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Chapter

Introduction

The capital expenditure involved in an offshore field development is typically huge,
and many investment decisions are irreversible and finance is committed for the
long-term. Therefore the oil companies invest heavily in geophysical interpreta-
tions, geological models, flow simulation models and economic models to obtain
satisfactory decision support.

Economic models used in decision support typically utilize simplified production
models, often referred to as fast models to be able to create a broad, overall per-
spective of large offshore fields. The fast models enable analyzes of the economic
impact of different scenarios and concepts. Decisions are made analyzing the trade
off between the cost (operational costs and capital expenditure and the offered func-
tionality (production capacities, infrastructure flexibility, technology contributions
etc.). A fast model typically incorporates knowledge about the properties of the
reservoir. The framework needs to be flexible so that economic and strategic factors
may to be taken into account. The primary focus of this PhD project has been to
develop a generic production optimization framework that uses simplified produc-
tion profile models. The framework is designed for total value chain analyzes of
large offshore field development projects. In such an analysis all revenues, costs and
investments in the oil and gas value chain are modelled to obtain assessments of
project profitability and different strategies. The revenues and tariffs are calculated
from the oil, gas and water production profiles. The cash flow is calculated deduct-
ing the capital expenditure, the operational costs and the tariffs from the revenues.
The net present value of the project is calculated from the cash flows, and the after
tax profit can be assessed. For a discussion of total value chain analysis, see Huseby
& Breekken (2000) or Hollund et al. (2007).

We start in Section 1.1 by presenting some new challenges in the oil and gas value
chain. In Section 1.2 we continue by presenting the traditions of related, relevant
research and some important features of the works done. In particular, this PhD
project is placed within these research traditions. Section 1.3 introduces some basic
concepts and ideas, before a broad outline of the PhD project is given in Section
1.4. Section 1.5 gives guidelines for future research. An interesting extension of the
framework developed in this PhD project involves decision making under uncertainty
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and capital budgeting decisions under uncertainty. This area of research is often
referred to as real options and is also discussed in Section 1.5. In hydrocarbon
development projects risks are large and there is considerable uncertainty associated
to important parameters affecting the production. By appropriate modelling of
uncertainty in a physical model, we are able to model the information we receive as
the reservoirs are produced. However, caution and skill are needed in the modelling
of uncertainty in a physical model, which is the topic of Section 1.6.

In Section 1.7 we review some relevant, canonical optimization techniques we
have considered using in this PhD project. However, we found that these techniques
were not so well-suited for our application. Instead we have developed our own
framework, founded on convex optimization principles, see Boyd & Vandeberghe
(2004a). Quoting Boyd & Vandeberghe (2004a):

The idea that convex optimization problems are tractable is not new.
It has long been recognized that the theory of convexr optimization is far
more straightforward (and complete) than the theory of general nonlinear
optimization. In this context Rockafellar stated, in his 1993 SIAM review
survey paper Rockafeller (1993):

In fact the great watershed in optimization isn’t between lin-
earity and nonlinearity, but convezity and non-convezity.

Numerical methods and algorithms are developed in parallel with the theoretical
developments. An object-oriented prototype in Java is developed for this purpose,
of which the most important features are described in Section 1.8.

1.1 New challenges in the oil and gas value chain

The oil and gas industry plays a vital role in the Norwegian economy. Natural re-
sources has made Norway a wealthy nation. However, the oil fields on the Norwegian
continental shelf are maturing. This development is a part of a global trend in the
western world. Production optimization and increased outtake become even more
important facing these new challenges, see Meling (2006). This section is based
on Meling (2006), which presents a quantitative approach to assess oil supply and
demand in the world today.

Due to a shift in the oil demand from western world countries to emerging
economies like China, India, Brazil and Russia the oil demand is expected to in-
crease in the coming years. To meet the increasing demand global oil production
needs to be increased in the future. In contrast to the belief of industry experts based
on more qualitative assessments, Meling (2006) states that exploration and develop-
ment are less important than increased outtake from existing fields to increase the
global oil production.
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1.1.1 The global supply and demand of oil
Future oil demand

Meling (2006) comments that the demand for oil in the last 100 years has mirrored
economic and political history. The demand growth is oscillating fiercely, especially
before the 1970s. This period is often referred to as "The Golden Age". Energy-
intensive industries, such as steel and car production and the cold war contributed
to considerable oil demand in this period. After the oil embargo in 1973-1974 and
the oil crises of the early 1980s, yearly demand growth has been moderately stable,
on average slightly above 1.6 %.

One reason for this development is that rich economies are less dependent on oil
than they used to be. Energy conservation, a shift to other fuels and a decline in
the importance of heavy, energy-intensive industries have reduced oil consumption.
Software, consultancy and mobile telephones use far less oil than steel or car pro-
duction. For each dollar of GDP (in constant prices) rich economies now use nearly
50% less oil than in 1973.

In recent years, from around 2002, there has been a surging demand from devel-
oping countries, such as China. If we assume an economic growth of some 7 % for
China, a gross national product of 3,000 USD per capita and an oil consumption
of 6 barrels per capita per year, China will demand 25 millions barrels of oil per
day in 2020, see Meling (2006) for details. This demand equals the US demand in
2020, basing our estimate of US demand on demographic development only. With
India and other emerging economies following it is evident that a serious oil supply
challenge will arise. Some simple calculations reveal that such volume growth is
impossible, there is not enough oil, neither now nor in the future.

Future oil supply

Reserves and resources. According to Meling (2006), approximately 2.2 trillions of
barrels of oil has been discovered and approximately 1 trillion barrels has been pro-
duced, leaving some 1.2 trillion barrels of remaining oil to be produced. The reserves
are very unevenly distributed; while Non-OPEC countries have produced the equiv-
alent of more than three quarters of their aggregated reserves, the same number for
the OPEC countries is below 30 %. Of remaining developed resources, non-OPEC
countries hold some 25 %. In addition, Canada holds almost 200 billion barrels
of ultra heavy crude produced by mining, representing considerable environmental
challenges.

Reserve replacement by exploration and development. According to Meling (2006),
field size is 10 times more important than the number of exploration wells drilled in
explaining discovered volumes. Thus, the declining exploration volumes are strongly
related to reduced field size. Due to reduced field sizes on discovered fields in recent
years, future exploration alone will be insufficient to grow production to satisfy
future demand.

Outtake. In Meling (2006) outtake is referred to as a measure of the yearly pro-
duction of the remaining developed reserves. In the same paper it is remarked that
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oil market analysts have ignored the importance and magnitude of field redevelop-
ment and production optimization. Non-OPEC countries have had a larger outtake
growth than the OPEC countries since 1910. Since the early 1930s the difference
has increased. New technology, such as horizontal drilling, deep water technology
and the introduction of 3D and 4D seismic and interpretation, has been an impor-
tant contributor to this increased outtake for non-OPEC countries, as discussed by
Meling (2006). Offshore producers have stronger incentives than onshore producers
to optimize production, since their operational costs are far greater.

1.1.2 Summary

The global supply and demand of oil is a complex, controversial, macro economic is-
sue of considerable public and professional interest. Predictions about the future will
seldom entail complete objectivity. Different analyzes differ and contradict in con-
clusions due to model choice, input choice, methodology, opinions and convictions.
A less controversial issue is the supply situation for Norway, which face maturing oil
fields in the North Sea. From a commercial point of view any operator would also
be interested in an optimal production strategy for the reservoirs in its portfolio.
Therefore, we believe it is relevant from an industry perspective with the national
interests of Norway and sound business principles in mind to develop methods for
production optimization.

1.2 Optimization in oil and gas recovery

1.2.1 Contributions in petroleum engineering

Optimization in upstream oil and gas recovery in petroleum engineering has gener-
ally been focused in three areas: (a) production scheduling, (b) well placement, and
(¢) production facilities design, see Horne (2002).

Production scheduling. Multiple wells penetrate the reservoir, including both
injectors and producers. Injecting water can enhance the recovery by increasing
pressure and sweeping oil through the reservoir. However, when water is produced at
the production wells the recovery efficiency is dramatically reduced. In the optimal
approach the oil is swept uniformly through the reservoir. Consequently all the
production wells start to produce water at the same time.

In the early attempts in the 50’s linear programming techniques were used, see
Aronofsky (1983). For a detailed treatment of linear programming methods in
petroleum engineering, see Aronofsky & Lee (1958). In the 60’s production schedul-
ing was modelled using a optimal control theory framework, see Rowan & Warren
(1967) or O'Dell et al. (1973). Later approaches linked numerical simulation with
linear programming models, see Wattenbarger (1970) and Lang & Horne (1983).
For examples of field applications see Asheim (1978) and Nesvold et al. (1996). In
Davidson & Beckner (2003) sequential quadratic programming methods are used
to set well rates in a facility network of a reservoir simulator so that production
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objectives are maximized subject to constraints on pressures, flow rates and stream
compositions. This algorithm automatizes the very time-consuming setting of op-
erating conditions in reservoir simulators traditionally handled by the modeler. For
a related approach see Wang et al. (2002). Uncertainty was not considered in these
works.

Well placement. Optimal placement of production and injection wells is a complex
problem that depends on reservoir and fluid properties, well and surface equipment
specifications, as well as economic parameters. The optimization problem is complex
because the number of variables is high, and because their interaction is complex
and non-linear. Function evaluation through reservoir simulations is difficult since
every reservoir simulation is very computer intensive. Often the number of reservoir
simulations is reduced by utilizing the knowledge of the reservoir physics.

Aanonsen et al. (1995) applied interpolation techniques to provide a substitute for
the search space with a smooth function. The method is based on response surfaces
and experimental design developed by Damsleth et al. (1992). A similar approach
was also used by Pan & Horne (1998). Randomized search methods have also been
used in well placement problems. For applications with simulated annealing and the
genetic algorithm, see Holland (1975), Bittencourt & Horne (1997) and Goldberg
(1989). Beckner & Song (1995) used simulated annealing for both well placement
and scheduling problems.

Production facilities design. The production facilities need to be optimized to
maximize recovery at minimum cost. The configuration of well and surface equip-
ment also contributes in the optimization of a petroleum development. For applica-
tions see Carroll ITII & Horne (1992) and Fujii & Horne (1995).

1.2.2 Contributions in supply chain management

In works in supply chain management the objective is to construct models for the
planning and scheduling of hydrocarbon fields. Grossmann et al. (2002) provides an
overview of methods design to optimize planning and scheduling decisions simultane-
ously. van den Heever et al. (2001) classify decisions made in reservoir management
in two main categories, design decisions and operational decisions. Design decisions
comprise selecting the type of platform, the staging of compression and assessing the
number of wells to be drilled in a reservoir. These decisions are discrete in nature.
In operational decisions production rates from individual reservoirs and wells are
assessed. In contrast to design decisions, operational decisions are continuous in na-
ture. Neiro & Pinto (2004) propose a framework for modelling the entire petroleum
supply chain.

Ivyer & Grossmann (1998) present a multi-period mixed-integer linear program-
ming formulation for the planning and scheduling of investment and operation in
offshore oilfields. In this work an offshore oil field is considered for development. The
problem consisted of determining the actual number and location of platforms, ac-
tual wells to be drilled and their interconnection to the platform, and the production
planning and scheduling of the oil field.
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In van den Heever et al. (2001) a multi-period mixed-integer non-linear program-
ming model is presented for the long-term design and planning of offshore hydro-
carbon field infrastructures with complex economic objectives. This model requires
increased computational resources, and to address this problem a specialized heuris-
tic algorithm relying on the concept of Lagrangian decomposition is proposed.

Neiro & Pinto (2004) propose a framework for modelling the entire petroleum
supply chain. In this work the planning and scheduling of the most important
subsystems of the petroleum supply chain, such as oilfield infrastructure, crude oil
supply, refinery operations and product transportation, can be integrated into one
framework.

1.2.3 Contributions where uncertainty is taken into account

An exploration and production (E & P) asset’s value chain consists of many com-
ponents. In order to make good decisions many sources of uncertainty should be
taken into account. The most important contributors are typically:

e Uncertainty about the available amount of resources, i.e. how much oil or gas
can be produced from the field.

e Uncertainty about the oil and gas price, i.e. how much profit can we gain from
producing the resources.

e Uncertainty about the capital expenditure, i.e. how much will we have to
invest, mainly before production can begin (facilities, drilling).

e Uncertainty about the operating costs, i.e. how much will it cost to run the
field during the production phases.

Taking into account uncertainty of all components at all levels in one framework
continues to be a challenge for the industry. Narayanan et al. (2003) proposes a
technology that fully integrates rigorous reservoir modelling, flow simulation and
economics within a decision optimization framework that explicitly manages risk.
In this work a system is proposed which integrates reservoir simulation, an economic
model, and a Monte Carlo algorithm with a global search algorithm to identify more
optimal reservoir planning and management decision alternatives under uncertainty.

Floris & Peersmann (2000) introduces an E & P Decision Support System that
combines the data and information from earth modeling, surface engineering and
economics into one integrated asset model. The system offers decision tree scenario
analysis and Monte Carlo simulation in conjunction with utility function analysis.
Simplified production profile models, or 'fast’ models are used.

Begg et al. (2001) proposes the Stochastic Integrated Asset Model (STAM), that
incorporates all components of the E & P value chain into one framework. This is
obtained by proposing simplified models for some of the components contributing to
an investment decision. In STAM simplified models for fast scenario, Monte Carlo
and value-of-information analyzes are integrated.
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To model and quantify the uncertainties in reservoir simulation studies Damsleth
et al. (1992) use experimental design, response surface and Monte Carlo simulation.
Dejean & Blanc (1999) proposed the integration of experimental design, response
surface and Monte Carlo methods to optimize the production scheme.

In Zhang et al. (2007) an Integrated Reservoir Simulation System (IRSS) is de-
veloped. A framework that distributes multiple reservoir simulations on a cluster of
CPUs for fast and efficient process optimization studies is developed. This platform
utilizes several commercial reservoir simulators for flow simulations, an experimen-
tal design and a Monte Carlo algorithm with a global optimization search engine
to identify the optimum combination of reservoir decision factors under uncertainty.
The framework is applied on a field-scale development exercise involving a well
placement design.

1.2.4 Optimization in petroleum-related PhD projects

Examples of relevant PhD projects related to oil field development projects include
Lund (1997) and Jonsbraaten (1998). In his PhD thesis Lund (1997) aims to iden-
tify the value of flexibility in offshore oil development projects. By developing a
prototype for an oilfield development project Lund (1997) wants to replicate the life
of the project. The main objective is to mirror the major decisions and the infor-
mation the operator receives throughout the different phases of the project in the
prototype. Different kinds of flexibility are discussed. In particular, the flexibility
to postpone a project as well as the flexibility to terminate a project are discussed.
Further, start/stop flexibility and capacity flexibility are treated. Stochastic dy-
namic programming is used to evaluate the project. The prototype is applied on a
case study.

The thesis of Jonsbraaten (1998) consists of two parts where the first part presents
various reservoir models. The second part presents four papers, of which the three
first papers aim to solve various stochastic optimization problems. The first pa-
per aims to optimize an oil field under price uncertainty. In the second article
Jonsbraaten (1998) develops a class of stochastic programs with decision dependent
random elements. The third paper deals with optimal selection and sequencing. A
Bayesian model for updating the a priori probability distribution over reservoir char-
acteristics is proposed. The last paper uses game theory to analyze oil extraction
on a block with different owners.

1.2.5 Optimization in this PhD project

Figure 1.1 shows an overview of the hydrocarbon value chain. The contributions
discussed in the sections 1.2.1, 1.2.2, 1.2.3 and 1.2.4 can be divided in two categories:

e The focus is on the problem of modelling the entire hydrocarbon value chain.
Since the value chain is very complex, as we observe from Figure 1.1, many
aspects of it needs to be simplified to be able to construct such comprehensive
models.



8 CHAPTER 1. INTRODUCTION

An overview of the hydrocarbon value chain
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Figure 1.1: An overview of the hydrocarbon value chain.

e The focus of the optimization is to solve a petroleum engineering problem.
Relating this to Figure 1.1 it involves Wells, Facilities, Capacities or Reservoir
performance. Often a simulator is used directly, some times in conjunction
with other software modules or as a part of an integrated reservoir simulation
system.

The main purpose of this PhD project is focus on optimization of production in an
oil or gas field with many reservoirs, which constitutes an important component in
the hydrocarbon value chain. Relating this to Figure 1.1 we focus on oil, gas, water
and liquid production profiles. We do not use a reservoir simulator directly, we only
use the simulation output that provides us with state-of-the-art production profiles.
To explain the work process roughly, key properties of the reservoirs are assessed by
geologists, geophysicists, petroleum engineers and other specialists. This knowledge
is then assembled and quantified into a reservoir model. Our analysis starts at the
stage where a reservoir simulation has been performed, and the output from this
simulation is given. Simplified production models can then be constructed based on
this output. The objective is then to assess how the entire field should be produced
to maximize total discounted production®, using the simplified production profiles
as proxies for the potential production from the reservoirs. By focusing on this
important component in the hydrocarbon value chain only we are able to develop
a generic framework that provides insight into how a large oil or gas field should
be produced. The approach of this PhD project enables focus on coordination of
the production of a large oil or gas field that consists of many reservoirs, possibly
with several owners with different commercial interests. The following passage from
Horne (2002) puts our effort in perspective:

1Other objective functions will also be considered.



1.3. THE MODEL FRAMEWORK

Petroleum engineers face a wide variety of optimization problems. Every
time a production strateqy is designed or a location for a well is chosen, a
decision problem has been solved. Yet it is surprising how rarely a formal
optimization technique is used to solve these problems. In fact, the word
optimization in the oil recovery industry is misused widely in the sense of
analyzing a few cases and choosing the best one. Perhaps the explanation
for this is that petroleum optimization problems are extremely difficult.
[...] However, with the improvement of computer modeling over time,
it is now becoming feasible to apply optimization techniques to address
several petroleum recovery issues.

As the calculations using the simplified production profiles can be done very effi-
ciently, uncertainty may be added to the framework using Monte Carlo simulation.
Thus, robustness and sensitivity analysis of different production strategies can be
performed. The proposed framework constitutes an important building block in
total value chain analysis, that may be incorporated in a full-scale analysis of a
project.

1.3 The model framework

1.3.1 Model and notation

A fundamental model assumption is that the potential production rate of oil from
a reservoir can be expressed as a function of the remaining producible volume,
or equivalently as a function of the volume produced. Thus, if Q(¢) denotes the
cumulative production at time ¢ > 0, and f(¢) denotes the potential production
rate at the same point in time, we assume that f(t) = f(Q(t)). This assumption
implies that the total producible volume from a reservoir does not depend on the
production schedule. In particular, if we delay the production from a reservoir, we
can still produce the same volume at a later time. We refer to the function f as the
potential production rate function or PPR-function of the reservoir. If a reservoir
is produced without any production constraint from time ¢ = 0, the cumulative
production function will satisfy the following autonomous differential equation:
dQ(t)

5 =1Qw), (1.3.1)

with the boundary condition ()(0) = 0. Due to various kinds of restrictions, includ-
ing possible time-dependent constraints, the actual production rate will typically be
less than or equal to f(t).

We consider oil production from n reservoirs that share a processing facility with
a constant process capacity of K units (typically kSm?) per day. Let Q(t) =
(Q1(t),...,Qn(t)) denote the vector of cumulative production functions for the
n reservoirs, and f(t) = (fi(t),..., fu(t)) be the corresponding vector of PPR-
functions. We assume that the PPR-functions can be written as

Fi) = [(Qit), t>0, i=1,...,n, (1.3.2)
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implying that the potential production rate of one reservoir does not depend on the
volumes produced from the other reservoirs. We will also assume that f; is non-
negative and strictly decreasing as a function of @Q;(¢) for all t and i = 1,...,n
These assumptions reflect the natural properties that the production rate cannot
be negative, and that reservoir pressure typically decreases as more and more oil is
produced. Finally, to ensure uniqueness of potential production profiles we will also
assume that f; is Lipschitz continuous in @Q;, ¢ = 1,...,n, see Dettman (1986) for
details.

A production strategy is defined by a vector valued function b = b(t) = (b1(t), ..., ba(t)),
defined for all ¢ > 0, where b;(t) represents the choke factor applied to the ith reser-
voir at time ¢,i = 1,...,n. We refer to the individual b;-functions as the choke
factor functions of the production strategy. The actual production rates from the
reservoirs, after the production is choked is given by

q(t) = (@ (t), -, (1),

where

a)= 0 _yp@), i=1.n (1.33)

We also introduce the total production rate function ¢(t) = Y ¢;(t) and the
total cumulative production function Q(¢) = I, Q;(t). To reflect that g and Q
depend on the chosen productions strategy b, we sometimes indicate this by writing
q(t) = q(t,b) ete.

To satisfy the physical constraints of the reservoirs and the process facility, we
require that

0<q(t) < fiQi(t), t=0, i=1...,n, (1.3.4)
and that .
H=> at)<K, t>0 (1.3.5)

Let B denote the class of production strategies that satisfy the physical constraints
(1.3.4) and (1.3.5). We refer to production strategies b € B as walid production
strategies.

For a given production strategy b € B the plateau length is defined as

Tx = Ti(b) = sup{t >0 : Zfz (1) > K} (1.3.6)

An admissible production strategy is defined as a production strategy b € B
satisfying the following constraint:

t) = Zq Zb (t)) = min{K, Zfl Qi(t) (1.3.7)

i=1

Moreover, we let B C B denote the class of admissible strategies.
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1.3.2 Objective functions

To evaluate production strategies we introduce an objective function, i.e., a mapping
¢ : B — R representing some sort of a performance measure. If b!, b € B, we prefer
b? to b' if ¢(b?) > ¢(b'). Moreover, an optimal production strategy with respect to
¢ is a production strategy b%' € B such that ¢(b°"") > ¢(b) for all b € B.

If b',b? € B are two production strategies such that Q(¢,b') < Q(¢,b?) for all
t > 0, one would most likely prefer b® to b'. Thus, a sensible objective function
should have the property that ¢(b') < ¢(b?) whenever Q(t,b') < Q(t,b?) for all
t > 0. Objective functions satisfying this property will be referred to as monotone
objective functions.

In general the revenue generated by the production may vary between the reser-
voirs. This may occur if e.g., the quality of the oil, or the average production cost
per unit are different from reservoir to reservoir. Such differences should then be
reflected in the chosen objective function. On the other hand, if all the reservoirs
are similar, we could restrict ourselves to considering objective functions depending
on the production strategy b only through the total production rate function ¢(-, b)
(or equivalently through Q(-,b)). We refer to such objective functions as symmetric.

In this PhD thesis we will often consider the following monotone, symmetric
objective function:

ben(b) = /O Y g > Cha(we Pidu, 0<C<K, R>0.  (138)

The parameter R may be interpreted as a discount factor, while C' is a threshold
value reflecting the minimum acceptable production rate. If we insert C' = 0 and
R > 01in (1.3.8), the resulting value of the objective function is simply the discounted
production. On the other hand if we insert C' = K in (1.3.8), the integrand is positive
only when ¢(u) = K. When R = 0 we obtain that ¢¢o(b) = ¢k ,0(b) = KTk(b). It
also follows from the definition of ¢c g in (1.3.8) and Tk in (1.3.6) that ¢ o(b) =
KTi(b) = 32, Qi(Tk (D).

1.4 A broad outline of the PhD project

Two of the most important profitability drivers in an offshore development project
are the available amounts of resources and their market prices. In this PhD thesis
we have devoted all the attention to the first driver. We start this section by briefly
discussing the rationale behind this prioritization. For a comprehensive discussion
of modelling of the oil price, see Lund (1997). Like many other financial variables,
the oil price is to a large extent driven by politics, macroeconomics and human
psychology. As illustrated in Section 1.1 these factors are complex. Furthermore,
they are to a large extent unpredictable and hard to quantify and incorporate in
our model framework. To obtain a complete model coverage of the financial risks
from a Norwegian perspective, currency risk and interest rate risk should also be
taken into account, complicating the modelling even further. The incorporation
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of all contributing factors in a complex problem as ours also introduces noise that
makes it harder to draw conclusions and learn something.

An underlying principle of this PhD thesis is that the available resources should
be produced as fast as possible. This issue is controversial, as the fluctuations in
the hydrocarbon market prices may have profound effects on the offshore project
profitability. In hindsight, if the Norwegian oil adventure were postponed, say 10 or
20 years, the revenues to the Norwegian State would undoubtedly have been much
larger. Here different stake holders may have conflicting interests. The Norwegian
State that represents the community may have a long-term perspective, while the oil
companies, having to stay attractive in the capital markets, may have a shorter-term
perspective.

The purpose of the following section is to present a broad outline of the PhD
project and the thread of the PhD thesis. Figure 1.2 illustrates how the four papers
are connected and their main themes. The first paper constitutes a building block
for the subsequent papers, which deals with multi-reservoir production. In the
second, third and fourth paper oil, water and gas flow from each reservoir to a
common processing facility. The processing facility is only capable of handling
limited amounts of oil, gas and water per unit of time. In order to satisfy the
resulting constraints, the production needs to be choked. In the second and third
paper we focus on single phase production optimization, meaning we consider the
production of a primary hydrocarbon phase - oil or gas. Multi-phase production
optimization of primary and associated hydrocarbon phases - oil, gas and water - is
treated in the fourth paper and in a forth-coming research project.

Paper I. The first paper focuses on the problem of constructing simplified
production models based on the output from a reservoir simulator. Such simplified
production models are a necessary component in the multi-reservoir production
framework developed in the subsequent papers.

Single Arps curves, introduced by Arps (1945) model the production rate function
and the cumulative production function mathematically through a one-way, causal
relation. In the first paper this approach is extended to multiple segments so that a
combination of Arps curves may be used to get a satisfactory fit to a specific set of
production data.

To also take into account various production delays, the dynamic two-way relation
between the production rate function and the cumulative production is modelled in
terms of a differential equation. The relation between the production rate function,
q, and the cumulative production function, @), should be of the following form:

at) = f(Qt)),  forallt>0, (1.4.1)

with Q(tp) = 0 as a boundary condition.

The differential equation approach can also be extended to the more general sit-
uation where the production rate function consists of s segments. For each segment
we assume that we have fitted a model in terms of a differential equation on the
form given in (1.4.1). In order to connect these segment models, we need to specify
a switching rule describing when to switch from one segment model to the next one.
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4 Case study

*Multi-phase production optimization

+Different ownership and commercial interests
*Can the interests of the different agents and the
community be aligned ?

) )

3 A parametric class of 2 A framework for multi-reservoir
production strategies for applied %"olth‘Ct('jon og’t'm'zat'o'l o of th

@ . . +*Solution depends on convexity or concavity of the
mu!tl—-restlervow production objective fun'::tion and the PPRy-functions. g
opt|m|zat|on *The performance of an admissible strategy is
Simplification of algorithm for finding the uniquely characterized by the state of the reservoirs
optimal production strategy le—| at the end of the plateau phase.
analysis of combinations of PPR *Two stepped algorithm for finding the optimal
functions, production strategy, where
*Adding of uncertainty +*Step 1 involves finding the optimal state of the
*Production rates are smooth and reservoirs at the end of the plateau phase,
interpretable, well suited for long-term +*Step 2 involves reaching the optimal state of
planning and feedback to reservoir the reservoirs. A backtracking algorithm is used
simulation team. for this purpose.

AN Z

1 Production profile models
+*Ordinary differential equations
*Multi-segmented approach, using
hybrid systems

Figure 1.2: An overview of the papers in the PhD project and how they are con-
nected. Papers that are foundations for other papers are indicated by a one-way
arrow. Papers that complement each other are connected with two-way arrows.

We define a switching rule based on the produced volume. By using this switching
rule, we obtain a model for the combined differential equation.

Uncertainty is added to the production model by modelling some of the key
parameters as stochastic variables. A large sample, N, of the key parameters is
generated, and every simulated vector of key parameters produces one simulated
production profile. A Monte Carlo simulation algorithm is thus developed.

Paper II. The second paper deals with single phase optimization from a theo-
retical point of view. A general framework for optimizing the production strategies
defined in Section 1.3.1 with respect various types of objective functions is devel-
oped. This paper brings much insight into the optimization problem and serves as
a pillar for later papers.

An important result in the paper is that the performance of an admissible strat-
egy is uniquely characterized by the state of the reservoirs at the end of the plateau
phase. Thus, finding an optimal admissible production strategy, is essentially equiv-
alent to finding the optimal state at the end of the plateau phase. Given the optimal
state a backtracking algorithm can then used to derive an optimal production strat-
egy.

To explain this, consider the set of all possible cumulative production vectors for
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the given field, denoted by Q:
Q=[0,Vi] x---x[0,V,], (1.4.2)

where V7, ..., V,, are the recoverable volumes from the n reservoirs. Furthermore, we
divide the hypercube Q in two subsets. In the plateau region the total production
rate can be sustained at plateau level, while in the decline region the total production
rate cannot be sustained at plateau level. Let b be any production strategy, and
consider the points in Q generated by Q(t) = Q(¢,b) as t increases. From the
boundary conditions we know that Q(0) = 0. By the continuity of the PPR-
functions, Q(t) will move along some path in the plateau region until the plateau
boundary is reached.

If b € B, the resulting path is said to be a wvalid path, while if b € B, the path
is called an admissible path. In general only a subset of the plateau region can be
reached by admissible paths. We refer to this subset as the admissible plateau region.
An admissible path will move along some path in the admissible plateau region with
a total production rate equal to K until the admissible plateau boundary is reached.

Decline Deciine
region L . region

Plateau
Plateau region

region

Figure 1.3: The plateau region and the decline region in two important cases. The
plateau boundary separating the plateau region and the decline region is marked with
a boldfaced line. The admissible plateau boundary is marked with the thickest line.
The dotted lines are iso-curves of the chosen linear objective function ¢xo. The
panel to the left illustrates the situation for convexr PPR-functions, while the panel
to the right illustrates the corresponding situation for concave PPR-functions.

Figure 1.3 provides an illustration of two important cases with two reservoirs,
ie., n = 2. We see from the figure that Q(t) will move along some path in the
plateau region, chosen to be admissible in both cases, until the plateau boundary is
reached. In both panels we have also displayed two paths, marked with semi-dotted
lines, that end up in the boundary of the admissible plateau boundary. Note that for
n = 2 the boundary of the admissible plateau boundary is simply two points in Q.
However, in higher dimensions this set is much more complex.

