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Abstract

We propose a method to compute approximate eigenpairs of the Schrödinger operator on a bounded
domain in the presence of an electromagnetic field. The method is formulated for the simplicial grids
that satisfy the discrete maximum principle. It combines techniques from lattice gauge theory and finite
element methods, retaining the discrete gauge invariance of the former but allowing for non-congruent
space elements as in the latter. The error in the method is studied in the framework of Strang’s variational
crimes, comparing with a standard Galerkin approach. For a smooth electromagnetic field the crime is
of order the mesh widthh, for a Coulomb potential it is of orderh| logh|, and for a general finite energy
electromagnetic field it is of orderh1/2.

1 Introduction

The Schr̈odinger equation can be used to describe for instance electrons in a non-relativistic setting and
is therefore of fundamental importance. Recent progress in manipulating such basic systems promises
technological breakthroughs such as quantum computing. Electrons are manipulated by magnetic traps,
electrostatic potentials and laser beams all of which are electromagnetic fields. When the electromagnetic
field is strong it can be described classically by Maxwell’s equations. The Schrödinger equation is modified
accordingly and involves an electromagnetic gauge potential.

In this paper we introduce and study a numerical method for computing the eigenvalues of the Schrödinger
operator in the presence of an electromagnetic field. They correspond to possible energy levels for the elec-
tron.

When the electromagnetic field is represented by a gauge potential there is some arbitrariness. Adding
a gradient to the magnetic potential and doing a corresponding phase shift on the wave function does not
fundamentally change the system (but rather our description of it). Importantly, the energy levels of the
electron as well as the associated probability densities, are independent of the choice of gauge. We want to
design a numerical method with the same property.

Lattice gauge theory [16] is a discretization technique with such an invariance property. It can be
used for the Schrödinger equation [11], and we have previously applied it to the Maxwell-Klein-Gordon
equation [8], though it was invented for more complicated systems (quantum fields with non-commutative
gauge group). However, to the best of our knowledge, no numerical analysis of this method is available
and moreover it is formulated for discretizations of the physical domain using Cartesian grids. In this paper
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we modify lattice gauge theory using techniques from finite element methods, such as mass-lumping, to
obtain a method formulated on simplicial grids (one consisting of tetrahedrons). Moreover we study the
error of the method by comparing it with a standard Galerkin finite element method.

Simplicial meshes are better at handling boundaries of domains which is important for technological
applications. When treating singular fields, such as Coulomb potentials, local mesh refinements are also
useful and for this reason too simplicial grids might be preferable.

Lattice gauge theory was introduced to handle quantum fields. It is quite possible that the proposed
techniques can be used also when the electromagnetic field is treated quantum-mechanically.

We notice that by separating the modulus and the phase of the wave-function it is possible to obtain
another gauge invariant discretization [2] allowing for high order finite elements. Due to problems of
definition and regularity of the phase where the modulus vanishes this method seems best for computing the
fundamental state corresponding to the lowest eigenvalue. Our method can be used for all the eigenvalues
but on the other hand it is confined to lowest order finite elements.

We first introduce the mathematical setting for the Schrödinger equation in an electromagnetic field
and briefly recall some physical facts. Then we review discretization tools including finite element exterior
calculus (mixed finite elements or Whitney forms) and mass-lumping. Then we introduce the proposed
discrete eigenvalue problem and state its gauge invariance property. Finally we study the error committed.

2 The continuous Schr̈odinger eigenvalue problem

Let S ⊂ R3 be a bounded domain in space whose boundary is smooth enough (e.g. locally the graph of
Lipschitz functions). We use the standard Euclidean product onR3 through which vector fields will be
identified with one-forms or two-forms, scalar fields with zero-forms or three-forms. The real valued L2-
product on differential forms onS is denoted〈·, ·〉, and the associated L2-norm‖·‖. If we want to use these
norms on some domainS′ different fromS we write〈·, ·〉S′ and‖ · ‖S′ . For any differential operator op we
define the Sobolev spaces:

Hop(S) = {u∈ L2(S) : opu∈ L2(S)}, (1)

where L2(S) spaces of differential forms or vector and scalar fields are assumed. We then have a diagram
of Hilbert spaces linked by bounded operators with closed range:

