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Abstract

In this paper we introduce Skorohod-semimartingales as an expanded concept of classical
semimartingales in the setting of Lévy processes. We show under mild conditions that
Skorohod-semimartingales similarly to semimartingales admit a unique decomposition.
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1 Introduction

Let X; = Xy (w); t €[0,T], w € £ be a stochastic process of the form

Xe=C(+ /Otoz(s)ds + /Otﬂ(s)(SBs + /Ot /Ro v(s,2)N(dz,ds), (1.1)

where ( is a random variable, « is an integrable measurable process, ((s) and 7(s, z) are
measurable processes such that Bx(o(-) and yx[o(-) are Skorohod integrable with respect

to By and N (dz,ds) respectively, and the stochastic integrals are interpreted as Skorohod
integrals. Here B, = By(w) and N(dz,ds) = N(dz,ds,w) is a Brownian motion and and
independent Poisson random measure, respectively. Such processes are called Skorohod-
semimartingales. The purpose of this paper is to prove that the decomposition is
unique, in the sense that if X; = 0 for all ¢ € [0, 7] then

¢=a()=B() = () =0
(see Theorem 3.5)).

This is an extension of a result by Nualart and Pardoux [NP], who proved the uniqueness of
such a decomposition in the Brownian case (i.e., N = 0) and with additional assumption on
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We obtain Theorem [3.5]as a special case of a more general decomposition uniqueness theorem
for an extended class of Skorohod integral processes with values in in the space of generalized
random variables G*. See Theorem Our proof uses white noise theory of Lévy processes.
In Section [2| we give a brief review of this theory and in Section [3| we prove our main theorem.

Our decomposition uniqueness is motivated by applications in anticipative stochastic control
theory, including insider trading in finance. See [DOPP]

2 A Concise Review of Malliavin Calculus and White Noise
Analysis

This Section provides the mathematical framework of our paper which will be used in Section

Here we want to briefly recall some basic facts from both Malliavin calculus and white

noise theory. See [N], [M] and [DOP] for more information on Malliavin calculus. As for
white noise theory we refer the reader to [DOP1|, [HKPS], [HOUZ], [K], [LP], [O] and [OP].

In the sequel denote by S(R) the Schwartz space on R and by S'(R) its topological dual.
Then in virtue of the celebrated Bochner-Minlos theorem there exists a unique probability
measure 4 on the Borel sets of the conuclear space S'(R) (i.e. B(S'(R)))such that

/ ei<w’¢>,u(dw) _ 6_%”‘1"@2(1@ (2.1)
S'(R)

holds for all ¢ € S(R), where (w, ¢) is the action of w € S'(R) on ¢ € S(R). The measure p
is called the Gaussian white noise measure and the triple

(S'(R), B(S'(R)), n) (2.2)
is referred to as (Gaussian) white noise probability space.

Consider the Doleans-Dade exponential
1412
E(¢’w) — €<°‘]7¢>_2”(ZSHL2<]R)7 (23)

which is holomorphic in ¢ around zero. Hence there exist generalized Hermite polynomials

H,(w) € ((‘S'(IR))(?%)| (i.e. dual of n—th completed symmetric tensor product of S(R)) such
that

26,0) = 3 (Ha(w),6°") (2.4)
n>0

for all ¢ in a neighborhood of zero in S(R). One verifies that the orthogonality relation

/S(R) (Hn(),6 ) (Haw), ) (i) = { nl (80,0 gy, m=n

0 m#£n



is fulfilled for all o™ € (S (R))@m, P e (S (R))®m. From this relation we obtain that the
mappings (¢ — (Hp(w), ¢(”)>) from (S(R))®" to L?(u) have unique continuous extensions

I : I*(R") — L*(p),

where L2 (R™) is the space of square integrable symmetric functions. It turns out that L?(u)
admits the orthogonal decomposition

L*(p) = @I (L*(R")). (26)
n>0

Note that that I,,(¢(™) can be considered an n—fold iterated It6 integral ¢{™) L2 (R™) with
respect to a Brownian motion B; on our white noise probability space. In particular

T
Li(expm) = (Hi(w), oxp1) = /0 o(t)dBy, ¢ € L*(R). (2.7)
Let F € L%(p). Tt follows from (2.6] that