The panel to the left in Figure 1.3 illustrates the case of convex PPR-functions
and linear objective function. Since we assume that the production strategy does not
alter the producible volume of a reservoir, we will benefit from leaving the plateau
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region as late as possible, for this will imply that the decline phase will be as brief as
possible. Each chosen production strategy will have a specific state Q(Tk (b)) of the
reservoirs at the end of plateau phase for a chosen production strategy b, where the
plateau length Tk (b) is defined in (1.3.6). Imagine that we want to maximize plateau
production, so that the chosen objective function is ¢ o(b), where ¢¢ r(b) = ¢k o(b)
is defined in (1.3.8). Then we know that ¢xo(b) = D1, Q:(Tk(b)), as explained in
Section 1.3.2. Consequently the objective function is a hyperplane that will intersect
with the plateau region when the process Q(t, b) reaches the plateau boundary. The
later in time the hyperplane generated by ¢k o(b) = >_1; Q:(Tk (b)) intersects the
plateau boundary, the larger the plateau production. Consequently we want this
hyperplane to intersect with the admissible plateau boundary as late as possible, for
this ensures maximal plateau production and minimal decline production. From the
left panel we see that we can obtain a higher value of the iso-curves of the objec-
tive function when the iso-curves intersect the boundary of the admissible plateau
boundary. However, in the case of concave PPR-functions and linear objective func-
tion shown in the panel to the right, we will typically experience that the optimal
Q" is located in the interior of the admissible plateau boundary.

The two cases shown in Figure 1.3 constitute two main results, stated and proved
in the second paper. The first result states that if the PPR-~functions are convex
and we impose some mild restrictions on the objective function ¢, the optimal Q*
can be found within the boundary of the admissible plateau boundary. The extreme
points of this set correspond to a certain class of admissible production strategies
called priority strategies introduced in the second paper.

The second result treats the situation when the PPR-functions are concave and we
impose some other, mild restrictions on the objective function ¢. Then a solution to
finding the optimal state of the reservoirs at the end of the plateau phase typically
involves finding the separating hyperplane supporting the plateau region at the
optimal Q*. If the PPR~functions and the extended ¢-function are differentiable,
the standard way to solve this is by using Lagrange multipliers.

When the optimal @Q* lies in the interior of the admissible plateau boundary,
there is typically no unique production strategy that reaches the optimal state of the
reservoirs at the end of the plateau phase. Typically there will be many admissible
paths through the plateau region from 0 to Q*. In the second paper, when searching
for such a path, a backtracking algorithm is developed for this purpose.

Paper ITII. The general framework developed in the second paper is of funda-
mental importance in order to gain insight into the general production optimization
problem. However, the two-step optimization algorithm proposed in the second pa-
per has some weaknesses. First, the backtracking algorithm proposed to derive an
admissible production strategy to reach the optimal state at the end of the plateau
phase is not guaranteed to work. To understand why, note that in the first step
of the two-step optimization algorithm an optimum candidate @ = Q°" is found.
If the optimum candidate @ = Q! is located close to or in the boundary of the
admissible plateau boundary, the backtracking algorithm may not work. If the op-
timum candidate @ = QP is located in the valid, inadmissible plateau boundary,
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the backtracking algorithm will not work. Second, it may not be straight-forward to
find the optimal state at the end of the plateau phase. If the optimal Q* is located
in the boundary of the admissible plateau boundary, Lagrange multipliers may not
be used. Third, it may be of interest to analyze the robustness of selected produc-
tion strategies, including uncertainty in the framework for this purpose. It is not
obvious whether or how uncertainty can be included in the framework developed in
the second paper.

To address these issues a parametric class of admissible production strategies
is proposed in the third paper. Production strategies from the proposed paramet-
ric class reach all points in the admissible plateau boundary. Hence, an optimal
production strategy can always be found within the proposed parametric class.

A production strategy within the parametric class is defined assigning a fixed-
weight w; to each reservoir. The positive real number w; reflects the priority we aim
to give reservoir ¢. If w; > w; then reservoir ¢ is prioritized higher than reservoir
j. To ensure admissibility each w; must be multiplied with a function ¢(¢). To
avoid that the choke factors exceed one, the final choke factor for reservoir ¢ is given
by b;(t) = min{1, w;c(t)}. Strategies within this parametric class is referred to as
first-order fixed-weight strategies.

A weakness of first-order fixed-weight strategies is that they do not allow strict
priorities between the reservoirs. In an extension of the first-order fixed-weight
strategies, the reservoirs may be divided in groups, consisting of at least one ele-
ment each. In this extension the reservoirs from one group is given strict priority
before the reservoirs belonging to another group. The production within each group
is determined as explained above for the first-order fixed-weight strategies. A pro-
duction strategy of this form is referred to as a k-th order fized-weight strategy.

In the second paper it was proved that the performance of an admissible strategy
is uniquely characterized by the state of the reservoirs at the end of the plateau
phase. Thus, it follows that an optimal production strategy can be found within a
given class of admissible strategies provided that all points in the admissible plateau
boundary can be reached by members of this class. It turns out that all interior
points of the admissible plateau boundary can be reached by first-order fixed-weight
strategies. However, to reach the boundary points in the admissible plateau bound-
ary as well, higher-order strategies must be included. Fortunately, it can be shown
that by considering the combined class of fixed-weight strategies of all orders, it
is possible to reach all points in the admissible plateau boundary. Hence, an opti-
mal production strategy can always be found within the union of all the k-th order
fixed-weight strategies, where k = 1,...,n.

Given that the value of the objective function, ¢, is a continuous function of
Q(Tk (b)), it is easy to see that for each point Q* at the boundary of the admissible
plateau boundary and € > 0, there exists another point, @ in the interior of of
the admissible plateau boundary such that |¢(Q*) — ¢(Q)| < e. Hence, even if the
search for an optimal strategy is restricted to the first-order fixed-weight strategies,
it is possible to find a strategy which is approximately optimal, at least in princi-
ple. In order to approximate a higher order fixed-weight strategy by a first-order
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strategy, one can assign very high weights to the reservoirs in the set with highest
priority, and then use significantly smaller weights for the reservoirs in the sets with
lower priorities. However, if the optimal strategy is a higher order strategy, better
numerical results are obtained by searching among the fixed-weight strategies with
the correct order.

A numerical algorithm using standard numerical optimization techniques is de-
veloped to search for optimal production strategies. The framework is demonstrated
in some examples. Uncertainty is included in the model to enable robustness and
sensitivity analysis. The purpose is to discover how vulnerable the optimal strat-
egy is when exposed to uncertainty. If the optimal strategy is very vulnerable to
uncertainty, perhaps a more robust production strategy should be selected.

Paper IV. In the final paper the model framework of the first three papers
is extended and adapted to realistic production conditions. The extended model
framework facilitates production profile modelling and optimization of oil and gas
fields. A main field and satellite fields consist of several separate reservoirs with gas
cap and/or oil rim. A process facility on the main field receives and processes the
oil, gas and water from all the reservoirs.

The framework of the first three papers is extended to two-phase production
with varying primary hydrocarbon phase, i.e. the simultaneous production of oil
and associated gas from oil wells and gas and condensate from gas wells. Further-
more, the processing capacities are time-dependent, as will become evident from the
description below. To optimize the two-phase production the parametric class of
production strategies of the third paper is extended.

The available capacity is shared among several field owners with different com-
mercial interests. The satellite field owners negotiate process capacities on the main
field facility aligned with their interest. This introduces additional process capacity
constraints (booking constraints) for the owners of the main field. Thus, the interests
of the community may not be optimized by the individual field owners. If the total
wealth created by all owners represents the economic interests of the community, it
is of interest to investigate whether the total wealth may be increased by lifting the
booking constraints. If all reservoirs may be produced more optimally by removing
the booking constraints, all owners may benefit from this if appropriate commercial
arrangements are in place. We will compare two production strategies. The first
production strategy optimizes locally, at distinct time intervals. At given intervals
the production is prioritized so that the maximum amount of oil is produced. The
second production strategy is the extended version of the first-order fixed-weight
strategy introduced in the third paper.

The main focus of the paper is the modelling approach and the basic principles
for a modelling tool for general use in examination of production strategy effects on
multi-reservoir fields, with different and varying hydrocarbon phases, with individual
production constraints and priorities, different owners and with the functionality to
extend and cover multi fields integration in a regional / processing hub evaluation.

The article also highlights the importance of being aware of local and global
production optimization effects and the importance booking constraints may have.
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As an illustration a case study based on real data is presented.

1.5 Topics for future research - and a brief note on
real options

We now turn to describe some important topics we have not covered in this PhD
project. The framework often referred to as real options relies on that uncertainty
can be added into the model framework. The adding of uncertainty in a physical
model is complex, as will be briefly discussed in Section 1.6. In order to do this we
need to construct a stochastic model that accounts for the information we receive
as the reservoirs are produced. We denote such a model Z(t), ¢t > 0. It is important
that Z(¢) mirrors realistically how the uncertainty changes over time in light of what
we observe as the reservoirs are produced.

To be able to solve the stochastic optimization problem would be a ground-
breaking accomplishment. First, we would need a stochastic model Z(¢), ¢ > 0
that accounts for the information we receive as the reservoirs are produced. Such a
stochastic model could be constructed designing a statistical framework for model
calibration and uncertainty estimation for complex deterministic models inspired by
Larssen et al. (2006) and Kennedy et al. (2006), as explained in Section 1.6. Having
an appropriate stochastic model Z(t), ¢t > 0 we would turn to the problem of solving
the stochastic optimization problem.

Having developed this generic framework in this PhD project it is also of great
interest to use this framework in total value chain analysis. Examples of possible
applications could include:

e A field is being prospected for additional development. How should the infras-
tructure be designed? (Le, pipe line dimensions etc) How should investments
be timed? How should the segment be produced, i.e., phased in with the
remaining production?

e Capital expenditure decisions. Should a company upgrade the infrastructure
(i.e. pump equipment, production capacities, infrastructure flexibility, tech-
nology etc.) on a platform? Decisions can be made analyzing the trade off
between the cost and the improved functionality.

Although the case study in Paper IV is an example of an application of the frame-
work, it is of interest to study more examples and case studies. This would give a
more complete picture of the business relevance of the framework.

A model for Z(t) accounts for the information we receive as the reservoirs are
produced. This information gives the operator flexibility, which in turn generates
options. Such options are often referred to as real options. The framework of real
options relies on that the optimization problem may be decomposed into sequential
optimization problems that are solved recursively, as the framework of stochastic
dynamic programming, see Section 1.7, does. Since we have not constructed a model
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for the information process Z(t), as will be discussed in Section 1.6, this section is
mostly relevant for future research.

Real options have been studied extensively over the years but have not become
nearly as widespread in use outside the academic community as financial options.
Option pricing theory and contingent claims analysis offers an efficient framework
for the valuation of corporate assets and liabilities. Although the option pricing
models developed by Black & Scholes (1973) are founded on many simplifying and
unrealistic assumptions, this paper avalanched a myriad of papers discussing option
pricing problems. Black & Scholes (1973) designed their option pricing models
for the valuation of tradable assets. The real option community has applied the
framework of Black & Scholes (1973) on real investments treating them as real
assets, although these assets are not tradable. The lack of a liquid market for these
real assets may to some extent explain the lukewarm response to real options in the
business community.

Black & Scholes (1973) constructed a portfolio of tradable assets that replicated
the risk profile of the instrument of interest. In this way they constructed a portfolio
that was riskless for a short period of time. Dixit & Pindyck (1994) adopted this
framework and assumed the existence of spanning assets; i.e. they assumed that
there exits a complete market where all project cash flows may be replicated by
trading securities in the market. More formally, the securities market is complete if,
for every project ¢ there exists a replicating strategy [3, that generates cash flows
which exactly match the project’s future cash flows at all times and in all states. If
this assumption is realistic, it is thus possible to hedge all project cash flows for a
short period of time by purchasing tradable assets in the market. Then the portfolio
of interest also becomes risk-less for a short period of time, analogous to the risk-less
portfolio proposed by Black & Scholes (1973).

The crucial question then becomes whether such spanning assets can be found or
not. The answer to this question is closely related to the level of analysis. Bghren &
Ekern (1985) presents six levels for the analysis of an oil field development project
- The project, The company, The government income from trade, The trade, A
community portfolio at national level, A community portfolio at international level.
The project level possesses the greatest multitude of non-diversifiable risks, while the
international community level contains the smallest amount of non-diversifiable risks
in this framework. At project level, the uncertainty associated with the reservoir
volume, investment costs and maintenance costs represent risky cash flows that
cannot be mirrored by tradable assets in the market. At national community level,
however, it may be reasonable to assume that a well diversified portfolio of projects
and companies and trades only contains market risk. Since we are mainly concerned
with the project level, the assumption of spanning assets is not realistic for our
purpose. The cash flows of a reservoir cannot be replicated, since securitization of
a reservoir is not done in the finance industry today. But an even more important
provision for using the real options framework is an appropriate model for Z(t). In
this PhD project we have not developed such a model, as discussed in Section 1.6.

Some contributions related to oil field development projects are Bjerksund &
Ekern (1990), Ekern (1988), McDonald & Siegel (1986), Pickles & Smith (1993) and
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Pindyck (1980). PhD projects related to oil field development projects are Lund
(1997) and Jonsbraaten (1998).

Although option theory in its purest form may not be a good idea due to lack
of spanning assets, hybrid techniques exist. Such techniques combine Monte Carlo
simulation and the principles of dynamic programming, see Glasserman (2004) or
Longstaff & Schwartz (2001) for details. For an introduction to real options in the
energy industry, see Ronn (2002).

1.6 The modelling of uncertainty in a physical model

In this PhD thesis ordinary differential equations represent the potential production
of each reservoir using hybrid systems, see Liberzon (2003) for an introduction. In
the field of hybrid systems theory about dynamic systems, applied in engineering
and physics, is combined with stochastic modelling. For applications of hybrid
systems see Bernadsky et al. (2004), Glover & Lygeros (2004) or Koo et al. (1997).
In our application we have deterministic models of every reservoir in the large oil or
gas field. In reality there is considerable uncertainty associated, as the producible
volume of a reservoir is unknown. There will also be random factors affecting the
production, such as bad weather, need for work-overs etc.

As mentioned in Section 1.5, uncertainty can be added into the model framework
introduced in Section 1.3.1 specifying a stochastic model Z(¢), ¢ > 0 that accounts
for the information we receive as the reservoirs are produced. If our stochastic
process were a Markov process, the framework of stochastic differential equations,
see Oksendal (2003), could be used to add uncertainty to deterministic differential
equations. The Markov property states that at any times s > t > 0, the conditional
probability distribution of the process at time s given the whole history of the process
up to and including time ¢, depends only on the state of the process at time ¢. In
effect, the state of the process at time s is conditionally independent of the history
of the process before time t, given the state of the process at time ¢. See Taylor &
Karlin (1994) for details on Markov processes.

Unfortunately most of the process models we have been working with will rarely
be Markov processes. To understand this intuitively, consider a simple example con-
sidering production from a single reservoir. First we assume that the only stochastic
variable is the producible volume V', and that the production rate is deterministic
and constant and equal to ¢q. With this model we have produced gt after ¢ units of
time have passed. Assume that our prior knowledge of V', i.e. the knowledge of the
geophysicists and other experts before production begins, can be quantified in the
probability distribution G so that

G(v) = Pr(V > v), (1.6.1)

heuristically referred to as the survival distribution of V. When we have produced
in ¢ units of time without interruption we know that V' > ¢t. The conditional
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distribution for V' at time ¢ can be found by
G)
G(qt)’

Then we consider the the process {Q(¢) : ¢ > 0}. Note that due to the special
properties of the process we will always have that

Pr(V >vlV >qt) = for v > qt. (1.6.2)

0<Qt)<gqt, t=>0. (1.6.3)
We also have that

Pr(Q(t) = qt) = Pr(V > qt) = G(v)
Pr(Q(t) > S)=Pr(V>5)=G(S), for 0 < S < ¢t.
(1.6.4)
In this simple, unrealistic and artificially stylized example {Q(¢) : t > 0} is in fact a

Markov process. To examine this closer let 0 < u < s be two points in time. Then
we have that

PrQ(s) = aslQ) = ) = G,
PrQ(s) > SIQ() = au) = Gk, for qu< S <as
Pr(Q(s) > S|Q(u) = qu) =1, for 0< S <=qu,

Pr(Q(s) =5|1Q(u) =85) =1, for 0< S <qu.
(1.6.5)

In this case we know the whole history of the process if we know Q(u), which makes
life very simple. If Q(u) = qu we know that the production is still running, but if
Q(u) = S < qu we know that the production has stopped, and that it happened at
time ¢t = %

What if ¢ were stochastic ? In that case knowledge of Q(u) would not be enough to
decide whether the production is running at time u. If we had additional knowledge
about Q(v) for a given v < w, this would clearly change the conditional distribution
of Q(s). For instance, if Q(u) = Q(v), this would imply that the production actually
has stopped, which again leads to Q(u) = Q(s) with probability 1. If we were to
assume realistically that ¢ and V' were stochastically dependent, the complexity of
this example increases even further. This example shows that we cannot expect
that {Q(t) : t > 0} is a Markov process in the general situation. Already when ¢ is
stochastic this breaks down.

In the framework of stochastic differential equations, a consequence of the model
framework is that changes in the stochastic process are viewed as stochastic vari-
ables. Thus we get a collection of infinitely many stochastic variables when we
observe such a process over a time interval. A typical application of this frame-
work is in mathematical finance, where the underlying process for example may be
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a share or another asset. A physical process like the depletion of a natural resource
reservoir can not be modelled using this framework. In our application production
is modelled using ordinary differential equations. We do not regard infinitely many
stochastic variables, but only a few variables describing the physical properties of
the reservoir. As time passes and the reservoir is produced, we get more and more
information about these variables.

Although we do not have a Markov process, it is possible to design a statistical
framework for model calibration and uncertainty estimation for complex determin-
istic models, see Larssen et al. (2006) and Kennedy et al. (2006). In Larssen et al.
(2006) a deterministic model is combined with a stochastic model for the observed
output data. Then Markov Chain Monte Carlo (MCMC) techniques, see Gilks et al.
(1996), are used to estimate all unknown parameters using Bayesian computations.
For an introduction to Bayesian statistics, see Berger (1985). Prior probability dis-
tributions then have to be specified for the input parameters and for the likelihood
functions for the output data. The posterior distributions are calculated by running
the deterministic model repeatedly with parameters and data and allow the impact
of the uncertainty on model results to be explicitly shown.

1.7 Canonical optimization methodology

In the early phases of this PhD project we considered using some of the canonical
optimization techniques available in the literature. When experimenting with these
techniques we encountered problems, and we found that they were not so well-suited
for our application.

The calculus of variations, see Lebedev & Cloud (2003) or Wan (1995), is a clas-
sic optimization technique that is used for Lagrange’s equations of motion. Using
the calculus of variation representation leads to a set of differential equations. From
paper II we recall that the performance of an admissible strategy is uniquely charac-
terized by the state of the reservoirs at the end of the plateau phase. Thus, finding
an optimal admissible production strategy, is essentially equivalent to finding the
optimal state @* at the end of the plateau phase. When the optimal Q* lies in the
interior of the admissible plateau boundary, there is typically no unique production
strategy that reaches the optimal state of the reservoirs at the end of the plateau
phase. Typically there will be infinitely many admissible paths through the plateau
region from 0 to Q*. In fact, it is only when @Q* belongs to the extreme points
of the boundary of the admissible boundary that the admissible path through the
plateau region from 0 to Q* will be unique. Thus, if the set of differential equa-
tions produced by the calculus of variation representation exists, the solution will
not be unique when the optimal Q* does not belong to the extreme points of the
boundary of the admissible boundary, i.e., in most cases. There may be infinitely
many solutions to the set of differential equations in this case. This is problematic.
Thus we believe that it could be problematic to use calculus of variation to solve
this optimization problem.

Bellman (1972) applied the calculus of variation to optimal control theory, see
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Zabczyk (1992), and hence developed the theory of dynamic programming and
stochastic dynamic programming. An optimal control is a set of differential equations
describing the paths of the control variables that minimize the cost functional. Dy-
namic programming, see Bellman (1972) or Bertsekas (2005), deals with sequential
problems that are solved recursively. Formulating the problem using the Bellman
equation, see Bellman (1972), the method of backwards induction can be used to
solve the problem. Backwards induction can be solved analytically or numerically
on a computer. We conjecture that the discovery of an analytical solution to the
Bellman equation would be impeded by the same difficulty as we experienced with
calculus of variation, i.e, that the solution will not be unique when the optimal Q*
does not belong to the extreme points of the admissible plateau boundary. There-
fore we would have to resort to numerical solutions to the backwards induction.
Experiments have indicated that this is unfeasible when the number of reservoirs
exceeds 3, due to the curse of dimensionality, see Miranda & Fackler (2002) or Meyn
(2007). Furthermore, this simulation time will increase dramatically as we increase
the number of reservoirs, n. Clearly, this computer performance is not satisfactory
when we want to analyze examples with n being equal to 10, 20 or even more.

Stochastic dynamic programming represents the extreme form of changing the
course as new, relevant information arrives. To make this framework work, we need
a stochastic model for the information process Z(t), ¢t > 0. To our knowledge it is
problematic to use stochastic dynamic programming if the information process Z(¥)
cannot be modelled using a Markov process. As explained in Section 1.6 we do not
believe that Z(t) can be modelled with a Markov process.

1.8 A brief description of the prototype

A prototype for numerical simulation and analysis has been developed. Our ambi-
tion has been to develop a prototype that may be used as a simulation laboratory.
The prototype is written in Java, using the freely available workbench Eclipse as a
development tool.

Object-oriented programming has been used, and Figure 1.4 shows an overview
of the most important features of the object structure. In panel 1 we see the ob-
ject structure of the ordinary differential equations, introduced as PPR~functions in
Section 1.3.1in (1.3.2). The single phase case is modelled through the object 'Prod-
DiffEq’, which is a subclass of the superclass "AbstractDiffEq’, which in turn imple-
ments the interface 'DiffEq’. Every production profile, denoted 'Profiles’ in panel 1,
can consist of any finite number of segments, i.e., ’Segments’, see paper I for details.
The capacities and regularities of every reservoir also have an object-oriented struc-
ture. The multi-phase case is modelled through the object '"MultiProdDiffEq’. Note
that the object structure is different in the single phase and multi-phase case. In the
single-phase case we operate with an array of profiles, capacities and regularities. In
the multi-phase case every reservoir is an object inside "MultiProdDiffEq’.

The production strategy b € B defined in Section 1.3.1 is evaluated through the
use of modifiers, denoted 'PreModifier’ in panel 1. Any modifier is itself an object,
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Figure 1.4: An overview of important features of the object-oriented structure in the
prototype.

visualized in panel 3. In particular, a specific production strategy is defined through
a constraint, which is a child of the superclass ’AbstractModifier’. In panel 3 this
is exemplified by the modifier "Priority Constraint’ corresponding to the class of
production strategies referred to as priority strategies, see paper 11 for a definition.

At any given point of time, ¢ > 0, the vector of cumulative production Q(t)
is updated using a specific solver. We have implemented two standard numerical
differential equation solvers, i.e., Euler’s method and Runge Kutta’s 4-th order
method. This is visualized in panel 2. Thus the object 'DiffEq’ in panel 1 is linked
to the solver by being defined as an object inside the particular solver, see panel 2.

The analysis of specific numerical examples is facilitated through the use of XML-
files. The structure of the XML-files follows the object structure of the prototype.
All relevant objects, i.e. , field information, choice of solver, modifier and the number
of phases are specified in the XML-files. The objects are then created in the program
when the XMI-files are read.
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Multisegment production profile models, a
hybrid systems approach

Abstract

In the development phase of an oil or gas field, it is crucial to have a satisfactory
model for the production. Since the first attempts in the 1940’s, many different
models have been developed for this purpose. Such a model typically incorporates
knowledge about the properties of the reservoir. When used in a total value chain
analysis, however, also economic and strategic factors need to be taken into account.
In order to do this, more flexible modelling tools are needed. In this paper we
demonstrate how this can be done using hybrid system models. In such models
the production is modelled using ordinary differential equations representing both
the reservoir dynamics as well as strategic control variables. The approach also
allows us to break the production model into a sequence of segments. Thus, it
is possible to represent various discrete events affecting the production in different
ways. The flexibility of the modelling framework makes it possible to obtain realistic
approximations to real-life production profiles. As the calculations can be done
very efficiently, uncertainty may be added to the framework using Monte Carlo
simulation. The proposed framework constitutes an important building block in
total value chain analysis, that may be incorporated in a full scale analysis of a
project. In such an analysis revenues, costs and investments are modelled to obtain
assessments of project profitability and different strategies. As the focus of the
present paper is on production profile modelling, such a full scale analysis will not
be done here.
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systems, Monte Carlo simulation, Ordinary differential equations
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2.1 Introduction

Estimating reserves and predicting production in oil and gas reservoirs has been
studied extensively over many years. Many different models and methods have
been suggested. A popular technique is the decline curve analysis approach. This
dates back to the pioneer paper by Arps (1945) where the exponential, hyperbolic
and harmonic curves were introduced. More recent papers considers other types of
decline curves, and attempt to model the relation between the parameters of the
curves and geological quantities, see e.g., Li & Horne (2003), Li & Horne (2005), Li
& Horne (2006), and Marhaendrajana & Blasingame (2001).

The purpose of the present paper is to develop production models that can be used
in the broader context of a total value chain analysis. In a total value chain analysis
the reservoir geology may be described by structure models, sedimentary models
and saturation models. Stochastic models, combined with reservoir simulation, are
applied to estimate the quantitative measures Stock Tank Original Oil In Place,
Original Gas In Place and the Recovery Factor of the reservoir. The geological
models and the quantitative measures are crucial to assess the quality, nature and
prevalence of the oil resources in the reservoir.

The knowledge gathered from sample drilling, seismic surveys and other anal-
yses is assembled and quantified in a full-scale reservoir model. The performance
of the reservoir is assessed using some reservoir simulation software. These tasks
are executed by geologists, geophysicists, petroleum engineers and other specialists.
The output from a full-scale reservoir simulation includes oil production profiles and
important performance measures such as Gas-Oil Ratio and Water Cut. Produc-
tion profiles for gas- and water production may be derived from these performance
measures.

In the present paper, we will assume that the properties of the reservoirs described
above have already been assessed. We will also assume that a full-scale reservoir
simulation has been performed and that output from such a simulation is given. A
flexible modelling environment will be developed where these assessments can be
utilized. Thus, we will focus more on the mathematical and numerical aspects of
the modelling. This environment is intended to be used in the context of a total
value chain analysis where economic and strategic factors are taken into account as
well. We will focus on one-phase production, i.e., oil production only. Multi-phase
production, where oil production, gas production and water production are modelled
simultaneously, is left for future work.

Execution time performance is an important issue in total value chain analysis.
Usually, a simulation in a reservoir simulator takes hours, or even days. In the
context of a total value chain analysis, where uncertainty should be incorporated,
such execution times are unacceptable. Optimization problems, which also require
low simulation execution time, are also relevant in total value chain analysis. For a
discussion of total value chain analysis, see Huseby & Brackken (2000).

The perspective of the present paper is early phase analysis, done before produc-
tion data are present. In the presence of production data many related problems
may be studied using history matching of production data, see e.g., Liu & Olivier
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(2004), Floris & Peersmann (2000) or Naevdal et al. (2005). These related problems
will not be studied here. For a literature review of history matching, see e.g., Liu
(2001).

The present paper presents three contributions to production profile modelling:

e Production profiles are modelled using a multisegment approach where the
production profile is decomposed into a combination of decline curves, one for
each segment. This enables a satisfactory fit to the output from the reservoir
simulation.

e The production is modelled using ordinary differential equations representing
both the reservoir dynamics as well as strategic and economic control vari-
ables. This representation enables us to incorporate various types of delay
in production in the framework. At the same time the calculations can be
done very efficiently, so that the execution time remains acceptable even when
uncertainty is incorporated into the framework.

e In the proposed framework multiple production profiles are easily analyzed,
and many optimization problems may be studied. In this paper we will study
subfields that share a central process facility. Due to capacity constraints of
the central process facility, the operator needs to prioritize the production of
the subfields.

The paper starts out in Section 2.2 by reviewing the classical decline function ap-
proach developed by Arps (1945). We then extend the basic production profile func-
tions to multisegment production functions in Section 2.3. In Section 2.5 production
profiles are modelled as differential equations. Finally, the modelling of multiple pro-
duction profiles is the topic of Section 2.6 before the conclusion is reached in Section
2.7.

2.2 Basic production profile functions

In the following models we assume that the production starts at a given time 5. We
denote the production rate at time ¢t > ¢y by ¢(t), and the corresponding cumulative
production function at time ¢t > ¢y, by Q(t) = fti q(u)du.

The classical decline functions introduced by Arps (1945) are characterized by
parameters describing the initial production rate, ro > 0, scale, D > 0, and shape,
b. Key functions and properties of the classical decline functions are summarized in
Table 2.1, see Huseby & Haavardsson (2007) for more details. Note that the expo-
nential decline curve (b — 0) and the harmonic decline curve (b = 1) are special cases
of the hyperbolic decline curve. If the integral Q(¢) = ftz q(u)du converges as t — 00,
it is possible to compute ultimate recovery volume, i.e. cumulative production if the
production is allowed to continue forever. The expression lim; ... Q(t) denotes ul-
timate recovery volume. Normally, however, the production is stopped when the
production rate reaches some suitable cut-off level, say r. < ry. We can find the
time point when this happens by solving the equation ¢(t) = r. with respect to ¢.
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Table 2.1: Key functions and properties for Arps decline curves.

The solution is denoted t.. By inserting t. into the expression for Q(¢) = ft; q(u)du
we get what we refer to as the technical recoverable volume, denoted by V,.. Due
to economic considerations, the actual recovered volume may be smaller than this
number. In this setting, however, we focus only on technical recoverable volumes.
By changing the scale parameter D we obtain course changes in the steepness of
the decline in the production rate function. Higher (lower) values of D yield steeper
(flatter) decline in the production rate function. A fine tuning of the shape of the
production rate function is obtained by changing the shape parameter b.

2.3 Multi-segmented production functions

2.3.1 Model framework

KSm3/month
12

10.00

Months

Figure 2.1: Monthly production profile

While the Arps decline curves covers a broad range of cases, these curves should
be used with considerable caution. Camacho & Raghavan (1989) emphasize that in
many cases one single Arps curve is not sufficient to obtain a satisfactory fit, as the
production data span the entire set of curves. Thus, in many situations it may be
necessary to use a combination of curves to get a satisfactory fit. Figure 2.1 shows
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an oil production profile from a real-life field. The curve was produced using a full-
scale reservoir model. As one can see, the curve consists of several clearly separated
segments with quite different characteristics. In order to get an acceptable fit to
this curve, the curve was divided into as many as 7 segments.

