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“we’re all mad here. I’m mad. You’re mad.”
-Lewis Carroll
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Summary

This thesis is a collection of five scientific papers, each referred to in this
summary as Paper I – Paper V respectively.

Industry and society depend on accurate weather forecasting, with examples
ranging from retail sales numbers and sunny hikes in the mountains, to pricing
within the electricity markets and public safety during weather hazards. The
importance of weather drives a continuous effort within the field of geophysics
to improve both short- and long-term numerical weather prediction.

The atmosphere has a layered structure, where the troposphere and
stratosphere are two of five major layers. Closest to the Earth’s surface lays the
troposphere that stretches from the ground up to about 10km altitude, whereas
the overlaying stratosphere reaches up to about 50km. Probing of the stratosphere
could be key in enhancing long-term weather forecasts on Earth’s surface. The
stratosphere is challenging to monitor, in particular its dynamics, meaning that
successful remote sensing strategies are essential to develop. Research indicates
that ground-based measurements of low-frequency inaudible sound waves called
infrasound has potential as a remote sensing technique for the stratosphere.
Motivated by findings in stratospheric and infrasonic research; the goal of this
work is to develop a stochastic mathematical modelling framework able to relate
the characteristics of infrasound detections to the state of the stratosphere.

To model stratospheric weather variables using infrasound it is essential to
find a modelling framework able to represent weather variables well. Statistical
evidence is presented in the literature that the class of Continuous-time
Autoregressive Moving Average ((C)ARMA) processes provides a suitable
modelling framework for surface temperature and wind variables. In Paper
I we seek evidence of this from a mathematical point of view. Based on the
physical laws of heat transfer we suggest the Gaussian linear parabolic Stochastic
Partial Differential Equation (SPDE) as a stylized model for the time-varying
temperature field over a geographical area. The SPDE is assessed as the infinite
dimensional Ornstein-Uhlenbeck (OU) process, and we show that sampling
of such process naturally admits a type of ARMA processes. Independent
convergence results for time and space are derived, connecting the Gaussian
linear parabolic SPDE with ARMA processes. A simulation study demonstrates
our theoretical results for the stochastic heat equation; that is a special case of
the SPDE under consideration. Note that the results implicitly connect Gaussian
linear parabolic SPDEs with CARMA processes.

The results from Paper I substantiate using CARMA processes as modelling
framework for the stratospheric state. The aim of Paper II is to provide empirical
proofs that stratospheric temperature is well-represented by a CARMA model.
We show that dynamics of daily-spatial mean values of stratospheric temperature
over an Arctic circumpolar area follow a Lévy-driven CAR model (CARMA
model without a moving average part) with seasonally varying mean and variance.
We also find evidence that the temperature data could be better represented if
incorporating stochastic volatility and time-dependent speed of mean reversion.
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To add information from infrasound measurements for better representation of
the stratospheric state, a multivariate CARMA (MCARMA) process is required
as modelling framework. For this purpose, a model estimation methodology for
Lévy-driven MCARMA processes is derived in Paper III. This is obtained through
solving a discretized version of the MCARMA process recursively. With the goal
of giving an empirical example demonstrating the model estimation methodology
for a two-dimensional dynamical system of stratospheric temperature and wind,
a convergence rate for jump diffusions with jumps of finite variance and infinite
variations is derived theoretically. A Lévy-driven MCAR model is fit to the
two-dimensional weather system with statistical significance, providing empirical
evidence that the stratospheric state might be well-represented by this model.

The results obtained in Paper I – Paper III provide tools to represent a
multivariate dynamical system of stratospheric weather variables and variables
from ground-based infrasound measurements. The MCARMA processes provide
a modelling framework where co-variations between the system variables are
modelled in a linear fashion, and the autoregressive part of the model is assumed
to be stationary. Empirical results indicate that the linearity and stationarity
assumptions should be relaxed. We propose Stochastic Delay Differential
Equations (SDDEs) with multiple point delays as a generalized modelling
framework, where non-linear and non-stationary interactions between dynamical
variables can be represented. The generality of this modelling framework brings
additional challenges in model estimation as the exact forms of the non-linear
and/or non-stationary model coefficient functions are unknown. Furthermore,
if exact model coefficient functions are known (or guessed), proper methods of
model estimation must be found.

The work in Paper IV addresses the problem of model estimation of Gaussian
SDDEs when the model coefficient functions are unknown. The derived model
estimation methodology can also be seen as a novel physics-informed type of
machine learning model that we call the Delay-SDE-net. That is, the Delay-SDE-
net is a multivariate SDDE with multiple point delays where the model coefficient
functions are replaced with neural networks. This makes the model estimation an
exercise of training neural networks. When a trained Delay-SDE-net is used to
represent a multivariate dynamical system there will be an error compared to the
assumed real-world SDDE representation. The theoretical error is derived as the
sum of the discretization error and the two-layer neural network approximation
error. This deep learning approach is validated in a case study where the model
is fit to a two-dimensional system of stratospheric temperature and wind. The
Delay-SDE-net model performs better than the MCAR model in Paper III.

In Paper V we explore if the Delay-SDE-net can represent the link between the
stratospheric state and ground-based infrasound measurements. A stratospheric
wind dataset is constructed as daily-zonal-mean zonal wind from the ECMWF
ERA5 reanalysis model product. Furthermore, six infrasound datasets are
constructed using infrasound detections from the three northern-most infrasound
stations that are part of the International Monitoring System; the variables
are daily values of the strongest infrasound amplitude, and the corresponding
direction of arrival (called the backazimuth). The Delay-SDE-net is trained to

iv



predict the near real-time zonal wind, solely using the constructed infrasound
variables and day of year as input to the neural networks. The results indicate
that there is a potential for assimilating infrasound observations into existing
atmospheric models as a near real-time source of information about the large-scale
stratospheric dynamics.
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Sammendrag (Summary in Norwegian)

Denne avhandlingen er en samling av fem forskningsartikler, hvor vi i dette
sammendraget refererer til hver av artiklene som Artikkel I – Artikkel V.

Det å levere nøyaktige værprognoser er viktig både for industrien og
samfunnet. Dette gjelder for alt fra salgstall innen detaljhandel og solrike
fjellturer, til prising innenfor energimarkedet og allmenn trygghet under
naturkatastrofer. Viktigheten av vær driver i dag en kontinuerlig innsats innenfor
geofysikkmiljøet for å forbedre numeriske korttids- og langtidsprognoser av vær.

Atmosfæren har en lagvis struktur, hvor troposfæren og stratosfæren er
to av fem store hovedlag. Troposfæren er det atmosfæriske laget som ligger
nærmest Jordens overflate, og dette området strekker seg fra bakken til
omtrent 10 kilometers høyde. Det atmosfæriske laget som ligger ovenfor
troposfæren kalles stratosfæren, og strekker seg opp til omtrent 50 kilometers
høyde. Det å sondere stratosfæren har vist seg å kunne være en nøkkel for å
forbedre langdisprognoser av været ved Jordens overflate. Fordi stratosfærens
værdynamikk er vanskelig å monitorere, vil gode metoder for fjernmåling av dette
området være essensielt å utvikle for vellykket sondering. Forskning indikerer at
bakkebaserte målinger av lavfrekvente ikke-hørbare lydbølger, kalt infralyd, har
potensiale som en fjernmålingsteknikk for stratosfæren. Motivert av funn rundt
dette området innenfor stratosfære- og infralydforskning er et overordnet mål i
denne avhandlingen å utvikle et stokastisk-matematisk modelleringsrammeverk
som kan beskrive sammenhengen mellom karakteristikker av infralydmålinger
og stratosfærens tilstand.

For å modellere stratosfæriske værvariabler ved bruk av informasjon fra
infralydmålinger er det essensielt å finne et modelleringsrammeverk som kan
representere værvariabler på en god måte. Det er i forskningslitteraturen blitt
presentert statistiske resultater som underbygger at klassen av kontinuerlig-
tid (diskret-tid) autoregressive og glidende gjennomsnittsprosesser (CARMA
(ARMA) prosesser) innbefatter gode modelleringsrammeverk for temperatur-
og vindvariabler ved jordoverflaten. I Artikkel I søker vi bevis for dette fra et
matematisk ståsted. Basert på fysiske lover for varmeoverføring foreslår vi en
Gaussisk lineær parabolsk Stokastisk Partiell Differensiallikning (SPDE) som en
stilisert modell for et tidsvariabelt temperaturfelt over et gitt geografisk område.
Denne SPDE-en er studert som en uendeligdimensjonal Ornstein-Uhlenbeck
(OU) prosess, og vi viser at sampling av slike prosesser tilkjennegir seg som
en gitt type av ARMA prosesser. Uavhengige konvergensresultater for tid og
rom er utledet, og knytter Gaussiske lineære parabolske SPDE-er til ARMA
prosesser. En simuleringsstudie underbygger de teoretiske resultatene for den
stokastiske varmelikningen; et modelleringsrammeverk som er et spesialtilfelle
av vår studerte klasse av SPDE-er. Resultatene i dette arbeidet gir en implisitt
kobling mellom Gaussiske lineære parabolske SPDE-er og CARMA prosesser.

Resultatene fra Artikkel I underbygger det å bruke en CARMA prosess som
modelleringsrammeverk for den stratosfæriske tilstanden. Målet i Artikkel II
er å finne empiriske bevis på at stratosfærisk temperatur kan representeres ved
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bruk av en slik modell. Vi viser at stratosfærisk temperaturdynamikk, studert
som daglige gjennomsnittsverdier over et Arktisk sirkumpolart område, følger
en Lévy-drevet CAR modell (CARMA modell uten glidende gjennomsnitt) med
sesongvarierende gjennomsnitt og varians. Resultatene antyder at det studerte
datasettet potensielt sett kan representeres mer nøyaktig ved å inkorporere
stokastisk volatilitet og tidsvarierende gjennomsnittlig reverseringshastighet
(speed of mean reversion) i modellen.

For å bedre representere den stratosfæriske tilstanden ved hjelp av informasjon
fra infralydmålinger trengs en multivariat CARMA (MCARMA) prosess
som modelleringsrammeverk. For dette formålet utledes i Artikkel III en
modellestimeringsmetode for Lévy-drevne MCARMA prosesser. Metoden er
utledet ved å rekursivt løse en diskretisert versjon av MCARMA prosessen.
En teoretisk konvergensrate for hoppediffusjoner med endeligdimensjonale
hopp og uendelig variasjon utledes videre. Dette resultatet fungerer som en
teoretisk støtte for det empiriske eksempelet som demonstrerer den utledede
modellestimeringsmetoden. I eksempelet ser vi på et dynamisk system bestående
av stratosfæriske temperatur- og vindvariabler, og en Lévy-drevet MCAR
modell er tilpasset det to-dimensjonale værsystemet med statistisk signifikans.
Resultatet gir en empirisk indikasjon på at den stratosfæriske tilstanden kan
representeres godt ved bruk av denne modellen.

Resultatene fra Artikkel I – Artikkel III kan fungere som verktøy for å
representere et multivariat dynamisk system av stratosfæriske værvariabler og
variabler fra bakkebaserte infralydmålinger. MCARMA modellen gir et model-
leringsrammeverk hvor samvariasjonen mellom systemets variabler modelleres
lineært, og den autoregressive delen av modellen er antatt å være stasjonær. Em-
piriske resultater indikerer at antakelsene om lineær og stasjonær samvariasjon
er for restriktive. Vi foreslår derfor en Stokastisk Forsinket Differensiallikning
(SDDE) med mange punktforsinkelser som et generalisert modelleringsrammev-
erk, hvor ikke-lineære og ikke-stasjonære interaksjoner mellom variabler kan bli
representert. Generaliteten som kommer med dette modelleringsrammeverket,
gir utfordringer når en modell skal estimeres fordi den eksakte formen på de
ikke-lineære og/eller ikke-stasjonære modellkoeffisientfunksjonene er ukjente.
Hvis formen på modellkoeffisientfunksjonene er kjent (eller gjettet) må man
likevel klare å finne en passende modellestimeringsmetode.

Arbeidet som er lagt ned i Artikkel IV adresserer problemet med å finne
en modellestimeringsmetode for Gaussiske SDDE-er når modellkoeffisient-
funksjonene er ukjente. Modellestimeringsmetoden som utledes kan også ansees
som en ny type fysikk-informert maskinlæringsmodell, som vi kaller Delay-
SDE-net. Dette er fordi modellestimeringen blir en øvelse i å trene neurale
nettverk, da Delay-SDE-net-modellen er en multivariat SDDE hvor modellko-
effisientfunksjonene er byttet ut med neurale nettverk. Når et trent Delay-
SDE-net brukes til å representere et multivariat dynamisk system vil det finnes
en feil i modellen, sammenliknet med den antatt reelle SDDE representasjo-
nen. Den teoretiske feilen er utledet som en sum av diskretiseringsfeilen, og
tilnærmingsfeilen som forekommer ved bruk av to-lags neurale nettverk. Denne
dyp-lærings-tilnærmingen er validert i en case studie hvor modellen er tilpasset
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et to-dimensjonalt værsystem bestående av stratosfæriske temperatur- og vind-
variabler. Delay-SDE-net-modellen presterer bedre enn MCAR modellen som
brukes i Artikkel III.

I Artikkel V undersøker vi om Delay-SDE-net-modellen kan representere
koblingen mellom den stratosfæriske tilstanden og bakkebaserte infralydmålinger.
Et datasett med stratosfærisk vind er konstruert som daglig-sonalt-gjennomsnitt
av sonal vind fra ECMWF sitt ERA5 reanalyse modellprodukt. Videre
konstrueres seks infralyd-datasett ved bruk av infralydmålinger fra de tre
nordligste infralyd stasjonene som er del av The International Monitoring System;
variablene er daglige verdier av sterkeste infralyd-amplitude, og tilsvarende
ankomstretning (også kalt backazimuth). Delay-SDE-net-modellen trenes til å
predikere nær-sanntids sonal vind ved bare å bruke informasjon fra konstruerte
infralyd-variabler, samt dag i året, som input til de neurale nettverkene.
Resultatene indikerer at det er potensiale for å assimilere infralydobservasjoner i
eksisterende atmosfæriske modeller som en kilde til nær-sanntids informasjon
om storskala stratosfærisk dynamikk.
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Chapter 1

Introduction

1.1 Motivation and objectives

Industry and society depend on accurate weather forecasting, with examples
ranging from retail sales numbers and sunny hikes in the mountains, to pricing
within the electricity markets and public safety during weather hazards. The
importance of weather drives a continuous effort within the field of geophysics
to improve both short- and long-term numerical weather prediction. This
dissertation aims at developing tools that can potentially add value to the study
of long-term predictions.

The atmosphere has a layered structure, where the troposphere and
stratosphere are two of five major layers. Closest to the Earth’s surface lays
the troposphere that stretches from the ground up to about 10 km altitude,
whereas the overlaying stratosphere reaches up to about 50 km. Probing of
the stratosphere could be key in enhancing long-term weather forecasts on
Earth’s surface. The stratosphere is challenging to monitor, in particular its
dynamics, meaning that successful remote sensing strategies are essential to
develop. Research indicates that ground-based measurements of low-frequency
inaudible sound waves called infrasound has potential as a remote sensing
technique for the stratosphere.

Motivated by findings in stratospheric and infrasonic research; the goal of
this work is to develop a mathematical modelling framework able to relate the
characteristics of infrasound detections to stratospheric temperature and wind.
Essential features required for such models are that they do the following: 1)
capture variations of stratospheric weather variables; 2) capture variations of
relevant infrasound variables; and 3) most importantly, represent the co-variation
between stratospheric variables and infrasound characteristics. Furthermore,
modelling of uncertainties is key to build robust predictive models. These
challenges initiates the pursuit for a stochastic model that exhibits suitable
properties.

To address this ambition, novel mathematical results are obtained to
substantiate our choice of modelling framework, as well as to develop proper
estimation methodologies. Using classical mathematical and stochastic theory,
including numerical methods as well as neural networks, we illustrate that
Stochastic Differential Equations (SDEs) with memory exhibit the necessary
properties for our purpose. The concluding paper in this thesis uses a stochastics-
founded machine learning model1 that defines real-time characteristics of the
polar upper stratospheric state solely based on day of year and infrasound
measurements at three high-latitude ground-based monitoring stations.

1Developed during this PhD work
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1. Introduction

1.2 Geophysical context

This section introduces relevant aspects of stratospheric research. It is assumed
that the reader has little prior knowledge within the field of geophysics. In
Section 1.2.1, a popular science text presents the stratospheric polar vortex and
its coupling to weather on Earth’s surface. The popular science text is based
on information from [39], [40], [22], [57], [61] and [65]. Section 1.2.2 elaborates
how the stratospheric polar vortex is connected to long-term surface weather
forecasting. Section 1.2.3 introduces infrasound acoustics, and gives a brief
summary about how infrasound measurements can be used to interpret the state
of the stratosphere.

1.2.1 The stratospheric polar vortex

Imagine yourself in an aircraft high up in the air, at altitudes above the highway
of common flights. Here, you will spot a wide torus of strong winds centered
at the North Pole. You just discovered what we call the Arctic stratospheric
polar vortex. Sometimes, these strong and volatile eastward winter winds
making up the stratospheric polar vortex are abruptly disrupted. What might
follow is a winter-time polar vortex entailing summer-time conditions, with the
average circumpolar wind being reversed. This phenomenon is called a sudden
stratospheric warming. Even though this phenomenon occurs at high altitudes,
you can also observe its consequences during the aircraft’s decent, all the way
down to Earth’s surface.

Figure 1.1: An illustration of the stratospheric polar vortex found in [65]. The
area below the stratosphere is called the troposphere. The red and wiggly circle
is the edge of the tropospheric polar vortex, and is what we refer to as the jet
stream. ©American Meteorological Society. Used with permission.

Just like us living on the Earth’s surface can always feel the weather on our
bodies, the atmosphere is dynamic also at high altitudes. For example, you might
have felt discomfort on a seemingly quiet flight when turbulence suddenly takes
hold of the airplane. This happens because of abrupt changes in the surrounding
weather. Such situations normally happen around 10 km above the surface, but
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abrupt changes in the atmospheric dynamics can happen also at substantially
higher altitudes.

The ice-cold area that lays about 10 to 50 km above the surface of the Earth
is called the stratosphere, where temperatures range from minus 15 to minus 60
degrees Celsius. Despite these extreme temperature conditions, stratospheric
wind conditions are stable compared to the winds closer to the surface. That is,
as long as you stay away from the stratospheric poles.

In winter time, the stratospheric winds normally orbit the North Pole at high
speed from west to east. The wind speed can reach about 110 m/s, which is far
higher than the surface wind speeds recorded from the most powerful tornadoes.
In summer time, the direction of the stratospheric polar vortex changes, meaning
that the winds are westward. Now the wind speed is also much lower than in
the winter. The significant change in wind speed between stratospheric winter
and summer time is a natural cycle, just like the seasonal differences that we see
at the surface. But what happens if this circulation is abruptly disrupted?

The natural circulation of the stratospheric polar vortex is actually disrupted
approximately six times a decade. Before investigating the consequences of this
phenomenon, we take a look at what “abruptly disrupted” means in this context.