Hgrad(S)
grad // Hcurl(S) curl // Hdiv(S) div // H(S). (2)

We are given a magnetic fieldB on R3, which is a closed two-form identified with a divergence free
vector field. We assume at least locally finite energy, i.e.‖B‖S′ < +∞ for any boundedS′. The magnetic
field can be represented by a magnetic potentialA on R3 which is also locally L2. It is a vector field or
one-form such that curlA = B. We are also given an electric fieldE. We consider only time-constant
electromagnetic fields, soE is represented by an electric potentialV which is a function onR3 such that
gradV = E. The electric potential will be the sum of locally Hgrad functions and Coulomb potentials. The
former condition guarantees locally finite energy (‖E‖S′ <+∞ for any boundedS′) while the latter is also
important in applications.

Up until now we have assumed real valued vector fields and differential forms. A wave function is a
complex functionψ onR3 which is in Hgrad(S′)⊗C for any boundedS′. The covariant gradient ofψ is:

gradAψ= gradψ+ iAψ, (3)

where grad now acts on complex functions.
For definiteness we shall assume that the domainS is filled with vacuum whereas the rest ofR3 is filled

with a perfect conductor. The wave function has support inS so thatψ ∈ H1
0(S)⊗C.

The Schr̈odinger eigenvalue problem consists in finding(ψ,λ)∈ (H1
0(S)⊗C)×R, ψ 6= 0, which solves

the equation:
∀ψ′ ∈ H1

0(S)⊗C a(ψ,ψ′)+b(ψ,ψ′) = λ〈ψ,ψ′〉, (4)
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wherea(·, ·) andb(·, ·) are the bilinear forms given by:

a(ψ,ψ′) = 〈gradAψ,gradAψ
′〉, (5)

b(ψ,ψ′) = 〈Vψ,ψ′〉, (6)

Most often we will chose the normalization‖ψ‖= 1. Since it will usually be clear if the fields considered
are real or complex we will omit the precision from the notation from now on.

We assume that the electromagnetic field is not affected by the wave function. Notice also that even
though the eigenvalue problem is formulated onS, the magnetic potentialA depends on the values ofB
outsideS and this can have a non-trivial effect on the wave function, as illustrated by the Aharonov-Bohm
effect. Even ifB is zero onS it may be that noA which is zero onS can represent it onR3.

A fundamental property of equation (4) is that it is invariant under localU(1)-transformations called
gauge transformations. They are of the form:

A 7→ A′ = A−gradβ, (7)

ψ 7→ ψ′ = eiβψ, (8)

whereβ is a real scalar field onR3 which is at least locally in Hgrad. By invariance it is meant that the
transformed gauge potentialA′ represents the same magnetic fieldB and that if(ψ,λ) solves the eigen-
value problem with respect toA then(ψ′,λ) solves the eigenvalue problem with respect toA′. Notice that
the field |ψ|2, which is interpreted as a probability density, is unchanged by gauge transformations. The
electromagnetic field(E,B), the energyλ and the probability density|ψ|2 are usually thought of as phys-
ically measurable quantities whereas gauge invariance shows that there is redundancy in the information
contained in(A,ψ).

Proposition 2.1. If A∈ L3(S) thena is continuous and coercive onH1
0(S); there isC > 0 such that:

∀ψ ∈ H1
0(S) a(ψ,ψ)≥ 1/C‖ψ‖2

H1(S). (9)

Also ifV ∈ L3/2(S) thenb is compact onH1
0(S).

Proof. We write:
a(ψ,ψ′) = z(ψ,ψ′)+k(ψ,ψ′), (10)

with:

z(ψ,ψ′) = 〈gradψ,gradψ′〉, (11)

k(ψ,ψ′) = 〈gradψ, iAψ′〉+ 〈iAψ,gradψ′〉+ 〈iAψ, iAψ′〉. (12)

Observe first thatz is coercive on H10(S) by the Poincaŕe inequality.
Second, recall that we have a Sobolev injection H1(S)→ L6(S) and that Ḧolder’s inequality shows the

continuity of the product as a bilinear map L3(S)×L6(S) → L2(S). Therefore whenA is L3(S) we have
a continuous operator:

Ξ :

{
H1(S) → L2(S),

ψ 7→ Aψ.
(13)

For A∈ L∞(S), Ξ is compact by Rellich compactness H1(S)→ L2(S). Since L∞(S) is dense in L3(S) and
the norm limit of compact operators is compact,Ξ is compact also forA∈ L3(S). Thereforek is compact
on H1

0(S).
Finally Kato’s inequality [12]:

|grad|ψ| | ≤ |gradAψ|, (14)

shows thata is non-degenerate on H1
0(S) and non-negative.

