rotation angles θrot the isosurface of the Frobenius
norm of the coarse dislocation density tensor jαj ¼ ffiffiffiffiffiffiffiffiffi

αijαij
p

at 50% of its maximal value jαjM ¼ maxrðjαjðrÞÞ, which is given in the panels.
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interval (−0.05, 0.05). We solve the equations for the flow field, Eq.
(36), in Fourier space and evolve the equation for the Q tensor, Eq.
(35), using the same scheme as for the BEC.

2D square lattice PFC
To simulate the PFC dynamics, we use the sHPFC model proposed
in ref. 48, namely

∂tψ ¼ Γ∇2 δF
sq
ψ

δψ
� v � ∇ψ; (38)

coupled to a momentum equation for ∂tv

ρ0∂tv ¼ h~μc∇ψ� ∇~f i þ ΓS∇2v þ f ðextÞ: (39)

〈 ⋅ 〉 is a convolution with a Gaussian kernel given by

h~Xi ¼
Z

dr0
~Xðr0Þ

2πw2
exp �ðr � r0Þ2

2w2

 !
; (40)

which filters out variations on length scales smaller than w. The
quench depth in Eq. (30) is set to r=− 0.3 and the average
density to ψ ¼ �0:3. Parameters are set to Γ= 1, ρ0= ΓS= 2−6,
and an initial velocity field v= 0. We solve the system of coupled
equations with a Fourier pseudo-spectral method. The spatial grid
of the simulation is set to Δx= Δy= a0/7. Further details can be
found in ref. 48.
In the simulation reported in Fig. 5, the perfect lattice is indented by

an applied external force density given by a Gaussian profile
f ðextÞ ¼ f 0

ðy�y0Þ
a0

expð� ðr�r0Þ22w2 Þex . Above a critical strength f0= 3.5μ/
a0 and width w= a0, this force causes the nucleation of a dislocation
dipole.

2D square lattice APFC
The evolution of the amplitudes as delivered by the APFC model
can then be directly expressed as

∂ηn
∂t
¼ � qðnÞ

�� ��2 δFη
δη�n

; (41)

with Fη the free energy depending on {ηn} that can be derived by
substituting (31) in Fsqψ and integrating over the unit cell59. By
assuming constant ψ it reads

Fη ¼
Z

d2r g
XN
n¼1
jGnηnj2 þWðfηngÞ þ CðψÞ

 !
; (42)

with Gn ¼ ð∇2 þ 2iqðnÞ � ∇Þ, g a coefficient that controls elastic
constants, WðfηngÞ ¼ r0Φ=2þ ð3=4ÞΦ2 � ð3=4ÞPN

n¼1 jηnj4þ
f sðfηngÞ, r0 ¼ r þ 3ψ2, Φ ¼PN

n¼1 jηnj2, and f s({ηn}) a symmetry-
dependent polynomial in the amplitudes. For the square
symmetry as encoded in Eq. (30) and the choice q(1)= (1, 0),
q(2)= (0, 1), q(3)= (1, 1), q(4)= (−1, 1) and {q(n)}= {−q(n−4)} for
n= 5,…, 8, we have f sðfηngÞ ¼ 2ψðη1η2η�3 þ η1η

�
2η4Þ þ 3ðη21η�3η4

þη22η�3η�4Þ þ c.c. , with fη�ng ¼ fηn�4g for n= 5,…, 8 as ψ is a real
function. Therefore, one may consider just ηn with n= 1,…, 4 as
variables. CðψÞ is a constant depending on ψ59, set here to ψ ¼
�0:3 as set in the corresponding PFC modeling of the 2D square
lattice. r0 corresponds to a phenomenological temperature. With r0
the solid–liquid critical point, the solid crystalline phase is favored
for r0 < r0.
We simulate a stationary system hosting dislocations with the

APFC model exploiting the (FEM) numerical approach with
adaptive grid refinement outlined in refs. 66,67. The semi-implicit
integration scheme adopted for numerical simulations can be
found therein. We consider dislocations with spacing L= 50a0
arranged in a periodic, 2D matrix with alternating Burgers vectors
± a0x̂. The system is initialized by setting the displacement field of
dislocation known from classical continuum mechanics49 in the

phase of amplitudes, −q(n) ⋅ u, and let relaxed according to the
amplitudes evolution law (41). We can consider a system 2L × 2L
by exploiting periodic boundary conditions.
In the section “Defect structures: solid crystals”, we characterize

the extension of the core of dislocations through the field D(n) as
entering the definition of the dislocation density tensor α, Eq. (29).
We compare the size of the defects extracted with the aid of
Gaussian fits (see Fig. 6a, b) with the extension of a solid–liquid
interface, w, computed numerically as the average of interface
width for single amplitudes. This is obtained by initializing the
solid phase with a straight interface having normal along the
x-axis and letting the system evolve by Eq. (41) until reaching a
steady state. Then, a fit of each amplitude with a function
ϕi ¼ Ai½1� tanhðx � xiÞ=wi�, representing a traveling wave solu-
tion for a solid–liquid interface54,58,60, is performed with Ai , xi and
wi parameters and the solid–liquid interface thickness extracted as
w ¼P4

i¼1 wi=4.

3D bcc lattice PFC
Numerical simulations reported in the section “Defect structures:
solid crystals” are obtained by solving the classical PFC equation
encoding dissipative dynamics,

∂tψ ¼ ∇2 δF
bcc
ψ

δψ
; (43)

where Fbccψ is a free energy functional that produces a stable bcc
lattice, given by

Fbccψ ¼
Z

d3r
1
2
ðL1ψÞ2 þ r

2
ψ2 þ 1

4
ψ4: (44)

As parameters, we use r=− 0.3 and ψ0=−0.325 with spatial
discretization Δx= Δy= Δz= a0/7 and exploiting a Fourier
pseudo-spectral integration scheme. We consider a 51 × 51 × 51
cubic crystal as matrix in which we embed a spherical inclusion
with radius 17a0 rotated at an angle θrot about the [1, 1, 1]-axis.
This initial condition is obtained just by a rotation of grid points
inside the inclusion. This leaves a sharp (and unphysical) interface
which is regularized by letting this initial condition relax as
dictated by Eq. (43) for 300 time steps with Δt= 0.1.
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Spontaneous flows and dynamics of full-integer
topological defects in polar active matter†

Jonas Rønning, a Julian Renaud,bc Amin Doostmohammadi *d and
Luiza Angheluta *a

Polar active matter of self-propelled particles sustain spontaneous flows through the full-integer

topological defects. We study theoretically the incompressible flow profiles around �1 defects induced

by polar and dipolar active forces. We show that dipolar forces induce vortical flows around the +1

defect, while the flow around the �1 defect has an 8-fold rotational symmetry. The vortical flow

changes its chirality near the +1 defect core in the absence of the friction with a substrate. We show

analytically that the flow induced by polar active forces is vortical near the +1 defect and is 4-fold

symmetric near the �1 defect, while it becomes uniform in the far-field. For a pair of oppositely charged

defects, this polar flow contributes to a mutual interaction force that depends only on the orientation of

the defect pair relative to the background polarization, and that enhances defect pair annihilation. This is

in contradiction with the effect of dipolar active forces which decay inversely proportional with the

defect separation distance. As such, our analyses reveals a long-ranged mechanism for the pairwise

interaction between topological defects in polar active matter.

1 Introduction

Active matter refers to non-equilibrium systems of interacting,
self-propelled entities that consume energy from their sur-
rounding in the form of persistent motion and their collective
interactions lead to emergent, dynamical patterns, and self-
sustained flows.1,2 Models of active matter are largely inspired
by biological systems from bacterial suspensions1,2 and cell
monolayers3,4 and down to subcellular active systems such as
mixtures of cytoskeletal filaments and motor proteins.5–8 How-
ever, this also pertains to non-living active systems such as
layers of vibrated granular matter, microrobots, or synthetic
catalytic nanomotors.2,9

Several hydrodynamic models have been proposed to cap-
ture the macroscopic dynamics and emergent phenomena
corresponding to a collection of active (self-propelled) particles
with different symmetries and alignment interactions.2,10–12

The prototypical models are based on the analogy to liquid

crystals formed by rod-like particles with polar or apolar
symmetries in their alignment interactions. Active rods
with only orientational alignment act as headless ‘‘shakers’’
and form apolar phases described by a slowly-varying director
field -

n which has head–tail (nematic) symmetry.1,2,13,14 By
contrast, active rods that align their direction of motion tend
to flock into polar systems that are described instead by a
slowly-varying polar vector field -

p.10–12,15 Active rod-like parti-
cles generate persistent flows sustained by the active stress
originating from extensile/contractile dipolar forces. On hydro-
dynamic scales, this active stress is proportional to the nematic
Q tensor order parameter, i.e. sa = a0Q with a proportionality
coefficient a0 as an effective activity parameter.2,16 Topological
defects, innate to ordered systems with broken continuous
symmetries, are also present in active systems. The interplay
between active stresses and configurational distortions
feeds into self-sustain flows and the proliferation of topolo-
gical defects to generate chaotic flows also known as active
turbulence.17–19

From the rotational symmetry modulo p of the Q tensor, it
follows that the lowest energy orientational defects have a �1/2
topological charge corresponding to �p jump in the orienta-
tional phase around them. The +1/2 defects acquire a self-
propulsion due to the net active flow passing through their
cores.20,21 The stable, low-energy defects in polar active systems
have instead �1 topological charges corresponding to a 2p
phase jumps around the defects. This is analogous to vortices
in the XY-model of 2D ferromagnets.15,22
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The bulk of recent studies have focused on the formation
and characterization of half-integer nematic defects (see recent
reviews23,24). This is in part due to the ubiquitous emergence of
the nematic defects in a wide range of biological systems from
subcellular filaments8,25 to bacterial colonies26,27 and assem-
blies of eukaryotic cells.28,29 This is despite the fact that several
biological active entities, such as bacteria or eukaryotic cells,
are endowed with a clear head–tail asymmetry and directional
self-propulsion, which characterizes a polar order for these
systems. Such a polar order at the scale of collective is apparent
from flocking domains within bacterial colonies27 and eukar-
yotic cells.30 Nevertheless, because of the appearance of half-
integer defects, at the coarse-grained level, these systems are
often modelled as active nematics neglecting the polarity of
the self-propelled particles. There have been proposed models
that couple the evolution of polar and nematic order
parameters31–33 to allow for the coexistence of both types of
symmetries. Recently, in ref. 34, a hydrodynamic model was
proposed for the coexistence of both nematic and polar align-
ment interactions in the polarization field -

p, and was used to
study different active turbulence regimes sustained by both
half- and full-integer topological defects. In addition to dipolar
(nematic) active forces, the model also includes a polar active
force

-

f = ap
-
p, which describes the self-propulsion direction and

is shown to suppress defect-laden active turbulence.35

More recently, theoretical and experimental studies have
revealed the importance of full-integer topological defects in
cell assemblies. In particular, it is shown that positive full-
integer defects formed due to collision of two nematic half-
integer defects in fast-moving bacterial colonies can lead to the
verticalization of bacteria and escape to the out-of-plane
directions.27,36 Furthermore, positive full-integer defects
induced by confinement of myoblast cells in circular geome-
tries are shown to activate cell differentiation and formation of
3D helical structures.37 Full-integer defects are also observed in
cell migrations on curved surfaces38,39 and during tissue
morphogenesis.40 A corresponding theoretical analyses, in the
limit of compressible flows inside the core region of defects in
small confinements, have revealed the corresponding flow
fields and force patterns, and shows how confinement-
induced topological defects can be used to probe the material
properties of the cell layers.41

In this paper, we carry out a theoretical analysis that reveals
subtle cross-talks between polar and dipolar active forces in
generating spontaneous incompressible flows around both �1
defects. We theoretically predict spontaneous vortical flows
induced by dipolar active forces around +1 defects which
correspond to isotropic active stress and pressure fields. Inter-
estingly, the competition between dipolar force and viscous
force leads to a flow reversal close to the core of the +1 defect.
This effect is also confirmed by numerical simulations of the
full hydrodynamic model including additional passive stresses.
However, it turns out the hydrodynamic screening induced
by friction lifts up this flow reversal effect. By contrast, the
�1 defects which have an innate 4-fold symmetry in the polarity
field lead to 8-fold symmetries of the active flows induced by

dipolar active forces. The same 8-fold symmetry is present also
in the profile of the pressure field. We demonstrate that polar
active force trigger a distinct active flow pattern characterised
by uniform flow in the far-field of its source, i.e. �1 defects.
This is very different than the active flows sustained by dipolar
forces which decay algebraically with distance. Polar active
forces have a drastic effect on the mutual interactions between
defects by promoting fast annihilation of defect pairs through
non-local and non-reciprocal attraction forces. We show that
this distance-independent mechanism of defect pair annihila-
tion is responsible for the suppression of active turbulence by
polar forces as recently reported in ref. 35.

The paper is organized as follows: we begin in Section 2 by
introducing the flow equations within a minimal polar hydro-
dynamic model and derive the corresponding defect kinematic
equations using Halperin–Mazenko formalism.42 The main
analytical results on the active flow velocity induced around
isolated �1 are discussed in Section 3. We also compare the
analytical predictions with direct numerical simulations and
find very good agreement of the flow profiles around defects
and the flow reversal pattern near the +1 defect cores. In
Section 4, we discuss the polar active force and its effect on
the defect kinematics. In particular, we consider the motion of
a pair of oppositely charged full-integer defects under the polar
active flows induced by each defect and demonstrate that polar
active forces enhance the defect annihilation rate. In a recent
study ref. 35, it was numerically evidenced that polar active
forces suppress defect-laden active turbulence and tend to
restore polar order. Here, we demonstrate theoretically that
polar active forces have a net effect on the defect kinematics to
promote defect pair binding and subsequent annihilation of
defects of opposite topological charges. The final section pro-
vides a summary of the theoretical insights and concluding
remarks.