F=3"(Ha(),0™) (2.8)

n>0

for unique ¢ e L2 (R™). Further require that

Znn! qu(")

n>1

00. (2.9)

2

N <
L2(Rn)
Then the Malliavin derivative D; of F' in the direction B; is defined by

DiF =" 0 (Haoa(), 6 (1))

n>1

Denote by Dj o the stochastic Sobolev space which consists of all F € L?(p) such that is
satisfied. The Malliavin derivative D. is a linear operator from Dy o to L*(A x ) (A Lebesgue
measure). The adjoint operator § of D. as a mapping from Dom(8) C L*(\ x u) to L?(p) is
called Skorohod integral. The Skorohod integral can be regarded as a generalization of the
1t6 integral and one also uses the notation

T
Suxom) = [ (B (2.10)

for Skorohod integrable (not necessarily adapted) processes u € L2(\ x ) (i.e. u € Dom(0)).

In view of Section [3| we give the construction of the dual pair of spaces ((S), (S)*), which was
first introduced by Hida [H] in white noise analysis: Consider the self-adjoint operator

A=1+t>—- —



on S(R) CL?(p). Then the Hida test function space (S) is the space of all square integrable
functionals f with chaos expansion

f=3" (Ha(), 6™

n>0

such that )

171G, = Do nt||acmpo| <o (2.11)

n>0

L2(R")

for all p > 0. We mention that (S) is a nuclear Fréchet algebra, that is a countably Hilber-
tian nuclear space w.r.t. the the seminorms |||, ,,p > 0 and an algebra w.r.t. ordinary
multiplication of functions. The topological dual (S)* of (S) is the Hida distribution space.

Another useful dual pairing which was studied in [PT] is (G,G*). Denote by N the Ornstein-
Uhlenbeck operator (or number operator). The space of smooth random variables G is the
space of all square integrable functionals f such that

2
115 = €™ fll o, < o (2.12)
for all ¢ > 0. The dual of G denoted by G* is called space of generalized random variables.

We have the following interrelations of the above spaces in the sense of inclusions:
(S) = G — Dyg — L*() — G* — (S)*. (2.13)
In what follows we define the white noise differential operator
oy = Dt|(3) (2.14)

as the restriction of the Malliavin derivative to the Hida test function space. It can be shown
that d; maps (S) into itself, continuously. We denote by 9} : (S)* — (S)* the adjoint
operator of 0;. We mention the following crucial link between 0; and ¢:

T T
/Ou(t)(SBt—/O Ofu(t)dt, (2.15)

where the integral on the right hand side is defined on (S)* in the sense of Bochner. In
fact, the operator 9 can be represented as Wick multiplication with Brownian white noise

dfu=uoBy, (2.16)
where ¢ represents the Wick or Wick-Grassmann product. See [HOUZ].

We now shortly elaborate a white noise framework for pure jump Lévy processes: Let A be a
positive self-adjoint operator on L?(X,7), where X = R x Rg (Rq := R\{0})and 7 = X\ x v.
Here v is the Lévy measure of a (square integrable) Lévy process 7;. Assume that A™P is of
Hilbert-Schmidt type for some p > 0. Then denote by S(X) the standard countably Hilbert
space constructed from A. See e.g. [O] or [HKPS|. Let S'(X) be the dual of S(X). In what
follows we impose the following conditions on S(X) :
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(i) Each f € §(X) has a (m—a.e.) continuous version.
(ii) The evaluation functional é; : S(X) — R; f —— f(¢) belongs to S'(X) for all ¢.

(iii) The mapping (t — &) from X to S'(X) is continuous.

Then just as in the Gaussian case we obtain by the Bochner-Minlos theorem the (pure
jump) Lévy noise measure 7 on B(S'(X)) which satisfies

/ @9 (dw) = exp( / (€' — 1)7(da)) (2.17)
S'(X)

X

for all ¢ € S(X).

