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Abstract 
 
Purpose: The sickness absence rate in Norway is at its highest point since 2009 and the 
decision on the reimbursement of return-to-work (RTW) programs requires a  thorough 
analysis. This study aimed to assess the long-term cost-effectiveness of two RTW 
interventions for patients with musculoskeletal and psychological disorders. The 
interventions included in the study were I-MORE (an inpatient multimodal program) and O-
ACT (an outpatient physchotherapy program). 
 
Methods: First, we used patient-level data to estimate input parameters such as costs, 
HRQoL, and transition probabilities. Second, we developed a discrete-time state-transition 
model to perform a cost-effectiveness analysis using such inputs. Alternative scenarios and 
sensitivity analyses were used to assess the impact of uncerntainties on the model results. 
 
Results: Considering a healthcare perspective, over 25 years, I-MORE was not cost-effective 
compared to O-ACT (ICER: 1,167,887 NOK/QALY). Out of 10,000 simulations, with a 
threshold of NOK 500,000, I-MORE was cost-effective in 15% of the cases.  Once we 
considered a limited societal perspective, which accounted for production loss, I-MORE not 
only became cost-effective but strongly dominated O-ACT. From a limited societal 
perspective I-MORE became cost-saving after 3 years. 
 
Conclusion: Under current benchmark thresholds for cost-effectiveness, the inpatient nature 
of I-MORE drove up the costs which outweighed the small increased effects. However, the 
results of the evaluation were strongly influenced by the perspective of the analysis and the 
chosen time horizon. Our results emphasize the importance of discussing the role of the 
societal perspective in economic evaluations for healthcare. To our knowledge this is the first 
multi-state model developed to assess the cost-effectiveness of RTW in Norway. 
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1 Introduction 
Since the end of the 1990s, Norway and other Nordic countries have been facing a major public 
health issue: high and increasing rates of sickness absence. In line with recommendations from 
the Organization for Economic Cooperation and Development (OECD), Norway has focused its 
efforts on developing policies that support and stimulate the return-to-work (RTW) of employees 
with temporary or permanent reduced work capacity (Kausto et al., 2008). Sickness absence can 
be attributed to a wide variety of disorders. Although estimates vary, research indicates that the 
majority of sick leave days is associated with either musculoskeletal disorders (Hagen et al., 
2011; Kinge et al., 2015) or psychological disorders (Nystuen et al. 2001). With the current sick 
leave rate reaching the highest point (7.1%) in the past 14 years, interventions and policies 
focusing on RTW have become more crucial than ever. 
 
RTW interventions are multidomain programs, developed since the 1970s, that focus on a wide 
variety of treatments. These include, but are not limited to, psychotherapy (individual and group-
based), work-related problem solving, physical exercise, and the development of a RTW plan 
(Powers et al., 2009; Ammendolia et al.,2009). However, results on the efficacy of these 
interventions, especially in the long term, are inconsistent (Aasdahl, 2023). As a consequence, 
it currently remains unclear whether more resources should be allocated to the study and 
reimbursement of RTW programs. Policy makers face significant uncertainty when it comes to 
the allocation of the national budget, particularly regarding the reimbursement of different 
treatment options. To address the issue of resource scarcity, Norway relies on economic 
evaluations as a key element of priority setting (Norwegian Ministry of Health and Care Services, 
2017). Although there is evidence supporting the cost-effectiveness of RTW programs (Caro et 
al., 2012), most economic evaluations have only been conducted alongside clinical trials. Few 
studies, none of which in a Norwegian setting, have developed (or are currently developing) a 
model that studies the effects and costs over a longer time horizon (Squires et al., 2011; Moens, 
2022). 
 
The clinical trial NCT01926574, which took place in Norway between 2013 and 2015, compared 
the effects and costs of two RTW interventions: I-MORE (inpatient multimodal occupational 
rehabilitation) and O-ACT (outpatient acceptance and commitment therapy). The purpose of our 
study was to use patient-level data from the trial to develop and optimize a state-transition 
model that could project both costs and effects over longer time horizons and under different 
assumptions. To the best of our knowledge, no model-based analysis has compared the cost-
effectiveness of two RTW interventions for Norway. Developing such a model not only allowed 
us to address the specific research question but also provided the opportunity to test different 
assumptions, adapt the decision to alternative settings, and identify areas that may require 
further research. The main objective of this study is captured by the research question: 
Is I-MORE, compared to O-ACT, a cost-effective intervention in the long term for individuals on 
sick leave due to musculoskeletal or psychological disorders in Norway?  
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2 Background 
2.1 Sickness absence 
According to the World Health Organisation (2021), Musculoskeletal disorders compromise more 
than 150 conditions affecting bones, muscles, joints, and more generally the locomotor system. 
This great variety of disorders poses a challenge to both the patient and the social-care system 
they are a part of. Although estimates for the general population are subject to uncertainty, 
research indicates that the prevalence of musculoskeletal disorders among Norwegian working 
adults could be as high as 80% (Hagen et al., 2011). These conditions are associated with chronic 
pain and other debilitating symptoms that can last for months. More specifically, Svebak et al. 
(2006) analysed the results of a survey that collected answers from 60,000 Norwegian adults 
and found that pain associated with chronic musculoskeletal disorders lasted more than three 
months in 45% (men) and 40% (women) of the cases. The long-term repercussions not only are 
likely to affect the patient’s quality of life but can also have significant economic implications. 
Musculoskeletal disorders not only limit patients' presence at work, reducing productivity and 
increasing healthcare costs, but they also strain the economic system as a whole. This is mainly 
due to the additional costs that the system faces when providing workers with sick leave benefits. 
The second edition of the International Classification of Primary Care (ICPC2) groups 
musculoskeletal conditions under the letter “L” in codes from 0 to 99. Out of these, neck (L01) 
and low back (L02) complaints account for the highest share of diagnoses and the main reason 
for health care consumption in Norway (Kinge et al., 2015). With regards to productivity and the 
labour market, low back pain alone accounts for 15% of all sickness absence in the country 
(Werner & Côté, 2009). 
 
Psychological disorders pose a second, but no less serious, threat to healthcare systems. These 
conditions are characterized by clinically relevant disturbances in an individual’s cognition and 
behaviour. ICPC2 classifies psychological disorders under the letter “P” with numbers 70 to 99 
referring to the more debilitating conditions. Mental disorders have been shown to significantly 
reduce patients' health-related quality of life (HRQoL) more than other common medical 
conditions, such as diabetes and cardiac diseases (Spitzer et al., 1995). The magnitude of the 
reduction in HRQoL is particularly and significant in domains such as perceived general health 
and social functioning. In Norway, the burden associated with mental disorders is estimated to 
be around 8% of the total sickness burden. The impact on the country's workforce is also 
significant, as more than 30% of all refunded sick days have been linked to mental disorders 
(Nystuen et al. 2001).  
 
Both groups of disorders are of high relevance for Norway, where the sick leave rate has now 
reached the highest value (7.1%) since 2009 (Statistics Norway, 2023). Indeed, the most common 
diagnoses for long-term sick leave and disability benefits are those connected to mild/severe 
disorders that fall under the “L” and “P” categories (Øyeflaten et al., 2012).  
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In Norway, sick leave compensation is initially paid by the employer (first 16 days) and then by 
the Labour and Welfare Administration (NAV). Depending on the condition, the time needed to 
recover, and the way it affects the person’s ability to work, Norwegian workers are entitled to 
different types of medical benefits. Pathways between the different medical benefits are 
complex, mainly due to the misalignment between the conditions and the bureaucracy behind 
the assessment/reimbursement process. Here we provide a general explanation of the 
Norwegian system and its mechanisms. Sick leave (SL) benefits are a temporary income 
replacement for a person that is unable to work due to an injury or an illness. SL can be graded 
from 20% up to 100% and usually covers up to one year (52 weeks) of leave. After the first year, 
workers can either go back to work (for a minimum of 6 months) or apply for work assessment 
allowance (WAA). This type of medical benefit is intended for workers that, after a thorough 
assessment, demonstrate that their ability to work has been reduced by at least 50%. Generally, 
this type of benefits lasts 3 years, with the possibility of extending it by a maximum of 2 years. 
However, in contrast to SL, which can be up to 100%, WAA only reimburses 66% of the patient’s 
prior income (up to NOK 441,449). Lastly, disability benefits (DB) are benefits available to those 
that have little to no capacity to work (reduction of at least 50%). This type of benefit is intended 
for individuals that are unlikely to improve their condition during their lifetime. As for WAA, a 
thorough medical assessment form NAV will determine to what degree the person is entitled to 
DB (NAV, 2020). 

2.2 Return-to-work interventions 
Due to the broad range of conditions included in the musculoskeletal and psychological 
categories, establishing a standard treatment procedure becomes challenging. In the case of 
musculoskeletal disorders, the first point of contact is usually the patient’s General Practitioner 
(GP), who assesses the situation and eventually refers to specialist care. Medications, 
physiotherapy, occupational therapy, and in worse cases surgical interventions are all feasible 
approaches that, depending on the severity, might be required.  
 
Compared to musculoskeletal conditions, the diagnosis of psychological disorders presents a 
greater challenge. Research shows that the overlapping nature of symptoms in psychological 
disorders is the main cause of slower diagnoses. The identification of the condition and of 
effective treatment options can last months or even years (E. Baca-García et al., 2021). In 
addition to the long-term repercussions of musculoskeletal and psychological disorders on the 
individual it should be noted that comorbidity between the two groups of disorders is often high 
and can lead to important differences in prognosis and health care consumption. For instance, 
a Norwegian study on 562 sick listed patients with lower back pain, found that the prevalence 
of psychological disorders was of 38% (current or lifetime) with somatoform disorders accounting 
for 18% (Reme et al., 2011). These results emphasise the need for interventions that can be used 
to address both “L” and “P” disorders.  
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RTW interventions are rehabilitation programs designed to incentivise the patient in returning to 
their regular activity. These types of interventions, and their effects on sickness absence have 
been studied since the early 1970’s. An early systematic review has found that modified work 
programs (often included in broader rehabilitation programs) facilitate return to work for both 
temporarily and permanently disabled workers (Krause et al., 1998). The authors also conclude 
that such rehabilitation programs have the potential to substantially reduce the costs associated 
with workers’ compensation. Nowadays, the overall objective of these interventions is indeed to 
reduce sick leave and ease the burden of physical and mental conditions not only from the 
healthcare system but from the labour sector as well.  
 
The unique medical circumstances that lead to sickness absence, make the design of 
rehabilitation programs a difficult task. A solution proposed by Ammendolia et al. (2009) 
involved the use of intervention mapping, a methodology which has been used since the 1990s 
to develop multidimensional programs. This method was successfully applied to programs 
aimed at AIDS prevention and smoking cessation. With such an approach the study was able to 
pinpoint features that aligned with the setting of the study (Ontario). These included, but were 
not limited to, the involvement of trained professionals to coordinate the process and 
empowering the patient in making RTW decisions. 
 
Multi-domain rehabilitation programs often include individual, or group based psychological 
therapies. Indeed, cognitive behavioural therapy (CBT) and mindfulness-based cognitive therapy 
(MBCT) are recognised as cost-effective approaches that are likely to prevent relapses (National 
Institute for Health and Care Excellence, 2022). Acceptance and commitment therapy (ACT) 
stems from the “third wave” of treatments in the field of CBT. Treatments of the third wave are 
characterized by a focus on contextual change, the development of flexible repertories, and the 
emphasis of function over form (Hayes, 2004). The main goal of ACT is to support individuals 
that are struggling with their internal experiences, such as thoughts, and provide them with the 
tools needed to implement behavioural changes. ACT proved to be effective in many domains 
related to mental health, showing effects comparable to the more traditional CBT (Shand et al., 
2013). Moreover, ACT repeatedly outperformed the effects of treatment as usual for a variety of 
mental and physical disorders (Powers et al., 2009).  
 
In addition to psychological therapies, and pharmacological treatments, physical exercise if often 
linked to improvements in HRQoL. In a systematic review, Cooney et al, (2013) reported that 
physical exercise was moderately more effective in reducing symptoms of mental disorders 
(specifically depression) when compared to no treatment or control groups. However, there is a 
limited number of studies that directly compared the effects of physical exercise with 
psychological and pharmacological treatments. In these, results showed no significant effects 
for the exercise groups. 
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A variety of methods have been developed to stimulate RTW and address the symptoms of 
musculoskeletal and psychological conditions. For instance, multi-domain interventions proved 
to be effective rehabilitation programs. The interventions that had better rates of success 
included components such as cognitive behavioural therapy (CBT/ACT), physical exercise, work-
related problem solving, and a service coordination component, in which the patient is assisted 
in the development of a return-to-work programme (Cullen et al., 2017). 
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3 Theoretical Framework 
3.1 Priority setting & cost-effectiveness 
Resources are scarce and investment decisions are possibly unlimited. In 1935, British economist 
Lionel Robbins defined the field of economics as the study of the “relationship between ends 
and scarce means” (Robbins, 1935, p.15). Healthcare decisions are no different, and the issue of 
resource allocation is here to stay (van Delden, 2004). Economic evaluations play a crucial role 
in decision-making processes related to healthcare policy, practice, and resource allocation. 
These evaluations provide valuable insight into the costs and benefits associated with various 
health interventions, aiding decision-makers in prioritizing their reimbursement.  
 
In Norway, healthcare resource allocation has been addressed by the Government in a guiding 
report (white paper) published in June 2016 and approved by the Parliament in November of that 
same year (Norwegian Ministry of Health and Care Services, 2017). The report highlights three 
main criteria to be used in decision-making processes: the benefit criterion, the resource 
criterion, and the severity criterion. All three criteria resolve into health technology assessment 
(HTA), a multi-dimensional systematic approach to new health technologies and services. 
 
Economic evaluations contribute to HTA and often rely on a cost-effectiveness analysis (CEA) 
(Briggs et al., 2006), in which the clinical effects of two (or more) technologies are compared to 
their resource use. Effects are usually expressed in life years, disability-adjusted life years 
(DALYs), or quality-adjusted life years (QALYs). QALYs are a combination of quantity and quality 
of life (Drummond, 2015) and are calculated by multiplying life years (LY) with a HRQoL value 
usually bound between 0 and 1. Generic questionnaires such as the 15D and the EQ5D, can be 
used to elicit those values. Specifically, the 15D is a self-reported questionnaire that assesses 
fifteen domains: mobility, vision, hearing, breathing, sleeping, eating/drinking, speech, 
elimination, vitality, mental function, discomfort and symptoms, depression, distress, usual 
activity, and sexual activity. Each domain presents 5 response options ranging from no problems 
to severe problems. Using a set of preference weights, as expressed by the general Finnish 
population, an aggregation formula generates the final 15D score. The scores are expressed on 
a scale from 0 to 1, where 0 corresponds to being dead and 1 to no problems in any dimension 
(Sintonen, 2001). 
 