2 Hydrodynamic model of polar
active matter

We consider the hydrodynamic model34 that describes the
collective dynamics of self-propelled entities in terms of the
evolution of the polar order parameter -

p as given by

@t~pþ~u � r~pþ lE �~pþX �~p ¼ �1
g
dF
d~p
; (1)

where g is the rotational viscosity, l is the flow-aligning
parameter43 which aligns the order parameter with the shear
rate tensor 2Eij = qjuj + qjui, while the vorticity tensor is 2O =
(qiuj � qjui), and the free energy favoring the polar order is
described as

F ¼
ð
d~r A �j~pj

2

2
þ j~pj

4

4

� �
þ Kp

2
jr~pj2

� �
: (2)

Here, Kp is the isotropic elastic constant for distortions in
the polarity field and A is the height of local energy barrier. The
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polarity is coupled with the flow field u which is described by
the incompressible Stokes equations

(G � Zr3)-u = a0r�Q � rP, (3)

r�-u = 0, (4)

where the active stress is proportional to the nematic tensor

Qij ¼ pipj � p2

2
dij

� �
with the proportionality constant given by

activity parameter a0. The incompressibility constraint deter-
mines the fluid pressure P. The viscosity is set by Z while the
friction with a substrate is introduced by the frictional drag G.44

Since we focus on theoretical derivations of the active flows
induced by polar and dipolar forces, we hereby neglect the
additional passive stresses which depend on the polarity and
that are typically present in the Stokes equations simulated
numerically.

We consider the dimensionless forms of these equations

following the appropriate rescalings in units of length x ¼ffiffiffiffiffiffiffiffiffiffiffiffi
Kp

�
A

q
and time t = g/A. The system is then controlled by

two dimensionless parameters: the scale number z = cd/x is the

ratio between the hydrodynamic dissipation length ‘d ¼
ffiffiffiffiffiffiffiffi
Z=G

p
and the nematic coherence length x, and the rescaled activity
~a0 = a0t/(x2) = a0g/(Kp). Thus, the dimensionless flow equations
read as

(1 � z2r2)-u =
-

Fa � rP, (5)

r2P = r�-Fa (6)

where the dipolar active force induced by the active stress is

~Fa ¼ ~a0
G
r �Q: (7)

For infinite systems, the flow velocity and pressure originated
from dipolar active forces can be calculated from convolution
integrals of the source terms and the corresponding Green’s
functions as

Pð~rÞ ¼ 1

2p

ð
d r0
!

lnðj~r� r0
!jÞ r0 � ~Fa

h i
; (8)

and

~uð~rÞ ¼
ð
d r0
!

2pz2
K0
j~r� r0
!j

z

 !
~Fa r0
!� 	
�r0P r0

!� 	� 	
: (9)

To derive analytical expressions, we evaluate the source term
due to the active stress using the order parameter for an
isolated point defect located at the origin and given by

-
p(r,y) = w(r)[cos(qy + f)-ex + sin(qy + f)-ey],

where y = arctan(y/x) is the polar angle in a coordinate system
centered at the defect position and w(r) is the core function,
where we assume that the core size is much smaller than any
other length scales and set w(r) = 1. The angle of the polar vector
order parameter for an ideal defect is given by Y(y) = qy + f,22

where qy is the singular part giving the winding number q

when performing the integral
H

dY = 2pq on a contour sur-
rounding the defect and f is a constant, giving a baseline phase
to the defect. For defects of charge q a +1 this constant sets the
orientation of the defect and can be ignored since we can
always transform to a system with f = 0 by a change of basis.
When q = +1 it is impossible to remove a non-zero f by
changing the basis.45 The +1 defects have polar symmetry, i.e.
2p rotational invariance. The intrinsic phase f is important for
distinguishing different types of positive defects: f = 0 corre-
sponds to an aster and f = p/2 gives rise to a vortex, and any
value in-between corresponds to a spiral defect. For a more
intuitive depiction of this, we plot in Fig. 1(a) and (c) the -

p field
on the circumference of a circle centered at �1 defects to show
that f corresponds to the constant angle that -

p makes with the
radial direction. For the negative defect one can define a
polarisation from the line where -

p is pointing radially outward
from the core, the angle of this polarisation is half of f. The
different patterns of the -

p field around a �1 defect are also
illustrated in Fig. 1(b) and (d).

We use the Halperin–Mazenko formalism46,47 for tracking
topological defects as zeros of the polar order parameter to
derive the corresponding equations of motion of defects from
the evolution of the -p field similar the approach from ref. 42 to
describe orientational defects in active nematic films. The basic
idea is that since the �1 defects are associated simultaneously
with topological singularities in the orientation field and zero
magnitude of the vector order parameter, we can track their
position by Dirac delta functions centered at the zeros of the -

p
field. Hence, a configuration of well-separated defects punctu-
ating the -

p-field corresponds to a defect charge density field,
which can be written equivalently either as a superposition of
the delta functions associated with the topological singularities
located in the physical space or as the zeros in the order
parameter space,

rð~r; tÞ ¼
X
n

qðnÞdð~r�~rðnÞÞ ¼ Ddð~pÞ; (10)

where D is the determinant of the polarity distortion tensor r-
p,

i.e. D = eijqipxqjpy which can be expressed equivalently in
the complex representation c = px + ipy as 2iD = eijqi

�cqjc. The
D-field is zero in regions of uniform polar order and becomes
nonzero where there are distortions in the orientation field. For
configurations of well-separated defects punctuating a uniform
polar order state, the D field is zero everywhere except at the
defect positions labeled by the index n, where the topological
charge qn = �1 is determined by the sign of D. Thus, the D field
represents a non-singular charge density field.

It can be shown that the D-field follows the conservation
law46

@tD + @i
-

Ji = 0, (11)

with the current density J ¼ eij= @tc@j �c

 �

determined by the
evolution of the polar order. Combining this with the conserva-
tion of topological charge density r, we can derive a general
expression for the defect velocity in terms of the D and its

current, -
vn =

-

J/D|r
-

n
.42 In the complex representation, we
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parameterise the polarity field centered on the n-th defect as
c = cneifn, where fn is the polarization induced by the n-th
defect and fn is the background phase. Near the defect, the
polarization vanishes linearly in magnitude where its phase
becomes multivalued. This implies that cn = |-r � -

rn|eiyn, with
yn = qn arctan[(y � yn)/(x � xn)] being the singular phase.42,48

Within this approach, the general expression of the defect
current density can be reduced to a closed expression for the
defect velocity given by

-
vn = -

u(-rn) + 2qnr>fn|r
-

= r
-

n
. (12)

Using the stationary phase approximation, i.e. that the
constant (equilibrium) phase remains stationary when it is
punctuated by moving defect singularities, we can further
simplify the defect velocity and express it in terms of the net
spontaneous flow and the forces induced by the other defects
as42,49

~vn ¼ ~uð~rnÞ þ 2
X
kan

qnqk
~rn �~rk
j~rn �~rkj2: (13)

The topological defects interact through Coulomb-like forces,
where like-signed defects repel, and opposite-signed defects
attract each other. However, there are additional interact-
ions through the flow field -

u which depends on the dipolar
active forces. In the next section, we derive analytic expres-
sions for this flow velocity and discuss its effect on the defect
motion.

3 Active flow fields around �1
topological defects

From the parameterization of the -
p-field for a pointwise defect,

we can evaluate the dipolar active force induced by an isolated
defect with charge q = �1 in an otherwise homogeneous
polarity field with constant background orientation f as

~Fþa ¼
~a0
Gr2

~r cosð2fÞ �~r? sinð2fÞ� 
; (14)

~F�a ¼ �
~a0
Gr

R2f cosð3yÞ~ex � sinð3yÞ~ey
� 

; (15)

Fig. 1 Polarity field around the �1 topological defects. (a) and (b) Show a +1 defect, while (c) and (d) illustrate a �1 defect. The drawings (a) and (c) show
the p

-
plotted on a circle with the angle f marked. This illustrates why f can be set to zero by a change of basis for the �1 defect and not for the +1 defect.

(b) and (d) Show the polarity fields around a +1 defect with f = p/3 (spiral) and a�1 defect with f = 0 respectively (changing f rotates the negative defect).
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where -
r> = (y,�x), and R2f is a matrix that rotates the vector by

2f, and can be removed by a change of basis. Notice that the
first term in

-

F+
a is a source of gradient flow, which however is

removed by pressure through the incompressibility condition.
The second term proportional to sin(2f) is related to a rotated
gradient and induces a purely vortical flow.

We insert these forces into the integrals in eqn (8) and (9),
and solve them as described in the Supplementary Material.50

The resulting expressions for the active flow velocity and
pressure for a +1 defect reduce to

uþa ðr; yÞ ¼
~a0
zGr̂

1� r̂K1ðr̂Þð Þeiðyþp=2Þ sinð2fÞ; (16)

Pþa ¼ �
~a0
G
cosð2fÞ lnL

r
: (17)

Here L is a cutoff scale set by the system size. We have written
the velocity field as a complex field defined as u = ux + iuy, where
r and y are the polar coordinates centered at the defects
position. We define the scaled radial coordinate as r̂ = r/z,
which is the same as changing the length scale to the hydro-
dynamic dissipation length cd (see Fig. 2, with the cutoff scale
L = 50). Notice that the pressure is isotropic and its gradient

force cancels the radial component of the dipolar active force,
thus no net pressure flow. Furthermore, the corresponding
vorticity is also isotropic

oþa ¼
~a0
Gz2

K0ðr̂Þ sinð2fÞ; (18)

and is non-zero at the centre of the defect as evidenced also in
Fig. 2. This has important consequences for the stability of
vortex, spiral, or aster shaped positive defects as discussed in
detail in ref. 15. The sign of the global circulation is modulated
by the character of the +1 defect through f.

Similarly, we find analytical expressions for the active flow
velocity, pressure and vorticity related to the �1 defect, which
are written in a compact form as

u�a ðr; yÞ ¼ �
~a0
2Gz

f a3 ðr̂Þe�3iy þ f a5 ðr̂Þe5iy

 �

; (19)

P�a ¼ �
~a0

4Gr4
x4 � 6x2y2 þ y4

 �

; (20)

o�a ðr; yÞ ¼ �
~a0
Gz2

sin 4yf aoðr̂Þ: (21)

Fig. 2 Incompressible active flow streamlines (a) and corresponding pressure field (b) around an isolated +1 defect with sin(2f) 4 0 in an extensile
(~a0 o 0) system. The colormap shows the magnitude of the velocity and pressure normalized by their maximum. Note that the pressure in the far-field
diverges with the system size L. Since the pressure diverges at the centre the pressure inside the core r o 1 has been set to the value at r = 1. This is also
the value that is used for the normalization. (c) Shows the normalised pressure, for an extensile system, at a fixed radius as a function of f. Notice that for
f = �p/4 + pn the pressure vanishes.
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The functions f a
3, f a

5, and f a
o giving the radial dependence of the

velocity and vorticity are listed in the Appendix. This velocity
and pressure fields are also plotted in Fig. 3 showing that while
the positive defect has closed streamlines also in an infinite
system, the negative defect has an 8-fold symmetry of the
vorticity, underlying a 4-fold symmetry of the polarity field
around the defect. The streamlines do not close in an infinite
system, but in confinement they might close due to boundary
conditions or influence from other defects similarly to the
vortices formed around �1/2 defects in an active nematic.21,51

It is important to note the distinctions of the analytical descrip-
tions provided herein with a recent calculations of compressi-
ble flow fields inside circular confinements.41 In the latter, the
analyses is restricted to circular domains with radius smaller
than the coherence length R2 { Kp/A, i.e. the limit where
relaxation/penetration length in the free energy is larger than
the system size. Those results are therefore in the opposite limit
of the calculation performed here.

In addition to the characteristic flow fields, our closed form
analytic descriptions provide an insight into the isotropic stress
patterns, i.e., half of the trace of the stress tensor, around full-
integer topological defects. Such isotropic stresses have been
shown to be a determining factor for the biological function-
ality of nematic defects, where concentration of compressive

stress around +1/2 defects was shown to lead to cell death and
extrusion,28 while the tensile stresses around �1/2 defects has
been shown to lead to spontaneous gap opening in epithelial
cell layers.52 Similarly, we find distinct isotropic stress patterns
around positive and negative full-integer defects: while around
a negative (�1) defect alternating regions of tension and
compression appear in a 4-fold symmetric pattern (Fig. 3b), a
strong augmentation of compressive stress is observed at the
core of positive +1 defects (Fig. 2b). We conjecture that such a
concentrated compressive stress at +1 defects could contribute
to the activation of mechanosensitive signals in cell layer and
potentially be linked to the recent observation of the cellular
differentiation at +1 defect cores in cartilage cells.53

3.1 Vortical flow reversal around +1 defect

The results presented above provide closed-form analytical
expressions for incompressible flows around full-integer topo-
logical defects in polar active matter. Interestingly, in the
absence of friction (G = 0), we predict that the vortical active
flow around the +1 defect changes chirality on a lengthscale
comparable with the coherence length outside of the defect
core, thus the flow reversal is a near-defect behavior.

Note that that zero friction is a singular limit and the
resulting flow equations have no natural lengthscale. Thus
the rescaling is done with an appropriate lengthscale coming
from the free energy, such as the coherence length. In this
limit, the active flow velocity can be derived (details in the ESI†)
to be on this form

uþa ¼
i~a0
4~Z

r 1� 2 lnðrÞð Þeiy sinð2fÞ: (22)

The corresponding vorticity acquires logarithmic dependence
with the distance from the defect

oþa ¼ �
~a0
~Z
sinð2fÞ lnðrÞ; (23)

where ~Z = Z/x2. We notice that the vorticity changes handedness
for r ¼ ffiffiffi

e
p � 1:7 (in coherence length), giving rise to two con-

centric, counter-rotating flows, as shown in Fig. 4.
Notice also that the flow diverges at r - N due to no

screening lengthscale and at r - 0 without adding a core size
regularization in the integral solutions. We predict that the flow
reversal is a near defect core effect when the far-field boundary
conditions generate an opposite torque and disappears in the
presence of hydrodynamic screening effects. The Green func-
tions correspond to the homogeneous Dirichlet boundary con-
ditions in an infinite domain. The mathematical reason for this
flow reversal is that the logarithmic Greens function changes
sign when r o 1 in units of the coherence length, unlike the
Bessel function K0 which maintains the same sign on lengths-
cales larger than the hydrodynamic screening length. The flow
reversal on a lengthscale comparable with the core size is
validated in numerical simulations and this suggests that
mutual defect interactions are not important for this near-
defect flow changes as long as defects are well-separated.