These three properties together imply thata is coercive on H10(S).
Compactness ofb whenV ∈ L3/2(S) follows from similar arguments (notice that we have 2/3+1/6+

1/6 = 1).

From this it follows that the eigenpairs can be ordered in a sequence such that the eigenvalues increase
(with possible degeneracies) and diverge and such that the eigenvectors provide an orthonormal basis for
L2(S). If V ≥ 0 the smallest eigenvalue is (strictly) positive.
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3 Discretization tools

We would like to provide a discretization which is not only convergent but also keeps the invariance proper-
ties of the continuous equations under gauge-transformations. As has already been remarked, lattice gauge
theory provides a finite difference method on Cartesian grids which has a discrete gauge invariance. Our
aim is to extend the lattice gauge theory method to unstructured simplicial grids using techniques from fi-
nite element methods. We also provide an error analysis of the method by comparing the proposed method
with Galerkin methods using Strang’s notion of variational crimes.

We will use the framework of finite element exterior calculus [3], a synthesis of Whitney forms [15]
and mixed finite elements [14] initiated by Bossavit [6].

We equipS with a simplicial meshT , so that we have a partition of our domain into tetrahedral with
matching faces. The set ofk-dimensional simplexes in the mesh is denotedT k. All simplexes are equipped
with an orientation. IfT is ak-simplex andT ′ is a (k−1)-simplex in its boundary we letε(T,T ′) = ±1
according to their relative orientation. For simplexes not in this situation we letε(T,T ′) = 0. For eachk we
may viewε as a matrix indexed byT k×T k−1 called the incidence matrix. Ak-cochain is a mapT k →R;
let Ck denote the vector space they form. The incidence matrix provides an operatorδ : Ck−1 →Ck called
the coboundary operator. The cochain spaces, linked by coboundary operators, form a complex in the sense
that for eachk, δδ= 0 as a mapCk →Ck+2.

Let Xk be the space of Whitneyk-forms onS associated withT . It is constructed as follows. For any
vertex i let λi denote the corresponding barycentric coordinate map. It is the continuous piecewise affine
map with value 1 at vertexi and value 0 at other vertexes. Fork≥ 1 and anyk-simplexT ∈ T k define the
associated Whitneyk-form λT by:

λT = k!
k

∑
i=0

(−1)iλidλ0∧·· ·(dλi)∧ · · ·∧dλk, (15)

where we have numbered the vertices ofT from 0 to k in accordance with its orientation (the result is
independent of the choice of numbering) and(·)∧ means that we omit this term. The family of Whitney
k-formsλT indexed byT ∈ T k constitutes a basis forXk. For anyu∈ Xk we denote by[u] the coordinate
vector ofu in this basis. This provides an isomorphism[·] : Xk →Ck. Actually we have for eachT ∈T k:

[u]T =
∫

T u. (16)

MoreoverXk is a subspace of Hd(S) and, identifying the exterior derivative d with grad, curl and div
according to the degree of the differential form, we have a commuting diagram:

X0
grad //

[·]
��

X1 curl //

[·]
��

X2 div //

[·]
��

X3

[·]
��

C0 δ // C1 δ // C2 δ // C3

(17)

One also defines interpolation operatorsIk, which are projections ontoXk, by the formula:

Iku = ∑
T∈T k

(
∫

T u)λT . (18)

From Stokes theorem it follows that interpolation commutes with the exterior derivative.
In the following we suppose we have a family of meshes indexed byh, and we write for instanceTh,