The main outcome of a cost-effectiveness analysis, also referred to as cost-utility analysis when 
QALYs are used, is the incremental cost-effectiveness ratio (ICER). The ICER is the difference in 
costs between two technologies divided by the difference in effects. Equation 1 shows the 
general formula for the ICER. 

!"#$ =
Δ"

Δ#
=

("()*! − "()*")
(-./0)! − -./0)")

 

[ 1 ] 
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By evaluating different options based on their relative effectiveness for achieving desired 
outcomes, we can identify where resources are best spent. However, the decision does not 
merely rely on the ICER. As mentioned, scarcity is an underlying issue. To be considered cost-
effective, the ICER is compared with a pre-specified willingness-to-pay (WTP) threshold value 
(lambda). Conceptually the threshold represents the maximum amount that decision-makers are 
willing to pay for an additional unit of health benefit. The threshold is typically based on societal 
values and reflects the opportunity cost of allocating resources to one intervention over another 
(Simoens, 2012). Due to their nature, thresholds vary between countries, societies, and even by 
disease severity (Raftery, 2008). In Norway, WTP thresholds range from NOK 275,000 to NOK 
825,000 depending on the severity of the condition (Norwegian Ministry of Health and Care 
Services, 2015), with an often-reported average value of NOK 500,000 (Barra & Rand-
Hendriksen, 2016). The decision rule based on the ICER and the threshold can also be expressed 
in monetary terms. At a chosen WTP threshold the net monetary benefit (NMB) expresses the 
incremental effects of an intervention on the same scale of incremental costs. If their difference 
is positive the intervention is cost-effective (Claxton, 1999). The intervention with the highest 
NMB is the optimal strategy. 

123 = (4 ∗ Δ#) − Δ" 

[ 2 ] 

CEAs have been widely used to evaluate RTW interventions and rehabilitation programs (Dewa et 
al, 2020; Carroll et al, 2009). Yet, methodologies differ, and comparability is low due to different 
preferences in terms of outcomes and health-related quality of life (HRQoL) instruments. Most 
of the research conducted so far focuses on CEAs alongside clinical trials, without fully 
developing a simulation model to study and evaluate the long-term consequences of the 
interventions (Hoefsmit et al., 2012). Overall, economic evaluations provide decision-makers in 
healthcare with a systematic approach to evaluate the costs and benefits of different 
interventions, address the problem of resource scarcity, and allocate resources in a more 
effective and equitable manner. 

3.2 Decision analytic modelling 
To be valuable sources of information for policy makers, evaluations must rely on appropriate 
evidence. In addition, evaluations should be fully transparent on the limitations and uncertainty 
intrinsic to models that seek to simplify real world phenomena (Briggs et al., 2011). Many 
approaches have been proposed through the years: state-transition models (Markov models), 
discrete event simulations, dynamic transmission models, microsimulations, and decision trees 
are just some of the approaches to combine quantitative information from various sources and 
make informed decision in healthcare (Caro et al., 2012).  
 
Decision trees are the simplest form of decision analytic models and have been widely used to 
represent screening programmes and diagnostic tests with relatively short time horizons. In 
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decision trees the different clinical pathways are visualised with branches (hence the name) and 
nodes where a decision/event occurs. Although initially simple and transparent, these models 
can quickly become overly complex as the time horizon increases and the states multiply (state 
explosion) (Briggs et al, 2011; Petrou & Gray, 2011). State-transition models allow for a flexible 
sequencing of states with the possibility of including recurring outcomes (Petrou & Gray, 2011).  
 
In discrete time state-transition models (DTSTMs) patients move between mutually exclusive 
health states over discrete time intervals known as cycles (Drummond, 2015). Cycle length and 
states will depend on the specific decision problem being addressed. One major limitation to the 
basic approach to DTSTMs is that the transition between states is governed only by the current 
health state, this is known as the Markovian assumption. 
 
Once that the right model specification has been identified, different types of data can be used 
to inform it. Data relying on published literature are usually collected with systematic reviews of 
studies closely linked to the intervention/disease being modelled. If the topic has been 
researched for a long time, published literature can provide many insights into the clinical 
effectiveness, safety, and costs associated with a technology. However, this kind of information 
might not always be up-to-date or relevant for the patient population being considered in the 
evaluation. Primary data are generated when specific studies designs (e.g., randomized 
controlled trials, surveys, etc.) are carried out. Such an approach offers more control on the type 
of information that will be collected and ensures that the patient population is in line with the 
population being considered in the evaluation. Nonetheless, studies aimed at collecting primary 
data are both time and resource consuming. Depending on the context, it might not be feasible 
to rely on the generation of primary data. 
 
Overall, many approaches to decision analytic modelling and data collection have been proposed 
and developed through the years. Each one with its number of assumptions and limitations. 
However, it is good to remember that a model should be as simple as possible but no simpler. 

3.3 Parameterisation of state-transition models 
3.3.1 Transition probabilities 
On top of costs and effects, CEAs often rely on parameters that describe the patterns (clinical 
and non-clinical) that patients are expected to follow. To do so, studies often report transition 
rates and probabilities. In economic modelling, rates represent an instantaneous measure that 
can take values between 0 and infinity (Fleurence & Hollenbeak, 2007). The rate indicates the 
instantaneous potential occurrence of an event. Specifically, transition rates (or intensities) 
represent the instantaneous risk of moving from state 1 to state 2. These values can be easily 
added and subtracted. Differently, probabilities range between 0 and 1 and represent the 
likelihood of an event happening over a set period of time. When rates are assumed to be 
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constant over time without competing risks, rates can be converted into probabilities and vice 
versa (Briggs et al., 2006) 
 

6 = 1 − exp(−;*) 
 

; = 	−[ln(1 − 6)]/* 
[ 3 ] 

Where: 
p is the probability  
r is the rate 
 
A transition rate matrix also referred to as an intensity matrix, is a set of instantaneous rates 
that describe possible transitions between pre-specified states (Jackson, 2011).  
 

3.3.2 Multi-state modelling 
Multi-state models, also referred to as DTSTMs when the transitions happen at discrete time 
intervals, are a way to extend survival analysis to incorporate more states and effectively model 
competing events (Gran et al., 2015). Even when time-to-event data are not available, these 
models offer flexible structures to fit panel data (Gran et al., 2015; Incerti & Jansen, 2021). As 
we introduced, DTSTMs are a simplification of often complex clinical patterns in which transition 
probabilities are associated with each state. However, in their basic forms, these models are 
subject to one important limitation. That is, future transitions only depend on the current state 
(Markov assumption) and that sojourn times are exponentially distributed (Jackson, 2011; Briggs 
et al., 2006). Multi-state models can have one (or more) final state from which patients cannot 
come back. These states, where the probability of remaining in the state equals 1, are called 
absorbing states.    
 
msm is an R package that can be used to fit multi-state models when working with panel data. 
Panel data can be seen as observations/snapshots of a continuous-time process at arbitrary 
times (Jackson, 2011). To explain how msm works, we first assume a time-homogeneous model, 
in which the transition intensities are not dependent on time. When exact transition times are 
unknown (panel data), the transition probability matrix is calculated using a transition intensity 
matrix Q (Cox & Miller, 1977). If the Q matrix remains constant over time, the case for time-
homogeneous models, the equations associated with it are solved by the matrix exponential of 
Q (scaled for time). In such a scenario, it is the exponential of Q that contributes to the likelihood 
function. When transition times are exactly observed, the intensity matrix Q directly contributes 
to the likelihood function (Kunst et al., 2020). In msm, the constant intensity assumption 
(exponential assumption) can be relaxed by allowing piecewise constant transition rates. Having 
a piecewise constant model is one way of partly introducing time dependency in models fitted 
with msm. With this option, msm specifies cut-offs at which the Q matrix is expected to change. 
Nevertheless, the models estimated between the cut-offs remain based on exponential 
distributions. The fact that msm can only fit exponential distributions (or piecewise exponential) 
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is a highly constricting feature that limits modelling options. This is why, in the case of exactly 
observed transitions (time-to-event data), more flexible and fully time-inhomogeneous models 
should be considered. For instance, packages like mstate allow to fit continuously changing 
intensities (e.g, Weibull) (de Wreede et al., 2011). 
 
The likelihood function quantifies how well a particular set of parameters explains the observed 
data. The likelihood function represents the joint probability density of all observations given 
the chosen model parameters. In statistics, the parameters of a model are often estimated with 
the maximum likelihood estimation (MLE) method. MLE is the basis of many well-known 
inference methods, such as the chi-square test, models of random effects, and selection criteria 
such as the Akaike information criterion (Myung, 2003). The MLE method determines 
parameters’ values such that they maximize the likelihood that the process described by the 
model matches the observed data. In practice, this process typically involves solving a non-linear 
optimization problem subject to certain constraints on the parameters. The MLE algorithm 
generates the parameters by improving initial values, either chosen at random or identified by 
an educated guess. However, there is no guarantee that the parameters’ set that maximizes the 
likelihood will be found. This is known as the local maxima problem. One approach is to choose 
different starting values over multiple attempts. If the solution stays the same, it can be assumed 
with some confidence that the algorithm identified a global maximum (Myung, 2003).  
 
The value derived from maximizing the likelihood function provides us with information about 
which set(s) of specific parameter estimates are more closely related to explaining our data than 
others. This allows us to perform AIC and likelihood tests, and decide which model, and 
corresponding set of parameters better fits the data (Claeskens & Hjort, 2008). Transition 
parameters can be elicited from models that include two or more states. However, there exist a 
trade-off between number of observations, number of states, and the chances of maximising 
the likelihood function.  
 

3.3.3 Costs and analysis perspective 

The perspective assumed in a cost-effectiveness analysis affects the parameters selected to 
populate the model. Choosing the relevant perspective is crucial, as a programme that looks 
unattractive from one perspective could indeed be significantly better when a different 
perspective is considered (Drummond, 2015). The definitions of these perspectives vary between 
countries but can generally be grouped into two main categories: the healthcare perspective and 
the societal perspective.  
 
On the one hand, the healthcare perspective includes all the costs associated with healthcare 
interventions, treatments, and services. Usually, expenses incurred by both the patient and the 
healthcare payer are considered. This perspective is usually regarded as the standard approach 



3 Theoretical Framework 

16 

by organisations like the National institute for Health and Care Excellence in the United Kingdom 
(with exceptions). On the other hand, the societal perspective, adopted in the Netherlands since 
2016, includes costs and benefits that do not strictly belong to the healthcare sector (Versteegh 
et al., 2016). This broad perspective would normally include travel costs, costs related to 
informal care, time lost from paid work, unpaid work, and leisure time. 
 
In Norway, as of today, health technology appraisals are recommended to follow an extended 
healthcare perspective (Norwegian Institute of Public Health, 2021). This perspective, in addition 
to costs directly associated with the treatments, accounts for transport costs, and the 
patients’/relatives’ use of time. A limited societal perspective would consider cost components 
beyond those captured by the (extended) healthcare perspective (i.e., loss of productivity), but 
it may not encompass the full range of costs and benefits included in the broader concept of 
societal perspective (Garrison et al., 2010; Kim et al., 2020). 
 

3.4 Addressing uncertainty 
So far, we presented decision analytic models and estimation procedures that try to simplify 
reality. For that reason, they end up incorporating a great amount of uncertainty and their use 
to inform policymakers still raises concerns. The inappropriate use of clinical data, the difficulties 
of extrapolation procedures, and the transparency/validity of the model are all points of 
reflection that have been raised in the past twenty-five years (Buxton et al., 1997). Nonetheless, 
the use of models to evaluate health technologies steadily increased (Petrou & Gray, 2011) and 
good-practice guidelines have been developed to address uncertainty (Briggs et al., 2012). 
Uncertainty in economic evaluations can be conceptually divided into four categories. Stochastic 
uncertainty also referred to as first-order uncertainty, captures random variability in outcomes 
between patients. Heterogeneity, expresses patients’ variability caused by the characteristics of 
those patients. Parameter uncertainty (second-order uncertainty) is associated with the 
estimation of the parameters. Structural uncertainty (model uncertainty) is generated by all the 
underlying assumptions inherent in the model (Briggs et al., 2012).  
 
Probabilistic modelling can help in understanding the effects of the internal parameter 
uncertainty on the outcomes of interest. Probabilistic analyses propagate joint parameter 
uncertainty through the model; however, the underlying structure was still based on assumptions 
imposed by the modelling framework (Briggs et al., 2006). Sensitivity analyses can be performed 
to understand the impact of structural assumptions. This is also relevant in the case of a 
long/lifetime horizon, where the impact of alternative extrapolation methods beyond the 
trial/observed data should be explored (Caro et al., 2012). In practice, during a probabilistic 
analysis, all input parameters are resampled at the same time from chosen probability 
distributions (Fenwick et al., 2020).  
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The Beta distribution is bound between 0 and 1 and can be used to sample health-state and 
probability values. This distribution is characterised by two distinct parameters commonly 
referred to as alpha and beta. Alpha represents the number of events of interest while beta the 
number of non-events (total number of events minus alpha). When alpha and beta are not 
directly available they can be approximated using the method of moments. Using mean (μ) and 
standard error (SE) the method of moments generates alpha and beta following the calculations 
in equation 4 (Briggs et al., 2006). 
 

B = C ∗
C ∗ (1 − C)

D## − 1
 

 

E = (1 − C) ∗
C ∗ (1 − C)

D## − 1
 

[ 4 ] 

 
The gamma distribution is commonly regarded as an appropriate fit for costs because it is 
constrained to the interval 0 to positive infinity. This property aligns well with costs, which are 
often right skewed and by definition never negative. The distribution is characterized by two 
parameters, shape and scale. Knowing the mean and standard error, shape and scale can be 
calculated as: 
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Beta and gamma distributions are not the only type of distributions that can be used to generate 
input for the probabilistic analysis. For instance, the Lognormal distribution is a valid and often 
chosen distribution to inform the model on input parameters such as relative risks, costs, and 
probabilities. In addition, a more generic approach could also rely on the traditional normal 
distribution (Briggs, 2011). 
 