Fig. 3 Incompressible active flow streamlines (a) and corresponding
pressure field (b) around an isolated �1 defect with f = 0 in an extensile
(~a0 o 0) system. The colormaps show the normalised magnitude of
velocity (a) and pressure (b).

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Ju

ly
 2

02
3.

 D
ow

nl
oa

de
d 

on
 8

/6
/2

02
3 

5:
00

:2
7 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online



This journal is © The Royal Society of Chemistry 2023 Soft Matter

Similar flow reversal is also present in systems confined to
circular domains that are small enough such that the energy
scale can be treated as linearly dependent on the radial
distance from the center of singularity w(r) B r in the entire
domain.41 For such systems the flow reversal happens inside
the core region.

3.2 Comparison with numerical simulations

Here we discuss the comparison of the analytical predictions of
active flow induced by �1 defects with those obtained from
direct numerical simulations of the polarization evolution
eqn (1) and (2) coupled with the Navier–Stokes equations

rð@t~uþ~u � r~uÞ ¼ a0r �Q�rPþr � sp; r �~u ¼ 0 (24)

with the additional passive stresses sp = svis
p + sel

p as defined in
ref. 34 and 54, including the viscous stress svis

p = 2ZE, and the

elastic stress selp ¼
lþ 1

2
~p~hþ l� 1

2
~h~p� l

2
ð~p:~hÞI, where

-

h = qF/q-
p

is the molecular field.
For numerical simulations, we use a hybrid lattice-

Boltzmann method, combining finite-difference for the evolu-
tion of polarity and the lattice-Boltzmann method for that of
velocity55 (more details in the Appendix). Using the same
prescription as in ref. 35 for density and viscosity, i.e. r = 40
and Z = 3.6, we ensure that the Reynolds number in the

simulations remains negligible (Re { 1)18,56 so that the
dynamics of velocity virtually reduces to the incompressible
Stokes equations eqn (3) and (4) considered here. We fix the
viscosity ratio to Z/g = 3.6, micro to macro length scale toffiffiffiffiffiffiffiffiffiffiffiffi

Kp

�
A

q� 	.
L ¼ 2� 10�3 (assuring that the coherence lengthffiffiffiffiffiffiffiffiffiffiffiffi

Kp

�
A

q
is significantly smaller than the domain size L), and the

flow alignment parameter to l = 0.1. Dimensionless parameters
in the simulations are defined similar to the theoretical para-
meters defined in Section 2.

Simulations were initialized with quiescent velocity field and
noisy polar alignments close to the uniformly oriented state -

p =
-ex under periodic boundary conditions, on square domains of
linear dimension L = 256. We consider sufficiently large values
of the activity parameter ~a0 =�1 such that topological defects to
form spontaneously.35 For each simulation, we average the
individual flow profiles in the vicinity of each defect over an
ensemble of defects (ranging from C102 to C103). Because
every defect has its own orientation, we have to carefully
reorient the defects and the flows as described below.

We define the orientation of �1 defects from the surround-
ing polarization field -

p. Given the 4-fold symmetry of the �1
defect (see Fig. 1(d)), we search for the two principal axes along
which the -

p vector points inwards and outwards, respectively,
and rotate the local fields so the principal axes align.

For +1 defects, the baseline (intrinsic) phase f plays an
important role in distinguishes among vortices, asters and
spirals and their orientation (see Fig. 1). We ensemble-
average the vortical flow profile for these different types of +1
defects. For this, we identify the flow chirality of a +1 defect, by

computing the sign of the circulation
H
C
d~l �~u along a contour C

centered on the defect and with a radius smaller than the
lengthscale of the flow reversal. For defects with clockwise flow

chirality
H
C
d~l �~uo 0

� 	
; the local polarization and velocity

profiles are reversed, while for those with counterclockwise
flow chirality, the fields are kept with the same orientation, so
that all fields are consistently averaged.

The numerical results of the average polarization and flow
around aster-like and vortex-like defects are shown in Fig. 5,
and around �1 defects are presented in Fig. 6. For both types of
defects, the average polarization (right panels in Fig. 5 and 6)
has the same rotational symmetries as those corresponding to
the polarity director in Fig. 1. However, we also notice that the
magnitude of the average polarization -

p varies with the distance
to the defect and localises into different patterns, i.e. a halo
around the +1 defect as in Fig. 5 and a ‘‘cross’’-like pattern for
the �1 defect as in Fig. 6. This cross pattern aligns with the
principal axes of the 4-fold polarity director for contractile
systems (�a0 4 0) and is rotated by p/4 for extensile systems
(�a0 o 0) following the inward/outward flow directions. The
average flow profile around a �1 defect has the 8-fold rotational
symmetry as theoretically predicted for an isolated defect and
appears both for extensile and contractile systems as shown in Fig. 6.

We now discuss the numerical results on the average vortical
flows generated by aster-like and vortex-like defects in relation

Fig. 4 (a) Streamlines of the theoretical active flow around an isolated +1
defect for sin(2f) 4 0 for an extensive system and G = 0. The colormap
shows the flow magnitude normalized by its largest value in the plotted
domain. The change in color of the streamlines from white to black
highlight the flow reversal at r E 1.7. This is more apparent in (b) which
is a cross section of the azimuthal velocity component along the positive x
axis. The velocity changes sign when it crosses the zero line.
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to our theoretical prediction (Fig. 2 and 4). As shown in Fig. 5,
we see the predicted flow reversal emerges robustly on the
ensemble-average profiles. The counterclockwise flow direction
close to the defect is a result of our averaging procedure. Given

that the vortical flow reverses its chirality near the defect cores
on a statistical level as theoretically predicted for an isolated
defect suggests that collective defect interactions are not crucial
for this effect.

Fig. 5 Numerical average polarization p
-

and velocity v
-

profile around representative +1 aster-like (a) and (b) and vortex-like defects (c) and (d).
Colormaps are scaled by the maximum magnitude in polarization and flow velocity, respectively. Averages are computed for ensembles of C400 defects
as discussed in the Appendix (Fig. 11). Similar average profiles for lower activity are shown in Fig. 12.

Fig. 6 Numerical average of the polarization p
-

and velocity u
-

fields around �1 defects, for various activities ~a0. Colormaps are scaled by the maximum
magnitude in polarization and flow velocity, respectively. For �a0 =�1, averages are computed from the same simulations as for +1 defects in Fig. 5, but for
a larger ensemble of C1000 defects, since all �1 defects are of the same type. For the lower activity �a0 = �0.4, averages are computed for smaller
ensembles of C100 defects.
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3.3 Defect pair interaction modulated by dipolar active forces

As seen in the above section, the dipolar active force does not
lead to any defect self-propulsion for isolated �1 defects in an
infinite domain. We now consider a pair of �1 defects and
show that the dipolar active force leads to an interaction
between them through the active flow. For analytic tractability,
we consider the friction-dominated regime G c Z and set the
viscosity to zero, cd - 0. The defect velocity is calculated using
the methods from ref. 42 (see ref. 50 for details) and is given by

uþa ¼
~a0
GR

eið3j�2fÞ ln
R

L

� �
� 3

2

� �
; (25)

u�a ¼
~a0
GR

1

6
eið3j�2fÞ þ 1

4
eið2f�jÞ

� �
; (26)

for the +1 defect and �1 defect, respectively. Here L is a
regularising lower cut-off corresponding to the finite defect
core due to the divergent pressure at the +1 defect. R is the
distance between the defects, j is the angle of

-

R = -
r� � -

r+. f is
the uniform background orientation field. This effective inter-
action induced by dipolar active forces decays inversely propor-
tional with the distance between defects similar to the
Coulomb-like force induced by the phase gradients alone.
However, these interactions are anisotropic since they depend
on the orientation of the background polarization as well as the
orientation of the defect pair.

4 The effect of polar active forces

Next, we also include the polar active force in the flow equa-
tions eqn (5) and study its contribution to the flow velocity up

and pressure Pp. In dimensionless units, the polar active
force is

-

Fp = ~ap
-
p. (27)

where ~ap = apt/(xG) is a rescaled parameter that measures the
strength of polar active forces relative the frictional drag. We
consider ap 4 0 corresponding to polar particles moving in the
direction of their head. The corresponding flow velocity and
pressure fields can now be written compactly as (see details in
SM50)

u+
p(r̂,y) = i~apeiysin(f) fp

1(r̂), (28)

P+
p(r,y) = ~apr cos(f), (29)

u�p ðr̂; yÞ ¼
~ap
2

f
p
1 ðr̂Þe�iy þ f

p
3 ðr̂Þe3iy


 �
; (30)

P�p ðr; yÞ ¼
~ap
3

x2 � y2

 �

r
: (31)

for the positive and the negative defect respectively. The
velocity profiles are plotted in the Fig. 7 while the functions f1

and f3 are plotted in Fig. 8 together with their asymptotic
values. It is straightforward to show that both f1 and f3 tend
to zero at the defect origin, thus the polar active forces do not
contribute to defect self-induced motility. It is important to

note that the flow induced by polar active forces around the +1
defect is proportional to sin(f), instead of the sin(2f) depen-
dence that was found for the flow induced by dipolar active
forces eqn (16). This means that while the polar active forces do
not produce any flow around an ideal aster (f = 0), there will be

Fig. 7 Velocity streamlines due to polar active forces for (a) the positive
defect (vortex flow) and (b) the negative defect (saddle-point flow). Color-
map represents the magnitude of the velocity field normalized by its
maximum value.

Fig. 8 Plot of the functions (blue, whole lines) fp
1 (a) and fp3 (b) against their

asymptotic limits (black, doted lines) as given in eqn (32) and (33). Note that
the functions asymptotically approach to non-zero values in the far-field.
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a polar activity-induced flow around an ideal vortex (f = p/2).
Furthermore, eqn (29) shows that the pressure is proportional
to the radial distance Br, indicating that, in the absence of
any far-field screenings from other defects, the pressure can
become quite large. This is related to the flow induced by
polar active forces being constant in magnitude in the fare-
field, as illustrated in Fig. 8, or by explicitly writing the
asymptotic limits

u�p ðr̂; yÞ ¼
~ap
2

e�iy þ 1

3
e3iy

� �
� 1

r̂2
e�iy þ 3e3iy
� � �

; (32)

uþp ðr̂; yÞ ¼ i~apeiy sinf 1� 1

r̂2

� �
; (33)

for the negative and positive defect, respectively. As we will
show explicitly for a pair of defects in the next section, eqn (32)
and (33), together with eqn (13), indicate that there are strong
interactions between defects regardless of the distance
between them.

From the closed form formulas of the flow velocity around
the defects, the far-field vorticity induced by the +1 defect can
be calculated as

oþp ¼
~ap
z
sinf

1

r̂
þ 1

r̂3

� �
; (34)

and, for the �1 defect, this is

o�p ¼
2~ap
z

sin 2y
1

r̂
� 3

r̂3

� �
: (35)

Interestingly the vorticity of the +1 defect is independent on the
baseline/intrinsic angle y, which is also true in the near-field,
because we can write the velocity field in the form -

u = -
r>f (r). As

such, close to the defect center the vorticity of the negative
defect vanishes at the center, while the positive defects has a
finite vorticity

oþp ðr ¼ 0Þ ¼ ~app
2z

sinðfÞ; (36)

indicating that the +1 defect acquire a rotational motion in
addition to their translational motion.

4.1 Defect-pair interaction in friction-dominated system

Taking again the analytically tractable limit of zero viscosity, we
can find the velocity induced by polar active forces for a pair of
oppositely-charged defects following the approach from Section
3.3. The flow velocities in the centre of the �1 defects reduce to

~uþp ¼
~ap

2j~Rj2
~R? ~R? � p̂0
� 	

; (37)

~u�p ¼
~ap

6j~Rj2
~R? ~R? �~p0
� 	

þ ap
3j~Rj2

~R ~R �~p0
� 	

; (38)

where
-

R = -
r� � -

r+ is the separation vector between the negative
defect and the positive one, and -

p0 = cos(f)-ex + sin(f)-e� is the
uniform background polarity. Interestingly, the polar active
forces induce non-reciprocal and non-local mutual interactions

that depend only on the orientation of
-

R relative to f, indepen-
dent of the separation distance R between the defects. This
suggests a truly long-ranged interaction between oppositely-
charged defects in the presence of polar active forces.

Furthermore, the �1 defect tends to move towards/away

from + 1 depending on the orientation angle of
-

R with respect

to -
p. Both defects move perpendicular to

-

R but at different rates
inducing the pair to rotate. We can see this behavior more
clearly by looking at the defect pair velocity under polar active

forces alone, _~R ¼ ~u�p �~uþp given by

d

dt
~R ¼ ~ap

3R2
~R �~p0
� 	

~R� ~ap
3R2

~R? �~p0
� 	

~R?; (39)

where the first term (8
-

R) is an attraction/repulsion force

between the defects, while the second term (>
-

R) rotates the
defect pair. The rotation is zero, when the defect pair aligns

with the background polarization in either directions (
-

R8-
p0).

We show in SM.50 that the defect pair rotates until annihilation,

unless
-

R is initially parallel to -p0. For initial orientations where
-

R�-p0 4 1, the defects first move a part while re-orientating such

that they attract each other. Namely, as long as
-

R>�-p0 a 0, the

separation vector
-

R will rotate until
-

R�-p0 becomes negative and
the defects move toward each other (see SM50 for the deriva-
tion). The rate of defect annihilation is thus dependent on the
initial orientation. This shows that the polar active force leads
to pair annihilation of oppositely-charged defects to promote
large-scale polar order.