To proceed it is sensible to formalize our concept of fit. Introduce Qg (t) and
Qapp(t), where Qg (t) denotes cumulative production from the production curve
generated by the reservoir simulator and (q,(t) represents cumulative production
from our approximation of the production curve from the reservoir simulator. We
require that the distance between the simulated cumulative production and the
approximated cumulative production should not exceed some threshold, i.e.,

‘Qsim(t) - Qupp(t)‘ <§¢ (2'3'1)

for t € {to,to +9,...,T. — 0, T.}, for some chosen threshold ¢ > 0, and where ¢,
denotes the production start, T, denotes the time point for technical cut-off and
§ represents a chosen resolution parameter. Note that the resolution parameter §
and the threshold e are positively correlated, so hence a courser resolution yields
a higher threshold. A sensible specification of the threshold e¢ and the resolution
parameter § depends on the context in which the framework is applied. In general
¢ and e should not be selected too small for two reasons. First, the segmentation of
the production curve is approximating the output from a reservoir simulator before
production starts. The output we try to approximate is consequently a prediction
of the production. This prediction will most likely change as our knowledge of the
reservoir increases. A high degree of scientific accuracy in the segmentation of the
production curve will not remove the uncertainty associated with the output from a
reservoir simulator before the production commences. Second, in many applications
too small values of € and § would not be sensible. In total value chain analysis a
course resolution, such as § = 1 year, is sufficient.

For a given threshold € and a given resolution parameter § we then assess the
number of segments, as described in detail in Huseby & Haavardsson (2007). If our fit
criterion stated in (2.3.1) were defined as the difference in instantaneous production
instead of cumulative production, it could lead to an erroneous recoverable volume.
To see why, the absolute difference in instantaneous production could be less than
e for all t € {to,to + 0,..., T, — §,T.}, but at the same time the approximated
production curve could be systematically too high, systematically too low or both.

2.3.2 Stochastic simulation

A Monte Carlo simulation approach is used in the stochastic simulation. Uncer-
tainty is added to the production model by modelling some of the key parameters
as stochastic variables. A large sample, N, of the key parameters is generated, and
by following Algorithm 2.3.1 described below, every simulated vector of key param-
eters produces one simulated production profile. Using this approach, we obtain
a sample of N simulated production profiles. Thus we only need one simulation
from the reservoir simulation software. Input for the uncertainty distributions of
the stochastic variables are provided by industry experts.
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When uncertainty is added to a production model, using a Monte Carlo simula-
tion, the generated production functions may differ considerably from the one used
in the curve fitting. In principle, the simulation could describe the uncertainty of
all the segment parameters, including the number of segments and the shape pa-
rameters for the segments. It is important that the simulated production functions
behave essentially like real-life functions. To obtain this we assume that the num-
ber of segments, s and the shape parameters for the segments, by, ..., b,, are kept
constant during the simulations in the following discussion.

The main source of uncertainty is typically the segment volumes. Thus, to assess
the production uncertainty, we start out by specifying a suitable joint distribution
p(Va,...,V;) for Vi, ..., Vi. We proceed by specifying a conditional joint distribution
p(ro, 71, ... ,7s|Va, ..., V;) for the rates at the segmentation points rg, 1, . . ., r's, given
the segment volumes. Given all these quantities, the scale parameters Dy, ..., D;
can be found. The point in time when the production starts, ¢y, may be subject to
uncertainty related to the progress of the development project, drilling activities etc.
Thus, one will typically assess a separate uncertainty distribution for this quantity.
The remaining segmentation points, t1,...,ts, are found by exploiting relationships
between t;_1, D;,b;, r;i—1 and r;, see Huseby & Haavardsson (2007) for details. A
Monte Carlo simulation of the production can then be done using the following
procedure:

Algorithm 2.3.1. STEP 1. Generate Vi, ...,V using the specified joint distribu-
tion.

STEP 2. Generate ro,71,...,7s using the specified conditional joint distribution.
STEP 3. Calculate D, ..., D;.
STEP 4. Generate to, and calculate ty, ..., t,.

STEP 5.  Calculate q(t) and Q(t).

2.4 A joint distribution framework for Monte Carlo
simulation

We now want to explain in detail how production uncertainty can be modelled using
the multi-phased production functions. In particular, the algorithm constructed in
Section 2.3.2 is based on the approach explained below. We begin by considering
volume uncertainty. To obtain consistent and reasonable results it is important to
maintain control over the total reservoir volume, denoted by V. Thus, it is often
convenient to start out by assessing an uncertainty distribution for this volume. The
segment volumes are then obtained as fractions of V. That is, we have:
Vi=K;-V, i=1

s, (2.4.1)

geeey
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where K; = V;/V denote the fraction associated with the ith segment, i = 1,...,s.
The joint distribution of K, ..., K must be chosen so that Pr(}.;_, K; = 1) = 1.
A simple way of constructing such a distribution is to start out with s independent
nonnegative random variables, Kl, .. Ks7 and then obtain Ki, ..., K, by normal-
izing the K;s so that their sum becomes 1. That is, we define:

Ki=——'"  i=1,.s. (2.4.2)

Zj’:l KJ' /

This construction ensures that Pr(}";_ K; = 1) = 1 regardless of the distributions of
the K;s. Thus, one has a large variety of distributions to choose from. In particular,
it is well-known that if K; is Gamma distributed with shape parameter a; and scale
parameter 3, for i = 1,...,s, the resulting joint distribution of Ki,..., K, is a
Dirichlet distribution with parameters a4, ..., a,. For more on this see e.g., Gelman
et al. (1995).

Alternatively, one can use a recursive approach where each segment volume is
defined as a fraction of the remaining volume. That is, let By,...,Bs_1 be s —
1 independent random fractions, i.e., random variables with values in [0,1]. For
convenience we also introduce B, = 1 reflecting that the last segment volume should
always be equal to the remaining volume when all the other segment volumes are
subtracted from V. We can then define the segment volumes recursively as follows:

Vi=B-(V=Y_V;), i=1...s (2.4.3)

By expanding the recursive formula the following alternative nonrecursive formula
can be obtained:

Vi=B[[0-B)-V, i=1,..,s (2.4.4)

By comparing (2.4.1) and (2.4.4) it follows that the relationship between the K;s
and the B;s can be expressed as:

(2.4.5)

V)

Alternatively, by inserting (2.4.1) into (2.4.3) and solving for B; we get the following
inverse relation:
K; .
B; = — 1=1,...,s. (2.4.6)
1= K;

Note that since By = 1, it follows that:

K,=1-)Y Kj (2.4.7)
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or equivalently that Z‘;:l K; =1 as before.

Assuming that B; has a density f; on [0,1], for i = 1,...,s—1, the resulting joint
density of Ki,..., Ks_1, denoted g(Kj, ..., Ks_1), can be found using the standard
change-of-variable formula. Noting that the Jacobian of the inverse transformation
(2.4.6) is triangular, it follows that g is given by:

g(Kq,..., K Hf’<1§21K> 172111[( (2.4.8)

Assume in particular that B; is Beta distributed with parameters «; and 3;, i =
1,...,s — 1. Then it follows that:

g(Ky,. .., 510(1_[(1_211}() X

(1_23 fK) ’ L (2.4.9)
-y k) 1-yK

where the normalizing constant is the product of the standard Beta distribution
normalizing constants. By rearranging the terms it is easy to see that (2.4.9) can
be written as:

s—1
o [T

=1
Bs—1—1

(2.4.10)

5—2 i s—1
H(l _ ZKj)ﬁi—(aiﬂ-Fﬂiﬂ) 1= ZKj
i=1 j=1 j=1

Inserting Ky =1 — ij K; and oy = fB,—1, the density becomes:

g(Ky,... K,) x [ﬁKﬁ‘il] X
{H (1— ZK )Bi= t+1+ﬂz+1>] . (2.4.11)
=1

In particular if §5; = a1 + ﬂi+1,i =1,...,8 — 2, we see that Kj,..., K, once
again becomes Dirichlet distributed with parameters aq, ..., as. This special case
is a well-known result as well. See Gelman et al. (1995) for more details. In the
following, however, we will not impose these restrictions on the parameters of the
Beta distributions and instead use the more general distribution given in (2.4.11).

We then turn to modelling production rate uncertainty, i.e., the joint distribution
of rg,71,...,7s. Since the production function is assumed to be strictly decreasing,
this distribution must be chosen so that ry > r; > --- > r, with probability one.
A simple way to accomplish this is to introduce random fractions C4, ..., Cs with
values in [0, 1], and use the following multiplicative model:

i :Cq‘,'T',;,l, 1= 17...78. (2412)
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If C4,...,C, are independent, the r;s will form a discrete time Markov chain.
In addition to this we need to specify a suitable distribution for ry. In general it
may also be of interest to incorporate some sort of (typically positive) dependence
between the r;s and the segment volumes. In many cases, however, it may be
sufficient to include dependence between V' and 7.

2.5 Modelling production delays and random effects

2.5.1 Basic production profiles

In the previous sections we started out by fitting the production rate function, and
then used this as the basis for calculating the cumulative production function. Since
the Arps functions are easy to handle analytically, all the necessary calculations
can be done very efficiently using explicit integration formulas. This is especially
convenient when the production model is part of a Monte Carlo simulation model. As
demonstrated in the previous section, it is easy to incorporate reservoir uncertainty
into the model, and still keep the overall structure.

In many cases, however, this approach becomes too static. Having a production
model with a fixed number of segments, makes it difficult to incorporate various types
of production constraints, random irregularities in the flow, maintenance operations,
etc. An important observation is that such external factors tend to affect the short
term production rate, but not the ultimate recoverable volume. Thus, if a well
has to be shut down temporarily for maintenance, the total volume produced from
this well may still be the same. The consequence of the operation is that the
production is delayed. In order to incorporate external factors into the model, we
need to include both the short term effect (the reduced production rate due to the
maintenance operation), as well as the long term effect (the delayed production).
In principle it is possible to model such effects by modifying the production rate
function. However, it turns out to be much easier to do this by establishing a feed-
back loop between the production rate and the cumulative production. That is,
instead of modelling a simple one-way causal relation from the production rate to
the cumulative production, we model the dynamic two-way relation between these
two functions in terms of a differential equation. We will do this in two steps. In
the first step we model the internal relation between the production rate and the
cumulative production assuming no external factors, while in the second step we
modify the internal relation by including external effects.

In general one can argue that the internal relation between the production rate
and the cumulative production is essentially time independent, if we disregard the
need to specify the production start. Thus, if t; denotes the point in time when
the production starts, the relation between the production rate function, ¢, and the
cumulative production function, @, should be of the following form:

q(t) = f(Q(t)), for all t > ¢, (2.5.1)

with Q(tg) = 0 as a boundary condition. Provided that the function f satisfies
the well-known Lipschitz condition, there exists a unique solution to (2.5.1). See
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Dettman (1986) for details about this. A differential equation of the form given in
(2.5.1), where the function f depends only on @, is called a first order autonomous
differential equation. Using standard numerical differential equation solvers, like
Runge-Kutta’s 4th order method, it is very easy to calculate the resulting production
rate and cumulative production regardless of the function f. For details see Kloeden
et al. (2003). Thus, this formulation allows us to work with many different functions.
However, since the reservoir pressure falls as the reservoir is emptied, the function f
will typically be a decreasing function. The results of the detailed deductions stated
in Huseby & Haavardsson (2007) are summarized in Table 2.2.

Type of Production Relation
decline curve function function f(Q(¢))
Hyperbolic | ro[1 + bD(t — to)] ="/ | 7o{1 — L:O_b)Q(t)}l/“*b)
Exponential | roexp(—D(t —t,)) ro{l — %Q(t)}
Harmonic ro[l + D(t — to)] ™ o exp{—%ow}

Table 2.2: Key functions and properties for Arps decline curves.

2.5.2 Multi-segmented production profiles

The differential equation approach can also be extended to the more general situation
where the production rate function consists of s segments. For each segment we
assume that we have fitted a model in terms of a differential equation. As before
we denote the production rate function and the cumulative production function for
the ith segment by ¢; and Q; respectively. Moreover, we assume that the relations
between these functions are given by:

gi(t) = fi(Qi(t)), fori=1,...,s. (2.5.2)

In order to connect these segment models, we need to specify a switching rule de-
scribing when to switch from one segment model to the next one. Such a switched
system is a special case of so-called hybrid systems. For an introduction to switched
systems, see Liberzon (2003). One possible way of specifying a switching rule is to
calculate the switching points, 1, ..., ts as we did in the previous section, and then
switch from model to model as we pass these points. This is called a time-dependent
switching rule. In our case it turns out to be more convenient to use the state of
the process, represented by the cumulative volume as a basis for the switching rule.
This is called a state-dependent switching rule. As in the previous sections we denote
the volumes produced in the s segments by Vi, ..., V; respectively. Moreover, the
production rate function and the cumulative production function of the combined
profile are denoted by ¢ and @ respectively. The switching rule, o : Rt — {1,..., s},
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maps the state value, @, onto the corresponding segment index, and is given by:

I f0<Q<W

@) =3 k if Y Vi<Q<Y Vi (2.5.3)

s Y Vi<Q< YLV

By using this switching rule, the combined differential equation can be written as:

1= fa@@— D Vo). (2.5.4)

i<o(Q)

To summarize this section, we have shown that all the models introduced in the
previous sections can be described equivalently in terms of differential equations. In
itself this reformulation does not simplify anything. In fact, it does not make much
sense to use this approach at all whenever exact, explicit solutions, like those pre-
sented in the previous sections, are available. The main advantage of the differential
equation approach is that it allows us to model complex interactions between the
pure production models and other models affecting the production in various ways,
and still keep the physical relation between the production rate and the cumula-
tive production intact. We will illustrate how this can be done, by considering an
example.

2.5.3 An example: Deterministic calculations and stochastic
simulations

Assume that we have fitted a production model in terms of a differential equation
in the form (2.5.1), as done above. In the following we will refer to the function
f as the state-dependent part of the production model. In a real-life situation the
production rate may be affected by other factors as well. One such factor may be
the ability of each well or well cluster to produce oil. In this paper we refer to
this ability as the deliverability function and it represents the subfield’s aggregated
ability to produce oil. The deliverability function depends on parameters such as
pipe dimensions from the wells to the central process facility. The deliverability
function is typically not a function of the production state, but rather a function
of time. We let d(¢) denote the deliverability function at time ¢ > #. A model
combining both the state-dependent part and the deliverability can then be written
as:

q(t) = min(d(t), f(Q(¢))), for all t > t,. (2.5.5)

In principle any nonnegative, measurable function can represent the deliverability
function. As long as f satisfies the Lipschitz condition, so will the combined function.
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Normally, a typical deliverability function would be a step function representing the
combined production capacity from the available wells at a given point in time. Each
time a well is put in production, the deliverability increases, while each time a well
drops out, the deliverability decreases.

Ksmaday Ksm3
1 8250

8 6600
6 4350
4 3300

2 1650

o 500 1,000 1500 2,000 2500 o 500 1,000 1,500 2,000 2500
Days

Figure 2.2: The production rate (left panel) and the cumulative production function
(right panel) for different choices of the deliverability function. In both panels the
green curve represents the situation when the wells are put in production sequentially,
the blue curve represents the situation when all the wells are put in at the production
start, and the red curve represents the case of the unrestricted production profile.

In the simplest cases the deliverability function can be modelled as a deterministic
step function. As an example consider the deterministic production function with
parameters as listed in Table 2.3. We then combine this state-dependent function
with a deterministic deliverability function. The deliverability function is partitioned
into four segments. We consider a situation where the wells are put in production
sequentially, and never drops out. The beginning of each segment corresponds to
the point in time when a new well is put in production. Thus, the deliverability
values should form an increasing sequence. Moreover, the deliverability values are
assumed to be constant within each segment. The segment capacities (in KSm3)
and durations (in days) are listed in Table 2.4. As the last segment of the d function
is assumed to last throughout the remaining lifetime of the field, the duration of
this segment is set to co. As a contrast to the situation where the wells are put in
production sequentially, we also consider the situation where all the wells are put
in production at the production start. We also consider the case of an unrestricted
production profile, i.e., only the state dependent part f(Q(¢)). An unrestricted pro-
duction profile refers to a production profile where the production is not limited by
the deliverability function, the process capacity of the platform, transport capacity
or other forms of capacity constraints. The unrestricted production of a reservoir
refers to the potential production of that reservoir. Consequentially, the unrestricted
profile of a depletion field has no plateau phase. In the case of a field with gas or
water injection, a plateau phase may occur.
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Segment (7) 1 2 3 4
Volume (V;) 3600.0 | 2200.0 | 1500.0 | 700.0
Initial rate (r;_1) 10.0 3.5 2.5 1.5
End rate (r;) 3.5 2.5 1.5 0.8
Shape parameter (b;) 0.0 0.5 0.5 1.0

Table 2.3: Parameter values for the deterministic production function

Segment () 1 2 3| 4
Capacities 1.5 30| 45]6.0
Durations 100 | 100 | 100 | oo

Table 2.4: Segment capacities and durations

We now want to study the production rates and the cumulative production of
these three models. We calculated the production rates and the cumulative pro-
duction for the three models using a standard Runge-Kutta’s 4th order differential
equation solver. The results are shown in Figure 2.2. We observe that the three
curves are quite different in the beginning when the d function is the dominating
term of (2.5.5). As the state-dependent part becomes dominating, the three curves
become identical except for a time lag. This lag occurs since the deliverability
constraints slows the production down in the early stages. This lag is seen in the
cumulative curves as well. Still the three cumulative curves end up at the same level
corresponding to the total volume of the field.

More generally, both the deliverability part and the state-dependent part can of
course be stochastic. In order to focus on the effect of a stochastic deliverability, we
keep the state-dependent part deterministic for now, and include only uncertainty
about the deliverability. More specifically we consider two cases. In the first case
we let the durations of each segment be stochastic, while the deliverability values
are kept constant. For simplicity the durations are assumed to be independent and
lognormally distributed with means 100 and standard deviations 50.

In the second case we also include uncertainty about the deliverability values. To
get an increasing sequence of deliverability values for the four segments, we used a
simple additive model, where the deliverability at a given time point is equal to a
sum of independent stochastic variables, and where the number of terms in the sum
is equal to the number of wells in production at that given point in time. All the
terms where assumed to be lognormally distributed with means 1.5 and standard
deviations 0.5.

Using Runge-Kutta’s 4th order method we ran 5000 simulations on the two uncer-
tainty models, and calculated means and standard deviations for each point on the
production rate functions and cumulative production functions. Using these num-
bers we calculated upper and lower bounds for the rates and the cumulative values.
As in the previous section we used the mean value plus and minus the standard
deviation as upper and lower bounds respectively.

In Figure 2.3 we have plotted the deterministic production rate and the cumula-
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tive production together with the two corresponding sets of upper and lower bounds.
In particular, the cumulative curves all reach the fixed total volume.

KSmaday Ksm3
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Figure 2.3: The left panel illustrates deterministic production rate (blue curve),
upper and lower bounds corresponding to the first stochastic model (purple and red
curves) and the second stochastic model(yellow and green curves). The right panel
illustrates deterministic cumulative production (blue curve), upper and lower bounds
corresponding to the first stochastic model (purple and red curves) and the second
stochastic model (yellow and green curves).

2.5.4 Introducing regularity

As we have seen, the deliverability function allows us to incorporate variable produc-
tion constraints related to major changes in the operational settings, corresponding
to wells being put in or out of production. However, when operating an oil field,
the production rate is also affected by short term irregularities. Such irregularities
may be caused by random irregularities in the flow or for example bad weather.
To include such phenomenons into the production model, it is more natural to use
a continuous time stochastic process. More specifically, we introduce a stochastic
process {r(t)} such that for any given point in time ¢, r(¢) represents the fraction
of the production rate that is actually produced at this point in time. This process
is referred to as the regularity process. When this process is incorporated into the
model, the resulting differential equation becomes:

q(t) = r(t) - min(d(t), f(Q(¢t))), for all t > t. (2.5.6)

As long as r(t) is measurable almost surely, we can easily extend our framework
to cover this situation. A suitable model for r(¢) and examples are presented in
Huseby & Haavardsson (2007).
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2.6 Multiple production profiles

2.6.1 Introduction

In many cases it is of interest to model the production from several subfields simul-
taneously. Common capacity constraints are often imposed on subfields belonging
to a larger field or group of fields. Such constraints may for example be the total
capacity at a processing facility. We will now show how such a situation can be
managed within our framework. More specifically, we assume that we have a field
consisting of n subfields. The production from these subfields are processed on a
common processing facility with a given processing capacity per unit of time.

2.6.2 Common constraint models

We start out by modelling the potential production from each the subfields given no
common capacity constraints. The potential production rate function for subfield i
at time ¢ is denoted by ¢"”*(¢) and is expressed as:

&(t) = g:(t,Qi(1)), i=1,...,n, (2.6.1)

where Q;(t) represents the cumulative production function of subfield i at time ¢,
and g; represents both the time and state dependent parts of the model for subfield i.
Thus, g; may include segments, time dependent subfield constraints and regularity
as explained in the previous section.

The processing capacity at time ¢ is denoted by K (). To ensure that the total
production does not exceed K (t), the production from each subfield has to be re-
stricted in some way. This can be done by introducing choke factors for each of the
subfields. Thus, let a;(t) € [0,1] denote the choke factor for the ith subfield at time
t,i=1,...,n. The resulting production from the i¢th subfield at time ¢ is then given
by ¢i(t) = ai(t)¢" (t), i = 1,...n. In order to satisfy the processing constraint, the
choke factors must be chosen so that:

En:ai(t)qu(t) < K(t) for all t > 0. (2.6.2)

i=1

Clearly there are an infinite number choices for the choke factors. Typically, one
would be interested in finding choke factors that are optimal with respect to some
suitable criterion. E.g.; one could try to maximize the total discounted production
from all the subfields. Solving such optimization problems can be difficult, especially
when uncertainty is included in the model, so this is beyond the scope of the present
paper. Instead we will present some possible ad. hoc. strategies for the choke
factors.

The symmetric strategy. When using the symmetric strategy, the available pro-
cess capacity is shared proportionally between the different fields. If the current
production exceeds the process capacity of the central processing facility, the pro-
duction of every field is scaled down with a common choke factor. That is, we
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let

ai(t) = =)

Zj:l 4q; (t) 7

where K (t) denotes process capacity of the central processing facility.

i=1,...n, (2.6.3)

The priority strategy. For this strategy the fields are prioritized initially according
to some suitable criterion. Let w = (w(1),...,7(n)) be the permutation vector
representing the order at which the fields are prioritized. That is, field number (1)
is given the highest priority, field number 7(2) is given the second highest priority,
etc. The choke factors are then defined as:

— K(1)
arq)(t) = min{l, i(()i)(t)}7 (2.6.4)
K(t) — az) ()", (t
nlt) = ming1, OO
() (1)
K () = 2520 an(y) (8)d205 (t)

-

Axey(t) = min{l, -
oy (1)

Note that if ¢” ((’f) (t) = 0 for some 7 and ¢, the corresponding choke factor is undefined
in (2.6.4). To avoid this problem, we simply replace the corresponding choke factor
by 1 in such cases.

The fized mazimal quota strategy. Sometimes it may not be possible to adjust the
choke factors continuously. Instead one have to choose fixed maximal production
rates for the subfields initially, and use the same values throughout the lifeime of
the field. More specifically, assume that the ith subfield is given a fixed maximal
quota k; for the entire production period, ¢ = 1,...,n. The resulting production
from the ith subfield at time ¢ is then given by ¢;(t) = min{s;, ¢**(t)}, i =1,...n.
In order to satisfy the processing constraint, the quotas must be chosen so that:

> ki < K(t), forallt > 0. (2.6.5)
i=1

In particular, if K(¢) = K for all ¢ the quotas should be chosen so that their sum is
equal to K.

Regardless of which strategy one chooses for the choke factors, it is easy to run
simulations on all the subfields simultaneously. The fact that we now have a set of
n ordinary differential equations instead of just one, does not cause any problems.
All the calculations can still be done using e.g., a standard Runge-Kutta’s 4th order
differential equation solver.
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2.6.3 An example with different choices of production quota
constraints

In this example we will study both continuous control constraints and quota model
constraints. This case study is based on real reservoir simulation data from two
actual fields. We assume that two fields share a central processing facility. In one of
the fields water is injected into the reservoir to maintain reservoir pressure. We will
refer to this field as the maintenance field. In the other field the reservoir is depleted
without water being injected. This field is referred to as the depletion field. In most
cases water or gas will be injected into the reservoir to maintain reservoir pressure
if it is economically viable to do so. However, some times there are good reasons
not to inject water or gas into the reservoir, for example if the field of interest is too
small.

Table 2.5 summarizes the characteristics of the production rates of the two fields.
The depletion field is described by a production rate curve with two segments, while
the maintenance field has a production rate curve with four segments. Table 2.6
states the characteristics of the field capacities of the two fields. The capacity of the
central processing facility is assumed to be 2500 Sm3/d in this example. Production
is assumed to commence immediately in both fields. Finally, Table 2.7 states the
regularity parameters selected in this example. Figure 2.4 illustrates the simulation
profile and the matched profile comparison of the production rate for the depletion
field and the maintenance field.

Figure 2.5 show the results of implementing three different choices of constraints
in our prototype. Symmetry constraints are illustrated in the upper left panel in
Figure 2.5 and priority constraints are illustrated in the upper right panel. The
maintenance field is prioritized throughout the entire production period. As a con-
trast to these continuous control constraints we have also implemented a constant
quota model. In such a model the quotas of each field is decided once and for all
before the production commences. The lower panel in Figure 2.5 shows the results of
an implementation of a constant quota model where the maintenance field receives
a constant quota of 1800 Sm3/d while the depletion field receives a constant quota
of 700 Sm3/d. As we can see from these three figures the production rates of the
two fields are quite different depending on what constraints are being implemented.

An important issue is how our choice of constraints impacts the total cumulative
production. The left panel in Figure 2.6 shows total cumulative production for
the three choices of constraints. Since the fields will be emptied regardless of the
choice of constraints, we are ultimately interested in selecting the constraints that
maximizes the discounted production and the net present value. From Figure 2.6
we can see that the priority constraints yields the highest discounted production
value. The constant quota model yields the poorest discounted production value,
while the discounted production of the symmetry constraints is a little lower than
the discounted production of the priority constraints.

The initial choice of quotas in the constant quota clearly has a tremendous impact
on the discounted production. To optimize discounted production with respect to
initial quotas we let the constant quotas of the maintenance field and the depletion
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field vary between 0 and 2500 which is the capacity of the central processing facility.
The right panel in Figure 2.6 illustrates discounted production as a function of the
constant quota assigned to the maintenance field. We can see from the right panel
in Figure 2.6 that by assigning a quota of 2058 Sm3/d to the maintenance field and
442 Sm3/d to the depletion field the discounted production is maximized. In Table
2.8 the discounted production values are summarized for the different strategies. We
can see that when the constant quota model is optimized with respect to constant
quota, its discounted production is almost as high as the discounted production of
the symmetry constraints. The priority constraints yields the highest discounted
production regardless of whether the constant quota model is optimized.

To give some intuition on the economic values of the different choices, Table 2.9
summarizes the net present value of the different choices of constraints. The net
present value is calculated using an oil price of 55 USD per barrel of oil, which
reflects the spot price level of Brent at the time the article is written. The oil
price has fluctuated considerably in the past. Table 2.10 shows the difference in net
present value in USD between the priority constraints and the quota constraints for
some different choices of oil price.

Field Segm. | Start rate | Stop rate | Segm. | Shape

) ri_1 T vol. V; | param.
(Sm3/d) | (Sm3/d) | (KSm3) b;
Depletion 1 3995 1395 315.3 0.0
Depletion 2 1395 100 1182.5 0.8
Maintenance 1 9995 5525 993.2 0.0
Maintenance 2 5525 2919 2437.8 0.7
Maintenance 3 2919 1693 1062.3 1.0
Maintenance 4 1693 45 2681.8 0.5

Table 2.5: Parameter values for the production rates of the depletion field and the
maintenance field.

Field Capacity | End of epoch
(Sm3/d) (Days)
Depletion 1395 230
Maintenance 5525 180

Table 2.6: Parameter values for the field capacities of the depletion field and the
maintenance field. In both cases the epoch considered starts at production start.
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Field Minimum | Maximum | Correlation
regularity | regularity factor p
Depletion 0.95 1.0 0.8
Maintenance 0.95 1.0 0.8

Table 2.7: Parameter values for the reqularity parameters of the depletion field and
the maintenance field.

Disc. Prod.
Symmetry constraints 6,656.7
Priority constraints 6,678.9

Constant (1800, 700 Sm3/d) 6,594.3
Constant (2058, 442 Sm3/d) 6,657.5

Table 2.8: Discounted production values (KSm3) for the different strategies.

Net Present Value
Symmetry constraints 2,303
Priority constraints 2,310
Constant (1800, 700 Sm3/d) 2,281
Constant (2058, 442 Sm3/d) 2,303

Table 2.9: Net present values in 1,000,000 USD for the different strategies.

Oil price in USD per barrel
20 30 40 50 60 70 80
2,692 | 4,038 | 5,384 | 6,730 | 8,075 | 9,421 | 10,767

Table 2.10: Difference in net present value in 1,000 USD between priority constraints
and optimized quota constraints for different choices of oil price.
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Figure 2.4: The simulation profile and the matched profile comparison for the de-
pletion field (left panel) and the maintenance field (right panel). In both panels the
green curve represents the production rate from the simulation software, while the
red curve represents the production rate from our model.
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Figure 2.5: The production rate of the depletion field (green graph) and the main-
tenance field (red graph) for different choices of constraints. The upper left panel
tllustrates continuous control with symmetry constraints. The upper right panel il-
lustrates continuous control with priority constraints, where the maintenance field
is being prioritized throughout the entire production period. The lower panel il-
lustrates quota model with constant constraints. The maintenance field receives a
constant quota of 1800Sm3/day while the depletion field receives a constant quota

of 700Sm3/day. In all panels the z-azxis represents days and the y-axis represents
Sm3/day.
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Figure 2.6: The left panel illustrates total cumulative production for the three choices
of constraints. Total cumulative production curves for priority constraints and sym-
metry constraints are illustrated by the red and blue graph, respectively. The green
graph illustrates total cumulative production for the quota constraints model where
the quota is 1800Sm3/d for the maintenance field and 700Sm3/d for the depletion
field. The right panel illustrates discounted production as a function of the constant
quota assigned to the maintenance field.
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2.7 Conclusions

We have demonstrated that the proposed hybrid system approach for production
profile modelling is flexible and generic enough to be useful in the context of a
total value chain analysis. We have seen that our framework handles multisegment
production profiles, the foreseen and unforeseen delays in production and multiple
production profile modelling. Further, this paper has studied different allocation
strategies for subfields with common capacity constraints.