Each of the simulations generates an ICER that can be displayed in a cost-effectiveness plane 
where the y-axis represents increments in costs between interventions (ΔC), and the x-axis 
increments in effects (ΔE). The results of the simulations can also be displayed through a cost-
effectiveness acceptability curve (CEAC). The curve represents the probability of each 
intervention being cost-effective at a given willingness to pay threshold (λ) per QALY gained (Al, 
2012). It should be noted that when comparing technologies, the intervention with the highest 
probability of being cost-effective might not be the optimal option from a net monetary benefit 
perspective (Fenwick et al., 2001). To account for this, CEACs are often complemented with a 
cost-effectiveness acceptability frontier (CEAF). The CEAF plots the points of the CEAC in which 
the incremental net monetary benefit is higher. 
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3.5 Value of Information 
Economic models based on single trials often incorporate incomplete and imperfect evidence. 
This means that there is always some underlying risk that decisions made on available 
information will be suboptimal (Fenwick et al., 2020). One way of addressing such an issue is by 
acquiring more information and reducing uncertainty. Information, however, comes at a cost and 
further research should be considered only when deemed valuable. The value of information 
(VOI) analysis serves as a framework to quantify in monetary terms the value of collecting 
additional evidence. In the VOI framework, EVPI is a measure that quantifies the value of 
eliminating uncertainty from all the parameters in the model (Rothery et al., 2020). EVPI can be 
computed as the difference between the expected value of a decision that assumes perfect 
information and a decision that is based on current knowledge. 
 

#MN! = #$ IOGP%
123%(Q)J − OGP%

#$R123%(Q)S 
[ 6 ] 

Where: 
! is a vector of all model parameters 
"  represents the available decision options  
 
In practice, EVPI’s calculations follow a single-loop Monte Carlo scheme and are based on the 
output of the probabilistic analysis (Rothery, 2020). EVPI reaches its maximum value when the 
ICER is equal to the WTP threshold. This is because at that value we are most uncertain on 
whether to consider the technology cost-effective (Briggs et al., 2011). When EVPI is adjusted to 
account for the actual population that would be affected by the technology, it generates a 
hypothetical upper-bound value to be gained by investing in additional research. Studies that 
are expected to cost more than population-adjusted EVPI (pEVPI) should not be carried out 
(Briggs, 2006).  
 
Additional research will not eliminate all uncertainty from the model. With that in mind the 
theoretical upper bound value of EVPI is not fully informative as it does not represent what can 
be reasonably achieved. The expected value of partial perfect information (EVPPI) is the 
difference between the expected value of a decision that assumes perfect information regarding 
a parameter or a group of parameters and a decision that was based on the currently available 
knowledge.  

#MNN!& = #& Tmax%
	 #'|&R123% 		(Q)SW −OGP%

#$R123%(Q)S 
[ 7 ] 

Where: 
! is a vector of model parameters 
Φ is the parameter(s) of interest 
Ψ represents the remaining model parameters  
 
EVPPI calculations can be carried out with a nested double-loop Monte Carlo approach. The 
simulation runs two loops. In the outer loop, the parameter(s) of interest is sampled from its 
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distribution, in the inner loop the remaining complementary parameters are selected from a 
distribution conditional on the value sampled in the outer loop (Rothery et al., 2020). 
Alternatively, EVPPI can also be computed by fitting a non-parametric regression model 
(generalized additive model) between the NMB and the parameter(s) of interest (Φ).  
 
Groups of parameters for the estimation of EVPPI should be defined according to their nature 
(costs, HRQoL, transitions, etc.) and in a way that matches the type of research design that would 
be needed to collect more information (Briggs et al., 2011). Once that different scenarios have 
been hypothesized, the groups' EVPPI can be used to determine the drivers of current decision 
uncertainty. As for EVPI, these estimates should also account for the population affected by the 
decision (pEVPPI) and the useful time of the technology. 
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4 Methods 
This section is structured in three main components. First (Section 4.1), we introduce the trial 
and the results of the economic evaluation carried out for the 24 months of follow up. Data from 
these studies will be used to estimate not only transition probabilities but also states’ costs and 
HRQoL. 
 
Second (Section 4.2), we describe the steps towards the conceptualization and optimization of a 
model structure that extends the results of the trial in terms of state progression. This allows us 
to project health and economic outcomes beyond the follow-up period. Parameters closely 
linked to the states such as transition probabilities are estimated using multi-state modelling 
under different assumptions. The outcomes of these analyses will be presented in the first part 
of the Results section. 
 
Third (Section 4.3), we present the methodology for carrying out the base-case cost-
effectiveness analysis, and for addressing uncertainty. The cost-effectiveness analysis relies on 
the input parameters generated in sections 4.1 and 4.2. Uncertainty is explored through 
probabilistic analyses, alternative scenarios, and a preliminary VOI analysis. Outcomes of the 
economic evaluation will be presented in the second part of the Results section. Parameters’ 
estimations and the cost-effectiveness analyses were carried out in STATA (Stata/SE 17.0) and R 
(2022.12.0+353), the full code is reported in Appendix C.  
 

4.1 The Hysnes trial 
The clinical trial of interest (ClinicalTrials.gov, NCT01926574) was conducted between January 
2013 and June 2015. Its aim was to investigate whether group-based rehabilitation programs 
could promote a sustainable return to work. Previous research on these interventions focused 
on specific groups of disease, mostly musculoskeletal or psychological disorders. However, the 
high rates of comorbidity raised the need for interventions able to address the two groups of 
disorders at the same time. Studies connected to the trial analysed the efficacy (and costs) of 
two multi-domain interventions, O-ACT and I-MORE (Aasdahl, 2021; 2023). 
 
The O-ACT intervention carried out in the trial, consisted in a 6 weeks-long rehabilitation 
program with one weekly session of 2.5 hours (Gismervik et al., 2020). In addition to the weekly 
sessions, patients were given (unsupervised) home assignments, access to group discussions 
with a physiotherapist, and an individual session at the end of the program with a social worker 
and a group leader. 80 patients were randomly allocated to O-ACT and 61 of them completed 
the program. 
 
The second intervention, I-MORE took place at the Hysnes rehabilitation centre, one hour away 
from the city of Trondheim. The centre was open for 6 years between 2010 and 2016 during 
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which I-MORE and other rehabilitation programs were carried out (St. Olavs Hospital, 2016). I-
MORE lasted 3.5 weeks with sessions of 6 to 7 hours each day. It consisted of several 
components, such as group-based ACT, education on various topics, mindfulness, group-based 
physical training, and individual sessions of work-related problem-solving. 86 patients were 
randomly assigned to I-MORE and 69 completed the program. Table 1 provides a detailed list of 
the different components of O-ACT and I-MORE. 
 
Table 1: Detailed components of the two return-to-work interventions 

Outpatient acceptance and commitment therapy 
(O-ACT) 

Inpatient multimodal occupational rehabilitation 
(I-MORE) 

Location: Outpatient Hospital clinic Location: Hysnes rehabilitation centre 
Duration: 6-7 weeks Duration: 3.5 weeks 
Acceptance and commitment therapy Acceptance and commitment therapy 
(group sessions: 15h) (group sessions: 16h) 
Discussion and advice on physical activity Sessions with social workers 
(group session: 1h) (group sessions and individual guidance: 12h) 
Sessions with social workers Work-related problem solving 
(individual: 2h) (individual: 5h) 
Sessions with social workers and ACT moderator Meeting with physician 
(individual: 0.5h) (individual: 0.5h) 
Mindfulness session  Mindfulness sessions 
(group: 1.5h) (group: 3.5h) 
Home practice Outdoor activities day 
Short resume to the GP (5h) 

 
Individual return-to-work plan & resume to GP 

  “Network day” activity 
  “Walking to work” activity 
  Lectures (stress, nutrition, pain) 
  (6.5h) 

Notes: Reported hours are total hours per type of activity 

 
Main outcomes considered in the study were number of days on medical benefit and time until 
sustainable RTW (30 days without relapse). During two years of follow-up, I-MORE had a lower 
value for median number of days on medical benefit (159) compared to O-ACT (249). In addition, 
a smaller share of patients in I-MORE (54%) transitioned to the more permanent medical benefit 
(WAA) compared to O-ACT (69%). The hazard rate for sustainable RTW was 1.77 (p-value = 0.01) 
and in favour of I-MORE (Aasdahl, 2021). 
 
In a following study, the trial was evaluated not only in terms of efficacy but in terms of 
healthcare consumption and production loss, we reported monetary values in NOK 2023. I-
MORE, being an inpatient intervention, was considerably more expensive (NOK 174,000) than 
O-ACT (NOK 13,570). Primary and secondary healthcare consumption was NOK 77,842 for O-
ACT and 55,150 for I-MORE. The difference was mainly driven by a higher use of secondary care 
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(somatic and psychiatric hospital costs) in O-ACT (difference of NOK 19,635 in favour of I-
MORE). Total healthcare cost (including treatment cost) was NOK 91,412 (O-ACT) and NOK 
229,150 (I-MORE). The analysis took a step further and calculated production losses over the 2 
years. Using daily wage as a proxy for production loss, I-MORE had smaller costs associated with 
production loss (NOK 810,231) than O-ACT (NOK 969819). Considering all costs (treatment, 
healthcare, and production) the difference was NOK 30535 in favour of I-MORE (Aasdahl, 2023). 
 

4.1.1 Patient-level data 
Patient-level data from the trial were provided in the form of panel data. In our case, monthly 
observations per patient were available for a period of 24 months (2 years of follow-up). Eligible 
patients were adults (18-60 years) that at the time of inclusion had been sick listed for 2 to 12 
months. Specifically, individuals with an ICPC2 diagnosis within the L (musculoskeletal), P 
(psychiatric), or A (unspecific disorders) categories were eligible (Aasdahl et al., 2021). Exclusion 
criteria included substance abuse, serious somatic/psychological disorders, pregnancy, 
insufficient Norwegian language skills, scheduled surgeries, and serious behavioural problems 
in group settings. Each observation in the dataset included information on days on sick leave, 
days on work assessment allowance, percentage of assessed disability, and percentage of 
employment. The variable capturing the percentage of employment comes from a period during 
which the registry data were deemed as unreliable. Hence, days on benefits (either sick leave or 
work assessment allowance) were adjusted for employment percentage only when a second 
variable on job status matched the information from NAV (Aasdhal, personal communication, 
2023). The dataset also included information on patients’ characteristics such as age, gender, 
education, and type of diagnosis at inclusion.  
 

4.2 Multi-State Model 
4.2.1 Model structure 
Depending on the type of benefit that the patient received during the month, we defined four 
mutually exclusive and collectively exhaustive model states (i.e., a patient cannot be in more 
than one state during the month). In the Work (WK) state the patient did not receive any benefit 
and did not present any disability. In the Sick Leave (SL) state the patient received sick leave 
benefits for any number of days during the month and did not have any disability. For the Work 
Assessment Allowance (WAA) state the patient received a specific type of benefit that differed 
from standard sick leave, they also did not have any disability. In the Disability Benefit (DB) state, 
the patient presented any percentage of assessed disability, in the model this was an absorbing 
state. These states were partly based on the Norwegian regulatory context. In absence of any 
type of benefit, patients were assumed to be fully back at work. Based on these states, the multi-
state model was conceptualized as in Figure 1 
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Figure 1 Model structure with 4 states  

 
 
These model states and the corresponding model structure, aligned well with other studies in 
the field of return-to-work interventions and sick leave analysis (Gran et al., 2015; Øyeflaten et 
al., 2012; Squires et al., 2011). To account for a relatively small sample size, we also considered 
pooling together people on sick leave and working assessment allowance, this generated an 
alternative model structure which is further explored at the end of this chapter (4.2.3) 
 

4.2.2 Transition probabilities 
We used patient-level data to fit a multi-state model and extrapolate transition probabilities. 
The multi-state model was fitted using the msm package (R). Although the msm package was 
initially developed to model the progression of chronic diseases, the possibility of moving back 
and forth between states aligned with the conceptualization of our model structure and made 
msm a useful tool to extrapolate sojourn times and transition probabilities. As mentioned, the 
different states that a patient can transition to are also governed by underlying policies and 
regulations. For instance, in Norway, workers can be on sick leave for a maximum of one 
consecutive year. This means that sojourn times in one state affect the intensity of leaving that 
state, this simple but essential consideration, violates the Markov assumption. The extent to 
which this violation leads to errors in the estimates depends on how often it is the case that 
patients stay on sick leave long enough for the regulation to be enforced. However, while such 
a violation is possible, research shows that it is uncommon (Gran et al., 2015). In our study, the 
limitation on 12 months of sick leave, should not have too big of an impact as the mean sojourn 
time in sick leave was of 4.3 months for the O-ACT intervention and 3.87 months for I-MORE. 
Nevertheless, later in this section, we present one possible approach to the issue of time 
dependency. 
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Time-homogeneous models 

Our first approach was to assume a scenario in which transition probabilities did not change 
over time. To fit such base-case models for the O-ACT and I-MORE groups we first had to define 
the initial intensity matrix iQ. Values in the matrix were assigned 1s when the transition was 
allowed and 0s when the transition was not allowed. To increase the chances of maximizing the 
likelihood, initial values for non-zero elements of the iQ should be chosen based on reasonable 
assumptions (Jackson, 2011; Myung, 2003). However, when only 1s and 0s are provided, and 
enough data are available, msm can estimate initial values. This is the approach chosen for the 
base-case models for O-ACT and I-MORE. More complex models presented in this paper are 
built using an initial intensity matrix iQ based on estimates of the base-case models. 
 

!" = $
x		1		1		0
1		x		1		1
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1		0		0		x

) 

[ 8 ] 

 
The initial matrix is then used for the estimation of the intensity matrix Q and the corresponding 
probability matrix, which changes according to the length of the time interval chosen for the 
estimation of the probabilities. To visually assess the goodness of fit of the base case models 
we plotted the estimated and observed prevalence for each state over time. The probability 
matrix, calculated using the intensity matrix Q and a cycle length of 1 month, was used to inform 
transition parameters in the base-case model.  
 
Time-inhomogeneous models 

To introduce time dependency, we adapted the base-case models to be piecewise constant. 
Before generating piecewise constant estimations, we needed to specify time cut-offs at which 
intensities could vary. The decision on when to set such cut-offs is arbitrary and inevitably leads 
to different estimates. However, research shows that multi-state models with cut-offs at times 
that reflect clinical patterns have the best fit when assessed through a Pearson-type goodness-
of-fit test (Kunst et al., 2020).  
 
Using Norwegian guidelines on medical benefits we could make an apriori choice on when 
transition intensities were expected to be significantly different. In Norway, for instance, after 
12 months of sick leave, patients can apply for work assessment allowance benefits. As we 
previously mentioned, at the beginning of the trial patients had been sick listed for 2 to 12 
months. More specifically, they had been on sick leave for an average of 7.2 months in the O-
ACT group, and 6.9 months in the I-MORE group. This suggested that 5 months after 
randomization (12 – 7) could represent a time point for a change in the transition intensity. With 
a greater number of patients switching to work assessment allowance. After the first 12 months 
of sick leave, patients that want to apply for further sick leave benefits have to go back to work 
for at least 6 months. This is often done by patients that want to avoid the more permanent 
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situation and consequences that come with being on work assessment allowance. Based on this 
information, 11 months (5+6) was selected as a second time point for the piecewise constant 
model.  
 