We remark that analogously to the Gaussian case each F € L?(7) has the unique chaos
decomposition

F= Z<cn(-),¢<">> (2.18)

n>0

for (™ € L2(X, ) (space of square integrable symmetric functions on X). Here Cp(w) €
((S(X ))®">| are generalized Charlier polynomials. Note that (Cy,(-), ™) can be viewed

the n—fold iterated It6 integral of #™ w.rt. the compensated Poisson random measure
N(dz,dt) := N(dz,dt) — v(dz)dt associated with the pure jump Lévy process

m:(cl(.),z;qo,t]}:/o /Rozf\?(dz,ds). (2.19)

Similarly to the Gaussian case we define the (pure jump) Lévy-Hida test function space (S),
as the space of all f =7 o (Cu(-), ¢™) € L%(7) such that

2= Dot [(asmpat

n>0

2

< 00 (2.20)
LQ(X"JTn)

1f]
for p > 0.

Suppressing the notational dependence on 7 we mention that the spaces (S)*, G, G* and the
operators Dy ., O ., 8{2 can be introduced in the same way as in the Gaussian case. For

example (2.15)) takes the form

/OT /RO u(t, z)N(dz, ot) _/OT /RO Oy u(t, z)v(dz) dt, (2.21)

where the left hand side denotes the Skorohod integral of u(-,-) with respect to N(-,-), for
Skorohod integrable processes u € L?(T x 7). See e.g. [LP] or [I]. Similar to the Brownian
motion case, (see (2.16))), one can prove the representation

Of ,u= uwo N(z,t), (2.22)



where ﬁ(z,t) = ﬁgﬁ’j?t is the white noise of N. See [HOUZ| and [OP].

In the sequel we choose the white noise probability space
(Q,F, P) = (S'(R) x S'(X), B(S'(R)) @ B(S'(X))), 1 x 7) (2.23)

and we suppose that the above concepts are defined with respect to this stochastic basis.

3 Main Results

In this Section we aim at establishing a uniqueness result for decompositions of Skorohod-
semimartingales. Let us clarify the latter notion in the following;:

Definition 3.1 (Skorohod-semimartingale) Assume that a process X¢,0 <t <T on the
probability space has the representation

Xe=(+ /Ota(s)ds + /Otﬂ(s)éBs + /Ot /Ro (s, 2)N(dz,ds) (3.1)

for all't. Here we require that Bx(o () resp. vx[o,4(+) are Skorohod integrable with respect to

B; resp. N(dz,dt) for all 0 <t < T. Further ¢ is a random variable and o a process such
that

T
/ la(s)|ds < oo P-a.e.
0
Then Xy is called a Skorohod-semimartingale.

Obviously, the Skorohod-semimartingale is a generalization of semimartingales of the type

Xt:C+/Ota(s)ds+/0tﬂ(s)st+/ot /Rofy(s,z)ﬁ(dz,ds),

where (3, v are predictable Ito integrable processes w.r.t. to some filtration F; and where (
is Fo-measurable. The Skorohod-semimartingale also extends the concepts of the Skorohod
integral processes

/Otﬁ(s)st and /Ot /RO v(s,2)N(dz,ds), 0<t<T.

Further it is worth mentioning that the increments of the Skorohod integral process Y; :=
fg (3(s)0Bs satisfy the following orthogonality relation:

E[Yy =Yy |Floge] =0, s<t,

where F[, e is the o—algebra generated by the increments of the Brownian motion in the
complement of the interval [s,t]. See [N] or [PTT]. We point out that Skorohod integral
processes may exhibit very rough path properties. For example consider the Skorohod SDE

t
Yi=nt [ YibBun=sign(By), 01
0
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It turns out that the Skorohod integral process X; = Y; — 1 possesses discontinuities of the
second kind. See [Bu]. Another surprising example is the existence of continuous Skorohod
integral processes fg B(s)dBs with a quadratic variation, which is essentially bigger than the

expected process fot (%(s)ds. See [BI].