A natural next step is to optimize these allocation strategies. The inclusion of
uncertainty in the analysis of multiple production profiles with common capacity
constraints is also an important issue that needs to be treated and studied at a later
stage. Further, it is also important to incorporate gas and water production into
the model framework. As a consequence the complexity of the model will increase
and the transparency may decrease. Bearing in mind that parsimonious modelling
is a virtue these consequences are not desired. All the same we believe it is of great
value to be able to incorporate gas and water production into the framework since
these aspects are essential in the context of a total value chain analysis. Further,
it is of interest to try to optimize multiple production profiles in higher dimensions
than n = 2. Finally, we want to apply the framework to analyze other problems
that arise in the context of total value chain analysis. Such problems could include
crucial investment decisions regarding infrastructure on the platform, i.e. capital
expenditure decisions. Another problem that could be of interest to analyze is the
economic effect of different production plan schedules, such as the issue of phasing
in and phasing out different subfields of a major field.
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Chapter

A framework for multi-reservoir
production optimization

Abstract

When a large oil or gas field is produced, several reservoirs often share the same
processing facility. This facility is typically capable of processing only a limited
amount of oil, gas and water per unit of time. In order to satisfy these processing
limitations, the production needs to be choked, i.e., scaled down by a suitable choke
factor. A production strategy is defined as a vector valued function defined for
all points of time representing the choke factors applied to reservoirs at any given
time. In the present paper we consider the problem of optimizing such production
strategies with respect to various types of objective functions. A general framework
for handling this problem is developed. A crucial assumption in our approach is that
the potential production rate from a reservoir can be expressed as a function of the
remaining producible volume. The solution to the optimization problem depends
on certain key properties, e.g., convexity or concavity, of the objective function and
of the potential production rate functions. Using these properties several important
special cases can be solved. An admissible production strategy is a strategy where the
total processing capacity is fully utilized throughout a plateau phase. This phase
lasts until the total potential production rate falls below the processing capacity,
and after this all the reservoirs are produced without any choking. Under mild
restrictions on the objective function the performance of an admissible strategy is
uniquely characterized by the state of the reservoirs at the end of the plateau phase.
Thus, finding an optimal admissible production strategy, is essentially equivalent to
finding the optimal state at the end of the plateau phase. Given the optimal state
a backtracking algorithm can then used to derive an optimal production strategy.
We will demonstrate this on a specific example.

Keywords

Convex optimization theory, Convex sets, quasi-convex and quasi-concave functions,
Simplified Production Profiles, Separating and supporting hyperplane theorems
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3.1 Introduction

Optimization is an important element in the management of large offshore Explo-
ration & Production (E&P) assets, since many investment decisions are irreversible
and finance is committed long-term. van den Heever et al. (2001) classify deci-
sions made in reservoir management in two main categories, design decisions and
operational decisions. Design decisions comprise selecting the type of platform, the
staging of compression and assessing the number of wells to be drilled in a reservoir.
These decisions are discrete in nature. In operational decisions production rates
from individual reservoirs and wells are assessed. In contrast to design decisions,
operational decisions are continuous in nature.

Neiro & Pinto (2004) propose a framework for modelling the entire petroleum sup-
ply chain. Ivyer & Grossmann (1998) present a multi-period mixed-integer linear
programming formulation for the planning and scheduling of investment and oper-
ation in offshore oilfields. In other approaches a case and scenario analysis system
is constructed for evaluating uncertainties in the E&P value chain, see Narayanan
et al. (2003) for details. In Floris & Peersmann (2000) a decision scenario analysis
framework is presented. Here, scenario and probabilistic analysis is combined with
Monte Carlo simulation. Optimization can also be performed using a simulator,
where real-time decisions are made subject to production constraints. Davidson &
Beckner (2003) and Wang et al. (2002) use this technique. Their decision variables
include binary on/off conditions and continuous variables. Uncertainty was not con-
sidered in these works. Optimization of oil and gas recovery is also a considerable
research area, see Bittencourt & Horne (1997), Horne (2002) or Merabet & Bellah
(2002).

Many of the contributions listed above focus on the problem of modelling the
entire hydrocarbon value chain, where the purpose is to make models for scheduling
and planning of hydrocarbon field infrastructures with complex objectives. Since
the entire value chain is very complex, many aspects of it needs to be simplified to
be able to construct such a comprehensive model. The purpose of the present paper
is to focus on the problem of optimizing production in an oil or gas field consisting
of many reservoirs, which constitutes an important component in the hydrocarbon
value chain. By focusing on only one important component we are able to develop a
framework that provides insight into how a large oil or gas field should be produced.
The optimization methods developed here can thus be used in the broader context
of a total value chain analysis.

To obtain reliable and valid results, having realistic production models is very
important. Key properties of the reservoirs are typically assessed by geologists,
geophysicists, petroleum engineers and other specialists. This knowledge is then
assembled and quantified into a reservoir model. Our analysis starts at the stage
where a full-scale reservoir simulation has been performed, and the output from this
simulation is given. Simplified production models can then be constructed based on
this output. See Haavardsson & Huseby (2007) for details about this. The present
paper will utilize such production models. For a related approach see Li & Horne
(2002).
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We consider a situation where several reservoirs share the same processing facility.
Oil, water and gas flow from each reservoir to this facility. The processing facility is
only capable of handling limited amounts of the commodities per unit of time. In
order to satisfy the resulting constraints, the production needs to be choked. In this
setting we focus on optimizing the oil production and leave the simultaneous analysis
of oil, gas and water production for future work. To avoid issues of dependence
between the production profiles of the reservoirs, the production from any reservoir
is assumed to be independent of the production from the other reservoirs.

A fundamental model assumption is that the potential production rate from a
reservoir, can be expressed as a function of the remaining producible volume, or
equivalently as a function of the volume produced. Thus, if Q(¢) denotes the cu-
mulative production at time ¢ > 0, and f(¢) denotes the potential production rate
at the same point of time, we assume that f(t) = f(Q(t)). This assumption im-
plies that the potential production rate at a given point of time only depends on
the volume produced at that time (or equivalently on the volume left in the reser-
voir). Thus, if we delay the production from a reservoir, we can still produce the
same volume at a later time. We refer to the function f as the potential production
rate function or PPR-function of the reservoir. If a reservoir is produced without
any production constraint from time ¢ = 0, the cumulative production function will
satisfy the following autonomous differential equation:

dQ(t)

— = Q) (3.1.1)

with the boundary condition @(0) = 0. The function f would typically be a non-
increasing function. In order to ensure a unique solution to (3.1.1), we will also
assume that f is Lipschitz continuous. If @ = Q(¢) is the solution to (3.1.1), we
assume that:

tlirgo Qt) = /000 f(Qu))du =V < co. (3.1.2)

That is, the recoverable volume from the reservoir, denoted V', is assumed to be
finite. Note that since f is continuous, (3.1.2) implies that:

lim £(Q(1) = F(V) =0, (3.1.3)

since otherwise the integral in (3.1.2) would be divergent.

Due to various kinds of restrictions, including possible time-dependent constraints,
the actual production rate will typically be less than or equal to f(¢). Still it turns
out that the PPR-functions play an important part in the analysis.

The present paper presents the following contributions:

e Section 3.2 introduces basic concepts and results, including a discussion of
objective functions and some mild restrictions we impose on them.

e In Section 3.3 we turn to the problem of finding the best production strategy.
An algorithm for finding the best production strategy and two main results
are presented. The first result deals with the solution to the optimization
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problem if the PPR-functions are convex and the extended version of objective
function ¢ is quasi-convex!, while the second result analogously treats the
situation when the PPR-functions are concave and the extended version of
objective function ¢ is quasi-concave. A specific type of objective function
and an important class of production strategies are presented.

e In Section 3.4 we consider the case where all the PPR-functions are linear. In
this case a specific production strategy is proven to be optimal for a wide class
of objective functions. The framework is illustrated on a specific example.

e Section 3.5 is devoted to generate optimal production strategies using back-
tracking. Since the performance of an admissible strategy is uniquely char-
acterized by the state of the reservoirs at the end of the plateau phase, the
backtracking is initiated using the optimal state at the end of the plateau
phase. Given the optimal state a backtracking algorithm can then be used to
derive an optimal production strategy.

3.2 Basic concepts and results

We consider the oil production from n reservoirs that share a processing facility
with a constant process capacity K > 0, expressed in some suitable unit, e.g., kSm?
per day. Let Q(t) = (Q1(t),...,Qn(t)) denote the vector of cumulative production
functions for the n reservoirs, and let f(t) = (f1(¢),..., fu(¢)) be the corresponding
vector of PPR functions. We assume that the PPR functions can be written as:

fi(t) = fi(Qi(2)), t>0,i=1,...n.

Note that this assumption implies that the potential production rate of one reservoir
does not depend on the volumes produced from the other reservoirs. We will also
assume for i = 1,...n that f; is non-negative and non-increasing as a function of
Q;(t) for all ¢, and that lim; .., Q;(t) = V; < 0co. As already stated, this implies that
lim; ., fi(Q:(t)) = f;(V;) = 0. These assumptions reflect the natural properties that
the production rate cannot be negative, that reservoir pressure typically decreases
towards zero as more and more oil is produced, and that the recoverable volume
is finite. Finally, to ensure uniqueness of potential production profiles we will also
assume that f; is Lipschitz continuous in Q;, i =1,...,n.

A production strategy is defined as a vector valued function b = b(t) = (b1(t), ..., b (¢)),
defined for all ¢ > 0, where b;(¢) represents the choke factor applied to the ith reser-
voir at time ¢, i = 1,...,n. We refer to the individual b;-functions as the choke
factor functions of the production strategy. The actual production rates from the
reservoirs, after the production is choked is given by:

q(t) = (q(1), -, g (1),

1For a definition of quasi-convex and quasi-concave functions see Appendix 3.7.2




52 CHAPTER 3. MULTI-RESERVOIR PRODUCTION OPTIMIZATION

where: 1Q(t)
t .

We also introduce the total production rate function ¢(t) = >-", ¢;(t) and the total
cumulative production function Q(¢) = Y., Qi(¢). To reflect that ¢, ¢, Q, and Q
depend on the chosen production strategy b, we sometimes indicate this by writing
a(t) = a(t,b), q(t) = g(1,b), Q() = Q(L,b), and Q(t) = Q(t,b).

To satisfy the physical constraints of the reservoirs and the process facility, we
require that:

and that N
gt)=> alt) <K, t>0. (3.2.2)
=1

Expressed in terms of the production strategy b, this implies that:
0 <bi(t) <1, i=1,...n, t >0, (3.2.3)

and that .
b (@0, ) <K, >0 (3.2.4)

i=1
The constraint (3.2.3) implies that the actual production rate cannot be increased
beyond the potential production rate at any given point of time, while the constraint
(3.2.4) states that the actual, total production rate cannot exceed the capacity of
the processing facility. Let B denote the class of production strategies that satisfy
the physical constraints (3.2.3) and (3.2.4). We refer to production strategies b € B
as valid production strategies.

Intuitively, choosing lower values for the choke factors has the effect that the
volumes are produced more slowly. The following proposition, proved in Huseby &
Haavardsson (2008), formalizes this.

Proposition 3.2.1. Consider a reservoir with PPR-function f(t) = f(Q(t)), and
let b1 and V* be two choke factor functions such that 0 < b'(t) < b2(t) < 1 for
all t > 0. Let Q' and Q?* denote the resulting cumulative production functions,
and let g'(t) = () £(Q(t)) and ¢*(t) = V*(t) f(Q2(t)) be the corresponding actual
production rates. We assume that Q*(0) = Q*(0) = 0. Then Q*(t) < Q3(t) for all
t>0.

3.2.1 Objective functions

To evaluate production strategies we introduce an objective function, i.e., a mapping
¢ : B — R representing some sort of a performance measure. If b', b € B, we prefer
b? to bl if ¢(b?) > ¢(b'). Moreover, an optimal production strategy with respect to
¢ is a production strategy b' € B such that ¢(b%") > ¢(b) for all b € B. In this
paper we will impose some mild restrictions on the objective functions. The following
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section will explain the rationale behind these restrictions. Complete proofs of the
results are given in Huseby & Haavardsson (2008).

If b',b% € B are two production strategies such that Q(¢,b') < Q(t,b?) for all
t > 0, one would most likely prefer b> to b'. Thus, a sensible objective function
should have the property that ¢(b') < ¢(b?) whenever Q(t,b') < Q(t,b?) for all
t > 0. Objective functions satisfying this property will be referred to as monotone
objective functions. The following result states that monotone objective functions
also satisfies a monotonicity with respect to the production strategy.

Proposition 3.2.2. Let ¢ be a monotone objective function, and let b',b*> € B be
such that b'(t) < b*(t) for allt > 0. Then ¢(b*) < ¢(b?).

Monotone objective functions will encourage production strategies where the total
production rate is sustained at the plateau level K as long as possible. Furthermore,
when the plateau level cannot be sustained, all the reservoirs should be produced
without choking.

To study this further we introduce:

Ty = Tic(b) = inf{t > 0: Y fi(Qi(t,b)) < K}. (3.2.5)
i=1
If >0, fi(Qi(0)) < K, it follows that Tx = 0. In this case the optimization
problem is trivial since no choking is necessary. To avoid this we henceforth as-
sume that > | fi(Q;(0)) = >, fi(0) > K. It then follows by the continuity and
monotonicity of the PPR-functions that Y.\ | f;(Qi(t)) > K for all t € [0, Tx]. The
quantity Tk (b) will be referred to as the plateau length for the production strategy
b.
We now define an admissible production strategy as a production strategy b € BB
satisfying the following constraints:

t) = Zq Zb H(Qi(t) = K, 0<t<Txk, (3.2.6)
and
qi(t) = b(t) fi(Qi(t)) = fi(Qu(t)), t>Tg,1=1,...n. (3.2.7)

Moreover, we let B’ C B denote the class of admissible strategies.

The following results states that if the objective function is monotone, an optimal
production strategy can always be found within the class of admissible production
strategies. Thus, when searching for optimal strategies we can restrict the search to
the class B'.

Proposition 3.2.3. Let ¢ be a monotone objective function, and let b € B. Then
there exists b’ € B' such that ¢p(b') > ¢(b).

In general the revenue generated by the production may vary between the reser-
voirs. This may occur if e.g., the quality of the oil, or the average production cost
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per unit are different from reservoir to reservoir. Such differences should then be
reflected in the chosen objective function. On the other hand, if all the reservoirs
are similar, we could restrict ourselves to considering objective functions depending
on the production strategy b only through the total production rate function ¢(-, b)
(or equivalently through Q(-, b)). We refer to such objective functions as symmetric.

Within the class of admissible production strategies any symmetric objective
function can be expressed in terms of the system state at the end of the plateau
phase. The following result formalizes this:

Proposition 3.2.4. Let ¢ be a symmetric objective function, and let b € B'. Then
¢(b) is uniquely determined by Q(Tk (b)). Thus, we may write p(b) = ¢(Q(Tk (b))).

3.3 Optimizing production strategies

We now turn to the problem of finding the best production strategy, i.e., the one
that maximizes the value of the objective function, ¢. To simplify this problem,
only monotone, symmetric objective functions will be discussed. As we shall see,
Proposition 3.2.4 plays a key role when searching for optimal production strategies.
In order to explain this, we consider the set of all possible cumulative production
vectors for the given field, denoted by Q:

Q=10,11] x -+ x [0, V,], (3.3.1)

where Vi, ..., V, are the recoverable volumes from the n reservoirs. We then intro-
duce the subsets M, M C Q given respectively by:

M = {QeQ: Zfi(Qi) > K}, (3.3.2)
M = {QeQ:) fi(Q) <K} (3.3.3)

i=1

We also need the set of boundary points of M separating M from M, which we
denote by (M). Thus, Q € I(M) if and only if every neighborhood of @ intersects
both M and M.

Since we have assumed that >, f;(0) > K > 0 and >, fi(V;) = 0, both
M and M are non-empty. Moreover, since the PPR-functions are assumed to be
continuous, it is easy to see that:

M) C{QeQ:) (@) =K}, (3.3.4)

i=1

where equality holds if the PPR-functions are strictly decreasing. -
The following key result shows how the shapes of the sets M and M depend on
the shapes of the PPR-functions.
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Proposition 3.3.1. Consider a field with n reservoirs with PPR-functions f1,. .., fn.
(i) If fi,..., fa are convez, the set M is conver.

(i7) If f1,..., fa are concave, the set M is convet.

Proof: Assume first that the PPR-functions are convex, and let Q' =(Q%,....QY
and Q% = (Q3,...,Q?) be two vectors in M. Thus, we have:

fjﬁ:(@z) <K, j=12 (3.3.5)
i=1

Then let 0 < o < 1, and consider the vector Q = (Q1,...,Q,) = aQ' + (1 — ) Q.
Since the PPR-functions are convex, we have:

Zfi(Qi) = Z filaQ] + (1 —a)Q7)

IN

a Z QY +(1—a) Z Q) <K

Thus, we conclude that Q@ € M as well. Hence M is convex. The second part of
the proposition is proved in a similar way W

Note that since convexity is preserved under set closure, we also have the following
corollary

Corollary 3.3.2. Consider a field with n reservoirs with convex PPR-functions

fis oy fu- Then the set MU (M) is convex.

Proof: The result follows by realizing that the closure of M is M UJ(M) R
By combining (3.3.3) and (3.3.4) we get that:

MUIM)C{QeQ: ifi(Qi) < K}, (3.3.6)

i=1
where equality holds if the PPR-functions are strictly decreasing.

The set M has the property that the total production rate can be sustained
at plateau level as long as Q(t) € M. More specifically, let b be any production
strategy, and consider the points in Q generated by Q(t) = Q(¢,b) as ¢ increases.
From the boundary conditions we know that Q(0) = 0. By the continuity of the
PPR-functions, Q(t) will move along some path in M until the boundary 9(M) is
reached.

If b € B, the resulting path is said to be a walid path, while if b € B’, the path is
called an admissible path. In general only a subset of M can be reached by admissible
paths. We denote this subset by M’. Moreover, we let d(M') = (M) N M'. We
now make the mild but important assumption that d(M’) is a (n — 1)-manifold
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with boundary denoted by 9(0(M’)). In particular we assume that all points in
A(0(M")) can be reachable by admissible paths.

For an admissible path the total production rate equals K all the way until the
path reaches 9(M’). Moreover, the plateau length Tk (b) is the point of time when
the path reaches 9(M’), implying that:

M) = {Q(Tx(b)) : be B (3.3.7)

By Proposition 3.2.4 we know that ¢(b) = ¢(Q(Tk(b))) given that b € B and ¢ is
symmetric. Hence, the best production strategy can, at least in principle, be found
using the following two-stage process:

Algorithm 3.3.3. Let ¢ be a monotone, symmetric objective function. Then a
production strategy b which is optimal with respect to ¢ can be found as follows:

STEP 1. Find Q" € (M) such that p(Q°P") > &(Q) for all Q € H(M’).
STEP 2. Find a production strategy b € B’ such that Q(Tk (b)) = Q°P".

We observe that in the first step of Algorithm 3.3.3 the objective function ¢ is
interpreted simply as a function of the vector @, while in the second step we look
for a production strategy b € B’ generating an admissible path in M from the origin
to the optimal vector Q°F.

To solve the optimization problem given in Step 1 of Algorithm 3.3.3, we assume
that it is possible to extend the definition of ¢ to all vectors Q € Q. Moreover, we
assume that the extended version of ¢ is non-decreasing in Q. That is, if Q*, Q* € Q
and Q' < @?, then ¢(Q') < ¢(Q?). Having extended ¢ in this way, the problem is
now to maximize ¢(Q) subject to the constraint that @ € d(M’).

Note that since the PPR-functions are assumed to be non-decreasing, it follows
that for any @ € M, we can always find another vector @' € (M) such that Q <
Q'. Thus, since ¢ is assumed to be non-decreasing as well, we have ¢(Q) < ¢(Q’).
In particular, if Q* € (M) maximizes ¢ over (M), it follows that ¢(Q*) > ¢(Q)
for all Q € M. We also introduce the set N:

N={Q e Q:4(Q)>d(Q")} (3.3.8)

Since ¢(Q*) > ¢(Q) for all Q € M, it follows that M NN = 0.

If @ € (M) as well, then obviously Q* is a solution to the optimization
problem in Step 1 of Algorithm 3.3.3. Hence, we may let Q" = Q*. In many
cases, however, it may happen that Q* ¢ 9(M’). In such cases the optimal vector
Q"' € (M) can typically be found at the boundary, 9(9(M’)).

Using results from Appendix 3.7 we are now ready to prove the two main results
of this section.

Theorem 3.3.4. Consider a field with n reservoirs with conver PPR-functions
fis- s fu- Furthermore, let ¢ be a symmetric, monotone objective function. As-
sume also that ¢, interpreted as a function of Q, can be extended to a non-decreasing,



3.3. OPTIMIZING PRODUCTION STRATEGIES 57

quasi-conver® function defined on the set Q. Then an optimal vector, denoted Q°P,
i.e., a vector mazimizing ¢(Q) subject to Q € (M), can always be found within
the set (O(M')).

Proof: Let Q € 9(M’) be chosen arbitrarily. Then by Theorem 3.7.4 there exists
m vectors Q1, ..., Q. € 9(0(M')) and non-negative numbers ay, . .., @, such that

>, o <1 and such that:
Q= Z Q.
i=1

We then introduce Q' = (3°1", ;)" 'Q. Thus, Q' is a convex combination of
Q1,....Q,,. Moreover, since Y ;" o; < 1, we have Q < Q'

By Corollary 3.3.2 we know that the set M UAJ(M) is convex, so Q' must belong
to this set. Hence, since ¢ is assumed to be non-decreasing and quasi-convex, it
follows that:

6(Q) < H(Q) < max{o(@i). .. H(Qu)}. (33.9)

Since @ was chosen arbitrarily, we conclude that for any Q@ € 9(M’), there exists
some boundary point Q* € 9(9(M’)) such that ¢(Q) < ¢(Q*). Hence, an optimal
vector, Q", can always be found within the set (O(M’)) R

Note that in the proof of Theorem 3.3.4 will hold even if the definition of ¢ is
extended only to the set M U (M), i.e., not to the entire set Q.

Theorem 3.3.5. Consider a field with n reservoirs with concave PPR-functions
iy fu. Furthermore, let ¢ be a symmetric, monotone objective function. Assume
also that ¢, interpreted as a function of Q, can be extended to a non-decreasing quasi-
concave® function defined on the set Q. Furthermore, assume that the vector, Q*,
mazimizes ¢(Q) subject to Q € (M), and that the set N defined relative to Q*
as in (3.3.8), is non-empty. Then there exists a hyperplane H = {Q : ¢(Q) = ¢}
separating M and N'. Moreover, if ¢ is strictly increasing at Q*, then H supports
M at Q*. Finally, if Q* € O(M’) as well, we may let Q"' = Q*.

Proof: We first note that since the PPR-functions are assumed to be concave, it
follows by Proposition 3.3.1 that M is convex. Moreover, since ¢ interpreted as a
function of @, is assumed to be quasi-concave, it follows by Proposition 3.7.8 that
N is convex. As already pointed out we obviously have that M NN = (). Hence, it
follows by Theorem 3.7.1 there exists a hyperplane H separating M and N

If ¢ is strictly increasing at Q*, it follows that any neighborhood of @Q* must
contain a vector @ such that ¢(Q) > #(Q*). Thus, by the definition of A any such
neighborhood must intersect A. Hence, by Proposition 3.7.3 H supports M at Q*.
The final statement that if Q* € (M’) as well, we may let Q" = Q* is obvious
from the previous discussion H

The two above results indicate how to solve the optimization problem given in
Step 1 of Algorithm 3.3.3 in two important cases. If the PPR-functions are convex

2For a definition of quasi-convex functions see Appendix 3.7.2
3For a definition of quasi-concave functions see Appendix 3.7.2
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and the extended version of objective function ¢ is quasi-convex, the optimal QP
can be found within the set 9(9(M')). The extreme points of this set correspond
to a certain class of admissible production strategies called priority strategies which
will be discussed in the next subsection. In certain cases it can be shown that the
optimal solution can be found within this class. Since there are only a finite number
of priority rules, finding the optimal one is easy, at least in principle. Moreover, given
an optimal priority strategy, Step 2 of Algorithm 3.3.3 is trivial, as the corresponding
production strategy b € B’ is essentially uniquely defined by this rule. We will
discuss this further in Section 3.3.2.

If the PPR~functions are concave and the extended version of objective function ¢
is quasi-concave, Step 1 of Algorithm 3.3.3 typically involves finding the hyperplane
separating M and A, and thus identify the point Q* where the hyperplane supports
M. Assuming that Q* € 9(M') as well, Step 1 is completed by letting Q"' = Q*.
Note that verifying that @* € 9(M’) may in general be a difficult task. Often the
easiest way to do this, is by proceeding directly to Step 2, using the Q* found in
Step 1. If we are able to successfully complete Step 2 as well, this implies that
Q€ OM).

If the PPR-functions and the extended ¢-function are differentiable, the standard
approach to finding Q* is by using Lagrange multipliers. An example where this
method is used, is given in Section 3.5.

If the extended ¢-function is a quasi-linear function of the form ¢(Q) = h(¢(Q)),
where h is an increasing function and ¢ is a non-zero linear form, it follows that
finding the optimal Q* is equivalent to maximizing ¢(Q) subject to Q € d(M’). If
the PPR-functions are piecewise linear and concave, then finding the optimal Q*
can be formulated as a linear programming problem. We will return to this in a
future paper.

When QP lies in the interior of (M’), there is typically no unique solution to
Step 2 of Algorithm 3.3.3. Typically there will be many admissible paths through
M from 0 to Q°Pt. When searching for such a path it turns out to be easier to solve
the problem backwards, i.e., by starting at Q°P* and finding an admissible path back
to the origin. The reason for this is that the constraints (3.2.6) and (3.2.7) are much
easier to satisfy close to the origin where f1(Q1),..., f.(Qn) are large than at the
boundary of M where f1(Q1),..., fo(Qn) are small. Thus, in order to carry out
Step 2 of Algorithm 3.3.3, we will use a certain backtracking algorithm which will
be described in Section 3.5.

3.3.1 Truncated discounted production

In order to exemplify the results given in the previous subsection, we now consider a
more specific type of symmetric monotone objective function, referred to as truncated
discounted production, and given by the following expression:

oc.r(b) = /0<>O Hq(u) > CYq(u)e ™ du, 0<C<K, R>0. (3.3.10)
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The parameter R is interpreted as a discount rate, while C' defines the level of
truncation, typically reflecting the minimal acceptable production rate, e.g., the
lowest production rate resulting in a non-negative cash-flow.

Since ¢¢,r only depends on the production strategy through the total production
rate ¢, it follows that ¢ g is symmetric. Moreover, the truncation factor 7{g(u) >
C} and the discounting factor e~ ensure that it is monotone as well.

Different choices of C' and R yield different types of objective functions. If we
e.g., let C =0 and R > 0, the integrand of the objective function is not truncated
at any level, so we simply get the total discounted production.

On the other hand if we let C = K, the production is truncated as soon as it
leaves the plateau level. In this case the integrand is positive only when ¢(u) = K.
In particular if b € B, we know that ¢(u) = K if and only if 0 < u < Tk(b), so in
this case (3.3.10) is reduced to:

Tr (b)
bc.r(b) = dx.r(b) = K/ e fdu = KR™Y(1 — e FTx(®)), (3.3.11)
0

when R > 0, while ¢¢o(b) = ¢ o(b) = KTx(b). Moreover, when b € B, we have
q(u) = K for all 0 < u < Tk (b), so:

KTy (b) = Z Qi(Tk (b)).

From this it follows that ¢k g, interpreted as a function of @, can be extended to
Q by letting:

KR 1 —exp(—K'R(Q))] if R >0,

¢x.r(Q) = { “Q) £ R=0. (3.3.12)

where we have introduced ¢(Q) = Y7, @;. Thus, it follows by Proposition 3.7.9
that ¢ g is quasi-linear. Moreover, Q* can be found by maximizing ¢(Q) subject

to Q € (M.

Maximizing the plateau production £(Q) or equivalently the plateau length T
is often easier than maximizing a general objective function of the form ¢¢ g. Still
the special case where C' = K and R = 0 and the general case are closely related,
and an optimal solution to one of them will often be at least a good approximation
to an optimal solution of the others. In Section 3.4 we shall prove that this in fact
holds exactly when the PPR-functions are linear.

3.3.2 Priority strategies

In this subsection we introduce a specific class of production strategies referred to as
priority strategies. A priority strategy is characterized by prioritizing the reservoirs
according to some suitable criterion. More specifically, we define a priority strategy
as follows:
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Definition 3.3.6. Consider a field with n reservoirs with PPR-functions f1, ..., fn,
and let w = (1, ..., m,) be a permutation vector representing the prioritization order
of the reservoirs. Then the priority strategy relative to w is defined by letting the
production rates at time t, q1(t), ..., qu.(t), be given by:

4n(8) = min[fr, (Qn (). K = g (0], i=1....n. (3.3.13)

Jj<i

We observe that when assigning the production rate ¢, (t) to reservoir m;, this is
limited by K — Zj<i qx,(t), i.e., the remaining processing capacity after assigning
production rates to all the reservoirs with higher priority. If f (Q.,(t)) < K —
> j<ir,(t), reservoir m; can be produced without any choking, and the remaining
processing capacity is passed on to the reservoirs with lower priorities. If on the
other hand fr,(Qx,(t)) > K — > ., ¢x,(t), the production at reservoir m; is choked
so that gr,(t) = K =3 _,_; ¢x,;(t). Thus, all the remaining processing capacity is used
on this reservoir, and nothing is passed on to the reservoirs with lower priorities.

The priority strategy can also be expressed in terms of the choke factors at time
t, see Huseby & Haavardsson (2008) for details. The production strategy corre-
sponding to the priority strategy relative to the permutation 7r is denoted by b™.
Moreover, the class of all priority strategies is denoted by BFE.