We specified piecewise constant models for both groups with cut-offs at 5 and 11 months, in 
these models, a different intensity matrix (Q ) is associated with each time interval. With two cut-
offs, we generated three intervals: 0 to 5 months, 5 to 11 months, and 11 months onwards. For 
each interval, a different probability matrix, with a cycle length of 1 month was estimated. 
However, splitting the data into three pieces reduced the already limited number of observations 
(see Discussion). 
 
The goodness of fit between time homogeneous models and piecewise constant models was 
assessed with likelihood tests, and by comparing the models’ Akaike information criteria (AIC) 
(Claeskens & Hjort, 2008). However, these tests only inform on how well the models fit the data. 
The visual inspection of the estimated prevalence complemented our decision on which model 
to use for the extrapolation of transition probabilities.  
 
4.2.3 Alternative 3-state transition model 
The Hysnes trial highlighted how I-MORE was indeed more effective in preventing people from 
transitioning to the work assessment allowance state. This, in combination with the regulatory 
framework in Norway, led us to define the four states as our base case model. However, due to 
the limited sample size, uncertainty around model parameters might affect the results of the 
CEA. To increase observations, and generate more precise transitions, we considered pooling 
together two states, specifically, SL and WAA.  Work (WK) and Disability Benefit (DB) states were 
not changed. The new General Benefit (GB) state included patients that received sick leave 
benefits or work assessment allowance for any number of days during the month. In the GB state 
patients did not present any percentage of disability. As for the previous specification, the states 
are mutually exclusive. The cost-effectiveness of this model was addressed in a separate 
scenario analysis. 
 
Figure 2 Alternative model structure with 3 states 

 
  



4 Methods 

26 

Table 2 Implications of a 4-state structure vs a 3-state structure 

4-state model specification 
Pros Cons 

Alignment with regulatory framework Fewer observations per state 
Captures difference between SL and WAA Increased uncertainty around transition estimates 

Comparable with similar studies  
Increased uncertainty around transition estimates  

3-state model specification 
Pros Cons 

More observations per state Cost difference between SL and WAA is not captured 
Increased statistical power  
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4.3 Cost-effectiveness analysis 
4.3.1 Decision analytic approach 
Using the same states and transitions identified using multi-state modelling, we developed a 
decision-analytic model and conducted a cost-effectiveness analysis that compared the health 
and economic outcomes of O-ACT and I-MORE. A model-based approach allowed us to 
extrapolate the results of the clinical trial, and its two years of follow-up, to a longer time 
horizon. The analysis focused on the interventions considered in the clinical trial and did not 
include any additional comparators. 
 
To achieve such an extension, we opted for a state-transition model. Specifically, given the 
nature of the data, we modelled a discrete time state-transition model. The base case cost-
effectiveness analysis was performed considering an extended healthcare perspective, 
consistent with Norwegian guidelines (Norwegian Institute of Public Health, 2021). However, to 
account for broader societal repercussions associated with RTW interventions, we also assessed 
the cost-effectiveness of the interventions accounting for production loss (limited societal 
perspective). Following the information from patient-level data, the average patient in the model 
started the intervention at age 40 years in the sick leave state. Estimated transition probabilities 
from multi-state modelling were used to generate a Markov trace to which we attached state-
related costs and HRQoL. The time horizon was set to 25 years, reflecting the fact that the 
average retirement age in Norway is 65 years (Storeng et al., 2020). We deemed half-cycle 
correction unnecessary given that the cycle length was set at 1 month. The main outcomes were 
total QALYs gained and total costs per intervention group. Due to the long-time horizon, both 
costs and effects were discounted at a 4% yearly rate (Norwegian Institute of Public Health, 2021). 
Discounted and undiscounted differences in QALYs and costs were used to compute the ICER. 
The ICER between I-MORE and O-ACT was compared to a threshold value of NOK 500,000. We 
also considered a lower threshold of NOK 275,000 and a higher threshold of NOK 825,000. 
Uncertainty around model parameters was explored through a probabilistic analysis. Separate 
scenario analyses allowed us to explore assumptions on the underlying structure of the 
transitions between states. Finally, a preliminary VOI analysis was used to address decision 
uncertainty and redirect research to specific groups of parameters. All monetary values 
presented are expressed in NOK 2023 and were computed using a price inflator value of 23.2% 
between 2016 and 2023 (Statistics Norway, 2023). 
 

4.3.2 Healthcare costs 
The trial dataset included individual information on monthly total expenditure by type of 
healthcare service. Data on primary healthcare consumption was obtained from the Norwegian 
Health Economics Administration. Primary healthcare consumption included the use of general 
practitioners, other physicians, psychologists, physiotherapy, psychomotor physiotherapy, 
manual therapy, chiropractors, and medical imaging. Information on inpatient and outpatient 
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secondary care was collected from the Norwegian Patient Registry and included the use of both 
somatic and psychiatric care, rehabilitation, and visits to private specialists. 
 
The costs of the two interventions were calculated with the method of time-driven activity-based 
costing (Kaplan et al., 2009). A detailed analysis can be found in the supplementary material of 
the trial’s economic evaluation (Aasdahl, 2023). The average cost per patient in I-MORE was NOK 
174,000, while O-ACT presented a much lower cost of NOK 13,570. In the model, intervention 
costs were considered as an initial lumpsum cost and were not affected by discounting.  
 
We grouped costs associated with each health service, primary and secondary, in a variable that 
captured monthly total healthcare consumption per patient. We first performed a t-test 
(Appendix A, Table 1 and 2) to determine whether healthcare consumption was different between 
the first and second year after the intervention. The cost difference was not significant at any 
usual level (p-value=0.25). However, given that costs are often skewed, we transformed them 
on the logarithmic scale. Even after transforming them, the difference in costs between the 2 
years was not statistically significant (p-value=0.39). We then proceeded to the estimation of 
time-invariant state costs. We first ran a panel regression of intervention group on total costs 
(we repeated the regression for the transformed costs). In both cases the intervention group was 
not significant in reducing/increasing healthcare consumption. With this in mind, we proceed to 
estimate state-related costs that did not depend on the intervention group. To do so, we 
performed another panel regression of benefit type (model states) on healthcare consumption. 
Regression coefficients were estimated using both fixed effects and random effects methods. 
After we generated the two models, we performed Hausman test to determine whether a fixed 
effects model would be preferred. Given the test’s non-significance (p-value= 0.1255) we opted 
for the random effects model. Estimates generated with the fixed effects model can be found in 
Table 3 of Appendix A. The standard errors of the regression coefficients were generated using 
a bootstrap algorithm with 1000 iterations. Using the delta method, we combined the standard 
errors of the coefficients into standard errors associated with each state. These values were used 
to inform cost distributions in the probabilistic analysis.  
 
To ensure the reliability of the random effects estimates and test their robustness, we also 
approached the regression of costs and HRQoL with a generalized linear model (GLM). 
Specifically, we regressed model states on costs and HRQoL using a GLM with family gamma and 
link log (Appendix A, Table 3).  
 

4.3.3 Production loss 
For each state in the model, costs associated with production loss were calculated by multiplying 
the average number of absence days with a proxy for daily production loss. Absence was based 
on days on sick leave, work assessment allowance, and disability benefits. To better capture the 
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difference in absence between I-MORE and O-ACT we also stratified by intervention group. Per 
definition, working individuals (WK state) had no absence days. In the O-ACT group, absent days 
were on average 20, 21, and 13 for the SL, WAA, and DB states respectively. In I-MORE absence 
was slightly reduced, with absent days going down to 18, 21, and 10 for the SL, WAA, and DB 
states, respectively. Daily production loss was based on reported national wage multiplied by 
social expenses (40%). Since our data on days absent from work could range from 0 to 31, we 
computed daily wage (NOK 1,767) by dividing the average monthly wage (NOK 53,765) by 31 
(30.42). Total production loss for one day of absence was NOK 2,473. 
 

4.3.4 Health related quality of life   
Information regarding patients’ HRQoL was collected using the 15D instrument within the Hysnes 
trial. The original 15D algorithm relied on Finnish preferences to elicit HRQoL values. However, 
more recently, the instrument has also been validated for the general Norwegian population 
(Michel et al., 2019). The Norwegian value algorithm was used in the Hysnes trial, during which 
no negative scores were registered, and the lowest obtained was 0.153.  
 
Data from the 15D were available at the beginning of treatment (≈ 1 month), 5, 8, and 14 
months. However, a significant portion was missing due to loss of follow-up. To partially account 
for missing data, missing values were predicted with a single imputation approach. A variety of 
methods have been proposed throughout the years, from mean imputation to regression 
imputation (Faria et al., 2014; Baraldi and Enders, 2010; Molenberghs et al., 2004). Given the 
high association of HRQoL with baseline characteristics such as age, gender, (etc…) regression 
is often the preferred approach for single imputation (Faria et al., 2014). In our case predictions 
were based on a regression model that included previous HRQoL, age, gender, education, marital 
status, disability status, pain level, anxiety and depression levels, intervention group, ICPC2 
diagnosis, and absence. 
 
As for healthcare consumption we first conducted a panel regression of intervention group on 
15D scores. The estimated coefficient was not statistically significant at any usual level. Besides 
negligible initial differences, possibly due to the inpatient nature of I-MORE, HRQoL was 
assumed to be driven exclusively by the type of working state. We pooled data from both groups 
to obtain point estimates and ran a panel regression (both fixed effects and random effects) of 
states on 15D scores. The non-significance of the Hausman test (p-value=0.051) led to the 
decision of informing the model using the output of the random effects model. Given that during 
the second year of follow-up no HRQoL data were available, all regressions only considered the 
first 14 months. Following the same approach adopted for cost parameters, bootstrapped 
standard errors were based on 1000 iterations. Standard errors for the states’ HRQoL were 
computed with the delta method. 
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4.3.5 Deterministic analysis 
The deterministic analysis assumed that transition intensities did not change over time. Hence, 
state-related transition probabilities were fixed over the entire time horizon. Although 
Norwegian guidelines recommend an extended healthcare perspective, transportation costs and 
time in connection with treatment were not included in our analysis due to the unavailability of 
these data. Therefore, state costs were based on primary and secondary care only. First, we first 
simulated the model for 2 years and compared the results with the outcomes of the trial’s 
economic evaluation. Direct comparison was only possible for costs, as the previous evaluation 
expressed effects as number of working days but not in QALYs (Aasdahl, 2023). Second, we 
extended the time horizon to 25 years. To assess the impact of discounting we reported both 
discounted and undiscounted deterministic ICERs.  
 
We also considered a limited societal perspective, which in addition to the costs of the healthcare 
perspective, accounted for production losses. Again, we first computed the ICER for a time 
horizon of 2 years and then for a time horizon of 25 years. For the ICER based on the longer 
time horizon, we reported both discounted and undiscounted values. 
 

4.3.6 Probabilistic analysis 
To address joint parameter uncertainty and evaluate the robustness of the results we conducted 
a probabilistic analysis. The base-case probabilistic analysis was performed by running 10,000 
iterations of the model. Each iteration was based on random draws from the parametric 
distributions assigned to the input parameters (Table 3). We assigned beta distributions to all 
the transition probabilities to ensure that random values could not be generated outside the 
interval 0-1 (Briggs et al., 2006). We used the method of moments to inform the parameters of 
each beta distribution. The random sampling of costs was based on gamma distributions. Mean 
and standard errors were used to compute shape and scale. HRQoL values elicited from the 15D 
questionnaire are bounded between 0 and 1. Similarly to probabilities, we opted for beta 
distributions. The alpha and beta parameters for HRQoL distributions were calculated using the 
output from the previously addressed panel regressions and the method of moments. 
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Table 3 Input parameters for the probabilistic analysis 

Intervention Input parameter Mean  SEa Distributionb  Type of parameter 

 WK-SL 0.05985 0.0108 Beta Probability 
  WK-WAA 0.00815 0.0035 Beta Probability 
  SL-WK 0.1070 0.0137 Beta Probability 
  SL-WAA 0.09815 0.0137 Beta Probability 
  SL-DB 0.00034 0.0001 Beta Probability 

O-ACT WAA-WK 0.01405 0.0041 Beta Probability 
  WAA-SL 0.00046 0.0002 Beta Probability 
  WAA-DB 0.00588 0.0027 Beta Probability 
  Treatment cost 11,033   Fixed Cost 
  Production loss SL 49,460   Fixed Production loss 
  Production loss WAA 51,933   Fixed Production loss 
  Production loss DB 32,149   Fixed Production loss 

 WK-SL 0.09563 0.0123 Beta Probability 
  WK-WAA 0.00502 0.0021 Beta Probability 
  SL-WK 0.15511 0.0155 Beta Probability 
  SL-WAA 0.06195 0.0171 Beta Probability 
  SL-DB 0.00171 0.0001 Beta Probability 

I-MORE WAA-WK 0.01496 0.0048 Beta Probability 
  WAA-SL 0.00081 0.0003 Beta Probability 
  WAA-DB 0.00174 0.0022 Beta Probability 
  Treatment cost 141,455   Fixed Cost 
  Production loss SL 44,514   Fixed Production loss 
  Production loss WAA 51,933   Fixed Production loss 
  Production loss DB 24,730   Fixed Production loss 

O-ACT  
&  

I-MORE 

c_WK 785 198 Gamma State cost 
c_SL 3,229 665 Gamma State cost 
c_WAA 2,922 496 Gamma State cost 
c_DB 1,852 480 Gamma State cost 
u_WK 0.699 0.011 Beta HRQoL 
u_SL 0.608 0.006 Beta HRQoL 
u_WAA 0.628 0.009 Beta HRQoL 
u_DB 0.582 0.023 Beta HRQoL 

Notes: 
All costs (and respective SE) are reported in NOK 2016 (In the analysis we accounted for a price inflator value of 
23.2%) 
Production loss is reported in NOK 2023 
a) Standard errors for transition probabilities were computed from 95% CI following Briggs (2011) 
a) Standard errors for HRQoL were computed using the Delta method (STATA) 
b) "Fixed" parameters were not varied in the probabilistic analysis 
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4.3.7 Scenario analyses 
Throughout our analysis, we had to make several assumptions both in terms of model structure 
and time dependency. Therefore, we defined two alternative scenarios to address structural 
uncertainty and explore how it affected our base-case probabilistic results. 
 
