
Master’s thesis

Exploring the Why in AI
Investigating how Visual Question Answering models can be

interpreted by post-hoc linguistic and visual explanations

Emil Christopher Gjøstøl Strømsvåg

Informatics: Robotics and Intelligent Systems

60 ECTS study points

Department of Informatics

Faculty of Mathematics and Natural Sciences

Spring 2023

Emil Christopher Gjøstøl Strømsvåg

Exploring the Why in AI

Investigating how Visual Question Answering

models can be interpreted by post-hoc

linguistic and visual explanations

Supervisors:

Andrea Storås

Michael Riegler

Kyrre Glette

Abstract

With the increase in accuracy and usability of Artificial Intelligence
(AI), especially deep neural networks, there has been a big demand for
these networks. These methods are implemented in various domains to
increase productivity, create new industries, and enhance people’s lives.
However, these networks are often large and complex, which does not
give insight into the prediction process. In order to make the models
more functional and be able to improve them, humans need to understand
how they reason. This work studies explanatory models and how they
can bring value and insight into how the underlying fully developed
model interprets data. The experiments specifically examine how Visual
Question Answering (VQA) models can be explained in both the visual
and linguistic domains.

Two distinct methods are proposed to bridge the gap between models
with high accuracy and interpretability. The first model combines the task
of VQA with the Explainable Artificial Intelligence (XAI) method Faithful
Linguistic Explanations (FLEX). The second method encodes extracted
image features into the text prompt of a Large Language Model (LLM).
Quantitative experiments are used to find the insights necessary. The
experiments are conducted using the language model, which is explained
using visualizations of the model’s transition score, and a proxy model
explained by Local Interpretable Model-agnostic Explanations (LIME).
The main finding of this research is that larger and more complex models,
like an LLM, can be explained by smaller methods added after the primary
model has completed training. These models can combine complex
methods with layers of explanation that bring valuable insights with no
cost to the accuracy of the primary model.

i

Contents

List of Acronyms viii

1 Introduction 1
1.1 Background and Motivation 1
1.2 Problem Statement . 2
1.3 Scope and Limitations . 4
1.4 Research Methods . 5
1.5 Ethical Considerations . 6
1.6 Main Contributions . 10
1.7 Thesis Outline . 11

2 Background 13
2.1 Artificial Intelligence . 13

2.1.1 A Short History of AI 14
2.1.2 Machine Learning . 18
2.1.3 Deep Learning and Neural Networks 25
2.1.4 Convolutional Neural Networks 28

2.2 Image Captioning . 31
2.3 Attention Mechanisms . 32
2.4 Model evaluation . 34

2.4.1 Precision and Recall 35
2.4.2 Accuracy . 36
2.4.3 F1 Score . 37
2.4.4 Perplexity . 37

2.5 Frameworks . 38
2.5.1 TensorFlow . 38
2.5.2 Text Tokenization . 39

2.6 Related Work . 40
2.6.1 Explainable AI (XAI) 40

ii

2.6.2 Large Language Models (LLMs) 44
2.7 Problem and Application . 49

2.7.1 Problem . 50
2.7.2 Application . 52

2.8 Summary . 54

3 Methodology 56
3.1 FLEX-VQA . 57

3.1.1 Overview . 57
3.1.2 The motivation for this method 58
3.1.3 Original FLEX in more detail 58
3.1.4 Implementation . 60
3.1.5 Why this method has no results 64
3.1.6 Summary of FLEX-VQA 69

3.2 Alpaca-VQA . 69
3.2.1 Overview . 70
3.2.2 Implementation . 71
3.2.3 Explaining the output 76
3.2.4 Dataset . 78
3.2.5 Context Window, Cuttoff, and Evaluation Metrics . . 80

3.3 Summary . 82

4 Experiments, Results, and Discussion 86
4.1 Intro . 86
4.2 Hyperparameters . 86
4.3 Investigatory Experiment . 88

4.3.1 Results . 89
4.3.2 Analysis . 93

4.4 Main Experiment . 94
4.5 Results . 96

4.5.1 Classification Report 97
4.5.2 Visualizing Transition Scores 101
4.5.3 Proxy model and LIME 104
4.5.4 Language-only Alpaca-VQA model 107

4.6 Discussion . 111
4.7 Summary . 115

iii

5 Conclusions 117
5.1 Summary . 117
5.2 Main Contributions . 120
5.3 Limitations and Future Work 121

5.3.1 FLEX-VQA . 121
5.3.2 Alpaca-VQA . 122
5.3.3 Explainable Methods 123

Appendices 144

A Additional Proxy Model Explanations 144

iv

List of Figures

2.1 Overview of an alternative structure to the one used in this
work for AI, machine learning, and deep learning. 19

2.2 Overview of the structure between artificial intelligence,
machine learning, and deep learning. This is the structure
used in this thesis. 20

2.3 Figure showing k-Nearest Neighbors clustering. 22
2.4 Figure of an autoencoder. 23
2.5 Figure of a fully connected deep artificial. 26
2.6 ImageNet competition winners from 2010 to 2016. 27
2.7 Illustration of a convolution. 28
2.8 Example of a CNN architecture, illustrated by the VGG-16. . 29
2.9 Figure of the transformer architecture. 34
2.10 Example of confusion matrices, both binary and multi-class. 36
2.11 Overview of the Stanford Alpaca training procedure. 50
2.12 Husky classified as a wolf, alongside what the model

considered important. 53

3.1 Overview of the FLEX Framework. 57
3.2 Proposal of the data flow and components of FLEX-VQA. . . 65
3.3 Overview of the proposed dataflow to make large language

models interpret images. 72
3.4 Overview of the original text prompt to the Stanford Alpaca

model, with additional input. 74
3.5 Overview of the modified text prompt to the Alpaca-LoRA

model. 75
3.6 Figure of the explanation pipeline for Alpaca-VQA. 78
3.7 The original JSON for the ImageCLEFmed-MEDVQA-GI-

2023 dataset. 84
3.8 Figure of flattened image-IDs of the dataset. 85

v

3.9 Figure of flattened image-IDs and answers of the dataset. . . 85

4.1 Graph over training loss for the initial experiment. 91
4.2 Overview of the answer label balance in the ImageCLEFmed-

MEDVQA-GI-2023 dataset. 94
4.3 Illustration on how the dataset split into training, evalua-

tion, and testing data. 95
4.4 Label distribution of answers in the modified dataset. 96
4.5 Graph over training loss for main experiment. 97
4.6 The visualized transition scores of Alpaca-VQA. 103
4.7 The proxy model explained by LIME. 108

A.1 The proxy model explained by LIME - 1. 144
A.2 The proxy model explained by LIME - 2. 145
A.3 The proxy model explained by LIME - 3. 145
A.4 The proxy model explained by LIME - 4. 146
A.5 The proxy model explained by LIME - 5. 146

vi

List of Tables

2.1 Overview of datasets used for LLaMA pretraining. 48
2.2 Overview over the participants trust in the Husky vs. Wolf

experiment. 53

4.1 Hyperparameters used for Alpaca-VQA. 89
4.2 Overview of the number of trained parameters using LoRA. 90
4.3 Classification Report: Investigatory Experiment 91
4.4 Answers given by the investigatory model on the test set. . . 93
4.5 Classification Report: Main Experiment. 98
4.6 Classification Report Simplified: Main Experiment. 100
4.7 Examples of transition scores computed by Alpaca-VQA. . . 102
4.8 Parameters used when training the proxy model. 105
4.9 Classification Report: Proxy Model. 105
4.10 Classification Report: Language-Only Alpaca-VQA. 109

vii

List of Acronyms

AI Artificial Intelligence i, 1, 2, 6–8, 10, 13, 14, 16–19, 34, 40, 44, 47, 49–51,
77, 124

ANN Artificial Neural Network 25, 26

BART Bidirectional Auto-Regressive Transformers 33, 46

BERT Bidirectional Encoder Representations from Transformers 33, 45, 46

CNN Convolutional Neural Network 4, 11, 28–33, 39, 42, 43, 54, 56–69, 72,
73, 79, 83, 115, 117, 118, 121, 122, 124

CUDA Compute Unified Device Architecture 67

FLEX Faithful Linguistic Explanations i, 4, 5, 11, 43, 56–69, 82, 117, 121,
122

GPT Generative Pre-trained Transformer 7, 33

GPU Graphics Processing Unit 9, 48, 67, 71, 87

Grad-CAM Gradient-weighted Class Activation Mapping 42, 58

ILSVRC ImageNet Large Scale Visual Recognition Challenge 26

k-NN k-Nearest Neighbors 21, 22, 41

LIME Local Interpretable Model-agnostic Explanations i, 12, 42, 43, 69,
76–78, 83, 86, 104, 106, 107, 111–113, 115, 118–120, 144

LLaMA Large Language Model Meta AI 4, 8, 9, 40, 47, 48, 75, 81, 103, 112,
118

viii

LLM Large Language Model i, 3–5, 7–11, 37, 42, 44–49, 54–56, 69–71, 73–
77, 79, 80, 82, 83, 87, 95, 104, 106, 107, 112–116, 118–120, 122–124

LoRA Low-Rank Adaptation 70, 71, 82, 87, 90, 97, 112, 114, 118

LSTM Long Short-Term Memory 32, 33, 43, 61, 62, 64, 76, 122

NLP Natural Language Processing 31, 45, 47

PCA Principal Component Analysis 22

RAM Random Access Memory 87

ReLU Rectified Linear Unit 25, 47, 63

RNN Recurrent Neural Network 31, 32, 39, 43, 61, 122

ROI Region of Interest 73, 74, 98, 122

SDG Stochastic Gradient Descent 77, 78, 104, 105

SHAP SHapley Additive exPlanations 42, 76, 77

SVD Singular Value Decomposition 22

SVM Support Vector Machines 21, 104

VGG Visual Geometry Group 72–74, 81

ViT Vision Transformer 33

VQA Visual Question Answering i, 1–4, 6, 7, 10, 11, 43, 44, 55–58, 60–64,
68, 69, 79, 82, 95, 107, 111, 115, 117, 118, 120, 124

VRAM Video RAM 87, 96

XAI Explainable Artificial Intelligence i, 1, 2, 4, 6, 10, 13, 17, 40, 41, 43,
49–51, 54, 60, 76, 106, 112, 113, 115, 124

ix

Acknowledgements

I want to thank my supervisors, Andrea Storås, Michael Riegler, and Kyrre
Glette, for all your help, motivation, and interesting discussions. I am
thankful that it was you guys that followed me on this journey – without
your encouraging presence, this project would not be the same.

All the experiments conducted during this work have been run on
the machine learning nodes at the AI HUB hosted at the University of
Oslo. These are now becoming a part of the Norwegian AI Cloud (NAIC).
Therefore, I would like to thank these nodes for their service, and may you
have a prosperous life serving new and interesting assignments.

The header image of the cute robot on the front page is made with the
help of the generative text-to-image model Stable Diffusion. The image is
meant to illustrate a large language model, reading lots of books to gain
knowledge. It is wonderful to live in a time where a stressed student can
make a beautiful image without having any artistic qualities.

This thesis has introduced me to the depths of a very fascinating field of
research. The field of AI and XAI is developing at an extraordinary speed,
which is both exciting and important to be aware of, and I am curious to
follow the coming advancements. Open-sourced AI methods have been
essential during the development of this work.

Astonishing advancements are now made in both AI and XAI, and
their discoveries help contribute to further democratizing these helpful
tools. It is beneficial for interested individuals like me to have models and
documentation openly available, and it contributes to the transparency of
the extreme advancement.

I want to give a special thanks to all the lovely people at Blindern
Studenterhjem. You have given me the best student experience that I could
ever dream of. Last but certainly not least, I would like to give a huge
printed hug to my family and Victoria for motivating me and supporting
me throughout this entire voyage.

x

Chapter 1

Introduction

1.1 Background and Motivation

Artificial Intelligence (AI) have made remarkable achievements in various
fields, but their lack of interpretability and opacity have brought the
question of trustworthiness to the forefront of discussion. The black-box
nature of AI models inhibits user trust and understanding, which can be
critical in decision-making scenarios and deploying models in real-world
applications. This lack of transparency limits the ability to address bias,
identify model limitations, and provide accountability.

Explainable Artificial Intelligence (XAI) is both a research area and a
set of techniques to address these weaknesses by providing methods and
techniques to explain the decisions and predictions made by AI models.
Motivation for XAI methods arises from the increased deployment of
AI systems, especially in high-stakes domains such as finance, criminal
justice, and healthcare, where justification is vital. Additionally, XAI
is important in consumer-facing decision-making applications using AI,
where users may not have the technical expertise to understand the inner
workings of an AI system.

As many XAI methods strive to provide locally accurate explanations,
that is, explanations faithful to the underlying model, they often include
low-level features [1]. However, often these features are challenging to
convey to a non-technical user or do not provide an intuitive explanation.
A user can gain a fuller picture of a model’s reasoning by having
higher-level explanations that come from multiple modalities [2]. The
multimodal task of Visual Question Answering (VQA) combines text

1

questions in natural language and corresponding images to get a model
to output a response based on these two modalities. These multimodal
tasks are closely related to human cognition, as understanding and
describing visual scenes with language is a fundamental attribute of
human perception.

The combination of the VQA task and XAI is an important area of
research since it has the potential to bring the most intuitive explanations
to researchers and users. By describing the contents of images in natural
language and being able to answer questions regarding images and text,
users can gain a better insight into these complex models and determine if
they can be trusted in critical assignments.

This work explores how VQA systems can be explained using visual
and linguistic justifications. As complex models often achieve the highest
accuracies, the experiments in this work explore how smaller, transparent,
and explainable methods can be attached to a fully developed primary
model. These models can provide valuable insights during development
and in the real world at no cost to the predicting model’s accuracy.

1.2 Problem Statement

To be truly trustworthy, machine learning and computer vision must
be understood. Researchers need to understand the model’s inner
workings to make improvements and uncover biases in the dataset.
Users and domain experts using the models must be confident that the
model makes accurate predictions and uses meaningful features when
evaluating the task. The goal when designing models should be that they
are able to achieve state-of-the-art performance without compromising
the interpretability and explainability of their predictions. The more
complex the models become in the pursuit of greater accuracy, the more
difficult it becomes to interpret them. This also applies to multimodal
models, as they combine information from multiple modalities into one
prediction. However, since multimodal explanations can provide valuable
and intuitive considerations, they are an important area of research.

This thesis will examine how explanatory models in the linguistic and
visual domain can contribute to gaining new and important insights into
the functioning of the AI methods.
Formally, the goal can be written as follows:

2

• To what extent can VQA with explanatory models in different
domains provide additional insights into the underlying data?

Although the following research questions are specified, they should
be viewed as guidelines for the experiments rather than defining rules.
This is because the overarching goal is to investigate how explanatory
models can provide additional insights into different modalities. The goal
is, therefore, to explore this topic in more detail to gain new insights rather
than to answer a specific problem.

Since the task of VQA combines both linguistic and visual understand-
ing, the visual part benefits from being explained, as it contains significant
information regarding the task. A locally accurate explanation ensures
that the reason is based on the underlying model’s evaluation. However,
for an explanation to be locally accurate, some explanatory models work
on features on a low level without explaining the task as a whole. As
humans often evaluate the contents of an image as a whole instead of low-
level features, the explanation model could benefit from using locally ac-
curate features and extrapolating so that they describe the image on a high
level.
More precisely, the research question for the visual domain can be formu-
lated as follows:

• Will the answers given by a VQA system be more intuitively
explained with additional locally accurate image descriptions?

With the knowledge from answering these questions, better explana-
tions can be made, which makes it easier to develop and interact with
models interpreting images.

To have an explanatory model in the linguistic domain, it should
only evaluate text features. Since Large Language Models (LLMs) are
trained on large text corpora, they can learn connections and gain valuable
insights into how language works.
Specifically, the research questions in the linguistic field can be formulated
as follows:

• To which degree can an LLM fine-tuned on a new modality bring
new insights from its pertaining?

• What insights can additional explanatory methods bring from an
LLM after training is complete?

3

The insights gained from answering these questions can be used to
create LLMs that bring knowledge from previous training to a specific task
while being explained by supplementary explanatory methods. LLMs
with additional methods that give an understanding of how they work
helps researchers and users gain a more intuitive understanding of how
these complex models work and interpret data samples.

With these research questions answered, the knowledge gained from
this work will make it easier to develop models that can give insight into
how models understand broad concepts in vision and language. Further
on, this will help humans understand what these complex models see and
value, potentially leading to increased trust.

1.3 Scope and Limitations

In order to answer the research questions and find a solution to the
problem posed, the scope of the work must be focused. This section
describes which methods are used, their scope, and where the main
limitations lie. Two different models are proposed and described, one
taking on the explanation in the visual domain and the other in the
linguistic domain.

For the visual domain, the FLEX-VQA method is suggested. This is a
fusion of an XAI method called Faithful Linguistic Explanations (FLEX)
[3] with the VQA task. The FLEX-VQA method achieves the ability
to both answer questions and describe images using locally accurate
visual features. The features are extracted from the feature maps of
the Convolutional Neural Network (CNN), which are pre-labeled with
descriptive words. Finally, a language model converts the words from
the feature maps into natural language descriptions.

In the linguistic area, an LLM is used in this work. The model is based
on the Stanford Alpaca [4, 5], based on Large Language Model Meta AI
(LLaMA) [6]. This Alpaca model is adapted to the multimodal VQA task,
giving it the name Alpaca-VQA. Since it is an LLM that has been pre-
trained on a large corpus, it can use its extensive knowledge base to gain
new insights and connections, thus expanding the available dataset for
fine-tuning.

Since training an LLM requires a large number of computational
resources, it is neither feasible nor ethical to train it from scratch for

4

the experiments in this work. Fortunately, pre-trained LLMs are openly
available and can be fine-tuned to the specific task. Since the subject of this
work is not to create a state-of-the-art LLM, the experiments were limited
to using a single LLM. One of the measures used to accomplish that the
LLM can be analyzed and evaluated with as little bias as possible is that
it is trained to only output a single answer to a question. LLMs have the
ability to answer in long sentences, but the quality of natural language
can be challenging to evaluate [7]. Therefore, this work limits the answer
length to test the answer directly with ground truth.

Since the initial implementation of the FLEX framework uses a variant
of VGG16 [8, 9], it was decided to use the VGG16 model to also extract
image features into the LLM prompt. Other methods could have yielded
better results, such as object recognition models. Still, by having the same
image extractor in both FLEX-VQA and Alpaca-VQA, their explanations
could be compared more easily.

The experiments performed in this work are trained using a single
dataset. Although multiple datasets could have examined more general
findings, the scope was narrowed to focus on complementary explanatory
methods. This is because these explanatory methods do not focus on the
specific dataset but rather on how the primary model uses the samples.

1.4 Research Methods

To effectively answer the research questions, this work incorporates
quantitative studies to collect the necessary results. Quantitative research
methods provide a structured and systematic approach to collecting and
analyzing data, allowing for a rigorous investigation of the research
objectives. This work aims to use these methods to gain objective and
reliable insights contributing to a more comprehensive understanding of
the topic. The models and experiments performed in this research are
carefully designed to allow for an unbiased analysis of the subject matter.

The models and experiments conducted in this research are carefully
designed to facilitate an unbiased analysis of the results. An unbiased
analysis is an approach that minimizes the influence of personal biases
or preconceived notions on the interpretation of data. It involves
implementing rigorous experimental protocols, ensuring the validity and
reliability of measurements, and maintaining transparency throughout the

5

research process.
By adopting an unbiased analysis approach, this work seeks to ensure

that the obtained results are not skewed or influenced by subjective fac-
tors. This approach allows for a more objective evaluation and interpre-
tation of the findings, promoting the reliability and generalizability of the
results. This will enable researchers to draw meaningful conclusions and
contribute to a broader understanding of the subject area while increasing
the credibility and validity of research results.

1.5 Ethical Considerations

With more intuitive explanations provided by an XAI system, researchers
and users have better insight into the inner workings and arguments of
the underlying AI method. This, in turn, will address one of the ethical
concerns, which is dataset bias.

Dataset Bias

AI raises a number of ethical concerns, particularly when used in high-
stakes domains such as healthcare, finance, and criminal justice. The
concern is not specifically the error of the AI model but rather the
bias of datasets. Since AI is used to condense complex datasets into
understandable predictions, it becomes an inherited ethical issue if models
learn unfair biases. Datasets used in deep learning are often large and
complex, and AI models are used to extract knowledge from the dataset.
Therefore, it can be difficult for researchers and users to identify biases
used in training the AI models, especially when they do not explain why
this prediction is correct.

One ethical problem is that AI systems can make predictions that are
directed against certain groups of people, such as those from marginalized
communities. This could occur if the training data used to develop
the system is biased or if the system’s decision-making process is not
transparent. XAI can therefore be an important tool to gain insights into
our own biases and to help researchers and users avoid making decisions
based on false premises.

VQA datasets and image caption tasks also raise ethical concerns about
bias and fairness. The task of VQA and image caption rely on data in

6

order to learn to generate textual explanations for visual inputs. However,
if the training data is biased in any way, the resulting system will also
be biased. For example, if a VQA dataset contains mostly humans with
one skin color, the system may not work as well with images of people
of a different color. Similarly, if a dataset used for captioning contains a
relationship between sexes and professions, the same bias will be carried
over to the model.

The work of Hirota et al. [10] analyzed gender and racial bias in
five popular VQA datasets and found unfavorable stereotypes in the
samples. Various possible solutions to address this issue were explored
in their work. This includes not asking questions about race and sex when
not required when making a dataset and collecting a more standardized
distribution related to race and sex. They also propose an alternative
to the manual screening that some VQA datasets use since not all can
justify the cost of manual annotation. The proposed solution to this
automatic screening, followed by ethical guidance for annotators, and
lastly, a feedback platform for users.

Large Language Models

Regarding LLMs, there are some ethical considerations to address. LLMs
are trained on a large corpus of text, most often collected from the
Internet. The data gathered across the web are mostly written by
humans, and the LLMs are trained on this wast dataset to extract a more
general understanding of human knowledge and present this with a well-
structured syntax. With the advancements and availability of models such
as Generative Pre-trained Transformer (GPT)-4 [11], combined with a user-
friendly and easy-to-use user interface, like the one used by ChatGPT [12],
the public has never before had an advanced AI so accessible in their
everyday life. Given that users come from different backgrounds and
cultures, the LLM should be able to adapt to its users to close the gap
between user and AI alignment. AI alignment is a subfield of AI safety,
with the goal of building safe and reliable AI methods [13]. The alignment
problem is defined as the task of aligning the goals of the humans creating
the system with the goals of the AI system. Outer alignment is the overall
goal of the system, and inner alignment ensures that the system behaves
as expected in a robust manner [14].

LLMs have billions of parameters and incomprehensible feature space

7

for humans to understand fully. These models are mostly built today using
the Transformer model proposed by Vaswani et al. [15], but because of
their size and scale, they are very complex to understand [16].

There have been multiple attempts recently to slow the growth of or
to regulate deep neural networks, like LLMs. The goal of this is to have
time to address ethical and technical concerns before a new, larger, and
better model gets released [17, 18]. The reasons why some argue not to
continually make new models are many, but the most prominent concern
is to understand better the models already developed. With a better
understanding of these models, researchers are better equipped to tune
models to better align with the overall goal of humans. An understanding
of the inner workings of a model, including an LLM, can also give insight
into how to make the model predictions more transparent, fair, and
efficient.

Ensuring the ability to detect AI-generated content is a crucial aspect
that deserves significant attention. As AI becomes more proficient at
autonomously searching the web and generating new datasets, it becomes
increasingly important for humans to determine the origin of information
and assess its reliability and credibility. These tools play a crucial role in
providing transparency and allow users to differentiate between content
generated by humans and AIs. By integrating reliable detection tools,
individuals can make informed decisions based on awareness of whether
the information they encounter comes from AI algorithms or human
sources.

Carbon Footprint

Training large AI models takes a considerable amount of energy and
therefore produces a lot of greenhouse emissions. In the paper introducing
the LLaMA model [6], which is the base model of the Alpaca-VQA model
used in this work, they calculate the carbon footprint. This footprint can
be estimated by the formula in Equation 1.1.

Wh = GPU hours × (GPU power consumption)× PUE (1.1)

Where PUE is Power Usage Effectiveness, which is set to 1.1. In
order to generalize the carbon footprint, the authors of LLaMA use
the US national averages carbon intensity factor corresponding to 0.385

8

kg CO2eq/KWh, where CO2eq is Carbon Dioxide Equivalents. By
generalizing the carbon emissions per watt, it is easier to compare models
trained in different locations. The formula used for calculating the metric
tonnes of CO2eq can be done with the formula in Equation 1.2.

Metric tonnes of CO2eq = MWh used × 0.385kg CO2eq/KWh (1.2)

Following this equation, the researchers estimate the development of
LLaMA to use 2,638 MW in total, corresponding to 1,015 metric tones of
CO2eq. This is roughly the same amount as 216 passenger vehicles emit in
a whole year [19].

In order to minimize the carbon footprint of the LLM used in this
thesis, the weights used are not from the original LLaMA but from the
Stanford Alpaca model. The model is fine-tuned using optimizations that
freeze the internal weights of the model, and a supplementary weight
matrix is trained. This implementation is discussed in further detail in
section 3.2. Also, the experiments follow an iterative design, which helps
reduce unnecessary computing time and emissions. Following the same
formula, the fine-tuning of the Alpaca-VQA model used in this work can
be calculated. It is estimated that the total Graphics Processing Unit (GPU)
processing time to be 30 hours, with GPUs using a maximum of 250 W
[20]. Using the same PUE as LLaMA, the total power consumption is 7.5
kW. Using the carbon emissions from the US, the experiments in this work
have emitted 2.888 kg of CO2eq. However, as the servers were located in
Norway, the emissions, in reality, were much less. It is estimated that the
average emissions per kWh in Norway in 2022 were 0.019 kg CO2eq/KWh
[21]. Therefore, the actual emissions are 0.143 kg of CO2eq, which is less
than a kilometer driven in a fossil car [22].

As the fine-tuning used to conduct the experiments in this work is
dependent on the base model, the emissions should therefore be seen in
conjunction with the final model. Therefore it is an ethical concern to
keep making larger models that consume more energy, especially when
the energy used is not from renewable sources.

To address the issue of large computational needs, processor designers
have made specialized chips for machine learning [23–26]. These can
assist the development of even better models that also have reduced
power consumption. An additional benefit of having reduced power

9

consumption is that more lightweight devices can train and run models
that help democratize machine learning.

In summary, AI, datasets VQA, and LLMs raise important ethical
concerns about bias, fairness, and carbon footprint. Mainly these concerns
stem from reliance on training data, which may be biased or perpetuate
stereotypes. Researchers and users of these tools must consider the ethical
concerns and work towards developing XAI systems that are transparent,
fair, and respectful of humans and the climate.

1.6 Main Contributions

The experiments conducted in this research project demonstrate the
effectiveness of post-hoc explainability models in providing valuable
insights into the underlying model without sacrificing accuracy. By
employing a proxy model that simulates the behavior of the LLM, a useful
understanding of how the LLM works can be gained. The visualization of
transition scores further contributes to the intuitive description of how the
LLM predicts tokens in a sequence.

