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Abstract

We propose a method to compute approximate eigenpairs of thédbober operator on a bounded
domain in the presence of an electromagnetic field. The method is formulated for the simplicial grids
that satisfy the discrete maximum principle. It combines techniques from lattice gauge theory and finite
element methods, retaining the discrete gauge invariance of the former but allowing for non-congruent
space elements as in the latter. The error in the method is studied in the framework of Strang’s variational
crimes, comparing with a standard Galerkin approach. For a smooth electromagnetic field the crime is
of order the mesh width, for a Coulomb potential it is of ordér logh|, and for a general finite energy
electromagnetic field it is of ordér/2.

1 Introduction

The Schédinger equation can be used to describe for instance electrons in a non-relativistic setting and
is therefore of fundamental importance. Recent progress in manipulating such basic systems promises
technological breakthroughs such as quantum computing. Electrons are manipulated by magnetic traps,
electrostatic potentials and laser beams all of which are electromagnetic fields. When the electromagnetic
field is strong it can be described classically by Maxwell's equations. Thé8iciyer equation is modified
accordingly and involves an electromagnetic gauge potential.

In this paper we introduce and study a numerical method for computing the eigenvalues of trddrigehr
operator in the presence of an electromagnetic field. They correspond to possible energy levels for the elec-
tron.

When the electromagnetic field is represented by a gauge potential there is some arbitrariness. Adding
a gradient to the magnetic potential and doing a corresponding phase shift on the wave function does not
fundamentally change the system (but rather our description of it). Importantly, the energy levels of the
electron as well as the associated probability densities, are independent of the choice of gauge. We want to
design a numerical method with the same property.

Lattice gauge theory [16] is a discretization technique with such an invariance property. It can be
used for the Sclidinger equation [11], and we have previously applied it to the Maxwell-Klein-Gordon
equation [8], though it was invented for more complicated systems (quantum fields with non-commutative
gauge group). However, to the best of our knowledge, no numerical analysis of this method is available
and moreover it is formulated for discretizations of the physical domain using Cartesian grids. In this paper
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we modify lattice gauge theory using techniques from finite element methods, such as mass-lumping, to
obtain a method formulated on simplicial grids (one consisting of tetrahedrons). Moreover we study the
error of the method by comparing it with a standard Galerkin finite element method.

Simplicial meshes are better at handling boundaries of domains which is important for technological
applications. When treating singular fields, such as Coulomb potentials, local mesh refinements are also
useful and for this reason too simplicial grids might be preferable.

Lattice gauge theory was introduced to handle quantum fields. It is quite possible that the proposed
techniques can be used also when the electromagnetic field is treated quantum-mechanically.

We notice that by separating the modulus and the phase of the wave-function it is possible to obtain
another gauge invariant discretization [2] allowing for high order finite elements. Due to problems of
definition and regularity of the phase where the modulus vanishes this method seems best for computing the
fundamental state corresponding to the lowest eigenvalue. Our method can be used for all the eigenvalues
but on the other hand it is confined to lowest order finite elements.

We first introduce the mathematical setting for the 8dimiger equation in an electromagnetic field
and briefly recall some physical facts. Then we review discretization tools including finite element exterior
calculus (mixed finite elements or Whitney forms) and mass-lumping. Then we introduce the proposed
discrete eigenvalue problem and state its gauge invariance property. Finally we study the error committed.

2 The continuous Schbdinger eigenvalue problem

Let S ¢ R? be a bounded domain in space whose boundary is smooth enough (e.g. locally the graph of
Lipschitz functions). We use the standard Euclidean produdtbthrough which vector fields will be
identified with one-forms or two-forms, scalar fields with zero-forms or three-forms. The real vaiued L
product on differential forms o8 is denoted-,-), and the associatedtnorm|| -||. If we want to use these
norms on some domai® different fromS we write (-,-)s and|| - ||s. For any differential operator op we
define the Sobolev spaces:

Hop(S) = {u€ L%(S) : opueL%(S)}, (1)

where L?(S) spaces of differential forms or vector and scalar fields are assumed. We then have a diagram
of Hilbert spaces linked by bounded operators with closed range:

Hgrad(S) ——> Hour(S) > Hgiy (S) ~ 2> H(S). 2)

We are given a magnetic fiel on R3, which is a closed two-form identified with a divergence free
vector field. We assume at least locally finite energy, [[Bl|s < +o for any bounde®’. The magnetic
field can be represented by a magnetic potemtiah R® which is also locally . It is a vector field or
one-form such that cud = B. We are also given an electric fielel We consider only time-constant
electromagnetic fields, B is represented by an electric potentaivhich is a function orR® such that
gradV = E. The electric potential will be the sum of locallyyH4 functions and Coulomb potentials. The
former condition guarantees locally finite enerd¥ (s < +o for any boundeds’) while the latter is also
important in applications.

Up until now we have assumed real valued vector fields and differential forms. A wave function is a
complex functiony onR3 which is in Hyrad(S’) ® C for any bounded’. The covariant gradient of is:

grad,y = grady + 1Ay, 3)

where grad now acts on complex functions.

For definiteness we shall assume that the dor8agfilled with vacuum whereas the rest®? is filled
with a perfect conductor. The wave function has suppo &o thaty € H}(S) ® C.

The Schodinger eigenvalue problem consists in find{gga) € (H3(S) @ C) x R, ¢ # 0, which solves
the equation:

V' €HG(S)®C  a(y.y') +b(y.y') = Ay.¥), 4)



wherea(-,-) andb(-,-) are the bilinear forms given by:

a(y.y') = (gradhy,gradyy'), (5)
b(y, ') = (Vy,¢'), (6)

Most often we will chose the normalizatidgjg|| = 1. Since it will usually be clear if the fields considered
are real or complex we will omit the precision from the notation from now on.

We assume that the electromagnetic field is not affected by the wave function. Notice also that even
though the eigenvalue problem is formulated®rthe magnetic potentiah depends on the values Bf
outsideS and this can have a non-trivial effect on the wave function, as illustrated by the Aharonov-Bohm
effect. Even ifB is zero onS it may be that ndA which is zero or can represent it oR3.

A fundamental property of equation (4) is that it is invariant under 1&6@l)-transformations called
gauge transformations. They are of the form:

A— A = A—grads, (7)
gy =Py, (8)

whereg is a real scalar field of®® which is at least locally in Gas By invariance it is meant that the
transformed gauge potentiél represents the same magnetic fiBlénd that if(y,1) solves the eigen-

value problem with respect ththen(y’, 1) solves the eigenvalue problem with respecAtoNotice that

the field|y|?, which is interpreted as a probability density, is unchanged by gauge transformations. The
electromagnetic fieldE, B), the energyl and the probability density|? are usually thought of as phys-

ically measurable quantities whereas gauge invariance shows that there is redundancy in the information
contained in(A,y).

Proposition 2.1. If Ae L3(S) thenais continuous and coercive dﬂ%(S); there isC > 0 such that:

Yy e HY(S) a.y) = 1/CIW | Gys): (©)
Also ifV € L%2(S) thenb is compact orH3(S).
Proof. We write:

a(y.y') =z(u.y) +K(.y'), (10)

with:
z(y,y') = (grady,grady’), (11)
k(y,y') = (grady,iAy") + (iAy, grady’) + (IAY,iAY). (12)

Observe first that is coercive on |(S) by the Poincag inequality.

Second, recall that we have a Sobolev injectidii$) — Lé(S) and that Holder’s inequality shows the
continuity of the product as a bilinear mag(S) x L(S) — L?(S). Therefore whem\ is L3(S) we have
a continuous operator:

- { HYS) — L2(S), (13)

v o= A
ForAc L®(S), = is compact by Rellich compactnes$(8) — L?(S). Since L*(S) is dense in E(S) and
the norm limit of compact operators is compagis compact also foA € L3(S). Thereforek is compact
on H(S).
Finally Kato's inequality [12]:
lgrady|| < |gradyy|, (14)

shows that is non-degenerate ongkB) and non-negative.

These three properties together imply tha coercive on |(S).