The gigantic westward vortex of air masses surrounding the North Pole in
winter is sensitive to disturbances in the form of large waves forming from, for
example, interactions between topography and the more turbulent conditions on
Earth’s surface. Such bombardment of the stratospheric polar vortex might result
in a weakening of the wind speed. If this weakening is severe, the stratospheric
polar vortex breaks down, and the average winds might eventually change
direction. This phenomenon is called a sudden stratospheric warming.

During a sudden stratospheric warming, the surrounding temperature can
increase by up to 50 degrees Celsius in just a few days. A consequence of this
natural phenomenon is that the large vortex can move away from the pole, and
even split into two independent vortices. Just as the conditions close to Earth
can influence the winter time stratospheric polar vortex, the effect of a sudden
stratospheric warming can couple downwards in the weather system.

Between the stratosphere and the surface of the Earth there is a stream of
winds wiggling around the Northern Hemisphere like a narrow river. This is
called the (tropospheric) jet stream. With the jet stream comes storm tracks,
consistently moving alongside these wiggly wind streams. The position of the
jet stream highly influences the climate at Earth’s surface. Since changing wind
speeds in the stratosphere influence the position of the jet stream, unusual events
in the stratosphere start a chain reaction striking surface weather conditions.

Consequences of sudden stratospheric warmings can range from events of cold
Arctic air masses leaking into the more temperate areas of northern Europe and
eastern USA, to intensified stormy weather in the Atlantic basin and surroundings.
Based on such severe consequences, especially with a weather system in transition
due to global warming, it is not hard to acknowledge the importance of better
knowledge and understanding of stratospheric weather conditions and how they
influence us living on Earth.
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1.2.2 Enhanced long-term forecasting of surface weather with
better stratospheric data

Weather in the troposphere is chaotic and therefore challenging to predict at
longer timescales. As explained in [39], because weather and climate variability is
constrained by external factors that vary at slower timescales, the predictability
of tropospheric weather can reach approximately 10 days. Examples of such
constraining factors are sea-surface temperature and snow cover extent. It is
well-established that the stratosphere is another example of such a constraining
component. See also [41].

As implied in Section 1.2.1, tropospheric conditions affect stratospheric
conditions and vice versa. This phenomenon is referred to as stratosphere-
troposphere coupling, and a thorough description is given in [21]. As pointed
out in [21], dynamical variability exists on a wide range of timescales in the
stratosphere. That is to the extent that the stratosphere’s constraints on the
troposphere have potential to enhance tropospheric predictability on sub-seasonal
to seasonal timescales and beyond.

The dynamic variability of the Northern Hemisphere stratospheric polar
vortex is particularly influential on tropospheric weather [4, 47, 49, 58, 66].
In particular, the phenomenon of Sudden Stratospheric Warmings (SSWs) has
received a lot of attention because of its pronounced influence on tropospheric
weather [5]. Improving SSW forecasting therefore gives the potential for enhanced
long-term surface weather predictions. As explained in [53], tropospheric regions
affected by SSWs achieve increased predictability up to 3−6 weeks after extreme
stratospheric events. Furthermore, as the probability of SSW occurrences is
coupled to other atmospheric phenomena with variability at slow timescales,
probabilistic predictability of stratospheric variability may be extended to a
few months or longer in the future. Probabilistic predictability of tropospheric
weather has the potential to increase analogously.

1.2.3 Probing the stratosphere using infrasound acoustics

A challenge in enhancing stratospheric weather prediction is the sparseness of
in-situ observations, in particular for winds beyond 30 km altitude. Model
experiments suggest that new observational techniques for monitoring the upper
stratosphere might contribute to enhance wintertime forecasting skills [46].

A remote sensing technique that has emerged for the upper stratosphere is
based on extracting information from ground-based infrasound measurements,
see, e.g., [1, 3, 61]. Infrasound is low-frequency (< 20 Hz) sound waves that
are inaudible to the human ear. Such sound waves originating from sources
in the troposphere travel through the atmosphere, and can be reflected back
to the surface from different atmospheric levels. Measurements of such ducted
infrasound waves carry information from the path of propagation that can be
interpreted and used to monitor, for example, the stratosphere. Such information
was used to study infrasonic signatures of SSWs in pioneering works already in
the 1970s, see [27]. A more thorough explanation of the underlying mechanisms
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and a historical overview of studies on infrasonic signatures of SSWs is provided
in [61].

A kind of infrasound waves of particular interest for atmospheric probing
is called microbaroms. They make up a quasi-continuous field of sound waves
generated by nonlinear interactions between counter-propagating ocean waves,
typically within the frequency range of 0.1−0.6 Hz, see, e.g., [9, 26, 64]. Infrasonic
signatures for SSWs as noted in early work from the 1970s [27] were found in
guided microbaroms, a discovery that is now attracting more attention. For
example, [45] found that seasonal trends in measured microbarom amplitude
and arrival direction are primarily driven by seasonal reversal (as explained in
Section 1.2.1) of stratospheric winds. Furthermore, it has been suggested that
there is potential in utilizing microbarom signals to probe stratospheric wind for
assimilation of infrasound data into atmospheric models, see [1, 3] for outlooks,
as well as Paper V in the current thesis for a related study.

In addition to results indicating that microbaroms can be used to probe the
stratosphere, near real-time global data availability of microbarom detections
has become reality. The Comprehensive Nuclear-Test-Ban Treaty (CTBT) was
signed in 1996, banning all nuclear explosions. As nuclear explosions are a source
of infrasound and other measurable signals, the International Monitoring System
(IMS) was established for signal detection to monitor worldwide compliance.
What is referred to as the IMS infrasound network focuses on measuring
infrasound signals and consists of 60 stations distributed globally. Data from the
IMS infrasound network have been shown to be valuable in studies of natural
infrasound sources and related applications. This is also the case for detection
of ocean-generated microbaroms, where the IMS infrasound network record
microbarom waves in near real-time that can be used to probe the stratosphere.
See, for example, [36], [24] and [52] for more information on CTBT and IMS.

With scientific results indicating that microbarom signals have great
potential for use in remote atmospheric sensing, and with near real-time data
availability of microbaroms, it is clear that the use of microbarom detections
for probing the stratosphere is a promising research topic. However, as the IMS
infrasound network is continuously bombarded with microbaroms, it takes proper
pre-processing routines, data assessment, and modelling before microbarom
detections can be used in applications. Research has been done during the
recent years to contribute to these aspects. See, for example, [34], [62] and
[64]. An interesting recent work with this respect is done in [35], where
systematically processed infrasound data products from 53 stations in the IMS
infrasound network are composed and openly provided to the general public.
This work facilitates the demonstration of potential use of infrasound detections
for applications, as researchers less familiar with infrasound data processing now
have the opportunity to easily explore processed IMS infrasound data directly.

The introduction in Section 1.2.2 explains that augmented probing of the
stratosphere has potential to enhance long-term forecasting in the future. Still,
a lot of research remains to successfully provide real-time measurements of the
stratospheric state, and subsequently to incorporate the information into existing
weather prediction models. One important piece of the puzzle that remains to
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be solved is to properly describe the link between real-time infrasound detections
and the current state of the stratosphere. Furthermore, this link would ideally
be explicit, such that it can be straightforwardly exploited in future research to
better understand stratosphere-troposphere coupling and to enhance long-term
weather forecasting.

1.3 Relevant topics in stochastics

This section introduces stochastic models and theory relevant in this thesis.
Section 1.3.1 presents particular SDEs with memory, Section 1.3.2 gives an
introduction to Wiener processes with values in Hilbert space, and Section 1.3.3
is about methods for assessing the stochastic heat equation. It is assumed that
the reader has a solid background within the field of stochastic analysis.

1.3.1 Stochastic differential equations with memory

Many dynamical systems have inherent memory, meaning that their time
evolution is dependent on the systems’ past states. Some examples of fields where
such dynamical systems are relevant to study include biology and medicine [37,
56, 59, 60], geophysics [29, 43, 54] and finance [2, 25, 67]. This section presents
SDEs with memory that are applied for the geophysical problem of this thesis.
First, we introduce a flexible modelling framework, that is Stochastic Delay
Differential Equations (SDDEs) with multiple point delays. Then, modelling
frameworks from the family of Autoregressive Moving Average (ARMA) processes
are introduced, including continuous-time, multivariate and infinite-dimensional
processes.

Unless noted otherwise, we assume given a complete filtered probability space
(Ω,F , {Ft}t≥0, P ) under which all stochastic processes {X(t)}t≥0 are defined.

Stochastic delay differential equations

The aim of this section is to introduce SDDEs with multiple point delays.
The class of SDDEs [see for example 55] represents SDEs that are dependent

on both current and past states of the dynamical system they describe. This
means that SDDEs are non-Markovian processes, and their inherent memory
property can be used to give a more accurate representation of the evolution
of dynamical systems with memory. As discussed in [6], one cannot use the
well-established Markov process theory to study SDDE solutions. The Markov
property can be recovered by lifting SDDEs to suitable infinite-dimensional
path spaces, where the SDDEs take form as infinite dimensional Stochastic
Partial Differential Equations (SPDEs). There exists well-established theory
for SPDEs in infinite dimensions, however, some difficulties are encountered as
some finite-dimensional properties fail to hold in infinite dimensions. We will not
discuss the issue of these theoretical considerations further, as this work focuses
on established results for use in applications. For a survey of results related to
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SDDEs up to and including the year of 2002, see [38]. More recent results are
presented in [6].

Define a back-looking time interval [−τ, 0], τ > 0, and denote all continuous
(d-dimensional) functions on this interval as C := C([−τ, 0]; Rd). Given a d-
dimensional stochastic process X(t) : [−τ, T ]× Ω→ Rd, where T ∈ R+, define
the corresponding segment process as

Xt(u) := X(t+ u), u ∈ [−τ, 0], t ∈ [0, T ], (1.1)

with Xt taking values in C. Early considerations of SDDEs study stochastic
processes X(t) satisfying

dX(t) = f(Xt)dt+ g(Xt)dB(t), t ≥ 0 (1.2)

where f and g are real-valued continuous drift and diffusion functions on C,
respectively, and {B(t)}t≥0 is a (multivariate) standard Brownian motion process.
For example, the work in [44], that was published in 1968, presents existence,
uniqueness and stability results for the SDDE in Eq. (1.2) involving conditions
on the model coefficients and SDDE initial condition. Years later, that is in
1998, [55] considered SDDEs on the form

dX(t) = f(t,Xt)dt+ g(t,Xt)dB(t), t ≥ 0, (1.3)

with F0-measurable continuous initial path η : Ω → C. Note that X0 = η.
Several topics on non-stationary SDDEs as in Eq. (1.3) are considered in [55],
including existence and uniqueness of solutions.

For applications in this thesis, a further developed version of the SDDE in
Eq. (1.3) is used, where the segment process (Eq. (1.1)) is projected to represent
multiple point delays. This particular SDDE was introduced and studied in [32]
and [33]2. With a framework as given above, we define a projection Π : C → Rdp

as

Π(η) := (η(u1), . . . , η(up)) ∈ Rdp,

where u1, . . . , up ∈ [−τ, 0] are fixed time points. We say that Π is the projection
associated to the points u1, . . . , up. Now, given two projections Π1 and Π2
with associated time points u1,1, . . . , u1,p1 ∈ [−τ, 0] and u2,1, . . . , u2,p2 ∈ [−τ, 0]
respectively, define the multiple point delayed SDDE as

dX(t) = f(t,Π1(Xt))dt+ g(t,Π2(Xt))dB(t), t ≥ 0, (1.4)

with X(t) = η(t) for −τ ≤ t < 0. The SDDE in Eq. (1.4) admits a strong
and unique solution, X(t), when required conditions are satisfied. Furthermore,
a strong Milstein scheme for such SDDEs is derived in [32] and [33], and the
scheme is shown to have a convergence rate of order 1. In this thesis, the Milstein
scheme is used for the purpose of approximating multiple point delayed SDDEs
as in Eq. (1.4) using neural networks.

2Works from 2001 and 2004 respectively, where [32] is a prior version of [33]
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ARMA and CARMA processes

The family of autoregressive moving average (ARMA) processes is important in
modelling of time series data. Such processes use historic information to explain
future values of a time series in a linear fashion. Due to their particular linear
structure, the theory for prediction of such time series models is fairy simple, see
[18] and [20]. The continuous-time analogue of ARMA processes is the family
of continuous-time ARMA (CARMA) processes. That is, ARMA processes are
defined by linear difference equations, and CARMA processes are defined using
analogous linear differential equations [20]. We will see that CARMA processes
have a state-space form admitting a so-called (multivariate) Ornstein-Uhlenbeck
(OU) process [28, 51]. In this section, we introduce R-valued Gaussian ARMA
and CARMA processes. More flexible models, including multivariate versions
and Lévy-driven processes, are introduced and applied in the papers of this
thesis3.

Assume that given a complete filtered probability space (Ω,F , {Fn}n∈N0 , P ).
Denote by X(n) : N×Ω→ R a (discrete-time) ARMA process. We define ARMA
processes according to the definition given in [20].

Definition 1.3.1 ([20], Definition 3.1.1). {X(n)}n∈N is an ARMA(p, q) process if
{X(n)}n∈N is stationary and if for every n,

X(n)− ϕ1 − · · · − ϕpX(n− p) = Z(n) + θ1Z(n− 1) + · · ·+ θqZ(n− q),

where Z := {Z(n)} ∼ N(0, σ2) and the polynomials (1− ϕ1z − · · · − ϕpz
p) and

(1 + θ1z + · · ·+ θqz
q) have no common factors.

In the above definition N(0, σ2) denotes zero mean normal distribution with
variance σ2 ∈ R+, and ϕi, θj ∈ R for i = 1, . . . , p and j = 1, . . . , q. Note that the
definition in [20] is slightly more general as Z can be white noise with variance
σ2 ∈ R+. In order to choose the correct orders p and q for ARMA(p, q) processes
in applications, the autocorrelation function and partial autocorrelation function
of time series is a helpful tool. For more about model selection and other
additional information about (vector-valued) ARMA processes, see, for example,
[48] and [30].

Now, letX(t) : R+×Ω→ Rp be a multivariate OU-process to be defined below,
and let Y (t) = b⊤X(t), where b := [b0, b1, . . . , bp−2, bp−1]⊤, be a (continuous-
time) CARMA process. Again inspired by [20] we define CARMA(p, q) processes
as follows.

Definition 1.3.2 ([20], Section 11.5.2). {Y (t)}t≥0 is a zero-mean Gaussian
CARMA(p, q) process, 0 ≤ q < p, if {Y (t)}t≥0 is a strictly stationary process
satisfying the p-th order linear differential equation

DpY (t) + a1D
p−1Y (t) + · · ·+ apY (t)

= b0DB(t) + b1D
2B(t) + · · ·+ bqD

q+1B(t),

3Vector-valued autoregressive moving average processes are defined in the following section
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where Dj denotes j-fold differentiation with respect to t, {B(t)}t≥0 is a
standard Brownian motion process, and a1, . . . , ap and b0, . . . , bq are constants.
It is assumed that bq ̸= 0, bj := 0 for j > q, and that the polynomials
(zp + a1z

p−1 + · · ·+ ap) and (b0 + b1z + . . .+ bqz
q) have no common zeroes.

The CARMA(p, q) processes can be written with a so-called state-space
representation that can be used to omit derivatives of the Brownian motion
process. That is, we say that Y (t) = b⊤X(t) is the observations equation, and
that X(t) solves the state equation

dX(t) = AX(t)dt+ epdB(t), (1.5)

where ep is the p-th unit vector in Rp and A ∈ Rp×p is given by

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−αp −αp−1 −αp−2 · · · −α1

 .
Using the state-space representation, Gaussian CARMA(p, q) processes can
be studied using classical Itô calculus. The state equation in Eq. (1.5) is a
multivariate OU-process and, as stated in [20], the multivariate SDE has uniqe
solution

X(t) = eAtX(0) +
∫ t

0
eA(t−u)epdB(u), 0 ≥ t <∞,

where X(0) is a normally distributed random vector independent of increments
of B(t) and eAt :=

∑∞
j=0(Aj/j!)tj . For more about (multivariate) CARMA(p, q)

processes, see for example [15] and [51].
Note that ARMA and CARMA processes are linked to SDDEs, see [8] and

[7].

Autoregressive processes in Hilbert space

In this section we introduce AR processes on a Hilbert space, an extension
of the well-known theory of AR processes with values in R (or Rd in the
multivariate case). This introduction is based on theory from [14]. In the
following, {Xn}n∈N0 refers to a sequence of square-integrable random variables
defined on the complete filtered probability space (Ω,F , {F}n∈N0 , P ). We start
this section by recalling the definition of finite-dimensional vector autoregressive
moving average (VARMA) processes [see for example 30] as a motivation.

Finite-dimensional vector autoregressive processes of order p, also referred
to as VAR(p) processes, are given as a sequence of random variables Xn ∈ Rd

satisfying

Xn =
p∑

j=1
AjXn−j + ϵn, (1.6)
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where Aj ∈ Rd×d, j = 1, . . . , p, and {ϵn}n∈N0 is a discrete Gaussian process with
values in Rd. Further, a sequence of random variables Xn ∈ Rd satisfying

Xn =
q∑

j=0
Bjϵn−j , (1.7)

where B0 is the d-dimensional identity matrix, B0 = Id, with Bj ∈ Rd×d,
j = 0, . . . , p, and where {ϵn}n∈N0 is as above, are called finite-dimensional vector
moving average processes of order q, or VMA(q) processes. The VAR(p) process
is said to be stationary when det(Id − zA) ̸= 0 with z ∈ C such that |z| ≤ 1.
Note that the VMA(q) process is stationary by definition. Combining Eq. (1.6)
and (1.7), we obtain the d-dimensional VARMA(p, q) process, that is

Xn =
p∑

j=1
AjXn−j +

q∑
j=0

Bjϵn−j .

Similarly, given a real-valued separable Hilbert space H, we can define an
H-valued process

Xn = ρXn−1 + ϵn, (1.8)

with ρ ∈ L, where L is the class of bounded linear operators, and where {ϵn}n∈N0

is a Q-Wiener process. We call the process in Eq. (1.8) an ARH(1) process. It
is clear that ARH(1) processes is a generalization of the VAR(1) process. As
explained in Theorem 3.1 of [14], the series

Xn =
∞∑

j=0
ρj(ϵn−j), (1.9)

is a unique stationary solution of Eq. (1.8) if there exists an integer j0 ≥ 1 such
that ∥ρj0∥op < 1, ∥ · ∥op being the operator norm. Moreover, the the series in
Eq. (1.9) converges in L2(Ω, H) with probability 1.

Note that once ARH(1) processes are defined, it is straightforward to define
the analogue ARH(p) processes. We will, however, not introduce these higher
order processes, as ARH(1) are the only AR processes in Hilbert space considered
in this thesis.

1.3.2 Q-Wiener processes and Itô integrals

As SPDEs are SDEs evolving in space and time we need to define space-time
stochastic forcing. Random fields evolving in time would provide such forcing.
In this section, we introduce Gaussian random fields as a motivation. Then
we extend this concept to Gaussian processes with values in Hilbert space,
namely Q-Wiener processes. The following theory is introduced under a filtered
probability space (Ω,F , {Ft}t≥0, P ). We will consider processes of F -measurable
Gaussian random variables, X, with values in a separable (measurable) Hilbert

12



Relevant topics in stochastics

space (H,B(H)), where B(H) is the Borel σ-algebra on H. We denote the norm
and inner product on H as | · | and ⟨·, ·⟩ respectively. Note that in this setup, we
have X ∈ L2(Ω, H). Recall that, given a set T ⊂ R, {X(t)}t∈T is an H-valued
stochastic process of random variables X : T × Ω → H, and we often write
X(t) := X(t, ω), t ∈ T , ω ∈ Ω. Finally, L denotes the space of bounded linear
operators.