Xk
h and Ik

h to indicate the dependence uponh. The parameterh is also the largest of the diameters of the
simplexes ofTh. The symbolC appearing in inequalities denotes a numerical constant which may have to
be chosen larger in each appearance but is independent ofh. We suppose that the meshes are quasi-uniform
to allow for inverse estimates and that moreover we have for each edge with verticesi and j:∫

gradλi ·gradλ j ≤ 0. (19)
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This condition has previously appeared in connection with discrete maximum principles [10].
The mass matrixMk

h is the matrix of the L2 scalar product〈·, ·〉 in the basis of Whitneyk-forms. The
matrix Mk

h indexed byT k
h ×T k

h is sparse since the value(Mk
h)TT′ can be nonzero only ifT andT ′ are in a

common tetrahedron. However it is in general non-diagonal. A procedure yielding a diagonal matrix which
is a good approximation ofMk

h is called mass-lumping. The reason we are interested in mass-lumping is
that the locality of gauge transformations conflicts with the type of nearest neighbour interactions present
in the mass matrices. Fork = 0 it is well-known that the diagonal matrix̃M0

h defined by:

(M̃0
h)ii = ∑

j

(M0
h)i j . (20)

is a good mass-lumped version ofM0
h. However mass-lumpingM1

h is a much more difficult problem for
which we know of no solution satisfactory for all purposes. But we do have the following [7]:

Proposition 3.1. There is a unique diagonal matrix̃M1
h such thatδT(M1

h− M̃1
h)δ= 0.

Ideally the mass lumped matrix should be exact at least on piecewise constant vector fields. In particular
it should be exact on gradients of elements inX0

h. The above proposition states that this uniquely determines
M̃1

h. Several remarks are in order. First, if an edgeehas verticesi, j we have:

(M̃1
h)ee=−〈gradλi ,gradλ j〉. (21)

Second,M̃1
h can be constructed from contributions of each tetrahedron which are also diagonal. We can

write:

M̃1
h = ∑

T∈T 3
h

M̃1(T), (22)

M̃1(T)ee=−
∫

T
gradλi ·gradλ j , e= {i, j}. (23)

and the contribution from tetrahedronT is exact when the fields are constant on it.
Third we have uniform boundedness:

|M̃1
h[u] · [v]| ≤C‖u‖‖v‖, (24)

and this estimate can be derived from an analogous result local to each tetrahedron.
The reason this construction is not satisfactory for all purposes is that on distorted meshesM̃1

h may have
negative entries. Even on nice structured meshes such as the barycentric refinement of a cubical lattice,
M̃1

h will have zeroes on the diagonal, in breach of the requirement that a mass matrix should be positive
definite. Usually uniform positive definiteness is necessary to obtain a stable numerical method.

However we shall need to apply the lumped mass-matrix only to covariant gradients. Since covariant
gradients resemble gradients and the lumped mass-matrix is exact for these, there is hope that the method
will work. The following estimate improves that of [7].

Proposition 3.2. There exists a constantC such that for allh and all u,v∈ X1
h,

|(M1
h− M̃1

h)[u] · [v]| ≤Ch(‖u‖‖curlv‖+‖curlu‖‖v‖) . (25)

Proof. We will consider that the elements ofX1
h are vector fields and use the notations of Néd́elec’s edge

elements. For any tetrahedronT denote byxT its barycentre. Foru,v∈ X1
h there exists for each tetrahedron

T, unique vectorsaT ,bT ,cT anddT such that on it:

u(x) = aT × (x− xT)+bT , v(x) = cT × (x− xT)+dT . (26)

Observe thataT = 1/2curlu andcT = 1/2curlv. Also, by the choice of origin,bT anddT are the L2(S)
projections ofu andv on the space of constant vector fields.
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Since onT we have|x− xT | ≤ h:

|(M1(T)− M̃1(T))[u−bT ] · [v]| ≤C‖u−bT‖T‖v‖T ≤Ch‖curlu‖T‖v‖T , (27)

|(M1(T)− M̃1(T))[bT ] · [v−dT ]| ≤C‖bT‖T‖v−dT‖T ≤Ch‖u‖T‖curlv‖T , (28)

|(M1(T)− M̃1(T))[bT ] · [dT ]|= 0. (29)

Adding the three estimates we get:

|(M1(T)− M̃1(T))[u] · [v]| ≤Ch(‖u‖T‖curlv‖T +‖curlu‖T‖v‖T) . (30)

Summing with respect toT and the Cauchy-Schwartz inequality give the desired result.