To check this dynamics numerically, we compare the pair
trajectory determined by eqn (13) with that predicted by the full
hydrodynamic model from integrating eqn (1), (3) and (4) with
the same initial configuration. The initial uniform polarisation
-
p = -

ey is seeded with a defect pair in the x-direction, i.e.
-
r� =

�20-
ey and -

r+ = �20-
ex, such that

-

R>-
p0 at t = 0. The model

parameters are set to ~ap = 0.5, ~a0 = 0, l = 0 and z2 = 0.01. The
hydrodynamic equations are solved with periodic boundary
conditions in a domain 256 � 256 with a spatial discretisation
D = 0.5, using spectral methods and an exponential time
differentiation scheme.57 Under the polar active force, the
separation vector

-

R rotates relative to -
p0, and this changes the

shape of the +1 defect from an initial vortex to an aster at the
annihilation time. This effect is lost in the absence of polar
active forces, i.e. at ~ap = 0 (see animations of the defect pair
annihilation in ref. 50).

The two trajectories are shown in Fig. 9(a) and agree very

well for large R = |
-

R| in consistency with the pointwise approxi-
mation. It also shows that polar active forces increase the
annihilation rate. This is further evidenced in Fig. 9(b) where
we compare the evolution of the separation distance R(t) when
the two defects interact through the Coulomb-like forces with
or without the presence of polar active forces. At ~ap = 0, R(t)
decreases in the far-field as

ffiffiffiffiffiffiffiffiffiffiffi
t0 � t
p

(t0 being the annihilation
time) due to the 1/R interaction forces. However, for ~ap a 0, the
annihilation timescale is greatly reduced and the devia-
tions from the

ffiffiffiffiffiffiffiffiffiffiffi
t0 � t
p

behavior arise due the non-local and
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non-reciprocal attraction force. The rotation rate is also con-
tributing to aligning the defects to increase the attraction
between the defects.

5 Discussion/conclusion

In summary, we present theoretical derivations of incompres-
sible flow fields and dynamics of �1 defects under dipolar and
polar active forces. These active forces do not endow the full-
integer defects with any self-propulsion, as expected from the
symmetry of the defects. However, the +1 defect acquires a non-
zero active torque due to both polar and dipolar active forces.
We show that the strength of this spin is dependent on whether
the defect is a vortex, aster or spiral. In the absence of hydro-
dynamic screening due to friction, the vortical active flow
around a +1 vortex changes sign on a length scale set by the
coherence length as observed in numerical simulations and
predicted analytically. For both defects, the dipolar active force
contribution to the flow field vanishes with 1/r in the defect far-
field, whereas the polar active force contribution approach a
constant value. Remarkably, polar active forces mediate mutual
interaction between oppositely-charged defect pairs in a man-
ner that renders defect-defect interactions independent of the
distance between the defect pair. We have shown that, under
these polar active forces, a pair of oppositely-charged defects
rotates to align with the background polarization field, while

the negative defect chases the positive one until annihilation.
The rate of annihilation is greatly enhanced by polar active
forces, and this is the main underlying mechanism for the
suppression of defect-laden active turbulence in polar active
matter as reported numerically in ref. 35. This effect of polar
active forces has been studied so far for flat surfaces. It would
be interesting to explore this effect further for curved surfaces
where additional topological constraints are present.24,58
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Appendices
A1. Analytical expression of the functions defining the active
flow fields

Here we write down the radially-dependent functions asso-
ciated with the flow fields induced by polar and dipolar active
forces. Derivation details are found in the SM.50 The radial
functions for the dipolar active flow velocity are:

f a3 ðr̂Þ ¼
1

r̂
1� r̂K1ðr̂Þ½ � � 2

r̂3
4� r̂3K1ðr̂Þ � 2r̂2K2ðr̂Þ
� 

; (40)

f a5 ðr̂Þ ¼
1

r̂
1� r̂K1ðr̂Þ½ � � 6

r̂3
4� r̂3K1ðr̂Þ � 2r̂2K2ðr̂Þ
� 

þ 6

r̂5
64� 4r̂2ð8þ r̂2ÞK0ðr̂Þ � r̂ð8þ r̂2Þ2K1ðr̂Þ
� 

: (41)

The radial function for the corresponding vorticity field

f aoðr̂Þ ¼
1

r̂4
�48þ 4r̂2 þ r̂2 24þ r̂2


 �
K0ðr̂Þ þ 8r̂ 6þ r̂2


 �
K1ðr̂Þ


 �
:

(42)

The radial functions for the polar active flow velocity are:

f
p
1 ðr̂Þ ¼ 1� r̂K1ðr̂Þ þ p

2
I1ðr̂Þ þ

X1
k;n¼0

k1ðn; kÞ r̂2kþ2

ðð2kÞ!!Þ2

þ
X1
k;n¼0

k2ðn; kÞ ln
r̂

2

� �
� cð0Þðkþ 1Þ

� �
r̂2kþ2

ðð2kÞ!!Þ2; (43)

and

f
p
3 ðr̂Þ ¼ �

p
2
I3ðr̂Þ þ

X1
k;n¼0

k3ðn; kÞ r̂2kþ2

ðð2kÞ!!Þ2

þ
X1
k;n¼0

k4ðn; kÞ r̂2kþ2

ðð2kÞ!!Þ2 ln
r̂

2

� �
� cð0Þðkþ 1Þ

� �
: (44)

Fig. 9 (a) Phase portraits of the defect pair trajectory obtained from (blue)
the kinematics of point defects (PD) from eqn (13), and (red) by direct
simulation of the hydrodynamic model (HM) with identical initial condition
of the defect pair at r

-
� = �20e

-
x with the homogeneous background

polarization being p
-

0 = e
-

y. The +1 defect is marked by +, the �1 by �.
~ap = 0.5, ~a0 = 0, l = 0 and z2 = 0.01. (b) Distance R between a defect pair as
a function of time for Coulomb-like interactions only (blue curve) and in
the presence of polar active forces (orange curve). The black doted lines
are fitting curves with the RðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Atþ B
p

found by linear regression on R2.
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Where c(0) is the digamma function. The coefficients of the
infinite power series are

k1ðn; kÞ ¼ � ð2n� 1Þ!!
ð2nÞ!!

� �2
1

2nþ 2

� 1

ð2n� 1� 2kÞ2 þ
1

4

2nþ 1

ð2nþ 2Þðnþ 2þ kÞ2
� �

(45)

k2ðn; kÞ ¼ ð2n� 1Þ!!
ð2nÞ!!

� �2
1

2nþ 2

� 2nþ 1

2ð2nþ 2Þðnþ 2þ kÞ �
1

2n� 1� 2k

� �
;

(46)

k3ðn; kÞ ¼ ð2n� 1Þ!!
ð2nÞ!!

� �2

� 2nþ 1

4ð3� 2nÞð1� 2nÞðnþ kþ 1Þ2
�

þ 2n

ð2nþ 4Þð2nþ 2Þð2n� 1� 2kÞ2
�
;

(47)

Fig. 10 Velocity and polarisation fields in the vicinity of individual (+1)
defects for �a0 = +1.

Fig. 11 Distribution of +1 defects in the phase space of polarization p
-

given by the D1 disk.
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k4ðn; kÞ ¼ ð2n� 1Þ!!
ð2nÞ!!

� �2

� 2n

ð2nþ 4Þð2nþ 2Þð2n� 1� 2kÞ
�

� 2nþ 1

2ð3� 2nÞð1� 2nÞðnþ kþ 1Þ
�
:

(48)

Note that when summing over n the coefficients k4(n,k) tends to
zero for any k. The infinite series are convergent, but slowly.

A2. Details on the numerical simulations

Numerical and modeling framework. We solve the hydro-
dynamic model eqn (1) and (2) using a hybrid lattice-Boltzmann
and finite difference method34,35,55 with periodic boundary
conditions on square domains L � L of size L = 256. All
simulations are run for model parameters set to Kp = 0.04,
A = 0.01, g = 1, l = 0.1. This fixes the rescaling units, i.e. the

nematic coherence length z ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Kp=A

p ’ 0:6 and a characteris-
tic time t = g/A = 100. We also fix the shear viscosity such that
Z/g = 3.6, and the density to r = 40, thus ensuring that
the Reynolds number in the simulation remains negligible

(Re { 1)18,56 and that the dynamics of velocity virtually reduces
to the incompressible Stokes equations eqn (3) and (4) con-
sidered here. We then run simulations in the frictionless
regime (G = 0), for four different values of activity, namely a0

A {�1, �0.4, +0.4, +1}. In the discretisation scheme, we use the
space unit Dx = 1 and time increment Dt = 1 for the set values of
the model parameters.

Simulations were initialized with a quiescent velocity field
and noisy, but reproducible polar alignments close to the
uniformly oriented state -

p = -
ex, using know random seeds. To

collect the individual flow and polarity fields for the ensemble
averages, we save a 100 frames with fixed sampling time ns =
200, excluding the first 40 frames to discard early transients
from the analysis. In Fig. 10, we illustrate the flow and
polarization pattern around individual defects. The pattern of
the polarization field (right panels) is aster-like (top) or vortex-
like (bottom). We notice that the individual flow profile (left
panels) is highly fluctuating while the vortical flow pattern
emerges upon averaging out these fluctuations. We identify
the type of the topological defect by the circulation of the
polarization around the defect as illustrated in Fig. 11(a) and
plot them in the phase space of the polarization vector -

p

Fig. 12 Analysis of the flow and polarization profile around +1 defects for ~a0 = �0.4.
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corresponding to the unit disk D1 as shown in panel (b). Panels
(c) and (d) represent the distributions of the +1 defects from the
two of our simulations with ~a0 = �1 showing that for extensile
systems (~a0 o 0) most defects are vortex-like, while for con-
tractile ones (~a0 4 0) there are mostly aster-like defects. We
group the defects accordingly to compute the average fields
shown in Fig. 5, after assessing the flow chirality as described
in the main text. A similar analysis is carried out for smaller
activity ~a0 = �0.4 and shown in Fig. 12.

Simulation platform. We ran all our simulations on Copen-
hagen University HPC (High-Performance-Computing) cluster,
using the collaborative MASS (Many Active Systems Simula-
tions) program, on which several labs in Europe actively colla-
borate. This program takes a model definition as an input,
under the form of a C++ file, along with a runcard (.dat file)
specifying the values to assign to the different parameters.
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SUPPLEMENTARY NOTES

For the proofs in this section, we follow the notation conventions of Ref. [1]. We consider topological defects for
Sk order parameters, which is the space consisting of (k + 1)-dimensional unit vectors. It is known that the i-th
homotopy group of Sk is trivial for i < k. In particular, every loop (i = 1) on the two-sphere (k = 2) can be
reduced to a point by a continuous deformation. Thus, to get a description of the topological defects for Sk order
parameters, we need to consider the k-th homotopy groups πk(Sk) ≃ Z corresponding to topological defects with
integer charges. The dimension of the defect is given by dtop = d− (k + 1), where d is the physical space dimension.
The homotopy classification of loops in Sk is useful beyond the direct application to models from this group because,
in many systems, their order parameter space can be mapped or decomposed into products of Sk spaces. We define
an order parameter Ψ = (Ψ1, ...,Ψn) which resides in the order parameter space Dn. The subvolume of Dn swept by
Ψ and n− 1 independent variations {dΨ(k)}nk=2 is given by the (signed) volume of the n-dimensional cone

1

n
ϵ̃ν1...νnΨν1

dΨ(2)
ν2

...dΨ(n)
νn

, (1)

where ϵ̃ν1...νn are the components of the Levi-Civita tensor in order parameter space. See Supplementary Figure 1
for an example of n = d = 3. The charge s is then given as the natural generalization of Equation (4) of the main
article, i.e.,

s =
1

VnΨn
0

∮

∂M

1

n
ϵ̃ν1...νnΨν1dΨ

(2)
ν2

...dΨ(n)
νn

. (2)

Here, ∂M is a (n − 1)-dimensional submanifold of Rd, the boundary of some n-dimensional submanifold M, and
{dΨ(k)}nk=2 are changes in Ψ due to displacements dxµ on ∂M. Formally, we write the integrand in terms of the
coordinates {xµ}dµ=1 of Rd as follows

ω =
1

n
ϵ̃ν1...νnΨν1

(∂µ2
Ψν2

)...(∂µn
Ψνn

)dxµ2 ⊗ ...⊗ dxµn , (3)

Since ωµ2...µn is completely anti-symmetric under interchange of indices, ω is a (n− 1)-form and we can apply Stokes’
generalized theorem

∮

∂M
ω =

∫

M
dω (4)

ϵ

dxµ3

dxµ2 1
3
ϵ̃ν1ν2ν3Ψν1dΨ

(2)
ν2 dΨ

(3)
ν3

M

∂M
dΨ(2)

dΨ(3)

D3

Ψ

x

y

z

Supplementary Figure 1. Real 3D space and order parameter space for a D3 order parameter. ∂M is the boundary of a 3D
subvolume M, on which variations along the surface (dxµ2 , dxµ3) lead to variations of the order parameter (dΨ(2), dΨ(3)).
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where dω is the exterior derivative of ω, whose components are given by

(dω)µ1...µn
= n∂[µ1

ωµ2...µn] = ∂[µ1

(
ϵ̃ν1...νnΨν1

(∂µ2
Ψν2

)...(∂µn]Ψνn
)
)
= ϵ̃ν1...νn(∂µ1

Ψν1
)...(∂µn

Ψνn
), (5)

where the notation [...] is the antisymmetrization over free indices (µ1...µn). Thus, we get

s =
1

VnΨn
0

∫

M
ϵ̃ν1...νn(∂µ1Ψν1)...(∂µnΨνn)dx

µ1 ⊗ ...⊗ dxµn . (6)

In the case of n = 1, for which V1 = 2, integrals over M are typically evaluated in this way, i.e., as line integrals over
the one-dimensional manifold M. We then immediately recover the defect density for n = 1, given by