We assume that the reader is familiar with classical Itô calculus and
basic concepts within linear functional analysis (see also Appendix A). For
an introduction of random variables and stochastic processes in Hilbert space
see Appendix A. This section is exclusively based on theory presented in [50].

Random fields

Define a real-valued random variable Y : D × Ω→ R, with D ⊂ Rd. We write
Y (x) := Y (x, ω), for x ∈ D, ω ∈ Ω. A random field is defined as follows.

Definition 1.3.3. A random field is the set {Y (x)}x∈D.

Note that, for fixed ω ∈ Ω, Y (·, ω) is referred to as a realisation of the random
field. In the given setup we have Y (x) ∈ L2(Ω) for every x ∈ D, meaning that
we have well-defined mean function µ(x) := E[Y (x)] and covariance function

C(x, y) := Cov(Y (x), Y (y)) = E[(Y (x)− µ(x))(Y (y)− µ(y))], x, y ∈ D.

As we are working with Gaussian random variables, Y (x) ∼ N(µ,C), x ∈ D, we
refer to {Y (x)}x∈D as a Gaussian random field.

As already noted, random fields evolving in time would provide a suitable
forcing for SPDEs. As we are using a semigroup approach to study SPDEs
in this thesis, we will not introduce the more complex concept of space-time
random fields.

Q-Wiener processes and their approximation

It is often convenient to study SPDEs as stochastic ordinary differential equations
(SODEs) with values in a Hilbert space to suppress the spatial dimension. With
this approach, the driving random field has to be replaced with an H-valued
stochastic process. In this section we introduce the so-called Q-Wiener process,
that is a Gaussian random process with values on a separable Hilbert space. We
will also show how their sample paths can be approximated.

Let Q ∈ L(H) be symmetric positive semi-definite and of trace class, with
orthonormal basis {ej : j ∈ N} and corresponding eigenvalues cj ≥ 0 satisfying∑

j∈N cj <∞. The Q-Wiener process is defined as follows.

Definition 1.3.4 ([50], Definition 10.6). An H-valued stochastic process
{W (t)}t≥0 is a Q-Wiener process if 1) W (0) = 0 a.s.; 2) W (t) is a contin-
uous function R+ → H, for each ω ∈ Ω; 3) W (t) is Ft-adapted and W (t)−W (s)
is independent of Fs for s < t; and 4) W (t) −W (s) ∼ N(0, (t − s)Q) for all
0 ≤ s ≤ t.
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Note that Q is a well defined covariance operator at t = 1.
In applications of this work we consider L2(D)-valued Q-Wiener processes

for a given domain D. With the presented setup, the Q-Wiener process can
always be decomposed as

W (t) =
∞∑

j=1

√
cjejBj(t), a.s., (1.10)

where Bj(t) are IID Ft-Brownian motions for each j ∈ N. As stated in [50,
Thm. 10.7], the series converges in L2(Ω, C([0, T ], H)) for any T > 0.

As a result of Eq. (1.10), sample paths of Q-Wiener processes can be approx-
imated numerically as a truncated linear combination when the eigenfunctions
of Q are known.

Itô integrals with respect to Q-Wiener processes

When studying SPDEs as (Q-Wiener driven) SDEs with values in a Hilbert
space, U , it is essential to define Itô integrals with respect to Q-Wiener processes.
Note that a requirement would be that the Itô integral takes values in U . As
explained in [50], this could be obtained by considering L2

0 := L(H0, U)-valued
integrands, where H0 ⊂ H is known as the Cameron-Martin space. We denote
the norm on U as | · |U . The space L2

0 is defined as follows.

Definition 1.3.5 ([50], Definition 10.15). Let H0 := {Q1/2v : v ∈ H} for Q1/2

defined by Eq. (A.3). L2
0 is the set of linear operators G : H0 → U such that

∥G∥L2
0

:=

 ∞∑
j=1
|GQ1/2ej |2U

1/2

= ∥GQ1/2∥HS(H,U) <∞,

where {ej : j ∈ N} is an orthonormal basis for H and ∥ · ∥HS(H,U) is the
Hilbert-Scmidt norm. L2

0 is a Banach space with norm ∥·∥L2
0
.

Note that {ej : j ∈ N} are eigenfunctions of Q, and that G := {G(t)}t≥0 is a
L2

0-valued stochastic process.
Let {êk : k ∈ N} be an orthonormal basis of U , and let the stochastic process

⟨GQ1/2ej , êk⟩U be predictable for each j, k ∈ N. Then also G is predictable, and
we can define the Q-Wiener Itô integral.

Definition 1.3.6 ([50]). Let G be an L2
0-valued predictable stochastic process.

Then the U-valued Q-Wiener Itô integral∫ t

0
G(s)dW (s) :=

∞∑
j=1

∫ t

0
G(s)√cjejdBj(s), (1.11)

is well defined.

As a remark, we note that the J-truncated sum of Eq. (1.11) converge in L2(Ω, U)
when J →∞.
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1.3.3 The stochastic heat equation

The aim of this section is to introduce theory used to assess the stochastic heat
equation as a numerical approximation. We focus on the stochastic heat equation
driven by Gaussian noise. That is an SPDE on the form

dY (t, x) = ∆Y (t, x)dt+ σdW (t, x), (t, x) ∈ R+ ×D, (1.12)

with D ⊂ Rd, d ∈ N, and initial condition Y (0, x) ∈ R, where ∆ is the Laplace
operator, σ is a scaling acting on the noise and W (t, x) is a space-time Gaussian
field. For considerations about existence and uniqueness of solutions, see for
example [31]. Note that the stochastic heat equation is a special case of the class
of semilinear SPDEs. See [50]4 for a more general review of the theory presented
in this section.

A technique for assessing SPDEs is to represent them as SODEs in Hilbert
space. That is, instead of considering SPDEs in the classical sense, we consider
them as infinite-dimensional systems of SODEs. The theoretical advantage of
this approach is that infinite-dimensional systems of SODEs that can be studied
using semigroup theory, see Section A.5. The class of numerical methods using
this representation is referred to as the method of lines.

In the following we introduce the stochastic heat equation in Hilbert space
and present different notions of solutions. As a motivation, the finite difference
method for the stochastic heat equation is introduced, that is a finite-dimensional
version of the method of lines. Finally, a method of lines called the Galerkin
method is presented. This method gives an approximation of the stochastic heat
equation via projections and the weak formulation of solutions. By choosing
a suitable separable subspace onto which the projection of the stochastic heat
equation maps, we call it the spectral Galerkin method.

The stochastic heat equation in infinite dimensions

To follow the notation in Section A.5 we define A := ∆. Let H be a Hilbert
space of functions of the spatial variable x ∈ D, and let A : D(A)→ H satisfy
Assumption A.3.5, where D(A) ⊂ H denotes the domain of A. Now, write the
stochastic heat equation in Eq. (1.12) as

dY (t) = AY (t)dt+ σdW (t), Y (0) ∈ H, (1.13)

where W is a Q-Wiener process in H, and we require σ ∈ L2
0 (see Definition 1.3.5).

Three notions of solutions of the stochastic heat equation in Eq. (1.13) are
presented in the following, that is strong, weak and mild solutions. Note that the
three definitions below defines solutions of the stochastic heat equation, whereas
[50] defines solutions of the more general class of semilinear SPDEs.

4The theory presented in this section is based on this reference
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Definition 1.3.7 ([50], Definition 10.18). A predictable H-valued process
{Y (t)}t∈[0,T ] is called a strong solution of Eq. (1.13) if

Y (t) = Y (0) +
∫ t

0
AY (s)ds+

∫ t

0
σdW (s), ∀t ∈ [0, T ].

The strong solution requires Y (t) ∈ D(A). A less restrictive interpretation of
solutions is used in the Galerkin method. We define weak solutions as follows.

Definition 1.3.8 ([50], Definition 10.19). A predictable H-valued process
{Y (t)}t∈[0,T ] is called a weak solution of Eq. (1.13) if

⟨Y (t), ν⟩ = ⟨Y (0), ν⟩+
∫ t

0
⟨Y (s), Aν⟩ds+

∫ t

0
⟨σdW (s), ν⟩,

for t ∈ [0, T ] and ν ∈ D(A), where in the notation of Eq. (1.10)∫ t

0
⟨σdW (s), ν⟩ :=

∞∑
j=1

∫ t

0
⟨σ√qjχj , ν⟩dBj(s).

Note that ν in the weak solutions is referred to as a test function. We will
see that the Galerkin method uses the fact that the weak formulation reduces
the required regularity of the solution Y (t). Finally, the mild solution of the
stochastic heat equation is defined.

Definition 1.3.9 ([50], Definition 10.22). A predictable H-valued process is called
a mild solution of Eq. (1.13) if for t ∈ [0, T ]

Y (t) = etAY (0) +
∫ t

0
e(t−s)AσdW (s),

where etA is the semigroup generated by A.

Note that the above holds when A is a bounded operator, which would require an
appropriate domain of A. Otherwise, for example if D(A) = L2, the semigroup
S(t) is unknown, meaning it generally fails to be on the form etA, see Section A.5.
It is expected that strong solutions imply existence of weak solutions, and that
weak solutions imply existence of mild solutions. It is important to note that the
stochastic heat equation has to be sufficiently regular for the reverse implication
to hold. For existence and uniqueness results, see Chapter 10 in [50].

Finite difference method

This section presents the finite difference method for the stochastic heat equation
in one dimension on the real line with periodic boundary conditions. The method
also works for the more general class of semilinear SPDEs, see [50]. As we will
see, the finite-difference method uses classical differentiation theory to derive an
approximation of the stochastic heat equation being a finite-dimensional system
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of SODEs. Standard time discretization methods, see for example [42], can
finally be used to assess the system of SODEs numerically.

By Eq. (1.12), the one-dimensional stochastic heat equation with constant
volatility is given as

dY (t, x) = Yxx(t, x)dt+ σdW (t, x), x ∈ D ⊂ R, (1.14)

with initial value Y (0, x) ∈ R and volatility σ > 0, where {W (t, x) : (t, x) ∈
R+×D} is a Gaussian random field evolving in time. Note that Yxx := ∂2Y/∂x2.

Given a domain D = [0, a), we define uniformly spaced grid points xj = jh
for h = a/J and j = 0, . . . , J . Let Y ∈ C4(R), then by Taylor’s theorem (see
Theorem A1 in [50]) we have

Yxx(t, xi) = Y (t, xi+1)− 2Y (t, xi) + Y (t, xi−1)
h2 ,

for i = 1, . . . , J − 1, where the remainder O(h2) is suppressed. Define
Y J(t) := [Y1(t), . . . , YJ−1(t)]⊤ ∈ RJ−1, where for each i = 1, . . . , J − 1 the
element Yi(t) is an approximation of the element Y (t, xi) of the discretized
solution [Y (t, x1), . . . , Y (t, xJ−1)]⊤ ∈ RJ−1. Further, we replace the Gaussian
random field with an L2(D)-valued Q-Wiener process W (t), and define the
approximation W J (t) := [W (t, x1), . . . ,W (t, xJ−1)]⊤ ∈ RJ−1. The solution Y J

is given by what we call the centered finite difference approximation of the
Laplacian. That is, Y J is the solution of the system of SODEs

dY J = −ADY Jdt+ σdW J(t), (1.15)

with initial data Y J(0) = [Y1(0), . . . , YJ−1(0)]⊤, where the Laplacian is
approximated as the (J − 1)× (J − 1)-matrix

AD :=



2 −1 0 0 · · · 0 1
−1 2 −1 0 · · · 0 0

0
. . . . . . . . . · · · 0 0

...
...

. . . . . . . . .
...

...
1 0 0 0 · · · −1 2

 .

We say that Eq. (1.15) is the method of lines for the finite difference
approximation. The periodic boundary condition gives Y (t, x0) = Y (t, xJ),
where Y (t, x0) and Y (t, xJ) is included in the approximation of Y (t, x1) and
Y (t, xJ−1) respectively.

Galerkin method

The Galerkin method is based on weak solutions of (S)PDEs. That is, for the
stochastic heat equation the method is based on the solution in Definition 1.3.8.
For convenience, we assume that Assumption A.3.5 holds throughout this section.
The space of approximated solutions is taken as a finite-dimensional subspace
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Ṽ ⊂ D(A1/2)5, relaxing the regularity restriction on possible solutions. For this
to hold, we choose test functions ν ∈ Ṽ .

The goal is to find an approximation Ỹ (t) ∈ Ṽ to the weak solution Y (t) of
the stochastic heat equation. That is, given an orthogonal projection P̃ : H → Ṽ
the approximation Ỹ (t) is the solution of6

⟨Ỹ (t), ν⟩ = ⟨Ỹ (0), ν⟩+
∫ t

0
⟨Ã1/2Ỹ (s), Ã1/2ν⟩ds+

∫ t

0
⟨σdW (s), ν⟩, (1.16)

where t ∈ [0, T ], ν ∈ Ṽ and Ỹ (0) = P̃ Y (0), and where the linear operator
Ã : Ṽ → Ṽ satisfies the relation

⟨ÃỸ , ν⟩ = ⟨Ã1/2Ỹ , Ã1/2ν⟩, (1.17)

according to Lemma A.3.6. Note that the left-hand side of Eq. (1.17) might not
be well defined, but the right-hand side is because we seek solutions Y ∈ D(A1/2).
The weak formulation in Eq. (1.16) satisfies a Ṽ -valued SODE on the form

dỸ (t) = ÃỸ (t)dt+ P̃ σdW (t), t ∈ [0, T ],

which is called the method of lines for the Galerkin method.
The spectral Galerkin method is an approach to obtain the method of lines

by applying a projection directly on the H-valued stochastic heat equation in
Eq. (1.13). This projection has to be chosen carefully. By Assumption A.3.5
we know that {ej : j ∈ N} is an orthonormal basis for A with corresponding
eigenvalues λj , j ∈ N. Now, choose A such that {ej : j ∈ N} forms a basis for
H, and we can define a Galerkin subspace VJ ⊂ H with VJ := span{e1, . . . , eJ}.
Further, define an orthonormal projection PJ : H → VJ by

PJY :=
J∑

j=1
Ŷjej , where Ŷj := 1

∥ej∥2 ⟨Y, ej⟩ for all Y ∈ H.

As {ej : j ∈ N} is an orthonormal basis for A, we can define AJ := PJA. This
gives a method of lines approximation

dYJ(t) = AJYJ(t)dt+ PJσdW (t), t ∈ [0, T ], (1.18)

where YJ(0) = PJY (0). The function YJ(t) is called the spectral Galerkin
approximation of the solution Y (t) of the stochastic heat equation in Eq. (1.13).
Standard time discretization methods, as found in [42], can be used to assess
Eq. (1.18) numerically.

1.4 Outline and progression

As explained in Section 1.1, the aim of this work is to derive a direct link between
infrasound measurements and the stratosphere using stochastic models.

5Powers of unbounded linear operators is defined in Eq. (A.3)
6See Definition 1.3.8
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Inspired by prior works within stochastic modelling of surface weather
variables, see, for example [23], [10], [11] and [12]; an initial hypothesis for
this work was that the class of CARMA processes [15, 16, 17] provide a
suitable modelling framework for stratospheric weather variables. Statistical
analyses underpinned this hypothesis. Results indicated that dynamics of both
stratospheric variables and smoothed infrasound variables could be explained by
one-dimensional autoregressive models. This leads to an initial mathematical
research question: Is it possible to connect such statistically-founded models
with physically-founded models for weather variables?

A well-known physically-founded partial differential equation (PDE) for heat
transfer is the heat equation, describing the rate at which heat flows within
a medium [63]. By adding a noise term to the heat equation, the model can
describe uncertainty in modelling. This extended model is called the stochastic
heat equation. In Paper I, a connection between the stochastic heat equation
in infinite dimensions and ARMA time series7 [18], the discrete time analogue
to CARMA processes [51], is derived. This result substantiates using CARMA
processes as modelling framework for the stratospheric state.

Paper II provides empirical proofs that stratospheric temperature is well
represented by a CARMA model. More specifically, we show that daily-spatial
mean values of stratospheric temperature over a given area follow a CAR model
with seasonally varying mean and variance.

The next challenge was to successfully estimate a multivariate model
representing a dynamical system of weather variables. The approach was to
find a model able to represent a system of stratospheric temperature and wind.
As a test, the one-dimensional CAR model from Paper I was successfully fit
to stratospheric wind, confirming results from literature [13, 19]. Furthermore,
one can observe crosscorrelations between stratospheric temperature and wind
variables. These pieces of empirical evidence motivate to use a multivariate
CARMA process as a model.

The estimation methodology for one-dimensional CAR models [10] cannot be
used in the multivariate case. In Paper III, an analogue estimation methodology
for multivariate CARMA models is derived, which is further used to fit a
model to a two-dimensional system of stratospheric temperature and wind. The
multivariate CAR model is fit with statistical significance, providing empirical
evidence that the stratospheric state might be well-represented by this model.

The goal of deriving a model able to represent stratospheric weather variables
and their co-variation is reached, and our attention turns to infrasound data. Is
it possible to extract information from infrasound detections for use in prediction
of stratospheric weather variables? As discussed in for example [27] and [45],
microbaroms ducted to the surface from the stratosphere carry signatures that
are possible to decipher. However, it is not straightforward to formulate this
link in a model. The estimation methodology from Paper III was used to fit
multivariate CARMA models of different orders to a high-dynamical system

7The connection is derived for a more general infinite-dimensional stochastic partial
differential equation of which the stochastic heat equation is a special case
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of stratospheric wind and several infrasound variables. The information from
infrasound gave close to none additional explanatory power of the dynamics of
stratospheric wind.

The family of CARMA models provides a framework that explains linear
autoregressive interactions between variables in a dynamical system. Further-
more, the autoregressive part of the model in Paper II and Paper III is assumed
to be stationary. Now, a generalized modelling framework was proposed, being
an SDDE with multiple delays. This model can represent both non-linear and
non-stationary interactions between dynamical variables. Problems that have to
be solved to use this modelling framework: 1) we do not know the exact form of
the non-linear and/or non-stationary model coefficient functions; and 2) if exact
functions are known (or guessed), proper methods of parameter estimation have
to be found. Paper IV addresses these problems, where the Delay-SDE-net is
developed.

The Delay-SDE-net uses neural networks as model coefficient functions,
making the model parameter estimation an exercise of training these networks.
To validate this deep learning approach, the Delay-SDE-net was fit to a two-
dimensional system of stratospheric temperature and wind, with the aim of
predicting wind up to 7 days forward in time. The validation performed better
than the CARMA model approach used in Paper III.

Finally, the study in Paper V explore if the Delay-SDE-net is capable
of explaining the link between ground-based infrasound measurements and
stratospheric weather variables. This was done by training the neural networks of
the Delay-SDE-net model solely using pre-processed infrasound data as features,
using circumpolar stratospheric wind as response. The results were affirmative,
as the trained Delay-SDE-net was able to replicate the real-time wind profile
surprisingly well, only using infrasound measurements as input.