This work explores the adaptability of LLMs to new modalities while
preserving pre-training knowledge. By adding additional methods to a
fully trained model, it is possible to leverage the benefits and accuracy of
the initial model while providing users with intuitive justifications for its
answers.

The key finding of this research is that larger and more complex
models, like an LLM, can be explained by smaller methods added after the
model has completed training. These additional explanatory methods add
no significant resource use or compute time during inference but provide
valuable insights into the model. In addition, these supplementary models
do not change how the larger, more complex model works. Therefore,
these methods can combine complex models with supplementary layers
of explanation that bring valuable insights with no cost to the accuracy of
the primary model.

The main contributions are an understanding of how smaller and
interpretable methods can be added to a model that is finished training.
These methods provide valuable insights into how the main model may
work, even though the methods are not interpreting the main model itself
but a proxy model. All the code used in the experiments conducted in this

10

work is open and available.1,2

1.7 Thesis Outline

This work is divided into five main chapters. All the references used are
listed after the last chapter. The thesis is structured in the following way:

• Chapter 1: Introduction - This is the introduction to this project
and thesis. It is designed to be intuitive to follow and convey this
research project’s motivation and overall goal.

• Chapter 2: Background - This chapter establishes the foundation
and context for the subsequent thesis chapters. It provides the nec-
essary background knowledge and related work for understanding
the research conducted in this thesis. It covers the motivation for
the research, the importance of XAI, relevant technologies such as
AI and machine learning, model explanation techniques, evaluation
metrics, and a summary of related work in the XAI field.

• Chapter 3: Methodology - This chapter delves into the details of
two proposed methods in this work, both aiming to explore the
implementation of explanatory methods in different domains using
machine learning models. The first method, FLEX-VQA, combines a
VQA architecture with the FLEX framework to provide explanations
originating from the visual domain translated into natural language.
The second method involves an LLM combined with a CNN, where
image features are translated into text for explanation. The chapter
highlights the significance of these models’ multimodal capabilities
and discusses the specific techniques employed. The Alpaca-VQA
model, chosen for its pre-training and efficiency, is fine-tuned using
the LoRA technique.

• Chapter 4: Experiments and Results - In this chapter, the Alpaca-
VQA model is tested on two different dataset sizes, starting with an
investigatory experiment on a smaller dataset to gain initial insights.
The model is then trained on a larger dataset of 20,000 samples, and
the results are analyzed. Using explanatory post-hoc methods, such

1https://github.com/2ec/alpaca-lora
2https://github.com/2ec/FLEX-VQA

11

as a proxy model explained by Local Interpretable Model-agnostic
Explanations (LIME) and visualizing transition scores, uncovers
biases in the dataset and provides supplementary information about
the model’s behavior. The chapter also explores linguistic biases by
testing a language-only version of the model. The key takeaway is
that smaller explanatory methods can be added to larger models
after training, providing valuable insights without compromising
accuracy or computational resources.

• Chapter 5: Conclusions - This chapter concludes this thesis and
summarizes the findings from the previous chapter. Limitations
of the methods used are discussed, as well as future works are
suggested.

12

Chapter 2

Background

This chapter provides an overview of the background knowledge and
related work needed for understanding the research performed in this
thesis. The chapter begins by explaining the motivation for this research
and the importance of XAI. The chapter also presents existing technologies
relevant to the research, such as AI, machine learning approaches,
and model explanation techniques. It discusses the current state-of-
the-art in the XAI field, including recent advancements and research
trends. Additionally, the chapter summarizes the most relevant evaluation
metrics, which are essential for assessing the effectiveness of AI and XAI
techniques.

Finally, this chapter provides an overview of the related work done in
the XAI field, focusing on the most relevant studies and research findings.
It examines the approaches and techniques used in these studies and
discusses their strengths and limitations. The chapter then discusses
the key concepts and principles of XAI, including the various types of
interpretability and the methods used to achieve it.

In essence, this chapter lays the foundation for the subsequent chapters
of this thesis, providing the necessary background and context for
understanding the research presented.

2.1 Artificial Intelligence

AI is both a research topic and a group of approaches aimed at giving
computer programs the most intelligent possible approach to solving
a given task. In academia, it became a research topic in 1956 after a

13

conference called the Summer Research Project on Artificial Intelligence,
which was hosted by John McCarthy and Marvin Minsky, which is
considered to be where the term originated and is often credited to
McCarthy [27, 28]. Since this first conference, the field has evolved
with the help of an interdisciplinary environment of computer science,
mathematics, statistics, psychology, neurology, and linguistics.

Overall, this section of the thesis provides a brief overview of the
history of AI and sheds light on the importance of the field in modern
society. It forms the basis for the further discussion of relevant AI concepts
in the following sections of this work.

Throughout history, humans have had the desire to wield the power
of creating artificial creatures. The concept of artificial beings that are able
to observe, evaluate and react to their surroundings can be dated back to
the story of Talos in Greek mythology [29]. The concept has since been
featured in countless fiction novels and movies, such as Frankenstein,
R.U.R, HAL9000, and Metropolis [30–33].

Humanity has since taken the dream of artificial beings with conscious-
ness from the realm of fiction and driven the evolution of AI as a research
field forward with impressive results. AI has become an integral part of
people’s everyday lives, fueling advances in science and technology, in-
cluding social media, computational photography, voice assistants, and
chatbots [34–36]. Doctors can now use AI to interpret medical images, and
artists are using AI to create new art [37, 38].

2.1.1 A Short History of AI

The origins of modern AI can be traced back to the 1940s and 1950s when
pioneers such as Alan Turing and John McCarthy laid the foundations for
today’s AI research methods.

Alan Turing was a British mathematician and pioneer of computer
science, and he is most notably known for his contributions to the
development of modern computer theory. In 1936, Turing presented
his theory of computation, which proposed a system later coined as a
Turing machine, which is an abstract machine that manipulates a strip
of tape using only simple rules. Despite its limited rules, they can be
combined to interpret any proposed computer algorithm. The theory was
revolutionary at the time and laid the foundation for the development of

14

modern computers and later became known as the Church-Turing thesis
[39, 40].

One of the first to use Turing’s theories in practice was McCullough
and Pitts and their formal design of artificial neurons in 1943 [41,
42], which was the first step towards the method now known as the
perceptron. In 1950, Turing proposed a behavioral test, originally called
the imitation game and later named the Turing test. This behavioral
test was set up so that a human would speak to two separate entities,
the human judge knowing that one was another human and the other
a machine. Then the human would talk to those two participants, not
knowing whether the responder was the human or the machine, and
then try to decide who the machine was. The computer would pass the
Turing test if the human judge could not distinguish between human
and computer. This test is relevant today with tools such as ChatGPT
[12], where the boundary between human and machine-produced natural
language disappears. Turing’s work laid the foundation for modern
computers and artificial intelligence. His ideas are still relevant today,
and his impact on the field of computer science cannot be overstated.
The Church-Turing thesis, in particular, had a significant impact on the
research field of studying computers and giving an understanding of the
limitations of computer systems. Turing’s work also laid the foundation
for the development of artificial neural networks and their use in machine
learning.

The research field of artificial intelligence has gone through several
ups and downs over the years. These ups and downs have mostly been
caused by increased popularity and interest in founding new technologies
in the field, followed by disappointment when the development didn’t
deliver the desired results. Disappointment led to cuts in funding, which
stagnated development. The AI industry has experienced two significant
cycles of reduced interest, often referred to as the two AI winters. The first
AI winter was in the late 1970s, and the second was in the late 80s to early
90s [43]. Since the beginning of 2012, interest in AI has increased, driven in
particular by advances in machine learning, deep learning, and increased
computing resources. With the advent of deep learning and big data, AI
has seen a resurgence, and unprecedented advances have been made in
the field in recent years. This has led to the development of intelligent
systems that can take on a variety of tasks that were once thought to be

15

an exclusive domain of humans, such as driving cars and interpreting
images.

As there exist many ways to solve a problem, researchers have divided
the AI field into two main paradigms that take different approaches to
achieving artificial models. The two paradigms are named symbolic and
connectionist AI.

Symbolic Artificial Intelligence

Symbolic Artificial Intelligence refers to a collection of AI methods based
on high-level symbolic representation of problems. It is also known as
rule-based AI, classic AI, and good old-fashioned AI (GOFA) [44].

In the period between the 1950s and mid-1990s, symbolic representa-
tion was seen as dominant over the other main representation, connec-
tionism, which will be discussed in the next sub-chapter. This was be-
cause symbolic representation came closer to the thought human way of
learning symbolic representations rather than analyzing neuron activa-
tion in the brain and therefore had an advantage over connections [45].
The goal was to provide machines/computer code with human knowl-
edge and patterns of action by defining rules in programs. The main idea
behind symbolic AI is to define a high-level symbolic representation that
creates the building blocks for the intelligence of the program. In addi-
tion to these pre-programmed rules, an expert system is used, which then
checks which rules are fulfilled and makes a decision on this basis.

The advantage of symbolic AI is that because of the pre-programmed
rules, it is more transparent about what underlies the decisions, and, given
the same assumptions, the same result is obtained every time. Because
of the rule-based nature of the algorithms, they work well even on data
with little variation. They also work well for datasets with few examples
because programmers can use a priori knowledge of the problem when
defining the rules.

Symbolic AI has disadvantages in that irregular variations cannot be
accounted for other than creating new and additional rules to cover all
variants that may be encountered. This is a disadvantage in systems that
process data from the real world, as they often contain large variations.
It is, therefore, often practically impossible to write rules to cover all
variations unless the task is severe and well-defined.

16

Connectionist Artificial Intelligence

Despite developing in the background of Symbolic AI during the first
decades of its academic history, new methods have made connectionist AI
remarkably popular in recent times. Connectionism is based on the idea
that the interconnection of several small nodes, which learn over time,
forms intelligent judgment systems. This approach is often compared to
how the brain works, a connected network of neurons. The most well-
known example of such a method is the artificial neural network, which is
built up of many processing nodes, often called perceptions [41].

The perceptron is inspired by biology and mimics a biological neuron.
This perceptron takes data as input, weights it according to its learned
importance, and then uses a transfer function to provide an output. These
small artificial neurons are connected in layers and learn from sample data
fed into the model. The model learns by adjusting weights that define the
importance of input to make a correct assessment.

Since 2012, models that can train on increasingly large datasets have
improved significantly, in large part due to advances in computational
power. Connectionism has given a new boost to AI as a field and tool
in real-world applications, and they are constantly being renewed to solve
new problems.

The main benefit of connectionism is that the model can learn
more complex relationships than symbolic AI since the weights in the
neurons can be updated as new examples are trained. This allows the
method to extract information from datasets with large variations between
individual samples.

The main downside, however, is that it’s often difficult for humans
to gain insight into the formation of judgments, as the process is learned
by adjusting weights in each of the numerous neurons. The models,
therefore, can learn connections that do not make sense to humans and can
be impossible to explain intuitively. Then, even if the inner workings of
the model can be explained, it will bring no value to the human evaluating
the explanation.

Another disadvantage of these models is that they often become more
accurate with more data and more complex model structures, making
accurate models even harder to interpret. Because of the difference in
how humans reason and some deep artificial networks learn, new research
fields like XAI try to make models more transparent and understandable.

17

Combination of Symbolic and Connectionist AI

With the rapidly growing demand and development of new AI tools, there
is increasing pressure to make connectionist models more transparent by
combining them with symbolic AI methods, known as neuro-symbolic
AI [46]. The advantage of combining these two paradigms is that these
combined models utilize the properties of connectionist models to train on
large datasets with significant variations, in addition to learning symbolic
representations of the dataset, making it easier for humans to understand
the basis for the model’s decisions.

In the book Thinking Fast and Slow by Daniel Kahneman [47], a model
of human thinking is discussed. It is proposed that human thinking is
composed of two systems, one fast and intuitive and the other a slower,
more deliberate system. The book argues that the symbiosis of these two
systems makes human thinking more robust and reliable. In this context,
the neuro-symbolic AI comprises a fast symbolic pattern recognition
system, and a connectionist deep learning model takes care of the more
deliberate reasoning.

This type of combined model can train on large datasets of, for
example, images while learning symbolic representations from question-
and-answer pairs to become familiar with linguistic terms like colors and
shapes. The hope is that this will lead to a more general understanding
from the model’s perspective by learning multimodally and being able
to learn variations in the dataset using fewer examples while being
reasonably transparent.

The integration of models across modalities is further explored in
this work. It is an interesting research area where the combination
of connectionist and symbolic approaches can make AI models more
transparent, easier to understand, and more meaningful to work without
sacrificing accuracy and applicability.

2.1.2 Machine Learning

The field of artificial intelligence includes a subgroup subset known as
machine learning. Because these two groups are often conflated in the
media, reasonable to define machine learning as a subset of AI. However,
some argue that machine learning has diverged from AI, with overlaps,
overlaps as illustrated in Figure 2.1 [48]. Nevertheless, this thesis follows

18

the conversation most agree on and treats machine learning as a sub-field
of AI, as shown in Figure 2.2.

Figure 2.1: Overview of an alternative structure for AI, machine learning,
and deep learning. This structure argues that AI is the pursuit of
developing non-biological systems with human-like intelligence and can
be achieved with methods that do not use machine learning or deep
learning, such as symbolic representations in a shallow architecture. This
representation is not de facto and is not used in this work.
Figure by Sebastian Raschka [48]

Machine learning is often broken down into three sub-areas, which are
discussed and explained in this sub-section, explaining how they work,
under what circumstances each sub-area can be used to advantage, and
the challenges each branch faces are highlighted.

Supervised Learning

The first category within machine learning is known as supervised
learning. This method is conceptually similar to using flashcards for
memorization. The participant draws a card and reads the question
while keeping the answer hidden. Only after the participant answers the
question, the correct answer can be revealed. This is, in essence, the same
approach used in supervised learning.

19

Artificial Intelligence

Systems that mimics biological
intelligence or behavioral pattern.

Machine Learning

Systems that learn and improves
from data, without predefined rules.

Deep Learning
Technique that perform

machine learning using an
architecture inspired by

biological brains.

Figure 2.2: Overview of the structure between artificial intelligence,
machine learning, and deep learning. This is the structure used in this
thesis.

In supervised learning, a dataset with pre-labeled examples, also
known as a fully labeled dataset, is used to train algorithms to predict
labeling for unlabeled input data. This is typically accomplished by
training on a larger dataset with labels for each input, passing the input
through a network, and using the label to inform the algorithm what
the input data should be labeled as. In this way, the method learns the
relationship between the input and the correct label. The method learns
these correlations by adjusting the weights within the network to produce
a result that is as close as possible to the true label.

Since the ground truth label is known for each entry in the dataset,
the model’s output is compared to this ground truth label. The accuracy
of the similarity between these two is measured using a loss function.
A loss function is a calculation that computes the loss of a single model
prediction. The loss is a measure of how far from the ground truth the
prediction was and is used to adjust the model to predict better next
time. Weights are adjusted using a technique called backpropagation
to minimize this loss, and training continues until the weights are
appropriately adjusted to achieve a satisfactorily low loss. These weights

20

are then used later when testing real-world inputs, for which ground truth
is often unavailable and must be estimated.

Within supervised learning, there are two main subcategories: classifi-
cation and regression.

Classification is a method used when the output variable belongs to a
category, such as a color or an object, or to indicate the probability that
an input belongs to one or more categories. Classification either predicts
categorical class labels or classifies data by building a model. A typical
classification method can be used to sort emails into spam or not spam or
to identify the bird species in an image. Classification models can include
methods such as neural networks, Support Vector Machines (SVM), k-
Nearest Neighbors (k-NN) [49, 50], random forest, decision trees, one-vs-
rest, and naive Bayes. Section 2.1.3 will go into more detail about neural
networks, as this is a central method of machine learning and is relevant to
this work, as it is used later in this thesis by the first proposed architecture
in Section 3.1.4.

The second approach within supervised learning is called regression.
This method is used when the output should be a real or continuous
value. Regression is used to find the correlation between dependent
and independent variables. There are many different models within
regression, such as linear regression, logistic regression, and polynomial
regression. It is common to use hyperplanes that fit the available data.
Hyperplanes are defined as a subspace of a vector space and have one less
dimension than the vector space they are inside. These planes, therefore,
are used to make a cut in the feature space in order to separate data
samples. Regression is often used to make forecasts based on past data,
e.g., estimating real estate prices for an area or salary growth.

Unsupervised Learning

Unsupervised learning is a technique that uses raw data from a given
dataset to identify patterns and relationships in unlabeled data, facilitating
the grouping of each item into appropriate clusters. The essence of
this approach is that it can autonomously analyze and group data
without requiring human intervention to pre-label the data. Therefore,
it is well suited for use in data analysis, image recognition, and image
segmentation.

The main grouping models used in unsupervised learning are cluster-

21

ing, association, and dimension reduction. Clustering aims to divide raw
data into groups or clusters based on similar characteristics. An exam-
ple of a cluster split is shown in Figure 2.3, demonstrated by the k-NN
method. Association rules, on the other hand, are a rule-based approach
that attempts to uncover relationships between variables in a dataset.
These associations can, for example, be used in recommendation models,
where companies can identify correlations between customers who pur-
chase different items and use this knowledge to suggest similar products
to new customers.

Feature B

Feature A

(a) Samples are distributed in
a feature space. The colors
represent class, and the white
is a new sample. A new sam-
ple will be classified based on
neighboring samples.

Feature B

Feature A

(b) The new sample checks
the nearest neighboring sam-
ples. In a circumference,
noted with a dotted circle, the
4 closest neighboring samples
are found.

Feature B

Feature A

(c) The classes of the 4 closest
samples are counted, and the
majority class is chosen. Of
the 4 samples, one is blue, and
three are red. The new sample
is therefore classified as red.

Figure 2.3: Example of how the clustering algorithm k-Nearest Neighbors
computes the class of a new sample.

Dimensionality reduction is a technique for reducing the number of
dimensions in a dataset. Although many machine learning methods
benefit from additional data, this is not always the case [51, 52]. Data
samples can often contain insignificant variables or noise, making model
training ineffective and making the dataset in practice smaller regarding
useful information. This technique can be used to create a dataset
containing more distinct features and also visualize and analyze data.
When reducing the dimensions of a dataset, the goal is to reduce the
number of learnable parameters while maintaining the integrity of the
data being processed. Well-known methods for dimension reduction are
Principal Component Analysis (PCA) and Singular Value Decomposition

22

(SVD). More recently, good results have been obtained with deep neural
network-derived autoencoders [53]. Autoencoders can compress data fed
to them and produce a representation or encoding that retains much of
the underlying data, but the dimensions are significantly reduced. To
retrieve this data after encoding, a decoder is required to reconstruct the
data. Figure 2.4 depicts an autoencoder with an encoder and decoder.

Reconstructed DataInput Data Encoded Data

Latent Space DecoderEncoder

Figure 2.4: A diagram of an autoencoder consisting of an encoder and a
decoder network. The encoder network maps the input image into a low-
dimensional representation, while the decoder network reconstructs the
original image from the low-dimensional representation. By minimizing
the reconstruction error between input and output, the autoencoder can
learn a compressed representation of the input data.
Figure inspired by Steven Flores [54].

Unsupervised learning has proven useful in computer vision, where
it can aid in object recognition, detection, and segmentation, such as in
medical datasets. By allowing correlations to be identified and grouped
into clusters based on features or traits, unsupervised machine learning

23

can also be used for anomaly detection, where it can flag atypical data.
This method is also often used in recommendation engines, such as those
found in online stores, streaming services, or social media.

Semi-Supervised Learning and Hybrids

Supervised learning is often more accurate than unsupervised learning
as it can learn from the knowledge provided by humans in the form of
labeled data. This approach can also avoid computational complexity
since the model does not need to train on irrelevant features for the
specific task. However, the downside of supervised learning is that it
requires significant human effort beforehand labeling the dataset, which
can be time-consuming and costly, particularly when domain experts are
required.

A hybrid solution that aims to leverage the best of both supervised
and unsupervised learning is known as semi-supervised learning. This
approach can be beneficial when there is too much data to label, either
because the dataset is large or the cost of labeling is high. Semi-
supervised learning typically assumes that data points close together in
feature space share labels or have an underlying correlation factor in
a lower dimension (manifold hypothesis/assumption). Methods using
semi-supervised learning often achieve higher accuracy than those using
only supervised or unsupervised approaches separately. This is because
they do not need to discard data that is not labeled and can be trained
using a researcher’s a priori knowledge of the dataset or possible solution
[55, 56].

Other approaches, such as active learning and weak supervision, can
also often be used when a fully labeled dataset is unavailable for training.
Active learning is a process in which a model can select input data about
which it is unsure and ask a human or other expert for the correct answer.
For example, such methods can label large data sets with services such
as Amazon Mechanical Turk [57]. Samples are selected using a model
that attempts to ask for samples believed to have the highest value for
further classification. This can be achieved by first asking an expert for a
sample from random samples and fitting the model to obtain a decision
boundary that separates the classes. After that, the model can iteratively
identify examples of high importance since they are near or at this decision
boundary. These are the most uncertain examples, making them valuable

24

for the model to identify. Then the model asks the expert for samples near
the boundary. The boundary is adjusted again, and the process is repeated
until the model fits the data and satisfactorily separates the samples.

Weak supervision is a method that can be applied in situations
where it is preferable to have a large number of sufficiently accurate
examples rather than a smaller number that are completely correct
[58]. This approach is often implemented by defining some rules or
using a knowledge base in advance, which helps the model estimate
the probability that an example belongs to a certain category. Weak
supervision is often used in conjunction with transfer learning, which
involves transferring knowledge from one area to another [59]. Transfer
learning has shown promising results because generalizable knowledge
of data can often be transferred, eliminating the need to learn from scratch
on a new dataset. Transfer learning can be combined with other methods,
e.g., supervised learning [60].

2.1.3 Deep Learning and Neural Networks

Neural networks, also known as Artificial Neural Networks (ANNs),
are a machine learning method inspired by how the biological brain
processes information and learns. Essentially, ANNs approach the goal of
extracting information and constructing knowledge by forming a network
of artificial neurons that can process input data. These artificial neurons,
called perceptrons, are the building blocks of neural networks and are
likewise inspired by biological neurons. In this representation, the inputs
to the artificial neuron are synapses on the dendrites, the axon hillock
inspires the activation function, and the output from the artificial neuron
is the biological axon.

The artificial neurons process data by weighting the input data and
a predetermined bias before passing it through an activation function,
such as a sigmoid or Rectified Linear Unit (ReLU) [61] that produces the
neuron’s output. When the output of the activation function exceeds a
certain threshold, the neuron is activated and sends data to the next layer.
No further data is sent if the output does not exceed the threshold.

ANNs, often called multi-layer perceptron (MLP), are the cornerstone
of deep learning, which refers to ANNs with more than three layers. The
smallest deep network, therefore, has an input layer, two hidden layers

25

in the middle, and an output layer. These middle processing layers are
called the hidden layer because it is hidden from the outside, which the
input and output layers are not. An example of such a network with two
hidden layers is shown in Figure 2.5 to see.

Hidden layers

Input data Output data

Neuron

Output layerInput layer

Figure 2.5: A fully connected deep artificial neural network with two
hidden layers and two input and output neurons.

Most ANNs are feedforward, meaning that data is entered on one
side, passed through the network, and produces a result on the other
end. These networks are often trained using backpropagation, where
the network output is compared to the ground truth, and the difference
between the estimated result and the ground truth is used to adjust
the network weights to minimize this difference. The backpropagation
technique is also inspired by biological backpropagation, which occurs
when a neuron generates an action potential that sends a voltage spike
back to the dendrites. Other methods are proposed instead of feedforward
combined with backpropagation, such as the proposed forward-forward
algorithm by Geoffrey Hinton [62].

Deep neural networks have achieved remarkable achievements,
mainly due to their ability to learn from structured and unstructured
data. This allows them to learn and generalize knowledge given sufficient
amounts and high-quality data [63]. Before computing power allowed
deep networks, hand-made feature extractors were commonly used, us-
ing human-predefined features such as texture, shape, and color for object
recognition tasks. However, when deep learning was first used in the Im-

26

ageNet Large Scale Visual Recognition Challenge (ILSVRC) competition
[64], which is a competition identifying objects from the ImageNet dataset
[65], it achieved great results as shown in Figure 2.6. This figure shows the
methods and their classification error for each year the competition was
arranged. It is clear that deep learning made significant strides in 2012
with AlexNet, which was proposed by Krizhevsky et al. [66]. These meth-
ods have improved significantly since then, largely thanks to improved
methods and hardware. In 2015, deep learning even surpassed the human
ability to classify images in ImageNet with the ResNet model proposed by
He et al. [67, 68].

Shallow Deep

C
la

ss
ifi

ca
tio

n
Er

ro
r

28%

26%

16%

12%

7.3% 6.7%

3.6% 3.0%

AlexNet, 8 layers

ZF, 8 layers

VGG, 19 layers

GoogLENet, 22 layers

ResNet, 152 layers

CUImage

Human Error

Compressed Fisher Vectors

Fast Descriptor Coding

2010 2011 2012 2013 2014 2015 2016

Figure 2.6: Overview of the ImageNet competition winners from 2010 to
2016. The figure shows how deep networks have significantly improved
the networks’ ability to guess the right label for the images in the
ImageNet dataset. In 2015, the deep network ResNet [67] surpassed the
average human ability to label these images correctly.
Figure inspired by Gordon Cooper [69].

27

2.1.4 Convolutional Neural Networks

Inspired by biology alongside regular neural networks, the computer
vision method called CNNs is designed to mimic how the brain’s visual
cortex processes visual information. CNN builds on the idea and
technique of neural networks and adds at least one convolutional layer.
A convolutional layer allows information about neighboring entities to be
obtained from the previous layer. The method has proven particularly
effective in computer vision to process and analyze images and video
because it can gather context from nearby areas where the convolution
is centered. This can help the method extract contextual and semantic
relationships that would otherwise have been lost. Both of the proposed
methods presented in this thesis use a CNN, namely a VGG-16 model [8],
to classify images and extract image features. Therefore, understanding
how CNNs are constructed and their advantages and uses are relevant.

The convolution layer works by scanning small filters across the input
image, computing dot products between the filter and the image pixels
at each location, and creating a feature map. A convolution layer can be
considered a flashlight beam aimed at an image. The beam of light allows
the viewer can see areas of the image that are in the perimeter of the area
where the center of the beam is directed. As the beam of light moves across
the image, the viewer can comprehend more of what is in the image. An
illustration of a convolution is shown in Figure 2.7.

Figure 2.7: An illustration of a convolution where a 3 × 3 kernel is
convolved with a 5 × 5 input matrix. The convolution illustrated has full
padding and a one-step stride.
Figure by Vincent Dumoulin and Francesco Visin [70].

The first CNN that trained with backpropagation was first proposed by
LeCun et al. in 1989 [71] and has since had a huge importance in making
machines interpret images and videos. A major advantage of using a

28

convolutional layer is that it can compress information while preserving
information and the context around the retrieved information. A very
common CNN architecture is shown in Figure 2.8. Also seen in the figure
is that a typical CNN has a fully connected neural network. A CNN often
uses fully connected layers, unlike a normal neural network, because of
the condensation of information with surrounding information, allowing
for a network that can take advantage of using many parameters without
overfitting.