ρµ =
∂µΨ

2Ψ0
(n = 1). (7)

For higher values of n, however, one evaluates the integral in coordinates on the manifold M. Thus, at each point, we
choose d − n orthogonal unit vectors {n(k)}d−n

k=1 normal to the manifold M and introduce local coordinates {yi}ni=1

on M. Expressed in these coordinates, we have

s =
1

VnΨn
0

∫

M
ϵ̃ν1...νn(∂τ1Ψν1

)...(∂τnΨνn
)dyτ1 ⊗ ...⊗ dyτn

=
1

VnΨn
0

∫

M
ϵ̃ν1...νn(∂τ1Ψν1

)...(∂τnΨνn
)δτ1κ1

...δτnκn
dyκ1 ⊗ ...⊗ dyκn , (8)

where τ -indices iterate from 1 to n. Now, we invoke the identity

n!δ[τ1κ1
...δτn]κn

= ϵ̂τ1...τn ϵ̂κ1...κn
(9)

where ϵ̂ is the Levi-Civita tensor on M, i.e., the induced volume element from Rd. Using the fact that the integrand

is already anti-symmetric in τ -indices, we can replace δτ1κ1
...δτnκn

→ δ
[τ1
κ1 ...δ

τn]
κn and get

s =
1

VnΨn
0

∫

M
ϵ̃ν1...νn(∂τ1Ψν1

)...(∂τnΨνn
)
1

n!
ϵ̂τ1...τn ϵ̂κ1...κn

dyκ1 ⊗ ...⊗ dyκn

=
1

VnΨn
0

∫

M

1

n!
ϵ̂τ1...τn ϵ̃ν1...νn(∂τ1Ψν1

)...(∂τnΨνn
)ϵ̂ (10)

Finally, we want to express the integrand in terms of coordinates of Rd. Using that ϵ̂ expressed in these coordinates
is

ϵ̂µ1...µn = N i1...id−nϵi1...id−n

µ1...µn (11)

where N i1...id−n ≡ ni1
(1)...n

id−n

(d−n), we get

s =
1

VnΨn
0

∫

M

1

n!
ϵµ1...µn

i1...id−n
ϵ̃ν1...νn(∂µ1

Ψµ1
)...(∂τnΨνn

)N i1...id−n ϵ̂ (12)

Identifying N i1...id−n ϵ̂ as the oriented volume element of M, we identify the defect density as

ρi1...id−n
=

Di1...id−n

VnΨn
0

(n ≥ 2) (13)

where

Di1...id−n
=

1

n!
ϵµ1...µn

i1...id−n
ϵ̃ν1...νn(∂µ1

Ψν1
)...(∂µn

Ψνn
). (14)
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We now turn to finding the general equation for the velocity of the defect density. To differentiate Equation (13)
with respect to time, consider

∂tDi1...id−n
= ∂t

(
1

n!
ϵµ1...µn

i1...id−n
ϵ̃ν1...νn(∂µ1

Ψν1
)...(∂µn

Ψνn
)

)

=
1

n!
ϵµ1...µn

i1...id−n
ϵ̃ν1...νn ((∂µ1

∂tΨν1
)...(∂µn

Ψνn
) + ...+ (∂µ1

Ψν1
)...(∂µn

∂tΨνn
))

=
1

n!
ϵµ1...µn

i1...id−n
ϵ̃ν1...νn ((∂µ1

∂tΨν1
)...(∂µn

Ψνn
) + ...(∂µn

Ψνn
) + ...+ (∂µn

Ψνn
)...(∂µ1

∂tΨν1
))

=
1

(n− 1)!
ϵµ1...µn

i1...id−n
ϵ̃ν1...νn(∂µ1

∂tΨν1
)...(∂µn

Ψνn
)

= ∂µ1

(
1

(n− 1)!
ϵµ1...µn

i1...id−n
ϵ̃ν1...νn(∂tΨν1

)...(∂µn
Ψνn

)

)
, (15)

where, in going from line 2 to 3, we have used that due to the contraction with both the anti-symmetric Levi-Civitas,
the terms are invariant under simultaneously interchanging µk ↔ µk′ and νk ↔ νk′ , so that we can write every term in
the parenthesis like the first. In going from line 4 to 5, we have used that the contraction with ϵµ1...µn

i1...id−n
ensures

that only the first term survives when applying the product rule. Thus, we find ∂tρi1...id−n
+ ∂µ1

Jµ1
i1...id−n

= 0,
where

Jµ1
i1...id−n

=
−1

VnΨn
0 (n− 1)!

ϵµ1µ2...µn
i1...id−n

ϵ̃ν1...νn(∂tΨν1
)(∂µ2

Ψν2
)...(∂µn

Ψνn
). (16)

Like for the d = n = 2 case, we want to identify this expression with the density current vµ1ρi1...id−n
. They are related

up to a divergence free contribution ∂µ1
Kµ1

i1...id−n
= 0, so

vmρi1...id−n
= Jµ1

i1...id−n
+Kµ1

i1...id−n
. (17)

In the d = n = 2 case, the charge density on the left-hand side had no free indices and so we could simply divide by

the charge density to solve for v. In the general case, however, we project the equation by contracting with ρi1...id−n

|ρ|2 ,

where |ρ| =
√
ρi1...id−nρi1...id−n

is the Frobenius norm, and get

vµ1 =
ρi1...id−nJm

i1...id−n

|ρ|2 +
ρi1...id−n

Kµ1
i1...id−n

|ρ|2 . (18)

In order to fix the gauge Kµ1
i1...id−n

, we look at the evolution of the order parameter Ψ as advected by a velocity
field v(Ψ)

∂tΨn + vµ1

(Ψ)∂µ1Ψn = 0. (19)

These are n linearly independent linear equations to determine d components of the velocity v(Ψ). If n < d, it is
under-determined and therefore d− n additional equations are needed to determine vµ1 uniquely. We define

vµ1

candidate ≡
ρi1...id−nJµ1

i1...id−n

|ρ|2

=

1
n!ϵµ′

1...µ
′
n

i1...id−n ϵ̃ν′
1...ν

′
n
(∂µ′

1
Ψν′

1)...(∂µ′
n
Ψν′

n) −1
(n−1)!ϵ

µ1µ2...µn
i1...id−n

ϵ̃ν1...νn(∂tΨν1)(∂µ2Ψν2)...(∂µnΨνn)

|D|2

= −
(d− n)!δµ1

[µ′
1
δµ2

µ′
2
...δµn

µ′
n]
ϵ̃ν′

1...ν
′
n
(∂µ′

1
Ψν′

1)...(∂µ′
nΨν′

n
)ϵ̃ν1...νn(∂tΨν1

)(∂µ2
Ψν2

)...(∂µn
Ψνn

)

(n− 1)!|D|2

= −
(d− n)!n!δ

[ν1

ν′
1
...δ

νn]
ν′
n
(∂µ1Ψν′

1)...(∂µnΨν′
n)(∂tΨν1

)(∂µ2
Ψν2

)...(∂µn
Ψνn

)

(n− 1)!|D|2

= − (d− n)!n

|D|2 δ
[ν1

ν′
1
...δ

νn]
ν′
n
(∂tΨν1

)(∂µ1Ψν′
1)

n∏

l=2

(∂µl
Ψνl

)(∂µlΨν′
l ) (20)
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Calculating |D|2 gives

|D|2 =
1

n!
ϵµ1...µn

i1...id−n
ϵ̃ν1...νn(∂µ1Ψν1)...(∂µnΨνn)

1

n!
ϵµ′

1...µ
′
n

i1...id−n ϵ̃ν′
1...ν

′
n
(∂µ1Ψν′

1
)...(∂µnΨν′

n
)

=
1

(n!)2
n!(d− n)!δ

[µ1

µ′
1
...δ

µn]
µ′
n
ϵ̃ν1...νn(∂µ1Ψν1)...(∂µnΨνn)ϵ̃ν′

1...ν
′
n
(∂µ′

1Ψν′
1
)...(∂µ′

nΨν′
n
)

= (d− n)!δ
[ν1

ν′
1
...δ

νn]
ν′
n

n∏

l=1

(∂µl
Ψνl

)(∂µlΨν′
l ). (21)

which gives

vµ1

candidate = −n
δ
[ν1

ν′
1
...δ

νn]
ν′
n
(∂tΨν1

)(∂µ1Ψν′
1)
∏n

l=2(∂µl
Ψνl

)(∂µlΨν′
l )

δ
[ν1

ν′
1
...δ

νn]
ν′
n

∏n
l=1(∂µl

Ψνl
)(∂µlΨν′

l )
(22)

where it is understood that the repeated indices are summed over independently in the numerator and denominator.
By inserting this expression in the LHS of Equation (19) after multiplying by the denominator, we get

δ
[ν1

ν′
1
...δ

νn]
ν′
n

(
n∏

l=1

(∂µl
Ψνl

)(∂µlΨν′
l )

)
∂tΨk

︸ ︷︷ ︸
(Mercury)

− nδ
[ν1

ν′
1
...δ

νn]
ν′
n
(∂tΨν1)(∂

µ1Ψν′
1)

(
n∏

l=2

(∂µl
Ψνl

)(∂µlΨν′
l )

)
∂µ1Ψk.

︸ ︷︷ ︸
(Venus) (23)

We split the term (Venus) into ν1 = k and ν1 ̸= k as follows

(Venus) =

nδ
[k
ν′
1
δν2

ν′
2
...δ

νn]
ν′
n
(∂tΨk)(∂

µ1Ψν′
1)

(
n∏

l=2

(∂µl
Ψνl

)(∂µlΨν′
l )

)
∂µ1

Ψk

︸ ︷︷ ︸
(Tellus)

+n
∑

ν1 ̸=k

δ
[ν1

ν′
1
...δ

νn]
ν′
n
(∂tΨν1

)(∂µ1Ψν′
1)

(
n∏

l=2

(∂µl
Ψνl

)(∂µlΨν′
l )

)
∂µ1

Ψk.

︸ ︷︷ ︸
(Mars) (24)

(Mars) is identically zero, which the following argument shows: Because of the antisymmetrization over ν1...νn, in
every term in (Mars) ν1, ..., νn will take every value 1, ..., n. Since ν1 ̸= k, it means that there is some m > 1 such
that νm = k. Isolating the corresponding factor from the product, we get

(Mars) = n
∑

ν1 ̸=k

δ
[ν1

ν′
1
...δ

νn]
ν′
n
(∂tΨν1

)(∂µ1Ψν′
1)(∂µ1

Ψk)(∂µm
Ψk)(∂

µmΨν′
m)




n∏

l=2,l ̸=m

(∂µl
Ψνl

)(∂µlΨν′
l )


 = 0 (25)

because the factor (∂µ1Ψν′
1)(∂µ1

Ψk)(∂µm
Ψk)(∂

µmΨν′
m), this is symmetric under the interchange ν′1 ↔ ν′m, but the

Kronicker-delta product is antisymmetric. Now consider (Mercury). As before, in every term, ν1, ..., νn will take every
value 1, ..., n. Thus, in each term of (Mercury), there will be an m such that νm = k, so we write

(Mercury) =

n∑

m=1

δ
[ν1

ν′
1
...δkν′

m
...δ

νn]
ν′
n
(∂µm

Ψk)(∂
µmΨν′

m)




n∏

l=1̸=m

(∂µl
Ψνl

)(∂µlΨν′
l )


 (∂tΨk)

=

n∑

m=1

δ
[k
ν′
m
δν1

ν′
1
...δ

νm−1

ν′
m−1

δ
νm+1

ν′
m+1

...δ
νn]
ν′
n
(∂µm

Ψk)(∂
µmΨν′

m)




n∏

l=1̸=m

(∂µl
Ψνl

)(∂µlΨν′
l )


 (∂tΨk). (26)
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Now, renaming ν′m → ν′1, ν1 → ν2, ν
′
1 → ν′2, and so on up to ν′m−1 → ν′m, and µm → µ1, µ1 → µ2, and so on up to

µm−1 → µm, we get

(Mercury) =

n∑

m=1

δ
[k
ν′
1
δν2

ν′
2
...δ

νn]
ν′
n
(∂µ1

Ψk)(∂
µ1Ψν′

1)

(
n∏

l=2

(∂µl
Ψνl

)(∂µlΨν′
l )

)
(∂tΨk)

= nδ
[k
ν′
1
δν2

ν′
2
...δ

νn]
ν′
n
(∂µ1

Ψk)(∂
µ1Ψν′

1)

(
n∏

l=2

(∂µl
Ψνl

)(∂µlΨν′
l )

)
(∂tΨk) = (Tellus). (27)

This, in turn, means (Mercury) = (Venus), which shows that vµ1

candidate is a solution to Equation (19). We have verified
this calculation explicitly up to n = d = 5, using symbolic mathematical software. In addition, it is straight-forward
to show that vµ1

candidate is orthogonal to ρi1...id−n
in the sense that vikcandidateρi1...ik...id−n

= 0 for all k. Identifying these

as the (d− n) necessary conditions to determine v(Ψ), we get v(Ψ) = vcandidate, and fix the gauge on v by v = v(Ψ).
which gives, finally, the closed expression for the velocity

vµ = −n
δ
[ν1

ν′
1
...δ

νn]
ν′
n
(∂tΨν1

)(∂µ1Ψν′
1)
∏n

l=2(∂µl
Ψνl

)(∂µlΨν′
l )

δ
[ν1

ν′
1
...δ

νn]
ν′
n

∏n
l=1(∂µl

Ψνl
)(∂µlΨν′

l )
(28)

While this derivation holds in general, we note that in the case of n = d, there is no contraction in getting to Equation
(18), so the velocity can be equivalently written as

Special case n = d : vµ =
Jµ

ρ
= −n

ϵµ1...µn ϵ̃ν1...νn(∂tΨν1)
∏n

l=2(∂µl
Ψνl

)