For a more detailed summary of the papers in this thesis, see the following
section.

1.5 Summary of Papers

This section elaborates highlights from the collection of research papers in
this PhD thesis. The collection includes: 1) “Ornstein-Uhlenbeck Processes
in Hilbert Space and Autoregressive Moving-Average Time Series” to be
submitted for publication; 2) “Stochastic Modeling of Stratospheric Temperature”
that is published in the Springer-journal Mathematical Geosciences; 3) “The
Multivariate ARMA/CARMA Transformation Relation” that is in preparation
for resubmission to Scandinavian Journal of Statistics; 4) “Delay-SDE-Net: A
Deep Learning Approach for Time Series Modelling with Memory and Uncertainty
Estimates” that is in preparation for resubmission to Journal of Machine Learning
Research. This work has a shared first authorship between the two authors; 5)
“Near Real-Time Stratospheric Circulation Diagnostics Based on High-Latitude
Infrasound Data Using a Stochastics-Founded Machine Learning Model” to be
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Summary of Papers

submitted for publication. This work has a shared first authorship between Mari
Dahl Eggen and Ekaterina Vorobeva.

Paper I: Ornstein-Uhlenbeck Processes in Hilbert Space and
Autoregressive Moving-Average Time Series

Key takeaways: One-dimensional ARMA processes characterizes vector-valued
AR(1) processes; Sampled Hilbertian OU-processes admit ARH(1) processes and
their evaluations are close to white noise at high sampling frequencies; Spatial
convergence of evaluations of finite-dimensional Hilbertian AR(1) processes to
evaluations of ARH(1) processes is established

Based on the physical laws of heat transfer a stylized model for the space-time
temperature field over a geographical area is suggested to take the form

dY (t, x) = AY (t, x)dt+ σdW (t, x), (t, x) ∈ R+ × R2, (1.19)

where A is some parabolic operator in space R2 and W is a Gaussian field, with
σ being some scaling acting on the noise. The SPDE in Eq. (1.19) is assessed
as an OU-process in a separable Hilbert space, H. The aim is to connect the
OU-process in infinite dimensions with one-dimensional ARMA processes.

This work is initiated with motivating results connecting Rp-valued AR(1)
time series, X := {Xn}n∈N0 , with one-dimensional ARMA time series, Z :=
{Zn}n∈N0 . That is, with X given by

Xn+1 = BXn + ϵn,

where B ∈ Rp×p and {ϵn}n∈N0 is an IID mean zero Gaussian time series with
values in Rp, the process Zn = w⊤Xn, for any w ∈ Rp, is shown to be an
one-dimensional ARMA time series. This result is true for a given restriction on
the model coefficient B, and a formula for the autoregressive model coefficients
of Z is derived as a function of the eigenvalues of B.

Moving to the suggested temperature model, we show that samples of
Hilbertian OU-processes admit well defined ARH(1) processes, for which the
autoregressive coefficient and the covariance operator are given by the OU-process
semigroup. Furthermore, a convergence result in the time dimension is derived for
the sampled OU-process, indicating that evaluations of the infinite dimensional
ARH(1) processes is close to white noise at high sampling frequency. Next we
consider ARH(1) processes projected into a finite-dimensional subspace V ⊂ H.
Denote ARH(1) processes living in V by ARV(1). An error representation of
the projected ARH(1) process is derived when compared to ARV(1) processes.
Further, for a given basis of the finite-dimensional subspace V , a convergence
result is derived for an evaluation of the projected ARH(1) process. The
convergence result shows that, for fixed equidistant sampling time steps, the
evaluated projected ARH(1) process converges to the evaluated ARV(1) process
as the dimension of V approaches infinity.
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A simulation study is performed with the stochastic heat equation (a special
case of the SPDE in Eq. (1.19)) to substantiate the theoretical results. The
numerical results indicate that point evaluations of ARH(1) processes approach
white noise. Moreover, we see that mean-value8 evaluations of ARH(1) processes
are better represented by one-dimensional autoregressive models of higher orders.
This complies with results from prior studies in modelling of weather variables
where, for example, daily mean values of such time series are shown to be well
represented by autoregressive models of higher orders.

Paper II: Stochastic Modeling of Stratospheric Temperature

Key takeaways: Deseasonalized stratospheric temperature is well-represented
by non-Gaussian CAR(4) model with time-dependent volatility; The model
could provide a better representation if the volatility was stochastic; Season-
ality is discovered in autoregressive model coefficients of stratospheric temperature

Motivated by prior results in the literature on stochastic modeling of surface
weather variables, a Lévy-driven CAR model is proposed for modelling of
temperature dynamics in the Northern Hemisphere stratospheric vortex. More
specifically, the stratospheric temperature, S(t), is assumed to be given by

S(t) = Λ(t) +X1(t), (1.20)

where Λ(t) is an additive seasonality function, and X1(t) is the first component
of a stochastic process X(t) := {X(t)}t∈R+ taking values in Rp, p ∈ N. Here,
X(t) is given by the multivariate OU-process

dX(t) = AX(t)dt+ epσ(t−)dL(t),

where A is a constant p× p coefficient matrix, ep is the p-th unit vector in Rp,
σ(t) : R+ → R+ represents a real valued seasonally varying variance function, and
L(t) = {L(t)}t∈R+ is a Lévy process. With this setup, X1(t) admits a CAR(p)
process. Note that the model in Eq. (1.20) explain seasonal and heteroscedastic
behaviour in data, as well as linear autoregressive behaviour up to p lags.

With a thoroughly described estimation methodology, the model in Eq. (1.20)
is fit to daily zonal (circumpolar) mean stratospheric temperature data at an
altitude corresponding to a pressure level of 10 hPa. As suggested by statistical
analyses, we used a model of order p = 4. The model is fit with statistical
significance for the case when the Lévy process generates NIG distributed
random variables. Further analyses show that an even better representation of
temperature data could be obtained with the volatility σ(t) being stochastic,
and with the autoregressive coefficient A being time-dependent. The latter
innovation is implemented into the model in Eq. (1.20), providing a fit with
statistical significance for NIG distributed residuals.

8The points of ARH(1) time series is constructed from mean values of simulated data over
a given time span
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Paper III: The Multivariate ARMA/CARMA Transformation Relation

Key takeaways: An estimation methodology for multivariate CARMA processes
is derived; The Euler convergence rate for NIG-Lévy-driven multivariate CARMA
processes is found; A multivariate CAR model is fit to stratospheric temperature
and wind

A connection between model coefficients of multivariate CARMA and
ARMA processes is established through an Euler discretization scheme. The
derived connection serves as a model estimation methodology for multivariate
CARMA processes. To obtain this, consider the state-space representation,
Y (t) := {Y (t)}t≥0, of the multivariate CARMA process

dX(t) = AX(t)dt+ βdL(t), Y (t) = CX(t), (1.21)

where A ∈ Rpd×pd, β ∈ Rpd×m and C ∈ Rd×pd, for p, d,m ∈ N, and
L(t) := {L(t)}t≥0 is a Lévy process with values in Rm. Note that the d-
dimensional CARMA process, Y (t), is given by a multivariate OU-process,
X(t) := {X(t)}t≥0, with p and m representing the autoregressive order and the
number of independently driving Lévy processes, respectively.

The form of A (see Paper III) makes X(t) a system of pd (number of) SDEs
that can be solved recursively. We want to exploit this and define a convenient
recursive parameter

Q := (Q(l)
i | k),

that is a function of the SDE systems’ dimension number k ∈ {1, . . . , d} and
lag number l ∈ {1, . . . , p}. Note that the index i works as a recursive counter.
We show that elements of X(t) can be represented by use of Q, and this Q-
representation of the multivariate OU-process in Eq. (1.21) is discretized using
the Euler scheme. The recursively solved system of discretized SDEs admits a
multivariate ARMA process, making a connection between multivariate CARMA
and ARMA processes.

To prove convergence of the discretized multivariate CARMA process, the
Euler scheme convergence rate for jump diffusions with jumps of finite variance
and infinite variations is derived. We chose to study a Lévy process with these
specific properties because the case study of this work requires an NIG-Lévy-
driven model. The case study is performed to illustrate the derived model
estimation methodology for multivariate CARMA processes. That is, we fit a
multivariate CAR model to a two-dimensional dynamical system of stratospheric
temperature and wind variables.

Paper IV: Delay-SDE-Net: A Deep Learning Approach for Time
Series Modelling with Memory and Uncertainty Estimates

Key takeaways: Phenomena well-represented by an SDDE with multiple
delays can be predicted using the Delay-SDE-net; The theoretical L2-error in
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using a two-layer Delay-SDE-net in place of a real-world SDDE is derived; The
Delay-SDE-net performs better in prediction studies than comparing models

In this work we study SDDEs with multiple point delays. That is, let
X(t) : [−τ, T ]× Ω→ Rd be a stochastic vector process given by

X(t) =
{

η(0) +
∫ t

0 f(s,Π1(Xs))ds+
∫ t

0 g(s,Π2(Xs))dW (s), t ≥ 0,
η(t), −τ ≤ t < 0,

(1.22)

where η is a continuous initial process with values in Rd and Π ∈ Rdp is a
projection defining p fixed point delays. Further, Xt is a continuous segment
process of X(t), W (t) is a Brownian motion process taking values in RdW , and
f ∈ Rd and g ∈ Rd×dW are functions satisfying given conditions.

With the aim of estimating X(t) from the general framework given in
Eq. (1.22), we redefine the model coefficients f and g as m-neuron neural networks
fm and gm, respectively. With this method we will not know the explicit form
of the original model coefficients f and g, but fm and gm can be trained to give
a predicted value of X(t) for given input. We call this model the Delay-SDE-net.
To characterize the uncertainty more specifically than simply being a volatility
output value from the trained model, we define the neural network volatility as a
sum of two neural networks gm := ga,m + ge,m. Here, ga,m represents uncertainty
accounting for natural randomness in a task, as well as model uncertainty,
whereas ge,m account for approximation uncertainty originating from lack of
data. A detailed training methodology for the neural networks is described.

The Delay-SDE-net is a physics-informed type of machine learning model, and
is derived with a hypothesis that real-world phenomena are well-represented by
an SDDE with multiple point delays, as presented in Eq. (1.22). When a trained
Delay-SDE-net is used to estimate X(t) there will be an error compared to the
real-world SDDE representation. This (L2-) error is derived theoretically as the
sum of the discretization error and the two-layer neural network approximation
error. It is evident that the discretization error converges for smaller time
discretization steps and that the two-layer neural network error becomes smaller
for an increased number of neurons.

Finally, the Delay-SDE-net is studied numerically. A numerical convergence
study is performed for the discretization error, and results comply with the
applied time discretization scheme. The model prediction performance is tested
both on simulated data, and on data from a real-world case study where we
consider a two-dimensional dynamical system of stratospheric temperature and
wind. The Delay-SDE-net performs better than the comparing models in both
tests, where the performance is measured as root mean square error.
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Paper V: Near Real-Time Stratospheric Circulation Diagnostics
Based on High-Latitude Infrasound Data Using a
Stochastics-Founded Machine Learning Model

Key takeaways: A mapping from ground-based infrasound measurements to
stratospheric wind is established; Results indicate that infrasound has potential
as a near real-time source of information for stratospheric dynamics

This study aims to establish a direct mapping from ground-based infrasound
measurements to Northern Hemisphere zonal-mean zonal wind at 1 hPa. An
SDDE with several point delays is proposed as modelling framework to account
for possible non-linear and non-stationary co-variations, as well as memory effects.
A proper model is estimated via the Delay-SDE-net, where each of the SDDE
model coefficients admits independent neural networks. That is, we train the
model

ŵt = f(t,xt−p−1, . . . ,xt)∆t+ g(t,xt−p−1, . . . ,xt)ϵt,

where ∆t = 1 is the time step size of 1 day, and ϵt is a standard normally
distributed random variables. Furthermore, xs, with s = t − p − 1, . . . , t,
represents a vector of infrasound variables at time s, the functions f and g
represents a trained neural network for the deterministic and stochastic part of
the model respectively, and ŵt represents the corresponding predicted zonal-mean
zonal wind.

The stratospheric zonal-mean zonal wind data are constructed from the
ECMWFs’ ERA5 reanalysis model product. The dataset consists of daily values
of zonal-mean zonal wind that are cosine-weighted and averaged between 60◦– 90◦

latitudes. We use infrasound data from detections at the three northern-most
IMS infrasound stations, and the data are pre-processed in an independent
research project. The infrasound datasets used in this study are constructed as
daily values of the strongest microbarom amplitude and corresponding direction
of arrival (called the back-azimuth) for each station. That is, 6 infrasound
variables are used as features for the Delay-SDE-net.

The Delay-SDE-net is trained on datasets ranging over the 5 years from
2014 to 2018, and subsequently validated by predicting 1 hPa zonal-mean zonal
wind over the years 2019 and 2020. A sensitivity analysis is performed for
different combinations of training data to establish the importance of each
feature. Performance is measured using the root mean square error between
ERA5- and infrasound-based zonal-mean zonal wind. It is evident that the
year with a major SSW, that is 2019, performs better with increased number of
features. In contrast, the year without a major SSW performs nearly equally
well for all combinations of features, indicating that infrasound observations
contribute to the prediction less than the day of year. However, predicting wind
with a Delay-SDE-net trained solely using the day of year as feature confirms
that the additional infrasound features provide enhanced prediction power. The
validation demonstrates that the Delay-SDE-net with infrasound input predicts
the zonal-mean zonal wind surprisingly well, with a RMSE of 11.3 m/s and 11.9
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m/s for 2019 and 2020, respectively, when using all available features. These
results indicate that there is a potential for assimilating infrasound observations
into existing atmospheric models as a near real-time source of information about
the large-scale stratospheric dynamics.
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II

Abstract

This study suggests a stochastic model for time series of daily-zonal
(circumpolar) mean stratospheric temperature at a given pressure level.
It can be seen as an extension of previous studies which have developed
stochastic models for surface temperatures. The proposed model is a sum
of a deterministic seasonality function and a Lévy-driven multidimensional
Ornstein-Uhlenbeck process, which is a mean-reverting stochastic process.
More specifically, the deseasonalized temperature model is an order 4
continuous time autoregressive model, meaning that the stratospheric
temperature is modeled to be directly dependent on the temperature
over four preceding days, while the model’s longer-range memory stems
from its recursive nature. This study is based on temperature data
from the European Centre for Medium-Range Weather Forecasts ERA-
Interim reanalysis model product. The residuals of the autoregressive
model are well-represented by normal inverse Gaussian distributed random
variables scaled with a time-dependent volatility function. A monthly
variability in speed of mean reversion of stratospheric temperature is
found, hence suggesting a generalization of the 4th order continuous
time autoregressive model. A stochastic stratospheric temperature model,
as proposed in this paper, can be used in geophysical analyses to
improve the understanding of stratospheric dynamics. In particular, such
characterizations of stratospheric temperature may be a step towards
greater insight in modeling and prediction of large-scale middle atmospheric
events, such as for example sudden stratospheric warmings. Through
stratosphere-troposphere coupling, the stratosphere is hence a source of
extended tropospheric predictability at weekly to monthly timescales,
which is of great importance in several societal and industry sectors.
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II.1 Introduction

A thorough understanding of surface weather dynamics is crucial in a wide
range of industry and societal sectors. Whether planning marine operations,
flights or farming, or managing energy assets, the weather is a key aspect to
consider. However, because higher atmospheric layers can couple to levels closer
to the surface, in order to understand weather, understanding the dynamics at
higher altitudes of the atmosphere is important. The Earth’s atmosphere has
a layered structure, where each layer has layer-specific properties (see [2] and
the references therein for an historical overview). Closest to the surface lays the
troposphere, reaching up to around 15 km altitude. Above, up to around 50 km,
lays the stratosphere, which is the atmospheric layer of interest in this paper.
These two layers interact, and the dynamics in the stratosphere can couple to
the troposphere to affect dynamics and predictability at the surface, see for
example [21] and [1]. Hence, better probing, modeling, and understanding of
stratospheric dynamics has the potential to enhance numerical surface weather
prediction, in particular at weekly to monthly timescales.

In the current paper, a novel stochastic model for stratospheric temperature
is proposed. The stochastic approach is similar to what has been applied in
previous tropospheric temperature and wind dynamics modeling studies (e.g.,
[11]; [9]; [12]; [15]; [14]).

Temperature tends to revert back to its mean over time [12]. This
feature is reflected in what is called the speed of mean reversion, and is
captured by autoregressive (AR) processes. AR processes are discrete time
stochastic processes having a direct transformation relation with continuous time
autoregressive (CAR) processes ([19]; [12]; [14]). This transformation relation
allows to introduce a continuous time mathematical model framework based on
empirical derivations and analyses. Periodical behaviour is modeled separately
from the CAR process. So is a long-term trend in the stratospheric temperature.
The reason for the inclusion of a long-term trend in stochastic models for
tropospheric temperature, is that it is well known from climate research that
there is a long-term warming of the troposphere (e.g., [31]; [37]; [30]). This
effect is captured in the surface temperature modeling of [12]. Also in [12], cyclic
functions are included through truncated Fourier series which can represent the
periodical movements of tropospheric temperature. Similarly, several studies
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have shown (e.g., [24]; [25]; [38]) that there is a long-term decreasing trend in
stratospheric temperature, and that there are several cyclic (seasonal) patterns
([27]; [35]).

The current empirical analysis and stochastic model study is performed on
temperatures as represented in the European Centre for Medium-Range Weather
Forecasts (ECMWF) ERA-Interim atmospheric reanalysis model product ([16];
[26]). Full-year daily-zonal mean stratospheric temperature data over 60◦N and
10 hPa, from 1979 to 2018, are considered. Similarly as in [12], a seasonality
function in the form of a truncated Fourier series is fitted to the stratospheric
temperature data to find deseasonalized temperature. Then, an AR model is
fitted to the deseasonalized data and thereby subtracted to find the residuals. A
search for seasonal heteroskedasticity (variability of variance over time) in the
residuals is performed, and such heteroskedasticity is found. Based on this, a
time-dependent volatility function, σ(t), is defined. The σ(t)-scaled residuals
are proven, with statistical significance, to be normal inverse Gaussian (NIG)
distributed random variables. Hence, the results of the data analysis suggest
using a Lévy-driven CAR process with a time-varying volatility function to
model stratospheric temperature. The residuals contain small memory effects,
indicating that it might be reasonable to also consider a stochastic volatility
function. This is beyond the scope of this paper.

An individual stability analysis of speed of mean reversion over time is
also performed, suggesting that the assumption about constant speed of mean
reversion is not fulfilled. The result is twofold; the speed of mean reversion
shows large variability from month to month, and it is varying with a seasonal
pattern. Similarly, [40] proved that the speed of mean reversion for tropospheric
temperature is strongly time-dependent, obtaining a series of daily values of
speed of mean reversion through neural networks. However, in contrast to the
current paper, they did not observe seasonal patterns. In [8], Ornstein-Uhlenbeck
(OU) dynamics are generalized to allow for a stochastic speed of mean reversion,
which can incorporate deterministic time dependence as well. However, [8]
consider the special case when the Lévy process is a Brownian motion. This
is less general than the CAR process proposed for stratospheric temperature
modeling in the current paper. Instead of using the aforementioned approaches
to include time dependence in the speed of mean reversion of the CAR process,
a simpler, approximate approach is suggested: A time-dependent step function
with 12 levels is introduced, where the levels represent the months of the year.
In this way both the monthly variability and the seasonal behaviour are adjusted
for. The procedure of fitting a CAR process to the stratospheric temperature
data is repeated for the extended CAR process with time dependence in speed of
mean reversion. The inclusion of time dependence does not change the outcome
of σ(t)-scaled residuals: These are still NIG distributed random variables.