To further explore the properties of priority strategies, we introduce:

T, =Ti(b%) =inf{t >0: Y fo (Qu(t,07) <K},  i=1....n (33.14)
j=1

We also let T, = 0, and note that we obviously have: 0 = Ty < T} < --- <

T, = Tx(b™). Thus, Ti,...,T, defines an increasing sequence of subplateau sets,
[0,T1],...,[0,T,], where the last one is equal to the plateau set IIx. We will refer
to T, ..., T, as the subplateau lengths for the given priority strategy.
We now let i € {1,...,n}, and assume that T;_; < t < T;. Then the reservoirs
T, ..., m_1 are produced without choking, i.e.:
O (1) = fr;(Qr, (1)), J=1,...,i—1L (3.3.15)

Furthermore, the reservoir m; is produced with choking so that:

qr; (t> =K - Z qn; (t> =K - Z fﬂ'] (Qﬂ'j (t)) (3316)

j<i j<i

Finally the reservoirs 71, ..., m, are not produced at all. Note also that ¢t = T; is
the smallest ¢ where:

fm(Qm (f)) < K — Z qﬂ'j (f) =K - Z fﬂ'j (Qﬂ']’ (t)) (3317)

J<i J<i

Thus, from this point of time the reservoir 7; can be produced without any choking.
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Summarizing this we see that for i = 1,..., n, the production rate, ¢(t) is given
by:
0 ift < Ty,
q(t) = K- Zj<i fﬂ'j (Qﬂ'j (1) T <t<T, (3.3.18)
fr(Qx, (1)) if £ > T,

The priority strategies have the important property that they generate admissible
paths through M’ such that Q(Tk(b™),b™) € 9(9(M’)). In order to study this
further we introduce the set A C Q consisting of the union of all admissible paths.
Thus, we have:

A={Q(t,b):t>0,be B'}.

The following lemma, proven in Huseby & Haavardsson (2008), shows that the path
of a priority strategy follows the boundary of A.

Lemma 3.3.7. Consider a field with n reservoirs with PPR-functions fi,..., fn.
Moreover, let w = (my,...,7,) be a permutation vector, and let b™ be the corre-
sponding priority strateqy. Then we have:

Q(t,b™) € 9(A) for allt > 0.

Using Lemma 3.3.7 we can now show:

Theorem 3.3.8. Consider a field with n reservoirs, and let b™ be a priority strategy.
Then Q(Tx(b™),b™) € 0(O(M)).

Proof: By Lemma 3.3.7 we have that Q(Tx(b™),b™) € 9(A). Moreover, by def-
inition of Tk (b™) it follows that Q(Tk(b™),b™) € 9(M). Hence, since obviously
A(O(M')) = 9(A)NI(M), we must have Q(Tk (b™),b™) € I(A )ﬂ@(/\/l) I(O(M))
|

When the PPR-functions are convex, and the objective function, ¢, interpreted
as a function of @, is quasi-convex, we know by Theorem 3.3.4 that an optimal
production strategy b* should be chosen so that Q(Tx(b*),b*) € 9(d(M’')). By
Theorem 3.3.8 we see that priority strategies always satisfies this condition. Thus,
priority strategies provide a good starting point for the optimal strategy. We close
this section by a result providing a sufficient criterion for when the optimal strategy
can be found within the class of priority rules.

Theorem 3.3.9. Consider a field with n reservoirs with convex PPR-functions
iy fu- Furthermore, let ¢ be a symmetric, monotone objective function. As-
sume also that ¢, interpreted as a function of Q, can be extended to a non-decreasing,
quasi-convez function defined on the set Q. Finally assume that O(M') is contained
in the convez hull of the points {Q(Tk(b),b) : b € BPE}. Then an optimal produc-
tion strategy can be found within the class BTE.
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Proof: Let Q € 9(M’) be chosen arbitrarily. Then by the assumption there exists
non-negative numbers {ap : b € B”#} such that >, zpr ap < 1 and such that:

Q=Y aQ(Tx(b).b).

beBPR

From this the result follows by arguments similar to the proof of Theorem 3.3.4 W

3.4 Optimization with linear PPR-functions

In this section we consider the case where all the PPR-functions are linear. That is,

we consider a field with n reservoirs with PPR-functions fi, ..., f,, such that:
where Vi,...,V, denotes the recoverable volumes from the n reservoirs, and where

we assume that the reservoirs have been indexed so that 0 < D1 < Dy < --- < D,,.

We then consider the ith reservoir, and let T > 0. If this reservoir is produced
without any choking, i.e., with a choking factor function b;(t) = 1 for all t > T,
we can solve the differential equation (3.4.1) for ¢ > T given that the cumulative
production at time T is Q;(T"), and get:

¢i(t) = Di(Vi — Qi(T)) exp(—D;(t = T)),  t=>T. (3.4.2)
Moreover, by integrating ¢;(¢) from T to t we also get:
Qi(t) = Vi(1 — e D=1 L Q(T)e 1) t>T. (3.4.3)

If on the other hand, the reservoir is produced with a choking factor function b;(t) <
1 for t > T it follows by Proposition 3.2.1 that @;(¢) will be less than or equal to
the right-hand side of (3.4.3). These relations will be used in order to state the
following result, which is proved in Appendix 3.8:

Theorem 3.4.1. Consider a field with n reservoirs with linear PPR-functions fi,..., fn
giwen by (3.4.1). Then let b' denote the priority strategy corresponding to the per-
mutation m = (1,2,...,n), and let b2 be any other valid production strategy. Then
Q(t,bY) > Q(t,b%) for allt > 0. Thus, b' is optimal with respect to any monotone,
symmetric objective function.

Having identified the optimal production strategy in the case of linear PPR-
function, we proceed to calculating the resulting production rates and cumulative
production functions. Since the optimal solution is a priority strategy, it turns out
that it is fairly easy to solve this. We consider once again a field with n reservoirs
with PPR-functions fi,..., f,, of the form given in (3.4.1). The formulas we are
about to present, are valid for any priority strategy, not just the optimal one. Thus,
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we consider an arbitrary priority strategy b™ where the permutation vector is w =
(T1y ey ).

In order to find the production rates and cumulative production functions, we
start out by assuming that the subplateau lengths, Ti,...,T,, are known. As in
Section 3.3.2 we also let Tp = 0. Then by combining (3.3.18) and (3.4.2) it is easy
to see that for ¢ = 1,...,n, the production rate, ¢, (t) is given by:

0 if t < Tjy,
Gr(t) =S K =3 Du/(Ve, = Q) (T))e P ™) ift € [T,_1,T3),  (3.4.4)
Dm(vm - Qﬂ,; (,Ti))eiD”(tiT') if t > Tz

Moreover, by integrating these production rates we get the following cumulative
production functions:

0 ift < Tli—lv
Qr,(t) = K[t = Tima] = 3,(Va, = @, (T)) e P07 — 7P 0] i ¢ € [T, T,
Ve, (1 — e Prilt=10) 4 Qr (Ty)em Prilt=T0) if t > T,
(3.4.5)
In order to complete these formulas we need to explain how to determine the
subplateau lengths, T7,...,T,. This will be done as a sequential process where 77 is

determined first. Then 77 is used to determine T3, T} and T5 are used to determine
T3, and so on until all the subplateau lengths have been found.

To determine T we first consider the case where fr, (Qr, (T0)) < K. In this case
it follows by (3.3.14) that T3 = Ty = 0, i.e., the first subplateau has zero length. On
the other hand, if f,, (Q, (To)) > K, T is found as the solution to the equation:

f7r1 (Qﬂ'l (t)) = D7T1 (Vm - Qﬂ'l(t)) =K. (346)

Since obviously Q, (t) = Kt for all t < Ty, we get that Ty = V; K~' — D! in this
case.

We then assume that we have determined 77, ...,7;_1, and consider the problem
of how to determine T;. As for T; we first consider the case where f., (Qr,(Ti—1)) <
K =3 f2;(Qx;(Ti-1)). In this case it follows by (3.3.14) that T; = T;_y, ie.,
the ith subplateau has the same length as the (i — 1)th subplateau. On the other
hand, if fr, (Qr,(Ti-1)) > K =3 _,_; fx;(Qx,;(Ti-1)), Ti is found as the solution to the
equation:

Fr(Qr () = Dy, (V, = Qe (1)) = K = f,(Qn, (1)), (3.4.7)
j<i
where Q, (t) for all t € [T;_4,T;] is given by (3.4.5). In general this equation is easily
solvable using standard numerical methods.

3.4.1 An example with linear PPR-functions

We consider a field with n = 3 reservoirs with linear PPR functions, fi, f2, f3 of the
form given in (3.4.1). Moreover, we assume, as above, that the reservoirs are indexed
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so that 0 < D; < Dy < D3. More specifically, we let D; = 0.0003 Dy = 0.0006, and
D53 = 0.0010.

According to Theorem 3.4.1 the optimal production strategy with respect to any
symmetric monotone objective function is the priority strategy corresponding to the
permutation 7 = (1,2, 3). In this example we focus on the objective function ¢x
defined by letting C'= K and R = 0 in (3.3.10). As explained in Section 3.3.1, the
optimal solution maximizes the plateau volume, £(Q) = Q1 + @2 + Q3 subject to
Qe oM.

We observe that the optimal priority strategy does not depend on the producible
volumes Vi, V5, V3. However, the volumes may still have an impact on the ranking
of the different priority rules as well as the differences in performance. To see this
we consider two different cases. In the first case we let V; = 15.0 MSm?, V5 = 10.0
MSm? and V3 = 5.0 MSm?, while in the second example we let V; = 5.0 MSm?,
Vo = 10.0 MSm? and V3 = 15.0 MSm?.

Case 1 Case 2

Res. | Producible Scale Max Producible Scale Max
volume parameter rate volume parameter rate
Vi D; D;V; Vi D; D;V;

(MSm?) (kSm?/d) | (MSm?) (kSm?/d)
1 15.0 0.0003 4.5 5.0 0.0003 1.5
2 10.0 0.0006 6.0 10.0 0.0006 6.0
3 5.0 0.0010 5.0 15.0 0.0010 15.0

Table 3.1: Parameter values for the three reservoirs.

In Table 3.1 we have listed the parameter values for the two cases. We have also
included columns showing the maximum value of the PPR-functions, i.e., f;(0) =
D;V;, i =1,2,3. In both cases we let K = 3.0 kSm? per day. We note that in the
second case the maximum value of f; is just 1.5 kSm? per day. Thus, in this case
the first reservoir can never reach the plateau level K alone. Hence, if this reservoir
is given the highest priority, the subplateau length T} is zero.

By using the formulas (3.4.4) and (3.4.5), we may calculate the plateau length
T (b™) for each of the six possible priority strategies. Moreover, we may calculate
cumulative production for each of the reservoirs as well as the total cumulative
production KTx(b™) at this point of time. The results are shown in Table 3.2.

From the table we see that the priority strategy corresponding to the permutation
(1,2,3) is indeed optimal in both cases. The second and third best priority strate-
gies correspond to the permutations (2,1,3) and (1,3,2) respectively. Both these
permutations are “neighbors” of the optimal permutation in the sense that they can
be obtained from (1, 2, 3) by switching two consecutive entries in the vector. That is,
(2,1,3) is obtained from (1,2, 3) by switching the two first entries, while (1, 3,2) is
obtained from (1,2, 3) by switching the two last entries. We observe, however, that
in the first case the the total cumulative productions using the permutations (2, 1, 3)
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and (1,3,2) are very close to each other, while in the second case the permutation
(2,1,3) produces a result which is closer to the result of the optimal strategy.

Another observation is that the results using the two worst permutations, i.e.,
(2,3,1) and (3,2, 1) switch places in the two cases. In the first case (2, 3,1) produces
the worst results, while in the second case (3,2,1) comes in last.

Summarizing the example, we see that the results confirm that the optimal pri-
ority strategy indeed corresponds to the permutation (1,2,3) and thus agree with
Theorem 3.4.1. Still we see that the producible volumes also affect the results sig-
nificantly.

Priority Plateau Plateau Plateau Tot. plateau | Rank
strategy | prod. res. 1 | prod. res. 2 | prod. res. 3 | production
™ Q1(Tk) Q2(Tk) Qs3(Tk) UQ(Tk))
MSm? MSm? MSm? MSm?
Case 1
(1,2, 3) 13.745 9.083 2.927 25.755 1
(2,1, 3) 11.352 9.897 3.156 24.405 2
(1,3, 2) 13.551 5.828 4.938 24.317 3
(3,1, 2) 12.525 6.241 4.998 23.764 4
(3,2, 1) 6.173 9.424 4.994 20.591 5
(2,3, 1) 5.810 9.774 4.893 20.477 6
Case 2
(1,2, 3) 4.654 9.885 12.173 26.712 1
(2,1, 3) 4.331 9.932 12.241 26.504 2
(1,3, 2) 4.585 5.466 14.845 24.896 3
(3,1, 2) 3.396 5.887 14.949 24.232 4
(2,3, 1) 0.461 9.883 13.432 23.776 5
(3,2, 1) 0.655 7.306 14.920 22.880 6

Table 3.2: Plateau production for the six priority strategies in the two cases.

We recall that for any admissible strategy the vector Q(Tk) always belongs to
the set d(M’). In the linear case 9(M’) is a part of the hyperplane with equation:

ST HQ) =) DiVi- Q) =K.
i=1 i=1

Thus, in particular, Q(Tk, b™) belongs to this hyperplane for any priority strategy
b™. In Figure 3.1 and Figure 3.2 we have illustrated the resulting hyperplanes for
Case 1 and 2 respectively. Moreover, the plots also show the locations of Q (T, b™)
for each of the six priority strategies. In both cases these six points forms a hexagon.
However, as we see, the shapes of these hexagons are quite different. Obviously if the
points of two priority strategies are close to each other, then so are their respective
plateau productions as well. Thus, in particular the points corresponding to the two
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best permutations (1,2,3) and (2, 1,3) are much closer together in Case 2 than in
Case 1. At the same time their respective plateau productions are closer in Case 2
than Case 1.

A similar but opposite effect holds for the two worst permutations, i.e., (2,3,1)
and (3,2,1). In Case 1 both the points representing these two strategies and the
plateau productions are very close to each other. In Case 2 the points are much
further apart, and so are the plateau productions.

10000 £ ———" g
10000 5000

Figure 3.2: The hyperplane containing (M'’) in Case 2
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3.5 Generating optimal strategies using backtrack-
ing

In this section we present a methodology for Step 2 of Algorithm 3.3.3. Thus, we
consider a field with n reservoirs with PPR-functions fi,..., f,, and assume that
Step 1 of this algorithm is completed, where Q* = (@7, ..., Q%) is the vector maxi-
mizing ¢(Q) subject to Q € I(M). Moreover, we assume that Tj = K'Y " QrF
is the point of time when Q* is reached. The idea is to construct an admissible
production strategy generating a path {Q(¢) : 0 < ¢t < T}, where Q(0) = 0 and
Q(Ty) = Q*. As pointed out in the discussion following Theorem 3.3.5, finding
such a production strategy implies that Q* € 9(M’) as well. Thus, the constructed
admissible production strategy is indeed an optimal strategy.

Except in special cases, like e.g., when Q* corresponds to a priority strategy,
there will typically be an infinite number of admissible paths from 0 to Q*. In
order to find one such path, we search within the class of piecewise linear paths.
More specifically, let 0 =ty < t; < -+ < ty = T}, and let g¢; = (q1j,---,Gn;),
j=1,..., N. We then assume that the reservoirs are produced using the following
rates:

qt(t) =iy, te (tjfl,tj], 1= 17...7’IL, ]: 1/,N

Thus, the production rates are constant within each of the N intervals (to, t1], . . ., (tx—1,tn].
Hence, the cumulative production functions are given by:

Ql(t) = Qi(tj—l) —I—qw-(t — tj_l), t e (tj_l,tj], i=1,...,n, j=1,... N,

where we of course assume that Q;(ty) = @Q:(0) =0, ¢ =1,...,n. In order to ensure
that we have an admissible path, we must have:

Sai=K j=1....N, (3.5.1)
i=1
and that:
0<q; < fi(Qi(t)), t€(tjrt], i=1...,n, j=1...,N. (3.5.2)

Since the PPR-functions are assumed to be non-increasing, it follows that the last
condition is satisfied if and only if

0<q,;</fiQit), i=1,....,n, j=1,...,N. (3.5.3)

Finally, we want the path to end up at the optimal point, i.e., we must have Q(T}.) =
Q(ty) = Q*. Expressed in terms of q,..., gy we get the following condition:

N
D gty —t) = Q. (3.5.4)
j=1
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Thus, the problem is reduced to choosing the intervals (to,t1],..., (tx—1,tn], in
particular, the number of intervals N, and finding the vectors q, ..., gy subject to
the conditions (3.5.1), (3.5.3) and (3.5.4).

From a practical point of view it is of interest to keep the number of intervals as
small as possible, since this means that the reservoirs can be produced with stable
rates. However, if IV is too small, it may not be possible to find a piecewise linear
admissible path from 0 to Q*. In order to find a suitable IV, we start out by letting
N be small, e.g., N = 1. If it is possible to find an admissible path from 0 to Q*
with this NV, we are done. If not, we increase N and try once more. This process is
repeated until we eventually find an admissible path from 0 to Q*.

For a given N we also need to choose the numbers ¢4, ...,ty. The easiest choice
here would be to distribute these partition points uniformly over the interval [0, T].
Since, however, the condition (3.5.2) is stricter when f;(Q;(¢)) is small, i.e., when ¢
is close to T}, it may be a good idea to distribute the partition points so that we
have shorter intervals when t is close to T}, and longer intervals when ¢ is close to
0. In Huseby & Haavardsson (2008) we show how this can be done in a systematic
way.

Having chosen N the partition points t1,...,ty, we now turn to the problem of
choosing the vectors qy, . . ., gx subject to the conditions (3.5.1), (3.5.3) and (3.5.4).
Rather than finding all these vectors at once, it turns out to be easier to determine
them one by one, starting backwards with qy. Thus, let:

Q(k):Q*—qu'(t]‘—tj_l), kZO,l,...,N.
i>k

Thus, in particular Q©® = 0, while Q) = @Q*. As we move backwards from Q* to
0, we follow a piecewise linear path through the points Q™) Q=1 ... Q. At
each of these points we are allowed to change direction by choosing the next vector
in the set {gn,qn_1,...,q1}. Thus, assume that we have chosen the directions
qn,---,qri1, and that we want to choose q. At this stage we have constructed
an admissible path backwards from Q* to the point Q®). Since our goal is to find
an admissible path back to 0, the ideal direction from the point Q" is a vector g
that is parallel to Q. If we can find such a vector which at the same time satisfies
the conditions (3.5.1), (3.5.3) and (3.5.4), we would be right on track back to 0.
In general, however, this may not be possible. Thus, we instead look for a vector
gy, satisfying the conditions (3.5.1), (3.5.3) and (3.5.4), and such that the angle
between g, and Q™ is as small as possible. That is, we choose q; by maximizing
the scalar product Q®) gy, subject to (3.5.1), (3.5.3) and (3.5.4). This optimization
problem is a standard linear programming problem which can easily be solved using
the well-known Simplex algorithm.

By solving a linear programming problem at each of the points Q™V), Q-1 ... QW
we may be able to construct an admissible path from Q* back to 0. If the procedure
fails, we increase IV, and run the procedure once again, and so forth. In order to
avoid an infinite number of runs, however, one would typically specify some suitable
maximum number of intervals, denoted by N,,... Ideally the process produces an
admissible path with N < N,,,, intervals. Still it may happen that no such path is
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found even for a very large value of N,,q,. This obviously happens if Q* ¢ 9(M’)
since by definition no admissible path from 0 to Q* exists in this case. Unfortu-
nately, since Ny, is finite, the process may also fail when Q* is a point in 9(M’)
very close to or at the boundary of this set. Thus, the algorithm is not guaranteed
to work even though there may exist an admissible path from 0 to Q*. Still in cases
where Q* is located in the central parts of (M), the algorithm tends to work very
well.

3.5.1 An example with concave PPR-functions

We consider a field with concave PPR~functions fi, ..., fio given by

f:(Qi(1) = VDi(V; — Qu(t)), i=1,...

., V,, denote the producible volumes from the n reservoirs. Table 3.3
shows the parameter values for the 10 reservoirs. The process capacity constraint
K = 7.5 kSm?® per day is used. The max rate for the i-th reservoir is given by
V/D;V; and is obtained by inserting ¢);(0) = 0 in (3.5.5). In this example we use
the objective function ¢k defined by letting ¢ = K and R = 0 in (3.3.10). By
(3.3.12) it follows that ¢ g, interpreted as a function defined for all @ € Q is given
by ¢k0(Q) = UQ) = 2;21 @;. Since the PPR-functions and the extended objective
function ¢k o(Q) are differentiable, we may apply Lagrange multipliers in order to
find Q*. Hence, it is easy to show that Q* is given by

10, (3.5.5)

where V7, ..

Q=@ Q) = = Sy Vo= s 5 )
Reservoir | Producible Scale Max Plateau
volume parameter rate production
V; D, | VDV | @
(MSm?) (kSm?/d) | (MSm?)
1 4.5 1.174 3.25 4.204
2 6.5 1.356 4.20 6.158
3 7.0 0.643 3.00 6.838
4 10.0 0.313 2.50 9.921
5 5.0 0.625 2.50 4.842
6 4.0 1.125 3.00 3.716
7 6.0 1.333 4.00 5.664
8 8.0 1.000 4.00 7.748
9 9.0 0.500 3.00 8.874
10 5.0 2.500 5.00 4.370

Table 3.3: Parameter values for the 10 reservoirs used in the backtracking example.
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A L L ] Bl

Jl 0 = ‘ - j Li ﬁﬁ% :ﬂ ] (

Figure 3.3:  Actual production rates (q1(t),. .., q2(t)) (red curves) satisfying the con-
ditions (3.5.1), (3.5.3) and (3.5.4) and PPR-functions (f1(Q1(¢)),. .., f1o(Qi0(t)))
(green curves) for the backtracking example. The last panel shows the total produc-
tion rate q(t) (red curve) and the sum of the PPR-functions Y12, fi(Qi(t)) (green
curve).

We then proceed to Step 2 of Algorithm 3.3.3. To generate a production strategy
reaching Q* we use the approach described in Section 5 where we search for intervals
(to,t1],-- ., (tn—1,tn] so that the condition expressed in (3.5.2) is satisfied. For
simplicity we distributed the partition points uniformly over the interval [0, T}].
Starting out with N = 1 and increasing N until an admissible path from 0 to Q*
was found, it turned out that N = 12 periods were needed. Figure 3.3 shows the
actual production rates and the PPR-rates of the 10 reservoirs. The total actual
production rate and the total PPR-rate are also displayed in Figure 3.3. From Figure
3.3 we see that the conditions (3.5.1) and (3.5.2) are satisfied for all ¢ > 0.

3.6 Conclusions

In the present paper we have focused on the problem of optimizing the production
of an oil or gas field consisting of many reservoirs. We have shown how to construct
an optimal production strategy using a procedure described in Algorithm 3.3.3. The
first step of the algorithm involves finding the optimal state of the reservoirs at the
end of the plateau phase, i.e, when the path defined by the vector of cumulative
productions reaches the set 9(M’). The second step involves finding an admissible
production strategy such that the optimal state is reached.

The key results given in Theorem 3.3.4 and Theorem 3.3.5 indicate how to solve
the optimization problem given in Step 1 of Algorithm 3.3.3 in two important cases
characterized by the convexity or concavity of the PPR-functions and the quasi-
convexity or quasi-concavity of the objective function.

If the optimal state is located at the boundary of (M), the priority strategies
play an important part, since these strategies correspond to the extreme points of
the boundary of (M). Searching for an optimal rule within this class is, at least
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in principle, easy, since there are only a finite number of such strategies. More-
over, having found the best priority strategy, the second step of the algorithm is
trivial, since any priority strategy is uniquely defined by the permutation vector
representing the ordering of the reservoirs. While there of course are infinitely many
other production strategies with cumulative production paths reaching the bound-
ary of 9(M’), we believe that the priority strategies at least provide a very good
approximation to the optimal solution.

In the special case where all the PPR-functions are linear, a specific priority
strategy is shown to be optimal with respect to any monotone, symmetric objective
function.

If the optimal state is located in the interior of the set 9(M’), a backtracking
algorithm is proposed for handling Step 2 of Algorithm 3.3.3. Unless the optimal
state is too close to the boundary of 9(M’) this method produces an admissible
production strategy such that the optimal state is reached.

We believe that the general framework developed in this theoretical paper is
of fundamental importance in order to gain insight into the general production
optimization problem. Still there are many unsolved problems left. In particular,
by running Step 1 of Algorithm 3.3.3 as proposed in the present paper, we only
get a candidate for the optimal state in the set 9(M’). Thus, having a precise and
easy condition for when this candidate actually belongs to 9(M’), would be very
convenient. Using this we could e.g., avoid running Step 2 of the algorithm in cases
where the candidate state does not belong to d(M’), in which case we know that
no admissible strategy reaching this state can be found. Given such a condition we
could also be able to handle combinations of convex and concave PPR-functions.

Furthermore, in order to analyze the robustness of the derived production strate-
gies, it is of interest to incorporate uncertainty into the framework. These issues will
addressed in a forth-coming paper, where a certain parametric class of production
strategies will be proposed.

In this paper we have focused on single-phase production optimization, i.e., either
oil or gas. In real life typically oil, gas and water are produced simultaneously.
Thus, extending the framework so that multi-phase production optimization can be
handled, is of great interest. We will return to this problem in a future research
project.
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3.7 Some results on convexity

3.7.1 Separating and supporting hyperplanes

Many results in convex optimization theory rest upon the well-known separating and
supporting hyperplane theorems. For more details see Boyd & Vandeberghe (2004b).
In the space R™ a hyperplane H = {x € R" : {(x) = ¢}, where ¢ is a non-zero linear
form, divides the space into two closed half-spaces, H™ = {& € R™ : {(x) > ¢} and
H-={x e R": {(x) < c}. A hyperplane H is said to separate the sets S and T if
one of the sets is contained in H™ while the other is contained in H~. A hyperplane,
H, is said to support a set S, if either S € H* or S C H~, and SN H # (. The
separating and supporting hyperplane theorems can now be stated as follows:

Theorem 3.7.1. Let S,T C R"™ be two disjoint convexr sets. Then there exists a
hyperplane H separating S and T'.

Theorem 3.7.2. Let S C R™ be a closed convex set, and let £y € S be a point
on the boundary of S. Then there exists a hyperplane, H, supporting S such that
T € H.

The following proposition, proved in Huseby & Haavardsson (2008), combines
Theorem 3.7.1 and Theorem 3.7.2:

Proposition 3.7.3. Let S,T C R” be two disjoint convex sets. Moreover, assume
that there exists a Ty € S such that any neighborhood of x intersects T. Then there
exists a hyperplane H separating S and T such that H supports S at xg.

Using the various sets and notation introduced in Section 3.3, we can now for-
mulate the following important result:

Theorem 3.7.4. Consider a field with n reservoirs with conver PPR-functions
f1,---s fn. Moreover, let Q € O(M'). Then there exists m (m suitably chosen)
vectors Q1,...,Qm € 0(O(M’)) and non-negative numbers oy, ..., a,, such that
Yot a; < 1 and such that:

Q=) Q. (3.7.1)
i=1

Proof: See Huseby & Haavardsson (2008).

Note that in the above argument we embed the set A\[9(M’)] in a convex polytope
P with m extreme points, where m is a suitably chosen integer. If n = 2, the set
A[O(M")] can be embedded within an interval, i.e., a polytope with two extreme
points. Similarly, if n = 3, the set can be embedded withing a triangle, which
is a polytope with three extreme points. In general the set A[O(M’)] can always
be embedded within an n-dimensional simplex which is a polytope with n extreme
points. Thus, we may always choose the polytope P such that m = n.
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3.7.2 Quasi-convex functions

In Section 3.3 we needed the concept of quasi-convexity. This is defined as follows
(see Boyd & Vandeberghe (2004b)):

Definition 3.7.5. Let S C R” be a convex set. We say that a function g : S — R
is quasi-convex if for any pair of vectors &1, 22 € S and A € [0, 1] we have:

g(Axy + (1 = N)x2) < max{g(z1), g(x2)}

Furthermore, the function g is said to be quasi-concave if —g is quasi-conver. Fi-
nally, if g is both quasi-convexr and quasi-concave, we say that g is quasi-linear.

More generally quasi-convexity implies the following result which is proved in
Huseby & Haavardsson (2008):

Proposition 3.7.6. Let S C R"™ be a convex set, and let g : S — R be a quasi-
convez function. Moreover, let @1, ...,&, € S, and let \y,..., A\, € [0,1], be such
that Y7 A = 1. Then:

9> Nixi) < max{g(@1),...g(x,)}. (3.7.2)

i=1

The following result provides alternative definitions of quasi-convexity and quasi-
concavity (see Boyd & Vandeberghe (2004b)):

Proposition 3.7.7. Let S C R"™ be a convex set, and let g : S — R. Then g is
quast-conves if and only if the sets L, = {x € S : g(x) < y} are convez for all y.
Similarly, g is quasi-concave if and only if the sets U, = {& € S : g(x) > y} are
convex for all y. Finally, g is quasi-linear if and only if L, and U, are convex for
all y.

Note that for some y L, or U, may be empty. In this setting, however, 0 is
defined to be convex, so in order to verify quasi-convexity or quasi-concavity, only
non-empty sets need to be considered.

Using Proposition 3.7.7 we can also state the following characterizations; the
proof is given in Huseby & Haavardsson (2008):

Proposition 3.7.8. Let S C R" be a convex set, and let g : S — R. Then g is
quasi-convez if and only if the sets Ly = {z € S : g(x) < y} are convex for all y.
Similarly, g is quasi-concave if and only if the sets Uy = {x € S : g(x) > y} are
convex for all y. Finally, g is quasi-linear if and only if Ly and Uy are convex for
all y.

By combining the above results, we see that a function g : S — R is quasi-linear
if and only if L, and its complement are both convex for all y. It is easy to see
that this implies that for all y, d(L,) = S N H, where H, is a hyperplane. The
following result provides a sufficient condition for quasi-linearity. The proof is given
in Huseby & Haavardsson (2008)
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Proposition 3.7.9. Let S C R™ be a convex set, and let g : S — R. Moreover
assume that there exists a non-zero linear form € such that g(x) = h(¢(x)) for all
x € S, where h : R — R is either non-decreasing or non-increasing. Then g is
quasi-linear.

3.8 Proof of Theorem 3.4.1

In order to prove Theorem 3.4.1, we need the following lemma, proved in Huseby &
Haavardsson (2008).