ϵµ1...µn ϵ̃ν1...νn
∏n

l=1 ∂µl
Ψνl

, (29)

which together give the expressions of the velocities in Equations (14-15) of the main article. For the physically most
interesting cases of n ≤ d ≤ 3, see Supplementary Figure 2.
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Case Order parameter Charge density Formulae

d = 1, n = 1
Point defects

ρ = ∂xΨ
2Ψ0

vx = − ∂tΨ
∂xΨ

d = 2, n = 1
Line defects

ρi =
∂iΨ
2Ψ0

vi = −∂iΨ∂tΨ
|∇Ψ|2

d = 2, n = 2
Point defects

ρ =
ϵij ϵ̃mn(∂iΨm)(∂jΨn)

2πΨ2
0

vi = −2
ϵij ϵ̃mn(∂tΨm)(∂jΨn)
ϵij ϵ̃mn(∂iΨm)(∂jΨn)

d = 3, n = 1
Wall defects

ρi =
∂iΨ
2Ψ0

vi = −∂iΨ∂tΨ
|∇Ψ|2

d = 3, n = 2
Line defects

ρi =
ϵijk ϵ̃mn(∂jΨm)(∂kΨn)

2πΨ2
0

vi = −2
δ
[m

m′δ
n]

n′ (∂tΨm)(∂iΨm′
)(∂jΨn)(∂

jΨn′
)

δ
[m

m′δ
n]

n′ (∂iΨm)(∂iΨm′ )(∂jΨn)(∂jΨn′ )

d = 3, n = 3
Point defects

ρ =
ϵijk ϵ̃mno(∂iΨm)(∂jΨn)(∂kΨo)

8πΨ3
0

vi = −3
ϵijk ϵ̃mno∂tΨm∂jΨn∂kΨo

ϵijk ϵ̃mno∂iΨm∂jΨn∂kΨo

Supplementary Figure 2. Examples of reduced defect field corresponding to stable topological defects in O(n) models for
n = 1, 2, 3 in d = 1, 2, 3. While the manuscript has centered on systems where n = 2, the methodology can be applied to other
cases, such as interfacial systems with n = 1 with wall defects [2] or systems with n = 3 such as the 3D Heisenberg model
which features emergent magnetic monopoles as topological defects [3].
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In this supplementary material, we provide theoretical details for solving for Stokes flows with sources given by
isolated polar defects. The dimensionless forms of the momentum equations are

(1 − ζ2∇2)u⃗ = F⃗p + F⃗a − ∇P, (1)
∇2P = ∇ · F⃗p + ∇ · F⃗a, (2)

where we denote as F⃗a the active dipolar force and F⃗p the active polar force. From the linearity of this Stokasian
flow, we can use the superposition principle to write the solutions of the pressure and velocity as a sum of their
polar and the dipolar force contribution, namely u⃗ = u⃗a + u⃗p and similar for pressure. Each contribution is an
integral solution given by

Pa,p(r⃗) = 1
2π

∫
dr⃗′ ln(|r⃗ − r⃗′|)∇′ · F⃗a,p, (3)

u⃗a,p(r⃗) = 1
2πζ2

∫
dr⃗′K0

(
|r⃗ − r⃗′|
ζ

)(
F⃗a,p(r⃗′) − ∇′Pa,p(r⃗′)

)
. (4)

Using complex analysis, we solve these integrals analytically for active forces induced by isolated polar defects as
in Ref. [1, 2]. For this we use the parameterization of the polarization field for an isolated topological defect given
by [3]

p⃗(r, θ) = χ(r)[cos(qθ + ϕ)e⃗x + sin(qθ + ϕ)e⃗y], (5)
where (r, θ) are polar coordinates centered at the defect position (origin), χ(r) is a core function, q = ±1 is
topological charge and ϕ is a constant background phase. For most parts, we assume that the defects are pointwise,
i.e χ(r) = 1. The exception is when we evaluate the flow field at the defect position in the friction dominated limit,
where we use that χ(r) ∼ r to avoid getting a multi-valued velocity.

I. DIPOLAR FORCES

In this section, we derive analytical expressions of the flow fields induced by the active dipolar force F⃗ a =
(α̃0/Γ)∇ · (p⃗p⃗T − p2

2 I) [4–6].

A. The negative defect

We start our calculations by considering the dipolar force generated by a q = −1 defect. As mentioned in the
main document, the effect of the uniform background polarisation on the negative defect is to rotate it, thus for
simplicity we can fix ϕ = 0 and write the force components as:

F−
ax = α̃0

2Γ[∂x cos(2θ) − ∂y sin(2θ)], (6)

F−
ay = − α̃0

2Γ[∂x sin(2θ) + ∂y cos(2θ)]. (7)

Using that θ = arctan(y/x), we express the force as

F⃗−
a = − α̃0

Γr cos(−3θ)e⃗x − α̃0
Γr sin(−3θ)e⃗y. (8)

where e⃗x = [1, 0] and e⃗y = [0, 1].
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a. Flow pressure: By an integration by parts in Eq. (3), we find that the pressure field induced by the
negative defect can be rewritten as

P−
a = − 1

2π

∫
dr⃗′

(
F⃗ a

x

(x′ − x)
|r⃗′ − r⃗|2

+ F⃗ a
y

(y′ − y)
|r⃗′ − r⃗|2

)
. (9)

To evaluate it, we first do a change of variables to the complex coordinates z′ = x′+iy′ and its conjugate z̄′ = x′−iy′,
and similar for z and z̄. To further isolate singularities in the complex plane, we do a second variable change to
complex polar forms z′ = r′ŵ with ŵ = eiθ′ . The integrals then can be expressed as

P−
a = iα̃0

2πΓ

∫ ∞

0
dr′r′

∮

|ŵ|=1

dŵ

ŵ

(
− 1

4r′
(
ŵ3 + ŵ−3) (r′ŵ − z) + (r′ŵ−1 − z̄)

(r′ŵ − z)(r′ŵ−1 − z̄) − 1
4r′ (ŵ3 − ŵ−3) (r′ŵ − z) − (r′ŵ−1 − z̄)

(r′ŵ − z)(r′ŵ−1 − z̄)

)
.

(10)
After some algebraic manipulations to simplify the integrand expression, we can reduce it to

P−
a = α̃0

4πiΓ

∫ ∞

0
dr′

∮

|ŵ|=1

dŵ

(
1

r′ŵ4(ŵ − z/r′) − ŵ3

z̄(ŵ − r′/z̄)

)
. (11)

The contour integral over ŵ can be evaluated by using the residue theorem. Note that the poles at ŵ = z/r′ and
ŵ = r′/z̄ are only inside the unit circle |ŵ| = 1 when |z| = r < r′ and r > r′ respectively. Thus,

P−
a = α̃0

4πiΓ

∫ ∞

0
dr′2πi

(
(r′)3

z4 |r<r′ − (r′)3

z4 − (r′3)
z̄4 |r>r′

)

= − α̃0
4Γ

x4 − 6x2y2 + y4

r4 . (12)

The pressure gradient follow straightforwardly as

∂xP
−
a = α̃0

2rΓ(cos 5θ − cos 3θ), (13)

∂yP
−
a = α̃0

2rΓ(sin 5θ + sin 3θ), (14)

and is subtracted from the dipolar force for incompressible flows.

b. Flow velocity: The total flow source term can be written in the complex form as:

F−
a − 2∂z̄P

−
a = − α̃0

2Γ

(
z̄

z2 + z2

z̄3

)
, (15)

where we have used that the gradient in complex coordinates is 2∂z̄ = ∂x + i∂y. By a change of variables to complex
coordinates in Eq. (4), we rewrite the integral form of the complex velocity field u−

a = u−
a,x + iu−

a,y as

u−
a = − α̃0i

8πΓζ2

∫
dz′dz̄′K0

( |z′ − z|
ζ

)(
z̄′

(z′)2 + z′2

z̄′3

)
, (16)

which can be transformed into

u−
a = − α̃0

4iπΓζ2

∫ ∞

0
dr′r′K0

(
r′

ζ

) ∮

|ŵ|=1

dŵ

(
r′ + z̄ŵ

ŵ2r′2(ŵ + z/r′)2 + (ŵ2(r′ŵ + z)2

z̄3(r′/z̄ + ŵ)3

)
(17)

The integral over ŵ can be evaluated by the residual theorem, such that the velocity can be expressed as

u−
a = − α̃0

2Γζ2

(
ζ2
∫ r/ζ

0
dttK0(t)

(
z̄z

z3 + z̄2z2

z̄5

)
− ζ4

∫ r/ζ

0
dtt3K0(t)

(
2
z3 + 6z̄z

z̄5

)
+ 6ζ6

z̄5

∫ r/ζ

0
dtt5K0(t)

)
, (18)

leading to

u−
a (r, θ) = − α̃0

2Γζ

(
[1 − r̂K1(r̂)]

(
1
r̂
e−3iθ + 1

r̂
e5iθ

)
− [4 − r̂3K1(r̂) − 2r̂2K2(r̂)]

(
2
r̂3 e

−3iθ + 6
r̂3 e

5iθ

)

+ 6
r̂5 e

5iθ
[
64 − 4r̂2(8 + r̂2)K0(r̂) − r̂(8 + r̂2)2K1(r̂)

]
)
.

(19)



3

Where we have scaled the radial variable to r̂ = r/ζ. The corresponding vorticity, ω = ∂yux − ∂xuy, reduces to

ω−
a (r, θ) = − α̃0

r̂4ζ2Γ sin 4θ
(
−48 + 4r̂2 + r̂2(24 + r̂2)K0(r̂) + 8r̂(6 + r̂2)K1(r̂)

)
. (20)

B. The positive defect

The +1 defect is more special in that an additional constant phase to the complex field ψ = χ(r)eiθ+iϕ changes
the defect structure from vortex to spiral or aster. In the general case (ϕ ̸= 0), the dipolar force induced by +1
defect is

F⃗+
a = α̃0

Γr2 r⃗ cos(2ϕ) − α̃0
Γr2 r⃗

⊥ sin(2ϕ) = F̃+
a + F̂+

a , (21)

where r⃗⊥ = (y,−x). We notice that F̃+
a is a source/sink which gets removed by pressure for incompressible flows,

F̂+
a contributes to vorticity as seen below.
First, from the linearity of the main equations, we can decompose the pressure as suporposition of different

contributions

P+
a = P̃+

a cos(2ϕ) + P̂+
a sin(2ϕ). (22)

We will start by looking at the P̃+
a term, which reduces to the integral form

P̃+
a = α̃0i

8πΓ

∫ ∞

0
dr′

∮

|ŵ|=1

dŵ

ŵ

(
(ŵ + ŵ−1)

(
1

(r′ŵ − z) + 1
(r′ŵ−1 − z̄)

)
+ (ŵ − ŵ−1)

(
1

(r′ŵ − z) − 1
(rŵ−1 − z̄)

))
.

(23)

which can be simplified to

P̃+
a = α̃0i

4πΓ

∫ ∞

0
dr′

∮

|ŵ|=1

dŵ

(
1

r′(ŵ − z/r′) − 1
z̄ŵ(ŵ − r′/z̄)

)
= −α0 ln L

r
. (24)

where the core size L is introduced to remove the small-scale divergence in the limit of pointwise defects. Notice
that the gradient of this pressure cancel out F̃+

a as expected from the incompressibility constraint. Similarly, we
find that the other pressure contribution and show that it actually vanishes

P̂+
a = iα̃0

2πΓ

∫ ∞

0
dr′r′

∮

|ŵ|=1

dŵ

ŵ

(
− 1

2ir′2 r
′(ŵ − ŵ−1) ℜ(r′ŵ − z)

(r′ŵ − z)(r′ŵ−1 − z̄) + 1
2r′2 r

′(ŵ + ŵ−1) ℑ(r′ŵ − z)
(r′ŵ − z)(r′ŵ−1 − z̄)

)

= − α̃0
4πΓ

∫ ∞

0
dr′

∮

|ŵ|=1

dŵ

(
1

r′(ŵ − z/r′) + 1
z̄ŵ(ŵ − r′/z̄)

)
= 0, (25)

which implies that this rotational part of the force F̂+
a does not induce any pressure. Writing this force in a complex

form

F̂+
a = iα̃0

z̄Γ , (26)

we express the complex velocity field as

u+
a = iα̃0 sin(2ϕ)

4πζ2Γ

∫
dz′dz̄′K0

( |z′ − z|
ζ

)
i

z̄′

= α̃0 sin(2ϕ)
2πζ2Γ

∫ ∞

0
dr′r′K0

(
r′

ζ

) ∮

|ŵ|=1

dŵ

z̄(r′/z̄ + ŵ)

= α̃0 sin(2ϕ)
Γζr̂ (1 − r̂K1(r̂))ei(θ+π/2). (27)
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where r̂ = r/ζ. The corresponding vorticity field is then

ω+
a = α̃0

Γζ2K0(r̂) sin(2ϕ), (28)

which diverges logarithmically as r → 0 since we have not included core size effects.

a. Zero friction limit: We notice that the absence of friction has an interesting implication. In this limit,
the flow equations reduce to

−η̃∇2u⃗+
a = −∇P̂+

a + F⃗a, (29)
∇ · u⃗+

a = 0, (30)

with η̃ = η/ξ2, and the corresponding integral solution for the velocity is modified to

u⃗+
a = − 1

2πη̃

∫
dr⃗′ ln(|r⃗ − r⃗′|)

(
F⃗a(r⃗′) − ∇P+

a (r⃗′)
)
, (31)

Since the pressure is the same as before, we have that

u+
a = − iα̃0

η̃z̄
sin(2ϕ)

∫ r

0
dtt ln(t) = iα̃0 sin(2ϕ)

4η̃ r(1 − 2 ln(r))eiθ (32)

and its corresponding vorticity is

ω+
a = − α̃0 sin(2ϕ)

η̃
ln r. (33)

This changes sign for r =
√
e ≈ 1.7 giving the two counter rotating regions and it is divergent for r → ∞. The

reason is because the Greens function changes sign. Note that in this case there is no intrinsic hydrodynamic
lengthscale. Numerical simulations shows that the change of rotation is happening on the lengthscale of the defects
core, ∼ ξ, which comes from the free energy of the polar order parameter.