The structure of the paper is as follows: In Sect. II.2, a mathematical
framework of the stochastic model for stratospheric temperature is proposed. In
Sect. II.3, a non-Gaussian CAR process with constant speed of mean reversion
and time-dependent volatility function is introduced and proposed to model
stratospheric temperature. The methodology for fitting the model to the
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stratospheric temperature data is explained. Furthermore, it is shown that the
most important features of stratospheric temperature dynamics are explainable
through the proposed model. Then, in Sect. II.4 a stability analysis of speed of
mean reversion is performed, revealing that the proposed CAR process should
be generalized to include a time-dependent speed of mean reversion. Finally,
conclusions and suggestions for future work are provided in Sect. II.5.

II.2 The Structure of a Stratospheric Temperature Model

In this section, it is argued that stratospheric temperature exhibits an
autoregressive behavior. This motivates the use of autoregressive models. For
completeness, the definitions of discrete and continuous time autoregressive
processes are recalled. It is also explained how these two kinds of processes are
connected.

II.2.1 Autoregressive Behaviour of Stratospheric Temperature
Dynamics

Inspection of daily-zonal mean stratospheric temperature data over 60◦N and
10 hPa, from now on referred to as the stratospheric temperature data, S(t),
clearly indicates a seasonal pattern. This is illustrated in Fig. II.1 which displays
10 years of stratospheric temperature data. The corresponding autocorrelation
function (ACF), computed over 1 January 1979 to 31 December 2018 with lags
up to 730 days (2 years), is presented in Fig. II.2a. The ACF pattern confirms a
stratospheric temperature seasonal behaviour.

Figure II.1: Daily-zonal mean stratospheric temperature, S(t), over a region R
(see Sect. II.3.2) the last 10 years (1 January 2009 to 31 December 2018) with
the fitted seasonality function Λ(t). The vertical lines represent each of the 10
years

Inspired by prior work in stochastic modeling of surface temperature and
wind dynamics, in the context of financial weather contracts (e.g., [11]; [9]; [10];
[12]; [14]), a long-term seasonality and trend function is fit to the stratospheric
temperature data, see Sect. II.3.3. The long-term seasonality and trend function is
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(a) ACF of S(t) (b) ACF of Y (t) (c) PACF of Y (t)

Figure II.2: ACF of stratospheric temperature, S(t), and ACF and PACF of
deseasonalized stratospheric temperature, Y (t) (see Eq. (II.1))

from now on referred to as the seasonality function. Deseasonalized temperature
is obtained by subtracting the fitted seasonality function from the original
dataset.

Denote by Y (t) the deseasonalized version of the stratospheric temperature,
S(t). Further, define Λ(t) : [0, T ]→ R to be a bounded and continuously differ-
entiable (deterministic) seasonality function. Thus, stratospheric temperature is
modeled as

S(t) = Λ(t) + Y (t). (II.1)

Note that although the seasonality function Λ(t) is deterministic, the strato-
spheric temperature, S(t), and the deseasonalized temperature, Y (t), are stochas-
tic. Let Ω be a scenario space. Then, both S(t) and Y (t) depend on some scenario
ω ∈ Ω, that is, S(t) ≜ S(t, ω), Y (t) ≜ Y (t, ω). For notational convenience, the
scenario ω is suppressed from the notation for the remaining part of the paper.
In Sect. II.3.3, a review of possible seasonal effects is given prior to the explicit
definition of the seasonality function Λ(t). There, it will also be shown that
a truncated Fourier series with linear trend is an appropriate choice for the
seasonality function (see Eq. (II.18)).

Studying the ACF and partial autocorrelation function (PACF) of the
deseasonalized temperature data, Y (t), (Figs. II.2b and II.2c) it is found that the
deseasonalized temperature dynamics follows an AR process. For completeness,
the definition of AR processes is given in the next section. Further, the PACF
of the deseasonalized stratospheric temperature (Fig. II.2c) indicates that an
AR(4) model should be used to capture significant memory effects (see [34] for
an introduction to AR modeling and the interpretation of ACF and PACF plots).
This means that the direct memory effects in stratospheric temperature last
for four days in this model. However, due to the recursive properties of AR
processes, the total memory effect is actually longer. As explained in Sect. II.2.2,
there is a transformation relation between (discrete time) AR(p) and (continuous
time) CAR(p) processes. This means that, by removing the seasonal behaviour
in stratospheric temperature data, the resulting deseasonalized stratospheric
temperature data can be modeled by a CAR process. It will be shown that Y (t)
can be approximated by a CAR(4) model.
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II.2.2 Non-Gaussian CAR(p) Processes and Their Connection to
AR(p) Processes

In this section, AR and CAR processes are defined. Motivated by the observed
ACF and PACF for the deseasonalized stratospheric temperature data (see
Sect. II.2.1), these processes are natural components in a model for stratospheric
temperature. They are also part of surface temperature models applied in energy
markets contexts (e.g., [11]; [10], Ch. 4; [14]; [12], Ch. 10).

Suppose (Ω,F , {Ft}t≥0, P ) is a complete filtered probability space. Let
X(t) = {X(t)}t∈R+ be a stochastic process in Rp, p ∈ N, defined by a
multidimensional non-Gaussian OU process with time-dependent volatility. That
is, X(t) is given by the solution of the stochastic differential equation (SDE)

dX(t) = AX(t)dt+ epσ(t−)dL(t), (II.2)

where ep is the p-th unit vector in Rp, σ(t) : R+ → R+ is a càdlàg, Ft-adapted
function, L(t) = {L(t)}t∈R+ is a Lévy process, and A is the p × p coefficient
matrix

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−αp −αp−1 −αp−2 · · · −α1

 , (II.3)

where αk, k = 1, . . . , p, are positive constants. By the multidimensional Itô
formula the solution of Eq. (II.2) is given by

X(s) = exp (A(s− t)) x +
∫ s

t

exp(A(s− u))epσ(u−)dL(u),

where s ≥ t ≥ 0 and X(t) ≜ x ∈ Rp. Let p > j > q ∈ N. Then, the Lévy-driven
stochastic process Y (t) = {Y (t)}t∈R+ defined as Y (t) ≜ b′X(t), for a transposed
vector b ∈ Rp×1 with elements satisfying bq ̸= 0 (sometimes, bq = 1 is assumed)
and bj = 0, is called a (Lévy-driven) CARMA(p, q) process (e.g., [20]; [17]; [19];
[18]). The simplified version of a CARMA(p, q) process Y (t) where b = e1,
meaning q = 1 and

Y (t) = X1(t), (II.4)

is called a CAR(p) process. Note that p is the direct time lag dependence in
Y (t). As seen in for example [11] and [9], the CAR(p) model framework is
suitable for capturing surface temperature and wind evolution. Therefore, it
is used in modeling of weather dynamics, for example in relation to financial
weather contracts. In the current paper, it will be proved that the deseasonalized
stratospheric temperature, Y (t), can be modeled by a CAR(p) process as in
Eq. (II.4).
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Now, for a discrete time framework version, consider an AR(p) process given
by

X(t) = β1X(t− 1) + β2X(t− 2) + · · ·+ βpX(t− p) + e(t), (II.5)

where X(t) ∈ R is the value of the AR process at times t = 0, 1, . . ., and βk,
k = 1, . . . , p, are constant coefficients and e(t) are i.i.d. random error terms. The
dynamics of a Lévy-driven CARMA(p, q) process, see Eq. (II.2), can be expressed
as

dXq(t) =


Xq+1(t)dt if q = 1, . . . , p− 1

−
p∑

q=1
αp−q+1Xq(t)dt+ σ(t−)dL(t) if q = p.

(II.6)

By discretization of the expression in Eq. (II.6) ([12]; [14]) a transformation
relation between (discrete time) AR(p) processes and the corresponding
(continuous time) CAR(p) processes is obtained. That is, a transformation
relation between X(t) in Eq. (II.5) and Y (t) in Eq. (II.4). See [12], Ch. 10, for
a detailed derivation. Note that the connection between the AR and CAR
processes is primarily useful because the continuous version, CAR, allows for
deriving analytical results more easily, via stochastic analysis. For instance,
[12] uses CAR processes to model surface temperature, which is later used to
price options. To the best of our knowledge, financial products based directly
on stratospheric data are not commonly available. However, as the state of the
stratosphere is connected to long-term surface weather forecasting, the CAR
model may be of interest for pricing financial weather contracts with long-term
maturity. Further developments may also aim for a stratospheric temperature
model where a control is involved. This means a situation where one may affect
the stratospheric temperature directly, or indirectly, via for example carbon
emissions.

Now consider the special case when p = 4, which will be proven to be well
suited for modeling of stratospheric temperature, as assumed from observations in
Sect. II.2.1. The dynamics of the CAR(4) process, see Eq. (II.2), can be written as
dX1(t)
dX2(t)
dX3(t)
dX4(t)

 =


0 1 0 0
0 0 1 0
0 0 0 1
−α4 −α3 −α2 −α1

 ·

X1(t)dt
X2(t)dt
X3(t)dt
X4(t)dt

+


0
0
0

σ(t−)dL(t)



=


X2(t)dt
X3(t)dt
X4(t)dt

−α4X1(t)dt− α3X2(t)dt− α2X3(t)dt− α1X4(t)dt+ σ(t−)dL(t)

 .
Note that the dynamics have the form as described in Eq. (II.6). By the
transformation relation between AR(p) processes and CAR(p) processes [12] it
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is found that the model coefficients of the CAR(4) process are given by

α1 = 4− β1, α2 = −3β1 − β2 + 6,
α3 = −3β1 − 2β2 − β3 + 4, α4 = −β1 − β2 − β3 − β4 + 1. (II.7)

The matrix A, see Eq. (II.3), is referred to as the speed of mean reversion
throughout the paper. This concept was introduced through half-life compu-
tations for Brownian motion-driven (one-dimensional) OU processes in [23],
Sect. 2.4. That is, for some s > t and a drift coefficient α the formula

s− t = ln(2)
α

, (II.8)

gives the time until a shock X(1)(t) away from the process’ long-term mean
returns half-way back to this long-term mean [14]. For an OU process, the
drift coefficient α is the only variable affecting the half-life. As large α gives
shorter half-life, and smaller α gives longer half-life, α is referred to as speed of
mean reversion. In the current paper, non-Gaussian CAR (CARMA) processes
are considered rather than standard OU processes. The half-life formula for
non-Gaussian CARMA processes is state-dependent [14], meaning that the time
s in Eq. (II.8) is a stopping time. Denote this stopping time by τ . The special
case when the non-Gaussian CARMA process is a CAR process (the process
considered in the remaining parts of this paper) gives a half-life formula of the
form

e′
1

(
exp(A(τ − t))− 1

2I
)

X(t) = 0, (II.9)

[13]. Solving this equation for τ analytically is difficult, and hence it is not clear
how the coefficient matrix A affects the process’ half-life. The coefficient matrix
A will still be referred to as the speed of mean reversion, where each matrix
element αi is assumed to be a contribution to the speed of mean reversion.

A CAR(4) model driven by the multidimensional OU process in Eq. (II.2)
assumes constant speed of mean reversion. In Sect. II.4, it will be shown that
this assumption is not valid for our dataset. The stratospheric temperature data
indicates a seasonal varying pattern in speed of mean reversion from month to
month. Based on this observation, an extended model framework is proposed.
That is, a CAR(4) model driven by a multidimensional OU process with time
varying speed of mean reversion. The theorem below gives an explicit formula
for the (unique) solution of the multidimensional OU SDE driven by a Lévy
process with time-dependent speed of mean reversion.

Theorem II.2.1. Let X(t) be given by the multidimensional OU process
dX(t) = A(t)X(t)dt+ e4σ(t−)dL(t), (II.10)

where A(t) is the 4× 4-matrix

A(t) =


0 1 0 0
0 0 1 0
0 0 0 1

−α4(t) −α3(t) −α2(t) −α1(t)

 . (II.11)
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Then

X(t) = exp
(∫ t

0
A(s)ds

)(
x +

∫ t

0
exp

(
−
∫ s

0
A(u)du

)
e4σ(s−)dL(s)

)
,

(II.12)

where x ≜ X(0).

Proof. Rewrite the SDE in Eq. (II.10) by use of the Itô-Lévy decomposition, to
find that

dX(t) =A(t)X(t)dt+ e4σ(t−)
(
adt+ bdB(t) +

∫
R
zN̄(dt, dz)

)
= (A(t)X(t) + e4aσ(t−)) dt+ e4bσ(t−)dB(t) + e4σ(t−)

∫
R
zN̄(dt, dz).

By definition, X(t) is a multidimensional Itô-Lévy process. Apply the

multidimensional Itô formula on dY (t) ≜ d

(
exp

(
−
∫ t

0
A(s)ds

)
X(t)

)
. By

defining Y (t) ≜ f(t,X(t)), it is found by the dominated convergence theorem
and the fundamental theorem of calculus that

∂f

∂t
(t,X(t)) = ∂

∂t

∞∑
k=1

1
k!

(
−
∫ t

0
A(s)ds

)k

X(t)

=−
∞∑

k=1

1
(k − 1)!

(
−
∫ t

0
A(s)ds

)k−1

A(t)X(t)

=− exp
(
−
∫ t

0
A(s)ds

)
A(t)X(t).

Furthermore, note that

∂f

∂xi
(t,X(t)) = exp

(
−
∫ t

0
A(s)ds

)
ei and ∂2f

∂xi∂xj
(t,X(t)) = 0,

for all i and i, j respectively. The remaining terms coming from the Itô formula
are trivial. Thus, one finds that

dY (t) exp
(∫ t

0
A(s)ds

)
=

−A(t)X(t)dt+ e4bσ(t−)dB(t) +
∫

R
{X(t−) + e4σ(t−)z −X(t−)} N̄(dt, dz)

+
(
X2(t)e1 +X3(t)e2 +X4(t)e3

+ (−α4(t)X1(t)− α3(t)X2(t)− α2(t)X3(t)− α1(t)X4(t) + aσ(t−))e4

)
dt
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+
∫

|z|<R

{X(t−) + e4σ(t−)z −X(t−)− e4σ(t−)z} ν(dz)dt

=A(t)X(t)−A(t)X(t) + e4σ(t−)
(
adt+ bdB(t) +

∫
R
zN̄(dt, dz)

)
=e4σ(t−)dL(t).

Hence, from the definition of Y (t), when x ≜ X(0),

X(t) = exp
(∫ t

0
A(s)ds

)(
x +

∫ t

0
exp

(
−
∫ s

0
A(u)du

)
e4σ(s−)dL(s)

)
.

■

II.3 Stochastic Modeling of Daily-Zonal Mean Stratospheric
Temperature

The aim of the following sections is to fit a CAR model to the daily-zonal
mean stratospheric temperature data obtained from the ECMWF ERA-Interim
reanalysis product.

II.3.1 Methodology for Deriving and Fitting a Stochastic Model to
Stratospheric Temperature Data

This section describes the data analysis applied in Sects. II.3.3-II.3.5 to fit the
model in Eq. (II.1) to ERA-Interim stratospheric temperature reanalysis data
(described in [16] and specified in Sect. II.3.2). Applying this methodology shows
that the model in Eq. (II.1) is suitable to model stratospheric temperature when
Y (t) is a non-Gaussian CAR(4) process.

Assume that a dataset of stratospheric temperatures indexed by time is given,
and denote this by S. A detailed description of the stratospheric temperature
dataset used in this paper will be given in Sect. II.3.2. The main steps of the
data analysis of S are:

1. Fit a deterministic continuous seasonality function Λ(t) to S. Subtract Λ(t)
from S to obtain a dataset of deseasonalized stratospheric temperatures,
denoted Sd.

2. Fit an AR(p) model to Sd with the choice of p based on the PACF of the
dataset. Subtract the fitted AR(p) model from Sd to obtain a dataset of
residuals, E .

3. Compute the empirical expected values of the squared residuals each day
over the year (assumed to be 365 days) to construct an approximation of
the time-varying volatility function, σ(t).
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4. Divide E by σ(t) to obtain a dataset of σ(t)-scaled residuals, denoted
Ê . Find the probability distribution of the elements in Ê (by statistical
analysis).

As the goal of this work is to obtain a continuous time stochastic model for
stratospheric temperature, notation corresponding to continuous functions will
be used in the more detailed explanation that follows.

Assume that the stratospheric temperature, S(t), is given by Eq. (II.1), Y (t)
being a CAR(p) process as in Eq. (II.4). The lag p = 4 is chosen based on
observations in Sect. II.2.1, meaning that the direct memory effect reaches over
four days. Then, by the transformation relation between CAR(4) and AR(4)
processes in Eq. (II.7), the deseasonalized temperature is given by

X(t) = S(t)− Λ(t) =
4∑

k=1
βkX(t− k) + e(t). (II.13)

The seasonality function Λ(t) is fit by least squares to simulate the seasonal
behavior of the stratospheric temperature data in S, and then subtracted from
the stratospheric temperature data to find the discrete version of deseasonalized
stratospheric temperature. The deseasonalized temperature is given by the AR(4)
process X(t) in Eq. (II.13), with random error terms (residuals) e(t). Therefore,
by use of least squares, an AR(4) model is fit to the deseasonalized stratospheric
temperature data in Sd, and then subtracted to find the residuals dataset E .
Mathematically, the residuals are given by

e(t) = X(t)−
4∑

k=1
βkX(t− k). (II.14)

In Sect. II.3.5, yearly heteroskedasticity is observed in the squared residuals. This
means that the daily variance values (over the year) of the dataset E are time-
dependent. Therefore, a time-varying volatility function σ(t) is approximated
and divided on the residuals in E to obtain the σ(t)-scaled residuals

ϵ(t) = e(t)
σ(t) . (II.15)

That is, ϵ(t) represents the data in Ê . Recall from Sect. II.2.2 (Eq. (II.5)), that
ϵ(t) are i.i.d. random variables. The mean value of residuals each day d during
the year, d ∈ [1, 365] (see Sect. II.3.2), is assumed to be constant. Therefore, the
variance each day during the year is given by

Var(ed(t)) =
(
E[e2

d(t)]− E[ed(t)]2
)
, (II.16)

where E[ed(t)] represents the empirical mean value of residuals at day d. The
magnitude of E[ed(t)]2 is insignificant compared to E[e2

d(t)], see Fig. II.3 for an
illustration of this. Hence, the approximation

Var(ed(t)) ≃ E[e2
d(t)], (II.17)
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is used to fit an appropriate time-varying variance function, V (t), for t ∈ [1, 365].
See Sect. II.3.5 for a thorough explanation of how to compute E[e2

d(t)] empirically.
When E[e2

d(t)] is computed for each d, the function V (t) is fit to the values
by use of three heavily truncated Fourier series (by least squares), which are
connected by two sigmoid functions. The time-varying volatility function is finally
computed as σ(t) =

√
V (t). When Ê is obtained, an appropriate probability

density function (pdf) describing the distribution of the σ(t)-scaled residuals has
to be found. Finally, the last step is to introduce a stochastic process which is
able to replicate the behaviour of the particular pdf. The σ(t)-scaled residuals
function ϵ(t) is represented by this stochastic process in the CAR model.