Lemma 3.8.1. Assume that T,y € R™ are such that:

k k
Sow=> k=1,....n. (3.8.1)

ay > as > ...>a, >0, (3.8.2)

we also have:

We now turn to the proof of the theorem and start by introducing the plateau
lengths T1,...,T, as defined in (3.3.14). When the priority strategy b' is used,
reservoir 1 is produced at the rate K throughout the interval [0, T1], the reservoirs 1
and 2 are produced at a total rate K throughout the interval [0, T3], etc. Moreover,
reservoir 1 will be produced without any choking for ¢ > T3, reservoir 1 and 2 will
be produced without any choking for ¢ > T5, etc.

We shall now prove by induction that:

i:@j(t,bl) > ZZ:Qj(t,bz), t>0,i=1,...,n. (3.8.3)

Thus, we start out by considering the case where ¢ = 1. If 0 < ¢ < Tj, then
obviously:

Q1(t,b") = Kt > Q(t,b%).

If t > Ty, we know that reservoir 1 is produced without any choking when b is used.
Thus, we have:

Qi(t,b") = Vi(1 — e P11 4 Q) (T, bt )e P11,
If, on the other hand, b? is used, we get:

Qu(t,b%) < Vi(1 — e 1) 4 Q) (Ty, b%)e Pri-T,
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Thus, since Q1(Ty,b') > Q,(T1, b?), it follows that Q:(¢,b') >
t > Ty. Hence, we conclude that Q;(t,b') > Q:(¢,b?) for all t >
proved for i = 1.

We then assume that (3.8.3) is proved for ¢ = 1,...,(k — 1), and consider the
case where ¢ = k. If 0 <t < T}, we have:

k k
Z Qi(t,b') = Z Q;(t, b?). (3.8.4)

We then consider the case where ¢ > T. If b! is used, the reservoirs 1,2,. ..,k are
produced without any choking, thus:

1 (t b?) for all
0, i.e., (3.8.3) is

k k k
D> Qi(tbY) =D V(1 — e PT) £ N Qy (T, bl e P, (3.8.5)
j=1

j=1 Jj=1
If, on the other hand, b? is used, we get:

k k k
> Qb < Z e PITI) N 7 Q;(Ty, b7)e T, (3.8.6)

j=1 Jj=1

By the induction hypothesis and (3.8.4) we have that:

ZQ](Tk7b1)ZZQ](Tk7b2)> Z:177k
j=1 j=1

Moreover, since D < Dy < --- < Dy, we have:
e~ P1(t=Tk) > > e‘Dk(t_Tk)7 for all t > Tj,.

Then it follows by Lemma 3.8.1 that:

Ead

k
> Q;(Ti, bh)e P > Z (T, b%)e i) (3.8.7)

j=1 j=1

By combining (3.8.5), (3.8.6) and (3.8.7), for all ¢ > T} and (3.8.4) for 0 < ¢ < T,
we get for t > 0:

k k
Z Qj(tv bl) > Z Qj(tv b2)'

Thus, (3.8.3) is proved for i = k as well. Hence, the result is proved by induction B



76 CHAPTER 3. MULTI-RESERVOIR PRODUCTION OPTIMIZATION




Chapter

A parametric class of production strategies
for multi-reservoir production optimization

Abstract

When a large oil or gas field is produced, several reservoirs often share the same
processing facility. This facility is typically capable of processing only a limited
amount of oil, gas and water per unit of time. In the present paper only single phase
production, e.g., oil production, is considered. In order to satisfy the processing
limitations, the production needs to be choked. That is, for each reservoir the
production is scaled down by suitable choke factors between zero and one, chosen
so that the total production does not exceed the processing capacity. Huseby &
Haavardsson (2008) introduced the concept of a production strategy, a vector valued
function defined for all points of time ¢ > 0 representing the choke factors applied to
the reservoirs at time t. As long as the total potential production rate is greater than
the processing capacity, the choke factors should be chosen so that the processing
capacity is fully utilized. When the production reaches a state where this is not
possible, the production should be left unchoked. A production strategy satisfying
these constraints is said to be admissible. Huseby & Haavardsson (2008) developed
a general framework for optimizing production strategies with respect to various
types of objective functions. In the present paper we present a parametric class of
admissible production strategies. Using the framework of Huseby & Haavardsson
(2008) it can be shown that under mild restrictions on the objective function an
optimal strategy can be found within this class. The number of parameters needed
to span the class is bounded by the number of reservoirs. Thus, an optimal strategy
within this class can be found using a standard numerical optimization algorithm.
This makes it possible to handle complex, high-dimensional cases. Furthermore,
uncertainty may be included, enabling robustness and sensitivity analysis.

Keywords

Convex optimization theory, Numerical optimization methods, Conjugate Gra-
dient Method, Nelder-Mead Method, Risk Analysis, Total Value Chain Analysis,
Simplified Production Profiles
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4.1 Introduction

Optimization is an important element in the management of multiple-field oil and
gas assets, since many investment decisions are irreversible and finance is committed
for the long term. Optimization of oil and gas recovery in petroleum engineering
is a considerable research field, see Bittencourt & Horne (1997), Horne (2002) or
Merabet & Bellah (2002). Another important research tradition focuses on the
problem of modelling the entire hydrocarbon value chain, where the purpose is to
make models for scheduling and planning of hydrocarbon field infrastructures with
complex objectives, see van den Heever et al. (2001), Ivyer & Grossmann (1998) or
Neiro & Pinto (2004). Since the entire value chain is very complex, many aspects
of it need to be simplified to be able to construct such a comprehensive model.

Huseby & Haavardsson (2008) considered the more limited problem of hydro-
carbon production optimization in an oil or gas field consisting of many reservoirs
sharing the same processing facility. In order to satisfy the processing limitations
of the facility, the production needs to be choked. That is, at any given point of
time the production from each of the reservoirs are scaled down by suitable choke
factors between zero and one, chosen so that the total production does not exceed
the processing capacity. This situation was handled by introducing the concept of a
production strategy. A production strategy is a vector valued function defined for all
points of time ¢ > 0 representing the choke factors applied to the reservoirs at time ¢.
The problem is then reduced to finding a production strategy which is optimal with
respect to a suitable objective function. Huseby & Haavardsson (2008) developed a
general framework for solving such optimization problems, and provided solutions
to the problem in several important special cases.

In the present paper we present a parametric class of production strategies. Using
the framework of Huseby & Haavardsson (2008) it can be shown that under mild
restrictions on the objective function an optimal strategy can be found within this
class. The number of parameters needed to span the class is bounded by the num-
ber of reservoirs. Thus, an optimal strategy within this class can be found using a
standard numerical optimization algorithm. This makes it possible to handle com-
plex, high-dimensional cases. Furthermore, uncertainty may be included, enabling
robustness and sensitivity analysis.

As in Huseby & Haavardsson (2008), we assume that the field has been analyzed
using state-of-the-art reservoir simulation methods. Based on the output from these
simulations simplified production profile models for each of the reservoirs can be
constructed and used as input to the optimization procedure. How to construct
such profile models is described in Haavardsson & Huseby (2007). We also follow the
approach of Huseby & Haavardsson (2008) by focussing on optimizing oil production,
and leave simultaneous analysis of oil, gas and water production for future work.
Still the optimization methods developed here can be used in a broader context of
a total value chain analysis.
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4.2 Some basic concepts and established results

4.2.1 Model and notation

We consider the oil production from n reservoirs that share a processing facility
with a constant process capacity K > 0, expressed in some suitable unit, e.g., kSm?
per day. Let Q(t) = (Q1(t),...,Qn(t)) denote the vector of cumulative production
functions for the n reservoirs, and let f(t) = (f1(¢),..., fu(t)) be the corresponding
vector of potential production rate functions or PPR-functions, where each PPR-
function can be written as:

fit) = fi(@:it)), t=0,i=1,...n (4.2.1)

This assumption implies that the potential production rate can be expressed as a
function of the volume produced. As a consequence the total producible volume from
a reservoir does not depend on the production schedule. The assumption expressed
in (4.2.1) also implies that the potential production rate of one reservoir does not
depend on the volumes produced from the other reservoirs. We will also assume
for i = 1,...n that f; is non-negative and non-increasing as a function of Q;(t) for
all t and that the recoverable volume of each reservoir is finite. Finally, to ensure
uniqueness of potential production profiles we will also assume that f; is Lipschitz
continuous in @Q;, i =1,...,n.

A production strategy is defined by a vector valued function b = b(t) = (b1(t), ..., ba(t)),
defined for all ¢ > 0, where b;(t) represents the choke factor applied to the ith reser-
voir at time t, i = 1,...,n. The actual production rates from the reservoirs, after
the production is choked is given by

q(t) = (QI(t)7 M QH(t)))

where

Gi(t) = d%'t(t) — b)), i=1,....m. (4.2.2)

We also introduce the total production rate function ¢(t) = >.", ¢;(t) and the
total cumulative production function Q(t) = Y1, Q;(¢). To reflect that ¢ and Q
depend on the chosen productions strategy b, we sometimes indicate this by writing
q(t) = q(t,b) ete.

To satisfy the physical constraints of the reservoirs and the process facility, we
require that the actual production rate cannot exceed its potential production rate.
Moreover, the total production rate cannot exceed the production capacity. Let B
denote the class of production strategies that satisfy these physical constraints. We
refer to production strategies b € B as wvalid production strategies.

For a given production strategy b € B the plateau length is defined as

Ty = Ti(b) = sup{t > 0: > _ fi(Qi(t)) > K}. (4.2.3)
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An admissible production strategy is defined as a production strategy b € B
satisfying the following constraint:

q(t) = Z% Zb (t)) = min{ K, Zfl i (4.2.4)
i=1
Moreover, we let B C B denote the class of admissible strategies.

4.2.2 Objective functions

To evaluate production strategies we introduce an objective function, i.e., a mapping
¢ : B — R representing some sort of a performance measure. If b', b € B, we prefer
b? to bt if ¢(b?) > ¢(b'). Moreover, an optimal production strategy with respect to
¢ is a production strategy b°?" € B such that ¢(b°?") > ¢(b) for all b € B.

If b',b*> € B are two production strategies such that Q(t,b') < Q(t,b?) for all
t > 0, one would most likely prefer b® to b'. Thus, a sensible objective function
should have the property that ¢(b') < ¢(b®) whenever Q(t,b') < Q(t, b?) for all
t > 0. Objective functions satisfying this property will be referred to as monotone
objective functions.

In general the revenue generated by the production may vary between the reser-
voirs. This may occur if e.g., the quality of the oil, or the average production cost
per unit are different from reservoir to reservoir. Such differences should then be
reflected in the chosen objective function. On the other hand, if all the reservoirs
are similar, we could restrict ourselves to considering objective functions depending
on the production strategy b only through the total production rate function ¢(-, b)
(or equivalently through Q(-,b)). We refer to such objective functions as symmetric.

In this paper we will consider the following monotone, symmetric objective func-
tion:

bc.r(b) = /Ooo H{q(u) > Clg(u)e ®'du, 0<C <K, R>0. (4.2.5)

The parameter R may be interpreted as a discount factor, while C' is a threshold
value reflecting the minimum acceptable production rate. If we insert C' = 0 and
R > 0in (4.2.5), the resulting value of the objective function is simply the discounted
production. On the other hand if we insert C' = K in (4.2.5), the integrand is positive
only when ¢(u) = K. When R = 0 we obtain that ¢¢o(b) = ¢k,0(b) = KTk(b). It
also follows from the definition of ¢c g in (4.2.5) and Tk in (4.2.3) that ¢xo(b) =
KTi(b) = 325, Qi(Tk ().

4.2.3 Principles for optimizing production strategies
We now turn to the problem of finding the best production strategy. Consider the
set

Q=10,11] x -+ x[0,V,], (4.2.6)
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where V1, ...,V are the recoverable volumes from the n reservoirs. We then intro-
duce the subset M C Q given by:

M={QeQ:) fi(Q) =K}

i=1

The subset M C Q is defined as M = {Q € Q : >, fi(Q:) < K}. We also need
the set of boundary points of M separating M from M, which we denote by d(M).
Thus, Q € d(M) if and only if every neighborhood of @ intersects both M and M.

The set M has the property that the total production rate can be sustained
at plateau level as long as @ € M. More specifically, let b be any production
strategy, and consider the points in Q generated by Q(t) = Q(¢,b) as ¢ increases.
From the boundary conditions we know that Q(0) = 0. By the continuity of the
PPR-functions, Q(t) will move along some path in M until the boundary 9(M) is
reached.

If b € B, the resulting path is said to be a valid path, while if b € B, the path is
called an admissible path. in general only a subset of M can be reached by admissible
paths. We denote this subset by M. Moreover, we let (M) = d(M) N M.

For an admissible path the total production rate equals K all the way until the
path reaches d(M’). Moreover, the plateau length Tk (b) is the point in time when
the path reaches (M), implying that (M) = {Q(Tx (b)) : b € B'}.

The following proposition, proved in Huseby & Haavardsson (2008), plays a key
role when searching for optimal production strategies:

Proposition 4.2.1. Let ¢ be a symmetric, monotone objective function and let
b e B. Then ¢ is uniquely determined by Q(Tk(b)). Thus, we may write ¢p(b) =
?(Q(Tk(b))).

As a consequence of Proposition 4.2.1 the following corollary can be stated:

Corollary 4.2.2. Let ¢ be a symmetric, monotone objective function and let b € B’
and let Q* € OM'’ denote the point with the property that ¢(Q) is mazimized for
Q = Q*. Assume that Q(Tk(b)) = Q*. Then b is optimal with respect to ¢.

Corollary 4.2.2 states that any admissible production strategy which path reaches
the optimal Q* is optimal. The following corollary will be useful in the present paper:

Corollary 4.2.3. Let ¢ be a symmetric, monotone objective function and let C C B’
be a class of admissible production strategies such that for all Q* € (M) there
exists a b* € C such that Q(Tx(b*)) = Q*. Then an optimal production strategy
with respect to ¢ can always be found within C.

Motivated by Corollary 4.2.2 Huseby & Haavardsson (2008) proposed a two-
step process for finding an optimal production strategy. The first step consisted of
finding Q* € 9(M’) such that ¢(Q*) > ¢(Q) for all Q@ € (M’). In the second step
a backtracking algorithm was used to derive a production strategy b* € B’ such that
Q(Tk (b)) = Q* which by Corollary 4.2.2 is optimal.
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If all the PPR-functions are differentiable, the first step can often be solved very
efficiently using e.g., the method of Lagrange multipliers. Using such a method one
can at least find a @ € 9(M) such that ¢p(Q’) > ¢(Q) for all Q € I(M). If Q' €
A(M') as well, we let Q* = Q'. To verify that Q' € 9(M'), Huseby & Haavardsson
(2008) uses the backtracking algorithm. If this algorithm successfully produces
an admissible path, this shows that Q" € 9(M’). Thus, an optimal production
strategy is found. On the other hand, if Q" € (M \ M), no such admissible path
exists. Thus, the backtracking algorithm cannot succeed. Note, however, that even
if Q' € 9(M’), the backtracking algorithm may sometimes fail. This occurs when
Q' is very close to or at the border of d(M’).

In the next section we propose an alternative approach to the optimization prob-
lem. We introduce a parametric class of admissible production strategies and restrict
our search for optimal strategies within this class. If all @* € 9(M’) can be reached
using production strategies from this parametric class, Corollary 4.2.3 then states
that an optimal production strategy can always be found within this class.

4.3 A parametric class of production strategies

A simple production strategy can always be constructed by using the same choke
factor for all the reservoirs. That is, we let b;(t) = ¢(t), ¢ = 1,...,n. For such a
production strategy to be admissible ¢(t) must satisfy the following:

n

> cDf(@Qu(1) = min{K, 37 fi(@Qi(1))}. (4.3.1)

i=1
Thus, for 0 < t < Tk, we have:

B K
O Qi)

while ¢(t) = 1 for all ¢ > Tk. Note that since > 1, fi(Q;(t)) > K for 0 < ¢ < Tk,
the common choke factor, ¢(t) will always be less than or equal to 1. A production
strategy defined in this way, will be referred to as a symmetry strategy. We observe
that when a symmetry strategy is used, the available production capacity is shared
among the reservoirs such that none of the reservoirs are given any kind of priority.
The idea now is to expand this class by allowing the production capacity to be
shared asymmetrically. To facilitate this we start out by considering production
strategies where for 0 < t < T the choke factors are given by:

c(t) (4.3.2)

bi(t) = wic(t), i=1,...,n, (4.3.3)
where wq,...,w, are positive real numbers representing the relative priorities as-
signed to the n reservoirs, and where ¢(t) is chosen so that the strategy is admissible.
For t > Tk, we of course define b;(t) = 1,9 = 1,...,n. Note that if w; = --- = w,

we get a symmetry strategy.
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In order to ensure admissibility, ¢(¢) must be chosen so that:

Z wic(t) fi(Qi(t)) = min{K, Z £(Qi(0))}- (4.3.4)

Thus, for 0 <t < Tk the choke factors are given by:
> w;if5(Q5(1)

Unfortunately, this definition does not guarantee that the choke factors are less than
or equal to 1. To fix this problem, we instead let:

i=1,....n (4.3.5)

bi(t) = min{1, w;c(t)}, i=1,...,n. (4.3.6)

While this ensures that the resulting production strategy is valid, it makes the
calculation of ¢(t) slightly more complicated. To ensure admissibility, ¢(t) must now
be chosen so that:

meu wie(t)}f(Qi(1) = min{K, > fi(Qi(t)}. (4.3.7)

i=1

When t > Tk, c(t) must be chosen large enough so that min{l,w;c(t)} =1, i =
1,...,n. One obvious possibility is to let c(t) = max;{w;'}. When 0 < ¢ < Tk,
there is always a unique value of ¢(t) satisfying (4.3.7). To see this we first note that
if we let ¢(t) = 0, the left-hand side of (4.3.7) is zero which is less than K. On the
other hand, letting c(t) = max{w; '}, we get that min{l,w;c(t)} =1,i=1,...,n
Inserting this, the left-hand side of (4.3.7) becomes Y | f;(Q;(t)), which is greater
than or equal to K for 0 < t < Tk . Between these two extremes the left-hand side of
(4.3.7) is a continuous function of ¢(t). Thus, the existence of a ¢(t) satisfying (4.3.7)
is guaranteed by the intermediate value theorem. Moreover, since the left-hand side
of (4.3.7) is a strictly increasing function of ¢(t), this ¢(¢)-value is unique.

In order to take a closer look at the calculation of ¢(t) for the case where 0 < ¢ <
Tk, it is convenient to sort the weights in decreasing order. This can always be done
by identifying a permutation 7 of the index set so that w.q) > wr@2) > -+ > W)
In order to simplify the notation, however, we instead assume that the reservoirs
are indexed so that w; > wg > - -+ > w,. We then introduce the following sets:

n

k
Mi={QeQ: ) filQ)+ > %f@-(Qi) >KY, k=1....n. (438
i=1

i=k+1

We also define My = (). We observe that the left-hand side of the inequality defining
the My, is a weighted sum of the PPR-functions, where the weight associated to f;
islfori=1,...,kand “" fori = k+1,...,n. Moreover, since wy > wy > -+ > W,
it follows that ”k <1 for it =k+1,...,n. As k increases, the number of PPR-
functions with weight 1 increases. At the same time the weights of form - 1ncreases
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as well. Thus, the left-hand side of the inequality defining the set M}, increases with
k. Hence, it follows that M; C ... € M,. When k = n, all the PPR-functions
have weight 1, implying that M,, = M. From this it follows that the difference sets
(M \ My_1), k=1,...,n, form a partition of the set M. Note, however, that if
Wy = wy_1, then My = My_1. Thus, some of the difference sets may be empty.

In order to find the ¢(t)-function satisfying (4.3.7) when 0 < ¢ < Tk, i.e., when
Q(t) € M, it is convenient to solve this problem separately for each of the difference
sets. Thus, we let Q(t) € My \ Mj_1, and claim that in this case ¢(¢) is given by:

K =3 filQi(1))

c(t) = = . (4.3.9)
i wifi(Qi(t))
To prove this we note that since Q(t) € My, it follows that:
k n W
Zfi(Qi(t)) + Z —fi(Qi(t)) = K. (4.3.10)
i=1 imkt1 Uk
By multiplying both sides by wy and rearranging the terms we obtain that:

Yok wifi(Qi(t)) -

Combining this with (4.3.9) we get that wrc(t) < 1, and since wy, > w1 >« -+ > Wy,
it follows that:
wie(t) <1, i=k, ... n (4.3.12)

On the other hand we have that Q(t) ¢ My_1. Thus, by using a similar argument
as above, we get that:

wiet) > 1, i=1,... k-1 (4.3.13)
Hence, it follows that:
. 1 i=1,..., k-1
b;(t) = min{1, wic(t)} = { wielt) i=k,....n (4.3.14)

By inserting (4.3.9) and (4.3.14) into the left-hand side of (4.3.7) we get that:

Zmln{l wic(t)} fi(Qi( Zfz il +Zwl fi(Qi(1))

K S MO w k)
- Z F@:{8) + TR AAO)
= K.

That is, ¢(t) as given in (4.3.9), satisfies (4.3.7) when Q(t) € My \ Mj_1. Since the
same argument holds for all k =1,... n, it follows that c(t) satisfies (4.3.7) for all
Q(t) € M, i.e., whenever 0 < t < Tk as claimed.



86 CHAPTER 4. A PARAMETRIC CLASS OF PRODUCTION STRATEGIES

By varying the weights wy,...,w, in R? a whole range of admissible production
strategies is obtained. We will refer to such production strategies as first-order fized-
weight strategies, and denote the class of all such strategies by BY’. We always assume
that the corresponding c(t) is determined by (4.3.9) ensuring that the resulting
production strategy is admissible. Thus, BY C B'. If b € B} is a fixed-weight
strategy with weight vector w = (w1, ..., w,), we sometimes indicate this by writing
b=b(w).

From the formula (4.3.9) it is easy to see that if we replace the weight vector w
by w = Aw where A > 0, then ¢(t) is replaced by ¢(t) = A7'c(t). As a result the
choke factors are not affected by this change of weights. Thus, we have shown that:

b(w) = b(\w). (4.3.15)

That is, the production strategy is invariant with respect to scale transformations
of the weight vector w. This means that one can reduce the dimension of the
space of possible weight vectors to (n — 1) without changing the class B’. There
are several ways of doing this. One possibility is to consider only w of length 1.
Another possibility is to restrict the search to w normalized so that the sum of
weights is 1. Here, however, we have chosen a third option, where the dimension
is reduced by fixing the value of one of the weights, e.g., by letting w, = 1. All
the remaining weights may be chosen as arbitrary positive real numbers. Thus, the
resulting search area is the unbounded (n — 1)-dimensional set R, Sometimes,
however, it is easier to carry out the search on a bounded set. This can be achieved
by using the following reparametrization:

Ui
1 *Uﬁ

i=1,...,(n—1). (4.3.16)

Wi

By letting v; run through all values in the interval (0, 1), the resulting values of w;
will run through all positive real numbers. Thus, searching for the optimal values of
(w1, ..., w,—1) within the unbounded set ]RTl is reduced to searching for the optimal
values of (vy,...,v,_1) within the bounded set (0,1)"~!. This reparametrization is
used in the numerical examples discussed in Section 4.

4.3.1 Higher order fixed-weight strategies

A weakness with the class B}’ is that it does not allow strict priorities between the
reservoirs. In order to study this further we introduce the concept of a priority
strategy. A kth order priority strategy is an admissible production strategy defined
relative to an ordered partition {A;}¥_, of the index set {1,...,n} of the reservoirs.
The available processing capacity K is divided between the n reservoirs so that
the reservoirs in A; are given the highest priority, the reservoirs in A, are given
the second highest priorities, and so on. More specifically, at any given point of
time ¢ we let K;(t) denote the processing capacity available to the reservoirs in A;,
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j=1,...,k. Then:

Ki(t) = K, (4.3.17)
Ky (t) = max{0, K, (¢ Zfl

i€AL
K3(t) = max{0, Ky (¢ Z fil@

i€A2

K (t) = max{0, Kj_( Z fi(@

1€AE_1

In order to ensure admissibility it is assumed that the reservoirs in all groups use
as much as possible of the available processing capacity. Thus, the choke factors
bi(t),...,bu(t) are chosen so that:

D bi(t) fi(Qi(t) = min{K;(t), > fi(Qilt) j=1,... k. (4.3.18)

i€A; €A

Note that that (4.3.18) implies that the production strategy is admissible since
adding up all k£ equalities yields:

Z b(t = min{ K, Z £i(Qu(t) (4.3.19)

The most extreme type of a priority strategy is an nth order priority strategy. For
such strategies |A;[ = 1 for j = 1,...,n. Thus, the ordered partition, {A4;}7_;, sim-
ply represents a permutation of the reservoirs. In this case the production strategy

is uniquely defined by this permutation. Thus, if A; = {i;}, j =1,...,n, then:

K(t) = max{0, K;_(t) — fi,_,(Qs,_, (1))}, j=2,...n, (4.3.20)
while the choking factors, b1(t), ..., b,(t), satisfies:
. K;(t) .
bi, (t) = min{1, —2—"—1, j=1,...n (4.3.21)
We now proceed by combining fixed-weight strategies and priority strategies.
Thus, we let {A;}_, be a partition of the index set, and let w = (wy,...,wy,) be

a vector of positive real numbers. We then consider choke factor functions of the
form:
bi(t) = min{1, wic;(t)}, i€ A, j=1,...k, (4.3.22)

where ¢(t),...,cx(t) are determined for each ¢ so that the resulting production
strategy is admissible., i.e., so that:

Z min{1, wic; (1)} fi(Qi(t)) = min{ K; (¢ Z Fi(Qu( j=1,...,k
- - (4.3.23)
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A production strategy of this form will be referred to as a kth order fized-
weight strategy, and we denote the class of all such strategies by B}’. Computing
c1(t), ..., ck(t) can be done in exactly the same way as for first-order fixed-weight
strategies, so we skip the details here.

If b € BY is a kth order fixed-weight strategy relative to the partition {4; }é?:l and
with weight vector w = (w1, ..., w,), we introduce the following vectors wy, . .., wg,
where w; is obtained from w by replacing w; by 0 for alli ¢ A;, j =1,..., k. Thus,
since Ay, ..., Ay are pairwise disjoint and A; U---U A = {1,...,n}, it follows that
w = w; + -+ wg. Now, let Aq,..., \x be positive numbers, and assume that
the vector of weights, w, is replaced by w = Zle Ajwj;. Then, using the same
argument as in the first-order case, it follows that ¢;(t),...,cx(t) are replaced by
i(t), ..., éx(t), where ¢;(t) = A;'e(t). As a result the choke factors are not affected
by this change of weights. Thus, we have shown that:

This implies that we in the kth order case may reduce the dimension of the space of
possible weight vectors to (n — k) without reducing the class BY. We have chosen
to do this by fixing the value of one weight for each of the sets Aj,..., Ay. In the
case where k = n, we know that the priority strategy is uniquely determined by
the permutation given by the single element sets Ay, ..., A,. Thus, in this case the
weight vector does not affect the production strategy, which is reflected by the fact
that the dimension of the space of possible weight vectors can be reduced to zero.

We recall that by Corollary 4.2.3 an optimal production strategy can be found
within a given class of admissible strategies provided that all points in (M) can be
reached by members of this class. It turns out that all interior points of d(M’) can
be reached by first-order fixed-weight strategies. However, to reach the boundary
points in 9(M’) as well, higher-order strategies must be included. In a forthcom-
ing paper it will be proved that by considering the combined class of fixed-weight
strategies of all orders, it is possible to reach all points in d(M’). Hence, an optimal
production strategy can always be found within By’ U --- U B}Y.

Assuming that the value of the objective function, ¢, interpreted as a function
of Q(Tk (b)), is a continuous function of this vector, it follows that for each point
Q* € 9(9(M")) and € > 0, there exists another point, @ in the interior of (M’)
such that |p(Q*) — ¢(Q)| < e. Hence, even if the search for an optimal strategy is
restricted to By, it is possible to find a strategy which is approximately optimal. In
order to approximate a higher order fixed-weight strategy by a first-order strategy,
one can assign very high weights to the reservoirs in the set with highest priority,
and then use significantly smaller weights for the reservoirs in the sets with lower
priorities. As we shall see, however, if the optimal strategy is a higher order strategy,
better numerical results are obtained by searching among the fixed-weight strategies
with the correct order.
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4.4 Numerical optimization

We will now describe how the objective function ¢¢ r(b) defined in (4.2.5) can be
maximized for the parametric class defined in Section 4.3 using numerical optimiza-
tion techniques. The numerical Java library Java Tools for Experimental Mathe-
matics (JTEM)! is used for the optimization.

4.4.1 Initialization

Case studies have suggested that the objective function ¢¢ r(b(w)) is multi-modal
as a function of w. To ensure that the global maximum is found, several initial-
ization techniques may be used, see Liu (2001). We have chosen to initialize the
search by sampling N n-dimensional vectors at random. Then the objective func-
tion is evaluated in all N vectors. The vector where the object function attains its
maximum, constitutes the initialization vector for the numerical search.

4.4.2 A sequential approach for numerical optimization

To find the optimal strategy within BY U- - - B}’ we need to identify the correct order
of the optimal strategy. Moreover, for a given order, say k, we need an algorithm
for finding the optimal strategy within B}’. We start out by presenting the last
algorithm:

Algorithm 4.4.1. Let ¢ be a monotone, symmetric objective function. Assume
that an ordered partition {A]-};?:1 is given. Denote the highest element in each A,
with ia,, j = 1,..., k. Then a production strategy b* € B}’ which maximizes ¢
numerically can be found as follows:

STEP 1. Find N random samples of wy, using the techniques described in Section
4.4.1. We set Wiy, = 1.0 for j =1,...,k to avoid over-parametrization, as explained

in Section 4.3.1. Denote these samples wi, ..., w. Among these we select a vector
w;j, such that

d(b(wl)) > o(b(w})), forallic {1,...,N}.

STEP 2.  Maximize ¢ numerically with respect to w using wi as initialization

vector. In the mazimization we always keep w;, = 1.0 for j =1,... k. Denote the
7

resulting vector of weights wy.