Figure 2.8: Example of a typical CNN architecture, here illustrated by the
VGG-16 model proposed by Simonyan and Zisserman [8]. As seen in this
figure, the first part of the network convolves the input image and extracts
feature maps. These feature maps are then fed into a fully connected
artificial network that classifies the image in a given class.
Figure by Satya Mallick [72].

The convolution layers can be applied to an input image as a series of
filters, producing a series of feature maps that emphasize different aspects
of the image. These filters have weights that are learned and adjusted
during training and are able to recognize different types of patterns of
increasing complexity and abstraction from the input image. The training
process is similar to regular neural networks. It typically updates weights
using backpropagation to minimize the loss function and improve the
accuracy of the network on the training set. The first layers, closest to

29

the input image, generally recognize low-level features such as edges,
lines, corners, texture, and color. As the convolutional layers process the
input information, more complex features can be detected that build an
abstraction on the information extracted from earlier layers. Convolution
layers farther from the image can recognize more high-level features such
as shapes, objects, and scenes. Overall, the convolutional layers allow the
features of the input image to be analyzed hierarchically, with the early
layers capturing low-level features and the later layers capturing high-
level features.

CNNs are typically designed with multiple layers, similar to deep
neural networks, and the last layers are typically fully connected. The
fully connected layers take the output of the convolution layers, a set of
feature maps, and convert them into a single vector of class scores that
represent the probability that the input image belongs to each possible
class. The main function of pooling layers in CNNs is to reduce the spatial
dimensions of the feature maps generated by convolutional layers while
preserving the most salient features of the input image. Pooling layers
operate on small regions (e.g., 2x2 or 3x3) of the feature maps generated
by the previous convolution layers and reduce their size by applying
a pooling function, such as max pooling or average pooling, on each
region. Max pooling selects the maximum value within each region as
the representative value, while average pooling calculates the mean of
the region. These operations effectively downsample the feature maps
and help reduce the network’s sensitivity to small spatial translations and
variations in the input. Pooling layers can be inserted after one or more
convolutional layers in a CNN. Their hyperparameters, like the size of the
pooling area and the stride (i.e., the amount of movement of the pooling
window), can be tuned to control the amount of downsampling and the
size of the resulting feature maps.

Additionally, pooling layers can prevent network overfitting by re-
ducing the number of parameters and the computation time required for
training. The role of pooling layers in CNNs is not limited to downsam-
pling. However, they can also help to capture translation invariance, i.e.,
the property that the learned features are invariant to small translations
in the input. The translation invariance is achieved because the max or
average operation selects the most prominent feature in a given region, re-
gardless of its exact position. This property allows the network to collect

30

more general relationships in the input data, providing a more general
understanding of the network. The overall benefits of pooling layers lie
in reducing the spatial dimensions of feature maps while preserving their
salient features, resulting in more efficient and robust image analysis.

In essence, the different layers of a CNN work together to extract and
classify features in images and videos. This makes CNNs particularly
effective for tasks such as image classification, object detection, and
segmentation, where detecting and locating different features of an image
is critical for accurate performance. CNNs have proven highly effective in
image classification tasks, outperforming other types of neural networks
and traditional machine learning algorithms. They have been used
in various applications, including object recognition, facial recognition,
and medical image analysis. With the development of larger and
more complex networks and the availability of powerful hardware and
software, CNNs remains an active area of research and development in
machine learning.

2.2 Image Captioning

The methods proposed in this thesis use techniques to extract information
from input images and present a text output. The method to make a model
give a textual description to an image is often called image captioning.
Image captioning is a field of research where the objective is to generate
textual descriptions using natural language from the content of an image.
This process uses computer vision and Natural Language Processing
(NLP) to gather information from images and give a text that describes or
analyzes the image’s content. Image captioning is, therefore, a multimodal
method that has excelled with the advancements in computer vision,
helped considerably by CNNs and language models. The motivation for
developing this field of research is that its advancements can be utilized
in many applications. Image captioning can contribute to improving
accessibility for the visually impaired, enhancing search and retrieval
systems, assisting in indexing images and video, and making models that
can use the combined information in both language and vision to gather
information.

Image annotation methods typically include modern deep learning
techniques, using CNNs to extract image features and Recurrent Neural

31

Networks (RNNs) [73], typically Long Short-Term Memorys (LSTMs) [74],
to use these extracted image features to generate image captions. RNNs
are a class of neural networks designed to work on data sequences, like
natural language. LSTMs in particular are designed to combat the problem
of vanishing gradients, making them better suited for longer sequences of
data. An advantage of the multimodal nature of image labeling methods
is that the CNN are able to capture spatial features within a given image.
In contrast, the RNN can structure this information by including temporal
dynamics and syntaxes using natural language to create a description that
matches the image.

2.3 Attention Mechanisms

The method of attention in modern models was proposed by Bahdanau
et al. [75] and is a technique that allows the model to search for the most
relevant information located in different positions in a sequence. Recent
advances in image captioning have seen the use of attention mechanisms,
both in the vision and language modalities. Attention mechanisms have
allowed the model to selectively focus on different parts of the image when
generating captions. By selectively paying attention to different areas of
the image, the model is able to capture the fine-grained details needed
to generate accurate and descriptive captions. This has significantly
improved the quality of captions, where attention-based methods often
outperform traditional non-attention-based techniques [76].

The attention technique is motivated by nature and is inspired by
cognitive attention mechanisms. The main advantage is that the attention
allows the method to highlight some parts of the input data while giving
other, less important parts a lower priority. Attention mechanisms aim to
carefully learn which parts of the data are most important in context and
prioritize those parts.

Attention-like mechanisms have been part of the research field of
machine learning since the 1990s. Initially, it was introduced under names
like sigma pi units, multiplicative modules, and hyper-networks [77]. The
flexibility of attention-based techniques comes from their ability to learn
which parts of the input data are most important in context.

Attention weights are most commonly learned during training through
backpropagation and gradient descent. The weights are used to give

32

relevance scores to different words in context for being the following
word in the text sequence. Attention can be derived in several ways,
notably global vs. local and soft vs. hard. Global and local attention
refers to different ways of weighting input features, where a global process
weights all input features equally without prioritizing specific parts. Each
input feature is considered when computing the output. In contrast, local
attention refers to a more selective process in which the input features
are weighted differently and are therefore prioritized when computing
the output. This prioritized subset is usually determined by a region or
window around the previous output or target position, borrowing ideas
from how CNNs retrieves surrounding data from an image.

Soft and hard attention refers to the different methods of incorporating
attention into a neural network. Soft attention is computed by a weighted
average of the input features, with the weights learned during training
and typically normalized to a value between 0 and 1. This weighting al-
lows the model to consider multiple input parts simultaneously, gather-
ing information from a more extensive range. On the other hand, hard
attention selects a particular input feature to take care of at each time step,
effectively forcing the model to make a discrete decision. This attention
implementation can make the model less flexible but excel when the input
is highly structured and easily segmented into distinct parts.

Some effective methods that use attention are LSTMs, Transformers,
and Perceivers [15, 74, 78]. An overview of the Transformer model
proposed by Vaswani et al. [15] can be seen in Figure 2.9. The use
of autoregressive transformers and attention mechanisms have made it
possible to make large language models, such as Bidirectional Encoder
Representations from Transformers (BERT), Bidirectional Auto-Regressive
Transformers (BART), and GPT [11, 79–83].

In the language part of the model, the attention mechanisms can also be
used to selectively focus on a different part of the features extracted from
the image. They can therefore generate the textual context that is most
relevant to identify contents in the image correctly. This way, the model
can describe the essential features of the picture or video using natural
language. Some recent models have moved from CNN architectures to
extract image features and solely rely on attention mechanisms to gather
relevant information in the visual domain. Some of these models are
Vision Transformer (ViT), alongside versions of BERT that incorporate

33

vision, like ViBert [84–86].

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

Figure 2.9: Transformer architecture proposed by Vaswani et al.
Figure by Vaswani et al. [15].

2.4 Model evaluation

In the field of machine learning and AI, model evaluation refers to
the process of measuring the quality and effectiveness of a trained
model. These evaluations are essential in developing machine learning
systems, allowing researchers and practitioners to determine their models’
accuracy and generalization performance. Model evaluation helps to
identify any weaknesses or shortcomings in a model’s design or training

34

process and enables researchers to make improvements to enhance the
model’s performance.

Performance Metrics

Performance metrics are integral to machine learning models, allowing
us to measure how well a model performs on a given task. These
metrics evaluate the accuracy and effectiveness of a model’s predictions by
comparing them to the actual values. The choice of performance metrics
depends on the problem being solved and the type of model being used.
For example, in a binary classification problem, the model’s accuracy can
be used as a performance metric. In contrast, for multi-class classification
problems, metrics like precision, recall, and F1 score are more appropriate.
In general, model evaluation metrics like precision and recall provide
information about the performance of a model on a particular class, while
accuracy and F1 score provide an overall measure of model performance.
Choosing appropriate performance metrics when developing a machine
learning model is essential to ensure that the model’s predictions align
with the intended use case.

2.4.1 Precision and Recall

Precision and recall are two important metrics used in classification
tasks to evaluate the performance of a model. Both precision and recall
are based on the values in the confusion matrix, which is a table that
summarizes the performance of a classification model. The confusion
matrix contains four values: true positives, false positives, true negatives,
and false negatives. True positives and false positives correspond to the
model’s positive predictions, while true negatives and false negatives
correspond to the negative predictions. Figure 2.10 shows an example of
a confusion matrix. The precision and recall are defined as follows.

• Precision: the ratio of correct answers among all answers proposed
by the model, and it measures how precise the model’s positive
predictions are. The precision score can be calculated as follows:

Precision =
True Positive

True Positive + False Positive
(2.1)

35

• Recall: the ratio of correct answers proposed by the model among
all possible correct answers, and it measures how well the model is
able to identify positive instances. The recall score can be calculated
as follows:

Recall =
True Positive

True Positive + False Negative
(2.2)

True Negative

True Positive True Positive

False Negative

Po
si

tiv
e

N
eg

at
iv

e
Pr

ed
ic

te
d

C
la

ss

Positive Negative
True Class

(a) Example of a confusion matrix of
a binary classifier. A perfect classifier
would have just true predictions.

13

10

0

Setosa

0

Versicolor

Se
to
sa

Ve
rs
ic
ol
or

True Class

Pr
ed

ic
te

d
C

la
ss

Vi
rg
in
ic
a

Virginica

0

6

0 0 9

(b) Example of a confusion matrix of
a multi-class classifier. An adapted
example from scikit-learn [87].

Figure 2.10: Example of confusion matrices, both for a binary (a) and
multi-class (b) classifier.

2.4.2 Accuracy

Accuracy is a commonly used evaluation metric in statistics and artificial
intelligence for classification models. It is a metric that is easy to interpret
by humans because it measures the percentage of correctly predicted
labels out of all the predictions made by the model. Accuracy is a valuable
metric when the classes in the dataset are balanced, meaning that the
number of instances for each class is roughly equal. However, when
the classes are imbalanced, accuracy can be misleading. For instance,
in a dataset with 95% of the samples belonging to class A and only 5%
belonging to class B, a model that always predicts class A will have an

36

accuracy of 95% but will not be helpful in practice if the real-world data
does not have the same distribution.

Moreover, accuracy does not account for false positives and false
negatives, as seen in Formula 2.3. False positives occur when the model
predicts a positive label for a sample that is negative, while false negatives
occur when the model predicts a negative label for a sample that is
positive. In some applications, such as medical diagnosis, false negatives
may be more costly than false positives, and accuracy alone may not be an
adequate metric for evaluating model performance. Therefore accuracy
can be a helpful and easily understandable metric when there is no critical
downside predicting false negatives and the classes in the dataset are
balanced. When dealing with real-world datasets, the classes are often
not balanced, and a more suitable metric can be the F1 score.

Accuracy =
True Positive + True Negative

Total Sample Size
(2.3)

2.4.3 F1 Score

The F1 score is a statistical metric used to measure a model’s performance
on a dataset. It evaluates the performance of a binary classifier, which is
a classification system that makes predictions for two possible classes, for
example, positive and negative. The F1 score can be calculated using the
formula in Equation 2.4.

F1 = 2
Precision · Recall

Precision + Recall
(2.4)

In the context of question answering by an LLM, the F1 score can
be used to evaluate the accuracy of the model’s responses to questions.
Specifically, the score measures the harmonic mean of the model’s
precision and recall.

2.4.4 Perplexity

Perplexity, often referred to as PPL, is one of the most common metrics for
evaluating language models. In information theory, perplexity measures
how well a probability distribution or model predicts a sample. Intuitively,
perplexity means being surprised, and in practice, it measures how
surprised the model is when it sees new data. The lower the perplexity

37

score, the better the training. Perplexity is usually only used to determine
how well a model has learned the training set.

At its core, a language model is a probability distribution over a set of
words, known as the model vocabulary. Considering all of its previous
words, the model indicates the probability that a given word will appear
in the vocabulary. Usually, the word with the maximum likelihood is
selected as the next predicted word in the sequence.

As an evaluation metric, perplexity can be used to compare probabilis-
tic models, and low perplexity indicates that the probability distribution
is good at predicting the sample. This probability can be calculated by
multiplying a sequence of conditional probabilities for each word by its
previous words, which indicates the probability of this sequence. Given a
tokenized sequence X = (x0, x1, ..., xt), the perplexity of the sequence X is
given in the Formula 2.5.

Perplexity(X) = exp

{
−1

t

t

∑
i

log pθ (xi | x<i)

}
(2.5)

In this formula, log pθ (xi | x<i) is the log-likelihood for the token with
index i, given the previous tokens x<i.

2.5 Frameworks

This section briefly describes the most important external frameworks
used in this thesis.

2.5.1 TensorFlow

TensorFlow is the framework used in the FLEX-VQA method proposed in
this thesis. Here the framework is used to train the FLEX model to find
connections between images and captions. A more detailed description of
the implementation is discussed in Chapter 3.2.

TensorFlow is an open-source machine learning framework developed
and maintained by the Google Brain team. It was first introduced in 2015
and has since become one of the most widely used frameworks in machine
learning. TensorFlow’s core strength lies in its ability to handle large-scale
machine learning models easily. It provides a highly optimized execution
engine that efficiently computes complex models. This optimization is

38

achieved through dataflow graphs, representing the computations as a
directed graph of nodes and edges. Each node in the graph represents
an operation, while the edges represent the data flow between operations.
This architecture allows for parallelism and efficient computation, making
it an attractive choice for large-scale machine learning tasks.

One of the key advantages of TensorFlow is its versatility. It supports
various machine learning tasks, including classification, regression, clus-
tering, and reinforcement learning. It also supports deep learning models,
such as CNNs, RNNs, and transformers.

2.5.2 Text Tokenization

Large language models such as GPT-3 [83] and BERT [79] are trained on
massive amounts of text data and can generate coherent and contextually
relevant sentences, paragraphs, and even longer texts. However, feeding
raw text data to such models can be computationally expensive and lead
to suboptimal results due to high input variability. Therefore, text pre-
processing techniques such as tokenization convert raw text into a form
the model can more easily process.

Tokenization is the process of splitting text into smaller units, called
tokens, such as words, subwords, or characters. These tokens are then
assigned a unique integer identifier and are often converted into fixed-
length sequences, which can be fed into the language model. This process
allows the model to handle text data more efficiently, reduces input
variability, and helps to improve the training and inference times.

Using a tokenizer specific to the language model used is crucial
because it ensures that the tokens are consistent with the vocabulary and
encoding scheme of the model. For example, using a tokenizer that splits
words differently than the one used during the pre-training of the model
can lead to inconsistencies and decreased performance.

Various tokenization techniques are available, such as byte-pair encod-
ing (BPE) [88, 89], WordPiece [79], and SentencePiece [90]. BPE is a sub-
word tokenization method that progressively merges the most frequent
pairs of characters in a corpus to create a fixed-size vocabulary. Word-
Piece is a similar technique that uses a predefined list of subword units
to tokenize words. SentencePiece is a more flexible method for creating a
custom vocabulary that can handle rare and out-of-vocabulary words.

39

Each of these techniques has its advantages and disadvantages. BPE
and WordPiece are efficient and widely used, but they can result in a large
vocabulary size and require additional processing steps to handle out-of-
vocabulary words. SentencePiece can manage rare and out-of-vocabulary
words better but can be computationally expensive due to their adaptive
nature.

This work uses a tokenizer built on top of SentencePiece, adapted and
trained specifically to the LLaMA model. A more detailed explanation of
this tokenizer can be seen later in subsubsection 3.2.2, which details the
implemented method.

2.6 Related Work

In this section, some relevant work for this thesis will be presented.
Knowing the main takeaways from these works will help understand
the context and assessments that will be made when implementing the
methods presented in the next chapter. The topics covered in this chapter
are different methods to create explainable machine learning models and
the development of large language models that lead to the model used in
this work.

2.6.1 Explainable AI (XAI)

The rapid growth of AI technologies has led to an increasing demand
for transparency and interpretability in machine learning models. While
these models have demonstrated impressive performance in various
applications, their lack of transparency and interpretability has raised
concerns about their reliability, accountability, and potential biases [91, 92].
As a result, the field of XAI has emerged to address these challenges by
developing techniques and tools that enable humans to understand how
AI systems work and make decisions.

The field of XAI is working on solving the trade-off between perfor-
mance and explainability. Some approaches specialize in explaining spe-
cific architectures, called model-specific. Meanwhile, others, called model-
agnostic, try to explain models of different architectures, exploiting inher-
ent properties in neural networks and statistics. Examples of inherently
explainable models include decision trees, Bayesian classifiers, logistic re-

40

gression, linear models, and k-NN [49, 50, 93]. These algorithms are in-
terpretable and, as a result of this, more explainable by design. This in-
terpretability results from their internal structure, and computations fol-
low clear rules or formulas that are manageable to comprehend. How-
ever, models such as deep neural networks can work better than less com-
plex methods on larger datasets. Because of their complex structure, with
many hidden layers and weights trained on large datasets, it is difficult,
if not impossible, for humans to understand what the model evaluated
when choosing a prediction. Researchers in XAI have developed model-
specific and post-hoc model-agnostic techniques to understand better these
complex methods to explain the underlying model prediction. The term
post-hoc comes from Latin and means after this. This thesis uses the term
to describe a method applied after a machine learning model is devel-
oped. These methods try to bridge the gap between high accuracies and
explainability. In theory, this allows us to use the model best fit for the
task, regardless of complexity, without the expense of not understanding
the model’s predictions.

Different explanations try to give additional insights into the predic-
tions. A local explanation looks at one specific model decision and ex-
plains what was important in the input data to provide this prediction.
On the other hand, a global explanation looks at the whole model’s pro-
cess of making decisions and sees how the different attributes contribute
to making a decision. These global explanations can also be built from
multiple local faithful explanations. A third type is contrastive explana-
tions that utilize local features to explain the difference between instances.
This allows insight into the model’s inner workings on a more global scale
based on local predictions.

One typical disadvantage of model-agnostic explanations is that their
insights and descriptions are not always faithful to the underlying model
they try to explain. This can happen if an explaining model is trained
to look at the underlying model’s input, inner workings, and output and
learns the correlation between them. The problem is that correlation
does not imply causation, and the explaining model can give a deceiving
explanation that can look correct at first. Developing explanatory methods
that find causations rather than correlations is an ongoing research topic.

An overview of influential methods proposed in XAI is presented in
this subsection.

41

LIME
In pursuing a method that helps the explaining model to be locally

faithful to the underlying model, Ribeiro et al. [94] proposed LIME. This
model-agnostic method explains any method by learning an interpretable,
less complex model locally around a specific prediction. This approach
assures that the explanation is locally accurate and represents the actual
inner workings of the model. In the same paper, they also introduce
a method for explaining the global attributes of the model by framing
the task as a submodular optimization problem. The technique is called
SP-LIME (Submodular Pick LIME). With this approach, they can achieve
global explanations that are locally accurate and faithful to the underlying
model in a non-redundant way. LIME will be used later in this thesis as
an explanation method adapted to an LLM.

SHAP
Making non-redundant explanation features faithfully and efficiently is

not easy. Lundberg et al. [95] proposed a unified framework for interpret-
ing predictions made by the underlying method. This framework, called
SHapley Additive exPlanations (SHAP), assigns each feature a value of
importance for a specific prediction. The framework utilizes the class of
additive feature attribution methods and estimates the Shapley values [96]
from cooperative game theory for that prediction. With this approach,
they achieve more effective explanations to compute and have better con-
sistency with human intuition than previously proposed methods.

Grad-CAM
Visually explaining features that contributed to an image prediction

can be essential in gaining trust in a model. Selvaraju et al. [97]
proposed a technique for making CNNs more explainable and transparent
by producing visual explanations for the underlying model. The method
is called Gradient-weighted Class Activation Mapping (Grad-CAM), a
generalization of CAM proposed by Zhou et al. [98], and uses the
gradients in a single backtrack of any target concept. Therefore it does not
need any architectural changes or retraining of the underlying prediction
model to produce a localization map highlighting the crucial regions in
the image for predicting the given concept, often called a saliency map in
computer vision.

42

FLEX
While visual-only explanations can give the user insight into which

areas of the image were essential in making the decision, they tell little
to nothing about why those regions were important. On the other hand,
linguistic descriptions give the user an essential understanding of the
model’s evaluation when predicting. Wickramanayake et al. [3] propose
Faithful Linguistic Explanations (FLEX) to merge saliency maps with
locally accurate linguistic descriptions. In this approach, they look at
the gradients through layers and identify the most critical activations
in the single decision. The advantage of looking at different layers is
that alongside getting an explanation that is faithful to the underlying
model, they also extract features the CNN identifies at each layer. A
CNN may represent high-level concepts, like a "car", at the last layer while
identifying features such as texture and color at earlier layers. Using the
activations at all essential layers, LIME achieves an image caption that
explains all the essential parts of the prediction using sentences. FLEX
maps words to neurons in the CNN by looking at high activations of that
neuron combined with a word from the caption during the training. For
this, they are using a CNN and two stacked LSTM [74] cells. The FLEX
framework is used as a basis for one of the two proposed methods in this
thesis. A more detailed description of the specific implementation for this
work is discussed later in Chapter 3.1.

Visual Question and Answering (VQA)
In order to make the linguistic abilities of computers more robust,

Agrawal et al. [99] proposed a new dataset called VQA. This dataset
provides images from the COCO dataset [100], paired with free-form,
open-ended questions and answers corresponding to the content of the
images. These questions and answers target different areas of the images,
including underlying context and background details. This dataset aims
to make models that can learn multimodal visual and linguistic domain
knowledge to get a more general and complete understanding of the
world. Models that have done well in this dataset are frequently made
up of CNNs, to acquire the visual knowledge, combined with an RNN for
linguistic understanding.

Even though VQA is not strictly XAI, it is still relevant regarding
transparency to the user. VQA is an important research area because it

43

provides AI systems with human-readable explanations of their decision-
making processes. Because of this ability to answer questions regarding
images, some have called this the visual Turing test [101]. By providing
a natural language explanation of why a specific answer was generated
for a particular question about an image, VQA models can help improve
AI systems’ transparency and interpretability. This can be particularly
important in domains such as healthcare and finance, where trust and
transparency are critical for ensuring that AI systems are making reliable
and safe decisions. Therefore, it is important to continue developing and
improving VQA models to provide accurate and interpretable answers
to questions regarding images. Both the methods implemented and
investigated in this work will be based on VQA, using text to describe
the contents of images utilizing different approaches.

2.6.2 Large Language Models (LLMs)

LLMs are neural networks with billions or more parameters trained by
self-supervised or semi-supervised learning on large amounts of text.
They originated around 2018 and have performed competently on a
variety of tasks. LLMs are typically general-purpose models that excel in
various roles, with their performance and range of capabilities depending
on the number of resources devoted during training. These models
demonstrate considerable general knowledge about the world and can
learn associations that make the model "memorize" numerous facts and
contexts during training.

LLMs are pre-trained on large text datasets and can be characterized
by four parameters: the size of the model, the size of the training dataset,
the training cost, and the post-training performance. These variables are
related by simple statistical laws called scaling laws.

LLMs serve not only to teach AIs human languages but to understand
proteins, write software code, and help students. These models are trained
with vast amounts of text fed into the AI algorithm through unsupervised
learning, allowing the model to find valuable connections in the language.
Through this method, an LLM learns words, their relationships, and the
concepts behind them. LLMs can also be tailored for specific use cases,
including through techniques such as fine-tuning or prompt tuning, which
feed the model small bits of data that must be focused on to train it for a

44

specific application.
However, a disadvantage of LLMs is that they can suffer from a

phenomenon called hallucinations. Generative models can hallucinate
because they contain vast amounts of data and organize the information
in an unsupervised way. These models tend to make self-confident claims
about facts not justified by their training data, which appears plausible but
is not factually correct. Because of their size, they can also be challenging
and computationally expensive to interpret. An ethical concern about
the size of these models is that they are also computationally intensive
during training and inference since they are trained on large datasets.
As a result, these models have a larger carbon footprint than smaller
models. However, there are ways to make these models smaller and faster,
which are discussed in this chapter and also provide an overview of the
development of large language models.

BERT
Bidirectional Encoder Representations from Transformers (BERT) is a

large-scale neural language model that has made significant contributions
to the field of NLP [79]. BERT is a pre-trained model that uses a
transformer-based architecture that has grown in popularity in recent
years due to its success in several NLP tasks. Introduced by Google in
2018, BERT is trained on a large corpus of text using an unsupervised
learning approach. The model is pre-trained on a task called Masked
Language Modeling (MLM), in which a small percentage of the words
in a sentence are masked randomly, and the model is trained to predict
the original word based on the context of the sentence. This method can
be viewed as a "fill in the blanks" task, often called a cloze test [102], of
the training sentences, keeping some words invisible to the model during
training and helping the model generalize to new and unseen data. In
addition, BERT is trained on an NSP (Next Sentence Prediction) task,
similar to the GPT models. The model is given pairs of sentences and
asked to predict whether the second sentence continues the first.

The main innovation of BERT is its ability to understand the context
and provide contextualized word embeddings. Unlike previous word
embeddings, which were static and did not change based on the context
of the sentence, BERT can offer different embeddings to the same word
depending on its context.

45

BART
Lewis et al. at Facebook presented an LLMs named Bidirectional Auto-

Regressive Transformers (BART) [80]. Like BERT, it uses a transformer-
based architecture and is trained on a large corpus of natural language.
However, unlike BERT, BART is unique because it integrates a bidirec-
tional and auto-regressive architecture, which makes it well-suited for
text generation and summarization tasks. This model is a pre-trained
sequence-to-sequence model that can be fine-tuned for various natural
language processing tasks. BART is designed to handle auto-regressive,
non-auto-regressive, generation, and comprehension tasks. The model is
pre-trained on a large corpus of text using a denoising autoencoder objec-
tive, which requires the model to reconstruct original text from corrupted
versions. Using a denoising autoencoder in pre-training helps reduce hal-
lucinations by training the model to distinguish between real and fake
input. The authors demonstrate that BART outperforms several state-of-
the-art models on various natural language generation and comprehen-
sion tasks, including summarization, question answering, and text clas-
sification. They also show that BART can be fine-tuned with relatively
little data and can generalize to new domains. However, instead of us-
ing Masked Language Modeling and Next Sentence Prediction like BERT,
BART is pre-trained using a denoising autoencoder (DAE) objective.