Scenario A: piecewise constant model 

The base-case analysis assumed that transition intensities did not change over time. Hence, 
transition probabilities associated with each cycle were fixed. However, in the first part of the 
Methods section, we introduced a partial solution to time independency, the piecewise constant 
exponential model. With it, we generated an array of transition probabilities matrices that 
changed at specific cut-offs (5 & 11 months). Similarly to the base-case scenario, we used the 
array to populate the model and generate a Markov trace to which we attached costs and HRQoL. 
In this scenario, only the transition parameters were affected. Costs and HRQoL associated with 
model states remained the same.  
 
Scenario B: 3-state model 

As the small sample size was the main limitation of our data, we decided to decrease the number 
of transition parameters being estimated. We pooled together people on sick leave and work 
assessment benefits and defined the general benefit (GB) state. This model structure (Figure 2) 
included 3 states: Work, General Benefits, and Disability Benefits. As in the four-state structure, 
people at work cannot directly transition to disability benefits. Cost parameters and HRQoL 
parameters for this specification were computed with the same approach used for parameters in 
the base-case analysis, this time using 3 states. An in-depth list of the input parameters for 
scenario A and scenario B can be found in the appendix (Appendix A, Tables 4 and 5). 
 
4.3.8 Value of information analysis 
Following the results from the probabilistic analysis, we computed the NMB between I-MORE and 
O-ACT. Calculations of the NMB were based on equation [1] in which we first multiplied the 
average QALYs of the interventions with the chosen threshold value (i.e., NOK 500,000) and then 
subtracted the average cost. To quantify the value of perfect knowledge we used the output of 
the probabilistic analysis to calculate the NMB for each of the 10,000 iterations. Then, following 
equation [2] we computed EVPI.  
 
Using the Sheffield Accelerated Value of Information (SAVI) tool (Strong et al., 2013), we initially 
calculated EVPPI for individual parameters, parameters linked to the transitions between WAA 
and WK (for both O-ACT and I-MORE) and those associated with the DB were the one with higher 
EVPPI (Appendix A, Figure 2). However, when we consider parameters individually their impact 
on the NMB might not be sufficient to be addressed. Moreover, it is unlikely that further research 
will focus on a single parameter of the model. The next step was to calculate EVPPI for groups 



4 Methods 

33 

of parameters that could be reasonably explored together. Groups’ EVPPI was calculated using a 
GAM regression in R.  
 
The first group of parameters (Group 1) included the costs associated with healthcare 
consumption in the WK, SL, WAA, and DB states. The way we defined these states allowed for 
comparability with other studies. Indeed, to gather this type of information we could use existing 
literature, cutting down on the costs of additional research. Similarly, we grouped state-HRQoL 
(Group 2). In our analysis, due to a significant loss of follow up, these values were based on 
imputed data. Further research (e.g., surveys) could provide more insight into the perceived 
HRQoL of patients on medical benefits. The final group (Group 3) included all the transition 
parameters associated with I-MORE. To explore this scenario, we would have to repeat the trial 
(or variations of it). However, it is possible that such a study would also reduce uncertainty 
around other parameters. All specific parameters and the way they were grouped can be found 
in the appendix (Appendix A, Table 6) 
 
To account for the population that could benefit from the intervention. We had to rely on several 
assumption. In 2023, more than 4 million people were working in Norway (Statistics Norway). 
Estimates of the prevalence of psychological disorders in Norway have great variation. However, 
following the results from large population studies such as the HUNT (NTNU, 2019) we assumed 
a prevalence of 22.9% among the adult population. Yearly incidence was set to 2.47% (Nystuen 
et al., 2001). Values for musculoskeletal disorders present even higher uncertainty. 
Nevertheless, following the results of the HUNT study, we assumed the prevalence to be 47.9%. 
Incidence for this group of disorders was set to 7.9% (Hagen et al., 2006). 
 
Using an arbitrary number of useful years, in our case 10, and a discount rate of 4%. We estimated 
that the population affected by the decision could be as high as 6,008,657 individuals. We used 
this value to calculate pEVPI and pEVPPI. Due to the discrepancies around the information on sick 
leave prevalence (and incidence) in combination with musculoskeletal and psychological 
disorders, this population value should only be seen as an upper bound value (see Discussion). 
 
 

4.4 Model validation 
Throughout the various steps of the analyses, we carried out checks to assess the internal and 
external validation of our model. For instance, in line with the AdViSHE guidelines for health-
economic models (Vemer et al., 2015), we included in the code a function that checked whether 
the array of transition matrices (homogeneous and inhomogeneous) added up to 1 for each cycle 
in the model.  Although not many models have been developed for RTW treatments, cross validity 
has been addressed by comparing our model states with models developed to assess either the 
cost-effectiveness of the interventions (Squires et al., 2011) or with models that aimed at 
eliciting transition probabilities between the different types of benefit (Gran et al., 2015). 
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However, comparability with other studies is limited, as I-MORE was an intervention tailored to 
the Hysnes facility and the trial. We performed scenario analyses to explore structural uncertainty 
and also compare the outcomes of the different models against empirical data. A detailed 
validation section is reported in Appendix B using the TECH-VER checklist (Büyükkaramikli et al., 
2019) 
 

4.5 Statement of ethical approval 
For the various analyses we used patient level data stored at the Norwegian University of Science 
and Technology (NTNU). To access the dataset on a secured server, we requested the approval 
of the regional committees for medical and health research ethics (REK). Approval was granted 
in December 2022. 
  



5 Results 

35 

5 Results  
5.1 Parameter estimation  
5.1.1 Time-homogeneous transition probabilities 
For each intervention, we obtained a matrix that captured time-independent transition 
probabilities between states assuming a 1-month cycle length (Table 4). The fitted multi-state 
model estimated that the O-ACT WK prevalence peaked at around 10 months (37%) and then 
decreased over time. A similar trend was highlighted for I-MORE, although the 10-month peak 
registered a higher prevalence (50%) (Figure 3). 
 
Table 4 Time-homogeneous transition probability matrices  

O-ACT   I-MORE 
 WK SL WAA DB   WK SL WAA DB 

WK 0.9320 0.0598 0.0081 0.0000  WK 0.8992 0.0957 0.0051 0.0000 

SL 0.1070 0.7945 0.0981 0.0003  SL 0.1552 0.7812 0.0635 0.0001 

WAA 0.0140 0.0005 0.9796 0.0059  WAA 0.0149 0.0008 0.9809 0.0034 

DB 0.0000 0.0000 0.0000 1.0000  DB 0.0000 0.0000 0.0000 1.0000 
Notes: 
O-ACT (outpatient acceptance and commitment therapy) 
I-MORE (inpatient multimodal rehabilitation program) 
WK: work 
SL: sick leave 
WAA: work assessment allowance 
DB: disability benefit 

 
When we compared the observed and expected state-prevalences over time, we found that the 
observed and expected trends had good overall correspondence except for several time points 
(Figure 3). For instance, at 12 months, the observed SL prevalence for O-ACT was 5.3% whereas 
the expected value generated by the matrix was 15%. Likewise, at 12 months, the values for I-
MORE were also misaligned. The observed prevalence for the SL state was 15%, while the 
expected value was 22%. At 24 months, the last available follow-up time, the prevalence 
estimates improved for both interventions. For instance, in O-ACT, the observed and expected 
values for SL were 5.3% and 10.4%, respectively. In I-MORE SL prevalence was 12% observed and 
17% expected.  
 
The estimated transition probabilities can also be visually presented in terms of stacked 
probability plots. In Figure 4 we showed the probability of transitioning to all the model states 
starting from the SL state. Importantly, I-MORE reduced the probability of transitioning both to 
WAA and DB as shown by the larger WK region (Figure 3, right panel). Stacked probabilities 
starting from other states can be found in the appendix (Appendix A Figure 1). 
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Figure 3 States’ prevalence over time for O-ACT and I-MORE in base-case model 
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Figure 4 Time-homogeneous transition probabilities from Sick Leave state to all states   
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5.1.2 Time-inhomogeneous transition probabilities 
The piecewise exponential model, with cut-offs at 5 and 11 months, relaxed the assumption of 
constant baseline transitions and generated three transition probability matrices for O-ACT and 
three matrices for I-MORE (Appendix A, Table 4). When compared to the time-homogeneous 
model, the fitted piecewise constant model changed the expected prevalence trends, especially 
for O-ACT. For instance, instead of peaking at 10 months and then slowly decline, the WK 
prevalence for O-ACT reached its peak at month 70 (46%). On the other hand, I-MORE 
maintained its peak at 10 months (45%), with the overall trend for this state resembling the one 
in the time-homogeneous case (Figure 5). 
 
The comparison between observed and expected prevalence (Figure 5) demonstrated that having 
time-inhomogeneous probabilities significantly reduced the disparity between the two values. 
For instance, at 12 months, the observed SL prevalence for O-ACT was 5.3% while the expected 
value was 5.5%. For I-MORE, the observed and expected values were 15% and 13% respectively. 
 
The overall visual assessment of the time-homogeneous and time-inhomogeneous models 
(Figure 3 and Figure 5) showed that the piecewise constant model better fitted the events of the 
trial. We also performed a likelihood ratio test between the time-homogeneous and time 
inhomogeneous models which confirmed that, at any usual level of significance (O-ACT p-
value= 5e-13; I-MORE p-value= 2e-07), the piecewise constant estimates were preferred. For 
O-ACT the corresponding Akaike information criterion was 1079 (homogeneous) and 1018 
(inhomogeneous). While for I-MORE, 1286 (homogeneous) and 1255 (inhomogeneous).  
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Figure 5 States’ prevalence over time for O-ACT and I-MORE in piecewise constant model 

 



5 Results 

40 

 
Figure 6 Time-inhomogeneous transition probabilities from Sick Leave state to all states 

 
 

 

 

 

5.1.3 3-state transition probabilities 
When we pooled together patients in the SL and WAA states in a 3-state model (Figure2), we 
found that WK prevalence for both O-ACT and I-MORE peaked at month 20 with an expected 
prevalence of 37% and 44% respectively. While they had a different timing, these values 
resembled the peak values registered in the base-case scenario (37% and 50%).  
  
Although I-MORE reached a higher WK prevalence (and faster than O-ACT), the overall trends 
for the WK and GB states were reasonably similar between the interventions. For instance, the at 
the end of the follow-up the observed prevalence in GB was 54% (vs 56% expected) for O-ACT 
and 52% (vs 53% expected) for I-MORE. The increased number of observations produced 
estimates that, even without time-dependency (piecewise constant), accurately matched the 
observed data (Figure 7).  
 
The expected prevalence of the DB state was almost identical to the 4-state model. The effects 
of I-MORE on the transition probabilities can also be visualised in terms of stacked probability 
plots. Starting from the GB state, I-MORE reduced the probability of transitioning to the 
absorbing state (smaller DB region) and led to an increased initial probability of entering the WK 
state (Figure 8).  
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Figure 7 States’ prevalence over time for I-MORE in piecewise constant model 

 
Figure 8 Transition probabilities form General Benefit state to all states 
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5.1.4 Cost and HRQoL estimates 
The bootstrapped estimates (Table 5) highlighted that the WK state was associated with the 
lowest healthcare consumption and resulted in a monthly state-cost of NOK 785. In contrast, 
the SL and WAA states were the most expensive ones, with monthly healthcare costs of NOK 
3,229 and NOK 2,922 respectively. The DB state, with a cost of NOK 1,852 was lower than SL 
and WAA but higher than WK.  
 
Table 5 State-costs from a random effects panel regression 

State Cost (NOK) SE 95% CI 
WK 785 198 380 1,190 
SL 3,229 665 1,905 4,554 

WAA 2,922 496 1,937 3,906 
DB 1,852 480 888 2,815 

Notes: 
WK: work 
SL: sick leave 
WAA: work assessment allowance 
DB: disability benefit 

 
 
 
When we tested whether we should assume random or fix effects for the estimation of state-
HRQoL, we found a borderline significant Hausman test (p-value=0.051), however, given that 
the fixed effect model produced inconsistent estimates (highest HRQoL associated with the 
disability benefit state) we proceeded with the random effects approach. Starting from the 
highest value in the WK state (0.7), scores decreased in SL and WAA (≈0.61) and reached the 
lowest value in the DB state (0.58). 
 
Table 6 State-HRQoL from a random effects panel regression 

State HRQoL SE 95% CI 
WK 0.699 0.0110 0.678 0.721 
SL 0.608 0.0056 0.597 0.619 

WAA 0.628 0.0091 0.608 0.648 
DB 0.582 0.0227 0.538 0.627 

Notes: 
WK: work 
SL: sick leave 
WAA: work assessment allowance 
DB: disability benefit 

 
 
 
For both costs and HRQoL, the estimates generated with the GLM models were systematically 
consistent with the results of the random effects model (see Appendix A Table 3). Indeed, this 
confirmed that the estimates of the fixed effects regressions would have not been robust.   
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5.2 Cost-effectiveness analysis  
5.2.1 Deterministic results 
When we initially performed the deterministic analysis over a 2-year time horizon. Considering 
a healthcare perspective, the total cost of I-MORE was NOK 241,589 and the total cost of O-ACT 
was NOK 84,714. These values were consistent with the costs estimated in the trial, i.e., NOK 
229,498 (I-MORE) and NOK 91,449 (O-ACT). The difference in costs between the two 
interventions was mainly driven by the higher price of the I-MORE intervention, NOK 174,273 vs 
NOK 13,593 for O-ACT. We estimated positive incremental QALYs over the 2-year for I-MORE 
compared with O-ACT of 0.0094, yielding the deterministic ICER of 16,691,624 NOK per QALY 
gained. When we increased the time horizon to 25 years, the deterministic discounted ICER went 
down to NOK 870,996 per QALY gained (0.201 QALYs gained) but still remained higher than 
benchmark WTP thresholds in Norway. 
 
Once we accounted for additional costs savings, through averted production loss over a 25-year 
period, I-MORE dominated O-ACT. Total costs associated with I-MORE (healthcare consumption 
and production loss) amounted to NOK 6,995,929, while O-ACT amounted to NOK 7,185,559. 
The incremental effect remained the same as in the healthcare perspective (0.201 QALYs). 
 

5.2.2 Probabilistic analysis 
Over a 25-year period, the base-case ICER resulting from the probabilistic analysis with a 
healthcare cost perspective was NOK 1,167,887 per QALY gained. I-MORE would not be 
considered cost-effective according to the benchmark thresholds. Indeed, at a WTP threshold of 
NOK 275,000 I-MORE was cost effective in only 3% of the cases. At NOK 500,000 the proportion 
of cost-effective simulations went up to 15%. With the higher WTP threshold of NOK 825,000 it 
reached 37% (Figure 10). 
  