From this analysis, an appropriate driving stochastic process for the CAR(4)
model is obtained. However, at this point (due to doing time series analysis) the
model is given by Eq. (II.13), and is thus a discrete model. The CAR(4) model,
which is given in Eq. (II.4), is found by applying the transformation relation in
Eq. (II.7). A detailed description of this data analysis methodology applied to
the ERA-Interim stratospheric temperature reanalysis data (see Sect. II.3.2) is
given in Sects. II.3.3-II.3.5.

Figure II.3: Variance each day of the year computed with the approximation
in Eq. (II.17), and the corresponding relative error when compared with the
definition of variance (Eq. (II.16)). The mean absolute percentage error is 2.8%

II.3.2 The Zonal Mean Stratospheric Temperature Dataset

The aim of this section is to describe the stratospheric temperature dataset
analyzed in the remaining of this paper.

Define a spherical coordinate system such that (rtot, θ, φ) represents a point
in the atmosphere. Let rtot = rE + r represent the altitude from the center of
the Earth, where rE is the radius of the Earth and r is the distance from Earth’s
surface to the atmospheric point of interest. Further, θ represents the longitude
and φ the latitude. With the presented notation, the region of interest in this
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paper can be defined as

R ≜
{

(rtot, θ, φ)|r = 10 hPa ≃ 30 km, θ ∈ [−180◦E, 180◦E), φ = 60◦N
}
.

The region R is an area bounded by a circumpolar line in the extra-tropical
stratosphere. The pressure level 10 hPa corresponds roughly to 30 km altitude.
Stratospheric dynamics in this region are highly variable, and they depend on
the state of the stratospheric polar vortex.

Enhanced probing and representation of the stratosphere in atmospheric
models and numerical weather prediction systems has potential to enhance surface
weather predictions on weekly to monthly timescales (e.g., [36]; [32]; [21]). Maybe
the most striking example of stratospheric influence on the surface is the extreme
event of sudden stratospheric warmings (SSWs), where an abrupt disruption
in the stratospheric winter circulation occurs, accompanied by a stratospheric
temperature increase of several tens of degrees. SSWs are detectable in the region
R. Through stratosphere-troposphere coupling, the effects of SSWs can extend to
the troposphere, with increased probability of shifts in the jet stream and storm
tracks, further affecting the expected precipitation and surface temperatures.
This phenomenon can, for example, be manifested as harsher winter weather
regimes on continental North America and Eurasia [3]. This may have impact
on several sectors in society and industry.

With the purpose of deriving a stochastic stratospheric temperature model,
a dataset D from the ERA-Interim reanalysis model product is retrieved from
ECMWF [16], such that each temporal data point di ∈ D represents the spatial
mean stratospheric temperature over R. As the spatial mean is taken over
the full circumpolar interval, this is denoted as the zonal mean. The zonal
mean properties of the stratosphere at the 10 hPa pressure level is commonly
considered in stratospheric diagnostics, and when studying stratospheric events
like SSWs and beyond [22]. The subscript i represents a measurement every
six hours from midnight, and the zonal mean is taken over θ at a 0.5◦ spacing.
That is, D contains four zonal mean temperature measurements every day
within the interval T ∈ [1 January 1979, 31 December 2018]. For computational
convenience, all data from 29 February each leap year are excluded from D,
such that the length of each year is constant. All stated specifications of D are
collected in Tab. II.1. Further, define the dataset

S ≜
{
Sk : Sk = E[d|Dk]

}
,

where Dk are subsets of D containing four data points every given day k in
the time interval T (except days 29 February), and E[d|Dk] is the empirical
mean. That is, S contains daily-zonal mean stratospheric temperatures over the
region R for days in the time interval T . This is the time series analyzed in the
remaining of this paper. As 29 February is excluded each leap year, the total
number of data points in S is 14, 600. A plot of S for the last ten years (from 1
January 2009 to 31 December 2018) with a fitted seasonality function was shown
in Fig. II.1.
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Table II.1: Specifications of the stratospheric temperature dataset D

Date Grid Pressure level Time Area Unit

1 January 1979 to
31 December 2018 0.5◦ 10 hPa 00:00, 06:00,

12:00, 18:00
60◦N and

[−180◦E, 180◦E) Kelvin

II.3.3 Fitting a Seasonality Function to Stratospheric Temperature
Data

In this section, seasonality in stratospheric temperature data is analyzed.
Seasonality in this setting means (deterministic) periodically repetitive patterns
of temperature dynamics over time. A deterministic seasonality function will be
fit to the dataset S, with the aim of further analyzing deseasonalized temperature
data where these periodically repetitive patterns are removed. Although the
stratosphere is typically characterized by variations on longer timescales than the
troposphere, there are oscillation, or atmospheric tide, patterns present at these
altitudes as well. In addition to the directly forced cycles causing seasonal effects,
for example, the phenomenon of quasi-biennial oscillations (QBO) is a nearly
periodic phenomenon in the stratosphere. The QBO period is variable, but
averages to about 28 months. This is a phenomenon occurring in the equatorial
stratosphere. Still, the QBO can affect stratospheric conditions from pole to
pole, and even has effects on the breaking of wintertime polar vortices, leading
to SSWs ([39]; [4]).

Seasonal effects complicate stochastic modeling because they cause non-
stationarity. In the current study, daily-zonal mean stratospheric temperatures
over 40 years are considered, meaning that the periodic phenomena of interest
are the yearly cycle and the QBO. Non-stationarity can also result from long-
term effects of greenhouse gases and ozone, anthropogenic forcings that cause a
stratospheric cooling trend ([24]; [25]; [38]). The first step in deriving a stochastic
stratospheric temperature model is to fit a seasonality function to the data, and
then to subtract this to remove the non-stationary effects.

As the yearly cycle is the most pronounced phenomenon (Figs. II.1 and
II.2a), a Fourier series with a period of 365 days is chosen as seasonality
function. Further, the long-term decreasing trend in stratospheric temperature
is approximately linear, meaning that a linear function should be present in
the seasonality function as well. Based on these considerations, a seasonality
function Λ(t) is defined as in Eq. (II.18).

In the following, the continuous version of daily-zonal mean stratospheric
temperature data Si ∈ S (as described in Sect. II.3.2) is denoted by S(t), where
t ∈ R+. Let S(t) be given by the stochastic model in Eq. (II.1) with seasonality
function

Λ(t) = c0 + c1t+
n∑

k=1
(c2k cos(kπt/365) + c2k+1 sin(kπt/365)) , (II.18)
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where c0, c1, c2, . . . , c2n+1 are constants. The choice of Λ(t) is made based on
the discussion above, where c1 captures the slope of the long-term cooling of the
stratosphere (corresponding to global warming of the troposphere), and where
the constant term c0 represents the average level at the beginning of the time
series S. The constants c2, . . . , c2k+1 describe the yearly cycle as weights in the
truncated Fourier series.

The seasonality function Λ(t) is fit to the time series in S with n = 10 (using
least squares), with resulting parameters given in Tab. II.2. Figure II.1 displays
the fitted seasonality function Λ(t) together with the ten last years of the times
series in S. The value of c0 in Tab. II.2 indicates that the daily-zonal mean
stratospheric temperature over the region R (see Sect. II.3.2) was approximately
226.15 K (−47.00◦C) in 1979. The negative value of c1 confirms the long-term
cooling effect of the stratosphere. The c1 value found corresponds to a daily-zonal
mean stratospheric temperature decrease of approximately 1.05 K (equivalent to
a change of 1.05◦C) over the last 40 years at 60◦N and 10 hPa. This is consistent
with [38], estimating an overall cooling of the stratosphere of about 1-3 K over
the same time span.

Table II.2: Seasonality function, Λ(t), parameters (see Eq. (II.18)) for daily-zonal
mean stratosphe ric temperature at 60◦N and 10 hPa between 1 January 1979
and 31 December 2018

c0 c2 c4 c6 c8 c10 c12 c14 c16 c18 c20
226.15 −0.05 −12.09 0.23 1.88 0.33 0.16 0.13 −0.09 −0.15 −0.01
c1 c3 c5 c7 c9 c11 c13 c15 c17 c19 c21

−0.000072 −0.11 1.63 −0.23 2.81 −0.04 1.54 0.14 0.45 0.05 0.11

II.3.4 Fitting an AR Model to Deseasonalized Stratospheric
Temperature Data

Having deseasonalized the stratospheric temperature dataset S, the next step
is to fit an AR model to the deseasonalized dataset Sd. Temperature tends to
having a mean-reverting property over time, a property that can be modeled
by an AR(p) process [12]. Based on the discussion in Sect. II.2.1, suppose
that the deseasonalized stratospheric temperature Y (t) = S(t) − Λ(t) can be
modeled by an AR(p) process as represented in Eq. (II.5), where the random
error terms e(t) represent the model residuals. The empirical ACF and PACF
of the deseasonalized stratospheric temperature data illustrated in Figs. II.2b
and II.2c confirm that it is appropriate to model Y (t) by an AR(p) process, and
indicate that p = 4 is needed to explain the time series evolution (see [34]). An
AR(4) model is fit to the deseasonalized stratospheric temperature data in Sd

by use of least squares. The resulting AR(4) model parameters are presented in
Tab. II.3. By use of Eq. (II.7) the corresponding CAR(4) process is calculated,
and the resulting model parameters for this continuous model are presented in
Tab. II.3 as well. Based on the reasoning in [12], preservation of stationarity of
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the CAR(4) model depends on the properties of the time-dependent volatility
function σ(t). However, as long as all eigenvalues of the matrix A have negative
real part, it is ensured that the modeled temperature on average will coincide
with the seasonality function Λ(t) when time approaches infinity. This is because,
as will be shown in Sect. II.3.5, the Lévy-driven CAR(4) model generates NIG
distributed random variables with mean zero, a property which is preserved for
the model in the long run when the eigenvalues have negative real part. The
eigenvalue equation

λ4 + α1λ
3 + α2λ

2 + α3λ+ α4, (II.19)

has roots λ1,2 = −1.01± 0.43i, λ3 = −0.36 and λ4 = −0.07, and the stationarity
condition is therefore satisfied.

Table II.3: AR(4) model parameters, and parameters of its continuous
counterpart, when fitted to daily-zonal mean stratospheric temperature over
60◦N and 10 hPa in the period 1 January 1979 to 31 December 2018

AR(4) parameters
β1 β2 β3 β4

1.55 −0.75 0.28 −0.11

CAR(4) parameters
α1 α2 α3 α4

2.45 2.10 0.56 0.03

II.3.5 Analyzing the Residuals

In this section, the residuals (random error terms) in the dataset E are analyzed
to determine the appropriate stochastic driving process of the CAR(4) model
for stratospheric temperature.

In computing the parameters of the CAR(4) model in Sect. II.3.4, the
deterministic mean-reverting property of the stratospheric temperature is found.
A suitable stochastic driving process for the model residuals, corresponding to
the random error terms in Eq. (II.5), still remains to be found. As derived in
Sect. II.3.1, the model residuals are given by

e(t) = X(t)−
4∑

k=1
βkX(t− k). (II.20)

The approach to find a suitable stochastic driving process is therefore to
empirically determine the stratospheric temperature model residual distribution
in E . In [34], there is a statement that residuals of AR(p) models approach white
noise for larger p. Therefore, it is reasonable as a first guess to assume that e(t) is
distributed as i.i.d. N(0, 1). A normal fit is performed on E , however, by Fig. II.4a
it is clear that the data is not normally distributed. Further, Fig. II.4b indicate a
seasonally varying empirical ACF of squared residuals. Since the distributional
mean value is close to zero, this is a sign of seasonal heteroskedasticity in
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the distributional variance (see Sect. II.3.1). A similar seasonal pattern in the
empirical ACF of squared residuals was observed by [12] in daily average surface
temperature data in Sweden.

Still assuming the stratospheric temperature model residuals to be normally
distributed random variables, however with a time-varying variance rather than
the constant 1, e(t) is rewritten as

e(t) = σ(t)ϵ(t). (II.21)

Here, ϵ(t) are distributed as i.i.d. N(0, 1), and σ(t) is a yearly (see Fig. II.4b)
time-varying deterministic function. To adjust for the heteroskedasticity, the
volatility function σ(t) must be defined explicitly. To do so, the same approach
as in [12] is used: Daily residuals over 40 years are organized into 365 groups, one
group for each day of the year. This means that all observations on 1 January are
collected into group 1, all observations on 2 January into group 2, and so on until
all days of all years are grouped together. Recall that observations on 29 February
were removed each leap year, such that each year contains 365 data points. By
computing the empirical mean of the squared residuals in each group, an estimate
of the expected squared residual each day of the year is found, corresponding to
an estimate of the daily variance, as explained in Sect. II.3.1 (Eq. (II.17)). The
resulting 365 estimates of daily variance yields an estimate of the time-varying
variance function, V (t), over the year. This is illustrated in Fig. II.5. The yearly
heteroskedasticity is clearly visible. Recall that, by definition, the volatility

(a) Distribution of e(t) (b) ACF of e2(t)

Figure II.4: The distribution of stratospheric temperature model residuals e(t)
(Eq. (II.20)) with a fitted normal distribution, and ACF of the squared model
residuals e2(t)

function σ(t) is the square root of the time-varying variance function. With the
aim of obtaining σ(t), an analytic function is fit to the empirically computed
expected value of squared residuals, to find a proper function V (t). Figure II.5
illustrate that the volatility in the stratospheric temperature variance is much
higher in winter time than in summer time, as seen in [28]. This, as well as
the shape of the estimated daily variance (expected squared residuals) over the
year, makes function estimation with Fourier series more challenging than simply
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fitting a single Fourier series. To properly fit a function V (t), the year is split
into three parts. Each part represents the winter/spring season, summer season
and autumn/winter season, respectively. A local variance test is performed to
find appropriate seasonal endpoints. That is, the summer season variance is
low and stable compared to the two other seasons, and so the summer season
endpoints are set where the local variance hits a given limit, δ. Define the local
variance as

v(n) ≜ 1
2n− 1

2n−1∑
i=0

(xi − µ)2,

where n represents the degree of locality. The number of elements included in
the sum is odd, 2n− 1, such that the local variance for each element is based
on a symmetric number of neighbours on each side. The test is performed
as follows: First, the limit δ is defined such that mid-summer local variances
do not exceed δ. Second, with estimated expected squared residuals given as
[V1, V2, . . . , V364, V365], the local variance v(n)k is computed for each point Vk

in [Vn, Vn+1, . . . , V364−n, V365−n] (each endpoint is cut with n− 1 elements for
computability). Third, an array K = [ki ∈ {n, n+1, . . . , 365−n} : v(n)ki < δ] is
constructed (sequentially in time), such that the index (that is, day) of elements
with satisfactory small local variance is known. Fourth, based on the array K,
a collection K = {(ki − ki−1, ki) ∈ N × {n, n + 1, . . . , 365 − n} : ∀ ki ∈ K} is
constructed for stability purposes. Finally, all pairs in K where ki − ki−1 > 1
(day) are printed such that stability of the condition v(n)k < δ can be evaluated
manually.

The analysis is performed with n = 5 and δ = 0.0002, and gives
cutoff at days 115 and 288, corresponding to 25 April and 15 October,
respectively. For simplicity, the cutoffs are set at the following whole month.
That is, the three seasons winter/spring, summer and autumn/winter are
defined to be in the intervals [1 January, 30 April], [1 May, 31 October] and
[1 November, 31 December], respectively. A function is fit to the estimate of
V (t) for each of the three seasons by use of the truncated Fourier series

wf (t) = d0 +
2∑

k=1
(d2k−1 cos(fkπt/365) + d2k sin(fkπt/365)) , (II.22)

where d0, ..., d4 are constants and f is a given parameter adjusting the series
frequency. By manual inspection, the function wf (t) for each of the three seasons
are chosen as w0.44(1)(t), w2.0(t) and w0.44(2)(t) respectively, and Tab. II.4 displays
the fitted parameters.

The transitions from winter/spring to summer and from summer to
autumn/winter should be smooth in order to obtain a smooth yearly time-
varying volatility function σ(t) : [1, 365]→ R. This is achieved by connecting the
three functions w0.44(1)(t), w2.0(t) and w0.44(2)(t) with two sigmoid functions as
in [33]. The sigmoid function ω(x) and the connective function ξ(x) are given by

ω(x) = 1
1 + exp

(
−( x−a

b )
) and ξ(x) =

(
1− ω(x)

)
f1(x) + ω(x)f2(x),
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where a and b are shift and scaling constants respectively, and f1(x) and f2(x) are
two functions that are to be connected. By connecting the functions w0.44(1)(t)
and w2.0(t) with a = 120 and b = 2, and connecting the functions w2.0(t) and
w0.44(2)(t) with a = 304 and b = 5, a smooth function σ(t) is found. The
resulting volatility function is illustrated as σ2(t) (or V (t)) in Fig. II.5, together
with the estimated daily variances during the year. With an explicit expression

Table II.4: Parameters of fitted Fourier series, wf (t) (see Eq. (II.22)), to each of
the three seasons winter/spring, summer and autumn/winter

Winter/spring (f = 0.44)
d0 d1 d2 d3 d4

−507.58 633.29 269.90 −124.82 −130.75

Summer (f = 2.0)
d0 d1 d2 d3 d4

0.092 0.107 0.023 0.034 0.015

Autumn/winter (f = 0.44)
d0 d1 d2 d3 d4

13.36 −263.03 86.00 91.21 102.50

Figure II.5: Estimation of expected squared residuals (estimated variance) each
day of the year illustrated together with a fitted function

for the volatility function σ(t), the σ(t)-scaled residuals ϵ(t) (as described in
Eq. (II.21)) can be studied. The distribution of the σ(t)-scaled stratospheric
temperature model residuals in Ê is compared to the normal distribution with a
QQ-plot in Fig. II.6a. The above hypothesis about ϵ(t) being i.i.d. N(0, 1) random
variables does not hold, as the QQ-plot illustrate heavy tails and a slightly skewed
distribution. Also, the Kolmogorov-Smirnov (KS) test with statistic 0.027 and
p-value 1.57 · 10−9 gives significance for rejecting the hypothesis about ϵ(t) being
standard normal. A fit with the NIG distribution is further performed, and the
resulting pdf is illustrated in Fig. II.6b. The KS test with statistic 0.0064 and p-
value 0.57 does not reject the null-hypothesis that ϵ(t) represents NIG distributed
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random variables. Note that the KS-test is meant to provide indicative results,
rather than concluding results from a carefully planned statistical experiment.

(a) Normal QQ-plot of ϵ(t) (b) NIG fit of ϵ(t)

Figure II.6: Fitted distributions to the σ(t)-scaled stratospheric temperature
model residuals ϵ(t), see Eq. (II.21)

The result of ϵ(t) representing NIG distributed random variables supports the
hypothesis of using a Lévy process as the driving process for the stratospheric
temperature model, as proposed in Sect. II.2.2. However, as shown in Figs. II.7a
and II.7b, the squared σ(t)-scaled residuals are partially autocorrelated in
approximately 5 lags, meaning increments of ϵ(t) fail to be independently
distributed. These memory effects indicate using a stochastic volatility function
as described in [9], rather than a deterministic yearly time-varying volatility
function. To generalize the proposed model in Sect. II.2.2, a possibility would
be to model e(t) as a normal variance-mean mixture with an inverse Gaussian
stochastic volatility, as this process is approximately NIG distributed ([7]; [14],
Sect. 4). However, as the memory effects are rather small (except in the first lag),
it could be appropriate to assume that there are no significant memory effects
in the variance. A possibility is therefore to assume a deterministic volatility
function, where the driving process for the stratospheric temperature model is a
NIG Lévy process (e.g., [5]; [6]; [7]). Further studying of this aspect is beyond
the scope of the current paper, and is left as a topic for further research.