In order to prove the uniqueness of Skorohod-semimartingale decompositions we need the
following result which is of independent interest:

Theorem 3.2 Let 0; and 9f , be the white noise operators of Section @ Then
(1) Of maps G*\{0} into (S)*\G*.
(i) The operator

(u— G;Zu(t, z)v(dz))
Ro

7(@@523 G*\{0} into (S)*\G*.
0+ [ 310wld): 6\ (0} x G\ (0} —(5)"\G"
Ro

Proof. Without loss of generality it suffices to show that
0f maps G*\{0} into (5)*\G".
For this purpose consider a F' € G*\{0} with formal chaos expansion

F=>" (Ha(),6™).

n>0

where ¢(™ € L2(R™). One checks that (Hy(+), ™) can be written as

(Ha(),6™) = 3 ca (Ha(),65)

lal=n

where

ca = (0,65) (3.2)

L2(R™)
with R R
9% = (N8 REP™
for Hermite functions &,k > 1 and multiindices o = (agq,...,ax),a; € Ng. Here |a| :=
Zle a;. By |i we know that

oo > (0, 67)]

2
= E alc?.
L2(p)
|a|=n

Assume that
OfF € G. (3.3)



Then J; F' has a formal chaos expansion

O F =3 (Ha(),4™).

n>0

Thus it follows from of the definition of 9; (see Section [2|) that

2
2
oo > ||(Ha(). 6 ™) D R D DEETNO) I (3.4)
= ate(m)=y
where the multiindex (™) is defined as
(m) () — 1, 1=m
e () { 0 else
On the other hand we observe that
2
Z ’7! Z Ca - ém(t)
[v|=n ate(m) =
2
n
= Z Z CL1! et ak! Z Z Cals(il)+---+ak5(ik)_5(m) : gm(t) 5
k=1 (a1,...,ar)ENk i1>i9>... >0 \m>1
a1+.4.+ak:n
where coefficients are set equal to zero, if not defined. So we get that
I ONE
H< n(), ¥ >‘ L2(n)
n k 2
:Z Z a!-...o-aplay! - ... ag! Z ZCale<i1>+...+aka(ik)—a(ii) - &, (1)
k=1 (a1,...,a)ENF i1>09>.. >0, \ j=1
a1+4.4+ak:n
(3.5)

By our assumption there exist n* € No, a3, ..., ap € N, pairwise unequal 23, ..., 75 , ko < n*—1
such that
as+ ... +ap, =n"—1

and

) #0. (3.6)

& . i
5 (i3) kg
aze +..‘+ak05



On the other hand it follows from (3.5) for n = n* that

ek
H< n(): >‘L2(,u)
ko 2
>a¥looogt ! » » o ey - Eax
) Ak, Z Z CE(zl)Jra;E(zQ)Jr“_JraZOE( Fo)_ ) fzj (t)

if>max(i§,-~~,izo) Jj=1

ko
QAo ag . C .« - ¥ % *
2 ko < 5(21)+a§5(12)+---+a205( kO)fg( 31) 574]1( )

iy >max(if, ,zko) J1,52=1

@y - i (ﬂ)

'Ca“"f)+a§a(i§>+~~~+aioa(izo)—a g2’ iz
= A1+ Ay —|—A3, (37)
where
—afl. . gf ! e )2 (Ean 2
Av=agl---aj,! Z (Ca§a<i3)+..~+a206(lk0)) (le(t)) ’

i >max(if, ,izo
ko
Ao =a3l---aj ! Z Zc " " i+ o & ()2
2 2 ko ( 8(11)_’_@8(12)_’_.“_’_(1:08( ko>_a(’j) 51],( )) )

i >max(if, ,izo) j=2

Ko
Az =a3l---a}! g c .. . ; oy & (t
3 2 ko 5(1’{)4_&;6(1;)_._..._‘_@: 5(120)_5(7‘;1) 61;1( )
i >max (%, i} ) j177J2 0
0/ 2T e
J1,32=1

CRRETS (t)> :

C X Sk
8(21)+a§€(13)+---+azo€(lk0>f€ J2

The first term A; in (3.7) diverges to oo because of (3.6). The second term is positive. The
last term A3 can be written as

As

ko
=qaXl...q¥ | E 25 oy - Ean(t
Ay. Apo - (C (i L« ) €’L ( )
0 = a2a( 2)+...+ak05 ko 1

i >max(i5, - ,izo)

cC ok - ¥ i*) T Qe t
5(21)+a§5(12)+"'+a205( ko) _g(i) gz]( ))

Ko
No..g¥ ; ; <& (T
Ao. aj. . C .« . ) )
+ag ko' E . E < 0D pagel®) 1gar k) _ ) fzjl( )
i3 >max (i, ’ZZO) J1#72 0
J1,d2=1

“C .* iy ry & (8
€<11)+a§€(12>+._.+a205( ko) _(15y) 51]2( ))