The DAE objective involves corrupting an input sequence by randomly
deleting or swapping tokens and training the model to reconstruct the
original sequence. This approach allows BART to handle more complex
tasks such as text summarization, sentence generation, and machine
translation.

GPT
GPT (Generative Pre-trained Transformer) is a set of LLMs developed

by OpenAI [81]. Like BERT and BART, GPT is a transformer-based model
but uses only an autoregressive architecture. It is pre-trained on large
datasets and tuned for specific tasks. When GPT-2 was released, it was
trained on a much larger dataset with significantly more parameters than
GPT-1 [82]. This allowed it to generate more coherent and realistic text
than its predecessor. GPT-3 is the third model in the GPT series and was
released by OpenAI in 2020. It was trained on an even larger dataset
than GPT-2 and had even more parameters, making it one of the largest

46

language models. GPT-3 could generate even more readable and human-
like text than its predecessors and perform various NLP tasks without
explicit training [83]. At the time of writing, the last published GPT
model was GPT-4, which is still an autoregressive model but also includes
multimodality [11] by making it able to interpret images. To reduce
the effects of hallucinations on a generated output, GPT implements a
combination of methods such as filtering and sampling.

These models have proven to be versatile and powerful tools for
NLP. GPT models have significantly influenced the NLP field, and many
researchers and developers have used them as a starting point for their
projects. Fine-tuned chatbot versions of GPT-3 and GPT-4 have been made
available for public interaction under the name ChatGPT [12].

LLaMA
The AI department of Meta, previously Facebook, released a modified

architecture for an LLM called LLaMA [6]. These models are created to
compare to other LLMs, such as GPT-3 [83], Chinchilla [103], or PaLM
[104], while keeping the number of parameters considerably smaller. In
the paper where Hoffman et al. propose the Chinchilla model, they also
present insight into how models scale the best in conjunction with the size
of the available dataset. The authors of LLaMA use this insight to make the
model with fewer parameters perform well by training it on more tokens.
The dataset that the LLaMA model is pre-trained on is publicly available
and disclosed, which makes it compatible with open-source. An overview
of the data the LLaMA models are trained on can be seen in Table 2.1.
However, even though these datasets are publicly available and the pre-
training distribution is disclosed, the public has yet to have access to the
complete dataset actually used. Some sources have been scraped from the
web by the authors, and the specific criteria used are not known at the
time of writing.

The architecture of LLaMA is based on the transformer [15], with vari-
ous improvements inspired by other LLMs. Some of these improvements
are pre-normalization, inspired by GPT-3 [83], which improves the train-
ing stability by normalizing the input of each transformer sub-layer in-
stead of the output. Like the PaLM model, they also use a SwiGLU as the
activation function, first introduced by Shazeer at Google [105], instead
of ReLU. Shazeer showed it to improve the perplexities of transformer-

47

LLaMA Pre-trained Data

Dataset Sampling prop. Epochs Disk size

CommonCrawl 67.0% 1.10 3.3 TB
C4 15.0% 1.06 783 GB
Github 4.5% 0.64 328 GB
Wikipedia 4.5% 2.45 83 GB
Books 4.5% 2.23 85 GB
ArXiv 2.5% 1.06 92 GB
StackExchange 2.0% 1.03 78 GB

Table 2.1: Overview of the datasets, their sampling proportion, number of
epochs trained with 1T tokens, and their disk size. These datasets are all
publicly available and are compatible with open sourcing.

based models. To make the self-attention mechanisms in the transformer
position-agnostic, the authors implement a method called Rotary Position
Embedding (RoPE) introduced by Su et al. This method allows both flexi-
bilities of sequence length and faster convergence in fine-tuning compared
to normal self-attention. With the 13 billion parameter version of LLaMA,
the authors show that this model outperforms the GPT-3, with 175 billion
parameters, on several evaluation metrics. Because the LLaMA model is
ten times smaller than GPT-3, it can also be run on a single GPU. These
steps towards smaller, capable models benefit both the carbon footprint
and inference compute budget and permit democratizing LLMs by mak-
ing a model that can run on consumer hardware.

Alpaca
The work in this thesis uses this Alpaca model to interpret images. More

of how this model is implemented is discussed later in Chapter 3.2.
With Taori et al., Stanford University released an open-source fork of

this LLaMA model, with some modifications, called Alpaca [4, 5]. The
Alpaca model is a fine-tuned model, with a 7B LLaMA model as the base
model, trained on 52 thousand instruction-following tasks generated by
OpenAI’s text-DaVinci-003 model [106] using techniques from the Self-
Instruct paper proposed by Wang et al. [107]. Figure 2.11 shows an
overview of the Alpaca training procedure and how the dataset was built.
By using text-DaVinci-003 to generate instructions, the team was able to
train the model and generate the dataset for a significant cost reduction

48

compared to traditional methods, totaling only $600, with $500 using
OpenAI API to create the dataset and $100 to rent 3 hours on 8 Nvidia
80GB A100 GPU cards. Reducing the cost of training an LLM, comparable
to models much more expensive to develop, helps democratize these
models and make them available to more people for less cost and energy.

To address the ethical issue of not knowing whether a text is
generated by an AI, the team also implemented the method proposed by
Kirchenbauer et al. [108]. This method embeds "green" or marked tokens
into the generated text, which are invisible to humans but can be detected
by an algorithm analyzing a short span of these tokens. The authors
argue that the watermark can be embedded with negligible impact on
text quality and can be detected with an efficient open-source algorithm
without access to the language model API or parameters. The watermark
works by choosing a random set of green tokens before generating a
word and using a soft watermarking rule to encourage the input of green
tokens during sampling. The authors propose a statistical test to detect
the watermark with interpretable p-values and derive an information-
theoretic framework to analyze the sensitivity of the watermark.

Given the need for less computational resources, leading to a reduced
carbon footprint, and the ability to disclose the generated text as
computer-generated, the Alpaca model represents a favorably ethical and
transparent option for users of a system compared to other LLM. As
such, it is an appropriate choice as a starting point for this thesis. This
model has many of the benefits that LLMs can provide, like knowledge
of vasts amount of data, while still being able to customize it to a specific
task through fine-tuning. This process enables the model to adapt to a
particular assignment while retaining the knowledge acquired from its
initial training data.

2.7 Problem and Application

The increasing use of AI has led to significant advances in various
areas. However, understanding their decision-making processes becomes
increasingly difficult as AI systems become more complex and opaque.
The need for XAI and more transparent machine learning models has
become imperative to address this problem, especially in applications
where the consequences of wrong decisions can be severe, such as

49

Figure 2.11: Overview of the Stanford Alpaca training procedure.
Figure by Taori et al. [4]

healthcare, finance, and autonomous vehicles. This chapter aims to
provide an overview of the problem and application of XAI, which is
crucial for building transparent and trustworthy AI systems.

2.7.1 Problem

Although deep networks have made significant positive achievements in
areas such as object detection [109–112], image annotation and captioning
[113–116], their complexity makes it more difficult to understand why
these networks predict what they do. People, both researchers and users,
of these systems need to be able to know how these black-box algorithms
work to gain confidence [117–119], improve the models and apply these
networks in new ways and domains [120–124]. Researchers and model
architects can understand at a higher level how information flows in the
network compared to everyday users by using their technical insight.
However, as the architecture grows more profound and complex, and the
training datasets are getting larger, it can be challenging to understand
which parts of the input data contributed to making the decision [125].

Interpretablity vs. Accuracy
The models with the highest accuracy for large data sets often have

such complex architectures that even domain experts have difficulty
interpreting their decisions [126]. Meanwhile, smaller, less complex

50

architectures often have lower accuracy and generalize worse than their
more complex counterparts. An example of this was shown in a case
study to predict the risk of death for patients with pneumonia to help
medical staff prioritize [127]. The researchers found the most accurate
model to be a neural network, outperforming less complex models such
as logistic regression. A rule-based system was also evaluated, and while
this is a simpler model than neural networks, it is interpretable by design.
This rule-based model to investigate the underlying dataset showed that a
patient suffering from pneumonia and asthma had a lower probability of
dying than only having pneumonia and was, therefore, less important to
treat. The model drew this conclusion because patients in the training set
with both pneumonia and asthma were usually prioritized first, was given
medical treatment, and therefore had a higher survival rate [128]. Because
of this insight from the rule-based method, more complex models, such as
neural networks, were concluded to be too risky in real-world decisions.

In pursuing models with higher accuracies, the primary way to achieve
this is with even more complex models and larger training datasets [129].
This brings the trade-off of an interpretable and explainable model vs. a
more accurate model [130] to the forefront of discussion.

Explainable AI
XAI is an interdisciplinary research field that aims to make AI mod-

els more transparent, interpretable, and accountable to human users. It
combines techniques from machine learning, human-computer interac-
tion, cognitive science, and other related disciplines to develop methods
and tools for explaining the behavior and decisions of AI models. The
need for XAI arises from the fact that many machine learning models, es-
pecially deep neural networks, are often viewed as black boxes, meaning
that their internal workings and decision-making processes are intricate
for humans to comprehend. As a result, these models’ lack of transparency
and interpretability can create distrust among users, limit their adoption,
and raise ethical concerns, especially in high-stakes applications such as
healthcare, finance, and criminal justice.

XAI can either be used to design models that are interpretable by
design or adapt explanation methods to models already developed. The
goal of XAI is, therefore, to build models and methods that can achieve
great results without a reduction in transparency

51

2.7.2 Application

With better explanations that are intuitive and faithful to the underlying
prediction model, humans can be more precise when improving the
model. This also gives the ability to use the model with confidence that
the prediction is based on correct decisions.

When machine learning methods are utilized as a tool in the real world,
it is essential that everyone in the process of using the tool can trust the
model. In a medical setting, both the doctor and the patient must have
confidence that the conclusions drawn are based on a reasonable and
trustworthy basis. If the model is correct, but the clinician does not trust
the underlying model or the patient has no explanation for the model’s
conclusion, the model is not being used as intended and is, therefore, a
useless tool.

This is also the case in other domains, such as finance. Here the bank
can utilize large models that look at the loan applicant using big data.
The bank can profile the customer alongside fellow citizens in the same
demographic and use a model to predict whether or not that customer
should receive a loan. In this case, finding all biases in the data set can be
difficult, as it can be challenging to distinguish correlation from causation
in demographic analysis [131]. Here the bank must have an explanation
alongside the predicted output of the loan to see better if the model made
a trustworthy decision.

One advantage of better understanding the model’s evaluations in a
prediction is that it can highlight biases in the dataset. If these biases
are known and understood, they can be combated. Ribeiro et al. [94]
showed that it could be hard to discover biases when the predictions
are correct without knowing the reasoning. They experimented with a
model trained on images of huskies and wolfs and first presented the
model’s prediction without explanations to participants. The participants
were then asked to determine if they trusted the model. Thereafter the
model’s explanation for the predictions was presented, and participants
again had to tell if they trusted the model now. In both instances, the
participants were also asked if they thought snow was a potential feature
of importance. An image of a husky misclassified as a wolf can be seen
in Figure 2.12, alongside the regions important in making the decision.
The results can be seen in Table 2.2, and it can be seen that a considerable
amount of the participants lost trust in the biased model when they were

52

presented with the explanation. They then noticed that the decision was
based only on whether the snow was visible in the image. This shows that
models with an intuitive explanation are more likely to gain the trust of
their users. Trustworthy explanations open the ability for users who do
not have insight into the making of the model to still able to detect biases
in the dataset and improve the model.

Before explanation After explanation

Trusted the biased model 10 out of 27 3 out of 27

Thought snow was an
important feature 12 out of 27 25 out of 27

Table 2.2: Overview over the trust by participants in the Husky vs. Wolf
experiment by Ribeiro et al. [94]. The majority lost trust when explained
that a classifier considered snow in the background the most important
feature when classifying images of huskies and wolves.

Figure 2.12: Husky classified as a wolf, alongside an explanation of what
the model considered important.
Figure by Ribeiro et al. [94].

Today’s machine learning models are already better than humans in
domain-specific tasks, like chess [132]. Silver et al. [133] proposed the
reinforcement learning algorithm AlphaZero, which learns to play chess,
shogi (Japanese chess), and Go, only by playing with itself. This method
does not get any domain knowledge except the game rules and achieves

53

performance better than humans. Because this algorithm has not seen
humans play these games, it does not have human biases and playing
flaws in it, and professional game players can learn new moves and
techniques by playing with it. As performance better than humans is
a goal many researchers strive for when it comes to machine learning,
it is more important than ever that these algorithms give explanations
on what they do and why so that humans can learn new aspects never
before thought of, as well as detect flaws that restrict performance, both in
humans and machines.

2.8 Summary

This chapter provides an overview of the background and motivation for
using the concept of XAI in various applications. The discussion focuses
on the challenge of understanding decision-making processes in complex
AI systems and the necessity for more transparent machine learning
models, particularly in applications where the consequences of erroneous
decisions can be severe.

The chapter also delves into the history of AI and its two main
paradigms: symbolic and connectionist AI. Moreover, it lays out various
machine learning techniques, including supervised, unsupervised, and
semi-supervised learning, as well as deep learning and neural networks.

The key takeaways from this chapter are:

• The importance of XAI in building transparent and trustworthy AI
systems for real-world applications.

• The diverse techniques used in machine learning, why they are used,
and how they differ.

The topics discussed in this chapter provide insight into the impor-
tance of designing systems transparently. An understanding of the data
and models used helps researchers build better and more appropriate sys-
tems, and users can better understand why those systems predict what
they do.

This work will use a combination of a CNN, an LLM, and XAI to
conduct its experiments. These experiments will investigate further how
these methods can be understood and explained.

54

The following chapter will therefore introduce some methods that
address some of the challenges presented in this chapter. Two different
approaches are presented, and both have multimodal capabilities. Both
models are based on the VQA task, where one model uses a traditional
VQA architecture, with an explanation method that explains visual
features using text. The other model also describes images using text but
is based on an LLM. The next chapter is, therefore, a summary of methods
used to answer the research goals of this thesis.

55

Chapter 3

Methodology

In this chapter, the two methods proposed in this work are presented in
more detail. The overall goal of these two methods is to explore how
different machine learning models can implement explanatory methods
in various domains that still provide value to the user.

Different model architectures represent data in separate ways. This
chapter highlights how insights into these representations can give a
researcher or user a new understanding of the data and models used. Both
models presented in this chapter have multimodal capabilities, specifically
in visual and linguistics. The way they achieve this multimodality differs.

The first model uses a classical VQA architecture, with the addition of
the FLEX framework. Using this framework, the model can label feature
maps in the CNN to get information from the visual domain translated
into natural language. The explanation originates, therefore, from the
visual domain, translated into text. Although no results from this method
are examined due to hindrances outside the scope of this work, the process
is discussed thoroughly.

The second method introduces an LLM combined with a standard
CNN. The image features of the CNN get translated into text, and the
explanation happens in the text domain.

Therefore, these two models discussed in this chapter will investigate
explanations originating from different domains.

56

3.1 FLEX-VQA

This section will delve deeper into implementing the first proposed
method, FLEX-VQA. The name originates from the framework FLEX,
originally introduced by Wickramanayake et al. [3], combined with visual
question and answering (VQA).

3.1.1 Overview

To make VQA models easier to understand for the user, the explanation
can originate from either of the two modalities of the model, either the
language model, the image model, or both. The method presented in this
experiment will address this task using the cross-modality explanation
method FLEX. An overview of the FLEX model has already been described
shortly in sub-chapter 2.5.2 on page 40. This method is relevant to this
work because it explains the network’s visual reasoning of why a picture
should be in a given class using natural language. The FLEX framework
combines a CNN, which is pre-trained on the specific task and does
not need any further training that alters the CNN to give it explainable
abilities. An overview of the original FLEX framework can be seen in
Figure 3.1.

Figure 3.1: Overview of the FLEX Framework.
Figure credit: Wickramanayake et al. [3].

57

3.1.2 The motivation for this method

By using FLEX as a starting point, the purpose of the method in this
experiment is to adapt it to have VQA abilities. In order to make this
adaption, the dataflow shown in Figure 3.2 is proposed. Using this
technique, a user can get an answer for a question regarding an input
image that is both in natural language and faithful to the underlying CNN
model, making it more explainable and transparent. The explanation is
faithful to the underlying model since it uses the actual gradients in the
CNN to find the words used to answer the question. This feature ensures
that if the underlying CNN model has learned features that correlate with
the answer but are not the intended or logical features to pay attention
to, these flaws get communicated to the user. Making a model that
can explain what it considers important to a user, also when flawed, is
important when making a system where a user can make a factually based
decision in trusting the answer.

3.1.3 Original FLEX in more detail

First, the FLEX framework works by having a CNN predict the class of
an input image. Given the image and its predicted class c, the method
finds a subset of the most important feature maps from each layer in the
pre-trained CNN. To find the global activation score of each feature map,
it sums up each neuron in the layer and then repeats this process for each
layer in the CNN. After that, it sorts the layers in order of importance
and chooses a subset of n layers so that the subgroup has a combined
importance over a predefined threshold. When a subset of the most
important visual features is collected, FLEX connects these visual features
with linguistic features.

FLEX uses the Grad-CAM technique proposed by Selvaraju et al. [97]
to do a backward pass through the feature maps of the CNN to find the
largest class activation maps when predicting a class. This information
is then used to map words to important visual feature extractions in the
network. This mapping of words combines the separable feature layers
salient layers of the Grad-CAM method with natural language to make
better explanations.

The way FLEX achieves explainability is to find a connection score
between a word (w) to the elements of the important feature maps (F) so

58

that the word (w) best describes the important visual element (v) in each
feature map. With a given natural language description of the ground
truth (DI) of an image (I), FLEX uses the corresponding description for
every image and builds a dictionary that contains all words in every
description seen in the training data. This dictionary (D) is used when
describing new images during testing. Creating this combined dictionary
is conceptually similar to how language models generate a dictionary of
tokens used for tokenization. For each word (w) FLEX calculates the co-
occurrence score for each feature (v ∈ F), using the Dice score [134, 135], as
seen in Equation 3.1. The word with the highest co-occurrence score gets
associated with the visual feature (v).

score(w, v) =
2 × occur(w, v)

count(w) + count(v)
(3.1)

When the dictionary DI for each image and the dictionary for all
images D is computed, the dictionary for the individual class labels can be
found. This class label dictionary (Dc) contains the combined dictionary
of each image of a specific class and can be defined as Dc =

⋃
DI , where

the class label of I is c. Lastly, the dictionary Dr is the words extracted
recursively from the CNN. When an image is provided, and the class is
predicted, FLEX starts at the last convolutional layer and finds the top-
k features from that layer and their associated words. This collection of
associated words from feature maps is done recursively until the first
convolutional layer is reached, and the union of all these words is named
Dr.

To describe decision-relevant features, FLEX computes the relevance
of a word w to each of the dictionaries using the formula in Equation 3.2,
where Dx is a placeholder for Dr, DI , and Dc.

relevance (w, Dx) =

{
0 w /∈ Dx

− log
(
|Dx|
|D|

)
otherwise

(3.2)

When the relevance scores for each dictionary are calculated, the
relevance vector z is defined as in Equation 3.3:

z = (g(w1), g(w2), ..., g(w |D|)) (3.3)

59

Where wi is the ith word in D and

g(wi) = relevance(wi, Dr) + relevance(wi, DI) + relevance(wi, Dc)

To train the framework to generate a textual description, FLEX uses
two stacked LSTMs, where the first LSTM receives the ground truth
word wt−1. The second LSTM gets the hidden state of the first LSTM,
concatenated with the visual feature vector from the CNN. The output of
the second LSTM is encoded to vocabulary space to produce a conditional
probability distribution, defined as:

P(wt−1|w≤t−1, I) (3.4)

This distribution samples the current word wt at time step t. The rele-
vance vector z is element-wise multiplied by this probability distribution
to produce the relevance loss and is defined as:

loss (wt, I) = max (z ⊙ P (wt | w≤t−1, I)) (3.5)

When no ground truth label is available during interference, FLEX
samples from the conditional distribution in Equation 3.4 to get the next
word then passed as the input to the LSTM in the next step.

This labeling of visual features can be reminiscent of DenseCap
proposed by Johnson et al. [115], and Neural Baby Talk proposed by Lu
et al. [136]. The main difference between these methods and FLEX is that
FLEX can be added to a network after the architecture is finalized, trained,
and evaluated. In theory, the framework is agnostic to the underlying
network. However, one limitation is that the visual encoder must have a
property in which distinct parts of the image activate distinct parts of the
network.

3.1.4 Implementation

Given that FLEX can combine information from the visual domain with
natural language, it is an exciting framework to explore in the field of
XAI and VQA. A modified architecture to FLEX is presented in this thesis,
as seen in Figure 3.2. This proposed architecture has unfortunately not
been tested because of technical hindrances outside the scope of this work.
A more detailed explanation of these hurdles is described in subsection

60

3.1.5. However, since much of the available time for this thesis was spent
researching this approach and solving the hurdles, an overview of the
architecture will still be provided in this section.

Dataset: VQA 1.0 and COCO

The dataset chosen for this experiment is the VQA 1.0 dataset [99] instead
of the more balanced VQA 2.0 [137]. This experiment’s goal is not to
achieve state-of-art accuracy but to test the validity of this method. The
VQA 1.0 dataset allows the VQA model to learn biases in the data that
will be utilized in this method. Because of its unbalance, the authors of the
VQA 1.0 dataset propose to use a k-way classification with 1000 classes.
The rationale behind this decision is that the top thousand classes cover
82.67% of all the train and validation answers. Optimizing this way makes
the assignment no longer open-ended but a more straightforward task by
choosing one class out of a thousand.

This optimization will make the answer easier to compute, reducing
training time and making it easier to control if the prediction is correct.
Another benefit of this simplification is that the FLEX-VQA method can
use the answer as a class, making it more efficient to adapt it to the FLEX
framework. This is because the FLEX method builds a dictionary for each
class (Dc). In order to make the dictionary Dc, the method will need
descriptions for each image. Another benefit of using the VQA dataset
is that the images originate from the Common Object in Context (COCO)
dataset [100]. This dataset is a large-scale object detection, segmentation,
and captioning dataset, meaning that the images in the VQA dataset are
already described in COCO.

Proposed architecture

Figure 3.2 shows how the data flow in the proposed method is supposed
to work. It closely follows the original FLEX architecture, with adaptations
to make it answer questions. It consists of a CNN that extracts visual
information and a 2-layered LSTM [74] RNN that combine linguistic
information with extracted visual features. The CNN used in this
implementation is the same as in the original framework, which is a
modified VGG-16. The modification is a technique proposed by [9] et
al. called Compact Bilinear Pooling, which reduces feature dimensionality

61

without sacrificing performance. This ensures a more efficient and faster
training and inference time, which also has the potential benefit of
reducing the risk of overfitting.

The wanted requirements of the system will need to be defined before
any method can be developed. The method should be able to have an
image as input alongside a question related to the content of this image.
The wanted output is a locally accurate answer to the question and a
description that is also locally accurate to the model.

The VQA model
The proposed architecture can be utilized to make a model and pipeline
that achieves the required features. The proposed method consists of
a standard VQA model with a k-way classification optimization. This
architecture is essentially the same as the one presented in the original
VQA 1.0 paper, called deeper LSTM Q + norm I, which achieves an accuracy
of 57.75% on the complete test set. This network comprises an image
pipeline (norm I) with activations from the CNN being l2 normalized. The
question pipeline (deeper LSTM Q) consists of an LSTM with two stacked
layers. The image embeddings are then transformed to a dimensionality to
match the question embeddings. This is done by a fully-connected layer,
which makes the image features a vector with a length of 1024.

When the image and question features have the exact dimensions, they
are merged by pointwise multiplication. This fusion vector is then passed
through a fully connected neural network with two hidden layers, 1000
hidden units in each layer, and a dropout of 0.5. Finally, the answer with
the best fit is found by passing the result of the fusion vector through a
SoftMax layer to predict the final class.

FLEX
Since the VQA system is now a classification task, it can be matched with
the FLEX framework. The importance score is recursively calculated using
the image features in each feature map of the CNN. The formula used in
this calculation is shown in Equation 3.6, where Z is the total number of
neurons in the feature map A, the predicted label for class c is yc and aij is
the ijth neuron in A.

αc =
1
Z ∑

i
∑

j

∂yc

∂aij
(3.6)

62

In order to remove negative influence and only evaluate scores
contributing to the specific class, the importance scores αc are then
multiplied with a ReLU. These positive-only activation scores are then
fed into the secondary stacked LSTM of the FLEX framework, which also
gets the hidden state from the first LSTM. This stacked LSTM network
is separate from the LSTMs of the VQA system, as it is trained only to
output descriptions, whereas the one in the VQA is used to encode the
question features. The rest of the FLEX framework is the same as described
in Section 3.1.3. The main difference between the original FLEX and this
method is that instead of the CNN predicting a class, the classification
method now predicts an answer using the VQA model.

Training and testing
Given that FLEX is a post-hoc explanation method, it does not need to be
trained simultaneously as the VQA system. This separation ensures that
the VQA system can be trained separately from the explanation system
and, thereby, can be tuned to achieve satisfactory accuracy before the
explanation system is introduced. However, even though the systems are
separate, the explanations are still connected directly from the extracted
image features and, therefore, will be locally accurate to the CNN method.

In order to train the VQA system, the input image with corresponding
questions and their ground truth answers is supplied. The VQA 1.0
dataset contains all these image-question-answer pairs and will be used
in this experiment. Then entire VQA model is trained end-to-end using
a cross-entropy loss, as described in the VQA 1.0 paper, where it was
presented originally.

The FLEX is a separate model that is outside of the VQA model and,
therefore, will need to be trained after the implemented VQA method is
fully trained. Some optimizations can still be implemented to make this
training process faster. The optimization, with a considerable impact on
training time, is to precompute the image features when the VQA system
is trained. Because FLEX uses the image features for each image together
with the predicted answer, these can be saved during VQA training so that
they do not need to be fed through the VQA model once more.

To train the FLEX framework to the task at hand, it must have extracted
image importance scores, a ground truth description of the image from
the COCO dataset, and the predicted answer for the question. The answer

63

is, in this experiment, regarded as the class label and, therefore, needed
when FLEX makes the dictionary Dc. The dictionary DI contains the
image description, and the relevance dictionary Dr is calculated using the
importance scores from the CNN.

While testing the combined system, the VQA method still needs an
image and related questions. Then the predicted answer is made by the
fully connected network. This answer defines the class dictionary Dc

that the FLEX framework uses when making a conditional probability
distribution. This distribution contains the combined relevance defined
by z, which is a function of the relevance for Dc, DI , and Dr, as described
in Equation 3.3 in Section 3.1.3.

The LSTMs gets trained by feeding each word in the ground truth
caption into the first layer alongside the hidden state of the LSTM. This
is used to compute the next state, which gets concatenated with relevant
activation scores from the CNN and is input to the second and last, LSTM-
layer. The output from the second LSTM-layer is encoded to vocabulary
space to make a conditional probability distribution that will later be used
to calculate the probability of predicting that word, given the provided
image features. The word with the highest probability is chosen and used
as input in the first layer of the LSTM. This word prediction is repeated
until the stop word is predicted.