When we included the costs associated with production loss, we found that similarly to the 
deterministic results, I-MORE was considered dominant (negative incremental costs of NOK -
284,969 and positive incremental effects of 0.145 QALYs). With this perspective at a WTP 
threshold of NOK 500,000, I-MORE was cost-effective in 72% of the simulations (Appendix A, 
Figure 2). 
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Figure 9 Cost-effectiveness plane with a healthcare perspective and WPT of NOK 500,000 

 
 

Figure 10 Cost-effectiveness acceptability curves and frontiers with a healthcare perspective 
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5.2.3 Alternative scenarios 
To explore the effects of structural uncertainty in our model, we defined scenario A (piecewise 
constant model) and scenario B (3-state model). The numbers presented refer to the outcomes 
of probabilistic analyses (10,000 simulations). 
 
Scenario A (piecewise constant model) 

When we ran the piecewise constant model for 2 years, considering a healthcare cost perspective, 
we found that total cost was NOK 86,564 for O-ACT and NOK 243,017 for I-MORE (incremental 
cost of NOK 156,452). These numbers matched the outcomes of the trial’s evaluation which 
estimated incremental costs of NOK 138,049. Once we extended the time horizon to 25 years, 
we found that although the incremental cost remained positive (NOK 215,289), I-MORE 
generated fewer QALYs that O-ACT. In this scenario, once we accounted for production loss I-
MORE became strongly dominated by O-ACT (more costly and less beneficial). More specific 
model outcomes and the consequences of including production loss are reported in Table 7. 
 

Scenario B (3-state model) 

The 3-state model was used to determine the same outcomes of the previous analyses. Over 25 
years, and with a healthcare perspective, total cost was NOK 502,108 for O-ACT and NOK 
650,661 for I-MORE. The difference in healthcare costs between I-MORE and O-ACT was NOK 
148,554 and moderately similar to the incremental cost of the base case scenario (NOK 169,523). 
However, the gain in QALYs (0.18) was higher than the gain in the base case scenario (0.14), 
which led to a lower ICER of 822,939 NOK/QALY. Both base case and scenario B accurately 
reproduce the results of the trial in terms of healthcare consumption costs (Table 7). Similarly to 
the base-case scenario, accounting for production losses over 25 years, resulted in O-ACT being 
strongly dominated by I-MORE. 
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Table 7 Cost-effectiveness results 

Scenario 
  

Strategy Costa Effectb 
Incremental  ICERc ICER 

Years Cost Effect (no discount) (discount) 
Trial 
results 2 

O-ACT 91,412 
 

137,738   / / 
(healthcare) I-MORE 229,150   
Trial 
results 2 

O-ACT 1,061,251   

-30,535   / / 
(societald) I-MORE 1,030,716   

 2 
O-ACT 85,125 1.34 

156,639 0.010 16,413,333 / Base-case I-MORE 241,765 1.35 
(healthcare) 

25 
O-ACT 525,215 

(406,157;655,373) 
9.94 

(9.59;10.28) 

169.523 0.145 702,774 1,167,887 

  
I-MORE 694,738 

(572,449;852,672) 
10.09 

(9.77;10.44) 

 2 
O-ACT 947,580 1.34 

26,977 0.010 2,787,119 / Base-case I-MORE 974,557 1.35 
(societal) 

25 
O-ACT 7,190,277 

(6,360,162;7,987,552)  
9.95 

(9.57;10.26) 

-290,575 0.145 Dominant Dominant 

  
I-MORE 6,899,702 

(5,945,800;7,924,234) 
10.1 

(9.77;10.36) 

 2 
O-ACT 86,531 1.34 

156,449 0.010 15,085,220 / Scenario Ae I-MORE 242,980 1.35 
(healthcare) 

25 
O-ACT 444,683 

(336,532;562,727) 
10.23 

(9.79;10.56) 

215,289 -0.033 
Strongly 

dominated 
Strongly 

dominated 

  
I-MORE 656,973 

(544,581;788,168)  
10.2 

(9.84;10.47) 

 2 
O-ACT 983,771 1.34 

20,143 0.010 1,942,267 / Scenario A I-MORE 1,003,914 1.35 
(societal) 

25 
O-ACT 5,345,655 

(4,109,247;6,606,370) 
10.23 

(9.79;10.56) 

750,648 -0.033 
Strongly 

dominated 
Strongly 

dominated 

  
I-MORE 6096303 

(4,859,532;7,410,113) 
10.2 

(9.84;10.47) 

 2 
O-ACT 87,155 1.329 

155,705 0.016 10,076,730 / Scenario Bf I-MORE 242,859 1.344 
(healthcare) 

25 
O-ACT 502,108 

(390,780;639,077) 
10.07 

(9.76;10.32) 

148,554 0.181 467,216 822,939 

  
I-MORE 650,661 

(538,553;777,307) 
10.25 

(10.01;10.47) 

 2 
O-ACT 1,018,797 1.329 

16,726 0.016 1,082,442 / Scenario B I-MORE 1,035,523 1.344 
(societal) 

25 
O-ACT 6,487,137 

(5,690,660;7,208,566) 
10.06 

(9.74;10.33) 

-686,609 0.190 Dominant Dominant 

  
I-MORE 5,800,528 

(5,141,959;6,466,361) 
10.25 

(10.0;10.5) 
Notes:  
All values with a 25-year time horizon are reported discounted  
All values with a 2-year time horizon are reported undiscounted 
a) Costs are reported in NOK 2023; for the 25-year time horizon 95% credible intervals are reported 
b) Effects are reported in QALYs; for the 25-year time horizon 95% credible intervals are reported 
c) ICERs are reported in NOK 2023 per QALY gained 
d) Limited societal perspective (does not include time and transport costs) 
e) Piecewise constant transition probabilities 
f) 3-state model 
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5.2.4 Value of information 
We performed a value of information analysis for the base-case scenario (with a healthcare 
perspective). At a WTP threshold of NOK 500,000, the value of eliminating all parameter 
uncertainty was NOK 8,600 per patient. At that same WTP threshold, pEVPI was 57 billion NOK. 
The peak corresponded to the point where the optimal strategy, in terms of probability of being 
cost effective, switched from O-ACT to I-MORE (ICER equal to WTP). At the lower threshold of 
NOK 275,000, pEVPI went down to 36 billion NOK. 
 
Figure 11 presents the pEVPI and pEVPPI for the different groups of parameters at different WTP 
thresholds. Among the different groups of parameters studied, Group 1, which focused on cost 
parameters, had the lowest pEVPPI. At a WTP of NOK 500,000, it was virtually 0. With that same 
threshold, Group 2 (state HRQoL) reached a value of 55 million NOK. Finally, Group 3, which 
investigated the transitions parameters associated with I-MORE (values with high uncertainties), 
had the highest pEVPPI of 8 billion NOK. Following these results, further studies on costs would 
not be recommended. However, research on HRQoL and possibly a new trial, could be further 
explored depending on their costs. 
 
Figure 11 Population EVPI and EVPPI for each proposed group of parameters 
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6 Discussion and limitations 
 
In the base-case scenario when we assumed only healthcare costs and a 2-year perspective, I-
MORE was not likely to be considered cost-effective when compared to O-ACT (ICER: 1,167,887 
NOK/QALY). However, by adopting a broader societal perspective and a longer time horizon, I-
MORE reduced production loss and not only became cost-effective but also dominated O-ACT.  
 
The ICER resulting from the probabilistic analysis was considerably higher than the one 
generated in the initial deterministic approach (1,167,887 NOK/QALY vs 870,996 NOK/QALY). 
The difference can be attributed to the method used to generate confidence intervals for 
transition probabilities. In our probabilistic analysis we used bootstrapped confidence intervals 
to inform the beta distributions of the transition parameters. However, if we were to use normal 
confidence intervals, the variation around the probability estimates would change and with them 
the sampled values. Running the probabilistic analysis (10,000 samples) using beta distributions 
informed with normal confidence intervals led to an incremental effect of 0.201 QALYs and an 
overall probabilistic ICER of 874,955 NOK/QALY which is in line with the deterministic results. 
Although bootstrapped confidence intervals might be less precise for events with few 
observations, they are usually expected to be more accurate than normal confidence intervals 
(Jackson, 2011). Given the impact of this choice on the ICER, it is important to carefully evaluate 
the reliability of the bootstrap method and be transparent on its repercussions. In scenario B, 
where more observations were available, bootstrapped and normal confidence intervals led to 
similar results, also in line with their deterministic counterpart. 
 
When compared to the base-case analysis, scenario B was better aligned with the results of the 
trial. If our choice were to be based on this criterion alone, we should focus on the results of 
scenario B. However, as we presented, the clear distinction between sick leave, work assessment 
allowance, and the paths that workers undergo before (possibly) reaching a disability pension, 
make the base case a scenario an option worth considering. Even after accounting for production 
loss, neither base case nor scenario B turned cost saving with a 2-year time horizon. We 
attributed this deviation from the trial’s results to how sensitive our model is, in the short term, 
to the initial proportion of patients in each state. As per study protocol, patients had to be sick 
listed for 2 months prior to inclusion. An analysis of the trial’s data revealed that based on the 
states we defined, not all patients belonged to the SL state at time zero. Once we accounted for 
slightly different initial proportions (WK = 0.03, GB=0.9, DB = 0.07) scenario B became cost 
saving even in the short term. After the correction, the base-case incremental costs also 
decreased but did not turn negative. However, once we increased the time horizon to 3 years, 
the base-case scenario also became cost saving. 
 
Panel data posed a further limitation. Having access to time-to-event data would have expanded 
our modelling options, including the possibility of fitting additional continuous probability 
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distributions such as Weibull, Lognormal, Logistic, etc. While msm can be adapted to use panel 
data, the limitation imposed by the exponential distribution (Markov assumption) should be 
carefully considered. Although fitting a piecewise constant model led to a better fit, previous 
research that focused on piecewise constant exponential models used datasets with more than 
30,000 individuals and 10 years of observations (Kunst et al., 2020). Extending 24 months of 
observations (with two cut-offs) to a time horizon of 25 years (300 months) relies on a great 
number of assumptions and uncertainty. Specifically, regarding the consistency of trends over 
time. In scenario A transition probabilities from 11 to 300 months are based on a subset of the 
initial dataset (11 to 24 months). Considering the already limited number of transitions, 
especially to the DB state, outcomes for the 25 years of scenario A should be interpreted with 
caution. Given the better fit to the trial’s data, the first 2 years of the cost-effectiveness analysis 
could be modelled with parameters from scenario A. Then, the remaining 23 years using the 
parameters of the base case model. However, given that the 2-year outcomes between the base 
case setting and scenario A are almost identical (NOK 156,639 base case incremental costs vs 
NOK 156,449 scenario A incremental costs). We expect the results of this mixed approach to be 
virtually the same as the ones of the 25-year base-case scenario. Determining the appropriate 
model/scenario to rely on is a complex task. We performed several tests (AIC and likelihood) but 
in the end these approaches only bring value for the time frame in which observations are 
available. The combination of likelihood tests, AIC, visual inspections, and comparisons with the 
trial outcomes suggested a preference for the base-case scenario and scenario B. 
 
In 2011, Squires et al. developed a Markov model to extrapolate data beyond the trial’s follow 
up and assess the cost effectiveness of three RTW interventions. HRQoL values were elicited with 
a different questionnaire (SF-6D) and reflected the preferences of the British population. 
Nevertheless, the scores for WK (0.76) and SL (0.61) aligned with the ones used in our study. 
Due to the design of their study, HRQoL estimates were limited to WK and SL. 
 
Previous research already focused on the improved benefits of ACT in comparison to no 
treatment and treatment as usual (Finnes et al., 2022). However, ACT was implemented in the 
context of workers on sick leave due to mental health disorders and no physical component was 
included in either the intervention or the comparator. Cullen et al. (2017) carried out a more 
comprehensive review that included both musculoskeletal and mental health disorders. From 
their analysis, multi-domain interventions reduced lost time associated with musculoskeletal 
and pain-related conditions. Likewise, cognitive behavioural therapy (from which ACT stems) 
reduced lost time at work and costs associated with mental health disorders. The effects were 
positive only when CBT was work-focused, as no significant effect was registered in traditional 
CBT. 
 



6 Discussion and limitations 

50 

A randomized controlled trial in Germany analysed the effects of an inpatient multidisciplinary 
intervention on employment after sick leave. Patients in the intervention group had 3.5 times 
higher odds of stable employment (employment with at most 6 months of leave after the 
intervention). Results are interesting as both the intervention and the comparator consisted of 
inpatient programs, with the intervention directly focusing on work demands and abilities. 
Specific components of the interventions are comparable to activities carried out in I-MORE. 
Although stable employment increased and was significantly different, secondary outcomes such 
as duration of sick leave, and employment rate were not statistically significant between the 
interventions (Streibelt & Bethge, 2014).  
 

Our analysis did not address any treatment as usual comparator. As we have seen, due to the 
great variety of disorders that qualifies for medical benefits, it is hard to identify a single 
comparator and even harder to define a standard treatment. A meta-analysis of RTW 
interventions identified visits to general practitioners and prescription of analgesics as an often-
chosen comparator for RTW interventions focusing on musculoskeletal disorders (Franche et al., 
2005). However, trial-specific interventions (with and without work components) were also used 
as comparators. Preferences in terms of study design hindered the possibility to have consistent 
treatment as usual comparisons (Williams et al., 2007). Nevertheless, these studies highlighted 
that cognitive behavioural therapy with work-related components generates better return-to-
work outcomes than usual care in patients with mental health disorders, and that interventions 
with work-related exercises are more effective than usual care in patients with musculoskeletal 
pain. I-MORE included similar components which suggest that, at least in terms of effectiveness, 
it may lead to better outcomes than most standard approaches. O-ACT missed relevant 
components on work-related exercise, however, the focus on workplace topics (e.g., two 
individual sessions with a social worker experienced in occupational rehabilitation) suggest that 
O-ACT could also be more effective than standard practice in dealing with sickness absence due 
to psychological conditions. 
 
To confirm these hypotheses, the next step would be to perform a subgroup analysis and 
determine whether a limited use criterion exists. Indeed, certain subgroups (e.g., by diagnosis 
or education level) might respond better to the interventions. With that in mind, I-MORE could 
be targeted only to those patients diagnosed with musculoskeletal disorders or psychological 
disorders and possibly lead to improved cost-effectiveness results. To reach statistical 
significance, research guidelines recommend having at least 90 patients per treatment arm (up 
to 100 considering dropout rates) (Sakpal, 2010). Our dataset had observations for 159 
individuals, with a considerable share of missing data. Therefore, we were not able to subset 
patients into the three diagnosis classifications included in the trial (“L”, “P”, “A”). 
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The challenges posed by the sample size were not limited to the impossibility of performing a 
subgroup analysis. Our dataset, with 24 monthly observations, was not large enough to fully 
capture the transitions to the absorbing disability benefit state. Over the two years of follow-up, 
only seven transitions to the DB state were recorded (2 in I-MORE and 5 in O-ACT). One initial 
approach to expand the number of observations was to define a state (additional disability) to 
which patients transitioned to every time an increase in disability percentage was registered. 
This allowed us to observe nine transitions. We ultimately decided against using this state as it 
would have not been consistent with the regulatory framework and would have posed challenges 
in defining clear state-related costs and HRQoL.  
 