To find the correct order of the optimal strategy we start by searching among the
first-order fixed-weight strategies, and denote by w7 the resulting candidate obtained
from Algorithm 4.4.1. Assuming that ¢ is continuous, it follows, as explained in
Section 4.3.1, that wj will be approximately optimal. We then proceed by inspecting
wj. If the ratio between the smallest and largest element of this vector is large, this
indicates that the optimal strategy may be a higher order strategy. Thus, the natural

For documentation see http://www.jtem.de/.
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next step is to consider second order fixed-weight strategies. Prior to this we sort
the elements of w7 so that
Wy, = 2wy

Since this ordering indicates a prioritization order of the reservoirs, we consider
only second order fixed-weight strategies such that the weights corresponding to the
indices in A; are larger than the weights corresponding to the indices in As. Thus,
only the following n — 1 partitions need to be considered:

Ar={it}, Ay = {in,... in}, (4.4.1)
Ay = {ir,is}, Ay ={is,... in}, (4.4.2)
Ay ={in, o vinoa s As = {in). (4.4.3)

We then run Algorithm 4.4.1 for all these partitions and denote by wj the best-
performing weight vector. If ¢(b(w,)) < ¢(b(wf)) we use wi and conclude that
the optimal strategy is a first-order strategy. Otherwise we proceed using wj and
the corresponding partition instead of wj. We then inspect the two sub-vectors
of wj corresponding to A; and A,. If the ratio between the smallest and largest
element of any of these two sub-vectors is large, this indicates that the optimal
strategy may be an even higher order strategy. We then proceed by considering
third order strategies. Now, however, only refinements of the previous partitions
are considered. This implies that only n — 2 partitions need to be examined at this
stage. The process is repeated until no further improvement can be obtained.

By only considering successive refinements of the previous partitions, and tak-
ing into account the ordering of the weights, the number of times we need to run
Algorithm 4.4.1 is reduced to a minimum. Thus, the total order of the sequential
optimization process is dominated by the order of this algorithm.

4.5 Examples

4.5.1 The fixed-weight strategy as an alternative to back-
tracking

In this first example we will assume that both steps of the optimization algorithm
developed in Huseby & Haavardsson (2008) can be executed. We start with finding
the optimal state Q* of the reservoirs at the end of the reservoirs. Then we use back-
tracking to derive an admissible production strategy to reach Q*. Corollary 4.2.2
states that any admissible production strategy which path reaches the optimal Q*
is optimal. Thus, as an alternative to backtracking we use the proposed parametric
class to find another admissible production strategy to reach Q™.

To find @* we use the theory of Huseby & Haavardsson (2008), which states that
if all PPR-functions are concave, the optimal Q* may typically be located in central
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parts of d(M”). The PPR-functions fi, ..., f, are given by

Qi) = V/Di(Vi — Q4(1)), i =1,...,n, (4.5.1)

where Vi,...,V, denote the recoverable volumes of the n reservoirs. The chosen
parameter values of the example are listed in Table 4.5. The objective function
¢k, defined by letting C = K and R = 0 in (4.2.5) is used. As explained in
Section 4.2.2 the optimal solution maximizes the plateau volume, ¢xo(Q) = > i, Q;
subject to @ € A(M’). When all PPR-functions are concave, an optimal solution
to the first step of the optimization algorithm developed in Huseby & Haavardsson
(2008) typically involves finding the separating hyperplane supporting M at the
optimal Q*. Further, we realize that the PPR-functions on the form given by (4.5.1)
and the extended objective function ¢ = >_" ; Q; are differentiable, so Lagrange
multipliers may be used. Using Lagrange multipliers it is straight-forward to show
that the optimal Q*, denoted Q7 , is given by

D K D, K
Q =(Q,....Q) =V, — f{ﬁ}z‘/ V- 7{ﬁ}?). (4.5.2)

To compare Q; with the boundary point Qq*uf obtained using the best first-order
fixed-weight strategy we calculate b* € B}, as explained in Section 4.4.2. Table 4.1
lists the coordinates of Q7 and qul for the example of this section and the example
of Section 4.5.2. Table 4.2 correspondingly lists the objective function values for
Q; and Q3 and the Euclidian distance between these two points. From Table 4.2
we observe that the distance between Q} and Q% is small, as expected. Table 4.3
lists the weights of the best numerical first-order fixed-weight strategy wj. As we
can see from Table 4.3 none of the weights are significantly larger than the others,
indicating that the optimum Q7. is an interior point of d(M). When we execute
Algorithm 4.4.1 with second-order fixed-weight strategies this is confirmed; we are
not able to find any second-order fixed-weight strategy with the property that ¢k
is increased. Thus we conclude Q7. is an interior point of 9(M’). The fact that
the backtracking algorithm manages to propose an admissible production strategy
to reach @7 also indicates that Q7 is an interior point, see Huseby & Haavardsson
(2008) for a discussion.

Proceeding to the backtracking, Figure 4.1 shows the production rates of this
example when backtracking is used. The backtracking algorithm follows a piecewise
linear path from the optimal Q* to 0. At distinct time points the actual production
is found using the well-known Simplex algorithm, see Huseby & Haavardsson (2008)
for details. Due to the extreme nature of this algorithm, the production rates of the
individual reservoirs tend to oscillate in periods. The oscillation occurs when it is
equally beneficial to produce from two or more reservoirs, so that when the reservoirs
compete for capacities they will alternate between being produced in one period and
choked the next. If the primary purpose of the production optimization is to give
decision support to project teams, the oscillations are not critical. The focus can
for example be the assessment of different infrastructure investment alternatives.
Hence, we are interested in the resulting cash flows of these different alternatives so
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Example Boundary Reservoir
point
1 2 3 4 5 6
Section 4.5.1 Q; 3,619.6 | 4,459.1 | 5,454.4 | n.a. n.a. n.a.
Q?;,I 3,619.2 | 4,458.4 | 5,453.9 | n.a. n.a. n.a.
Section 4.5.2 Q; 3,879.2 | 4,731.7 | 5,896.0 | 5,275.6 | 7,832.3 | 8,141.2
w! 3,881.7 | 4,747.0 | 5,968.2 | 5,273.6 | 7,673.3 | 8,190.4

Table 4.1: Coordinates of the points Qp, Q% € (M) in the examples in the
sections 4.5.1 and 4.5.2.

Example Process | ¢x(Q3%) | ¢x(Q%) | Distance
constraint | (in kSm?) | (in kSm?) | between
(in kSm? Q7 and
per sd) Q;
(in kSm?)
Section 4.5.1 3.0 13,531.5 13,533.1 1.3
Section 4.5.2 7.0 35,756.2 | 35,737.3 182.1

Table 4.2: Comparison of ¢x(Q3%) and gzﬁK(QfU?) and the distance between Q7 and
Q7% in the examples of the sections 4.5.1 and 4.5.2.

Example Best first-order ¢ (b*(wy)) | Best higher-order | ¢x(b*(wy})) | k
Section fixed-weight (kSm?) fixed-weight (kSm?)
strategy, wj strategy,
{Aj}§:1 and wy
4.5.1 (2.28,2.0,1.0) 13,533.1 n.a. n.a n.a
{5}, {1,2,3,4,6}
4.5.2 (2.74,1.56,0.67, 35,737.3 (2.75,1.56,0.67, 35,737.3 2
0.82,44.73,1.0) 0.82,1.0,1.0)
{5}, {6}, {7}, {8},
{1,2,3,4}
453 | (0.047,1.141,0.036,0.028, | 31,856.2 | (1.54,1.48,1.19,1.0, | 32,230.3 | 5
16.34,12.28,1.41,1.0) 1.0,1.0,1.0, 1.0)

Table 4.3: The best first-order fized-weight strategies, and the best higher-order fized-
weight strategies if the optimum is in the boundary of (M) in the examples of the
sections 4.5.1, 4.5.2 and 4.5.3.

that we can ultimately select and recommend one of the alternatives. The purpose
is not to give the obtained production strategy as an input for long-term production
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Figure 4.1:  The red graphs display the actual production rates when the backtracking
algorithm proposed in Huseby & Haavardsson (2008) is used. The green graphs
display the potential production rate functions.

planning to a field manager. In a real production setting it would not be advisable
to produce the reservoirs as prescribed by the backtracking algorithm, due to the
oscillations of the individual production rates.

Figure 4.2 shows the production rates of this example when the proposed para-
metric class is used. The production rates from the proposed parametric class yield
smooth, interpretable production rates that do not fluctuate. These production rates
can also be used in decision support, as explained above. In addition the production
rates can be used in long-term planning of the actual production of a field consisting
of many reservoirs. In particular the production strategy can be used to assist pro-
duction managers when they want to coordinate the production of many reservoirs.
Furthermore, the proposed parametric class is better suited than the backtracking
algorithm for feedback to the reservoir simulation team on possible modifications of
the simulations. Hence, the proposed parametric class serves multiple purposes.

4.5.2 A case where backtracking fails

In the second example we consider an example where we are able to execute the first
step but not the second step of the two step optimization algorithm developed in
Huseby & Haavardsson (2008). Thus, we find the optimal state Q* of the reservoirs
at the end of the reservoirs, but the backtracking algorithm fails to propose an
admissible production strategy to reach Q*. As explained in Huseby & Haavardsson
(2008), this indicates that Q* ¢ d(M’), i.e., Q* cannot be reached by an admissible
path. Alternatively, @* may be a point in 9(0(M’)) or a point very close to this
set.

Asin Section 4.5.1, the PPR-functions are given by (4.5.1). The chosen parameter
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Figure 4.2:  The actual production rates when the proposed parametric class is used.

values of the example are listed in Table 4.5. The objective function ¢ defined
by letting C = K and R = 0 in (4.2.5) is used. Thus, we use Lagrange multipliers
to find @*, which can be found using (4.5.2). As in Section 4.5.1 we are interested
in comparing Q; with the boundary point Qf‘q obtained using Algorithm 4.4.1, so
we calculate b* € B}’. We consider one example, and Table 4.1 lists the coordinates
of Q} and qu;- Table 4.2 correspondingly lists the objective function values for
Q; and Q’{vT and the Euclidian distance between these two points. In this case we
see that the distance between Q7 and Q’“w1 is greater than in the previous example.
Table 4.3 lists the weights of the best numerical first-order fixed-weight strategy wy.

As we can see from Table 4.3, the weight of reservoir 5, wf, is significantly larger
than the other weights. reservoirs. When we use Algorithm 4.4.1 to calculate the
second-order fixed-weight strategy where reservoir 5 is given strict priority, denoted
w3, we find that ¢x(b*(w})) = ¢x(b*(w7)), as can be read from Table 4.3. For all
other higher-order fixed-weight strategies we obtain that ¢ (b*(wj)) < ¢k (b*(w7)).
Thus, the optimum is a boundary point of d(M’) and Algorithm 4.4.1 managed to
find it among the first-order fixed-weight strategies. This result is also consistent
with the failure of the backtracking algorithm to find an admissible production
strategy to reach Q3. Thus @} represents an inadmissible boundary point, i.e.,

Q3 € IM\ M).

4.5.3 A case where the optimal state is hard to find

In the final example neither steps of the two step optimization algorithm developed
in Huseby & Haavardsson (2008) can be executed. The optimal state @* of the
reservoirs at the end of the reservoirs is hard to find. Thus, the execution of the
second step becomes difficult, since it assumes that Step 1 is done.

The theory in Huseby & Haavardsson (2008) puts restrictions on the PPR-
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functions of a specific field. In particular all the PPR-functions are assumed to
be either convex or concave. In many examples the PPR-functions of some reser-
voirs are concave, and others are convex. Furthermore, the concave PPR-functions
may be described by different classes of functions. Finally, some PPR-functions
may be convex for some values of () and concave for other values of ). All these
eventualities may be handled by the proposed parametric class.

Consider an examples where a field consists of 8 reservoirs. Four of the reservoirs
may be described by linear PPR-functions, while the remaining four can be described
by concave PPR-functions. For the first four reservoirs the PPR-functions are given
by

fi(Qi() = Di(Vi = Qi(1)), i =1,....4, (4.5.3)

where V7, ..., V; denote the recoverable volumes from the 4 reservoirs and D; is the
scale parameter of reservoir i. For the four remaining reservoirs the PPR-functions
are given by (4.5.1). The chosen parameter values of the example are listed in Table
4.5.

The theory in Huseby & Haavardsson (2008) states that if all the PPR-functions
are linear a specific n—th priority strategy is optimal with respect to a wide class
of objective functions. In this case we may not apply this theory directly, since
some of the PPR-functions are linear and other concave. The method of Lagrange
multipliers may be used numerically or analytically if the optimum is an interior
point of d(M’). If the optimum is a point of the boundary of d(M’), Lagrange
multipliers may not be used.

As described in Section 4.4.2 we start out using Algorithm 4.4.1 to find the best
numerical first-order fixed-weight strategy w7, which is displayed in Table 4.3. An
inspection of wj] indicates that reservoir 5,6,7 and 8 receive far higher priorities
than the other reservoirs. This might indicate that the optimal production strategy
reaches the boundary of (M’). Consequently we are interested in examining higher-
order strategies, as described in Section 4.4.2. Examination among the n — 1 =
8 — 1 = 7 relevant partitions of second order strategies assigning the highest priority
to reservoir 5 we find that the objective function ¢x indeed increases when we
search among second order strategies. Carrying on we obtain improvements until
we reach fifth order strategies denoting the resulting optimum candidate w?. Table
4.3 lists the weights of wj and the corresponding ordered partition {A;}3. From
Table 4.3 we see that ¢ is increased by 1.2% compared with ¢ (b*(w7)). In this
example we did not obtain any further improvement in ¢ by searching among even
higher order strategies, i.e., among sixth, seventh and eighth order strategies. Thus
we conclude that fifth order strategies represent the correct order and that wy is
optimal. To illustrate that further improvement could not be obtained by searching
among higher order strategies we compare ¢ (b*(w})) with the best eighth order
priority strategy, denoted 7*. This strategy is a strict priority strategy and we
find that {A;}} = {5},{6},{7},{8},{2}, {0}, {1}, {3}. Furthermore, we find that
b (b*(m*)) = 30,926 kSm?, so ¢y (b*(w?)) is 4.2 % larger than ¢y (b*(7*)). Note
also that the performance of 7* is significantly inferior to the performance of wy.

When the number of reservoirs is fairly small, say n < 6, we have seen that
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Algorithm 4.4.1 manages to find good solutions among the first-order fixed weight
production strategies even when the optimal @* belongs to the boundary of 9(M’).
This occurred in the example of Section 4.5.2. However, this breaks down in higher
dimensional examples, as demonstrated in the present example.

4.6 The modelling of uncertainty

4.6.1 Including uncertainty in the model

We will now describe how robustness and sensitivity analyzes of an optimal produc-
tion strategy b* can be carried out, where b* is found using the approach explained
in Section 4.4.2. The robustness and sensitivity analysis is typically run before any
production starts. The purpose is to discover how vulnerable the optimal strategy
is when exposed to uncertainty. If b* is very vulnerable to uncertainty, perhaps a
more robust production strategy should be selected.

In this paper we will add uncertainty to the framework using the approach devel-
oped in Haavardsson & Huseby (2007), where a Monte Carlo simulation approach is
used in the stochastic simulation. Uncertainty is added to the production model by
modelling some of the key parameters as stochastic variables. A large sample, N,
of the key parameters is generated, and every simulated vector of key parameters
produces one simulated production profile. Using this approach, we obtain a sample
of N simulated production profiles. A Monte Carlo simulation of the production
can be done using Algorithm 4.8.1 stated in Appendix 4.8.

If we were to add uncertainty to the framework utilizing the framework developed
in Huseby & Haavardsson (2008), we would use the constructed two-step optimiza-
tion algorithm, where the second step is solved using a backtracking algorithm. Then
we would use the Monte Carlo approach described in Algorithm 4.8.1. A natural
approach would be to apply the backtracking algorithm on a base case, i.e., a case
that expressed the expected values of the stochastic variables. Denote the optimum
for the base case Q¢ € 9(M’). Then we would obtain an admissible production
strategy b° € B, i.e., an admissible path from Q¢ back to 0, assuming that the
second step involving backtracking may be successfully solved. A natural next step
would be to use the Monte Carlo sampling technique described in Algorithm 4.8.1
to create N simulated objective functions.

The backtracking works in a deterministic model where all parameters are known.
For every point in time we then know how to produce every reservoir, because the
proportions between the different reservoirs are known and the backtracking algo-
rithm has found an admissible path, based on these proportions. When uncertainty
is added these proportions will be distorted, and we cannot be guaranteed that
bc € B, i.c., the production strategy that yielded an admissible path from Q¢ back
to 0 in the base case, produces an admissible path when uncertainty is added. In
fact, it is not obvious at all how the production strategy found with a deterministic
model should be interpreted when uncertainty is added.
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Using the proposed parametric class of the present paper we obtain an admissible
production strategy for every sample of stochastic recoverable volumes and start
rates as specified in Algorithm 4.8.1, which is clearly very advantageous.

4.6.2 Robustness and sensitivity analysis

The algorithm below describes how the robustness and sensibility analysis is exe-
cuted.

Algorithm 4.6.1.

STEP 1.  Use ordinary differential equations and multi-segmented models as ex-
plained in Appendiz 4.8 and Haavardsson €& Huseby (2007) to create a vector of
PPR-functions f(Q(t)).

STEP 2. Use Algorithm 4.4.1 to find the production strategy b* € BY’ that mazimizes
K0 = ¢ numerically, where ¢xo = ¢ is defined in (4.2.5).

STEP 3.  Use the Monte Carlo sampling technique described in Algorithm 4.8.1 to
create N simulated objective functions ¢%(b*) = >0 QI (Tk (b)) = KTJ.(b*), j=
1,...,N.

Note that the vector f(Q(t)) in Step 1 is a vector of simplified production profile
models, i.e., a curve fit of the vector of deterministic production models generated
in the reservoir simulator.

We will assume that the recoverable volumes and the start rates of the reser-
voirs are stochastic. Since the start rates can be predicted with a high degree of
certainty from e.g. well tests, we will assume that the uncertainty associated with
the recoverable volumes is far greater than the uncertainty associated with the start
rates. The sensitivity analysis will give us a variation in the plateau length Tk as
a function of the decline rates, since ¢k 0(b) = KTk (b). If the variability in Tk is
great compared to the gain in plateau volume we achieve by using the optimizing
techniques, this is not so good. The expected gain obtained using the optimization
should be considerable. If the variability of Tk using b* is great compared to the
variability using other selected production strategies, it is relevant to ask whether
the more robust production strategies should be selected.

Inspired by the Sharpe ratio used in portfolio analysis, see Sharpe (1994), we will
propose a measure to compare production strategies. The Sharpe ratio is a measure
of the mean excess return per unit of risk in an investment asset or a trading strategy
and is defined as:

g_ EIR - R/ E[R - Ry]

o {VarlR- R}
where R is the asset return, Ry is the return on a benchmark asset, such as the risk

free rate of return, E[R — Ry] is the expected value of the excess of the asset return
over the benchmark return, and o is the standard deviation of the excess return.
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In our situation selected production strategies play the roles of the assets. We
will compare the performance of the n-th order priority strategies, defined in Section
4.3.1, and the production strategy obtained using Algorithm 4.4.1. The symmetry
production strategy, defined in Section 4.3, will be used as a benchmark production
strategy. The production strategies will then be compared to the symmetry produc-
tion strategy using our version of the Sharpe ratio, referred to as the performance

ratio: )
 Elpk(b) = 6x(b)

V/{Var[px (b7) = éx (07)]}
where ¢ (b) is the value of the objective function using production strategy i for a
selection of production strategiesi = 1,..., M, where M = n!+1 in this paper. The
morments E{6xc(b)} and /{Var{ox (5) — oxc(6*)]} = /{Varlox(b) — oxe(6™)]}
are estimated empirically using the simulations. The optimal production strategy
should ideally come out best most frequently in the simulations. Thus we compare
the frequency at which each production strategy is best-performing during all the
simulations.

(4.6.1)

i

The uncertainties used in the example

The framework described above will now be demonstrated in an example. Table 4.4
displays P10 and P90, i.e. the 10 percentile and the 90 percentile in the distributions
of the stochastic producible volumes of the examples.

Reservoir 1 Reservoir 2 Reservoir 3 Reservoir 4
Example P10 P90 P10 P90 P10 P90 P10 P90
Section 4.6.2 | 84 % | 117 % | 81 % | 121 % | 74 % | 128 % | 80 % | 121 %

Table 4.4: The P10 and P90 of the stochastic distributions of the producible volumes
in the example. 100 % refers to the expected value, which is selected to be the
deterministic producible volume.

An example with concave PPR-functions

We consider an example with four reservoirs, where the multi-segmented PPR-
functions { f1, f2, f3, f1} are given by

Fis(@i(0) = Dig(Viy = (Qu(H) = Y _Viw)), i=1,234 j=123 (46.2)

k<j

where D;; denotes the scale parameter of the j-th segment of the i-th reservoir.
We assume that D;; < D;o < D; 3 for i = 1,2,3,4. For an introduction to multi-
segmented production profiles, see Appendix 4.8 or Haavardsson & Huseby (2007).
The parameter values of the PPR-functions are given in Table 4.6. We let K = 5.0
kSm? per day.
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We then proceed to Step 2 of Algorithm 4.6.1, where we use Algorithm 4.4.1
to find the candidate b* € B}’ that the numerical algorithm proposes as the best
production strategy. Thus we obtain that w} = (1.706,0.575,0.399,1.0). Finally,
we perform Step 3 of Algorithm 4.6.1 by simulating N = 5,000 objective functions
for M selected production strategies. We consider the n-th order priority strategies
and the strategy b* = b*(w}), sowelet M =n!+1=41+1=24+1=25. The
performance ratio P; defined by (4.6.1) may now be estimated for the 25 strategies.

Figure 4.3 shows results from the simulations. In the upper panel we see the
frequency at which every production strategy is best-performing, indicated with the
columns in the graph. The frequencies can be read from the left axis in the graph.
The blue curve in the left panel shows the performance ratio P; of each production
strategy, which can be read from the right axis of the graph in the same panel.
The red curve, also relating to the right axis of the graph in the left panel, shows
the performance of each production strategy in the deterministic case relative to
¢ (b*(wy)) in the deterministic case. We see that b* is optimal in the deterministic
case and remains the best-performing also when uncertainty is introduced in this
example. The best-performing frequency of each production strategy is reconcilable
with the magnitude of each performance ratio P;.
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Figure 4.3:  The upper panel shows every production strategy’s best-performance
frequency, performance ratio and ¢ in the deterministic case relative to ¢ (b*).
The lower panel shows the estimated densities of the plateau production ¢ of the
strategy that is optimal in the deterministic situation (red graph), the symmetry
strategy (blue graph), and the n-th order priority strategy w = {3,4,1,2} (green
graph,).

4.7 Conclusions

In the present paper we have introduced a parametric class of admissible production
strategies referred to as fived-weight strategies. Such strategies are stable, robust
solutions that are easy to interpret. Thus, the production rates can be used in long-
term planning of the actual production of a field consisting of many reservoirs. Com-
pared to the strategies obtained using the two-step algorithm proposed in Huseby
& Haavardsson (2008), fixed-weight strategies are also better suited for feedback to
the reservoir simulation team on possible modifications of the simulations.

In cases where the first step of the algorithm proposed in Huseby & Haavardsson
(2008) can be handled analytically, this method is extremely fast having a simulation
time which grows linearly in the number of reservoirs. Compared to this, finding the
optimal fixed- weight strategy is not as numerically efficient. Since, however, the
number of parameters needed to define a fixed-weight strategy, is bounded by the
number of reservoirs, complex, high-dimensional examples can easily be handled.
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Hence, the efficiency of this method is sufficient for most applications.

We have also demonstrated how uncertainty can be added into the proposed
framework. This enables robustness and sensitivity studies of different production
strategies. The performance criterion gives an indication of how robust every strat-
egy is when exposed to uncertainty.

Under mild restrictions on the objective function it can be shown that an optimal
production strategy can be found within the class of fixed- weight strategies. We
will return to this important issue in a forthcoming paper.
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4.8 A brief introduction to multi-segmented pro-
duction profiles using ordinary differential equa-
tions

Single Arps curves, introduced by Arps (1945) model the production rate function
and the cumulative production function mathematically through a one-way, causal
relation. In Haavardsson & Huseby (2007) this approach is extended to multiple
segments so that a combination of Arps curves may be used to get a satisfactory fit
to a specific set of production data.

To also take into account various production delays, the dynamic two-way relation
between the production rate function and the cumulative production is modelled in
terms of a differential equation. The relation between the production rate function,
@, and the cumulative production function, @, should be of the following form:

q(t) = f(Q(1)), for all ¢ > 0, (4.8.1)

with Q(to) = 0 as a boundary condition.

The differential equation approach can also be extended to the more general sit-
uation where the production rate function consists of s segments. For each segment
we assume that we have fitted a model in terms of a differential equation on the
form given in (4.8.1). In order to connect these segment models, we need to specify
a switching rule describing when to switch from one segment model to the next one.
We define a switching rule based on the produced volume. By using this switching
rule, we obtain a model for the combined differential equation.

2Mr. Wickmann graduated from University of Oslo in 2007.
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A Monte Carlo simulation of the production can be done using the following
procedure:

Algorithm 4.8.1.

STEP 1. Assume that a production profile is divided in s segments. Generate
Wi, ..., Vs using the specified joint distribution p(Vi,...,Vs) for Vi,..., Vs, where V;
denotes the producible volume of segment i, i=1,...,s.

STEP 2.  Generate ro,71,...,7s using the specified conditional joint distribution.
p(ro, 71, ... 7s|Va, ..., Vi) for the rates at the segmentation points ro,r1,...,Ts, given
the segment volumes.

STEP 3. Calculate Dy, ..., D;.

STEP 4. Generate tg, which may be subject to uncertainty related to the progress
of the development project, drilling activities etc. Thus, one will typically assess a
separate uncertainty distribution for this quantity. Then calculate ty, ..., t.

STEP 5. Calculate q(t) and Q(t).

4.9 Descriptions of reservoirs used in examples
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Example Reservoir | Producible Scale Max
volume | parameter rate
Vi D; VDV
(MSm?) (kSm?/d)
Section 4.5.1 1 4.0 0.28 1.5
2 5.0 0.40 2.0
3 7.0 1.14 4.0
Section 4.5.2 1 4.0 0.28 1.5
2 5.0 0.62 2.5
3 7.0 2.57 6.0
4 6.0 1.69 4.5
5 8.0 0.39 2.5
6 9.0 1.99 6.0
Section 4.5.3 1 4.0 0.0781 4.6
2 4.0 0.0782 4.8
3 44 0.0776 6.0
4 44 0.0892 7.0
5 4.0 0.0311 0.8
6 5.0 0.0512 2.5
7 3.0 0.0731 3.0
8 7.0 0.0913 12.5
Table 4.5: Parameter values for the examples in Section 4.5.
Segment 1 Segment 2 Segment 3
Reservoir | Total | Producible | Start | Producible | Start | Producible | Start Stop
reserves volume rate volume rate volume rate rate
(kSm?) (kSm?) | (kSm?) | (kSm?®) | (kSm?®) | (kSm?®) | (kSm?) | (kSm?)
1 10,000 7,000 3.0 1,800 1.9 1,200 1.3 0.01
2 6,000 3,600 2.6 1,320 2.1 1,080 1.1 0.01
3 7,000 5,460 5.0 1,001 3.1 539 2.2 0.02
4 4,000 3,080 3.0 570 1.9 350 1.3 0.01

Table 4.6: Parameter values for the four reservoirs used in Section 4.6.2.
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Chapter

Hydrocarbon production optimization in
fields with different ownership and
commercial interests

Abstract

A main field and satellite fields consist of several separate reservoirs with gas cap
and/or oil rim. A processing facility on the main field receives and processes the oil,
gas and water from all the reservoirs. This facility is typically capable of processing
only a limited amount of oil, gas and water per unit of time. In order to satisfy these
processing limitations, the production needs to be choked. The available capacity is
shared among several field owners with different commercial interests. In this paper
we focus on how total oil and gas production from all the fields could be optimized.
The satellite field owners negotiate processing capacities on the main field facility.
This introduces additional processing capacity constraints (booking constraints) for
the owners of the main field. If the total wealth created by all owners represents
the economic interests of the community, it is of interest to investigate whether the
total wealth may be increased by lifting the booking constraints. If all reservoirs
may be produced more optimally by removing the booking constraints, all owners
may benefit from this when appropriate commercial arrangements are in place. We
will compare two production strategies. The first production strategy optimizes
locally, at distinct time intervals. At given intervals the production is prioritized so
that the maximum amount of oil is produced. In the second production strategy a
fixed weight is assigned to each reservoir. The reservoirs with the highest weights
receive the highest priority.

Keywords

Production profile models, Total value chain analysis, Two-phase production opti-
mization, Numerical optimization methods, Conjugate Gradient Method, Nelder-
Mead Method, Risk Analysis
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5.1 Introduction

Optimization is an important element in the management of multiple-field oil and
gas assets, since many investment decisions are irreversible and finance is committed
for the long term. Optimization of oil and gas recovery in petroleum engineering
is a considerable research field, see Bittencourt & Horne (1997), Horne (2002) or
Merabet & Bellah (2002). Another important research tradition focuses on the
problem of modelling the entire hydrocarbon value chain, where the purpose is to
make models for scheduling and planning of hydrocarbon field infrastructures with
complex objectives, see van den Heever et al. (2001), Ivyer & Grossmann (1998) or
Neiro & Pinto (2004). Since the entire value chain is very complex, many aspects
of it needs to be simplified to be able to construct such a comprehensive model.

The purpose of the present paper is to focus on the problem of optimizing pro-
duction in an oil or gas field consisting of many reservoirs, which constitutes an
important component in the hydrocarbon value chain. By focusing on only one
important component we are able to develop a framework that provides insight into
how an oil or gas field should be produced. The optimization methods developed
here can thus be used in the broader context of a total value chain analysis. The
present paper applies an already developed model framework for hydrocarbon pro-
duction optimization of an oil and gas field development project. More specifically,
the methodology developed in Haavardsson & Huseby (2007), Huseby & Haavards-
son (2008) and Haavardsson et al. (2008) will be used.

We assume that state-of-the-art production profile models based on reservoir
simulation models exist for every reservoir. Simplified production profile models can
then be constructed, as described in Haavardsson & Huseby (2007). In the present
paper we will utilize such production profile models in production optimization
where several reservoirs share the same processing facilities. These facilities are
only capable of processing limited amounts of oil, gas and water per unit of time.
In order to satisfy these processing limitations, the production needs to be choked
according to a production strategy. Each reservoir produces a primary hydrocarbon
phase - oil or gas. In addition to the primary phases, most reservoirs also produce
associated phases; gas in oil reservoirs, condensate in gas reservoirs and water.

Huseby & Haavardsson (2008) is a theoretical paper, where the problem of op-
timizing production strategies with respect to various types of objective functions
is considered. It is shown that the solution to the optimization problem depends
on certain key properties, e.g., convexity or concavity, of the objective function
and of the potential production rate functions. An algorithm for finding the best
production strategy and two main analytical results are presented.