3.1.5 Why this method has no results

To implement the proposed architecture as shown in Figure 3.2, it was
natural to use the original code from the FLEX paper as a starting point.
The authors of the FLEX paper also released the code used to do the
experiments in the article on GitHub1 to encourage others to iterate on
their method. The original experiments use a CNN called Compact-
Bilinear Pooling, a classifier proposed by Gao et al. [9]. While the FLEX
framework is designed to be model agnostic, the actual implementation
of the experiments is tied closely with the CNN, which proved to be
a hurdle when trying to recreate the results in the paper and expand
on the architecture and features. This method mainly does not provide
finished experiments or results because an outdated machine learning
framework makes compact-bilinear pooling CNN practically impossible

1https://github.com/sandareka/FLEX

64

Image

Question

Image
Caption

CNN
without last linear layer

Question tokenization
& embedding

Caption tokenization
& embedding

Image
embedding

Pointwise
multiplication

Fully connected
layer

+ SoftMax

Answer

Multiply by ReLU

FLEX

VQA

Generated
Caption

Input

Output

LSTM

LSTM

LSTM

LSTM

START w1

LSTM

LSTM

wT

P(w1) P(w2) END

Ground truth word sequence

z - Relevance vector
Text

FLEX-VQA

Figure 3.2: Proposal of the data flow and components explored in this
experiment.

to execute. Combined with the tight integration between the implemented
FLEX method and the CNN method, considerable resources have been
put into separating these two methods, customizing the software, and
building containers around it, with no success.

The original implementation of FLEX
For FLEX to work, it needs to get important features from the CNN.

This is an essential part of the framework and therefore needs insight into
how the layers of the CNN are structured. The implemented version of
the original FLEX architecture uses the Compact-Bilinear Pooling CNN,
which in short, uses kernelization to reduce the number of dimensions of
bilinear features to make it more computationally efficient at the cost of
having an architecture that deviates somewhat from a more traditional
CNN architecture. Therefore, the authors of the FLEX paper have
implemented a version of the framework that addresses these special
considerations when calculating co-occurrence metrics between words

65

and features.

Why Caffe was needed
To use the same CNN as the original FLEX in a new context, as in this

experiment, would require retraining or fine-tuning this network to suit
the images in the given dataset. This would require the Compact-Bilinear
Pooling model to train using the new pictures in the specific dataset.
Alternatively, a new CNN could be chosen that could be merged with
the FLEX framework. The original Compact-Bilinear Pooling came with
pre-trained weights from training on the Caltech-UCSD Birds (CUB) [138]
dataset. This dataset has images from Flickr and ImageNet containing
a subset solely focused on bird species and a relatively small amount
of photos (11,788, compared to 14 million images in ImageNet [65]).
Therefore, the original weights are best fit to classify this CUB dataset
and will require retraining outside this specific task. Because of how the
original FLEX framework is structured, it would need to be substantially
rewritten for a new CNN to be used in place of the Compact-Bilinear
Pooling. Therefore the best way forward was to use this CNN, like the
original method.

Getting Caffe to run
To train the Compact-Bilinear Pooling on a new dataset, the underlying

machine learning framework it was built in had to be installed. This
framework is named Caffe and is a deep learning framework developed
by Berkeley AI Research (BAIR) / The Berkeley Vision and Learning
Center (BVLC). It’s a precursor to the framework Caffe2, which was
initially built by Facebook and is now merged with PyTorch. Because
Caffe was forked into Caffe2, the development of the original stagnated.
Developers implemented new features and compatibility in Caffe2, while
the original Caffe has not received an update since 2017. Because of the
rapidly evolving nature of software and hardware since 2017, it proved
to be a nontrivial task to get Compact-Bilinear Pooling written in Caffe to
run on the hardware available during this project. The FLEX framework
is implemented in TensorFlow version 1.7, which is also considered
outdated at the time of writing. However, in contrast to Caffe, the teams
at TensorFlow have made tools and helpers to run outdated code and
translate it into current versions.

66

To get the compute benefits necessary for deep learning, the Caffe
framework will need to run on GPUs. The framework supports GPUs
from Nvidia with Compute Unified Device Architecture (CUDA) version
5 through 8 [139, 140], as well as AMD GPUs. The GPUs in the compute
cluster available to run experiments for this thesis are Nvidia RTX 2080 Ti,
Nvidia A100, and AMD Vega 10 XL/XT, which run CUDA version 11.7,
11.5 and ROCm version 4.5.0 respectively [141]. The mismatch between
Caffe’s highest supported CUDA version and the version available on the
hardware need to be addressed. To not break compatibility with other
services on the compute cluster, containerization was needed. Luckily
containers are being actively deployed with Caffe versions with GPU
support, most notably from Nvidia and AMD.

At the time the implementation of the architecture started, communi-
cation was established with the IT staff at the University of Oslo, which is
responsible for the available computing cluster.

At that stage, only an experimental implementation of containerization
was available through the container engine Podman [142]. Using this
container engine, the Nvidia container could not attach the Nvidia
GPUs. However, the AMD ROCm container could access the AMD
GPUs. Unfortunately, this AMD container did not have the correct driver
compatibility to train the CNN. Since Podman did not result in a container
that could run successfully, a different container engine was installed,
namely Apptainer, formerly known as Singularity. This new engine could
see all the Nvidia GPUs, but not the AMD ones. After the initial errors
were ironed out, a Caffe container from Nvidia was successfully installed.
Although successfully installed, the container had trouble running the
training examples in the FLEX code repository. When an error message
was solved, a new one arose. Therefore no definite problem could be
addressed, but rather several error messages pointing to possible driver
incompatibility. The most likely explanation for the error messages was
an incompatibility issue between the Caffe version in the container and
the hardware it was tested on. After extensive testing and error-solving in
most of this thesis time frame, the decision was taken that this technical
problem was outside the scope of this experiment, and this method was
discontinued for this project.

67

How these problems could have been mitigated
The main limitation of the chosen approach was getting the Caffe

framework to work. However, the proposed method could still be
implemented with a new approach. Because this method could bring
new insight into how VQA systems are interpreted, exciting experiments
could still be carried out. Some suggested improvements based on the
experience gained implementing this method are:

• Remove Caffe from FLEX
To have better compatibility with modern hardware and be more
accessible for research moving forward, discontinued frameworks
should be updated with more up-to-date versions. At the time of
publishing the FLEX paper (2019), the development of the Caffe
framework had already been stale for two years. To facilitate
peer review and additional implementations so that the proposed
methodology can be further developed, researchers benefit from
publishing material for others to follow and implement themselves.
Removing the Caffe framework from the FLEX framework makes
the method more accessible and easier for others to expand on.

• Update FLEX to TensorFlow 2
The FLEX framework is implemented in TensorFlow version 1.7,
released in 2018. As of writing this thesis, TensorFlow versions
1.x are considered legacy. However, version 1.15, the latest version
1.x, is supported by TensorFlow 2 through a legacy helper. By
updating to a more recent version, the framework can implement
more modern features and optimizations, gain compatibility with
modern hardware and acquire more users already familiar with
the current versions. This upgrade can speed up the implemented
FLEX framework through software and hardware optimizations and
speed up the development of the framework itself. TensorFlow has
migration guides and scripts to help translate from version 1 to 2
[143], which makes the migration manageable.

• Make FLEX model agnostic in practice
Theoretically, the FLEX framework is separate from the CNN.
As proposed in the paper where the framework is introduced,
the implementation of the FLEX framework would benefit from
being adapted to be agnostic to the underlying method. The

68

initially implemented method has methods to extract image features
specific to the CNN used, making it dependent on that particular
model. Using an agnostic implementation of the gradient search
through the CNN feature maps, the method could be extended by
allowing testing different CNNs to extract features and find co-
occurrences with linguistic features. This could make implementing
the technique for new CNNs easier and make more methods
explainable.

3.1.6 Summary of FLEX-VQA

To summarize, by implementing the FLEX framework into a VQA
method, the combined framework would make interpreting VQA models
easier and locally accurate. FLEX has the same benefits as LIME of being
locally accurate and model agnostic. Having insight into a locally accurate
explanation model would make it possible for researchers and users of an
implemented system to see if the underlying model is trustworthy based
on what the model deems important.

Unfortunately, no experiments were conducted with this method due
to technical difficulties. However, the process described in this section
still provides insight into how an interpretable and locally accurate VQA
system could be designed. The main takeaways from this section are how
a framework could be designed to extract visual explanations in the visual
domain described in the linguistic field. The FLEX framework searches
through the CNN and finds important features that are then described
using natural language. In order to make the FLEX framework easier to be
developed further by future research, the model should be made agnostic
to the CNN in practice, facilitating researchers to use the image encoder
they want to study.

The following section will introduce an experiment where, in contrast
to the previous, the visual features are first translated to the linguistic
domain and explained using linguistic explanation techniques.

3.2 Alpaca-VQA

The experiment in this section will explore an approach to design an
LLM that can interpret images, reason about their content, and be able to

69

answer general text questions. There are many ways a multimodal LLM
could be developed, but this experiment aims to have a system with an
explanation method in the linguistic domain. The rationale is that the
previous experiment, described in Section 3.1, was explained in the visual
domain and translated into text. The investigation in this section will
do the opposite. The image features are extracted and translated to text,
where the explanation system works on the text directly.

This section presents the implementation details of a VQA version
of the Alpaca model. First, an overview of the reasons for choosing
Alpaca for this experiment will be given. A more detailed description and
rationale for the specific implementation of this model are then discussed,
such as how the model has gained visual capabilities and how image
features are implemented into the language model.

3.2.1 Overview

To make an LLM that can see the world and explain what it sees, it
was outside the scope of this experiment to train an LLM from scratch,
both regarding time and resources. When training, an LLM requires
vast quantities of good-quality data. Training the model requires large
compute clusters that consume lots of energy, cost much to facilitate,
and produce unwanted greenhouse emissions. Therefore, an LLM that
was already pre-trained was needed for this experiment to be fine-tuned
further to answer the research goals.

Alpaca-LoRA

Even though the Stanford Alpaca model was trained using significantly
less computing power compared to other LLMs, it is still advantageous to
further lower the necessary compute budget to train and fine-tune models.
A technique that was proposed by Hu et al. called Low-Rank Adaptation
(LoRA) [144] addresses this issue. This technique manages this task by
adding pairs of rank-decomposition weight matrices, commonly called
update matrices, on the current weights and only trains these newly
added weights. This approach has many advantages, most importantly
accelerating the training while reducing memory consumption. Other
benefits of these added matrices are that the original weights are kept
frozen, making the LoRA model less prone to catastrophic forgetting. This

70

catastrophic forgetting can happen when large connectionist networks,
like deep neural networks for LLMs, are trained on multiple tasks in
sequence. In these scenarios, the models are prone to forgetting the earlier
tasks [145]. Having the original weights available in a frozen state while
training on a new task keeps the learned representations, as they are not
changed. The added weights are typically less than 10 percent of the
original trainable parameters, making training domain-specific models
more feasible and faster. Because the fine-tuned matrices are so small,
these LoRA weight matrices can be changed on the fly depending on the
task. This allows for a system where a large base model, pre-trained on a
large text corpus, is tuned to different requirements with smaller LoRA
matrices that still benefit from the larger base model when answering.
When using LoRA matrices, they also allow training and interference on
consumer hardware, like regular desktop GPUs. It is even possible to do
interference on a single-board computer like the Raspberry Pi, although at
a significant speed decrease [146].

3.2.2 Implementation

This implementation has the goal of answering the research questions
stated in 1.2. Specifically, to investigate if the model can be explained after
it has finished training and if it still can bring knowledge from pre-training
to the new modality.

In order to answer these questions, a LoRA version of the Stanford
Alpaca version was used to carry out the experiments.

The code used as a starting point was a fork of Erik J. Wang’s Alpaca-
LoRA [147], which was further modified to fit the experiments in this
section. The most notable modification to this model is to make it cross-
modal by allowing it to take both text and images as input.

Make a language model see images

An image encoder had to be implemented to enable the model to interpret
images. To allow the LLM to analyze image data, the visual features had
to be extracted and translated into the linguistic domain, which could be
merged with the input prompt. To make a system that more efficiently
can change image encoders without changing the LLM, the design of the
image-to-text method is to encode features as text strings. The proposed

71

dataflow is shown in Figure 3.3. This architecture allows the language
model to be agnostic to the image encoder, allowing it to use a CNN or
vision transformer that is fine-tuned to the task.

Large language model

Image
encoder

Input text
prompt

Text encoder

"5-10mm"

"Colonoscopy"

"Polyp"

Ground truth
answer

"What is the size of the polyp?"

"What type of procedure is the image
taken from?"

"Are there any abnormalities in the
image?"

Question

Figure 3.3: Overview of the proposed dataflow to make large language
models interpret images. The images in this Figure are from the
HyperKvasir dataset by Borgli et al. [148]. The rest of the diagram is by
the author of this work.

Specifically, the image encoder first implemented was Visual Geometry
Group (VGG)-16, proposed by Simonyan and Zisserman at Oxford [8].
The reason for implementing this CNN is that it is a known network that
performs relatively well on the ImageNet dataset, where the correct label
is in the predicted top five in 90.38% of the samples in the test set [149]. The
VGG-16 model used for the experiments is pre-trained on the ImageNet
[65] dataset. The model presumably performs better if pre-trained on the

72

specific dataset used, namely the HyperKvasir dataset [148] introduced
by Borgli et al. However, the experiments will explore the proposed
approach’s feasibility rather than achieve optimal accuracy.

Given that the VGG-16 network is pre-trained on ImageNet, it outputs
a probability for each of the 1,000 classes in the dataset. To accomplish the
task of extracting valuable features from any image, regardless of whether
CNN has been pre-trained for the task, the implemented method extracts
the label and probability of the 100 ImageNet classes with the highest
probability. With this approach, the image feature extraction will find a
consistent number of features in an image, sorted with the feature with
the highest probability first. The features with the highest probability
will likely have a feature map similar to the predicted class in ImageNet.
Therefore, even if the class label from ImageNet is not connected with a
correct label from the HyperKvasir dataset, there is a high likelihood that
the feature extraction will still be practical to extract image features.

The VGG-16 CNN was initially developed for the image classification
task, not object classification. It consists of multiple convolutional layers
followed by fully connected layers, and it does not have any built-in
mechanisms for handling Region of Interest (ROI) operations. Therefore,
since VGG-16 is designed as an image classifier, it only outputs the classes
it recognizes in the image as a whole, which means it does not perform
particularly well for localization tasks. Object classifiers, like R-CNN
[109], Faster R-CNN [110], and variants of YOLO [111, 150–156], among
others are made to output ROI, which would allow the image encoder
also to encode locations of detected objects within the image. These object
classifying qualities from an image encoder will most likely give the LLM
image data of a higher quality to work from. However, the experiments
will test the feasibility of the implementation using VGG-16.

Images to text prompt
To encode the image features into a format that the LLM can interpret,

the image features must be converted into a form that can be embedded
into a natural language question-and-answer format. The dataset used to
train the Stanford Alpaca model follows a question-input-answer format,
as shown in Figure 3.4. This format is structured so that the question
comes first, followed by an optional input to the prompt with detailed
information that can be used to answer the question. Additional up-to-

73

date information can therefore be embedded in the text prompt if the
model’s training set does not contain information to answer the question.
This input function enables the LLM to answer new questions even after
completing the training.

To make the new task of interpreting images while keeping the prompt
text format close to the original, image features are incorporated into
the input section of the original prompt. By not changing the original
structure of the prompt, the model is better suited to utilize the knowledge
gained from the pre-training. The feasibility of incorporating image
features in text prompts has been successfully explored by Yang et al.
in the paper MM-REACT [157]. The team explores methods to make
ChatGPT a multimodal model, including interpreting images. The MM-
REACT model achieves this by encoding images using an X-Decoder
model proposed by Zou et al. [158]. This model features ROI capabilities
using dense captioning, which outputs class labels and coordinates of the
corners of bounding boxes. These extracted features are then concatenated
into a text string that the LLM receives as an input prompt. The modified
Alpaca model used in this experiment uses a similar approach to the one
in MM-REACT by encoding image features as text. When using the VGG-
16 model, the final text prompt to the Alpaca-LoRA model is the same as
shown in Figure 3.5.

Below is an instruction that describes a task, paired with
an input that provides further context. Write a response
that appropriately completes the request.

Instruction:
{instruction}

Input:
{input}

Response:

Figure 3.4: Overview of the original text prompt to the Stanford Alpaca
model [4, 5], with additional input.

74

Below is a question that describes a task, paired with an
input that provides image features from an encoded image.
The form of the image features is (label, probability).
Write a response that appropriately completes the request.

Question:
{question}

Encoded image features on the form (label, probability):
{Top 100 most probable ImageNet classes from VGG-16.
 Example: ("dog", 0.73),("cat", 0.53) ...}

Answer:

Figure 3.5: Overview of the modified text prompt to the Alpaca-LoRA
model, including extracted image features. The text in curly braces is not
part of the prompt but represents the placeholder for the question and
extracted image features.

Text encoding

A text tokenization process is needed to break down the raw text data
given in the prompt into smaller, standardized units called tokens, as
described in Section 2.5.2. This process assures that text models, LLMs,
in this case, can interpret linguistic input data. Tokenization is essential to
transform unstructured text data into a format the model can process.

LLMs have been trained on specific tokenization schemes that use
unique tokenization rules and vocabularies. Therefore, they should
use the same tokenizer when pre-training the model to get adequate
performance. Suppose a different tokenizer is used to pre-process the text
data. In that case, the tokenization output may not be compatible with
the language model’s vocabulary and encoding scheme, leading to poor
model performance and incorrect predictions.

The tokenizer used in this implementation is the one used by the
original LLaMA model [6] since the Alpaca model is a fork of this
model. HuggingFace [159] makes the specific implementation of the used
LlamaTokenizer and is based on SentencePiece [160, 161]. This tokenizer
and corresponding detokenizer allow for an unsupervised, end-to-end
system without language-specific processing.

75

3.2.3 Explaining the output

As LLMs are large and complex models, they can be challenging to
explain. The model used in this experiment is small compared to other
state-of-the-art LLMs, yet it consists of seven billion parameters, making
it too large for many XAI methods. Explaining large transformer models
is an area of research where many are working on developing new
approaches. However, there is still no de facto method to explain LLMs.

Transition Scores and Attention

There are still various approaches to getting an explanation from trans-
formers. The most popular method is to extract values from the attention
weights of the transformer [162–165]. Research has been done on finding
subsets of the attention or even single neurons that are strongly associ-
ated with specific tasks, like the "sentiment neuron" presented by Radford
et al. [166]. Here the researchers trained an LSTM on Amazon reviews to
predict the next character of the text. When the model was trained, they
made it into a sentiment classifier by adding a linear layer on top of the
LSTM’s vector units. Available labeled sentiment data trained this linear
layer. They noticed that one single neuron significantly impacted the pre-
dicted sentiment value. By dialing this single neuron, the sentiment of the
text generated by the LSTM could be controlled.

However, the attention weights have proven unreliable as a factual
explanation of what the model evaluates on a low-level [167–169].

Although attention weights are not a reliable source of explanation,
there still may be exciting insights to gain by analyzing these weights, as
demonstrated by the "sentiment neuron". In this experiment, the transition
scores of the LLM will be used to gain insight into how the implemented
Alpaca-VQA model works. These transition scores are calculated using
its attention when the LLM predicts the next word in a sequence from the
probability distribution. Although these scores do not give insight into
the answer’s validity, they indicate how sure the model is predicting the
words.

Proxy Model and LIME

Because of the size of LLMs, XAI methods such as LIME and SHAP can
be hard to implement to fit these large models or take a lot of time when

76

finding perturbations on the input text and their corresponding output.
Initial experiments with both LIME and SHAP on the Alpaca-VQA model
did not manage to make explanations because of the token size, making
the run time unreasonably long.

A proxy model was therefore developed to have a model that can shed
light on how the input affects the output. As LLMs are often complex
and have millions or even billions of parameters, making their internal
workings challenging to interpret. A simplified version that is easier to
understand and explain can be created by training a proxy model on top of
the large language model. This proxy model acts as a "translator" between
the complex language model and human interpreters, providing a more
interpretable representation of the underlying model’s decision-making
process. The proxy model can help address the issue of transparency
and trust in AI systems. Like many deep neural networks, LLMs are
often treated as black boxes, where the input-output relationship is not
easily interpretable. By training a proxy model, insights can be gained
into how the language model makes decisions, and this insight can be
achieved using techniques such as LIME. These explanations can help
users understand why the model made a particular decision and provide
a level of transparency and trust in the system. Therefore, training a proxy
model on an LLM enables us to bridge the gap between the complexity of
the underlying model and the need for interpretability and explainability.

The proxy model used to mimic and interpret the Alpaca-VQA model
is a Stochastic Gradient Descent (SDG) classifier. The data used to train
the classifier includes 14,000 question-answer pairs, with the appropriate
answers provided by Alpaca-VQA. The model is trained on the response
predicted by the LLM instead of the ground truth to predict the same as
the Alpaca-VQA. With 20,000 question-answer pairs created by the LLM,
divided into 14,000 in the training set and 6,000 in the test set, the SDG
classifier achieves an accuracy of 86% in the test set.

This proxy model is then fitted with the LIME method to make it
explainable. Since LIME fits a linear model to the model it explains,
there are three stacked models in total in the explanation pipeline, as
seen in Figure 3.6. Even though stacked models obscure the actual
decisions of the underlying model, some valuable insights can still be
gained. Despite fitting a proxy model itself, the LIME method has proven
effective in providing insight into the inner workings of numerous models.

77

Therefore, this experiment will test whether an additional proxy model
would provide valuable explanations or insights into the Alpaca-VQA
model.

Alpaca-VQA

LIME
Text Explainer

SDG classifier

Explanation

Question and
Image Features

Figure 3.6: This figure represents the explanation pipeline of the Alpaca-
VQA model using a proxy model that is explained by LIME. The question
and image features are fed into Alpaca-VQA, which predicts an answer.
This answer is used to train a SDG classifier that gets explained by LIME.

3.2.4 Dataset

The images used in this experiment are from the HyperKvasir developed
by Borgli et al. [148], and the VQA extension using these images from the
ImageCLEFmed-MEDVQA-GI-2023 dataset by Hicks et al. [170, 171].

HyperKvasir

The available dataset on the gastrointestinal tract is one of the most
extensive datasets, which comprises images and videos. The data was
collected during examinations at Bærum Hospital in Norway, including
anatomical landmarks and normal pathological findings. A subset of

78

the images and videos were annotated by at least one experienced
gastroenterologist, from Bærum Hospital, the Cancer Registry of Norway,
or Karolinska University Hospital in Sweden, together with one or more
experienced persons working in the medical field.

The dataset can benefit medical and technical communities exploring
semi-supervised and unsupervised methods. It can also help artificial
intelligence-based computer-assisted diagnosis systems to provide better
patient treatment. The full HyperKvasir dataset is available to the public
and is open access2,3.

ImageCLEFmed-MEDVQA-GI-2023

This dataset extends HyperKvasir by adding multiple modalities to
a subset of the images, specifically VQA, Visual Question Generation
(VQG), and Visual Location Question Answering (VLQA). The dataset
is developed for the CLEF 2023 Medical Visual Question Answering
(MedVQA) Challenge and is available to the public 4.

The question-and-answer ground truth is developed with medical
partners, and the data include images spanning the entire gastrointestinal
tract. Questions and answers include abnormalities, surgical instruments,
and normal findings.

Since the experiments in this thesis are based on VQA, the questions
regarding VQA in this dataset were used. To test if the LLM could
learn some location capabilities, even though the CNN does not output
bounding boxes, the questions regarding the location were also included.

Dataset Preparation

The original dataset is structured as a nested JSON file, and the structure
can be seen in Figure 3.7. It is structured to have the image ID as the key
and related questions and answers as value. The input text prompt to the
model must have the image data, question, and answer bundled together
in each prompt, as seen in Figure 3.5, the data structure was unrolled.

First, the nested structure was flattened so each row received the
appropriate image ID, making the prompts easier to parse. The resulting

2https://doi.org/10.17605/OSF.IO/MH9SJ
3https://datasets.simula.no/hyper-kvasir
4https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2023

79

structure can be seen in Figure 3.8. However, some questions, particularly
regarding localization and color, have multiple correct answers. Instead
of teaching the model to score multiple correct answers, the questions
were flattened. Evaluating numerous correct answers to a question can
be challenging because the model needs to know which answer is correct
and which is incorrect. To circumvent this challenge, the answers in the
dataset are flattened so that each row contains only one correct answer.

Having all information self-contained would make inputting one row
into the prompt easier, as all necessary information is contained in the
row. When the LLM predicts an answer, it can be quickly compared
to the ground truth, making calculating accuracy more straightforward.
This flatting of ground truth answers made the original 36,683 question-
answer pairs into 52,051 pairs. The final structure of the data used in this
experiment can be seen in Figure 3.9.

3.2.5 Context Window, Cuttoff, and Evaluation Metrics

This section will discuss essential features when training language
models: context window, cutoff length, and evaluation metrics.

Context window and cutoff length

The context window of a language model refers to the number of words
or tokens considered in predicting the next word or token. The context
window is typically linked to both the input prompt and the output since
the model refers to the input when generating the output. When training
LLMs, the model receives a sequence of input tokens and produces a
series of output tokens. Similarly, when fine-tuning a pre-trained language
model on a specific task, the context window is also linked to both the
input and the output. The input would consist of the prompt defined by
the context window, and the output would be the predicted tokens that
the LLM predicts based on the tokens in the context window. By adjusting
the context window size, researchers can control the amount of context the
model uses to generate its predictions, which can impact its accuracy and
efficiency.

Cutoff length is a term often used when fine-tuning a pre-trained
language model. The cutoff length specifies the maximum length of the
prompt used when generating an answer.

80

Therefore, the context window and the cutoff length are closely related
features that should be considered in conjunction. In practice, the context
window can be regarded as a way to capture longer-term dependencies
between words in a sequence. At the same time, the prompt cutoff length
imposes a constraint on the size of input the model should process for a
given task.

The updated input prompt shown in Figure 3.5 was used to train the
model to interpret images. The prompt cutoff length was updated from
the original 256 to 1485 tokens. The original LLaMA model was trained
on 2,048 tokens [172], and the original Alpaca model is fine-tuned with
512 tokens as the cutoff length. In this experiment, the Alpaca-LoRA
implementation is used. The authors of the model found that 96% of the
prompts in the training data could be answered using a cutoff length of
256 tokens.

When deciding on the new token length, including the top 100 classes
from VGG-16, the LlamaTokenizer must encode the whole input text,
including image features.

When the class prediction score was represented using Numpy’s
floating number with 32 bits of precision, the average token length of just
the image features where 162,654. As this would increase the original
token size by more than 63,000%, it was considered too significant to be
reasonable for the model. Because the used language model uses the LoRA
technique to lower memory consumption, such a considerable cutoff
length should still technically be feasible. However, the increased training
and inference time was considered too inefficient for this experiment.
The prediction score was converted to floats with 16 bits of precision
to decrease the image token length. In practice, this would not make a
difference in accuracy when fed into the language model, as the predicted
class is just a placeholder for the underlying feature maps extracted. The
advantage of converting the prediction score is that the average token
length of the extracted 100 classes was reduced to 144,654 tokens. The
reduced token size is an 11% reduction of tokens from the 32-bit precision
representation and would still benefit from a further reduction. To give
an additional decrease in the length of the prediction scores, they were
rounded to three decimals. This will still provide the language model
insight into the extracted class labels and the relationship between the
classes while also significantly reducing the prediction score token length.