II.4 Analyzing the Speed of Mean Reversion

In this section, it is shown that the assumption of constant speed of mean
reversion for stratospheric temperature is erroneous. A generalization of the
proposed stratospheric temperature model dynamics in Eq. (II.2), correcting
this erroneous assumption, is presented. More specifically, a special case of the
dynamics in Eq. (II.10) is proposed as a replacement to drive the stratospheric
temperature model in Eq. (II.4).
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(a) ACF of ϵ2(t) (b) PACF of ϵ2(t)

Figure II.7: ACF and PACF of the squared σ(t)-scaled stratospheric temperature
model residuals ϵ2(t), see Eq. (II.21)

II.4.1 Methodology for Analyzing Speed of Mean Reversion

In the previous sections, it was shown that the deseasonalized stratospheric
temperature, Y (t), follows a mean-reverting stochastic process. That is,
deseasonalized stratospheric temperature dynamics is given by the OU process in
Eq. (II.2). The matrix A holds parameters of speed of mean reversion, meaning
that the rate at which the stratospheric temperature reverts back to its long-term
mean is given by the elements of A, see Sect. II.2.1 (Eq. (II.8) and Eq. (II.9)). In
the previous sections the speed of mean reversion was assumed to be constant,
and thus independent of time. To check the validity of this assumption, a similar
stability analysis of speed of mean reversion as in [11] will be performed in the
following. The stability analysis exploits the transformation relation between
CAR and AR models (see Sect. II.2.2), meaning that it is applied on computed
AR parameters β(t). That is: The mean value, E[β(t)], and standard deviation,√

Var(β(t)), of fitted AR(p) parameters are computed empirically over each
available year and month. Based on this, the yearly and monthly variation
coefficients are found as

∆ =
√

Var(β(t))
E[β(t)] . (II.23)

The yearly and monthly variation coefficients reflect the stability of the speed
of mean reversion over years and months, respectively. As the stratospheric
temperature model is derived with lags in four days, this analysis will be
performed with p = 4 for all computed AR parameters. The methodology
for analyzing the yearly stability of speed of mean reversion is as follows: 1;
Loop through the 40 years in Sd and collect deseasonalized daily-zonal mean
stratospheric temperatures 365 days at a time, such that data for 1 January
1979 to 31 December 1979 are collected in one array, data for 1 January 1980
to 31 December 1980 in one array, and so on until the last array containing
data for 1 January 2018 to 31 December 2018. Then, 2; Collect the 40 arrays
containing all data each year in a single array to form the nested array y, so
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dim(y) = 1 × 40 × 365. 3; Loop through the 40 arrays in y, where an AR(4)
model is fit to each of the years 1979 to 2018. The result is 40 arrays of AR
parameters (βy

1 , β
y
2 , β

y
3 , β

y
4 ), y ∈ {1, 2, . . . , 40}. 4; Collect all 40 AR parameters

corresponding to the same lag in one array and compute the statistics. That is,
make the arrays βy

1 = (β1
1 , β

2
1 , . . . , β

40
1 ), . . . ,βy

4 = (β1
4 , β

2
4 , . . . , β

40
4 ), and compute

the empirical mean, standard deviation, and finally the variation coefficients
defined in Eq. (II.23), for each array βy

1, βy
2, βy

3 and βy
4. The results from this

yearly stability analysis are presented in Tab. II.5. Further, the methodology
for the monthly stability analysis of speed of mean reversion is: 1; Define
one array for each month: Jan,F eb,Mar, . . . ,Dec. 2; Loop through the
40 arrays in y (which is constructed in point 2 for the yearly stability analy-
sis). For all 40 arrays, collect elements 0 to 30 in Jan, elements 31 to 58 in
F eb, elements 59 to 89 in Mar, and so on until you reach elements 334 to
364 which are collected in Dec. The resulting arrays are nested arrays of the form

Jan =
[
Jan1, . . . ,Jan40] ,F eb =

[
F eb1, . . . ,F eb40] , . . . ,Dec =

[
Dec1, . . . ,Dec40] .

Each array has dimension 1× 40×n, where n corresponds to the number of days
in that particular month. That is, n = 31 for Jan, n = 28 for F eb and so on. 3;
Collect the arrays Jan, . . . ,Dec in a nested array m: dim(m) = 1×12×40×n.
Loop through each of the 480 months in m, and fit an AR(4) model to each of the
Januaries of the years 1979 to 2018, to each of the Februaries of the years 1979
to 2018, and so on until the last fit is performed on the data of December of 2018.
The result is 480 arrays of AR parameters (βm

1 , β
m
2 , β

m
3 , β

m
4 ), m ∈ {1, 2, . . . , 480}.

4; Make the arrays βm
1 = (β1

1 , β
2
1 , . . . , β

480
1 ), . . . ,βm

4 = (β1
4 , β

2
4 , . . . , β

480
4 ), and for

each of them compute the variation coefficient as defined in Eq. (II.23). Further,
because of the constructed order of the parameters, the arrays βm

1 , βm
2 , βm

3 and
βm

4 can be used to analyze the seasonal behaviour of speed of mean reversion.
The computed results from this monthly stability analysis are presented in
Tab. II.5, where the variability coefficients will reveal any monthly instability of
speed of mean reversion. With the intention of detecting any monthly seasonal
behaviour in the four AR parameters, βm

1 , βm
2 , βm

3 and βm
4 are plotted in

Figs. II.8a-II.8d.

II.4.2 Interpretations of the Monthly Stability Analysis

The monthly variation coefficients are more extreme than the yearly ones.
Therefore, the remaining of this section will focus on interpreting results from the
monthly stability analysis, as well as to incorporate the observed time-varying
behaviour of the speed of mean reversion, into the stratospheric temperature
model dynamics in Eq. (II.10).

The magnitudes of the monthly variation coefficients (see Tab. II.5) for all four
AR parameters, indicate that the assumption of constant speed of mean reversion
in the stratospheric temperature model dynamics (Eq. (II.2)) is insufficient. The
monthly variation coefficient, ∆, of the first lag parameter, β1, is small compared
to ∆ of the three other lag parameters. However, as seen in Figs. II.8a-II.8d, the
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magnitude of β1 is up to many times larger than the magnitudes of β2, β3 and β4
(where the magnitudes of β1, β2, β3 and β4 are assessed over the contents of βm

1 ,
βm

2 , βm
3 and βm

4 respectively). This means that larger variability in the latter
lag parameters affect the estimated stratospheric temperature less. Despite this
observation, all variability coefficients are too large to be ignored, meaning that
time-dependent AR parameters should be used rather than constant ones. By
the transformation relation between CAR(4) and AR(4) models in Eq. (II.7), it
is clear that the stratospheric temperature model dynamics should be given by
the OU process in Eq. (II.10), rather than the one in Eq. (II.2).

It is not only the monthly variability coefficients of the AR parameters
that suggest time-varying speed of mean reversion. The sequential patterns
of βm

1 and βm
2 in Figs. II.8a and II.8b clearly show that the AR parameters

β1 and β2 are seasonally varying. Both the first, β1, and the second, β2, AR
parameters are smaller in magnitude in summer time than in winter time. This
means that summer time stratospheric temperature is less dependent on the
stratospheric temperature the last two days, than winter time stratospheric
temperature. This tendency is also (however less) evident for the third, β3, and
fourth, β4, AR parameters in Figs. II.8c and II.8d. To the best of our knowledge

Table II.5: Mean value, standard deviation and absolute value of variability
coefficient for the four parameters of an AR(4) process with yearly and monthly
varying parameters, respectively

Parameter β1 β2 β3 β4

Yearly Mean value 1.54 −0.74 0.28 −0.12
Standard deviation 0.12 0.22 0.18 0.09

abs(∆) 7.8% 29.9% 64.3% 72.6%

Parameter β1 β2 β3 β4

Monthly Mean value 1.29 −0.48 0.19 −0.06
Standard deviation 0.34 0.45 0.32 0.20

abs(∆) 26.6% 94.8% 170.7% 312.9%

there is no previous research specifically on the mean reverting property of
stratospheric temperature. In [40], daily values of speed of mean reversion for
surface temperature are estimated by use of a neural network, revealing strong
time-dependence. Even though daily variation in speed of mean reversion is not
studied in the current paper, a similar conclusion is reached: Speed of mean
reversion of stratospheric temperature is dependent on time. However, [40]
found no signs of seasonal patterns, unlike the current study for stratospheric
temperature where a clear seasonal pattern is observed in the monthly estimated
AR parameters. In response to the observation of time-dependence in speed
of mean reversion of surface temperature, [8] presented a generalized version
of the state-of-the-art stochastic models for surface temperatures applied in
mathematical finance (see Sect. II.2.2), where the speed of mean reversion of
the driving (standard) OU process is a stochastic process. A simplified version
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of this generalized process (however multidimensional, and Lévy-driven rather
than Brownian motion-driven) is presented in the current paper to incorporate
time variability in speed of mean reversion. That is, the matrix A(t) holding
parameters of speed of mean reversion is assumed to be time-dependent and
deterministic as presented in Thm. II.2.1.

Before presenting an explicit time-dependent and deterministic matrix A(t)
representing the speed of mean reversion of stratospheric temperature, its time-
varying behaviour will be discussed. As already mentioned, the monthly AR
parameters (which the speed of mean reversion depends directly upon) have large
variability coefficients, ∆, as well as a seasonal behaviour. From the definition of
∆ in Eq. (II.23), one can see that the seasonal behaviour increases the computed
variability coefficients considerably. By removing the seasonal behaviour in
the AR parameters (see below) noise is still present, indicating that the speed
of mean reversion could be modeled by a stochastic process. However, this is
beyond the scope of this paper, and the noise is assumed to be negligible. For
this reason, time-dependence in speed of mean reversion is assumed to come
solely from the seasonal variations.

As discussed in Sect. II.3.3, the only long-term (perfectly) periodic phe-
nomenon in the stratosphere is the yearly cycle. This is clearly seen in the
stratospheric temperature data presented in Fig. II.1. Further, as seen in Fig. II.5,
this phenomenon affects the variability, as well as volatility in variability, of
stratospheric temperature. Physical explanations of this behaviour are discussed
in [28], where the winter time stratosphere is said to be more disturbed than the
summer time stratosphere. Based on this, together with the above discussion
concluding stronger speed of mean reversion in winter time than in summer time,
it might be reasonable to assume that the yearly cycle affects the speed of mean
reversion of stratospheric temperature as well. Stated in another way: Large
values of stratospheric temperature variance seem to generate larger dependence
on stratospheric temperature the last couple of days. This is a topic for further
research.

An explicit deterministic matrix A(t) representing speed of mean reversion
of stratospheric temperature is proposed in the following. By introducing
time-varying AR(4) parameters such that each month of the year holds fixed
parameters, seasonal variability will be adjusted for on a monthly basis. The
result of the monthly variation analysis is exploited to define such time varying
AR(4) parameters. That is, define monthly parameter values as (remember that
the initial dataset S contains stratospheric temperature values over 40 years)

βM
k ≜


β1

k

β2
k

...
β12

k

=


E[βm

k ], for m ∈ [1, 40]
E[βm

k ], for m ∈ [41, 80]
...

E[βm
k ], for m ∈ [441, 480],

where M ∈ {1, 2, . . . , 12} represents January to December respectively, k ∈
{1, 2, 3, 4} and E[·] represents the empirical mean. The computed values of
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βM
1 , βM

2 , βM
3 and βM

4 are marked in Figs. II.8a-II.8d, respectively. Building
on the theory in Sect. II.2.2, the corresponding CAR(4) model is given by the
multidimensional OU process in Eq. (II.10) (Thm. II.2.1). Time-dependence in
the functions α1(t), . . . α4(t) does not matter for the transformation relation
between CAR and AR models as long as the discretization scheme is chosen
properly ([29]; [12]). That is, in this specific case, the discretization scheme has to
be constructed such that the two time points which define the current scheme time
step, never belongs to two different months. Hence, the continuous parameter
counterparts, αk(t), of the βM

k ’s can be computed by the transformation relation
in Eq. (II.7). The αk(t)’s can be considered as 12 level step functions, where
each step represents a month of the year. The roots of the eigenvalue equation
(Eq. (II.19)) of each of the 12 steps in each of the functions αk(t) are computed,
and their real parts are shown in Fig. II.9. As all the roots have negative real
part the stationarity condition of CAR processes is secured. Repeating the

(a) Monthly variability in β1 (b) Monthly variability in β2

(c) Monthly variability in β3 (d) Monthly variability in β4

Figure II.8: Monthly variability in the four AR parameters of the stratospheric
temperature model

analysis in Sect. II.3.5 with model residuals

e(t) = X(t)−
4∑

k=1
βM

k X(t− k),
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Figure II.9: Real part of the roots of the eigenvalue equations (Eq. (II.19)) of
the monthly varying CAR(4) parameters

also gives residuals on the form e(t) = σ(t)ϵ(t), with ϵ(t) being NIG distributed
random variables with memory effects. This confirms that the proposed CAR(4)
model from Sect. II.2.2 is suitable to model stratospheric temperature dynamics
when driven by the multidimensional OU dynamics in Eq. (II.10), see Thm. II.2.1.

II.5 Conclusions and Further Work

In this paper, a novel stochastic model for stratospheric temperature is proposed.
By time series analysis, it was shown that stratospheric temperature can be
approximated by an AR(4) process added to a deterministic seasonality function.
The seasonality function captures periodical (yearly seasonal) effects as well as
a long-term trend to model stratospheric cooling. The scaled model residuals
were shown to be NIG distributed. By exploiting the connection between AR
and CAR processes, a continuous time model for stratospheric temperature was
developed. It was shown that a Lévy driven CAR(4) process with time-dependent
volatility is well suited as a continuous time, stochastic model for deseasonalized
stratospheric temperature.

Some ideas for future work include incorporating a volatility which is
stochastic, not just time-dependent, into the model. Furthermore, it may
be of interest to analyze further why large values of variance in the stratospheric
temperature seem to generate a larger dependency on stratospheric temperature
the previous days. Developing a continuous time, stochastic model for
stratospheric wind, potentially as a joint model with stratospheric temperature,
is also relevant. In addition, based on the model presented in the current paper,
one may exploit stratosphere-troposphere coupling in order to develop improved
methods for pricing of weather derivatives (on surface-level). A current work in
progress is to develop a dual model for stratospheric temperature, where winter
season and summer season temperatures are studied separately. Such a model is
particularly useful when analyzing, for example, pure winter phenomena, such
as sudden stratospheric warmings.
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Appendix A

A brief survey of topics in linear
functional analysis
In this work it is assumed that the reader is familiar with basic real analysis
theory and terminology. The following is meant as a reminder of important
concepts within the field of linear functional analysis, as well as an introduction
of relevant notation for this thesis. A final goal is to recall theory needed in
order to discuss numerical estimation methods of SPDEs. The theory presented
in this appendix is exclusively based on [1], [2], [3] and [4], and is not meant as
a stand-alone chapter produced by the author.

A.1 Banach spaces

To discuss linear functional analysis we need to prescribe in what space given
functions are situated, giving basic and sometimes necessary properties. First,
recall that a metric space (M,d) is defined by some set M on which a function
(metric) d : M ×M → R is defined. Equip a vector space V with a norm,
that is a function ∥ · ∥V : V → R. Norms induces metrics, hence (V, ∥ · ∥V ) is a
normed vector space as well as a metric space. In this work we will usually work
under (Rn, ∥ · ∥2), for some n ∈ N, where ∥ · ∥2 is the Euclidean norm. Further,
complete normed vector spaces, also called Banach spaces, play an important
role in applications. Note that (Rn, ∥ · ∥2) is a Banach space. With a notion of
what a Banach space is, we will further introduce some concepts useful for the
study of SPDEs in infinite-dimensional spaces.

We follow [2], and denote by Dj := ∂/∂xj the partial derivative with
respect to an element xj , j ∈ N. Given a multi-index α = (α1, . . . , αn) with
∥α∥1 := α1 + · · ·+ αn, we define

Dα := Dα1
1 · · · Dαn

n , Dαu = ∂∥α∥1u

∂xα1
1 · · · ∂x

αn
n
, u ∈ B. (A.1)

Furthermore, given a Banach space (B, ∥ · ∥B) and a bounded domain D ∈ Rn,
define the set of continuous functions u : D → B as C(D,B), and equip it with
the norm

∥u∥∞ := sup
x∈D̄

∥u(x)∥B .

Similarly define Cr(D,B), r ∈ N, as the set of functions u satisfying Dαu ∈
C(D,B), where ∥α∥1 ≤ r, and equip it with the norm

∥u∥Cr(D̄,B) :=
∑

0≤∥α∥1≤r

∥Dαu∥∞.
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A. A brief survey of topics in linear functional analysis

The defined sets C(D,B) and Cr(D,B) with their respective norms are Banach
spaces [2]. These spaces are convenient to use in the field of partial differential
equations, as they reflect regularity of functions.

As we are considering stochastic partial differential equations in this thesis,
some results on integral theory are introduced. We start by defining Bochner’s
integral.

Definition A.1.1 ([4], Definition on page 132). A function u(z) defined on a
measure space (Z,B,m) with values in a Banach space B is said to be Bochner
m-integrable, if there exists a sequence of finitely-valued functions {un(z)} which
z-converges to u(z) m-a.e. in such a way that

lim
n→∞

∫
Z

∥u(z)− un(z)∥Bm(dz) = 0, z ∈ Z.

For any set F ∈ B, the Bochner m-integral of u(z) over F is defined by∫
F

u(z)m(dz) = lim
n→∞

∫
Z

CF (z)un(z)m(dz), z ∈ Z,

(with z-convergence) where CF is the defining function of the set F .

We will usually work under appropriate measure spaces (Ω,F , µ), where
Ω is a set, F is a class of subsets being a Borel σ-algebra, and the function
µ : F → R̄+ is a measure. Given the measure space (Ω,F , µ) and a Banach space
(B, ∥ · ∥B), define by Lp(Ω, B) the set of F -measurable functions u : Ω→ B such
that ∥u∥Lp(Ω,B) <∞, where

∥u∥Lp(Ω,B) :=
(∫

Ω
∥u(ω)∥p

Bdµ(ω)
)1/p

, ω ∈ Ω,

for 1 ≤ p <∞. In this case Lp(Ω, B) is a Banach space.

A.2 Hilbert spaces

In the last section we recalled the definition of Banach spaces and introduced
some relevant examples. Note that Banach spaces are equipped with a norm that
generalizes the concept of vector lengths, classically thought of as the Euclidean
norm ∥ · ∥2. Another useful geometric concept is the angle, classically given
by the scalar product as ⟨u, v⟩2 = ∥u∥2∥v∥2 cos θ, where we have the relation
∥u∥2 =

√
⟨u, u⟩2. As for the norm, the analogue generalization to the scalar

product is the inner product, being a function ⟨·, ·⟩V : V × V → R (or C) with
fixed properties on a real (complex) vector space V . A Banach space equipped
with a real (complex) inner product is called a real (complex) Hilbert space.