Compactness df whenV < L¥2(S) follows from similar arguments (notice that we hay@2- 1/6+
1/6=1). O

From this it follows that the eigenpairs can be ordered in a sequence such that the eigenvalues increase
(with possible degeneracies) and diverge and such that the eigenvectors provide an orthonormal basis for
L2(S). If V > 0 the smallest eigenvalue is (strictly) positive.



3 Discretization tools

We would like to provide a discretization which is not only convergent but also keeps the invariance proper-
ties of the continuous equations under gauge-transformations. As has already been remarked, lattice gauge
theory provides a finite difference method on Cartesian grids which has a discrete gauge invariance. Our
aim is to extend the lattice gauge theory method to unstructured simplicial grids using techniques from fi-
nite element methods. We also provide an error analysis of the method by comparing the proposed method
with Galerkin methods using Strang’s notion of variational crimes.

We will use the framework of finite element exterior calculus [3], a synthesis of Whitney forms [15]
and mixed finite elements [14] initiated by Bossavit [6].

We equipS with a simplicial mesh7, so that we have a partition of our domain into tetrahedral with
matching faces. The set kfdimensional simplexes in the mesh is denaf@l All simplexes are equipped
with an orientation. IfT is ak-simplex andT’ is a (k— 1)-simplex in its boundary we let(T,T’) = +1
according to their relative orientation. For simplexes not in this situation wéTeT’) = 0. For eactk we
may viewe as a matrix indexed by* x .71 called the incidence matrix. R-cochain is a map7* — R;
let Ck denote the vector space they form. The incidence matrix provides an oper&br! — C called
the coboundary operator. The cochain spaces, linked by coboundary operators, form a complex in the sense
that for eactk, 66 = 0 as a majtk — Ck+2,

Let XX be the space of Whitnegyforms onS associated with7. It is constructed as follows. For any
vertexi let A; denote the corresponding barycentric coordinate map. It is the continuous piecewise affine
map with value 1 at vertexand value 0 at other vertexes. For 1 and anyk-simplexT € 7K define the
associated Whitnely-form At by:

At =k _i(—l)i/lid/lo/\ o (dA)" - AdAy, (15)

where we have numbered the verticesTofrom 0 tok in accordance with its orientation (the result is
independent of the choice of numbering) and' means that we omit this term. The family of Whitney
k-forms A1 indexed byT € .7 constitutes a basis fotk. For anyu € Xk we denote byu] the coordinate
vector ofu in this basis. This provides an isomorphigin Xk — CX. Actually we have for eacli € .7k

[Ur = fru. (16)

Moreover XX is a subspace of #S) and, identifying the exterior derivative d with grad, curl and div
according to the degree of the differential form, we have a commuting diagram:

X0 grad ! curl NG div NG (17)
J{H lu iu lm
c0—s>ct—2sc2—2scs

One also defines interpolation operattfswhich are projections ont¥, by the formula:

fu="S (fruptr. (18)

Tegk

From Stokes theorem it follows that interpolation commutes with the exterior derivative.

In the following we suppose we have a family of meshes indexeld, bynd we write for instances,,
Xﬁ and Ii'j to indicate the dependence uplenThe parameteh is also the largest of the diameters of the
simplexes of%,. The symbolC appearing in inequalities denotes a numerical constant which may have to
be chosen larger in each appearance but is independent\éd suppose that the meshes are quasi-uniform
to allow for inverse estimates and that moreover we have for each edge with vediaejs

/.grad/li -gradi; <0. (29)
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This condition has previously appeared in connection with discrete maximum principles [10].

The mass matriM is the matrix of the B scalar product:,-) in the basis of Whitnek-forms. The
matrix Mr'j indexed byﬂh" X ﬂhk is sparse since the vaIlQM,‘j)TT/ can be nonzero only if andT’ are in a
common tetrahedron. However it is in general non-diagonal. A procedure yielding a diagonal matrix which
is a good approximation d\‘/lﬁ is called mass-lumping. The reason we are interested in mass-lumping is
that the locality of gauge transformations conflicts with the type of nearest neighbour interactions present
in the mass matrices. F&r= 0 it is well-known that the diagonal matrlfdﬁ defined by:

(MDii = 5 (M) (20)
]

is a good mass-lumped version Mlﬁ However mass-lumpingllﬁ is a much more difficult problem for
which we know of no solution satisfactory for all purposes. But we do have the following [7]:

Proposition 3.1. There is a unique diagonal matrM{ such thas™ (M} — M})s = 0.