81

The final rounded scores have an average length of 1,229 tokens, resulting
in a reduction of 99% from the original 32-bit precision score. Combined
with a prompt text length of 256, the total cutoff length is therefore
calculated to be 1,485 tokens. Thus, this cutoff length is designed to cover
96% of the original prompts while incorporating the 100 most probable
classes and their predictions.

Evaluation metrics

The evaluation metrics used in the Alpaca-VQA model experiments are
precision, recall, accuracy, and F1 score. These metrics are defined in detail
in Section 2.4.

The precision is used to evaluate the proportion of the correct predicted
classes, and the recall is used to see how well the model predicts correct
classes. F1 score is used to find the harmonic mean of the model’s precision
and recall and is a combined score of these two metrics. This score is used
to more easily compare the score of each class in the test dataset. Accuracy
is used to see how well the model predicts the correct classes.

Lastly, perplexity is used as a metric to analyze how well the model
predicts an answer, given its probability distribution. The features from
this perplexity calculation are also used to calculate a prediction score for
each token in the answer. This gives insight into how sure the model is
about its prediction.

3.3 Summary

In summary, this chapter has discussed the methods used when develop-
ing the two approaches to explain VQA tasks. These two models investi-
gate explanations originating from different domains.

The first proposed method, FLEX-VQA, combines the FLEX frame-
work with VQA to explain the network’s visual reasoning to explain why
an answer to an image-question pair is using natural language. The Al-
paca model was chosen for this experiment as it was already pre-trained
and required less computing power than other LLMs. The LoRA tech-
nique was used to fine-tune the Alpaca model further, which adds pairs
of rank-decomposition weight matrices on the current weights and only
trains these newly added weights. This approach accelerates the training

82

while reducing memory consumption, making training domain-specific
models more feasible and faster. The image features of the CNN are trans-
lated into text, and the explanation happens in the text domain of the LLM
using LIME and transition scores.

The next chapter will present the results achieved with the Alpaca-
VQA, as the FLEX-VQA method was unfeasible to run because of
outdated frameworks. The results gained from the Alpaca-VQA will be
explained, discussed, and compared.

83

Figure 3.7: The original JSON from the ImageCLEFmed-MEDVQA-GI-
2023 dataset. It comprises 6683 question-answer pairs related to images in
a nested structure, with the image ID as the key and the question-answer
pairs as values.

84

Figure 3.8: The ImageCLEFmed-MEDVQA-GI-2023 has the image-IDs
flattened. In this structure, each row has a question-answer pair and a
corresponding image ID. Responses are still grouped in a list, making it
difficult to evaluate individual responses.

Figure 3.9: The ImageCLEFmed-MEDVQA-GI-2023 with image-IDs and
answers flattened. This structure has one question-answer pair on each
row, allowing for easier calculation of predictions. This is the structure
used when training the model in this experiment.

85

Chapter 4

Experiments, Results, and
Discussion

4.1 Intro

In this chapter, the Alpaca-VQA model presented in the previous chapter
is tested on two different dataset sizes. First, hyperparameters, their
values, and the reasons for choosing these are discussed. Then an
investigatory experiment is conducted using a smaller dataset to get initial
results for training on more data. These results are analyzed to understand
better how the model responds to the data, aiding understanding how the
model responds to the data. The Alpaca-VQA model is then trained on
20,000 samples, and its results are discussed. Methods for visualizing
transition scores and training a proxy model explained by LIME are
implemented when the Alpaca-VQA model has finished training. The
insights from these supplementary methods uncovered a possibility that
the model did not evaluate the image features when predicting an answer.
A language-only Alpaca-VQA model was tested to test this hypothesis,
and its findings are discussed. Finally, a more general examination of the
findings in this work is discussed.

4.2 Hyperparameters

The Alpaca-VQA model is based on the Stanford Alpaca model and
therefore draws inspiration when deciding on hyperparameters from their
findings. To finetune the Stanford Alpaca model, the authors suggest

86

training for two or three epochs. The low number of epochs is to prevent
the model from forgetting the previous knowledge and still be able to
use the knowledge gathered from the original training corpus, known
as catastrophic forgetting. Therefore, for the following experiments, the
hyperparameters were chosen as in Table 4.1.

The LoRA parameters were selected to be the same as the original
Alpaca-LoRA implementation. The transformer architecture contains four
weight matrices for the self-attention module. These weights are for query
(Wq), key (Wk), value (Wv) and output (Wo). In the paper introducing LoRA,
the authors find that when applying LoRA to the attention weights for
LLMs, specifically GPT-3 on the datasets WikiSQL [173] and MultiNLI
[174], they achieved the best results overall by only adapting the Wq and
Wv matrices. The developer of Alpaca-LoRA also confirmed these results,
and therefore the experiments in this thesis will also use these update
matrices. The authors of LoRA also did experiments for GPT-2 and GPT-3
to see which effect the rank r would have on the performance. They found
that LoRA performs competitively with small values of r, especially when
only adapting Wq and Wv.

As seen in Table 4.2, the LoRA update parameters are only 0.0622%
of the original amount of trainable parameters in the Alpaca-VQA model.
This considerately reduced amount of trainable parameters using LoRA
update matrices results in considerably faster training and lower memory
use.

The rationale for deciding on the batch size and micro-batch size values
was to make it fit in the available Random Access Memory (RAM) on the
GPU it was trained on. Since the current state of the code can only utilize
a single GPU, it was necessary to fit the model on the GPU while training.
The GPUs used for this experiment was an Nvidia RTX2080Ti with 11 GB
of Video RAM (VRAM) and an Nvidia A100 with 40 GB of VRAM. For the
initial experiment, the smaller RTX2080Ti was used not to demand more
compute resources than needed. The A100 was used when training on the
larger datasets, and the batch size was doubled to 256, which benefited
from more VRAM. The increased batch size would allow the model to
see more of the samples simultaneously during training. The number of
epochs was kept to three while the step length was increased, effectively
making the model evaluate more often in each epoch.

The size of the validation set was chosen to be roughly 30% of the

87

training data, and the cutoff length was chosen to be 1485, as this corre-
sponds to 256 question tokens + 1229 tokens from the encoded image, as
discussed in Section 3.2.5. This token length should allow the model to
see most of the available input data, both text and images when predict-
ing the output.

The temperature parameter influences the probabilities when predict-
ing new tokens. In practice is a measure of how creative the language
model should be during text generation. A lower temperature value
makes the model choose tokens it is more confident are correct, and a
larger value makes it more creative. As this task is to answer a question,
the goal is more based on facts than creativity, and therefore the tempera-
ture was chosen to be 0.1.

During generation, the Alpaca-VQA model uses beam search with four
beams. This means that it generates and searches in four sequences before
deciding on the sequence with the highest combined transition score. This
sequence is the one that the model is most confident fulfills the task. The
values of top-K and top-p influence how many words are considered in the
probability distribution during token generation. A top-K of 40 means it
considers the 40 most probable tokens in the distribution. Top-p narrows
down this distribution of top-K words to the smallest group that fulfills a
cumulative probability above the set value. With these hyperparameters
set during generation, the Alpaca-VQA model achieves a reasonable broad
distribution of tokens to sample from while maintaining the computation
demand reasonable.

If no further details are given in the experiments, the parameters
described here are the ones used in the following experiments.

In the next section, an investigatory experiment will be carried out. By
testing the model on a smaller dataset, it can be explored how the model
responds to the dataset without using extensive computational resources.
The results from this experiment will be analyzed and help make the final
model a better fit for the task.

4.3 Investigatory Experiment

Before training the model on the complete dataset, a subsection of the
available training data was used to see how the model would respond.
Running the model on smaller training data makes it possible to get

88

Alpaca-VQA Hyperparameters

Hyperparameter Value

Training
Batch size: 128

Micro batch size: 4
Number of epochs: 3

Learning rate: 0.0003
Validation set size: 30% of training data

Text Generation
Temperature: 0.1

Cutoff length: 1485
Top-p: 0.75
Top-K: 40

Number of beams: 4

LoRA
Rank r: 8

Alpha α: 16
Dropout: 0.05

Weight Matrices: Wq, Wv

Table 4.1: Hyperparmaters selected for the initial experiment with Alpaca-
VQA, fine-tuning the LoRA matrices on the ImageCLEFmed-MEDVQA-
GI-2023 dataset.

initial results quickly, providing insight into where the method could be
improved.

The investigatory experiment was conducted using a subset of the orig-
inal ImageCLEFmed-MEDVQA-GI-2023 dataset. The subset was chosen to
be on 5000 samples, corresponding to 9,7% of the total dataset. The rea-
son for doing the initial investigatory experiment with this subset is to test
the feasibility of the method and implementation without using excessive
time and computing resources.

4.3.1 Results

The graph in Figure 4.1 shows the training and evaluation loss for the
training session over 3 epochs, with 8 evaluation steps during training.
As seen by the graph, the model has a decrease in loss midway before it
flattens out without a further significant decrease. This can suggest that
the model is able to fit the data in the training set. However, since it does

89

LoRA Training Parameters

Parameter Value

Number of trainable LoRA parameters: 4,194,304
All parameters in Alpaca-VQA: 6,742,609,920

Trainable percent: 0.0622%

Table 4.2: Overview of the number of trained parameters using LoRA.

not continue to decrease, it indicates that the model has already learned
the relevant parts midway through the training. It can also be seen that
the evaluation loss follows the training loss closely, indicating that the
model does not overfit the available data. The loss flattens towards the
end, suggesting that the chosen hyperparameters were reasonable for the
size of this training data. However, changing hyperparameters such as
learning rate or LoRA parameters may improve the model. By increasing
the size of the LoRA update matrices, the model could learn more features,
which could increase the fit.

It can also be seen that evaluation loss closely follows the same trend
as the training loss. The loss on the validation data is expected to be
lower than the training data, which is often called the generalization gap.
When the training and evaluation loss follow each other, separated by
the generalization gap, it can indicate that the model did not overfit the
available data. If the model were to overfit, the gap between training and
evaluation loss would tend to increase at the end. Training loss would
continue to decrease, and evaluation loss would flatten out or possibly
increase.

In order to see how well the model scores on the test set of 5,000
samples, a classification report can be seen in Table 4.3. The columns
are class labels, the precision, recall, and F1 scores for each class, and the
number of occurrences of each class in the test set in the column Support.
At the bottom of the table, the accuracy and average score are calculated.
This classification report shows that the model has an overall accuracy
of 26% and is the most accurate in classifying the classes "0" and "Not
relevant".

90

Steps

Lo
ss

0,00

0,50

1,00

1,50

1 2 3 4 5 6 7 8

Training loss Evaluation loss

5,000 Training and Evaluation Loss

Figure 4.1: Graph over training loss for the initial experiment on 5,000
samples.

Table 4.3: Classification Report: Investigatory Experiment

Class Precision Recall F1-score Support
0 0.51 1.00 0.68 298
1 0.00 0.00 0.00 215

11-20mm 0.00 0.00 0.00 16
2 0.00 0.00 0.00 63
3 0.00 0.00 0.00 5

5-10mm 0.00 0.00 0.00 14
< 5mm 0.00 0.00 0.00 18
>20mm 0.00 0.00 0.00 19

Biopsy forceps 0.00 0.00 0.00 9
Black 0.00 0.00 0.00 2
Blue 0.00 0.00 0.00 1

Brown 0.00 0.00 0.00 3
Cecum 0.00 0.00 0.00 7
Center 0.00 0.00 0.00 222

Center-left 0.00 0.00 0.00 167
Center-right 0.00 0.00 0.00 166

Continued on next page

91

Table 4.3 – continued from previous page
Class Precision Recall F1-score Support

Colonoscopy 0.00 0.00 0.00 144
Gastroscopy 0.00 0.00 0.00 51

Grey 0.00 0.00 0.00 1
Lower-center 0.00 0.00 0.00 190

Lower-left 0.00 0.00 0.00 125
Lower-right 0.00 0.00 0.00 150
Metal clip 0.00 0.00 0.00 1

No 0.00 0.00 0.00 492
Not 0.00 0.00 0.00 0

Not relevant 0.27 0.89 0.41 1,057
Oesophagitis 0.00 0.00 0.00 51

Orange 0.00 0.00 0.00 3
Paris iia 0.00 0.00 0.00 25
Paris ip 0.00 0.00 0.00 22
Paris is 0.00 0.00 0.00 21

Pink 0.00 0.00 0.00 158
Polyp 0.00 0.00 0.00 65

Polyp snare 0.00 0.00 0.00 6
Red 0.00 0.00 0.00 125
Tube 0.00 0.00 0.00 43

Ulcerative colitis 0.00 0.00 0.00 43
Upper-center 0.00 0.00 0.00 184

Upper-left 0.00 0.00 0.00 156
Upper-right 0.10 0.13 0.12 142

Violet 0.00 0.00 0.00 1
White 0.00 0.00 0.00 108
Yellow 0.00 0.00 0.00 19

Yes 0.09 0.10 0.10 343
Z-line 0.00 0.00 0.00 47
Grey 0.00 0.00 0.00 2

Accuracy 0.26 5,000
Macro Average 0.02 0.05 0.03 5,000

Weighted Average 0.10 0.26 0.14 5,000

92

4.3.2 Analysis

In order to investigate why the model does not have a higher accuracy
and only gets a few of the classes correctly classified, its answers should
be examined. As seen in Table 4.4, of the 5,000 test samples, the model
answers with class "Not relevant" in 70.14% of the instances. It can also be
seen that it only answers with five class labels on the test samples. This
could be a result of the unbalanced dataset and the fact that it has not
learned to generalize well.

Answers given by investigatory model

Class Label Count of answers given

Not relevant 3,507
0 583

Yes 385
Not 343

Upper-right 182

Table 4.4: Answers given by the investigatory model on the test set of 5,000
samples.

It is helpful to analyze the dataset used in training to investigate why
the model often answers with "Not relevant". As seen in Figure 4.2, the
majority of correct answers in the dataset are of the class "Not relevant".
This dataset can be balanced by either over-sample the non-majority
classes or under-sample the abundant class, making the model learn
that "Not Relevant" is not the best answer in 21,7% of all questions.
Going further in the following experiments, the original dataset will
be modified. The class "Not relevant" is removed, and the rest of the
dataset stays the same. The rationale behind not doing any additional
sampling modifications is to reflect the natural occurrences of question-
answer pairs in the original dataset. Since this dataset is based on real-
world examinations in a hospital, the number of occurrences in the dataset
could reflect the real-world occurrence of these findings. In contrast, if this
dataset were made synthetically and did not have biases from real-world
examinations, there would be more reasonable to modify the number of
occurrences of the classes to get a better fit.

The Alpaca-VQA model will be trained on a larger dataset in the next
section. This is to explore how well it can fit the available data and which

93

insights can be gained.

46 other labels
13,2%

Lower-center
3,7%
1
4,3%

Red
2,5%
Upper-right
2,9%

Upper-left
3,0%

Not relevant
21,7%

No
9,7%
Yes

6,9%
0

6,0%
Center

4,4%

ImageCLEFmed-MEDVQA-GI-2023 answer label balance

Figure 4.2: Overview of the answer label balance in the ImageCLEFmed-
MEDVQA-GI-2023 dataset. The category "Other" is a collection of 46 labels
that occur in less than 2,5% of the samples.

4.4 Main Experiment

In this experiment, the model is trained on four times as much data
as in the investigatory experiment. As noted in the analysis of the
previous experiment, the dataset used in this experiment is the same as
the original, only with the class "Not relevant" removed. Removing this
class completely also allows the model to see more relevant data since
many of the chosen samples are no longer from the "Not relevant" class.
By removing this class, the 20,000 samples will contain more question-
answer samples that are relevant to this classification problem.

The dataset was split as shown in Figure 4.3, with the original dataset
split in two, where the first part was used to train the model, and the
second part was used to test and train the proxy model. The reason for
leaving half of the dataset unused during the training of the model was
to preserve unseen data that could be used to train the proxy model and

94

to test how the model would perform on unseen data. While the model
presumably would be able to fit the new task of seeing images given more
data, it will still be possible to evaluate if this method is able to interpret
image data. How the preserved test data is used to train the proxy model
will be discussed later in subsection 4.5.3.

52 000 samples

Training and Evaluation Test and Proxy Model

Training Evaluation

70% 30%

Figure 4.3: Illustration on how the dataset was split into training,
evaluation, and testing data.

While training the model on considerably more data would be
interesting, the time and computing cost for this experiment would not
justify the possible better-trained system, resulting in a more generalized
and nuanced model. The experiments carried out with the Alpaca-VQA
model aim to investigate how an LLM would perform on a VQA task with
image features encoded in the text. The final dataset used for training in
this experiment contains 20,000 samples, and the class distribution can be
seen in Figure 4.4.

The hyperparameters used in this experiment are the same as in the
previous experiment and can be seen in Table 4.1, with a batch size of
256, as previously discussed. While the dataset used in this experiment
contains four times more samples than in the previous experiment,
the image feature extraction is still the extracted top 100 features from
the VGG-16 model. Due to the similarities in the data samples, the
hyperparameters are kept the same to see how the Alpaca-VQA model
responds to a larger dataset.

Because of the larger dataset, more evaluation steps were used to help
the model correct during training. In the investigatory experiment, 8 steps
were used during the runtime. In this training session, with four times
as much training data, the number of steps was chosen to be every 10th

95

33 other labels
9,8%

Center-left
4,1%
Pink
4,2%
Center-right
4,3%

White
2,6%

Red
3,2%

No
12,5%

Yes
9,0%

0
7,7%

1
5,7%

Center
5,6%

Lower-center
4,7%

Upper-center
4,6%

ImageCLEFmed-MEDVQA-GI-2023 answer label balance -
modified

Figure 4.4: Overview of the answer label distribution in the
ImageCLEFmed-MEDVQA-GI-2023 dataset, modified with the class "Not
relevant" removed. The category "Other" is a collection of 33 smaller la-
bels in the training data and is only used in this visualization, and is not
an actual class.

training step, resulting in 46 evaluation steps in total.
The Alpaca-VQA model on 20,000 samples was trained on an Nvidia

A100 with 40 GB VRAM. It took fifteen and a half hours to run, including
image encoding, fine-tuning, and evaluating the model.

4.5 Results

This section evaluates the results for the Alpaca-VQA model trained
on 20,000 samples, where 70% was used as training data and 30%
as evaluation. The training results will be discussed alongside the
classification report, transition scores, proxy model, and a blinded model.

First, the training and evaluation loss graph during this training
session can be seen in Figure 4.5. In this graph, it can be seen that the
model converges relatively fast and stabilizes during the training run.

96

Steps

Lo
ss

0,0

0,5

1,0

1,5

0 10 20 30 40

Evaluation loss Training loss

20,000 Training and Evaluation Loss

Figure 4.5: Graph over training loss for 20,000 samples.

This can indicate that the model was able to fit the available training data
and fine-tune its LoRA update matrices to the training data. Regarding
the number of evaluation steps, it can be seen that the evaluation loss is
approximately the same as the training loss at step 10. At this step, it can
also be seen that the loss for both training and evaluation flattens out. This
can indicate that the model has fitted its parameters to the available data
and did not have more quality data to learn from.

4.5.1 Classification Report

In order to test how the model was able to fit the training data, a test set
was used. The test set was from the same dataset as the training data but
naturally did not overlap with the training and evaluation data.

As the test result should be used later in order to fit a proxy model,
the test set was chosen to be 20,000 samples. These samples should not
be confused with the ones used for training and evaluation, as the dataset
was split, as previously shown in Figure 4.3.

The classification report is shown in Table 4.5. As noted in this table,
the Alpaca-VQA scores an accuracy of 29% on the test set. The number
of occurrences in each class shows that this test set is also unbalanced and

97

has approximately the same distribution as the training set.
A simplified classification report can be found given that Table 4.5 is

a large table that can be hard to interpret. As the F1 score is a harmonic
mean of the precision and recall, it can be used to indicate how well the
model performs in each class. By removing the classes where the F1 score
is 0 from Table 4.5, the result is a simplified representation that can be seen
in Table 4.6. From this table, it can be more clearly seen that the classes the
trained model performs well on have a high presence in the training set,
as previously shown in Figure 4.4. Logically, the model performs better on
data it has seen and not as well on data it has not been exposed to. From
the difference between the full Table 4.5 and the simplified Table 4.6, it can
also be seen that despite having relatively high occurrence in both training
and testing sets, the Alpaca-VQA model falsely categorizes classes with
localization and color labels. One possible explanation for this is that the
image encoder, the VGG-16 model, does not have localization abilities, as
it is not designed to output ROI or multiple objects with bounding boxes.
As it is not fine-tuned on the images in this dataset but rather pretrained
on ImageNet, the predicted classes may not correlate with colors.

Table 4.5: Classification Report on Test Set - Model trained on 20,000
question-answer pairs.

Class Precision Recall F1-score Support
0 0.54 0.92 0.68 1,551
1 0.52 0.16 0.25 1,132

11-20mm 0.00 0.00 0.00 97
2 0.00 0.00 0.00 306
3 0.00 0.00 0.00 13
4 0.00 0.00 0.00 2
5 0.00 0.00 0.00 2

5-10mm 0.00 0.00 0.00 100
< 5mm 0.00 0.00 0.00 55
>20mm 0.00 0.00 0.00 71

Biopsy forceps 0.00 0.00 0.00 43
Black 0.00 0.00 0.00 9
Blue 0.00 0.00 0.00 4

Brown 0.00 0.00 0.00 10
Continued on next page

98

Table 4.5 – continued from previous page
Class Precision Recall F1-score Support

Cecum 0.00 0.00 0.00 33
Center 0.00 0.00 0.00 1,121

Center-left 0.10 0.14 0.12 831
Center-right 0.11 0.43 0.17 861
Colonoscopy 0.98 0.05 0.10 761
Gastroscopy 0.00 0.00 0.00 242

Green 0.00 0.00 0.00 3
Grey 0.00 0.00 0.00 16
Ileum 0.00 0.00 0.00 2

Injection needle 0.00 0.00 0.00 1
Lower-center 0.00 0.00 0.00 938

Lower-left 0.00 0.00 0.00 616
Lower-right 0.11 0.06 0.08 769
Metal clip 0.00 0.00 0.00 11

No 0.66 0.46 0.54 2,505
Oesophagitis 1.00 0.00 0.01 240

Orange 0.00 0.00 0.00 16
Pale Pink 0.00 0.00 0.00 1
Paris iia 0.00 0.00 0.00 95
Paris ip 0.00 0.00 0.00 101
Paris is 0.00 0.00 0.00 125

Pink 0.38 0.04 0.07 819
Polyp 0.25 0.96 0.39 311

Polyp snare 0.00 0.00 0.00 30
Purple 0.00 0.00 0.00 1
Pylorus 0.00 0.00 0.00 1

Red 0.29 0.27 0.28 629
Tube 0.00 0.00 0.00 218

Ulcerative colitis 0.00 0.00 0.00 250
Upper-center 0.00 0.00 0.00 944

Upper-left 0.00 0.00 0.00 764
Upper-right 0.11 0.38 0.16 729

White 0.00 0.00 0.00 520
Yellow 0.02 0.06 0.03 79

Continued on next page

99

Table 4.5 – continued from previous page
Class Precision Recall F1-score Support
Yes 0.59 0.98 0.74 1,778

Z-line 0.00 0.00 0.00 220
Brown 0.00 0.00 0.00 4
Grey 0.00 0.00 0.00 7

Purple 0.00 0.00 0.00 3
Accuracy 0.29 20,000

Macro average 0.09 0.08 0.06 20,000
Weighted average 0.30 0.29 0.24 20,000

Table 4.6: Simplified Classification Report on Test Set, only non-zero F1
scores - Model trained on 20,000 question-answer pairs.

Class Precision Recall F1-score Support
0 0.54 0.92 0.68 1,551
1 0.52 0.16 0.25 1,132

Center-left 0.10 0.14 0.12 831
Center-right 0.11 0.43 0.17 861
Colonoscopy 0.98 0.05 0.10 761

No 0.66 0.46 0.54 2,505
Oesophagitis 1.00 0.00 0.01 240

Pink 0.38 0.04 0.07 819
Polyp 0.25 0.96 0.39 311
Red 0.29 0.27 0.28 629

Upper-right 0.11 0.38 0.16 729
Yellow 0.02 0.06 0.03 79

Yes 0.59 0.98 0.74 1,778

The classification reports are just a score on the top-level prediction of
the model and do not give insight into why or how the model classifies
labels. The next two subsections present different approaches to gaining
insight into how the model predicts its answers. Having ways to present
how the model works can aid in determining how much a user can trust
the answers given by a system.

100

4.5.2 Visualizing Transition Scores

This subsection explores the transition scores given by the Alpaca-VQA
model when it generates its answers. These scores can provide valuable
insights into how the model processes and generates its responses. This
insight can help understand which words or tokens in the input are
most influential when generating an answer. Transition scores represent
the attention or importance given to the different parts of the input
sequence when generating new tokens in the output. Visualizing the
transition scores can also reveal patterns and biases in the model’s
attention mechanism, like if the attention biases specific tokens.

As the Alpaca-VQA model uses the transformer architecture from
HuggingFace, implementing the transition scores is as simple as List-
ing 4.1

1 # Generate output tokens
2 generation_output = model.generate(
3 input_ids=input_ids ,
4 generation_config=generation_config ,
5 return_dict_in_generate=True ,
6 output_scores=True ,
7 max_new_tokens =256,
8 temperature =0.1,
9 top_p =0.75,

10 top_k=40,
11 num_beams=4,
12)
13

14 # Compute transition scores
15 transition_scores = model.compute_transition_scores(
16 generation_output.sequences ,
17 generation_output.scores ,
18 normalize_logits=True
19)

Listing 4.1: Example of how to generate transition scores

In Table 4.7, examples of transition scores computed by Alpaca-VQA
on various questions are displayed. These scores should be seen in
conjunction with the distribution of classes in the training set, which was
previously discussed and can be seen in Figure 4.4. As the model uses the
connections made during training when predicting answers, the transition
scores with high probability are usually from one of the majority classes

101

Transition Scores

Question Ground Truth
Predicted

Token
Transition Score

Are there any anatom-
ical landmarks in the
image?

No No 21.20%

Where in the image is
the instrument?

Upper-left
Lower 50.49%

- 99.76%
left 40.16%

How many polyps are
in the image?

0 0 90.38%

What type of
procedure is the image
taken from?

Laparoscopy

Comput 53.12%
ed 47.85%

tom 97.61%
ography 99.41%

What type of polyp is
present?

Paris is

Par 19.25%
ap 41.16%
lex 71.34%
is 46.92%

What type of
procedure is the image
taken from?

Colonoscopy

Col 19.29%
on 99.80%
os 100.00%

copy 99.90%

Table 4.7: Examples of transition scores computed by Alpaca-VQA. All
questions were asked in relation to an image input.

in the training set. Examples of these, as shown in Table 4.7 are "Lower"
and "0". It can also be seen how the Alpaca-VQA model splits up words
into tokens, like how "Computed Tomography" gets split into tokens that
can be used in other words. For example, the token "comput" be used in
words like "computer", "computed", "computing", and so on. By splitting
the words into non-redundant tokens, the tokenizer keeps the dictionary
of tokens efficient.