A similar proof shows (when mass lumpingM0
h as indicated in (20), it is enough thatoneof the fields

u,v∈ X0
h is constant onT for the contribution ofM̃0(T) to be exact on it):

Proposition 3.3. There exists a constantC such that for allh and all u,v∈ X0
h,

|(M0
h− M̃0

h)[u] · [v]| ≤Ch‖u‖‖gradv‖, (31)

|(M0
h− M̃0

h)[u] · [v]| ≤Ch2‖gradu‖‖gradv‖. (32)

We also have the well known estimates foru∈ X0
h:

1/C‖u‖2 ≤ M̃0
h[u] · [u]≤C‖u‖2. (33)

As already remarked the right hand inequality has an analogue forM̃1
h but not the left hand one.

The above estimates can also be obtained by scaling arguments. Consider a so-called reference tetrahe-
dronT̂ of diameter 1 and a tetrahedronT of diameterh obtained fromT̂ by the a mapΦ : x→ hx (perhaps
composed with a congruence). Letu be ak-form onT andû= Φ?u the pull-back ofu to T̂. Then we have:

‖u‖Lp(T) = h−k+n/p‖û‖Lp(T̂), (34)

wheren is the dimension of the ambient space, so thatn = 3 in our case.
From this one can deduce inverse estimates and convergence estimates. In particular we will use that

for u∈ Xk
h:

‖u‖L3(S) ≤Ch−1/2‖u‖L2(S). (35)

For projectorsΠk
h onto Xk

h which have the property that the values ofΠk
hu on tetrahedronT ∈ Th depend

continuously on the values ofu on the macro-elementT of T (the union of tetrahedrons intersectingT)
with respect to the L2(T) norm and which commute with scaling on macro elements, on obtains estimates
for k-formsu in H1(S):

‖u−Πk
hu‖L2(S) ≤Ch‖u‖H1(S). (36)

4 The discrete eigenvalue problem

We introduce the spacesYk
h = Xk

h⊗C. The Galerkin discretization of the eigenvalue problem is to find
(u,λ) in Y0

h ×R such that:
∀v∈ Y0

h a(u,v)+b(u,v) = λ〈u,v〉. (37)

This is a well studied problem with quasi-optimal convergence [4]. Our contribution is to propose and
study a modification of it which exhibits a form of gauge invariance.

ChooseAh∈ X1
h such that(Ah) converges toA in a sense which will be made precise in the next section.

We define the symmetric bilinear formah as follows. For any oriented edgee= {i, j} ∈T 1
h denote:

µh
i j = (M̃1

h)ee, [Ah]i j = [Ah]e =
∫

e
Ah. (38)
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We haveµh
i j ≥ 0 by hypothesis (19). Define foru∈ Y0

h :

ah(u,u) = ∑
{i, j}∈T 1

h

µh
i j |u j −exp(−i[Ah]i j )ui |2. (39)

We also chooseVh ∈ X0
h such that(Vh) converges toV in appropriate norms. For a vertexi ∈T 0

h denote:

µh
i = (M̃0

h)ii , [Vh]i = Vh(i). (40)

Foru∈ Y0
h define:

bh(u,u) = ∑
i∈T 0

h

µi [Vh]i |ui |2. (41)

We will also use the notation:
〈u,u〉h = M̃0

h[u] · [u]. (42)

We propose to solve: find(u,λ) in Y0
h ×R, u 6= 0 such that:

∀v∈ Y0
h ah(u,v)+bh(u,v) = λ〈u,v〉h. (43)

Before we study the error in this method we exhibit the discrete gauge invariance which motivated the
use of lattice gauge theory.

Givenβh ∈ X0
h we consider the transformations:

X1
h → X1

h : Ah 7→ A′h = Ah−gradβh, (44)

Y0
h → Y0

h : u 7→ u′ = I0
h(exp(iβh)u). (45)

Theorem 4.1. The discrete eigenvectors computed by (43) usingA′h are obtained from those computed
usingAh by the transformation (45). The discrete eigenvalues are unchanged and for any eigenvectoru the
field :

ph = ∑
i∈T 0

h

|ui |2λi ∈ X0
h. (46)

is gauge independent and plays the role of a probability density.

