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Uniqueness of Decompositions of Skorohod-Semimartingales
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Abstract

In this paper we introduce Skorohod-semimartingales as an expanded concept of classical
semimartingales in the setting of Lévy processes. We show under mild conditions that
Skorohod-semimartingales similarly to semimartingales admit a unique decomposition.
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1 Introduction

Let Xt = Xt(ω); t ∈ [0, T ], ω ∈ Ω be a stochastic process of the form

Xt = ζ +
∫ t

0
α(s)ds+

∫ t

0
β(s)δBs +

∫ t

0

∫
R0

γ(s, z)Ñ(dz, δs), (1.1)

where ζ is a random variable, α is an integrable measurable process, β(s) and γ(s, z) are
measurable processes such that βχ[0,t](·) and γχ[0,t](·) are Skorohod integrable with respect
to Bs and Ñ(dz, ds) respectively, and the stochastic integrals are interpreted as Skorohod
integrals. Here Bs = Bs(ω) and Ñ(dz, ds) = Ñ(dz, ds, ω) is a Brownian motion and and
independent Poisson random measure, respectively. Such processes are called Skorohod-
semimartingales. The purpose of this paper is to prove that the decomposition (1.1) is
unique, in the sense that if Xt = 0 for all t ∈ [0, T ] then

ζ = α(·) = β(·) = γ(·, ·) = 0

(see Theorem 3.5).

This is an extension of a result by Nualart and Pardoux [NP], who proved the uniqueness of
such a decomposition in the Brownian case (i.e., Ñ = 0) and with additional assumption on
β.
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We obtain Theorem 3.5 as a special case of a more general decomposition uniqueness theorem
for an extended class of Skorohod integral processes with values in in the space of generalized
random variables G∗. See Theorem 3.3. Our proof uses white noise theory of Lévy processes.
In Section 2 we give a brief review of this theory and in Section 3 we prove our main theorem.

Our decomposition uniqueness is motivated by applications in anticipative stochastic control
theory, including insider trading in finance. See [DØPP]

2 A Concise Review of Malliavin Calculus and White Noise
Analysis

This Section provides the mathematical framework of our paper which will be used in Section
3. Here we want to briefly recall some basic facts from both Malliavin calculus and white
noise theory. See [N], [M] and [DØP] for more information on Malliavin calculus. As for
white noise theory we refer the reader to [DØP1], [HKPS], [HØUZ], [K], [LP], [O] and [ØP].

In the sequel denote by S(R) the Schwartz space on R and by S p(R) its topological dual.
Then in virtue of the celebrated Bochner-Minlos theorem there exists a unique probability
measure µ on the Borel sets of the conuclear space S p(R) (i.e. B(S p(R)))such that∫

S p(R)
ei〈ω,φ〉µ(dω) = e

− 1
2
‖φ‖2

L2(R) (2.1)

holds for all φ ∈ S(R), where 〈ω, φ〉 is the action of ω ∈ S p(R) on φ ∈ S(R). The measure µ
is called the Gaussian white noise measure and the triple(

S p(R),B(S p(R)), µ
)

(2.2)

is referred to as (Gaussian) white noise probability space.

Consider the Doleans-Dade exponential

ẽ(φ, ω) = e
〈ω,φ〉− 1

2
‖φ‖2

L2(R) , (2.3)

which is holomorphic in φ around zero. Hence there exist generalized Hermite polynomials

Hn(ω) ∈
(
(S(R))b⊗n

)p
(i.e. dual of n−th completed symmetric tensor product of S(R)) such

that
ẽ(φ, ω) =

∑
n≥0

1
n!

〈
Hn(ω), φ⊗n

〉
(2.4)

for all φ in a neighborhood of zero in S(R). One verifies that the orthogonality relation∫
S p(R)

〈
Hn(ω), φ(n)

〉 〈
Hn(ω), ψ(n)

〉
µ(dω) =

{
n!