An interesting finding is that the predicted answers are not always
from the fine-tuning dataset. In Table 4.7, the predicted answers
"Computed Tomography" and "Paraplexis" does not occur in the dataset
Alpaca-VQA is fine-tuned on, namely ImageCLEFmed-MEDVQA-GI-
2023. It can also be seen in the case of "Paraplexis" that the model correctly

102

identifies the first token, par, although with a low score. Then the model
follows up with the tokens it thinks finish the word by predicting ed
with a 47,85% score. Most likely, "Paraplexis" was predicted by having
a higher average score in the four beams than the correct answer. In the
training data, there are many instances describing polyps using the Paris
classification system. This makes the token par have a high probability of
being the correct start token. However, as there are many labels that start
with this token but end in a distinct class, the tokens that follow may not
be as easily estimated.

The base model of Alpaca-VQA, the Stanford Alpaca, is a fine-tuned
instruction-following model based on the LLaMA 7 billion parameters
model. Upon investigation, "Computed Tomography" and "Paraplexis" are
not part of this instruction-following fine-tuning dataset either. Therefore
the knowledge of these medical subjects originates from the original
LLaMA model. As noted in Table 2.1 on Page 48, the dataset used for pre-
training the LLaMA model is disclosed and based on publicly available
data, but not made public as the time of writing. Therefore it can not be
known exactly where this information stems from, other than from the
dataset used for pre-training the LLaMA 7B model.

Comput ed tom ography

53.12% 97.61%47.85% 99.41%

Par ap lex is

19.25% 71.34%41.16% 46.92%

Lower - left

50.49% 40.16%99.76%

Visualized Transition Scores

Figure 4.6: The visualized transition scores of Alpaca-VQA.

When using the transition scores calculated, the scores can be seen as a
decimal value between zero and one. This value can be used as a weight
when applying color to each individual token. Some of the predicted
answers from Table 4.7 are visualized using this method in Figure 4.6.

103

As transition scores can be useful to get insight into how confident the
model is when predicting a token, visualizing the scores can make them
more intuitive for a user. Instead of only presenting the transition scores
as percentages, colors are more often understood by non-technical users.
By making more of the model presentable in an intuitive way, more users
can gain insight into how it works and where it can be improved. The next
subsection will explain another way to make models more transparent and
presentable to humans. The experiment uses a proxy model explained by
LIME.

4.5.3 Proxy model and LIME

This subsection will describe how the proxy model and LIME method
were adapted to give insight into how the Alpaca-VQA model works.

Proxy model

The proxy model used to interpret the Alpaca-VQA model was trained on
the predicted outputs of the LLM. These answers were generated using
half of the available dataset, as shown in Figure 4.3. The rationale behind
this was to see how well the Alpaca-VQA model performed on unseen
data that could be used to fit the proxy model so that it mimics the
underlying model. The available test set of 20,000 samples with predicted
answers by the Alpaca-VQA model was used as a training and testing
set for the proxy model. The dataset was split into roughly 70% training
data and 30% evaluation data. Because a random split was used, the
precise numbers used were 14,351 for the training set and 5,649 for the
test set. The proxy model is a SDG classifier implemented by SciKit Learn
[175]. The hyperparameters used when training the proxy model are
shown in Table 4.8. Mostly the parameters used are the default for this
implementation of the model, with the most notable difference being that
the loss function is a modified Huber instead of the default hinge, giving
a linear SVM. The modified Huber is a smooth loss function that brings
tolerance to outliers as well as probability estimates, and was chosen
because it gave the best results among the available loss functions.

A classification report was made when the SDG classifier, used as a
proxy model, was fitted. This report can be seen in Table 4.9, and it can
be seen that the model fits the Alpaca-VQA model with a satisfactory

104

SDG Classifier Hyperparameters

Hyperparameter Value

Loss: Modified Huber
Penalty: L2

Alpha: 1e−3

Random state: 42
Max iterations: 1000

Class weight: Balanced

Table 4.8: Overview of the parameters used when training the proxy
model.

accuracy of 84%. This score indicates that the proxy model will answer
the same as the Alpaca-VQA model approximately 84% of the time, given
the same questions and images.

Table 4.9: Proxy Model Classification Report

Class Precision Recall F1-score Support
0 0.87 0.98 0.92 783
1 0.00 0.00 0.00 111

2-3mm 0.00 0.00 0.00 0
3-5mm 0.99 1.00 0.99 99

Center-left 0.77 0.85 0.81 336
Center-right 0.94 0.74 0.83 1,059
Colonoscopy 0.00 0.00 0.00 9
Endoscopy 0.67 0.94 0.78 185

Laparoscopy 0.14 0.04 0.06 60
Lower-right 0.44 0.94 0.60 98

No 0.98 0.93 0.95 532
Oesophagitis 0.00 0.00 0.00 0

Pink 0.29 0.64 0.40 28
Polyp 0.97 0.77 0.86 343

Polypus 0.23 0.95 0.38 22
Red 0.90 0.97 0.93 178

Upper-right 0.86 0.84 0.85 784
Yellow 0.62 0.73 0.67 74

Continued on next page

105

Table 4.9 – continued from previous page
Class Precision Recall F1-score Support
Yes 0.97 0.96 0.96 893

Biopsy 0.00 0.00 0.00 1
Endoscopy 0.45 0.30 0.36 44

Yellow 0.17 1.00 0.29 10
Accuracy 0.84 5,649

Macro average 0.49 0.59 0.51 5,649
Weighted average 0.86 0.84 0.84 5,649

Explaining the proxy model with LIME

In order to interpret this proxy model, the XAI method LIME was fitted.
Specifically, the TextExplainer module [176] was used to adapt to the
proxy model, and the default parameters for TextExplainer were used.
The TextExplainer uses as default an exponential kernel that uses a cosine
distance metric and only uses words present in the text as explanations.
This restriction helps speed up the explanation process, as only the
relevant words are used, and not the whole vocabulary of the LLM.

In order to explain the proxy model, the LIME method first generates a
neighborhood of the data by hiding features randomly from the explaining
instance. Then the explaining instance uses this neighborhood to learn
locally weighted linear models that explain each class. By learning these
linear models, the LIME instance can interpret which word has a high
impact on the predicted outcome.

Even though the stacked model design of this explanation pipeline
can obscure the underlying Alpaca-VQA model, there are still some
insights to be obtained. The LIME model is designed to give locally
accurate interpretations of which parameters the underlying model uses.
Therefore, the LIME model should be transparent to the proxy model.
However, the proxy model has no transparency of which features it bases
its decisions on. The similarities between the Alpaca-VQA model and the
proxy model are that they both are trained on data from the same dataset
and sample distribution, with the proxy model ignoring ground truth
and using the predicted answer from Alpaca-VQA as its correct answer.
Therefore, the proxy model does not give a locally accurate representation

106

of the inner workings of the underlying model and may weigh the inputs
differently than the Alpaca-VQA model. Yet, as the proxy model is trained
to mimic the underlying model and fits with an accuracy of 84%, there is
still a possibility that the proxy model can give insight into how the LLM
work and possibly reveal biases in the dataset.

The outcome of the proxy model being explained by LIME for one
instance can be seen in Figure 4.7. Here it can be seen that the LIME
instance predicts that the input question is most relevant in answering
the question. In this figure LIME highlights words that have a high
impact on the outcome. The four most probable classes are visualized
to the left in the image. The class "Other" is how the LIME instance
classifies the possibility of the predicted class not being in the top four.
In the Figure 4.7, it can be seen that the class "Red" is thought to have
the highest probability of being correct. In the middle of the figure, the
two most probable classes are explained by visualizing the positive and
negative impact different words have on the outcome. The figure shows
that both "Red" and "Yellow" mostly depend on the same words and do
not consider the image features. Additional examples of the proxy model
being explained can be seen in Appendix A.

In this experiment with the proxy model explained by LIME, there is
a likelihood that the model only considers the question and ignores the
image features when predicting an answer. Since this is an indicator that
the model detected some bias in the language used in the questions, the
next experiment removes the image from the input entirely. Testing the
Alpaca-VQA model trained on question-answer pairs, including image
features, and removing the image features during testing, can provide
insight into whether the proxy model exploited the same biases as the
underlying model.

4.5.4 Language-only Alpaca-VQA model

As noted by the authors of the VQA 2.0 dataset [137], it could be observed
that some VQA models in their experiments learned biases in the language
of the question-answer pairs. This was demonstrated by removing the
image altogether from the testing phase and letting the model predict
answers only based on the question. Suppose these language-only models
perform similarly to the models that also can see images. In that case, it

107

Prediction probabilities
0.37Red

0.20Yellow

0.12Upper-right

0.06Pink

0.24Other

NOT Red Red
color

0.15
What

0.05
abnormality

0.05
gong
0.02
286
0.00
545
0.00
168
0.00

NOT Yellow Yellow
color

0.13
What

0.04
16

0.01
abnormality
0.01
545
0.01
186
0.00
238
0.00

Text with highlighted words

instruction: What color is the abnormality?, input: [['Crock Pot', 9.252], ['chocolate sauce', 6.144], ['bagel', 4.794], ['plunger', 4.557], ['dough', 3.14], ['Dutch
oven', 3.096], ['cheeseburger', 2.898], ['ice lolly', 2.743], ['spatula', 2.354], ['ice cream', 2.02], ['shower cap', 1.974], ['mixing bowl', 1.726], ["jack-o'-lantern",
1.711], ["potter's wheel", 1.536], ['sunscreen', 1.485], ['oil filter', 1.464], ['frying pan', 1.4], ['mask', 1.286], ['bucket', 1.179], ['puck', 1.091], ['screw', 0.987],
['hotdog', 0.932], ['meat loaf', 0.886], ['plate', 0.882], ['chambered nautilus', 0.877], ['bathing cap', 0.841], ['paper towel', 0.81], ['bakery', 0.793], ['pick',
0.669], ['ashcan', 0.629], ['soup bowl', 0.605], ['candle', 0.599], ['toilet tissue', 0.59], ['cleaver', 0.555], ['wok', 0.548], ['toilet seat', 0.545], ['rain barrel', 0.52],
['wooden spoon', 0.52], ['red wine', 0.519], ['mashed potato', 0.482], ['piggy bank', 0.478], ['chiton', 0.471], ['spindle', 0.458], ['pretzel', 0.442], ['washbasin',
0.432], ['can opener', 0.42], ['coil', 0.39], ['bottlecap', 0.389], ['mortar', 0.379], ['shield', 0.369], ['burrito', 0.352], ['tub', 0.351], ['acorn squash', 0.349],
['waffle iron', 0.319], ['French loaf', 0.311], ['orange', 0.305], ['crash helmet', 0.301], ['butternut squash', 0.295], ['paintbrush', 0.288], ['Band Aid', 0.286],
['bath towel', 0.282], ['head cabbage', 0.28], ['lotion', 0.274], ['potpie', 0.273], ['hog', 0.272], ['conch', 0.261], ['ocarina', 0.255], ['stingray', 0.254], ['caldron',
0.254], ['packet', 0.239], ['Granny Smith', 0.238], ['plastic bag', 0.232], ['wig', 0.224], ['book jacket', 0.224], ['French bulldog', 0.22], ['swab', 0.213],
['washer', 0.208], ['pencil sharpener', 0.207], ['ladle', 0.206], ['electric ray', 0.194], ['butcher shop', 0.193], ['screwdriver', 0.189], ['gasmask', 0.188], ['soap
dispenser', 0.186], ['bull mastiff', 0.183], ['power drill', 0.182], ['whiskey jug', 0.181], ['nipple', 0.176], ['switch', 0.176], ['gong', 0.172], ['nematode', 0.168],
['bathtub', 0.168], ['fig', 0.162], ['pitcher', 0.16], ['safety pin', 0.16], ['espresso', 0.16], ['cup', 0.16], ['stove', 0.158], ['isopod', 0.157], ['tick', 0.156]]

Figure 4.7: The proxy model explained by LIME. The correct answer
is Pink, Alpaca-VQA predicted Red, and this is the explanation of the
prediction.

is an indicator that the model has exploited severe language biases and
mainly uses these when answering a question. Therefore, it pays too
much attention to the language parts of the input and not using the image
features. A model that has exploited these language biases will not ground
its answers equally on the question and image, resulting in a reduced
ability to answer correctly, given that the same question can have multiple
images.

The classification report on 20,000 language-only test samples is listed
in Table 4.10. The model used in this experiment is the same as in the
main experiment, trained on text and images but with the images excluded
during testing. As seen in the classification report, the language-only
Alpaca-VQA model has an accuracy of 38% on this test set. Compared to
the model that could also see images, the language-only model managed
to correctly classify more samples without analyzing images.

Generally, a model trained on a larger dataset with more parameters is
expected to perform better than one trained on a smaller dataset. This
performance is because it has more data to learn from, making it able
to capture the underlying patterns in the data more precisely. However,

108

there are certain situations where a model trained on a smaller dataset
may perform better, and it is usually related to the quality of the dataset.
Because the data quality is different, this performance discrepancy can
be why the model tested on language-only performs better than on the
complete VQA dataset on which it was trained on, including images.

One possible reason is that the smaller dataset, without image features,
may have a higher signal-to-noise ratio, meaning the useful data patterns
are more precise and distinct. A dataset with a higher signal-to-noise ratio
makes it easier for the model to learn and generalize well to new data.
In contrast, a larger dataset with more parameters may have more noise
or variability, making it harder for the model to distinguish the relevant
patterns. More noise may lead to overfitting or poor generalization
performance. In this example, from the loss curve, there is a possibility
that the Alpaca-VQA model did not generalize well to the available data,
as the graph flattens relatively early in the training phase.

Another possible reason is that the samples with fewer features better
represent the target distribution or application domain and may capture
the key patterns and characteristics relevant to the task. In contrast,
a larger dataset may contain more diverse or irrelevant data that can
dilute the important signal and affect the performance of the model.
One rationale is that the language-only model’s higher accuracy can be
explained by the fact that the image features are considered noise to the
language model and that it can not utilize the information given.

Table 4.10: Language-Only Alpaca-VQA: Classification Report on 5,000
question-only samples.
Model trained on 20,000 question-answer pairs, including images. Tested
on only questions.

Class Precision Recall F1-score Support
0 0.70 0.91 0.79 1,551
1 0.57 0.51 0.54 1,132

11-20mm 0.30 1.00 0.46 97
2 0.00 0.00 0.00 306
3 0.00 0.00 0.00 13
4 0.00 0.00 0.00 2
5 0.00 0.00 0.00 2

Continued on next page

109

Table 4.10 – continued from previous page
Class Precision Recall F1-score Support

5-10mm 0.00 0.00 0.00 100
< 5mm 0.00 0.00 0.00 55
>20mm 0.00 0.00 0.00 71

Biopsy forceps 0.08 1.00 0.15 43
Black 0.00 0.00 0.00 9
Blue 0.00 0.00 0.00 4

Brown 0.00 0.00 0.00 10
Cecum 0.00 0.00 0.00 33
Center 0.00 0.00 0.00 1,121

Center-left 0.11 0.87 0.19 831
Center-right 0.00 0.00 0.00 861
Colonoscopy 0.76 1.00 0.86 761
Gastroscopy 0.00 0.00 0.00 242

Green 0.00 0.00 0.00 3
Grey 0.00 0.00 0.00 16
Ileum 0.00 0.00 0.00 2

Injection needle 0.00 0.00 0.00 1
Lower-center 0.00 0.00 0.00 938

Lower-left 0.00 0.00 0.00 616
Lower-right 0.00 0.00 0.00 778
Metal clip 0.00 0.00 0.00 11

No 0.73 0.38 0.50 2505
Oesophagitis 0.00 0.00 0.00 240

Orange 0.00 0.00 0.00 16
Pale Pink 0.00 0.00 0.00 1
Paris iia 0.30 1.00 0.46 95
Paris ip 0.00 0.00 0.00 101
Paris is 0.00 0.00 0.00 125

Pink 0.39 1.00 0.56 819
Polyp 0.00 0.00 0.00 311

Polyp snare 0.00 0.00 0.00 30
Purple 0.00 0.00 0.00 1
Pylorus 0.00 0.00 0.00 1

Red 0.00 0.00 0.00 629
Continued on next page

110

Table 4.10 – continued from previous page
Class Precision Recall F1-score Support
Tube 0.00 0.00 0.00 218

Ulcerative colitis 0.25 1.00 0.40 250
Upper-center 0.16 0.14 0.15 944

Upper-left 0.00 0.00 0.00 764
Upper-right 0.00 0.00 0.00 729

White 0.00 0.00 0.00 520
Yellow 0.00 0.00 0.00 79

Yes 0.71 0.80 0.75 1,778
Z-line 0.28 1.00 0.44 220
brown 0.00 0.00 0.00 4
grey 0.00 0.00 0.00 7

purple 0.00 0.00 0.00 3
Accuracy 0.38 20,000

Macro average 0.10 0.19 0.11 20,000
Weighted average 0.31 0.38 0.31 20,000

4.6 Discussion

This research project has aimed to explore how different explanatory
methods could provide additional insights into how larger, more complex,
and opaque models interpret the underlying data.
For the visual domain, the original question was:

• Will the answers given by a VQA system be more intuitively
explained with additional locally accurate image descriptions?

As the FLEX-VQA model did not materialize in results, the visual
explanation was done by fitting a proxy model, which was explained by
LIME. Considering that the proxy model and LIME were not designed
to describe an image but rather to use text as input data, the image
features were encoded as text. Therefore, the essential elements could
be highlighted by the TextExplainer method in LIME. In subsection 4.5.3,
it was shown that the Alpaca-VQA model on this specific dataset did
not evaluate the visual features as necessary compared to the question.

111

Still, the experiment aimed to investigate if these visual highlights
would intuitively bring additional important information. The visual
representation of the input features of the proxy model was highlighted
using a locally accurate XAI method, LIME. These features made it more
straightforward to investigate further, leading to the experiment with the
language-only Alpaca-VQA model. As concluded in subsection 4.5.4, the
model tested on language-only confirmed that the model mostly paid
attention to the questions and not evaluating the image features. As
this finding was consistent with the proxy model, it provided valuable
insight into how the model used the available data. Even though a stacked
proxy model design can obscure the underlying model’s inner workings,
it proved helpful in investigating how the Alpaca-VQA model may have
used the input data.

In the linguistic domain, the initial research questions were:

• To which degree can an LLM fine-tuned on a new modality bring
new insights from its pertaining?

• What insights can additional explanatory methods bring from an
LLM after training is complete?

The first question was demonstrated in the experiment by visualizing
the attention scores in subsection 4.5.2. The Alpaca-VQA model used
knowledge from the underlying LLaMA model when predicting answers.
As these answers from previous training did not occur in the test
set, the model did not answer the question correctly. However, the
model understood how the question was structured and appropriately
responded with a medically relevant term, which could be correct given
a different input image. This suggests that the model’s a priori general
knowledge from pre-training could potentially enhance responses when
tested on more open-ended tasks or questions. It was fine-tuned to
provide a single answer to facilitate the evaluation of the Alpaca-VQA
model. This contrasts how many LLMs are trained as conversation
systems that generate longer sentences or paragraphs. As the Alpaca-
VQA uses LoRA weights for fine-tuning, it performs as well as the original
Stanford Alpaca model on the tasks it was initially trained on. This allows
the Alpaca-VQA model to work as an extension on an already capable
LLM. Consequently, Alpaca-VQA can handle more free-form responses

112

when given free-form questions, where the knowledge from the pre-
training can contribute to a better answer.

To investigate the second research question, the proxy model and
visualization of the Alpaca-VQA model were implemented after the LLM
completed its fine-tuning. Yet, they proved instrumental in interpreting
the decision-making process of the underlying model. Consequently,
the conducted experiments in this study shed light on how post-hoc
explanatory models can aid in comprehending larger and more complex
models without compromising the accuracy that the larger model can
provide.

As explored in this chapter, visualizing transition scores and having
proxy models explained by XAI methods like LIME can give insight into
how the larger underlying model handles the data. Even though one extra
model is stacked on top of the explainability pyramid, it can still provide
an understanding of how the model functions.

An analogy of this proxy model is how most computer vision systems
tackle predicting a person’s mood by looking at their face. Instead
of trying to analyze every facial muscle that makes up the expression,
the system looks at the resulting expression when predicting the mood.
Another example may be how humans can determine the species of trees.
As taking a DNA sample every time is relatively resource-intensive, most
people use features such as the shape of the leaves, the color, and the
structure of the bark. In this example, the LLM represents the DNA, the
proxy model represents the outside of the three, and LIME represents
which features to pay attention to and why these are important. Using
a proxy model, the LLM can make a prediction, and some of the details
can be abstracted to more high-level features, which can be explained by
intuitive methods like LIME.

In the experiment with the proxy model explained by LIME, like in
Figure 4.7, it was discovered that the proxy model primarily evaluated the
question when predicting an answer. This finding was not definite proof
that Alpaca-VQA did not evaluate the image features. Still, it highlighted
the possibility that the data could be exploited using biases in the linguistic
part of the dataset.

The Alpaca-VQA model, trained on questions and images, was blinded
during testing to investigate this finding further. By having the model
trained on seeing images, not receiving images, the possibility of it not

113

using the image features could be explored. The model achieved higher
accuracy when testing this language-only data than the one tested with
questions and images. This finding suggests that the Alpaca-VQA model
trained on the current dataset has learned to exploit linguistic biases,
possibly combined with taking advantage of the dataset used being
unbalanced.

The transition scores can be calculated by exploring how the LLM
predicts the next token. In the experiments in subsection 4.5.2, the
transition scores were visualized by studying how these scores progress
throughout the predicted answer. A user can gain insight into how
the model samples from the available distribution of tokens. Further
insights about how the model interprets the dataset can be gained by
complementing the resulting transition scores with a proxy model. By
leveraging additional models and explanation methods, a user can get a
combined interpretation of how larger, more complex, and opaque models
may use the available data when predicting outputs. Another advantage
of these additional models and explanation methods is that they require
much fewer computing resources than training the primary model. This
makes these complimentary explanation models have a little-to-no impact
during inference, compared to the processing time of an LLM. These
explanation methods will, therefore, add additional information on how
the model computes an answer, in combination with details on how the
model may use the data. These insights can facilitate a user in gaining
important information on how the model solves the task.

From the classification reports, it could be seen that the Alpaca-VQA
model had relatively low accuracy. During the generation of answers, as
seen when visualizing transition scores, the model sometimes predicts
answers not present in the fine-tuning dataset. This demonstrates the
ability of the LoRA implementation to resist catastrophic forgetting, letting
the model continue to learn new features without forgetting what has
already been learned. This prediction of answers not present in the test
dataset may be why the model does not achieve higher accuracy. As
discussed earlier, another reason for the low accuracy may be that the
image features encoded into the input text prompt do not bring more
signal than noise to the model. The language-only Alpaca-VQA model
did achieve higher accuracy than the one using image features, hinting
that the visual elements bring more noise than value into the model.

114

Regarding the FLEX-VQA model, although no experiments were
conducted using this model, the method still provides a novel take on
the VQA task. Using labeled feature maps from a CNN to generate
supplementary captions to an input image would allow for an explanation
grounded in locally accurate features. As the goal of VQA is to answer
a question as accurately as possible, it only gives insight into a single
instance of how the model interprets the task. The XAI method LIME also
explains a single, locally accurate sample but can give a global insight into
a model by explaining multiple single instances. The way LIME achieves
this global explanation is by utilizing a submodular pick algorithm to
isolate instances with non-redundant features. These non-redundant
instances are explained by LIME, and combined, they give a more global
understanding of how the underlying model works. By having the FLEX-
VQA model both answer the specific question and supplement with a
description of the image, using the locally accurate image features, the
model can achieve both a locally accurate and a more global explanation
of the image. As the image features are used to make the description,
the model uses locally accurate image features to create a descriptive text
using natural language that describes the image in a broader way than just
answering the specific answer. Given both the answer and the description
of a single instance, a user can achieve a complete picture of how the
model interprets the task.

4.7 Summary

This chapter presents the results of examining the Alpaca-VQA model,
an LLM designed to answer questions about the contents of images. An
investigatory experiment was conducted to see how the model responded
to the available dataset. The dataset was modified to remove the majority
class to make more of the samples relevant to the specific task.

The Alpaca-VQA model was trained on the larger dataset of 20,000
samples. From the classification report, it could be seen that the model
had learned biases in the dataset and potentially exploited biases in the
questions. These findings were discovered using explanatory post-hoc
methods. Specifically, these methods were a proxy model explained
by LIME and visualizing transition scores of the LLM. These additional
methods gave supplementary information not present in the original

115

model, which helped provide an understanding of how the model may
exploit biases in the dataset.

To explore the possibility of linguistic biases in the model, which could
lead to inaccurate or unfair results, a language-only version of the model
was tested, and compared its performance to the original version that used
both images and language.

The key finding of this research is that larger and more complex
models, like an LLM, can be explained by smaller methods added after
the primary model has completed training. These additional models add
no significant resources use or compute time during inference but provide
valuable insights into the model. In addition, these supplementary models
do not change how the larger, more complex model works. Therefore,
these models can combine complex methods with layers of explanation
that bring valuable insights with no cost to the accuracy of the primary
model.

116

Chapter 5

Conclusions

5.1 Summary

This thesis has explored the realm of deep neural networks and the
potential ways these can be explained. This work has focused on
multimodal VQA models and how these can be explained in both the
visual and linguistic domains. The VQA task has the benefit of being
interactive so that a user can input an image and ask a question regarding
the contents of the image. Therefore, the model that processes these
requests must be a multimodal model that can comprehend both text and
images and fuse these to give a correct answer.

Two distinct frameworks were introduced and discussed to provide
better explanations and transparency to VQA methods. The first is
named FLEX-VQA and combines a robust VQA method with the FLEX
framework to give locally accurate image descriptions alongside the
response to the user’s question. This method uses natural language
to explain locally accurate and faithful image features. An image and
corresponding caption are inputted during training and used to find co-
occurrences between feature maps of the image network and words in
the caption. During interference, the system uses the gradient of the
predicted class backpropagated in the CNN. The feature maps found in
this backpropagation are labeled with the word of highest co-occurrence
from the training set and used to generate a natural language description
of the image. This ensures that the image description is based on relevant
words associated with the predicted class and only features present in the
image. This description, faithful to the underlying model combined with

117

a VQA task, makes an interactive system where users can ask questions
and get informative answers. As this method did not have results, it was
discussed in depth so that future works can use it as motivation for new
explainable methods.

The second method described in this work is the Alpaca-VQA model.
This is an LLM in the LLaMA family, trained to interpret images and
answer questions. As language models by design are usually not mul-
timodal, the image features were extracted using a CNN, which then was
encoded into the input text. To make this model even more computation-
ally efficient than originally, a LoRA implementation is used. This freezes
the weights of the LLM and only adds a smaller update matrix during
training. Using this optimization, the model can learn new tasks with-
out forgetting what it was previously trained on. During interference, the
input was put through the original weights and the new update matrix,
and the merged result was given as the output. The dataset used was an
extensive collection of images from the gastrointestinal tract, paired with
questions and answers to each image. LLMs have no intrinsic or intuitive
ways to explain how they interpret the input data or do their reasoning. As
these transformer-based architectures continue to outperform other meth-
ods and therefore get implemented in new systems, it is vital to be able to
interpret their decisions.