C. Defect pair: zero-viscosity limit

We consider a pair of oppositely charged defects in the analytically solvable limit of zero viscosity, i.e. ζ → 0,
where the incompressible flow equations reduce to

Γu⃗a = F⃗a − ∇Pa, (34)
∇ · u⃗a = 0. (35)

Making use of the complex representation and evaluating the dipolar force in terms of the complex order parameter
ψ = px + ipy, we can map the flow equations into

ua = −2∂z̄Pa + α̃0
Γ ∂zψ

2, (36)

4∂z∂z̄Pa = 2α̃0
Γ ℜ(∂2

zψ
2). (37)

The integral solution of the pressure reads as

2Pa = iα̃0
4πΓ

∫
dz′dz̄′ ln[(z̄ − z̄′)(z − z′)]ℜ(∂2

zψ
2). (38)

We are interested in the derivative of the pressure and to ease the notation we define the factor (α̃0/Γ)Ia(z, z̄) =
−∂z̄Pa, which is given by the integral

Ia(z, z̄) = − i

4π

∫
dz′dz̄′ 1

z̄ − z̄′ ℜ(∂2
z′ψ2). (39)

Furthermore, we are only interested in its value at the defect position, we introduce

Ia ≡ Ia(0, 0) = i

4π

∫
dz′dz̄′ 1

z̄′ ℜ(∂2
z′ψ2). (40)

The equation for the velocity at the defect position can now be written as

ua = α̃0
Γ ∂2

zψ
2||z|=0 + α̃0

Γ Ia. (41)
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a. At +1 defect position: Let us place the +1 defect at the center z = 0 and the −1 defect at the position
wn = R1 + iR2, with R⃗ being the position vector, such that we can parameterise the order parameter as

ψ = χ(z, z̄)
√
z

z̄

√
z̄ − w̄n

z − wn
eiϕ, (42)

with ϕ being a homogeneous background orientation. We have neglected the core function for the negative defect,
while keeping it for the positive defect so that we can evaluate the active force at its position. Near the defect
position χ(z, z̄) = a

√
zz̄ and

∂zψ
2 = a2∂z

(
z2 z̄ − w̄n

z − wn

)
e2iϕ = a2(z̄ − w̄n)z

2 − 2zwn

(z − wn)2 e
2iϕ, (43)

which vanishes at z = 0. Thus, there is no contribution from the active force to the defect velocity. However, the
pressure has a net effect given by

I+
a = i

4π

∫
dzdz̄

1
z̄

(
wn(z̄ − w̄n)
z̄(z − wn)3 e

2iϕ + w̄n(z − wn)
z(z̄ − w̄n)3 e

−2iϕ

)
. (44)

This can be solved by a similar technique of complex integration and leads to

I+
a = −

∫ |wn|

Λ
dr

1
2rw̄2

n

(
6r2

w̄n
− 2wn

)
e−2iϕ = wn

w̄2
n

ln
( |wn|

Λ

)
e−2iϕ − 3

2

( |wn|2
w̄3

n

− Λ2

w̄2
n

)
e−2iϕ (45)

The term containing Λ2/w̄2
n can be neglected since it is assumed that the defects are well separated. It is straight-

forward to show that core contributions with the ansatz χ = a
√
zz̄ are of the same order O(Λ2). The positive defect

velocity induced by this pressure is

u+
a = α̃0

Γ
wn

w̄2
n

e−2iϕ

(
ln
( |wn|

Λ

)
− 3

2

)
(46)

which tends to zero when separation between defects diverges, i.e. |wn| → ∞.

b. At the −1 defect position: Now, we place the negative defect t the origin and the positive defect at the
position wp, such that the order parameter takes the form

ψ = χ(r)
√
z̄

z

√
z − wp

z̄ − w̄p
eiϕ, (47)

from which we see that the active force at the defect position vanishes since

∂zψ
2
in = a2z̄2

(z̄ − w̄p)e
2iϕ. (48)

However, the pressure contribution is given by

I−
a = − 1

2πi

∫
dr

∮
dẑ

(
ẑ4w̄p

r3(ẑ − wp/r)
e−2iϕ − wp

r2w̄pẑ3(ẑ − r/w̄p)e
2iϕ

)
. (49)

which is solved to

I−
a = − w4

pw̄p

6|wp|6 e
−2iϕ − wpw̄

2
p

4|wp|4 e
2iϕ. (50)

Therefore, the velocity of the negative defect induced by this pressure is

u−
a = − α̃0

Γ

(
wp

6w̄2
p

e−2iϕ + 1
4wp

e2iϕ

)
, (51)

Which also decrease inversely proportional with the distance between the defects, similarly to that of the positive
defect.
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II. POLAR FORCE

We are now studying the effect of the polar force, F⃗p = α̃pp⃗ [6] on the ±1 defects. The order parameter is then
given by

p⃗ = cos(qθ + ϕ)e⃗x + sin(qθ + ϕ)e⃗y. (52)

A. Positive defect

Using the parameterization of the order parameter for an isolated +1 defect, we evaluate the polar force as

F⃗+
p = α̃p

r
[r⃗ cosϕ− r⃗⊥ sinϕ], (53)

the first term is a source eliminated by the incompressibility constraint through the pressure contribution P+
p =

r cos θ, while the second term is a rotational contribution. The flow velocity induced by this polar force is given by
the integral

u⃗+
p = − α̃p

2πζ2

∫
dr⃗′K0

(
|r⃗ − r⃗′|
ζ

)
r⃗′⊥

r′ sinϕ, (54)

which in the complex form reads as

u+
p = − α̃p

4πζ sinϕ
∫
dwdw̄K0

( |w|
ζ

)√
w + z

w̄ + z̄
, (55)

and the complex coordinates r′ and ŵ = eiθ′ ,

u+
p = α̃p

2πζ sinϕ
∫
dr′r′K0(r′/ζ)

∮

|ŵ|=1

dŵ

ŵ

√
r′ŵ + z

r′ŵ−1 + z̄
. (56)

a. Contour integral: The contour integral over ŵ

I =
∮

|ŵ|=1

dŵ

ŵ

√
r′ŵ + z

r′ŵ−1 + z̄
, (57)

has branch cuts which can be isolated by the keyhole contour. Using that z/r′ and r′/z̄ have the same argument
eiθ and changing variables to u = e−iθŵ, i.e rotating the system so that the branch cuts are on the real axis, we
rewrite the above integral as

I =
√
r′

z̄
eiθ/2

∮

|u|=1

du

√
u+ r/r′

√
u
√
u+ r′/r

. (58)

There are three branch points that we have to consider: u = 0, u = −r/r′ and u = −r′/r as shown in Fig. 1. The
two branch points inside unit disk are isolated by the two keyhole contour. Therefore, the contour integral equals
the keyhole integral

I = lim
ϵ→0




−iϵ∫

−a−iϵ

+
−a+iϵ∫

iϵ

+
∫

C1

+
∫

C2



√
r′

z̄
eiθ/2du

√
u+ r/r′

√
u
√
u+ r′/r

. (59)

The integrals over C1 and C2 vanishes regardless whether a is r′/r or r/r′, thus

I = −2
√
r′

z̄
eiθ/2

∫ 0

−a

du

√
u+ r/r′

√
u
√
u+ r′/r

. (60)
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Im

Re-a-b

γ

C2C1

FIG. 1: Contour and branch points.

We can now preform the integral. For r < r′, we have that a = r/r′ is inside the contour. Therefore

Ir<r′ = 4ieiθ

([
r

r′ − r′

r

]
K

(
r2

r′2

)
+ r′

r
E

(
r2

r′2

))
, (61)

where K and E are the complete elliptic integrals of the first and second kind, respectively, and their infinite power
series representations are

K(x) = π

2

∞∑

n=0

(
(2n− 1)!!

(2n)!!

)2
xn, (62)

E(x) = π

2

(
1 −

∞∑

n=1

(
(2n− 1)!!

(2n)!!

)2
xn

2n− 1

)
. (63)

Similarly, for r > r′, then a = r′/r and b = r/r′, so that the integral becomes

Ir>r′ = 4ieiθE

(
r′2

r2

)
. (64)

The expression for the complex velocity is then:

u+
p = 2iα̃p

πζ2 e
iθ

(∫ r

0
dr′r′K0(r′/ζ)E

(
r′2

r2

)
+
∫ ∞

r

dr′r′K0(r′/ζ)
([

r

r′ − r′

r

]
K

(
r2

r′2

)
+ r′

r
E

(
r2

r′2

)))
(65)

Inserting the series expansions, the velocity field is a series expansions in moments of the Bessel function

u+
p = iα̃pe

iθ sinϕ
(

1 − r̂K1(r̂) −
(∫ r̂

0
dttK0(t)

( ∞∑

n=1

(
(2n− 1)!!

(2n)!!

)2 1
2n− 1

(
t

r̂

)2n
)

+
∫ ∞

r̂

dttK0(t)
( ∞∑

n=0

(
(2n− 1)!!

(2n)!!

)2 1
2n+ 2

(
r̂

t

)2n+1
))

. (66)

using that t = r′/ζ, and r̂ = r/ζ.
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b. Far-field asymptotic: In the limit of r̂ → ∞, since the Bessel function decays exponential, we can ignore
the factor r̂K1(r̂) and second integral in Eq. (66). We replace the upper bound with ∞ and perform the integration
up to second order in 1/r̂

u+
p = iα̃pe

iθ sinϕ
(

1 − 1
r̂2

)
(67)

There are two things to note. Firstly, the length of u becomes constant in the far-field as expected. Secondly, this
is the flow flied of a vortex centered at the defect position.

c. Series expansion: The integrals over the Bessel functions from Eq. (66). were evaluated in Ref. [1] and
given by

∫ r

0
dtK0(t)t2n+1 = 1

4 r̂
2n+2F1(r̂, n) (68)

∫ ∞

r

dtK0(t)t−2n = 1
4 r̂

−2n+1F2(r̂, n) (69)

with the functions given as

F1 (n, r̂) =
∞∑

k=0

[
1

(n+ k + 1) − 2 ln
(
r̂

2

)
+ 2ψ(0)(k + 1)

]
1

(n+ k + 1)(k!)2

(
r̂

2

)2k

(70)

and

F2 (n, r̂) = 4
∞∑

k=0

[
ψ(0)(k + 1) − ln

(
r̂

2

)
− 1

2n− 1 − 2k

]
1

(2n− 1 − 2k)(k!)2

(
r̂

2

)2k

+ 2π
((2n− 1)!!)2 (r̂)2n−1

. (71)

Inserting these expressions into Eq. (66) and after some algebram, we express the velocity field as

u+
p = iα̃pe

iθ sinϕ
(

1 − r̂K1(r̂) + π

2 I1(r̂) +
∞∑

k,n=0
κ1(n, k) r̂2k+2

((2k)!!)2 +
∞∑

k,n=0
κ2(n, k)

[
ln
(
r̂

2

)
− ψ(0)(k + 1)

]
r̂2k+2

((2k)!!)2

)

(72)
with the coefficients

κ1(n, k) = −
(

(2n− 1)!!
(2n)!!

)2 1
2n+ 2

(
1

(2n− 1 − 2k)2 + 2n+ 1
4(2n+ 2)(n+ 2 + k)2

)
(73)

κ2(n, k) =
(

(2n− 1)!!
(2n)!!

)2 1
2n+ 2

(
2n+ 1

2(2n+ 2)(n+ 2 + k) − 1
2n− 1 − 2k

)
. (74)

B. The negative defect

The polar force for the negative defect is

F⃗−
p = α̃p[e⃗x (cos θ cosϕ+ sin θ sinϕ) + e⃗y(cos θ sinϕ− sin θ cosϕ)]. (75)

or equivalently

F⃗−
p = α̃pR[e⃗x cos θ − e⃗y sin θ] (76)

where the rotation matrix R is given as

R =
(

cosϕ − sinϕ
sinϕ cosϕ

)
. (77)

Therefore, we can rotate the basis so that the phase is ϕ = 0.
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a. Pressure: The integral solution of the pressure can be written as

P−
p = i

2π

∫
dr′r′

∮

|ŵ|=1

dŵ

ŵ

(
Fp

x(r′, ŵ) ℜ(r′ŵ − z)
(r′ŵ − z)(r′ŵ−1 − z̄) + Fp

y(r′, ŵ) ℑ(r′ŵ − z)
(r′ŵ − z)(r′ŵ−1 − z̄)

)
, (78)

with the polar force is given as

F⃗−
p (r′, ŵ) = α̃p[e⃗xℜ(ŵ) − e⃗yℑ(ŵ)]. (79)

Inserting this into the pressure and doing some manipulations we find

P−
p = α̃pi

4π

∫ ∞

0
dr′r′

∮

|ŵ|=1

dŵ

(
1

r′ŵ2(ŵ − z/r′) − ŵ

z̄(ŵ − r′/z̄)

)

= α̃p

3
(x2 − y2)

r
.

Hence, the velocity field induced by the polar force becomes

u−
p = − iα̃p

12πζ2

∫
dr′r′K0

(
r′

ζ

) ∮

|ŵ|=1

dŵ

ŵ

(
3
√
r′ŵ−1 + z̄

r′ŵ + z
+
(

r′ŵ + z

r′ŵ−1 + z̄

)3/2
)
. (80)

b. The contour: The contour integral has the same type of branch points as for discussed before, thus we
use the contour drawn in Fig. 1. We start by looking at the component

3
∮

γ

dŵ

ŵ

√
r′ŵ−1 + z̄

r′ŵ + z
. (81)

This one is more straightforward to solve. By changing variables to t = 1/ŵ with dt = −dŵ/ŵ2, and inserting an
extra negative sign since we have to reverse the contour

3
∮

γ

dt

t

√
r′t+ z̄

r′t−1 + z
, (82)

which is the contour integral we solved for the positive defect in section II A 0 a with z and z̄ switched. We can
then use the solution we found replacing θ → −θ.