(
φ(n), ψ(n)

)
L2(Rn)

, m = n

0 m 6= n
(2.5)
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is fulfilled for all φ(n) ∈ (S(R))b⊗n, ψ(m) ∈ (S(R))b⊗m . From this relation we obtain that the
mappings (φ(n) 7−→

〈
Hn(ω), φ(n)

〉
) from (S(R))b⊗n to L2(µ) have unique continuous extensions

In : L̂2(Rn) −→ L2(µ),

where L̂2(Rn) is the space of square integrable symmetric functions. It turns out that L2(µ)
admits the orthogonal decomposition

L2(µ) =
∑
n≥0

⊕In(L̂2(Rn)). (2.6)

Note that that In(φ(n)) can be considered an n−fold iterated Itô integral φ(n) ∈ L̂2(Rn) with
respect to a Brownian motion Bt on our white noise probability space. In particular

I1(ϕχ[0,T ]) =
〈
H1(ω), ϕχ[0,T ]

〉
=

∫ T

0
ϕ(t)dBt, ϕ ∈ L2(R). (2.7)

Let F ∈ L2(µ). It follows from (2.6) that

F =
∑
n≥0

〈
Hn(·), φ(n)

〉
(2.8)

for unique φ(n) ∈ L̂2(Rn). Further require that∑
n≥1

nn!
∥∥∥φ(n)

∥∥∥2

bL2(Rn)
<∞. (2.9)

Then the Malliavin derivative Dt of F in the direction Bt is defined by

DtF =
∑
n≥1

n
〈
Hn−1(·), φ(n)(·, t)

〉
.

Denote by D1,2 the stochastic Sobolev space which consists of all F ∈ L2(µ) such that (2.9) is
satisfied. The Malliavin derivative D· is a linear operator from D1,2 to L2(λ×µ) (λ Lebesgue
measure). The adjoint operator δ of D· as a mapping from Dom(δ) ⊂ L2(λ× µ) to L2(µ) is
called Skorohod integral. The Skorohod integral can be regarded as a generalization of the
Itô integral and one also uses the notation

δ(uχ[0,T ]) =
∫ T

0
u(t)δBt (2.10)

for Skorohod integrable (not necessarily adapted) processes u ∈ L2(λ×µ) (i.e. u ∈ Dom(δ)).

In view of Section 3 we give the construction of the dual pair of spaces ((S), (S)∗), which was
first introduced by Hida [H] in white noise analysis: Consider the self-adjoint operator

A = 1 + t2 − d2

dt2
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on S(R) ⊂L2(µ). Then the Hida test function space (S) is the space of all square integrable
functionals f with chaos expansion

f =
∑
n≥0

〈
Hn(·), φ(n)

〉
such that

‖f‖2
0,p :=

∑
n≥0

n!
∥∥∥(A⊗n)pφ(n)

∥∥∥2

L2(Rn)
<∞ (2.11)

for all p ≥ 0. We mention that (S) is a nuclear Fréchet algebra, that is a countably Hilber-
tian nuclear space w.r.t. the the seminorms ‖·‖0,p , p ≥ 0 and an algebra w.r.t. ordinary
multiplication of functions. The topological dual (S)∗ of (S) is the Hida distribution space.

Another useful dual pairing which was studied in [PT] is (G,G∗). Denote by N the Ornstein-
Uhlenbeck operator (or number operator). The space of smooth random variables G is the
space of all square integrable functionals f such that

‖f‖2
q :=

∥∥eqNf
∥∥2

L2(µ)
<∞ (2.12)

for all q ≥ 0. The dual of G denoted by G∗ is called space of generalized random variables.

We have the following interrelations of the above spaces in the sense of inclusions:

(S) ↪→ G ↪→ D1,2 ↪→ L2(µ) ↪→ G∗ ↪→ (S)∗. (2.13)

In what follows we define the white noise differential operator

∂t = Dt|(S) (2.14)

as the restriction of the Malliavin derivative to the Hida test function space. It can be shown
that ∂t maps (S) into itself, continuously. We denote by ∂∗t : (S)∗ −→ (S)∗ the adjoint
operator of ∂t. We mention the following crucial link between ∂∗t and δ:∫ T

0
u(t)δBt =

∫ T

0
∂∗t u(t)dt, (2.15)

where the integral on the right hand side is defined on (S)∗ in the sense of Bochner. In
fact, the operator ∂∗t can be represented as Wick multiplication with Brownian white noise
Ḃt = dBt

dt , i.e.,

∂∗t u = u � Ḃt, (2.16)

where � represents the Wick or Wick-Grassmann product. See [HØUZ].