Ideally the mass lumped matrix should be exact at least on piecewise constant vector fields. In particular
it should be exact on gradients of elementxﬁ)n The above proposition states that this uniquely determines
MZ. Several remarks are in order. First, if an eeges vertices, j we have:

(Mp)ee= —(gradi;, gradi;). 1)

SecondM¢ can be constructed from contributions of each tetrahedron which are also diagonal. We can
write:

Mi= 5 MYT), (22)
Te{?h3
Ml(T)ee:—/Tgrad/li-grad/lj, e—{ij}. 23)

and the contribution from tetrahedrdnis exact when the fields are constant on it.
Third we have uniform boundedness:

M3 (U] - [V]] < Clullflv

: (24)

and this estimate can be derived from an analogous result local to each tetrahedron.

The reason this construction is not satisfactory for all purposes is that on distorted rﬁkﬁshes have
negative entries. Even on nice structured meshes such as the barycentric refinement of a cubical lattice,
I\7Ir1, will have zeroes on the diagonal, in breach of the requirement that a mass matrix should be positive
definite. Usually uniform positive definiteness is nhecessary to obtain a stable numerical method.

However we shall need to apply the lumped mass-matrix only to covariant gradients. Since covariant
gradients resemble gradients and the lumped mass-matrix is exact for these, there is hope that the method
will work. The following estimate improves that of [7].

Proposition 3.2. There exists a consta@ such that for allh and allu,v € X3,
|(Miy = M) [u] - V]| < Ch(|lul] | curlv]| + | curlu] [|v]).. (25)

Proof. We will consider that the elements Xt are vector fields and use the notations @dblec’s edge
elements. For any tetrahedr@rdenote byxr its barycentre. Fou,v € X} there exists for each tetrahedron
T, unique vectorgr, by, cr anddy such that on it:

u(x) =ar x (X—xy)+br, Vv(x)=cr x (x—xr)+dr. (26)

Observe thady = 1/2curlu andcr = 1/2curlv. Also, by the choice of originbt anddy are the L2(S)
projections ofu andv on the space of constant vector fields.



Since onT we have|x— x| < h:

|(MY(T) — MY(T)[u—br]- M| < C|lu—br|lr[|v][+ < Chi|curlul|r||v]T. 27)
[(MY(T) — M(T))[or] - [v—dir]| < Cl|brl7|[v—drllr < Chl|u|lt||curlv||r, (28)
[(MY(T) = M(T))[or] - [dr]| = 0. (29)

Adding the three estimates we get:
|(MY(T) = MY(T))[u]- M| < Ch(]|ull7 || curlv||r + | curlullx |v]|T). (30)
Summing with respect t® and the Cauchy-Schwartz inequality give the desired result. O

A similar proof shows (when mass Iumpimg%as indicated in (20), it is enough thae of the fields
u,v € X? is constant ofT for the contribution oM®(T) to be exact on it):

Proposition 3.3. There exists a consta@tsuch that for allh and allu,v € X?,

(MR — M)l - [v]| < Chjul]|gradv], (31)
|(MR — M) [u] - [v]| < CF?|| gradul||| gradv]. (32)

We also have the well known estimates fog X2:
2 . x10 2
1/C[ull* < Mp[u - [u] < Cllul]*. (33)

As already remarked the right hand inequality has an analogd@ﬂfdnut not the left hand one.