=:A31+ A3,



where

ko
Az =adl---aj ! E 2 E <c . oy - & (t)
) 2 k % (i3 * (ig ) (N
’ ]:2 a2€< 2)+“.+ak0£ *o !

i >max(i’2‘,---,i;;0)
C % - i* ey s Eqx (T
e<11)+a;a(l2)+-~~+a* eho) () &1( )> ’

Ao =all---al | > Z N T (
3,2 2 ko (z +a*e<l2)+ tar (k0>_€(1j1) 52.7'1()

ii>max(i3, iy ) J17752
J1,d2=1

C .4 . Pk i* . ;% t .
5(11>+a§€<12)+__.+azos(zko)7€< ) fzn( )>

By means of relation (3.2) and the properties of basis elements one can show that the term
Az in (3.8) converges t—a.e. The other term Az, with Hermite functions which do not
depend on the summation index converges by assumption, too.

= OO’

(ORIl

which contradicts (3.4) and it contradicts (3.3]), too.
It follows that

We conclude that

97 maps G*\{0} into (S)*\G".

The proofs of (ii) and (iii) are similar. m
We are now ready to prove the main result of this paper:

Theorem 3.3 [Decomposition uniqueness for general Skorohod processes]|
Consider a stochastic process X; of the form

:C+/()ta(s)ds+/0tﬂ(s)5Bs+/ot /Rofy(s,z)ﬁ(dz,és),

where BX(0,0, YX[o, are Skorohod integrable for all t. Further require that a(t) is element in
G* a.e. and that o is Bochner-integrable w.r.t. G* on the interval [0, T]. Suppose that

Xi=0forall0<t<T.

Then
(=0,a=0,8=0,7v=0 a.e.

Proof. Because of (2.15) and (2.21)) it follows that

_§+/ ds+/8* ds—i—// 0; (s, 2)v(dz)ds

=0, 0<t<T.
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Thus
a(t) + 07 B(t) + / of (t, 2)v(dz) =0 ae.
Ro

Therefore

o B(t) + / 9 At 2)(dz) € G* ae.
Ro

Then Theorem [3.2] implies
8=0,v=0a.e.

Remark 3.4 We mention that Theorem is a generalization of a result in [NP] in the
Gaussian case, when 3 € LY2, that is

2 2 2
||5H1,2 = ”ﬂHL2(A><u) + HD-ﬂHL?()\X)\Xy) < 0.
As a special case of Theorem [3.3] we get the following:

Theorem 3.5 [Decomposition uniqueness for Skorohod-semimartingales]
Let X; be a Skorohod-semimartingale of the form

Xt:C+/Ota(s)ds+/0tﬂ(s)635+/ot /Ro'y(s,z)]v(dz,és),

where a(t) € L?(P) for all t. Then if
Xe=0forall 0<t<T.
we have

C:O,OKZO, 5:0’ ’}/:0 a.e.

Example 3.6 Assume in Theorem that v = 0. Further require o(t) € LP(u) 0 <t < T
for some p > 1. Since LP(p) C G* for all p > 1 (see [PT]) it follows from Theorem 3.5 that
if Xy =0, 0<t<T then(=0,a=0,8=0 a.c.

Example 3.7 Denote by Li(x) the local time of the Brownian motion. Consider the Donsker

delta function §,(By) of By, which is a mapping from [0,T] into G*. The Donsker delta
function can be regarded as a time-derivative of the local time Li(x), that is

Lt(m):/o 0x(Bs)ds

for all x a.e. See e.g. [HKPS|]. So we see from Theorem that the random field

Xi = ¢+ Li(z) + /Otﬁ(s)cSBs + /Ot /Rov(s,z)]v(dz,és)

11



has a unique decomposition. We remark that we obtain the same result if we generalize Li(x)
to be a local time of a diffusion process (as constructed in [PSul]) or the local time of a Lévy
process (as constructed in [MOP]). Finally, we note that the unique decomposition property
carries over to the case when Xy has the form

t t ~
X = C+At+/0 ﬂ(3)535+/0 /R (s, 2)N(dz,ds),

where A; is a positive continuous additive functional with the representation

AtZALt($)m(d$),

where m is a finite measure. See [B] or [F]].
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