We now shortly elaborate a white noise framework for pure jump Lévy processes: Let A be a
positive self-adjoint operator on L2(X,π), where X = R× R0 (R0 := R\{0})and π = λ× v.
Here ν is the Lévy measure of a (square integrable) Lévy process ηt. Assume that A−p is of
Hilbert-Schmidt type for some p > 0. Then denote by S(X) the standard countably Hilbert
space constructed from A. See e.g. [O] or [HKPS]. Let S p(X) be the dual of S(X). In what
follows we impose the following conditions on S(X) :
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(i) Each f ∈ S(X) has a (π−a.e.) continuous version.

(ii) The evaluation functional δt : S(X) −→ R; f 7−→ f(t) belongs to S p(X) for all t.

(iii) The mapping (t 7−→ δt) from X to S p(X) is continuous.

Then just as in the Gaussian case we obtain by the Bochner-Minlos theorem the (pure
jump) Lévy noise measure τ on B(S p(X)) which satisfies∫

S p(X)
ei〈ω,φ〉τ(dω) = exp(

∫
X

(eiφ − 1)π(dx)) (2.17)

for all φ ∈ S(X).

We remark that analogously to the Gaussian case each F ∈ L2(τ) has the unique chaos
decomposition

F =
∑
n≥0

〈
Cn(·), φ(n)

〉
(2.18)

for φ(n) ∈ L̂2(X,π) (space of square integrable symmetric functions on X). Here Cn(ω) ∈(
(S(X))b⊗n

)p
are generalized Charlier polynomials. Note that

〈
Cn(·), φ(n)

〉
can be viewed

the n−fold iterated Itô integral of φ(n) w.r.t. the compensated Poisson random measure
Ñ(dz, dt) := N(dz, dt)− v(dz)dt associated with the pure jump Lévy process

ηt =
〈
C1(·), zχ[0,t]

〉
=

∫ t

0

∫
R0

zÑ(dz, ds). (2.19)

Similarly to the Gaussian case we define the (pure jump) Lévy-Hida test function space (S)τ

as the space of all f =
∑

n≥0

〈
Cn(·), φ(n)

〉
∈ L2(τ) such that

‖f‖2
0,π,p :=

∑
n≥0

n!
∥∥∥(A⊗n)pφ(n)

∥∥∥2

L2(Xn,πn)
<∞ (2.20)

for p ≥ 0.

Suppressing the notational dependence on τ we mention that the spaces (S)∗, G, G∗ and the
operators Dt,z, ∂t,z, ∂∗t,z can be introduced in the same way as in the Gaussian case. For
example (2.15) takes the form∫ T

0

∫
R0

u(t, z)Ñ(dz, δt) =
∫ T

0

∫
R0

∂∗t,zu(t, z)ν(dz) dt, (2.21)

where the left hand side denotes the Skorohod integral of u(·, ·) with respect to Ñ(·, ·), for
Skorohod integrable processes u ∈ L2(τ × π). See e.g. [LP] or [I]. Similar to the Brownian
motion case, (see (2.16)), one can prove the representation

∂∗t,z u = u � ˙̃
N(z, t), (2.22)
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where ˙̃
N(z, t) =

eN(dz,dt)
ν(dz)×dt is the white noise of Ñ . See [HØUZ] and [ØP].

In the sequel we choose the white noise probability space

(Ω,F , P ) =
(
S p(R)× S p(X),B(S p(R))⊗ B(S p(X))), µ× τ

)
(2.23)

and we suppose that the above concepts are defined with respect to this stochastic basis.