The above estimates can also be obtained by scaling arguments. Consider a so-called reference tetrahe-
dronT of diameter 1 and a tetrahedr®rof diameteth obtained fromil by the a mapb : x — hx (perhaps
composed with a congruence). lebe ak-form onT andu = ®*u the pull-back ofuto T. Then we have:

lullencry = DRl ot (34)

wheren is the dimension of the ambient space, so that3 in our case.
From this one can deduce inverse estimates and convergence estimates. In particular we will use that
for u e XK:
—1/2
lullLss) < Ch 2(|ull z(s). (35)

For projectorsrlﬁ onto Xﬁ which have the property that the vaIuesI'dIu on tetrahedro € %, depend
continuously on the values aof on the macro-elemenf of T (the union of tetrahedrons intersectimgy
with respect to the &(T) norm and which commute with scaling on macro elements, on obtains estimates
for k-formsuin HY(S):

lu—T18ull 2(s) < Chilullias)- (36)

4 The discrete eigenvalue problem

We introduce the spaceéﬁ = xﬁ®<c. The Galerkin discretization of the eigenvalue problem is to find
(u,2) in Y? x R such that:
weY? a(uv)+b(uv) = au,v). (37)

This is a well studied problem with quasi-optimal convergence [4]. Our contribution is to propose and
study a modification of it which exhibits a form of gauge invariance.

ChooseA, € Xﬁ such that An) converges té\ in a sense which will be made precise in the next section.
We define the symmetric bilinear forep as follows. For any oriented edge= {i, j} € ﬂhl denote:

= (Whea Al = [Arle= [ An (38)



We haveu!} > 0 by hypothesis (19). Define fare Y0:

an(uu) = 5 pf}|uj —exp(—i[Anijuil> (39)

{i.iye

We also choos¥h € X2 such tha(Vi,) converges to/ in appropriate norms. For a vertex 7 denote:

= (MY, [Vali = Vi(i). (40)
Foru € Y? define:
br(uu) =5 4aiVali|uil>. (41)
ieZ?
We will also use the notation: y
(U, uph = MR[U] - ul. (42)

We propose to solve: finfl, 1) in YO x R, u# 0 such that:
wWeY?  an(u,v)+bn(uv) = AU,V (43)

Before we study the error in this method we exhibit the discrete gauge invariance which motivated the
use of lattice gauge theory.
Givenpgy € Xﬁ we consider the transformations:

Xt — Xt o Ap— AL = Ay —gradsh, (44)
Y2 = Y2 i u—u = 10(exp(iBn)u). (45)

Theorem 4.1. The discrete eigenvectors computed by (43) ugih@re obtained from those computed
usingAy, by the transformation (45). The discrete eigenvalues are unchanged and for any eigeuavbetor
field :
p=5 [ul*tieX. (46)
ie g0
is gauge independent and plays the role of a probability density.

Proof. Let &, be the bilinear form obtained from, by replacingA, with Aj in (39). With the above
notations (44,45) we have:

an(u,u) =an(u,u), bp(u,u)=bp(uu), U,u)h=(uup, 47)
from which the result follows by the characterization of eigenpairs in terms of Rayleigh quotients.]

Notice that this is not achieved by the standard Galerkin method (37). If the nodal interpolator is not
included in (45) one is mapped out of the Galerkin space, but if it is included, the expragsiohis not
gauge invariant.

There are other interesting gauge invariant quantities, such as the flux:

fo=" 5 3(uf exp(—i[An]ij)u)dij € X5 (48)
{i.iye !

5 Error analysis

The minimal regularity we shall assume for the gauge poteaAtialH'(S) but we will also derive error
estimates for the case whénis smooth. WherB is locally L?, choosing a divergence-fréeon R will

give H'(S) regularity forA, but we do not confine our study to this gauge. Sobolev spaces are reviewed in
[1] and classical error estimates for mixed finite elements can be found in [13].



Clément style interpolation [5] will yield convergence estimates:
1A= Aall3s) < ChY2Allys) (49)

The LP stable interpolators commuting with the exterior derivative introduced in [9] will achieve the same
order of convergence and in addition bounds:

[AnllLss) < CllIALs(s) (50)
[ curl An||L2(s) < C||curIA||,_z (51)
If Ais smoothA, = IFA will achieve:
[A—=An[[L=(s) < Chl|Allwies) (52)
[ Anl[Le(s) < ClIA[|L=(s) (53)
| curlAy|[L=(s) < C||curIA||Loo (54)

Coulomb potentials are in W/2(S) for 6 < 1. Generally itV € W3/2(S) with § < 1 we can similarly
achieve:

IV = VhllLzrz(s) < Chi|gradV| s, (55)
HVh||w1,36/2(5) < ClVlwsrz(s)- (56)

This hypothesis includes all finite energy electric fields. Additional smoothne¥sdafes not seem to
improve the error estimates we shall obtain below.