Proof. Let a′h be the bilinear form obtained fromah by replacingAh with A′h in (39). With the above
notations (44,45) we have:

a′h(u
′,u′) = ah(u,u), bh(u′,u′) = bh(u,u), 〈u′,u′〉h = 〈u,u〉h, (47)

from which the result follows by the characterization of eigenpairs in terms of Rayleigh quotients.

Notice that this is not achieved by the standard Galerkin method (37). If the nodal interpolator is not
included in (45) one is mapped out of the Galerkin space, but if it is included, the expressiona(u,u) is not
gauge invariant.

There are other interesting gauge invariant quantities, such as the flux:

fh = ∑
{i, j}∈T 1

h

I(u?j exp(−i[Ah]i j )ui)λi j ∈ X1
h. (48)

5 Error analysis

The minimal regularity we shall assume for the gauge potentialA is H1(S) but we will also derive error
estimates for the case whenA is smooth. WhenB is locally L2, choosing a divergence-freeA on R3 will
give H1(S) regularity forA, but we do not confine our study to this gauge. Sobolev spaces are reviewed in
[1] and classical error estimates for mixed finite elements can be found in [13].
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Clément style interpolation [5] will yield convergence estimates:

‖A−Ah‖L3(S) ≤Ch1/2‖A‖H1(S). (49)

The Lp stable interpolators commuting with the exterior derivative introduced in [9] will achieve the same
order of convergence and in addition bounds:

‖Ah‖L6(S) ≤C‖A‖L6(S), (50)

‖curlAh‖L2(S) ≤C‖curlA‖L2(S). (51)

If A is smoothAh = I1
hA will achieve:

‖A−Ah‖L∞(S) ≤Ch‖A‖W1,∞(S), (52)

‖Ah‖L∞(S) ≤C‖A‖L∞(S), (53)

‖curlAh‖L∞(S) ≤C‖curlA‖L∞(S). (54)

Coulomb potentials are in W1,3δ/2(S) for δ < 1. Generally ifV∈W1,3δ/2(S) with δ≤ 1 we can similarly
achieve:

‖V−Vh‖L3δ/2(S) ≤Ch‖gradV‖L3δ/2, (55)

‖Vh‖W1,3δ/2(S) ≤C‖V‖W1,3δ/2(S). (56)

This hypothesis includes all finite energy electric fields. Additional smoothness ofV does not seem to
improve the error estimates we shall obtain below.

To justify the proposed method we introduce three other bilinear forms providing intermediate steps
betweena andah. Define:

a0
h(u,v) = 〈gradAh

u,gradAh
v〉. (57)

The productAhu is not inY1
h but interpolating it down we define:

a1
h(u,v) = 〈gradu+ I1

h(iAhu),gradv+ I1
h(iAhv)〉. (58)

Next we use mass-lumped matrices:

a2
h(u,v) = M̃1

h[gradv+ I1
h(iAhv)] · [gradu+ I1

h(iAhu)]. (59)

We shall evaluate the errors for each step of approximation:

a→ a0
h → a1

h → a2
h → ah. (60)

First concerning the use of an approximate gauge field we have:

Proposition 5.1. We have:

|a(u,v)−a0
h(u,v)| ≤Ch1/2‖u‖H1(S)‖v‖H1(S). (61)

Proof. It follows from (49).

Remark 5.1. If A is smooth we get:

|a(u,v)−a0
h(u,v)| ≤Ch‖u‖H1(S)‖v‖H1(S). (62)

Second the interpolation of the product contributes the following error:

Proposition 5.2. We have:

|a0
h(u,v)−a1

h(u,v)| ≤Ch1/2‖u‖H1(S)‖v‖H1(S). (63)
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Proof. GivenAh ∈ X1
h andu∈ Y0

h we interpolate their product to obtain a field inY1
h .