3 Main Results

In this Section we aim at establishing a uniqueness result for decompositions of Skorohod-
semimartingales. Let us clarify the latter notion in the following:

Definition 3.1 (Skorohod-semimartingale) Assume that a process Xt, 0 ≤ t ≤ T on the
probability space (2.23) has the representation

Xt = ζ +
∫ t

0
α(s)ds+

∫ t

0
β(s)δBs +

∫ t

0

∫
R0

γ(s, z)Ñ(dz, δs) (3.1)

for all t. Here we require that βχ[0,t](·) resp. γχ[0,t](·) are Skorohod integrable with respect to
Bt resp. Ñ(dz, dt) for all 0 ≤ t ≤ T. Further ζ is a random variable and α a process such
that ∫ T

0
|α(s)| ds <∞ P -a.e.

Then Xt is called a Skorohod-semimartingale.

Obviously, the Skorohod-semimartingale is a generalization of semimartingales of the type

Xt = ζ +
∫ t

0
α(s)ds+

∫ t

0
β(s)dBs +

∫ t

0

∫
R0

γ(s, z)Ñ(dz, ds),

where β, γ are predictable Itô integrable processes w.r.t. to some filtration Ft and where ζ
is F0-measurable. The Skorohod-semimartingale also extends the concepts of the Skorohod
integral processes ∫ t

0
β(s)δBs and

∫ t

0

∫
R0

γ(s, z)Ñ(dz, δs), 0 ≤ t ≤ T.

Further it is worth mentioning that the increments of the Skorohod integral process Yt :=∫ t
0 β(s)δBs satisfy the following orthogonality relation:

E [Yt − Ys

∣∣F[s,t]c
]

= 0, s < t,

where F[s,t]c is the σ−algebra generated by the increments of the Brownian motion in the
complement of the interval [s, t]. See [N] or [PTT]. We point out that Skorohod integral
processes may exhibit very rough path properties. For example consider the Skorohod SDE

Yt = η +
∫ t

0
YsδBs, η = sign(B1), 0 ≤ t ≤ 1.
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It turns out that the Skorohod integral process Xt = Yt − η possesses discontinuities of the
second kind. See [Bu]. Another surprising example is the existence of continuous Skorohod
integral processes

∫ t
0 β(s)δBs with a quadratic variation, which is essentially bigger than the

expected process
∫ t
0 β

2(s)ds. See [BI].

In order to prove the uniqueness of Skorohod-semimartingale decompositions we need the
following result which is of independent interest:

Theorem 3.2 Let ∂∗t and ∂∗t,z be the white noise operators of Section 2. Then
(i) ∂∗t maps G∗\{0} into (S)∗\G∗.
(ii) The operator

(u 7−→
∫

R0

∂∗t,zu(t, z)ν(dz))

maps G∗\{0} into (S)∗\G∗.
(iii)

∂∗t +
∫

R0

∂∗t,z(·)ν(dz) : G∗\{0} × G∗\{0}−→(S)∗\G∗.

Proof. Without loss of generality it suffices to show that

∂∗t maps G∗\{0} into (S)∗\G∗.

For this purpose consider a F ∈ G∗\{0} with formal chaos expansion

F =
∑
n≥0

〈
Hn(·), φ(n)

〉
.

where φ(n) ∈ L̂2(Rn). One checks that
〈
Hn(·), φ(n)

〉
can be written as〈

Hn(·), φ(n)
〉

=
∑
|α|=n

cα

〈
Hn(·), ξ b⊗α

〉
where

cα =
(
φ(n), ξ

b⊗α
)

L2(Rn)
(3.2)

with
ξ

b⊗α = ξ
b⊗α1
1 ⊗̂...⊗̂ξ b⊗αk

k

for Hermite functions ξk, k ≥ 1 and multiindices α = (α1, ..., αk), αi ∈ N0. Here |α| :=∑k
i=1 αi. By (2.5) we know that

∞ >
∥∥∥〈
Hn(·), φ(n)

〉∥∥∥2

L2(µ)
=

∑
|α|=n

α!c2α.

Assume that
∂∗t F ∈ G∗. (3.3)
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Then ∂∗t F has a formal chaos expansion

∂∗t F =
∑
n≥0

〈
Hn(·), ψ(n)

〉
.

Thus it follows from of the definition of ∂∗t (see Section 2) that

∞ >
∥∥∥〈
Hn(·), ψ(n)

〉∥∥∥2

L2(µ)
=

∑
|γ|=n

γ!