For the other integral

I =
∮
dŵ

ŵ

(
r′ŵ + z

r′ŵ−1 + z̄

)3/2
=
(
r′

z̄

)3/2 ∮
dŵ

√
ŵ

(ŵ + eiθr/r′)3/2

(ŵ + eiθr′/r)3/2 . (83)

As for the positive defect we rotate the integral domain so that the branch points falls on the real axis. That is we
change variables to u = e−iθŵ and get

I =
(
r′

r

)3/2
e3iθ

∮
du

√
u

(u+ r/r′)3/2

(u+ r′/r)3/2 . (84)

It have three branch points, but we can only use the keyhole integration that we did for the positive defect when
r < r′. This is because we need the integrand to approach zero when we approach the branch cut. In the other
limit, we need to take a binomial expansion. We first do the r < r′ case. Then we have

Ir<r′ = −2
(
r′

r

)3/2
e3iθ

∫ 0

−r/r′
du

√
u

(u+ r/r′)3/2

(u+ r′/r)3/2 (85)

= −24i
3
r′

r
e3iθ

([
3
( r
r′

)2
− 11 + 8

(
r′

r

)2
]
K

(( r
r′

)2
)

+
[

7 − 8
(
r′

r

)2
]
E

(( r
r′

)2
))

. (86)

In the other case, r > r′, it is the r′/r pole that is inside the contour. We need to change variables to h =
√
u so

that the integral reads:

Ir>r′ = b3/2a3/2e3iθ

∮

γ

dh
(1 + h2/a)3/2

h(1 + b/h2)3/2 . (87)
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We can expand the exponents as

e3iθ

∮

γ

dh
1
h

( ∞∑

k=0

(
3/2
k

)(
h2

a

)k
)( ∞∑

n=0

(−3/2
n

)(
b

h2

)n
)
. (88)

We use the residue theorem to solve the integral term by term. Conveniently, only the terms where n = k contribute
to the integral. We therefore have

2πie3iθ
∞∑

n=0

(
3/2
n

)(−3/2
n

)(
r′

r

)2n

= 6πie3iθ
∞∑

n=0

2n+ 1
(3 − 2n)(1 − 2n)

(
(2n− 1)!!

(2n)!!

)2(
r′

r

)2n

. (89)

Where in the last relation we have used the definition of the generalized binomial coefficient.
c. Velocity field The corresponding velocity field is

u−
p = − iα̃p

12πζ2

∫ ∞

0
dr′r′K0

(
r′

ζ

)∮

γ

dŵ

ŵ

(
3
√
r′ŵ−1 + z̄

r′ŵ + z
+
(

r′ŵ + z

r′ŵ−1 + z̄

)3/2
)
, (90)

which becomes

u−
p = − iα̃p

12πζ2

∫ ∞

0
dr′r′K0

(
r′

ζ

)(
3
[

4ie−iθ

([
r

r′ − r′

r

]
K

(
r2

r′2

)
+ r′

r
E

(
r2

r′2

))
|r<r′ + 4ie−iθE

(
r′2

r2

)
|r>r′

]

+
[

4i
3
r′

r
e3iθ

([
3
( r
r′

)2
− 11 + 8

(
r′

r

)2
]
K

(( r
r′

)2
)

+
[

7 − 8
(
r′

r

)2
]
E

(( r
r′

)2
))]

r<r′

+
[

6πie3iθ
∞∑

n=0

2n+ 1
(3 − 2n)(1 − 2n)

(
(2n− 1)!!

(2n)!!

)2(
r′

r

)2n
]

r>r′

)
. (91)

The e−iθ is strait forward because it is the same as the eiθ term for the positive defect, but with factors 2iα̃p/(πζ2)
in stead of α̃p/(πζ2). Inserting the expressions for E and K given in eq. (62) and (63) one can find the relation
[

3
( r
r′

)2
− 11 + 8

(
r′

r

)2
]
K

(( r
r′

)2
)

+
[

7 − 8
(
r′

r

)2
]
E

(( r
r′

)2
)

= −18
8 π

∞∑

n=0

(
(2n− 1)!!

(2n)!!

)2
n

(n+ 2)(n+ 1)

( r
r′

)2n+2
, (92)

so that the velocity become

u−
p = α̃p

2

(
e−iθ

[ ∞∑

n=0

(
(2n− 1)!!

(2n)!!

)2 1
2n+ 2

∫ ∞

r̂

dttK0 (t)
(
r̂

t

)2n+1
+

(∫ r̂

0
dttK0 (t) −

∞∑

n=1

(
(2n− 1)!!

(2n)!!

)2 1
2n− 1

∫ r̂

0
dttK0 (t))

(
t

r̂

)2n
)]

+ e3iθ

[ ∞∑

n=0

2n+ 1
(3 − 2n)(1 − 2n)

(
(2n− 1)!!

(2n)!!

)2 ∫ r̂

0
dttK0 (t)

(
t

r̂

)2n

−
∞∑

n=0

(
(2n− 1)!!

(2n)!!

)2 2n
(2n+ 4)(2n+ 2)

∫ ∞

r̂

dttK0 (t)
(
r̂

t

)2n+1
])

(93)

Here we have changed variables to t = r′/ζ and introduced r̂ = r/ζ. The integrals over the Bessel functions are the
same as we considered in section II A 0 c. Inserting their expression and doing some work we can write the velocity
as:

u−
p = α̃p

2
(
fp

1 (r̂)e−iθ + fp
3 (r̂)e3iθ

)
. (94)
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Where the function fp
1 is given as

fp
1 (r̂) = 1 − r̂K1(r̂) + π

2 I1(r̂) +
∞∑

k,n=0
κ1(n, k) r̂2k+2

((2k)!!)2 +
∞∑

k,n=0
κ2(n, k)

[
ln
(
r̂

2

)
− ψ(0)(k + 1)

]
r̂2k+2

((2k)!!)2 , (95)

with the coefficients defined in eq. (73) and (74). The other function fp
3 is given as

fp
3 (r) = −π

2 I3(r̂) +
∞∑

k,n=0
κ3(n, k) r2k+2

((2k)!!)2 +
∞∑

k,n=0
κ4(n, k) r2k+2

((2k)!!)2

[
ln
(
r̂

2

)
− ψ(0)(k + 1)

]
, (96)

and the new coefficients are defined as

κ3(n, k) =
(

(2n− 1)!!
(2n)!!

)2( 2n+ 1
4(3 − 2n)(1 − 2n)(n+ k + 1)2 + 2n

(2n+ 4)(2n+ 2)(2n− 1 − 2k)2

)
, (97)

κ4(n, k) =
(

(2n− 1)!!
(2n)!!

)2( 2n
(2n+ 4)(2n+ 2)(2n− 1 − 2k) − 2n+ 1

2(3 − 2n)(1 − 2n)(n+ k + 1)

)
. (98)

The asymptotic velocity from Eq. (93) is obtained by the same procedure as used for positive defect in Eq. (67)
and given by

u−
p (r̂, θ) = α̃p

2

[(
e−iθ + 1

3e
3iθ

)
− 1
r̂2
[
e−iθ + 3e3iθ

]
]
. (99)

As for the positive defect we see that the velocity tends to a constant non-zero value fare away from the defect core.

C. Defect pair: zero-viscosity limit

Similar to the flow equation in the frictionless limit for the dipolar force, we can find the equation for the polar
flow,

up = α̃pψ + α̃pIp, (100)

where ψ = px + ipy is the complex order parameter and the integral factor at the origin is given as

Ip = i

4π

∫
dz′dz̄′ 1

z̄′ ℜ(∂z′ψ). (101)

We are now going to use this to find the flow at the centre of the defects for a dipole configuration.
a. At the positive defect position: We consider first a positive defect placed at the orgin with a negative

defect placed at wn for which complex order parameter is

ψ = χ(r)
√
z

z̄

√
z̄ − w̄n

z − wn
eiϕ, (102)

Where χ is the core function given as χ(r) = 1 for r ≫ a and χ(r ≪ a) = a
√
zz̄. It is straightforward to show

that the polar force at the centre of the positive defect α̃pψ(z = 0) = 0, so the only contribution to the flow at the
defects center comes from the pressure gradient given by the integral factor eq. (101). To find it we start by finding
the derivative of the order parameter

∂zψ = 1
2

wn

z(wn − z)

√
z

z̄

√
z̄ − w̄n

z − wn
eiϕ (103)

So that the integral we need to solve is

I+
p = i

16π

∫
dzdz̄

1
z̄

(
wn

z(wn − z)

√
z

z̄

√
z̄ − w̄n

z − wn
eiϕ + w̄n

z̄(w̄n − z̄)

√
z̄

z

√
z − wn

z̄ − w̄n
e−iϕ

)
. (104)
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We now scale the integral variable so that we use z′ = z/wn and z̄′ = z̄/w̄n and rewrite the integral to

I+
p = i

16π

∫
dz′dz̄′ 1

z̄′
1

z′(1 − z′)

√
z′

z̄′

√
z̄′ − 1
z − 1 e

iϕ + iwn

16πw̄n

∫
dz′dz̄′ 1

z̄′
1

z̄′(1 − z̄′)

√
z̄′

z′

√
z′ − 1
z̄′ − 1e

−iϕ. (105)

To get rid of the square roots we change variables to u2 = z′/(z′ − 1) and ū2 = z̄′/(z̄′ − 1),

I+
p = − i

8π

∫
dudū

1
ū2(ū2 − 1)e

iϕ − iwn

8πw̄n

∫
dudū

(ū2 − 1)
ū2(u2 − 1)2 e

−iϕ. (106)

We now change variables to complex polar form,

I+
p = − 1

4iπ

∫
drr

∮
dû

û

1
r2û−2(r2û−2 − 1)e

iϕ − wn

4iπw̄n

∫
drr

∮
dû

û

(r2û−2 − 1)
r2û−2(r2û2 − 1)2 e

−iϕ. (107)

and apply the residue theorem to evaluate it. Thus,

u+
p = α̃p

4 eiϕ
(

1 − e2i(φ−ϕ)
)
. (108)

This is independent on the distance between the defects, which is not surprising since the velocity field of individual
defects are also independent on the distance in the far-field. φ is here the angle of the position vector for the
negative defect. The motion of one defect is therefore dependent on the uniform orientation field and its relative
position with respect to the other defect. In real coordinates, this becomes

u⃗+
p = α̃p

2R2 R⃗
⊥(R⃗⊥ · p̂0), (109)

where R⃗ = r⃗− − r⃗+ with r⃗− and r⃗+ is the position vector for the negative and positive defect respectively, and
p⃗0 = cos (ϕ)e⃗x + sin (ϕ)e⃗y which we will assume is a constant vector. Notice that the velocity of the positive defect
is always perpendicular to the relative position vector R⃗.

b. At negative position: We now place the negative defect at the origin and the positive defect at wp so
that the order parameter can be represented as

ψ = χ(r)
√
z̄

z

√
z − wp

z̄ − w̄p
eiϕ, (110)

with

ψ(0) = 0. (111)

In the far-field the derivative is given as

∂zψ = −1
2

w

z(w − z)

√
z̄

z

√
z − w

z̄ − w̄
eiϕ, (112)

so that the integral is

I−
p = − i

8π

∫
dzdz̄

1
z̄

ℜ
(

wp

z(wp − z)

√
z̄

z

√
z − wp

z̄ − w̄p
eiϕ

)

= i

8π

∫
dudū

1
u2(ū2 − 1)e

iϕ + iwp

8πw̄p

∫
dudū

u2(ū2 − 1)
ū4(u2 − 1)2 e

−iϕ

= − 1
4πi

∫
drr

∮
dû

û

1
r2(û− r)(û+ r)e

iϕ + wp

4πiw̄p

∫
drr

∮
dû

û3(r2 − û2)
r6(û− 1/r)2(û+ 1/r)2 e

−iϕ.

using the same kind of variable transformations: z′ = z/wp and z̄′ = z̄/w̄p, u2 = z′/(z′ − 1) and ū2 = z̄′/(z̄′ − 1)
and complex polar form. Solving these using the residual theorem we end up with a velocity of

u−
p = α̃p

4 eiϕ(1 + 1
3e

2i(φp−ϕ)), (113)
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Where φp = π + φ is the angle of the position vector of the positive defect −R⃗. In real coordinates this is

u⃗−
p = α̃p

6R2 R⃗
⊥(R⃗⊥ · p⃗0) + α̃p

3R2 R⃗(R⃗ · p⃗0). (114)

This has a component that is perpendicular to the relative position vector R⃗ and one that is parallel to it. Note
that the perpendicular velocity is in the same direction as the one for the positive defect, but it is always smaller
in magnitude. This means that the vector is rotating. This rotation has two zeros. To see this easier we consider
the evolution of the relative position due to these velocities. The evolution of the relative position of the defects is

˙⃗
R = α̃p

3R2 (R⃗ · p⃗0)R⃗− α̃p

3R2 (R⃗⊥ · p⃗0)R⃗⊥. (115)

We notice that one component is parallel and the other is perpendicular to R⃗, so that their effect is to stretch and
rotate the relative position. The rotation has two zeros, when R⃗ is parallel or antiparallel to p⃗0. To check whether
these are attractive or repulsive we write R⃗ = R(cos Ω, sin Ω), with Ω being the angle of R⃗ relative to p⃗0. Assuming
that they are almost pointing in the same direction, Ω ≪ 1, we have the equations

Ṙ = α̃p

3 , (116)

Ω̇ = α̃p

3RΩ, (117)

The equation for Ω shows that Ω = 0 is an unstable zero, meaning that R⃗ tends to rotate away from this direction.
The other zero is when R⃗ is close to antiparallel with p⃗0. Then we can write the angle as Ω = π − Ωa, where Ωa a
small angle. The equations are in this configuration approximately

Ṙ = − α̃p

3 , (118)

Ω̇a = − α̃p

3RΩa (119)

Meaning that we have a stable zero at Ω = π. Notice that the unstable zero corresponds to repulsion force and the
stable one corresponds to attraction. This means that, as long as R⃗ and p⃗ are not pointing in the same direction,
the defects will eventually annihilate.
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