Remark that ifu is constant on a given tetrahedron there is no error committed there – the interpolation
is exact. On a reference tetrahedronT̂ we therefore have an estimate of the form:

‖Ahu− I1
h(Ahu)‖L2(T̂) ≤C‖Ah‖L6(T̂)‖gradu‖L3(T̂). (64)

Squaring and scaling to a tetrahedronT of sizeh gives:

‖Ahu− I1
h(Ahu)‖2

L2(T) ≤Ch2‖Ah‖2
L6(T)‖gradu‖2

L3(T). (65)

Summing over tetrahedrons and using Hölder’s inequality gives:

‖Ahu− I1
h(Ahu)‖2

L2(S) ≤Ch2‖Ah‖2
L6(S)‖gradu‖2

L3(S). (66)

A square-root and inverse inequality gives:

‖Ahu− I1
h(Ahu)‖L2(S) ≤Ch1/2‖Ah‖L6(S)‖gradu‖L2(S). (67)

From this the proposition follows.

Remark 5.2. If A is smooth we can replaceL6×L3 → L2 by L∞ ×L2 → L2, and there is no need for an
inverse inequality, so we get:

|a0
h(u,v)−a1

h(u,v)| ≤Ch‖u‖H1(S)‖v‖H1(S). (68)

Third, mass-lumping induces the following error:

Proposition 5.3. We have:

|a1
h(u,v)−a2

h(u,v)| ≤Ch1/2‖u‖H1(S)‖v‖H1(S). (69)

Proof. Using previous estimates we get:

|a1
h(u,v)−a2

h(u,v)| ≤Ch(‖gradu+ I1
h(iAhu)‖‖curlI1

h(Ahv)‖+‖curlI1
h(Ahu)‖‖gradv+ I1

h(iAhv)‖) (70)

Next we use the uniform stability of interpolationI1
h : Y0

hY1
h → Y1

h with respect to L2(S) → L2(S) norms,
Hölder’s inequality and Sobolev injections.

‖I1
h(Ahu)‖ ≤C‖Ahu‖, (71)

≤C‖Ah‖L3(S)‖u‖L6(S), (72)

≤C‖Ah‖L3(S)‖u‖H1(S). (73)

Remark thatY0
hYk

h is a finite element space, the one of second lowest order in Néd́elec’s first family. There-
fore curl mapsY0

hY1
h → Y0

hY2
h . MoreoverI2

h : Y0
hY2

h → Y2
h is stable L2(S)→ L2(S) by scaling:

‖curlI1
h(Ahv)‖= ‖I2

h curl(Ahv)‖, (74)

≤C‖curl(Ahv)‖, (75)

≤C(‖(curlAh)v‖+‖Ah×gradv‖), (76)

≤C(‖curlAh‖L3(S)‖v‖L6(S) +‖Ah‖L6(S)‖gradv‖L3(S)), (77)

≤Ch−1/2(‖Ah‖L6(S) +‖curlAh‖L2(S))‖v‖H1(S), (78)

where theh−1/2 factor is obtained from an inverse inequality.
Similar estimates hold withu andv interchanged. Combining them yields the proposition.

Remark 5.3. If A is smooth we get for the same reason as previously:

|a1
h(u,v)−a2

h(u,v)| ≤Ch‖u‖H1(S)‖v‖H1(S). (79)
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Fourth, applying the technique of lattice gauge theory we get:

Proposition 5.4. We have:

|a2
h(u,v)−ah(u,v)| ≤Ch1/2‖u‖H1(S)‖v‖H1(S). (80)

Proof. Define a functionr : R→ C by, for all θ ∈ R:

exp(iθ) = 1+ iθ− 1
2
θ2 + r(θ), (81)

and remark that we have a bound valid for allθ ∈ R:

|r(θ)| ≤C|θ|3. (82)

We look at an edge with verticesi and j. Putθi j = [Ah]i j . We have:

|u j −exp(−iθi j )ui |= |exp(
i
2
θi j )u j −exp(− i

2
θi j )ui |, (83)

= |u j −ui +
i
2
θi j (ui +u j)−

1
8
θ2

i j (u j −ui)+ r(
1
2
θi j )u j − r(−1

2
θi j )ui |. (84)

On the right hand side we recognize:

u j −ui +
i
2
θi j (ui +u j) = [gradu+ I1

h(iAhu)]i j , (85)

which appears in the expression fora2
h(u,u). We want to bound the contribution of the other terms. From

the boundedness of(Ah) in L6(S) we deduce a bound valid for allh and all edges:

|θi j | ≤Ch1/2. (86)

From which we deduce,

∑
i j

µi j |θ2
i j (u j −ui)|2 ≤Ch2‖gradu‖2, (87)

and also:

∑
i j

µi j |r(
1
2
θi j )u j |2 ≤Ch‖u‖2. (88)

This ends the proof.