Haavardsson et al. (2008) focuses on applied multi-reservoir production opti-
mization, and an alternative approach to production optimization is proposed. By
introducing a parametric class of production strategies the best production strategy
is found using standard numerical optimization techniques.

We close this section listing the main interests of the present paper:

e The main focus of the paper is the modelling approach and the basic principles
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for a modelling tool for general use in examination of production strategy
effects on multi-reservoir fields, with different and varying hydrocarbon phases,
with individual production constraints and priorities, different owners and with
the functionality to extend and cover multi fields integration in a regional /
processing hub evaluation.

e The article also highlights the importance of being aware of local and global
production optimization effects and the importance booking constraints may
have. To study this two different production strategies are presented.

e As an illustration a case study based on real data! will be presented. Thus,
the case study serves as a tool for the investigation of the general issues listed
above. We seek knowledge that is valid beyond the numerical results obtained
in the case study.

5.2 Model framework

5.2.1 Production profile model framework

The reservoir simulation output available from the reservoir simulator Eclipse 2
is used to construct simplified production profile models for each well. See Ap-
pendix 5.6 for a broad-brush introduction to simplified production profile models,
or Haavardsson & Huseby (2007) for details.

To model multiple phases of production we assume that the production of each
associated hydrocarbon phase can be expressed as a function of the cumulative
production of the primary hydrocarbon phase. If the primary hydrocarbon phase is
oil, we denote the cumulative production Q(t), while G(t) is used analogously for
gas.

A fundamental model assumption is that the potential production rate of the
primary hydrocarbon phase from a reservoir, can be expressed as a function of the
remaining producible volume, or equivalently as a function of the volume produced.
Thus, if Q(t) denotes the cumulative production of the primary hydrocarbon phase
at time ¢t > 0, and f(t) denotes the potential production rate at the same point
in time, we assume that f(t) = f(Q(t)). This assumption implies that the total
producible volume from a reservoir does not depend on the production schedule. In
particular, if we delay the production from a reservoir we can still produce the same
volume at a later time. We refer to the function f as the potential production rate
function or PPR-function of the reservoir. If a reservoir is produced without any
production constraints from time ¢ = 0, the cumulative production function will
satisfy the following autonomous differential equation:

dQ(t)

!In the present paper the case study is un-named and the data are made anonymous to reduce
the ability to derive commercial values.
2For details on Schlumberger’s Eclipse Reservoir Engineering Software, see www.slb.com.
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with the boundary condition Q(0) = 0.

A single production well

We assume that we are given a ratio expressing the units of the associated hydro-
carbon phase that is produced depending on the units produced of the primary
hydrocarbon phase. We refer to this function as the associated ratio and denote
it ¥(Q(t)) or v(G(t)) depending on whether oil or gas is the primary hydrocarbon
phase. Although we can handle any finite number of associated phases we will
assume in this paper that there is only one associated phase. Thus, we are not
concerned with water production in this application. If the primary hydrocarbon
phase is oil, the associated ratio expresses the Gas-Oil-Ratio (GOR). If the primary
hydrocarbon phase is gas, the associated ratio expresses the Condensate-Gas-Ratio
(CGR).
To model ¥(Q(t)) we choose to use the following representation

Y(Q(1)) =1 (0) + (¥(V) — %(0)) - R(t)"™, (5.2.1)

where R(t) = % denotes the fraction produced, R(t) € [0,1], where V' denotes
producible volume of the primary hydrocarbon phase. The parameter Py is assumed
to be positive. The parameters ¥(0),¢(V) and Py are estimated using the output
from the reservoir simulator. Typically ¥(Q(t)) is increasing in Q(t), reflecting
the increasing quantity of gas produced per unit produced oil as the reservoir is
produced.

For ~(G(t)) we use the same representation, i.e.,

AG(1)) = 1(0) + ((V) = 7(0)) - R(1)"™, (5.2.2)

where P, > 0. Typically v(G(t)) is decreasing in G(t), so that typically v(0) > (V).
This reflects the decreasing quantity of condensate produced per unit produced gas
as the reservoir is produced. Furthermore, we will typically choose P, < 1.

Multiple production wells

We consider oil and gas production from N wells that share a processing facility
with a constant oil processing capacity K, and a constant gas capacity K.

Let I = (Iy,...,In) be the vector expressing the type of primary hydrocarbon
phase of each well, so that

1 if the primary hydrocarbon phase of well i is oil,
I, = (5.2.3)

0 if the primary hydrocarbon phase of well i is gas,

fori=1,...,N. Let O = {i |I; = 1} and G = {i |I; = 0}, so that O contains the
indices of the oil wells and G contains the indices of the gas wells.
We introduce

P - Qi(t) ifieO, 594
i(){Gi(t) ifieg. (5.24)
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and assume that the PPR-functions can be written as
; fi(Qi(t)) ifie O,
) { fi(Gi(t)) ifieg,
for i = 1,...,N. Then P(t) = (Pi(t),...,Pn(t)) represents the vector of cu-
mulative primary hydrocarbon phase production functions for the N wells, and
f@) = (fi(¢),..., fn(t)) the corresponding vector of PPR-functions. Thus, f; rep-
resents the PPR-function of well 4. Note that the formulation (5.2.5) implies that
the potential production rate of one well does not depend on the volumes produced
from the other wells.
A production strategy is defined by a vector valued function b = b(t) = (by(t), ..., bn(1)),
defined for all ¢ > 0, where b;(¢) represents the choke factor applied to the ith well
at time ¢t, ¢ = 1,..., N. We refer to the individual b;-functions as the choke factor
functions of the production strategy. The actual oil production rates from the wells,
after the production is choked is given by:

q(t) = (q(t), -, qn(t)),

(5.2.5)

where

{ bi(t) fi(Qi(t)) ifi e O,
a(t) = (5.2.6)
bi(t)yi(Gi(1)) fi(Gi(t)) ifieg,

so that ¢;(t) either expresses the actual oil rate from an oil well or the actual con-
densate rate from a gas well. The actual gas production rates from the wells are

similarly denoted
g(t) = (gl(t)v R 7gN(t))7

N { bi(t) f:(Gi(t)) ifi g,
| b)) f(Qu(r) ifie o,

so that g;(t) either expresses the actual gas rate from a gas well or the actual
associated gas rate from an oil well.

We also introduce the total oil production rate function ¢(t) = 32, ¢i(t) and
the total cumulative oil production function Q(t) = S 1 Qi(t). The total gas
production rate function is analogously denoted g(t) = ZZ | gl(t) while the total
cumulative gas production function is denoted G(t) = SN | Gi(t

To satisfy the physical constraints of the wells and the processing facility, we
require that for a hydrocarbon phase, the actual well production rate cannot exceed
its potential production well rate. Moreover, the total well production rate cannot
exceed the production capacity. These requirements imply that

where

(5.2.7)

0 <qt) < fi(Qi(r)), t>0, i€0,
0 <q(t) <w(Gi)fi(Gi(t), t=0, i€g,
0 <gi(t) <¥u(Qi))fi(Qi(t)), t=0, i€O0,
0 <gi(t) < filGi(t)), t>0, ieg,

(5.2.8)
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fori=1,..., N and that

N
=Y at) <K, t>0,
i=1
N
= glt) <K, t>0 (5.2.9)
i=1

Expressed in terms of the production strategy b, this implies that
0<b(t)<1, t>0, i=1,...,N, (5.2.10)
and that

Zbi(t)fi(Qi(t)) + Zbi(t)’Yi(Gi(t))fi(Gi(t)) < K, t2>0,

€O i€g
> bit)ehi Qi 1)+ > bi(t) )< K, t>0. (5.2.11)
€0 =Y

The constraint (5.2.10) implies that the actual production rate cannot be in-
creased beyond the potential production rate at any given point in time, while the
constraint (5.2.11) states that the actual, total production rates cannot exceed the
capacities of the processing facility. Let B denote the class of production strategies
that satisfy the physical constraints (5.2.10) and (5.2.11). We refer to production
strategies b € B as valid production strategies.

We need to specify how the choke factors are determined. In this paper we will
determine the choke factors sequentially. A sequential approach only produces one
of the phases at the plateau level. First the choke factors are determined so that
the constraint of the primary hydrocarbon phase is not exceeded. Then, if the
constraint of the associated hydrocarbon phase is exceeded the choke factors are
modified accordingly.

Definition 5.2.1. We say that € >y if x; > y; Vi and 3 j € {1,...,n} such that
x; > y;. Let b, b € B be two production strategies. If b'(t) > b(t) implies that either

Zb/ )fi(Qi +Zb’ (G () f:(Gs(8)) > K,
€0 i€g

or

D BOW(QiE) Fi(Qilt) + D bi() fi(Galt

€O i€G

then b is an admissible production strategy. We denote the class of admissible pro-
duction strategies I3’
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5.2.2 Production strategies and objective functions
Strategy for local production optimization

Consider a production strategy that optimizes production locally at predefined, dis-
crete time intervals. The production is prioritized so that the oil production is
accelerated following an argument that the oil has the highest value and accelerated
production would be beneficial from a net present value perspective if disregard-
ing other potentially overriding effects as e.g. gas capacity utilization and oil price
assumptions. This is obtained by assigning the highest priority to the well with
the highest oil to gas production ratio, meaning first sorting the oil wells after
the GOR in ascending order followed by the gas wells sorted after CGR in de-
scending order. The production at time ¢ is thus prioritized strictly according to
7 = (w(1),...,7(N)). At the next decision point, i.e., at time ¢ + J, the procedure
is repeated.

To be a bit more precise we start by dividing a finite time horizon [0, 7] into S
intervals. Thus we obtain a partition [0, 4,24, ..., (S — 1)d,T], where § = T/S. Let
¢! denote the objective function of the local production strategy. At time ¢ = 0 ¢!
is initialized so that ¢! = 0. At time ¢ the following algorithm is used:

Algorithm 5.2.2. STEP 1. Sort the wells by any predefined order given by com-
mercial agreements or other priorities. Sort the remaining wells by first sorting the
oil wells after GOR in ascending order followed by the gas wells sorted after CGR
in descending order. Denote the resulting permutation vector .

STEP 2.  Find the number of producing wells i, = 1 4+ min(iy,i,) where iy, and i,
are the largest integers that fulfill

Yo Ep@aO)+ D i) (Gr (D)) fr(i) (G (1) < K,

J<iqm(§)€O J<iqm(j)€G
Yo oG+ D ) (@) (D) ) (@ (1) < K
J<ig,m(j)€EG J<ig,m(j)€EO

Note that if min(iy,i,) = N choking is not necessary. We let b =1 in this case. If
min(iq,iy) < N the (time-dependent) choke factors are given as

1, i<i
briiy = § bey @ =i, (5.2.12)
0, @>1,.,
where b, = min(by, b,) and
Ko—3 i, dn(j)(t) .
fm-,C){Qw(,:c)(t)) ) TF(ZC) €0,
b, = (5.2.13)
Ko—=3j<ip On() (B) W(ic) c g7

Vr(ie) (Gr(ic) ) Fr(ic) (Griic) (1))
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and Kq—3> (t)
92 j<io In(5) (¢ :
wﬂ'(z(;)(Qﬂ'(ic)(;))f‘rr(ic)(QTr(t(;)<t>>7 m(ic) € O,
by = P © (5.2.14)
— ic I t 7
Jf‘rr(ic)zéw(i)((;))) ’ m(ic) € G.

STEP 3. Update ¢!, so that

t+6 N
o' =¢' +/ Z{% + ag;(u)ye ™ du.

Algorithm 5.2.2 is repeated at every grid point in the partition [0, 4,24, ..., (S —
1)d]. The parameter o converts a unit of gas into an oil unit equivalent. Thus, we
are capable of comparing the energy amount in gas versus oil. In this paper we use
a = 0.001, as stated by the Norwegian Petroleum Directorate

Due to the nature of the local production strategy, the production rates of some
of the individual wells might fluctuate in periods. The fluctuation occurs when it is
equally beneficial to produce from two or more wells, so that when the wells compete
for capacities they will alternate between being produced in one period and choked
the next. The primary purpose of the local production strategy is to give decision
support to project teams. The focus can for example be the assessment of different
infrastructure investment alternatives. Hence, we are interested in the resulting cash
flows of these different alternatives so that we can ultimately select and recommend
one of the alternatives. The purpose is not to give the obtained production strategy
as an input for long-term production planning to a field manager. In the case of
fluctuating production it would not be advisable to produce the wells exactly as
prescribed by the local production strategy.

Strategy for fixed-weight production optimization

The following production strategy is introduced in Haavardsson et al. (2008). Con-
sider the set
Q=[0,Vi] x -+ x [0, Vn], (5.2.15)

where Vi, ..., Vy are the recoverable volumes of the primary hydrocarbon phase
from the N reservoirs. We then introduce the subset M, C Q given by:

Mo={Q € Q:) fi(Qi(t) + Y %(Gi(t) [:(Gilh) = K.}, (5.2.16)

€O i€g

so that M, the points in Q@ where the oil production rate can be sustained at its
plateau level. Furthermore we introduce the o0il plateau length defined as

Tro = Trco(b) = sup{t > 0: > £i(Qi(1) + > _ %(Gi(t) fi(Gi(t)) = K,}. (5.2.17)

€O i€G

3http://wuw.npd.no/English/Om+0D/Nyttig/0lje-ABC/maaleenheter_oljeoggass.htm
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First we explain intuitively how the fixed-weight strategy was constructed in single-
phase production, for the moment neglecting the gas constraint expressed in (5.2.11).
Then we will explain how the fixed-weight strategy can be modified to handle two-
phase production.

A simple production strategy can always be constructed using the same choke
factor for all the reservoirs. That is, we let b;(t) = ¢(t), ¢ = 1,..., N. For such a
production strategy to be admissible ¢(t) must satisfy the following:

S e @)+ Y el Cult) H(C(0) = min{Ky, 3 F(QuO+Y (il

€O i€G €O i€G
(5.2.18)
Thus, for 0 <t < Tk ,, we have:
K
c(t) = (5.2.19)

Yico filQi(t) + Xlieg %i(Gi(1) fi(Gi(t))”

while ¢(t) = 1 for all t > Tk ,, neglecting for the moment the gas constraint expressed
n (5.2.11). Note that since ). ., c(t) fi(Qi(t)) + > ;g c(t)ai(Gi(t)) fi(Gi(t)) > K,
for 0 <t < Tk,, the common choke factor, ¢(t) will always be less than or equal
to 1. A production strategy defined in this way, will be referred to as a symmetry
strategy. We observe that when a symmetry strategy is used, the available produc-
tion capacity is shared proportionally among the reservoirs such that none of the
reservoirs are given any kind of priority. The idea now is to expand this class so
that some reservoirs can be prioritized before others. To facilitate this we start out
by considering production strategies where for 0 < ¢t < Tk, the choke factors are
given by:

bi(t) = wic(t), i=1,...,N, (5.2.20)

where wy, ..., wy are positive real numbers representing the relative priorities as-
signed to the N reservoirs, and where ¢(t) is chosen so that the %trategy is admissible.
For t > Tk ,, we define b; ( )=1,i=1,...,N. Note that if w; = --- = wy we get a
symmetry strategy.

In order to ensure admissibility, c¢(¢) must be chosen so that:

D wie(t) £i(Qi(t) + > wic(t)vi(Gilt)) fi(Ga(t))

€O i€g

= min{K, ZfZ(QZ(t)) + Z%(Gl(t))fl(Gz(t))}

€O i€g
Thus, for 0 <t < Tk, the choke factors are given by:
Y ieo wifi(Qs() + 32 6 wivi (G5(1)) f5(G;(1)

(5.2.21)
Unfortunately, this definition does not guarantee that the choke factors are less than
or equal to 1. To fix this problem, we instead let:

b(t) = min{l,wic(t)}, i=1,...,N. (5.2.22)

Ji(Gi(1))}-
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While this ensures that the resulting production strategy is valid, it makes the
calculation of ¢(t) slightly more complicated. To ensure admissibility, ¢(¢) must now
be chosen so that:

S min{ L wiclt)} (@) + 3 min{ L, wie(t) 1 Gi(0) f(Gi0)

€O i€g
= min{K, Y fi(Qi() + D %(Gilt) fi(Gi(t))},
i€O0 i€g
see Haavardsson et al. (2008) for details on how ¢(t) is calculated in single-phase

production. Then, if the gas constraint K|, is exceeded with this choice of ¢(t), the
choke vector b(t) is modified so that

> min{ 1, wie(t) 1y (Qi(t)) £i(Qi(t) + > min{1, wie(t)} fi(Gi(t)) = K, (5.2.23)

€O i€g

By varying the weights wq, ..., wy in ]Rﬁ a whole range of admissible production
strategies is obtained. We will refer to such production strategies as fized-weight
strategies. It is straight-forward to show that

b(w) = b(\w) (5.2.24)

for any A > 0. Thus, to avoid over-parametrization, the dimension of the search
space is reduced by fixing the value of one of the weights, e.g., by letting wy = 1,
see Haavardsson et al. (2008) for details.

A numerical algorithm is used to maximize the following objective function

¢cr(b) = /000 I{q(u) > CHq(u) + ag(u) e ™du, r >0 (5.2.25)

with respect to the vector of weights w = (ws,...,wy), see Haavardsson et al.
(2008) for details. We denote the vector of weights that maximizes ¢¢, in (5.2.25)
w*. The parameter r may be interpreted as a discount factor, while the parameter
C represents a threshold value for total production, i.e., all wells are shut down
when the total production is below this total field production rate. As in Section
5.2.2, the parameter a converts one unit of gas into one oil unit equivalent and is
set equal to 0.001. ¢¢, in (5.2.25) expresses discounted total production.

The fixed-weight production strategy can be used in decision support, as the lo-
cal production strategy defined in Section 5.2.2. Using the fixed-weight strategy for
production planning and forecasting we avoid the fluctuations we might experience
using the local strategy as discussed in Section 5.2.2, which is clearly an advantage.
However, the weights assigned to each reservoir are fixed over the life of the field,
which is clearly a disadvantage if the chosen fixed-weight production strategy is not
optimal. If it can be proved that an optimal production strategy can always be
found within the parametric class of fixed-weight strategies, this does not represent
a problem. In Haavardsson et al. (2008) it is explained that in single-phase produc-
tion optimization an optimal production strategy can always be found within the
parametric class of fixed-weight strategies. A forth-coming paper will extend the
framework to two-phase production and examine the optimality properties of the
parametric class in two-phase production.
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5.3 Description of the case study

In the case considered two parties referred to as the main field and the satellite field
are involved in offshore? oil and gas production. The main field consists of separate
reservoirs containing gas or gas cap with oil rim, as illustrated in Figure 5.1. In
reservoirs with gas cap and oil rim, the oil must be produced before the gas cap to
avoid significant loss in oil recovery due to pressure depletion. The oil and gas are
processed to export specification on a central production facility.

The satellite field consists of one gas reservoir and one oil reservoir, with associ-
ated condensate and gas, respectively. The satellite field is developed with two gas
production wells and one oil production well. The oil and gas of the satellite field
are sent to the main field in pipelines, where it is being processed at the processing
facility of the main field. The main field and the satellite field have different owners
and hence different commercial interests regarding production optimization.

Relating the case study to the notation and model framework of Section 5.2 the
number of wells is 16. Thus, N = 16 and the vector I expressing the type of hydro-
carbon phase of each wellis I = (I,...,Ix) = (I1,..., 1) = (1,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0).

l:l Reservoir segment
[ Provencil

I:l Proven gas

D Prospective oil
|:| Prospective gas

= Oil well

@ caswel

‘ Number of wells in:
= Aproven and prospective oil rim

D, F and G prospective gas cap

Figure 5.1: An overview of the seven reservoirs of the main field. Oil is proven in
the reservoirs A, B and E, while gas is proven in the reservoirs A, B, C and E.
There are oil prospects in the reservoirs A, C, D, F and G. There are gas prospects
in the reservoirs D, F and G.

4In principle the problems considered also apply to onshore fields; however in this specific case
offshore fields are considered.
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5.4 Optimization of total production under booking
constraints

The satellite field and the main field have agreed to allocate a share of the main field
processing capacities to the satellite field. The allocated capacities are in the follow-
ing called booking constraints. Table 5.1 lists the booking constraints of the satellite
field in percent of the processing capacities of the main field. The main field will
thus use the remaining capacities for its own production, as long as its processing
capacities are not exceeded. ® Note that these booking constraints necessitate mod-
ification in the capacity constraints introduced in (5.2.9), yielding different capacity
constraints for each year the booking constraints apply.

Year

1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13

Gas | 21.5 232215 |21.5|21.5|19.8 | 185|149 |11.6|9.9 |89 |73 6.6

Oil [19.2|148(122]106| 88 | 6.3 | 56 | 3.7 | 3.4 |28|3.0[23|1.5

Table 5.1: Booking constraints of the satellite field stated in percent of the processing
capacities at the main platform. The main field uses the remaining capacities to
process its own hydrocarbons.

Since the satellite field has booked the capacities specified in Table 5.1 it is in
its self-interest to exploit this capacity. We are interested in analyzing the effect
of lifting the booking constraints, since different owners with potentially conflicting
commercial interests are excepted to have different preferences. If total discounted
production increases when the booking constraints are lifted, both owners may ben-
efit from this. If both owners benefit when the booking constraints are lifted, it
is sensible to do so. If one owner benefits and the other suffers, it may still be
beneficial to lift the constraints, if the gain of the profiting owner exceeds the loss
of the suffering owner. In this case the profiting owner may buy out the suffering
owner, compensating him for his loss. This way all owners benefit if total produc-
tion increases. If both owners suffer when the booking constraints are lifted, or
the gain of the beneficiary owner does not exceed the loss of the losing owner, it is
not sensible to lift the booking constraints. However, if this is the case, there may
exist booking constraints that increase total production. Hence, a new optimization
problem arises, where the total discounted production of the owners is maximized.
The booking constraints are the free parameters in this optimization problem. We
leave this optimization problem for future research.

Lifting the booking constraints may result in a radical change in the production
rates of each party. Reservoir and production engineering considerations often play

5In the implementation the main field uses the total capacity minus booked capacity. In reality
one would expect that the total field would use total capacity minus the capacity actually used by
the satellite field.



CHAPTER 5. OPTIMIZATION WITH DIFFERENT OWNERSHIP AND
118 COMMERCIAL INTERESTS

an important role in production optimization. High production rates may have
negative effect on reservoir behaviour. Such effects are not addressed in this paper.
In real life such reservoir considerations need to be taken into account.

The local and fixed-weight production strategy described in the sections 5.2.2 and
5.2.2 will be compared. Since we are interested in the effect of lifting the booking
constraints, we calculate the production for the satellite field and the main field
with and without booking constraints. The satellite field production with booking
constraints is calculated optimizing the production strategies as described in the
sections 5.2.2 and 5.2.2. The booking constraints specified in Table 5.1 are used.
The production for the main field with booking constraints is calculated analogously.
In the local optimization calculations, two gas wells, i.e., well 4 and 5, have received
fixed priority in the production phasing. This is done as there is an underlying
assumption in the applied reservoir simulation results that there will be early gas
production from the respective two reservoirs. If this assumption is not accounted
for, the results will not reflect the expected physical performance of the reservoirs.

The satellite and main field production without booking constraints is calculated
optimizing the production strategies as described in the sections 5.2.2 and 5.2.2.
In the local optimization calculations, the two gas wells still received fixed priority
in the production phasing. The production rates of the remaining wells are found
using Algorithm 5.2.2. For the fixed-weight production strategy we use ¢, (b)
specified in (5.2.25) as an objective function. We denote this production strategy
bf., where the subscript C' denotes Combined. The satellite and main field production
without constraints is then found by aggregating the oil and gas production from
all the satellite and main wells, respectively, using strategy bf,. Having inspected
individual gas well rates, the fixed-weight production strategy assigns a fair amount
of gas production from day one from well 4 and 5 which is in accordance with some
of the main assumptions in and results from the reservoir simulation.

Table 5.2 summarizes the results of the calculations. The results indicate that it
is beneficial to lift the constraints with both strategies. With the local strategy the
discounted production increases with 1.5% when the booking constraints are lifted,
while the corresponding increase with the fixed-weight strategy is 1.7%. However,
with the local strategy the satellite field benefits far more than the main field from
lifting the constraint, while it is the other way around with the fixed-weight strat-
egy. To understand this we take a look at the actual production rates. Figure 5.2
shows the resulting total production rates of oil and gas with and without booking
constraints for the two production strategies.

For the local strategy we observe that lifting the booking constraints has a large
impact on the discounted gas production of the satellite field. The gas can be pro-
duced far more efficiently when the constraints are lifted for this field. Without the
constraints the main field manages to maintain its gas plateau level for approxi-
mately 3.5 years, i.e. ,from approximately 600 days until 1,800 days. Then the gas
plateau level cannot be sustained anymore and the satellite field is given an increas-
ing share of the production capacity. In fact, for a long period from approximately
1,800 days until 2,700 days, the local production strategy without constraints as-
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Figure 5.2: In every row the satellite field, the main field and the total are displayed
in the left, middle and right panel, respectively. The red and green graph display the
production rates without and with booking constraints, respectively. The upper two
rows show the production rates for the local strategy, while the lower two rows show
the production rates for the fivzed-weight strategy. The first and third rows display oil
rates, while the second and fourth rows display gas rates. A coarser and standardized
scale is used in the plots.

signs far less gas production to the main field than it obtained with the quotas. As
a result, the satellite field can now produce far more than it could with the booking
constraints in place. This advantage is held for several years. This positive effect on
the discounted production is reduced by heavier discounting due to the delay in time,
but the advantage of the increased production by far outweighs the disadvantage
represented by the delay.

With the fixed-weight strategy it is the main field that benefits from lifting the
constraints. The main field is able to sustain a very high gas production for a very
long time, almost 3,000 days. The satellite field suffers from this and is allocated a
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Main field
Production Total with Total without
strategy Oil | Gas | booking | Oil | Gas booking
Local 22.6 | 58.0 80.6 22.7 | 58.0 80.7
Fixed-weight | 21.3 | 58.5 79.8 22.5 | 59.1 81.7
Satellite field
Production Total with Total without
strategy Oil | Gas | booking Oil | Gas booking
Local 4.9 [11.8 16.8 52 | 13.1 18.3
Fixed-weight | 5.2 | 13.2 18.5 51 | 13.2 18.3
Main field and satellite field combined
Production Total with Total without
strategy Oil | Gas | booking | Oil | Gas booking
Local 27.5 | 69.9 97.4 27.8 | 71.1 98.9
Fixed-weight | 26.6 | 71.8 98.3 27.6 | 72.4 100.0

Table 5.2: Results with and without booking constraints. All numbers are discounted
production of oil equivalents, stated in kSm®, as measured in percent using total
discounted production of main field and satellite field combined without booking con-
straints with the fived-weight strategy as a base case. « = 0.001 has been used to
convert gas into oil equivalents.

relatively low gas production in this period. For the main field the oil is produced
far more efficiently with the fixed-weight strategy when the booking constraints are
lifted. Again, this efficient oil recovery is at the expense of the resulting lower share
the satellite field receives. The satellite field can produce more when the main field
goes into decline, as we observed with the local strategy. However, since the main
field is able to maintain a high gas production rate for a very long time, the heavy
discounting reduces the advantage of this unrestricted production. Furthermore, the
efficient main field oil and gas production the first 3,000 days leads to relatively low
satellite field production in this period. The satellite field needs a large increase
in later production to balance out the loss earlier on. From Table 5.2 we see that
the satellite field experiences a loss of 1% when the constraints are lifted with the
fixed-weight strategy, i.e., the reduction in total discounted production from 18.5 %
to 18.3 % relative to the base case.

Comparing the local strategy and the fixed-weight strategy without booking con-
straints, the total discounted production of the fixed-weight strategy is 1.1% larger
than total discounted production of the local strategy.



5.5. CONCLUSIONS 121

5.5 Conclusions

This paper has analyzed production of oil and gas fields with different ownership
and commercial interests. Satellite field booking constraints are negotiated due to
different ownerships in field and an important issue is to assess the effects imposed
by these constraints. Two different production strategies have been compared, with
respect to performance measured in discounted production of oil equivalents.

The modelling results highlight the importance of the booking constraints. In
particular the results obtained in the case study indicate that the total wealth ex-
pressed in discounted production of oil equivalents created from the satellite field
and main field combined can increase when the booking constraints are lifted using
both production strategies. The gain for the society as a whole thus increases. Us-
ing terminology from game theory, see Myerson (1991), both production strategies
mimic the behaviour of a positive sum game since total discounted production in-
creases in both cases when the booking constraints are lifted. Producing with the
local strategy the satellite field receives the lion’s share of the gain. Since the main
field does not sustain gas plateau level for a very long time when the constraints are
lifted, and the main field subsequently for a long period receives a lower share of the
production capacity than it received with the booking constraints in place, the gas
of the satellite field can be produced far more efficiently. Selecting the fixed-weight
strategy the main field is able to sustain a high gas plateau level for a substantial
amount of time. When the gas production of the satellite field is let in, it happens
so late that the discounting effect outweighs the advantage of being able to produce
unrestrictedly. Furthermore, the satellite field has to produce effectively and fast
later in the production period to offset the loss in discounted production it suffered
early in the production period. This loss is caused by the high proportion of the pro-
duction capacity the main field received in this period. Thus, with the fixed-weight
strategy it is the main field that benefits from lifting the constraints.

5.6 A brief introduction to multi-segmented pro-
duction profiles using ordinary differential equa-
tions

Single Arps curves, introduced by Arps (1945) model the production rate function
and the cumulative production function mathematically through a one-way, causal
relation. In Haavardsson & Huseby (2007) this approach is extended to multiple
segments so that a combination of Arps curves may be used to get a satisfactory fit
to a specific set of production data.

To also take into account various production delays, the dynamic two-way relation
between the production rate function and the cumulative production is modelled in
terms of a differential equation. The relation between the production rate function,
¢, and the cumulative production function, ), should be of the following form:

q(t) = f(Q(1)), for all t > 0, (5.6.1)
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with Q(ty) = 0 as a boundary condition.

The differential equation approach can also be extended to the more general sit-
uation where the production rate function consists of s segments. For each segment
we assume that we have fitted a model in terms of a differential equation on the
form given in (5.6.1). In order to connect these segment models, we need to specify
a switching rule describing when to switch from one segment model to the next one.
We define a switching rule based on the produced volume. By using this switching
rule, we obtain a model for the combined differential equation.
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