 ∑
α+ε(m)=γ

cα · ξm(t)

2

, (3.4)

where the multiindex ε(m) is defined as

ε(m)(i) =
{

1, i = m
0 else

.

On the other hand we observe that

∑
|γ|=n

γ!

 ∑
α+ε(m)=γ

cα · ξm(t)

2

=
n∑

k=1

∑
(a1,...,ak)∈Nk

a1+...+ak=n

a1! · ... · ak!
∑

i1>i2>...>ik

∑
m≥1

ca1ε(i1)+...+akε(ik)−ε(m) · ξm(t)

2

,

where coefficients are set equal to zero, if not defined. So we get that∥∥∥〈
Hn(·), ψ(n)

〉∥∥∥2

L2(µ)

=
n∑

k=1

∑
(a1,...,ak)∈Nk

a1+...+ak=n

a1! · ... · ak!a1! · ... · ak!
∑

i1>i2>...>ik

 k∑
j=1

c
a1ε(i1)+...+akε(ik)−ε(ij) · ξij (t)

2

.

(3.5)

By our assumption there exist n∗ ∈ N0, a∗2, ..., a
∗
k0
∈ N, pairwise unequal i∗2, ..., i

∗
k0
, k0 ≤ n∗−1

such that
a∗2 + ...+ a∗k0

= n∗ − 1

and
c
a∗2ε(i∗2)+...+a∗k0

ε
(i∗

k0
) 6= 0. (3.6)
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On the other hand it follows from (3.5) for n = n∗ that∥∥∥〈
Hn(·), ψ(n)

〉∥∥∥2

L2(µ)

≥ a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

 k0∑
j=1

c
ε(i∗1)+a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
)
−ε

(i∗
j
) · ξi∗j (t)

2

= a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

k0∑
j1,j2=1

(
c
ε(i∗1)+a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
)
−ε

(i∗
j1

) · ξi∗j1 (t)

·c
ε(i∗1)+a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
)
−ε

(i∗
j2

) · ξi∗j2 (t)
)

=:A1 +A2 +A3, (3.7)

where

A1 = a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

(c
a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
))2 · (ξi∗1(t))

2,

A2 = a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

k0∑
j=2

(c
ε(i∗1)+a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
)
−ε

(i∗
j
) · ξi∗j (t))

2,

A3 = a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

K0∑
j1 6=j2

j1,j2=1

(
c
ε(i∗1)+a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
)
−ε

(i∗
j1

) · ξi∗j1 (t)

·c
ε(i∗1)+a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
)
−ε

(i∗
j2

) · ξi∗j2 (t)
)
.

The first term A1 in (3.7) diverges to ∞ because of (3.6). The second term is positive. The
last term A3 can be written as

A3

= a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

2
k0∑

j=2

(
c
a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
) · ξi∗1(t)

· c
ε(i∗1)+a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
)
−ε

(i∗
j
) · ξi∗j (t)

)

+ a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

K0∑
j1 6=j2

j1,j2=1

(
c
ε(i∗1)+a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
)
−ε

(i∗
j1

) · ξi∗j1 (t)

·c
ε(i∗1)+a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
)
−ε

(i∗
j2

) · ξi∗j2 (t)
)

=:A3,1 +A3,2, (3.8)
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where

A3,1 = a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

2
k0∑

j=2

(
c
a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
) · ξi∗j (t)

· c
ε(i∗1)+a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
)
−ε

(i∗
j
) · ξi∗1(t)

)
,

A3,2 = a∗2! · · · a∗k0
!

∑
i∗1>max(i∗2,··· ,i∗k0

)

K0∑
j1 6=j2

j1,j2=1

(
c
ε(i∗1)+a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
)
−ε

(i∗
j1

) · ξi∗j1 (t)

·c
ε(i∗1)+a∗2ε(i∗2)+···+a∗k0

ε
(i∗

k0
)
−ε

(i∗
j2

) · ξi∗j2 (t)
)
.

By means of relation (3.2) and the properties of basis elements one can show that the term
A3,1 in (3.8) converges t−a.e. The other term A3,2 with Hermite functions which do not
depend on the summation index converges by assumption, too.