Remark 5.4. If A is smooth we have a bound|θi j | ≤Ch, which gives:

|a2
h(u,v)−ah(u,v)| ≤Ch2‖u‖H1(S)‖v‖H1(S). (89)

Combining the four estimates gives:

Theorem 5.5. If A∈ H1(S) we have:

|a(u,v)−ah(u,v)| ≤Ch1/2‖u‖H1(S)‖v‖H1(S), (90)

and if A is smooth:
|a(u,v)−ah(u,v)| ≤Ch‖u‖H1(S)‖v‖H1(S). (91)

It can also be remarked that ifAh = A = 0, ah is the exact restriction ofa to Y0
h .

Concerning the approximation ofb we remark that:

bh(u,u) =
∫

I0
h(Vh|u|2). (92)
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Proposition 5.6. There isC > 0 such that for allδ≤ 1 we have for allh and all u∈ Y0
h :

|〈Vu,u〉−〈Vhu,u〉| ≤Ch2−2/δ‖V−Vh‖L3δ/2(S)‖u‖2
H1(S). (93)

Proof. Given δ defineδ′ by 2/(3δ) + 1/(3δ′) = 1. From Ḧolder, an inverse inequality and the Sobolev
injection H1(S)→ L6(S) we have:

|〈Vu,u〉−〈Vhu,u〉| ≤ ‖V−Vh‖L3δ/2‖u‖2
L6δ′ , (94)

≤C‖V−Vh‖L3δ/2(S)h
1/δ′−1‖u‖2

L6, (95)

≤Ch2−2/δ‖V−Vh‖L3δ/2(S)‖u‖2
H1(S). (96)

This is the claimed estimate.

Proposition 5.7. We have foru∈ Y0
h :

|
∫

Vh|u|2−
∫

I0
h(Vh|u|2)| ≤Ch‖Vh‖W1,3/2(S)‖u‖2

H1(S). (97)

Proof. Consider a simplexT. Let V′
h be the L2(T) projection ofVh to the constants. Similarly letu′ be the

L2(T) projection ofu to the constants. We have on the simplexT:

(id− I0
h)(Vh|u|2) = (id− I0

h)(V′
h|u|2)+(id− I0

h)((Vh−V′
h)|u|2), (98)

= (id− I0
h)(V′

h|u−u′|2)+(id− I0
h)((Vh−V′

h)|u|2). (99)

Therefore:

|
∫

T
(id− I0

h)(Vh|u|2)| ≤Ch2‖Vh‖L3(T)‖gradu‖2
L3(T) +Ch‖gradVh‖L3/2(T)‖u‖2

L6(T). (100)

We sum overT, use discrete Ḧolder (for 1/3+ 1/3+ 1/3 = 1 and 2/3+ 1/6+ 1/6 = 1) and the Sobolev
injectionW1,3/2 → L3. We lose anh in the first term from an inverse inequality.

Theorem 5.8. If V ∈ W1,3/2(S) we have an estimate foru,v∈ Y0
h :

|b(u,v)−bh(u,v)| ≤Ch‖u‖H1(S)‖v‖H1(S). (101)

If V is a Coulomb potential we have:

|b(u,v)−bh(u,v)| ≤Ch| logh|‖u‖H1(S)‖v‖H1(S). (102)

Proof. We treat the case of a Coulomb potential located at the origin, which is supposed to be in the interior
of S. There isC > 0 such that for allδ < 1 we have:

‖1/|x|2‖L3δ/2(S) ≤C/(1−δ). (103)

Then :
h2−2/δ‖V−Vh‖L3δ/2(S) ≤Ch3−2/δ/(1−δ). (104)

The choice 1−δ=−1/ logh leads to the claimed estimate.
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