A.2.1 Orthonormal basis

The advantage with Hilbert spaces is that they can be spanned using
orthogonality. That is, given a Hilbert space H, vectors from a sequence
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{vi : i ∈ N} ⊂ H are said to be orthogonal when ⟨vi, vj⟩H = 0 for i, j ∈ N,
i ̸= j. With the additional property ∥vi∥H = 1, for all i ∈ N, {vi : i ∈ N}
is said to be an orthonormal sequence, and we often write ei := vi, i ∈ N,
in that case. Finally, {ei : i ∈ N} forms an orthonormal basis for H when
S̄p{ei : i ∈ N} = H. Given an orthonormal basis, any vector v ∈ H can be
decomposed as v =

∑∞
i=1⟨v, ei⟩Hei. Recall that such decomposition holds for

finite-dimensional Hilbert spaces as well. An important difference between finite
and infinite dimensions is that infinite-dimensional Hilbert spaces are separable
if and only if they have an orthonormal basis, however, all finite-dimensional
Hilbert spaces are separable.

A.2.2 The L2 space

With the above introduction, it is straight forward to see that the inner
product space (Rn, ∥ · ∥2, ⟨·, ·⟩2) is a real Hilbert space with inner product
⟨u, v⟩2 := u1v1 + u2v2 + · · · + unvn, u, v ∈ Rn. We now introduce another
important example of Hilbert spaces. Let (Ω,F , µ) be a measure space as
defined in Section A.1, and let (H, ∥ · ∥H) be a Hilbert space with ∥ · ∥H induced
by the inner product ⟨·, ·⟩H 1. Then the set L2(Ω, H) is a Hilbert space with
inner product

⟨u, v⟩L2(Ω,H) :=
∫

Ω
⟨u(ω), v(ω)⟩Hdµ(ω), ω ∈ Ω.

The L2 space plays an important role in considerations of stochastic processes.

A.2.3 Stochastic processes in Hilbert space

We will present random variables taking values in a Hilbert space equipped with
the corresponding Borel σ-algebra, that is the measurable space (H,B(H)). An
important feature is that families of such random variables with well-defined
moments form Banach and Hilbert spaces.

The most important family of spaces in this thesis is the Banach spaces
Lp(Ω, H). That is, given a probability space (Ω,F , P ) and a Hilbert space
(H, ∥·∥H), Lp(Ω, H) with 1 ≤ p < ∞ is the space of H-valued F-measurable
random variables X : Ω→ H satisfying E[∥X∥p

H ] <∞, with norm

∥X∥Lp(Ω,H) :=
(∫

Ω
∥X(ω)∥p

HdP (ω)
)1/p

= E [∥X∥p
H ]1/p

.

Note that the case p = 2 forms a Hilbert space with inner product

⟨X,Y ⟩L2(Ω,H) :=
∫

Ω
⟨X(ω), Y (ω)⟩HdP (ω) = E [⟨X,Y ⟩H ] ,

1In this thesis we usually denote the norm and inner product on H as | · | and ⟨·, ·⟩
respectively.
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where ⟨·, ·⟩H is the inner product on H.
We give the definition of the specific case when a random variable is H-valued

Gaussian random variable.

Definition A.2.1 ([2]). Let H be a real Hilbert space. An H-valued random
variable X is Gaussian if ⟨X,ϕ⟩ is a real valued Gaussian random variable for
all ϕ ∈ H.

For the multivariate case we have to introduce a covariance operator. When H is
a separable Hilbert space and X is an H-valued Gaussian with mean µ = E[X],
we have that X ∈ L2(Ω, H). The associated covariance operator is the linear
operator C : H → H satisfying

⟨Cϕ, ψ⟩ := Cov (⟨X,ϕ⟩, ⟨Y, ψ⟩) , ∀ϕ, ψ ∈ H.

The covariance operator is a well-defined symmetric, non-negative trace class
operator on X. Also note that ⟨Cϕ, ϕ⟩ = Var⟨X,ϕ⟩ for any ϕ ∈ H. We say that
X is distributed as X ∼ N(µ, C).

Finally, we have what we need introduce stochastic processes in Hilbert
space. Suppose given a set T ⊂ R. An H-valued random variable is a function
X : T × Ω → H. We often write X(t) := X(t, ω), with t ∈ T, ω ∈ Ω. The
set {X(t)}t∈T is referred to as an H-valued stochastic process. For a fixed
ω ∈ Ω, X(·, ω) is called a sample path as usual. A special case of Gaussian
random processes in Hilbert space, that is the Q-Wiener process, is introduced
in Section. 1.3.2.

A.3 Linear operators

Notation and some concepts for bounded linear operators, including some
important examples, are presented in Section A.3.1. An important example
of bounded linear operators are the Hilbert-Schmidt operators. This class of
operators is defined in Section A.3.2. Finally, Section A.3.3 introduces unbounded
linear operators, and we consider a specific class of unbounded operators with
well-defined powers.

A.3.1 Bounded linear operators

Given two normed linear spaces X and Y , we denote by L(X,Y ) the normed
linear space of all bounded linear operators T : X → Y , meaning that T satisfies

∥T∥op := sup{∥T (x)∥Y : ∥x∥X ≤ 1}.

Note that ∥ · ∥op : L(X,Y ) → R is a norm on L(X,Y ), and recall that all
bounded linear operators are continuous. When in addition Y is complete, that
is when Y is a Banach space, L(X,Y ) is also a Banach space. Furthermore,
when Y = R, we say that T : X → R is a bounded linear functional, and in
this case we refer to L(X) := L(X,R) as the dual space of X. Often, the dual
space of X is denoted X ′. Riesz representation theorem is an important theorem
about characterization of bounded linear functionals.
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Theorem A.3.1 ([2], Theorem 1.57). Let H be a Hilbert space with inner product
⟨·, ·⟩ and let φ be a bounded linear functional on H. There exists a unique vφ ∈ H
such that

⟨vφ, v⟩ = φ(v), ∀v ∈ H.

Riesz representation theorem (Theorem A.3.1) provides existence and uniqueness
of a vector vφ representing a given bounded linear functional φ.

We continue with defining projections in Hilbert spaces and state their
properties. First, we recall a result about linear subspaces.

Lemma A.3.2 ([3], Lemma 3.25). If H is a Hilbert space and Y ⊂ H is a linear
subspace, then Y is a Hilbert space if and only if Y is closed in H.

Now, given a separable Hilbert space H with orthonormal basis {ei : i ∈ N}
and a linear subspace Y := {e1, . . . eN}, there exists a projection from H to Y .
That is, given a vector v ∈ H and an orthogonal projection P : H → Y we have

Pv =
N∑

i=1
⟨v, ei⟩ei,

with properties P 2 = P , |Pv| ≤ |v| and |v − Pv| → 0 as N → ∞. Finally, we
know from Lemma A.3.2 that Ȳ is a finite-dimensional Hilbert space.

Finally, the class of symmetric linear operators is defined for the special case
of bounded linear operators on a Hilbert space.

Definition A.3.3 ([2], Definition 1.69). T ∈ L(H) is symmetric on a Hilbert space
H if

⟨Tu, v⟩ = ⟨u, Tv⟩, for any u, v ∈ H.

A.3.2 Hilbert-Schmidt operators

The Hilbert-Schmidt operators are bounded linear operators, and defined as
follows.

Definition A.3.4 ([2], Definition 1.60). Let H, U be separable Hilbert spaces
with norms | · |, ∥ · ∥U respectively. For an orthonormal basis {ej : j ∈ N} of U ,
define the Hilbert-Schmidt norm

∥T∥HS(U,H) :=

 ∞∑
j=1
∥Tej∥2

U

1/2

.

The set HS(U,H) := {T ∈ L(U,H) : ∥T∥HS(U,H) < ∞} is a Banach space
with the Hilbert-Schmidt norm. An operator T ∈ HS(U,H) is known as a
Hilbert-Schmidt operator. We write ∥T∥HS := ∥T∥HS(H,H) if U = H.
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In the study of SPDEs we are interested in integral operators. Given a
domain D, an integral operator T on L2(D) with kernel G ∈ L2(D×D) is given
by

(Tu)(x) :=
∫

D

G(x, y)u(y)dy, (A.2)

for x, y ∈ D and u ∈ L2(D). The integral operator in Eq. (A.2) is a Hilbert-
Schmidt operator on L2(D), and any Hilbert-Schmidt operator on L2(D) can
be written as Eq. (A.2), meaning that ∥T∥HS = ∥G∥L2(D×D).

A.3.3 Unbounded linear operators and powers

Unbounded linear operators occur in the study of (S)PDEs, as the differential
operators are unbounded. We denote a linear operators as A, and for a
given Hilbert space H we introduce the domain of linear operators, D(A),
as A : D(A) ⊂ H → H. The following assumption is sufficient for defining
powers of linear operators.

Assumption A.3.5. Assume that A has an orthonormal basis of eigenfunctions
{ei : i ∈ N} with corresponding eigenvalues λi > 0 ordered so that λi+1 ≥ λi.
That is, the relation (λi −A)ei = 0 holds, where 0 ̸= ei ∈ D(A).

In the current setup we have that Au =
∑∞

i=1 λi⟨u, ei⟩ei for u ∈ D(A). This
further implies that A is self-adjoint, meaning that ⟨Au, v⟩ = ⟨u,Av⟩ holds for
all u, v ∈ D(A). A second property we can introduce for A in the given setting
is the fractional power

Aαu :=
∞∑

i=1
λα

i uiei, (A.3)

for constant α ∈ R and functions u =
∑∞

i=1 uiei, where ui ∈ R. The
corresponding domain D(Aα) is defined as the set of functions u for which
Aαu ∈ H holds. Further, D(Aα) is a Hilbert space with inner product
⟨u, ν⟩α := ⟨Aαu,Aαν⟩. In [2], precise statements about regularity of solutions
are made made using fractional power norms.

Finally, we recall a result from Lemma 1.89 in [2]. This result is useful in the
study of weak solutions of SPDEs.

Lemma A.3.6 ([2], Lemma 1.89 (ii)). Let Assumption A.3.5 hold. Then

⟨A1/2u,A1/2ν⟩ = ⟨Au, ν⟩

for u ∈ D(A) and ν ∈ D(A1/2).

A.4 Sobolev spaces

As stated in [2]; just as Cr(D,B) (see Section A.1) describes the regularity
of continuous functions, Sobolev spaces describe the regularity of integrable
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functions. In this section we introduce the Sobolev space for Lebesgue-integrable
functions, as they are important within the theory of (stochastic) partial
differential equations. Note that Definitions A.4.1 and A.4.2 in this section
are simplified versions of analogous definitions in [2].

First we define the concept of weak derivatives, such that (stochastic) partial
differential equations involving functions that are not differentiable in the
traditional sense can be assessed. In the following, assume given a domain
D ∈ Rn.

Definition A.4.1 ([2], Definition 1.42). We say a measurable function Dαu : D →
R is the α-th weak derivative of a measurable function u : D → R if∫

D

Dαu(x)f(x)dx = (−1)∥α∥1

∫
D

u(x)Dαf(x)dx, ∀f ∈ C∞
c (D).

Note that C∞
c (D) denotes the set of infinitely differentiable functions with

compact support on D, and that f ∈ C∞
c (D) is referred to as a test function.

As noted in [2], test functions from this particular space are used because they
are differentiable, zero outside the domain2 and dense in L2(D).

Further, we define Sobolev spaces. We will see that functions in Sobolev
spaces admit well-defined3 weak solutions of (stochastic) partial differential
equations.

Definition A.4.2 ([2], Definition 1.44). Let D be a domain. For p ≥ 1, the
Sobolev space W r,p(D) is the set of functions whose weak derivatives up to order
r ∈ N are in Lp(D). That is,

W r,p(D) := {u : Dαu ∈ Lp(D) if ∥α∥1 ≤ r}.

Recall that r ∈ N represents the maximum order of well-defined derivatives.
Important examples of Sobolev spaces are W r,2(D). The space W r,2(D) is a

Hilbert space with inner product

⟨u, v⟩Hr(D) :=
∑

0≤∥α∥1≤r

⟨Dαu,Dαv⟩L2(D),

where Hr(D) := W r,2(D).
When dealing with boundary-value problems, we have to work under Sobolev

spaces incorporating the boundary conditions. We define the Sobolev space
incorporating the boundary conditions used in thesis, that is the two-dimensional
periodic boundary condition. First, the concept of completion is recalled.

Definition A.4.3 ([2], Definition 1.46). X is the completion of Y with respect to
∥ · ∥ if X equals the union of the space Y and the limit points of sequences in Y
with respect to ∥ · ∥.

The two-dimensional second order periodic boundary condition Sobolev space,
H2

per, is defined as follows.
2Not noted in [2], but is also used in the derivation of the result
3Away from the boundary
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Definition A.4.4 ([2], Definition 1.47 (iii)). Let D := (a1, b1)× (a2, b2) ⊂ R2 be a
domain. H2

per is the completion with respect to the H2(D) norm of the set of
u ∈ C∞(D̄) such that

∂r

∂xr
1
u(a1, y) = ∂r

∂xr
1
u(b1, y), ∂r

∂xr
2
u(x, a2) = ∂r

∂xr
2
u(x, b2),

for x ∈ (a1, b1), y ∈ (a2, b2), and r = 0, 1, 2. It is a Hilbert space with the H2(D)
inner product.

We will use the Hilbert space H2
per in applications when considering the two-

dimensional heat equation.

A.5 Strongly continuous operator semigroups

An introduction to strongly continuous semigroups is given, as they are essential
in our assessment of the stochastic heat equation. That is, the spatial coordinate
x ∈ Rd of the solution of the stochastic heat equation is suppressed, and the
solution is interpreted as a function with values in a Hilbert space. The study
of existence and uniqueness of solutions of such Hilbertian SODEs leads to a
solution operator, S(t), also called a semigroup4.

The definition of strongly continuous semigroups is as follows.

Definition A.5.1 ([1], Definition 1.1). A family {S(t)}t≥0 of bounded linear
operators on a Banach space B is called a strongly continuous (one-parameter)
semigroup (or C0-semigroup5) if it satisfies the function equation{

S(t+ s) = S(t)S(s) for all t, s ≥ 0,
S(0) = I,

where I is the identity operator on B, and is strongly continuous in the following
sense. For every v ∈ B the orbit maps

ξv : t→ ξv(t) := S(t)v

are continuous from R+ into B for every v ∈ B.

In this case B is considered the state space of a system, t as time, and S(t) as
a map describing the change of the given state at t = 0 into the state S(t)v at
time t. Note that the operator semigroup maps as S(t) : B → B.

On a dense subspace of the Banach space B on which the strongly continuous
operator semigroup is defined the semigroups’ so-called generator, A, can be
defined. As we will see, the generators domain, D(A), is the subspace on which
the orbit map ξv : t→ S(t)v ∈ B is differentiable.

4Semigroup for solutions in R+, group for solutions in R
5Although we prefer the terminology ’strongly continuous’, we point out that the symbol

C0 abbreviates ’Cesàro summable of order 0’
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Definition A.5.2 ([1], Definition 1.2). The generator A : D(A) ⊆ B → B of a
strongly continuous semigroup {S(t)}t≥0 on a Banach space B is the operator

Av := d

dt
ξv(0) = lim

h→0

1
h

(S(h)v − v),

defined for every v in its domain

D(A) = {v ∈ B : ξv is differentiable in R+}.

Note that it is proved in Lemma 1.1 of [1] that right differentiability of ξv(·)
at t = 0 is equivalent to that ξv(·) is differentiable on R+. We state some
important properties of generators of strongly continuous operator semigroups
in the following lemma.

Lemma A.5.3 ([1], Lemma 1.3). For the generator (A,D(A)) of a strongly
continuous semigroup {S(t)}t≥0, the following properties hold.

1) A : D(A) ⊆ B → B is a linear operator.

2) If v ∈ D(A), then S(t)v ∈ D(A) and

d

dt
S(t)v = S(t)Av = AS(t)v, for all t ≥ 0.

3) For every t ≥ 0 and v ∈ B, one has∫ t

0
S(s)vds ∈ D(A).

4) For every t ≥ 0, one has

S(t)v − v = A

∫ t

0
S(s)vds if v ∈ B

=
∫ t

0
S(s)Avds if v ∈ D(A).

In general the generator of a strongly continuous operator semigroup is
unbounded, however, as stated in Theorem 1.4 of [1], A is closed and densely
defined, and determines the semigroup uniquely. For the special case when A is a
bounded linear operator, the following result shows that the generated semigroup
has a particularly nice characterization. This special case of strongly continuous
semigroups is referred to as uniformly continuous semigroups.

Corollary A.5.4 ([1], Corollary 1.5). For a strongly continuous semigroup
{S(t)}t≥0 on a Banach space B with generator (A,D(A)), the following assertions
are equivalent.

1) The generator A is bounded; i.e., there exists M > 0 such that

∥Av∥ ≤M∥v∥ for all v ∈ D(A).

219



A. A brief survey of topics in linear functional analysis

2) The domain D(A) is all of B.

3) The domain D(A) is closed in B.

4) The semigroup {S(t)}t≥0 is uniformly continuous.

In each case, the semigroup is given by

S(t) = etA =
∞∑

k=0

tkAk

k! , t ≥ 0.

Note that ∥ · ∥ denotes the norm on B. Further, S(t) = etA is a well-defined
bounded operator on B, and note that every uniformly continuous operator
semigroup on a Banach space is on this form.

The following result shows that C0-semigroups are bounded with respect
to their operator norm ∥ · ∥op. This is a convenient result when dealing with
integrals of semigroups.

Proposition A.5.5 ([1], Proposition 1.4). For every strongly continuous semigroup
{S(t)}t≥0, there exist constants w ∈ R and M ≥ 1 such that

∥S(t)∥op ≤Mewt,

for all t ≥ 0.

As noted in [4], {S(t)}t≥0 is called a contraction semigroup of class C0 if
∥S(t)∥op ≤ 1 holds for all t ≥ 0. Contraction semigroups are used to derive
results in this thesis. The next result shows that contraction semigroups are
generated by dissipative operators, meaning ⟨Av, v⟩ ≤ 0 for any v ∈ D(A). We
give a simplified version6 of a theorem in [4], where the original result holds for
Banach spaces.

Theorem A.5.6 ([4], page 250). Let A be a linear operator with domain D(A)
and range R(A) both in a complex (or real) Hilbert space H such that A is dense
in H. Then A generates a contraction semigroup of class C0 in H if and only if
A is dissipative (with respect to any inner product ⟨u, v⟩) and R(I −A) = H.

As explained in [1], operator semigroups naturally appear in the initial value
problem {

d
dtu(t) = Au(t) for t ≥ 0,
u(0) = x,

where A is a linear operator on a Banach space B and x ∈ B. That is, if there
exists a unique solution u (differentiable on R+) that holds for each initial value
x ∈ B, then

S(t)u := u(t, x), t ≥ 0, x ∈ B,

defines an operator semigroup. This is the approach we use in this work when
considering SPDEs as SODEs in Hilbert space.

6This simplified version is sufficient for our application
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