Limited information also affected our choices regarding the 15D instrument. In the analysis, 
HRQoL values were estimated using imputed data from a linear regression. Still, only using the 
data available from the trial generated similar estimates. The main difference regarded the WAA 
state which was associated with a higher HRQoL (0.647) than the one used in our model (0.628). 
Once we incorporated this new estimate, we registered a slight increase in incremental benefits 
0.153 (compared to the previous 0.145) over 25 years. This new value generated a lower ICER 
of 1,109,622 NOK per QALY gained. 
 
In our VOI calculations we adjusted the estimates for a population that would benefit from the 
intervention. However, the uncertainty around prevalence and incidence for the two groups of 
disorders led to several assumptions. From the published literature we were able to elicit 
prevalence and incidence values that referred to the general working population but not values 
that took into account the smaller population of sick listed workers. Indeed, the trial protocol, 
in addition to a “L” or “P” diagnosis (ICPC2), required that patients had been sick listed for at 
least 2 months. Although patients with long term musculoskeletal and psychological disorders 
are likely to end up being sick listed, not all of them will. That is why, it is likely that the true 
pEVPI and pEVPPI are lower than the values presented in the results. Further research is needed 
to generate more specific values, which also account for the high levels of comorbidity between 
the two groups of disorders. Only then meaningful VOI conclusions can be made. 
 
To preserve the comparability with the trial’s result, our analysis did not include transportation 
costs. However, Norwegian guidelines recommend the inclusion of transportation costs related 
to travelling to and from treatment.  The Hysnes facility was located a 1-hour drive from the city 
of Trondheim. On the one hand, due to its inpatient design, transportation costs for I-MORE 
would be fairly straightforward to compute, consisting of a 2-hour return trip to the site. On the 
other hand, O-ACT lasted 6 weeks with a weekly meeting at the St. Olavs Hospital. The hospital 
is located in Trondheim’s city centre, assuming that all patients lived in the city, travel costs over 
the 6 weeks should be comparable to the 2-hour return trip to the Hysnes facility. Transportation 
costs would also affect the way we computed healthcare consumption. Building on the results of 
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the trial, we generated state costs for our model that accounted only for primary and secondary 
care consumption. It is hard to speculate on the consequences of including transportation costs 
for each cost item in these categories as all the values would increase depending both on where 
the service was provided and where the patient lived.  
 
In the recommended extended healthcare perspective, the patient’s use of time in connection 
with treatment should be taken into account (Norwegian Medicines Agency, 2018). The time 
spent at the Hysnes facility (3.5 weeks) was indeed more substantial than the time required to 
complete the O-ACT program (≈ 20 hours). However, keeping in mind a 25-year time horizon 
these differences would most likely not affect the results in any significant way. Once we 
considered the impact of production loss, the inclusion of patients’ time dedicated to both 
treatment and primary/secondary care use, could potentially result in double counting costs. 
Specifically, we would not be able to distinguish whether the patient dedicated time to 
primary/secondary care during working hours (included in production loss) or during personal 
free time (not captured by production loss). In order to keep the model simple (but no simpler), 
we decided to omit this cost category. 
 
In Norway, there is an ongoing debate regarding the adoption of a societal perspective in the 
assessment of health technologies. Indeed, besides considering a healthcare perspective, we 
also carried out the analysis of each scenario with a limited societal perspective (production 
loss). Undoubtedly, the results of adopting such a perspective heavily depend on the chosen cost 
for production loss and on the absence associated with each state. The estimation of production 
loss was based on monthly earnings as reported by Statistics Norway. Like in the economic 
evaluation of the trial, we adjusted the value to account for social costs (≈ 40%) however different 
values are also recommended (e.g., ≈ 25%) (Norwegian Medicines Agency, 2012). Still, even using 
25% social costs, I-MORE was cost saving (only with a 25-year time horizon). Production loss 
should be only linked to working days (≈ 21 days in a month). However, our absence data did 
not distinguish between workdays and weekends, this is possibly due to the way registries keep 
track of sick leave or to how data were manipulated during the trial. When a patient was on sick-
leave and absent for 31 days we could easily link production loss to the 21 working days in that 
month. The problem occurred when the patient was not absent for the full month, as there was 
no way of knowing whether that number of days referred to actual workdays missed or to 
weekends. To partly correct for this limitation, daily loss due to absence was computed by 
dividing monthly earnings (social costs included) by 30.4. Again, more precise time-to-event 
data could improve the robustness of our results. Finally, we used the average number of absent 
days in a month (over 24 months) multiplied by daily loss to link each state with a value for 
production loss. Although we stratified by intervention to capture the better effects of I-MORE, 
a more precise analysis could use a time-dependent estimate of absence to incorporate 
production loss in a more realistic way.  
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7 Conclusion  
 
In our model-based analysis, we determined that for most scenarios I-MORE led to greater 
benefits than O-ACT in the short and long term. However, when considering the Norwegian 
reference threshold of NOK 500,000, the corresponding increase in costs outweighed the 
benefits. Over a 25-year time horizon and with a healthcare cost perspective, only one scenario, 
in which we pooled data into 3 states, was cost-effective given the higher threshold of NOK 
825,000. Depending on choices regarding the underlying probabilistic distributions, the base-
case scenario could also be considered cost-effective under the higher threshold. 
 
When we considered a limited societal perspective, with a proxy for production loss, I-MORE 
strongly dominated O-ACT. According to our model, the inclusion of production loss, made I-
MORE the dominant strategy after 3 years in the base-case scenario, and after 2 years in the 3-
state model structure. Implementing, to some degree, time-dependency improved the 
goodness-of-fit of the model. However, such a choice resulted in an inversion of the results 
where I-MORE was strongly dominated by O-ACT. Nevertheless, the many data-related 
limitations of this scenario questioned its reliability. 
 
These findings highlighted the key roles of both the time horizon and the cost perspective in 
economic evaluations. Possibly prompting the debate on the inclusion of a broader societal 
perspective in the Norwegian guidelines. This was the first study that extrapolated data from a 
trial and developed a model to simulate the costs and effects of an inpatient return-to-work 
intervention in Norway. 
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Table 1 T-test for differences in total healthcare consumption between years 1-2 

 
 
 
 
Table 2 T-test for differences in total healthcare consumption (ln) between years 1-2 

 
 
 
Table 3 State-costs estimates (primary and secondary care) using random effects, fixed 
effects, and GLM regressions. 
  

State Random effects Fixed effects GLM 

 Cost (NOK) SE Cost (NOK) SE Cost (NOK) SE 
WK 785 198 562 539 771 86 
SL 3,229 665 2,852 643 3,258 661 

WAA 2,922 496 2,566 599 2,933 492 
DB 1,852 480 5,647 1,736 1,770 375 

Notes: GLM (family:gamma, link:log) 
WK: work 
SL: sick leave 
WAA: work assessment allowance 
DB: disability benefit 

 
 
  

 Pr(T < t) = 0.8769         Pr(|T| > |t|) = 0.2462          Pr(T > t) = 0.1231
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0

H0: diff = 0                                     Degrees of freedom =     3814
    diff = mean(1) - mean(2)                                      t =   1.1599

    diff             583.4745    503.0344               -402.7678    1569.717

Combined    3,816    2253.038    251.5286    15537.87    1759.895    2746.182

       2    1,908    1961.301    225.2686    9839.882    1519.502      2403.1
       1    1,908    2544.775    449.7751    19646.47    1662.672    3426.878

   Group      Obs        Mean    Std. err.   Std. dev.   [95% conf. interval]

Two-sample t test with equal variances

 Pr(T < t) = 0.8046         Pr(|T| > |t|) = 0.3908          Pr(T > t) = 0.1954
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0

H0: diff = 0                                     Degrees of freedom =     2517
    diff = mean(1) - mean(2)                                      t =   0.8583

    diff             .0571738     .066612               -.0734461    .1877937

Combined    2,519    6.728461    .0331959    1.666092    6.663367    6.793555

       2    1,158     6.69757     .048754    1.659068    6.601914    6.793226
       1    1,361    6.754744    .0453273    1.672204    6.665825    6.843663

   Group      Obs        Mean    Std. err.   Std. dev.   [95% conf. interval]

Two-sample t test with equal variances
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Table 4 Input parameters for scenario A  

Intervention 
Time 

(months) Input paramerer Mean  SEa Distributionb  
Type of 

parameter 

O
-A

C
T  

from 0 to 5 

WK-SL 0.08620 0.0363 Beta Probability 
WK-WAA 0.04060 0.0297 Beta Probability 
SL-WK 0.90600 0.0110 Beta Probability 
SL-WAA 0.04550 0.0095 Beta Probability 
SL-DB 0.00002 0.0000 Beta Probability 
WAA-WK 0.00368 0.0011 Beta Probability 
WAA-SL 0.00018 0.0001 Beta Probability 
WAA-DB 0.00098 0.0002 Beta Probability 

            

from 5 to 11 

WK-SL 0.02990 0.0123 Beta Probability 
WK-WAA 0.02090 0.0127 Beta Probability 
SL-WK 0.66200 0.0313 Beta Probability 
SL-WAA 0.22000 0.0313 Beta Probability 
SL-DB 0.00002 0.0000 Beta Probability 
WAA-WK 0.00862 0.0060 Beta Probability 
WAA-SL 0.00014 0.0001 Beta Probability 
WAA-DB 0.00019 0.0000 Beta Probability 

            

11 on 

WK-SL 0.05350 0.0132 Beta Probability 
WK-WAA 0.00170 0.0007 Beta Probability 
SL-WK 0.72300 0.0558 Beta Probability 
SL-WAA 0.03960 0.0210 Beta Probability 
SL-DB 0.00018 0.0001 Beta Probability 
WAA-WK 0.01690 0.0050 Beta Probability 
WAA-SL 0.00050 0.0002 Beta Probability 
WAA-DB 0.00835 0.0039 Beta Probability 

            
  Treatment cost 11,033   Fixed Cost 
  Production loss SL 49,460   Fixed Production loss 
  Production loss WAA 51,933   Fixed Production loss 
  Production loss DB 32,149   Fixed Production loss 

                I - M
O

RE         

from 0 to 5 

WK-SL 0.12500 0.0442 Beta Probability 
WK-WAA 0.00378 0.0015 Beta Probability 
SL-WK 0.89100 0.0122 Beta Probability 
SL-WAA 0.04110 0.0104 Beta Probability 
SL-DB 0.00030 0.0001 Beta Probability 
WAA-WK 0.00372 0.0014 Beta Probability 
WAA-SL 0.00026 0.0001 Beta Probability 
WAA-DB 0.00071 0.0003 Beta Probability 

            

from 5 to 11 WK-SL 0.06610 0.0154 Beta Probability 
WK-WAA 0.00619 0.0015 Beta Probability 
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SL-WK 0.66300 0.0289 Beta Probability 
SL-WAA 0.13600 0.0220 Beta Probability 
SL-DB 0.00016 0.0001 Beta Probability 
WAA-WK 0.01850 0.0094 Beta Probability 
WAA-SL 0.00069 0.0004 Beta Probability 
WAA-DB 0.00028 0.0001 Beta Probability 

            

11 on 

WK-SL 0.08220 0.0149 Beta Probability 
WK-WAA 0.00785 0.0041 Beta Probability 
SL-WK 0.76900 0.0311 Beta Probability 
SL-WAA 0.02410 0.0118 Beta Probability 
SL-DB 0.00547 0.0042 Beta Probability 
WAA-WK 0.01460 0.0058 Beta Probability 
WAA-SL 0.00067 0.0003 Beta Probability 
WAA-DB 0.00247 0.0020 Beta Probability 

            
  Treatment cost 141,455   Fixed Cost 
  Production loss SL 44,514   Fixed Production loss 
  Production loss WAA 51,933   Fixed Production loss 
  Production loss DB 24,730   Fixed Production loss                   c_WK 785 198 Gamma State cost 

  

  c_SL 3,229 665 Gamma State cost 
  c_WAA 2,922 496 Gamma State cost 
  c_DB 1,852 480 Gamma State cost 
  u_WK 0.699 0.011 Beta HRQoL 
  u_SL 0.608 0.006 Beta HRQoL 
  u_WAA 0.628 0.009 Beta HRQoL 
  u_DB 0.582 0.023 Beta HRQoL 

Notes: 
All costs (and respective SE) are reported in NOK 2016 (In the analysis we accounted for a price inflator value of 23.2%) 
Production loss is reported in NOK 2023 
a) Standard errors for transition probabilities were computed from 95% CI following Briggs (2011) 
a) Standard errors for HRQoL were computed using the Delta method (STATA) 
b) "Fixed" parameters were not varied in the probabilistic analysis 
WK: work 
SL: sick leave 
WAA: work assessment allowance 
DB: disability benefit 
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Table 5 Input parameters for scenario B 
  

Intervention Input paramerer Mean  SEa Distributionb  
Type of 

parameter 

 WK-GB 0.06855953 0.0111 Beta Probability 
  GB-WK 0.0479891 0.0060 Beta Probability 

O-ACT GB-DB 0.0038 0.0017 Beta Probability 
  Treatment cost 11,033   Fixed Cost 

  Production loss GB 51,933   Fixed 
Production 

loss 

  Production loss DB 32,149   Fixed 
Production 

loss 
            
  WK-GB 0.1013563 0.0123 Beta Probability 

 GB-WK 0.0838589 0.0082 Beta Probability 
I-MORE GB-DB 0.0017 0.0011 Beta Probability 

  Treatment cost 141,455   Fixed Cost 

  Production loss GB 49,460   Fixed 
Production 

loss 

  Production loss DB 22,257   Fixed 
Production 

loss 
            

  

c_WK 774 258 Gamma State cost 
c_GB 3,044 460 Gamma State cost 
c_DB 1,851 484 Gamma State cost 
u_WK 0.699 0.00876 Beta HRQoL 
u_GB 0.617 0.00469 Beta HRQoL 
u_DB 0.582 0.02041 Beta HRQoL 

Notes: 
All costs (and respective SE) are reported in NOK 2016 (In the analysis we accounted for a price inflator value of 23.2%) 
Production loss is reported in NOK 2023 
a) Standard errors for transition probabilities were computed from 95% CI following Briggs (2011) 
a) Standard errors for HRQoL were computed using the Delta method (STATA) 
b) "Fixed" parameters were not varied in the probabilistic analysis 
WK: work 
SL: sick leave 
WAA: work assessment allowance 
DB: disability benefit 
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Figure 1 Stacked probabilities starting from all model states (base-case)
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Figure 2 CEAC and CEAF with a limited societal perspective 

 
 
Figure 3 EVPPI for individual model parameters at a WTP of NOK 825,000. 
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Table 6 Groups of parameters for EVPPI 
Type of study  Name  Type of parameters Parameters 
        
Study on costs Group 1 State costs c_WK, c_SL, c_WAA, c_DB 

Study on HRQoL Group 2 State HRQoL 
u_WK, u_SL, u_WAA, 
u_DB 

Triala Group 3 Transitions 

w_sh, w_ah, w_dh, s_wh, 
s_ah, s_dh, a_wh, a_sh, 
a_dh 

Notes:  
a) We only included I-MORE parameters, EVPPI can be expected to be higher as more 
parameters would be explored in a full trial 

  



Appendix B: Validation checklist 
TECH-VER checklist (Büyükkaramikli et al., 2019) available at: 
https://github.com/nasuhcagdas/TECHVER  
 
Test description (Please document how the test is conducted, as well) Expected result of the test  
Pre-analysis calculations 

Does the technology (drug/device, etc.) acquisition costs increase with 
higher prices?  