We conclude that ∥∥∥〈
Hn∗(·), ψ(n∗)

〉∥∥∥2

L2(µ)
= ∞,

which contradicts (3.4) and it contradicts (3.3), too.
It follows that

∂∗t maps G∗\{0} into (S)∗\G∗.

The proofs of (ii) and (iii) are similar.

We are now ready to prove the main result of this paper:

Theorem 3.3 [Decomposition uniqueness for general Skorohod processes]
Consider a stochastic process Xt of the form

Xt = ζ +
∫ t

0
α(s)ds+

∫ t

0
β(s)δBs +

∫ t

0

∫
R0

γ(s, z)Ñ(dz, δs),

where βχ[0,t], γχ[0,t] are Skorohod integrable for all t. Further require that α(t) is element in
G∗ a.e. and that α is Bochner-integrable w.r.t. G∗ on the interval [0, T ]. Suppose that

Xt = 0 for all 0 ≤ t ≤ T.

Then
ζ = 0, α = 0, β = 0, γ = 0 a.e.

Proof. Because of (2.15) and (2.21) it follows that

Xt =ζ +
∫ t

0
α(s)ds+

∫ t

0
∂∗sβ(s)ds+

∫ t

0

∫
R0

∂∗s,zγ(s, z)ν(dz)ds

=0, 0 ≤ t ≤ T.
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Thus
α(t) + ∂∗t β(t) +

∫
R0

∂∗t,zγ(t, z)ν(dz) = 0 a.e.

Therefore
∂∗t β(t) +

∫
R0

∂∗t,zγ(t, z)ν(dz) ∈ G∗ a.e.

Then Theorem 3.2 implies
β = 0, γ = 0 a.e.

Remark 3.4 We mention that Theorem 3.3 is a generalization of a result in [NP] in the
Gaussian case, when β ∈ L1,2, that is

‖β‖2
1,2 := ‖β‖2

L2(λ×µ) + ‖D·β‖2
L2(λ×λ×µ) <∞.

As a special case of Theorem 3.3, we get the following:

Theorem 3.5 [Decomposition uniqueness for Skorohod-semimartingales]
Let Xt be a Skorohod-semimartingale of the form

Xt = ζ +
∫ t

0
α(s)ds+

∫ t

0
β(s)δBs +

∫ t

0

∫
R0

γ(s, z)Ñ(dz, δs),

where α(t) ∈ L2(P ) for all t. Then if

Xt = 0 for all 0 ≤ t ≤ T.

we have
ζ = 0, α = 0, β = 0, γ = 0 a.e.

Example 3.6 Assume in Theorem 3.3 that γ ≡ 0. Further require α(t) ∈ Lp(µ) 0 ≤ t ≤ T
for some p > 1. Since Lp(µ) ⊂ G∗ for all p > 1 (see [PT]) it follows from Theorem 3.3 that
if Xt = 0, 0 ≤ t ≤ T then ζ = 0, α = 0, β = 0 a.e.

Example 3.7 Denote by Lt(x) the local time of the Brownian motion. Consider the Donsker
delta function δx(Bt) of Bt, which is a mapping from [0, T ] into G∗. The Donsker delta
function can be regarded as a time-derivative of the local time Lt(x), that is

Lt(x) =
∫ t

0
δx(Bs)ds

for all x a.e. See e.g. [HKPS]. So we see from Theorem 3.3 that the random field

Xt = ζ + Lt(x) +
∫ t

0
β(s)δBs +

∫ t

0

∫
R0

γ(s, z)Ñ(dz, δs)

11



has a unique decomposition. We remark that we obtain the same result if we generalize Lt(x)
to be a local time of a diffusion process (as constructed in [PSu]) or the local time of a Lévy
process (as constructed in [MØP]). Finally, we note that the unique decomposition property
carries over to the case when Xt has the form

Xt = ζ +At +
∫ t

0
β(s)δBs +

∫ t

0

∫
R0

γ(s, z)Ñ(dz, δs),

where At is a positive continuous additive functional with the representation

At =
∫

R
Lt(x)m(dx),

where m is a finite measure. See [B] or [F].
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