To justify the proposed method we introduce three other bilinear forms providing intermediate steps
betweera anday. Define:

ap(u,v) = (grady, u,grady, v). (57)
The productdnu is not in Y} but interpolating it down we define:
at(u,v) = (gradu+ I} (iApu), gradv+ 11 (IARV)). (58)
Next we use mass-lumped matrices:
a2(u,v) = Mi[gradv+ I} (iAnv)] - [gradu+ IE(iARU)]. (59)
We shall evaluate the errors for each step of approximation:
a—ag—ay—a — an. (60)
First concerning the use of an approximate gauge field we have:
Proposition 5.1. We have:
[a(u,v) — ad(u.v)| < ChY2|ul s Mls)- (61)
Proof. It follows from (49). O
Remark 5.1. If Aiis smooth we get:
[a(u.v) - a8(u.v)| < Chlul s, [Vlias)- (62)
Second the interpolation of the product contributes the following error:
Proposition 5.2. We have:

|8 (u.v) —ai(u V)| < CH2|ullyes) VIl s)- (63)



Proof. GivenAy, € Xt andu € Y? we interpolate their product to obtain a field¥p.
Remark that i is constant on a given tetrahedron there is no error committed there — the interpolation
is exact. On a reference tetrahediiomwe therefore have an estimate of the form:

[ Anu— |%(Ahu)|‘|_2(f) < CllAnll s(t)llgradufl s 1. (64)
Squaring and scaling to a tetrahedmwf sizeh gives:
1Anu = 15 (A [E2r) < CHPllAnl Zs ) Il gradullfs .. (65)
Summing over tetrahedrons and usingltier’s inequality gives:
[| Anu— |r11(Ahu)||EZ(5) < Ch2||Ah||EG(s) | gradu”Es(s)- (66)
A square-root and inverse inequality gives:
([ Anu— |%(Ahu)\||_2(s) < Chl/2||Ah|||_6(5) | gradu| 2. (67)
From this the proposition follows. O

Remark 5.2. If Ais smooth we can replade® x L3 — L2 by L® x L2 — L2, and there is no need for an
inverse inequality, so we get:

|8l (u,v) — &;(u,v)| < Chllullys) IVls)- (68)
Third, mass-lumping induces the following error:
Proposition 5.3. We have:
|3 (u,v) — & (V)| < Ch2[[ulls) [VIys)- (69)
Proof. Using previous estimates we get:
& (U, V) —af(u,v)| < Ch(||gradu+ I (iAnu) ||| curllz (Anv) || + [ curll (Anu) ||| gradv + 15 (IARV) ) (70)

Next we use the uniform stability of interpolatiof: YOY} — Yt with respect to B(S) — L%(S) norms,
Holder's inequality and Sobolev injections.

17 (AU) | < CllAqul, (71)
< CllAnllLas) lulles) (72)
< CllAnllLas) lullas) - (73)

Remark that\(r?Yg is a finite element space, the one of second lowest ordegBINc’s first family. There-
fore curl mapsYy Y} — YOY2. Moreoverl2 : YOY2 — Y2 is stable 2(S) — L2(S) by scaling:

[eurllg(Anv) || = |1 curl(Aav) |, (74)
< C| curl(Anv)], (75)
< C([|(curt An)v]| +[|An x gradv]), (76)
< C(|[eurlAn[[3(s) [IVIILs(s) + 1AnllLs(s) [ gradv]] s ), (77)
< ChY2(|| Anlls(s) + [l curlAnll 2(s)) [VIles)» (78)

where then=1/2 factor is obtained from an inverse inequality.
Similar estimates hold with andv interchanged. Combining them yields the proposition. O

Remark 5.3. If Ais smooth we get for the same reason as previously:

(V) — aa(w V)| < Chllullyas) [Vilas)- (79)



Fourth, applying the technique of lattice gauge theory we get:

Proposition 5.4. We have:
|85 (U V) — an(u,v)| < CH2|lull e s) VIl s)- (80)
Proof. Define a functiorr : R — C by, for all§ € R:
explio) = 1+i0— %ez+r(9), (81)
and remark that we have a bound valid forédt R:
r(6)] < Cléf*. (82)
We look at an edge with verticésnd j. Puté;j; = [An]ij. We have:

. i
|uj — exp(—i6ij ui| = [ exp(56)uj — exp(— 5 6ij i, (83)
i 1 1 1
=|uj—u+ éei,- (Ui +uj) — §93 (Uj—u) +r(§9ij)uj — I’(—éﬁij)ui | (84)
On the right hand side we recognize:
i .
Uj — Ui + 5 6ij (Ui +uj) = [graoh+l%(|Ahu)]ij, (85)

2

which appears in the expression ﬁﬁ(u, u). We want to bound the contribution of the other terms. From
the boundedness ¢A,) in L8(S) we deduce a bound valid for dlland all edges:

|9ij | < Ch/?, (86)
From which we deduce,
3 wij6F (uj —w)[? < CHP|| gradul?, (87)
J
and also:
1 2 2
> Hiflr(561)uj| = < Chiul* (88)
i
This ends the proof. O

Remark 5.4. If Ais smooth we have a bour@;j| < Ch, which gives:

|@B(u,v) — an(uv)| < CH|lullss) [Vl s(s)- (89)
Combining the four estimates gives:

Theorem 5.5. If A€ HY(S) we have:
8(1,Y) — an(W.V)] < CHY2{Ulls s Ve (90)

and if A is smooth:
[a(u,v) — (W V)| < Chllullpas) IVilkas)- (91)

It can also be remarked thatA, = A = 0, ay, is the exact restriction af to Y,?.
Concerning the approximation bfwe remark that:

br(uu) = [ 19(Velui?). ©2)
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Proposition 5.6. There isC > 0 such that for alls < 1 we have for alhand allu € Yﬁ:
(VU U) — (Vi u)| < CHE2°)V — Vi | asrzs) Ul - (93)

Proof. Given ¢ defined’ by 2/(36) + 1/(36') = 1. From Hblder, an inverse inequality and the Sobolev
injection H(S) — L%(S) we have:

(VU L) — (Vhu,u)| < [IV =V s JullZ 5y (94)

< CIIV = Vi) ul %, (95)

< C|’12*2/6HV—Vh|||_3(s/2(S)HU||a1(S). (96)

This is the claimed estimate. O

Proposition 5.7. We have fou € Y?:

| Velui = [ 1RVIuP)| < ChVilwasrzs, lulfis) ©7)

Proof. Consider a simpleX. Let V], be the 12(T) projection ofV;, to the constants. Similarly lef be the
L2(T) projection ofu to the constants. We have on the simplex

(id — 19) (Va|ul?) = (id — 1) (Vi ul®) + (id = 19) ((Va — Vh) ). (98)
= (id = 1R) (Valu—U'[?) + (id = 19) (Vo — Vi) |uP?). (99)

Therefore:
| /T (id — 1) (Va|u[)| < CHP|[Va || ar | gradul Zs g, + Chl gradVi|y sz [lulZs ) (100)

We sum oveiT, use discrete Blder (for Y3+ 1/3+1/3=1and 23+ 1/6+ 1/6 = 1) and the Sobolev
injectionW%3/2 — L3, We lose arh in the first term from an inverse inequality. O

Theorem 5.8. If V € W132(S) we have an estimate fogv € YP:
[b(u,v) —bn(u,v)| < Chl[ullys)[IVIlHs)- (101)
If V is a Coulomb potential we have:
[b(u,v) —bn(u,v)| < Chloghl||ul[y(s) VIl (s)- (102)

Proof. We treat the case of a Coulomb potential located at the origin, which is supposed to be in the interior
of S. There isC > 0 such that for alt < 1 we have:

14/[X2]| 3or2(s)y < C/(1=6). (103)

Then: ‘
b= 20|V — V|| zorz(s) < CH*2°/(1—6). (104)
The choice -6 = —1/logh leads to the claimed estimate. O
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