Yes Yes 

Does the drug acquisition cost increase for higher weight or body 
surface area?  

Yes NA 

Does the probability of an event, derived from an odds ratio (OR)/ 
relative risk (RR) / hazard ratio (HR) and baseline probability, increases 
with higher OR/RR/HR?  

Yes NA 

If survival parametric distributions are used in the extrapolations, can 
the formulae used for the Weibull (generalized gamma) distribution 
generate the values obtained from the exponential (the Weibull or 
Gamma) distribution(s) under some parameter transformations?  

Yes NA 

In a partitioned survival model, does the progression free survival curve 
or the time on treatment curve crosses the overall survival curve?  

No NA 

If survival parametric distributions are used in the extrapolations or 
time-to-event calculations, can the formulae used for the Weibull 
(generalized gamma) distribution generate the values obtained from the 
exponential (the Weibull or Gamma) distribution(s) after 
replacing/transforming some of the parameters?  

Yes  

Is hazard ratio calculated from Cox proportional hazards model applied 
on top of the parametric distribution extrapolation found from the 
survival regression? 

No, it is better if the treatment 
effect that is applied to the 
extrapolation comes from the 
same survival regression in which 
the extrapolation parameters are 
estimated. 

NA 

For the treatment effect inputs, if the model uses outputs from 
WINBUGs, are the OR, HR and RR values all within plausible ranges? 
(should be all non-negative and the average of these WINBUGs outputs 
should give the mean treatment effect) 

Yes  

Event-state calculations 

Calculate the sum of the number of patients at each health state Should add up to the cohort size Yes. Proportions add 
up to 1 

Check if all probabilities and number of patients in a state are greater 
than or equal to zero 

Yes Yes. Developed a 
function to check the 
trace in R,  

Check if all probabilities are smaller than or equal to one Yes Yes 

Compare the number of dead (or any absorbing state) patients in a 
period with the number of dead (or any absorbing state) patients in the 
previous periods? 

Should be larger Yes. It increases over 
time 

In case of lifetime horizon, check if all patients are dead at the end of 
the time horizon   

Yes NA 

Discrete event simulation specific: sample one of the “time to event” 
types used in the simulation from the specified distribution. Plot the 
samples and compare the mean and the variance from the sample  

Sample mean and variance & the 
simulation outputs should reflect 
the distribution it is sampled 
from. 

NA 

Set all utilities to one 
 
Set all utilities to zero 

The QALYs accumulated at a 
given time would be the same as 
the life years accumulated at that 
time 
No utilities will be accumulated in 
the model 

QALYs turn to 0 
when all utilities are 
0 
 
QALYs = LY when all 
utilities are 1 

Decrease all state utilities simultaneously (but keep event based utility 
decrements constant) 

Lower utilities will be 
accumulated each time 

NA 

Set all costs to zero No costs will be accumulated in 
the model at any time  

No costs are 
accumulated 

Put mortality rates to 0  Patients never die NA 
Put mortality rate extremely high Patients die in the first few cycles NA 
Set the effectiveness, utility and safety related model inputs for all 
treatment options equal  

Same life years and QALYs should 
be accumulated for all treatment 
at any time 

QALY=LY 

In addition to the inputs above, set cost related model inputs for all 
treatment options equal 

Same costs, life years and QALYs 
should be accumulated for all 
treatment at any time 

Yes 

Change around the effectiveness, utility and safety related model inputs 
between two treatment options 

Accumulated life years and QALYs 
in the model at any time should 
be also reversed 

NA 

Check if the number of alive patients estimate at any cycle is in line with 
general population life table statistics 

At any given age, the % alive 
should be lower or equal in 
comparison to the general 
population estimate  

NA 
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Check if the QALY estimate at any cycle is in line with general 
population utility estimates 

At any given age, the utility 
assigned in the model should be 
lower or equal in comparison to 
the general population estimate 

NA 

Set the inflation rate of the previous year higher The costs (which are based on a 
reference from previous years) 
assigned at each time will be 
higher 

Yes 

Calculate the sum of all ingoing and outgoing transition probabilities Both should be one Yes. Dedicated 
function. 

Calculate the number of patients entering and leaving a tunnel state 
throughout the time horizon 

Numbers entering = Numbers 
leaving 

NA 

Check if the time conversions for probabilities were conducted correctly. Yes Yes 

Decision tree specific: calculate the sum of the expected probabilities of 
the terminal nodes  

Should sum up to one NA 

Patient-level model specific: check if common random numbers are 
maintained for sampling for the treatment arms? 

Yes NA 

Patient-level model specific: check if correlation in patient 
characteristics is taken into account when determining starting 
population? 

Yes NA 

Increase the treatment acquisition cost  Costs accumulated at a given 
time will increase during the 
period when the treatment is 
administered 

Partly, since 
treatment costs are a 
lumpsum in the 
model 

Population model specific: set the mortality and incidence rates to zero Prevalence should be constant in 
time 

NA 

Results calculations 

Check the incremental life years and QALYs gained results. Are they in 
line with the comparative clinical effectiveness evidence of the 
treatments involved? 

If a treatment is more effective, it 
generally results in positive 
incremental LYs and QALYs in 
comparison with the less 
effective treatments 

No previous HRQoL 
studies on the 
intervention. 
However the better 
outcomes of the 
trial, resulted in 
higher QALYs in our 
model  

Check the incremental cost results. Are they in line with the treatment 
costs? 

If a treatment is more expensive, 
and if it does not have much 
effect on other costs, it generally 
results in positive incremental 
costs. 

Incremental cost is in 
line with the higher 
treatment cost, 
difference 
diminishes as time 
passes and control 
group consumes 
more care. 

Total life years > total quality adjusted life years Yes Yes 

Undiscounted results > discounted results Yes Costs and QALYs are 
higher when 
undiscounted 

Divide undiscounted total QALYs by undiscounted life years. This value should be within the 
outer ranges (maximum and 
minimum) of the all utility value 
inputs. 

Within range 

Subgroup analysis results: How do the outcomes change if the 
characteristics of the baseline change?  

Better outcomes for better 
baseline health conditions and 
worse outcomes for worse health 
conditions are expected. 

NA 

Could you generate all the results in the report from the model 
(including the uncertainty analysis results)?  

Yes Parameter estimation 
was not performed 
with the decision 
analytic model. But 
with regressions and 
multi state 
modelling  

Does the total life years, QALYs and costs decrease if a shorter time 
horizon is selected?   

Yes Yes they all decrease 

Is the reporting and contextualization of the incremental results correct?  The use of the terms such as: 
“dominant”/ “dominated”/ 
“extendedly dominated”/ “cost-
effective” etc. should be in line 
with the results. 
In the incremental analysis table 
involving multiple treatments, 
ICERs should be calculated 
against the next non-dominated 
treatment.  

Yes, although only 2 
strategies are 
considered in the 
report 

Are the reported ICERs in the fully incremental analysis non-decreasing? Yes Yes 

If disentangled results are presented, do they sum up to the total 
results? (e.g. different cost types sum up to the total costs estimate) 

Yes Yes 
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Check if half cycle correction is implemented correctly (total life years 
with half cycle correction should be lower than without)  

The half cycle correction 
implementation should be error 
free.  Also check if it should be 
applied for all costs, for instance 
if a treatment is administered at 
the start of a cycle, half cycle 
correction might be unnecessary. 

Half cycle correction 
was not used given 
the short cycle 
length (1 month) 

Check the discounted value of costs/QALYs after 2 years Discounted 
value=undiscounted/(1+r)2 

Yes 

Set discount rates to zero The discounted and undiscounted 
results should be the same  

Yes 

Set mortality rate to zero The undiscounted total life years 
per patient should be equal to 
the length of the time horizon  

NA 

Put the consequence of adverse event/discontinuation to zero. (zero 
costs and zero mortality/utility decrements) 

The results would be the same as 
the results when AE rate is set to 
zero. 

NA 

Divide total undiscounted treatment acquisition costs by the average 
duration on treatment. 

This should be similar to 
treatment related unit acquisition 
costs 

NA 

Set discount rates to a higher value Total discounted results should 
decrease 

Yes 

Set discount rates of costs/effects to an extremely high value Total discounted results should 
be more or less the same as the 
discounted results accrued in the 
first cycles 

Although decreased, 
results are similar 

Put adverse event/discontinuation rates to zero and then to extremely 
high level. 

Less costs higher QALYS/LYs 
when adverse event rates are 0, 
higher costs and lower 
QALYS/LYs when AE rates are 
extreme 

NA 

Double the difference in efficacy and safety between new intervention 
and comparator and report the incremental results. 

Approximately twice of the 
incremental effect results of the 
base case. If this is not the case : 
report and explain the underlying 
reason/ mechanism 

NA 

Do the same for a scenario in which the difference in efficacy and safety 
is halved. 
 

Approximately halve of the 
incremental effect results of the 
base case. If this is not the case : 
report and explain the underlying 
reason/ mechanism 

NA 

Uncertainty analysis calculations 

Are all parameters subject to uncertainty included in the one-way 
sensitivity analysis (OWSA)? 
Check if the OWSA includes any parameters associated with joint 
uncertainty (e.g. parts of a utility regression equation, survival curves 
with multiple parameters).  

Yes 
No 

NA 

Are the upper and lower bounds used in the one-way sensitivity analysis 
used confidence intervals based on the statistical distribution assumed 
for that parameter? 
Are the resulting ICER, incremental costs/QALYs with upper and lower 
bound of a parameter plausible and in line with a priori expectations? 

Yes 
 
Yes 

NA 

Check that all parameters used in the sensitivity analysis have an 
appropriate associated distributions 
- upper and lower bounds should surround the deterministic value (i.e. 
Upper bound ≥ mean ≥ Lower bound) 
- standard error and not standard deviation used in sampling 
- Lognormal / gamma distribution for hazard ratios and costs/ resource 
use 
- Beta for utilities and proportions/probabilities  
- Dirichlet for multinomial  
- Multivariate normal for correlated inputs (e.g. survival curve or 
regression parameters) 
- Normal for other variables as long as samples don’t violate 
requirement to remain positive when appropriate 

Yes Yes 

Check PSA output mean costs, QALYs and ICER compared to the 
deterministic results. Is there a large discrepancy? 

No (in general) No. Although the use 
of bootstrap vs 
multivariate normal 
distribution for 
estimation of SE 
generates different 
ICERs (see 
Discussion) 

If you take new PSA runs from the excel model do you get similar 
results?  

Yes NA 

Is(are) the CEAC line(s) in line with the CE scatter plots and the efficient 
frontier? 

Yes Yes 

Does the PSA cloud demonstrate an unexpected behavior or has an 
unusual shape? 

No No 

Is the sum of all CEAC lines equal to 1 for all WTP values? Yes Yes 
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Are the explored scenario analyses provide a balanced view on the 
structural uncertainty? (i.e. not always looking at more optimistic 
scenarios)    

Yes Yes (i.e, Scenario A) 

Are the scenario analysis results plausible and in line with a priori 
expectations?  

Yes Yes 

Check the correlation between 2 PSA results (i.e. costs/QALYs under the 
SoC and costs/QALYs under the comparator)  

Should be very low (very high) if 
different (same) random streams 
are used for different arms 

NA 

If a certain seed is used for random number generation (or previously 
generated random numbers are used), check if they are they scattered 
evenly between 0-1 when they are plotted? 

Yes NA 

Compare the mean of the parameter samples generated by the model 
against the point estimate for that parameter, use graphical methods to 
examine distributions, functions   

The sample means and the point 
estimates will overlap, the graphs 
will be similar to the 
corresponding distribution 
functions (e.g. Normal, Gamma, 
etc.) 

Yes, values were 
compared and 
aligned well with 
point estimates. 

Check if sensitivity analyses include any parameters associated with 
methodological/ structural uncertainty (e.g. annual discount rates, time 
horizon).  

No No. But we present 
probabilistic results 
for 2-year and 25-
year time horizons  

Value of information analysis if applicable: Was this implemented 
correctly? 
Which types of analysis? Were aggregated parameters used? Which 
parameters are grouped together? Does it match the write-up’s 
suggestions? 
Is EVPI larger than all individual EVPPI? 
Is EVPPI for a (group of) parameters larger than the EVSI of that (group) 
of parameter(s)? 
Are the results from EVPPI in line with OWSA or other parameter 
importance analysis (e.g. ANCOVA)? 

Yes Yes 
 
EVPI>EVPPI 
 
Parameters were 
grouped according 
to their nature and 
in a way that makes 
future studies 
possible. 
 
No EVSI 
 

Did the electronic model pass the black-box tests of the previous 
verification stages in all PSA iterations and in all scenario analysis 
settings? (additional macro can be embedded to PSA code, which stops 
the PSA when an error such as negative transition probability, is 
detected) 

Yes Yes 

Check the correlation between 2 PSA results (i.e. costs/QALYs under the 
SoC and costs/QALYs under the comparator)  

Should be very low (very high) if 
different (same) random streams 
are used for different arms 

NA 

OWSA=one-way sensitivity analysis; ICER = incremental cost-effectiveness ratio; PSA = probabilistic sensitivity analysis; WTP = 
willingness to pay; CE = cost-effectiveness; CEAC = cost-effectiveness acceptability curve; LY = life years; QALYs = Quality adjusted 
life years; OR = odds ratio; RR= relative risk; HR = hazard ratio 
 
 
 
  