This work investigates how smaller and explainable supplementary
methods can be adapted to a larger model to get a more nuanced
understanding. The two methods experimented with are visualizations of
transition scores and a proxy model explained by LIME. The proxy model
gives insight into which parts of the input data may contribute most when
predicting an answer, and the visualization of transition scores provides
insight into the model’s certainty when estimating a new token. Transition
scores extracted during the generation of the LLMs response give insight
into how well the model predicts the token’s fit in the sequence. By
visualizing these scores, based on the transformer self-attention, a user
can get a more intuitive insight into how a sentence is generated. In the
experiments, the visualizations provided intuitive insights into the way
the model uses prior knowledge from pre-training while providing an
assessment of the model’s reliability in generating responses.

The other method used to explain the Alpaca-VQA model was a

118

proxy model trained to simulate the underlying LLM. As LLMs are
computationally expensive to run and often challenging to interpret, a
model mimicking how the model responds while being explained by
LLM was developed. This model was trained on the responses that the
Alpaca-VQA model had given on several image-question-pairs and used
the TextExplainer method in LIME to highlight essential words in making
the given prediction. Although the design of a stacked proxy model offers
the possibility to obscure the inner workings of the underlying model, it
proved useful when investigating how the Alpaca-VQA model used input
data.

With the two explainable post-hoc methods adapted to the Alpaca-
VQA model, they could together bring valuable insight into how the
underlying model may use the input data. Insights gained from these
models indicated that the Alpaca-VQA model seemed to have discovered
a bias in the dataset and only evaluated the questions when responding,
mostly ignoring the encoded image features. A language-only version
of the model was tested to explore if the proxy model and transition
scores had uncovered these linguistic biases found by the Alpaca-VQA
model. The Alpaca-VQA model from the main experiment, trained on
both images and text, was given the same test data but with the image
features removed. As implied by the supplementary explanatory models,
the Alpaca-VQA model utilized biases in the language. This was proven
by the language-only model’s higher accuracy than the one tested on
images and text. As biases in datasets are common, they are sometimes
hard to uncover and can lead to inaccurate or unfair results. As this
finding could have been difficult to discover without these additional
explanatory models, they have proven to be valuable in developing a
complex system with a model that is hard to interpret at the center without
sacrificing accuracy.

Through conducting experiments for this study, insights have been
gained into the usefulness of post-hoc explanatory models in comprehend-
ing larger and more intricate models while maintaining the accuracy that
the larger model can offer.

119

5.2 Main Contributions

The goal of this work has been to investigate to what extent explanatory
models in different domains can provide additional insights into the
underlying data, specifically in the VQA task. The experiments in this
work have proven the ability of post-hoc explanatory models to provide
valuable insight into the underlying model with no cost to the explained
model’s accuracy. The proxy model presents a useful understanding
of how the LLM may work, even though it is not transparent to the
underlying model but instead emulates its behavior. The visualization of
transition scores provides an intuitive description of how LLMs predicts
tokens in a sequence.

In this work, it has been studied how an LLM can be adapted to a
new modality while preserving the knowledge from the pre-training. This
fine-tuned model has then been explained by methods adapted after the
training is complete. These smaller, more explanatory methods have given
valuable insights and indicators of how the LLM works on the given
dataset. By attaching additional explanatory methods to a fully trained
model, the combined solution can leverage all of the initial benefits and
accuracy while still providing users with intuitive justifications for its
answers. Models that are easier for a user to understand make them more
functional and effective for further development.

The key finding of this research is that larger and more complex
models, like an LLM, can be explained by smaller methods added after
the primary model has completed training. These additional models add
no significant resources use or compute time during inference but provide
valuable insights into the model. In addition, these supplementary models
do not change how the larger, more complex model works. Therefore,
these models can combine complex methods with layers of explanation
that bring valuable insights with no cost to the accuracy of the primary
model.

In the experiments carried out in this work, the additional locally accu-
rate explanations proved valuable insights into understanding the model’s
predictions. Visualizations of transition scores and the proxy model ex-
plained through LIME provided valuable supplementary information that
the LLM initially lacked, contributing to a better understanding of its us-
age and reliability.

120

5.3 Limitations and Future Work

As the scope of this project limits what can be explored in this work, not
every aspect of the methods presented and discussed can be examined.
Therefore, in this subchapter, some parts of the limitations of the
techniques studied in this work are discussed, and ways to overcome these
limitations and further investigate these methods in future research are
suggested.

5.3.1 FLEX-VQA

The FLEX-VQA model presented in this work did not provide any results
due to technical issues outside the scope of this work. However, the
method offers a solution for a better understanding of the methods used
in critical computer vision systems deployed today.

Some initial issues have been solved when developing this model, but
some remain to be overcome. The most prominent remaining problems
have been discussed in subsection 3.1.5. Most notable is to make the FLEX
framework non-dependent on the machine learning framework Caffe. As
this framework is no longer developed, its support for modern hardware
and complimentary software dependencies is decreasing. The FLEX
framework still possesses the potential of making systems dependent
on CNNs more transparent to its users. Therefore, future research is
encouraged to develop this method further and other variants of locally
accurate post-hoc methods.

In future research, the FLEX framework should not build its depen-
dence on Caffe for this method to be implemented efficiently and with
versatility. This adaptation can be made in a multitude of ways, where the
main goal would be to decouple the CNN feature extraction from FLEX.
Modern machine learning frameworks have properties that easily traverse
networks and list their feature maps. This allows for a more manageable
implementation of FLEX that can be agnostic of the specific CNN model
used.

One restriction of the current implementation of FLEX is that it is
based on explaining CNNs. Most computer vision systems today rely on
CNNs as the algorithms window to the outside world. Transformer-based
vision systems are, however, gaining popularity and are used instead of

121

CNNs in many modern systems. As the current state of FLEX depends
on labeling CNN feature maps, it does not currently work with other
vision algorithms. The FLEX framework may still be adapted in future
work to the transformer architecture, as the main requirement is that it
can map specific features in the input to particular parts of the internal
features. Various methods have been developed to explain transformers
more transparently. Many of these rely on a GradCAM method or
similar methods based on heat-maps of gradients [163, 164]. These
heat-map-based methods can, in theory, be used to map specific labels
to the gradients and relevance matrices throughout the computation,
resulting in a locally accurate representation of these matrices. By labeling
these features with co-occurring words, FLEX can be used to generate
descriptive captions using the locally accurate features of the transformer.

A limitation that could be solved by adapting FLEX to a transformer is
more accessible transfer learning compared to RNNs. Currently, the FLEX
framework needs a dataset containing image descriptions and a single
class label. The class label is used to train the CNN to predict the class,
and the image description is used to train the LSTMs to output the locally
accurate description. Not many datasets are available with both these
features, so the transformer could be pre-trained using image descriptions
to label its gradient features. FLEX can then label features in the gradients
before the transformer is fine-tuned on the specific task. Although the
development of this method uses FLEX in between transfer learning and
does not become fully post-hoc, it does not affect the fine-tuned model.
Therefore, it still contains the same benefits of allowing the finished model
to train and interpret uninterrupted while providing transparency.

5.3.2 Alpaca-VQA

One constraint of the implemented Alpaca-VQA model is that it uses a
CNN not pre-trained for the given task. It may not be a robust approach
depending on the fact that the feature maps of the pre-trained classes from
ImageNet are similar to the ones observed in separate tasks. Future work
can include fine-tuning the CNN used for the specific task, making the
extracted image feature more relevant. The CNN used in future works is
encouraged to experiment with object detection models that can encode
ROI or bounding boxes so that the LLM can learn to interpret where the

122

objects are in the image.
In the experiments conducted in this work, the goal has not been to

train a state-of-the-art LLM, but rather explore how it can be explained.
This is reflected in the relatively low accuracy for Alpaca-VQA on the
given dataset. However, in future experiments, LLM could be extended
to make it more beneficial to the end user. An interesting future work
could include an LLM pre-trained on domain-specific data, like a medical
dataset, before fine-tuning to include images. This way, the system
user could ask questions about an image or simply text-only questions.
Therefore, the LLM could be used as a multimodal personal assistant in a
domain-specific setting.

The Alpaca-VQA model used in this work is trained to output only
the predicted answer to a question to facilitate evaluation. However, this
does not use the ability of LLM to construct sentences in natural language.
Because the model is pre-trained on instructions-following tasks, it can
still generate longer responses. Techniques such as self-instruct, also used
when generating data for the Stanford Alpaca model, can make datasets
with natural language answers. Future work can use these methods to
create a dataset containing descriptive information in natural language
based on factually correct information.

5.3.3 Explainable Methods

The experiments in this work have demonstrated how smaller, more
transparent models can be adapted to explain a more complex and
opaque model. However, the models described in this thesis have some
limitations. One of these is that the visualization of transition scores and
self-attention are unreliable sources of insight into how the model works.
Some previous works have investigated how attention may not be an
interpretable nor accurate method to explain methods based on attention
[167, 168]. As presented in this work, these features can still bring valuable
insights into how the model work and interprets the data. Therefore,
a future experiment worth investigating would be a larger user study,
asking end users whether attention or transition scores make a model
more intuitive.

The proxy model used in this work had the limitation that it was not
transparent how the Alpaca-VQA worked. It was designed to simulate the

123

behavior of the LLM instead of giving direct insight into how the underly-
ing model functioned. Yet, during experimentation, it provided valuable
insights that helped discover bias in the Alpaca-VQA model. As more
complex models get higher accuracies at the cost of transparency, future
work is needed to develop models with intrinsic explainability or meth-
ods that can be attached to a larger model post-hoc.

In summary, this thesis has explored powerful AI methods on the
VQA task using CNNs and LLMs, highlighting the inherent challenges
in comprehending their underlying reasoning. This work has made
noteworthy progress by investigating various techniques for increased
transparency. However, it is important to acknowledge that there is still
much more to be done in the field of XAI as research strives towards
achieving a deeper understanding of these complex systems.

124

Bibliography

[1] Arun Das and Paul Rad. Opportunities and Challenges in Explainable
Artificial Intelligence (XAI): A Survey. June 22, 2020. DOI: 10.48550/
arXiv.2006.11371. arXiv: 2006.11371 [cs]. URL: http://arxiv.org/abs/
2006.11371 (visited on 05/29/2023). preprint.

[2] Kamran Alipour et al. A Study on Multimodal and Interactive
Explanations for Visual Question Answering. Mar. 1, 2020. DOI: 10 .
48550/arXiv.2003.00431. arXiv: 2003.00431 [cs]. URL: http://arxiv.
org/abs/2003.00431 (visited on 05/25/2023). preprint.

[3] Sandareka Wickramanayake, Wynne Hsu, and Mong Li Lee.
“FLEX: Faithful Linguistic Explanations for Neural Net Based
Model Decisions”. In: Proceedings of the AAAI Conference on Artificial
Intelligence 33.01 (01 July 17, 2019), pp. 2539–2546. ISSN: 2374-3468.
DOI: 10.1609/aaai.v33i01.33012539. URL: https://ojs.aaai.org/index.
php/AAAI/article/view/4100 (visited on 09/12/2022).

[4] Rohan Taori et al. Stanford CRFM. Alpaca: A Strong, Replicable
Instruction-Following Model. URL: https://crfm.stanford.edu/2023/
03/13/alpaca.html (visited on 04/07/2023).

[5] Rohan Taori et al. Stanford Alpaca: An Instruction-following LLaMA
Model. Tatsu’s shared repositories, Apr. 7, 2023. URL: https://github.
com/tatsu-lab/stanford_alpaca (visited on 04/07/2023).

[6] Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language
Models. Feb. 27, 2023. DOI: 10 . 48550 / arXiv . 2302 . 13971. arXiv:
2302 . 13971 [cs]. URL: http : / / arxiv. org / abs / 2302 . 13971 (visited
on 03/28/2023). preprint.

[7] Ehud Reiter. “A Structured Review of the Validity of BLEU”. In:
Computational Linguistics 44.3 (Sept. 1, 2018), pp. 393–401. ISSN:
0891-2017. DOI: 10 . 1162 / coli _ a _ 00322. URL: https : / / doi . org / 10 .
1162/coli_a_00322 (visited on 05/25/2023).

[8] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. Apr. 10, 2015. DOI: 10 .
48550/arXiv.1409.1556. arXiv: 1409.1556 [cs]. URL: http://arxiv.org/
abs/1409.1556 (visited on 10/17/2022). preprint.

125

https://doi.org/10.48550/arXiv.2006.11371
https://doi.org/10.48550/arXiv.2006.11371
https://arxiv.org/abs/2006.11371
http://arxiv.org/abs/2006.11371
http://arxiv.org/abs/2006.11371
https://doi.org/10.48550/arXiv.2003.00431
https://doi.org/10.48550/arXiv.2003.00431
https://arxiv.org/abs/2003.00431
http://arxiv.org/abs/2003.00431
http://arxiv.org/abs/2003.00431
https://doi.org/10.1609/aaai.v33i01.33012539
https://ojs.aaai.org/index.php/AAAI/article/view/4100
https://ojs.aaai.org/index.php/AAAI/article/view/4100
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/arXiv.2302.13971
https://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.1162/coli_a_00322
https://doi.org/10.1162/coli_a_00322
https://doi.org/10.1162/coli_a_00322
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

[9] Yang Gao et al. Compact Bilinear Pooling. Apr. 11, 2016. DOI: 10 .
48550/arXiv.1511.06062. arXiv: 1511.06062 [cs]. URL: http://arxiv.
org/abs/1511.06062 (visited on 11/28/2022). preprint.

[10] Yusuke Hirota, Yuta Nakashima, and Noa Garcia. “Gender and
Racial Bias in Visual Question Answering Datasets”. In: 2022 ACM
Conference on Fairness, Accountability, and Transparency. June 21,
2022, pp. 1280–1292. DOI: 10.1145/3531146.3533184. arXiv: 2205.
08148 [cs]. URL: http : / / arxiv . org / abs / 2205 . 08148 (visited on
01/17/2023).

[11] OpenAI. GPT-4 Technical Report. Mar. 15, 2023. DOI: 10.48550/arXiv.
2303.08774. arXiv: 2303.08774 [cs]. URL: http://arxiv.org/abs/2303.
08774 (visited on 03/16/2023). preprint.

[12] ChatGPT. URL: https://chat.openai.com (visited on 04/07/2023).

[13] Dario Amodei et al. Concrete Problems in AI Safety. July 25, 2016.
DOI: 10 . 48550 / arXiv. 1606 . 06565. arXiv: 1606 . 06565 [cs]. URL:
http://arxiv.org/abs/1606.06565 (visited on 05/27/2023). preprint.

[14] Richard Ngo, Lawrence Chan, and Sören Mindermann. The Align-
ment Problem from a Deep Learning Perspective. Feb. 22, 2023. DOI:
10 . 48550 / arXiv. 2209 . 00626. arXiv: 2209 . 00626 [cs]. URL: http :
//arxiv.org/abs/2209.00626 (visited on 05/27/2023). preprint.

[15] Ashish Vaswani et al. “Attention Is All You Need”. In: Advances in
Neural Information Processing Systems. Vol. 30. Curran Associates,
Inc., 2017. URL: https : / / proceedings . neurips . cc / paper / 2017 /
hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (visited on
03/16/2023).

[16] Zachary C. Lipton. The Mythos of Model Interpretability. Mar. 6, 2017.
DOI: 10.48550/arXiv.1606.03490. arXiv: 1606.03490 [cs, stat].
URL: http : / / arxiv . org / abs / 1606 . 03490 (visited on 05/26/2023).
preprint.

[17] Pause Giant AI Experiments: An Open Letter. Future of Life Institute.
URL: https://futureoflife.org/open- letter/pause-giant-ai-experiments/
(visited on 05/27/2023).

[18] REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE
COUNCIL. Apr. 21, 2021. URL: https://eur- lex.europa.eu/resource.
html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/
DOC_1&format=PDF (visited on 05/27/2023).

[19] OAR US EPA. Greenhouse Gas Emissions from a Typical Passenger
Vehicle. Jan. 12, 2016. URL: https : / / www . epa . gov / greenvehicles /
greenhouse - gas - emissions - typical - passenger - vehicle (visited on
05/26/2023).

126

https://doi.org/10.48550/arXiv.1511.06062
https://doi.org/10.48550/arXiv.1511.06062
https://arxiv.org/abs/1511.06062
http://arxiv.org/abs/1511.06062
http://arxiv.org/abs/1511.06062
https://doi.org/10.1145/3531146.3533184
https://arxiv.org/abs/2205.08148
https://arxiv.org/abs/2205.08148
http://arxiv.org/abs/2205.08148
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://chat.openai.com
https://doi.org/10.48550/arXiv.1606.06565
https://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
https://doi.org/10.48550/arXiv.2209.00626
https://arxiv.org/abs/2209.00626
http://arxiv.org/abs/2209.00626
http://arxiv.org/abs/2209.00626
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.48550/arXiv.1606.03490
https://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1606.03490
https://futureoflife.org/open-letter/pause-giant-ai-experiments/
https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_1&format=PDF
https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle
https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle

[20] Nvidia-A100-Datasheet. URL: https: / /www.nvidia.com/content /dam/
en- zz/Solutions/Data- Center /a100/pdf /nvidia- a100- datasheet .pdf
(visited on 05/27/2023).

[21] Lavt klimagassutslipp knyttet til norsk strømforbruk i 2022 - NVE. URL:
https://www.nve.no/nytt-fra-nve/nyheter-energi/lavt-klimagassutslipp-
knyttet-til-norsk-stroemforbruk-i-2022/ (visited on 05/26/2023).

[22] Hva påvirker utslipp til luft fra veitrafikk? ssb.no. Aug. 14, 2017. URL:
https : / /www.ssb.no /natur - og- miljo /artikler - og- publikasjoner /hva-
pavirker-utslipp-til-luft-fra-veitrafikk (visited on 05/26/2023).

[23] Chansup Byun et al. “Benchmarking Data Analysis and Machine
Learning Applications on the Intel KNL Many-Core Processor”. In:
2017 IEEE High Performance Extreme Computing Conference (HPEC).
2017 IEEE High Performance Extreme Computing Conference
(HPEC). Sept. 2017, pp. 1–6. DOI: 10.1109/HPEC.2017.8091067.

[24] Norman Jouppi et al. “Motivation for and Evaluation of the First
Tensor Processing Unit”. In: IEEE Micro 38.3 (May 2018), pp. 10–19.
ISSN: 1937-4143. DOI: 10.1109/MM.2018.032271057.

[25] Anne C. Elster and Tor A. Haugdahl. “Nvidia Hopper GPU and
Grace CPU Highlights”. In: Computing in Science & Engineering 24.2
(Mar. 2022), pp. 95–100. ISSN: 1558-366X. DOI: 10.1109/MCSE.2022.
3163817.

[26] David Kasperek, Michal Podpora, and Aleksandra Kawala-
Sterniuk. “Comparison of the Usability of Apple M1 Processors for
Various Machine Learning Tasks”. In: Sensors 22.20 (20 Jan. 2022),
p. 8005. ISSN: 1424-8220. DOI: 10.3390/s22208005. URL: https://www.
mdpi.com/1424-8220/22/20/8005 (visited on 05/28/2023).

[27] John McCarthy et al. “A Proposal for the Dartmouth Summer
Research Project on Artificial Intelligence, August 31, 1955”. In: AI
Magazine 27.4 (4 Dec. 15, 2006), pp. 12–12. ISSN: 2371-9621. DOI:
10.1609/aimag.v27i4 .1904. URL: https: / /ojs.aaai .org /aimagazine/
index.php/aimagazine/article/view/1904 (visited on 03/10/2023).

[28] S.L. Andresen. “John McCarthy: Father of AI”. In: IEEE Intelligent
Systems 17.5 (Sept. 2002), pp. 84–85. ISSN: 1941-1294. DOI: 10.1109/
MIS.2002.1039837.

[29] Stanford University. Ancient Myths Reveal Early Fantasies about
Artificial Life. Stanford News. Feb. 28, 2019. URL: https : / / news .
stanford . edu / 2019 / 02 / 28 / ancient - myths - reveal - early - fantasies -
artificial-life/ (visited on 04/28/2023).

[30] Mary Wollstonecraft Shelley. Frankenstein, or, The Modern Prometheus.
Knopf: New York, 1992.

127

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nve.no/nytt-fra-nve/nyheter-energi/lavt-klimagassutslipp-knyttet-til-norsk-stroemforbruk-i-2022/
https://www.nve.no/nytt-fra-nve/nyheter-energi/lavt-klimagassutslipp-knyttet-til-norsk-stroemforbruk-i-2022/
https://www.ssb.no/natur-og-miljo/artikler-og-publikasjoner/hva-pavirker-utslipp-til-luft-fra-veitrafikk
https://www.ssb.no/natur-og-miljo/artikler-og-publikasjoner/hva-pavirker-utslipp-til-luft-fra-veitrafikk
https://doi.org/10.1109/HPEC.2017.8091067
https://doi.org/10.1109/MM.2018.032271057
https://doi.org/10.1109/MCSE.2022.3163817
https://doi.org/10.1109/MCSE.2022.3163817
https://doi.org/10.3390/s22208005
https://www.mdpi.com/1424-8220/22/20/8005
https://www.mdpi.com/1424-8220/22/20/8005
https://doi.org/10.1609/aimag.v27i4.1904
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1904
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1904
https://doi.org/10.1109/MIS.2002.1039837
https://doi.org/10.1109/MIS.2002.1039837
https://news.stanford.edu/2019/02/28/ancient-myths-reveal-early-fantasies-artificial-life/
https://news.stanford.edu/2019/02/28/ancient-myths-reveal-early-fantasies-artificial-life/
https://news.stanford.edu/2019/02/28/ancient-myths-reveal-early-fantasies-artificial-life/

[31] Karel Čapek. R.U.R. (Rossum’s Universal Robots). 2004th ed. London:
Penguin Books. URL: https://www.gutenberg.org/files/59112/59112-
h/59112-h.htm.

[32] Stanley Kubrick, director. 2001: A Space Odyssey. scriptwriter
Stanley Kubrick et al. Adventure, Sci-Fi. Feb. 28, 1969.

[33] Fritz Lang, director. Metropolis. scriptwriter Thea von Harbou et al.
Drama, Sci-Fi. Feb. 28, 1927.

[34] George Barbastathis, Aydogan Ozcan, and Guohai Situ. On the Use
of Deep Learning for Computational Imaging. URL: https://opg.optica.
org/optica/fulltext.cfm?uri=optica-6-8-921&id=416103 (visited on
04/28/2023).

[35] Matthew B. Hoy. “Alexa, Siri, Cortana, and More: An Introduction
to Voice Assistants”. In: Medical Reference Services Quarterly 37.1
(Jan. 2, 2018), pp. 81–88. ISSN: 0276-3869. DOI: 10.1080/02763869.
2018 . 1404391. pmid: 29327988. URL: https : / / doi . org / 10 . 1080 /
02763869.2018.1404391 (visited on 04/28/2023).

[36] Som S. Biswas. “Role of Chat GPT in Public Health”. In: Annals of
Biomedical Engineering 51.5 (May 1, 2023), pp. 868–869. ISSN: 1573-
9686. DOI: 10.1007/s10439-023-03172-7. URL: https://doi.org/10.
1007/s10439-023-03172-7 (visited on 04/28/2023).

[37] Shijun Wang and Ronald M. Summers. “Machine Learning and
Radiology”. In: Medical Image Analysis 16.5 (July 1, 2012), pp. 933–
951. ISSN: 1361-8415. DOI: 10.1016/j.media.2012.02.005. URL: https:
/ / www. sciencedirect . com / science / article / pii / S1361841512000333
(visited on 04/28/2023).

[38] James H. Thrall et al. “Artificial Intelligence and Machine Learning
in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for
Success”. In: Journal of the American College of Radiology. Data
Science: Big Data Machine Learning and Artificial Intelligence 15
(3, Part B Mar. 1, 2018), pp. 504–508. ISSN: 1546-1440. DOI: 10.1016/
j . jacr.2017 .12 .026. URL: https : / /www.sciencedirect . com/science /
article/pii/S154614401731671X (visited on 04/28/2023).

[39] Alan M. Turing. Systems of Logic Based on Ordinals. 1938. URL:
https : / / web. archive . org / web / 20121023103503 / https : / / webspace .
princeton.edu/users/jedwards/Turing%20Centennial%202012/Mudd%
20Archive % 20files / 12285 _ AC100 _ Turing _ 1938 . pdf (visited on
04/29/2023).

[40] Alonzo Church. “An Unsolvable Problem of Elementary Number
Theory”. In: American Journal of Mathematics 58.2 (1936), pp. 345–
363. ISSN: 0002-9327. DOI: 10.2307/2371045. JSTOR: 2371045. URL:
https://www.jstor.org/stable/2371045 (visited on 04/29/2023).

128

https://www.gutenberg.org/files/59112/59112-h/59112-h.htm
https://www.gutenberg.org/files/59112/59112-h/59112-h.htm
https://opg.optica.org/optica/fulltext.cfm?uri=optica-6-8-921&id=416103
https://opg.optica.org/optica/fulltext.cfm?uri=optica-6-8-921&id=416103
https://doi.org/10.1080/02763869.2018.1404391
https://doi.org/10.1080/02763869.2018.1404391
29327988
https://doi.org/10.1080/02763869.2018.1404391
https://doi.org/10.1080/02763869.2018.1404391
https://doi.org/10.1007/s10439-023-03172-7
https://doi.org/10.1007/s10439-023-03172-7
https://doi.org/10.1007/s10439-023-03172-7
https://doi.org/10.1016/j.media.2012.02.005
https://www.sciencedirect.com/science/article/pii/S1361841512000333
https://www.sciencedirect.com/science/article/pii/S1361841512000333
https://doi.org/10.1016/j.jacr.2017.12.026
https://doi.org/10.1016/j.jacr.2017.12.026
https://www.sciencedirect.com/science/article/pii/S154614401731671X
https://www.sciencedirect.com/science/article/pii/S154614401731671X
https://web.archive.org/web/20121023103503/https://webspace.princeton.edu/users/jedwards/Turing%20Centennial%202012/Mudd%20Archive%20files/12285_AC100_Turing_1938.pdf
https://web.archive.org/web/20121023103503/https://webspace.princeton.edu/users/jedwards/Turing%20Centennial%202012/Mudd%20Archive%20files/12285_AC100_Turing_1938.pdf
https://web.archive.org/web/20121023103503/https://webspace.princeton.edu/users/jedwards/Turing%20Centennial%202012/Mudd%20Archive%20files/12285_AC100_Turing_1938.pdf
https://doi.org/10.2307/2371045
http://www.jstor.org/stable/2371045
https://www.jstor.org/stable/2371045

[41] Warren S. McCulloch and Walter Pitts. “A Logical Calculus of
the Ideas Immanent in Nervous Activity”. In: The bulletin of
mathematical biophysics 5.4 (Dec. 1, 1943), pp. 115–133. ISSN: 1522-
9602. DOI: 10 . 1007 / BF02478259. URL: https : / / doi . org / 10 . 1007 /
BF02478259 (visited on 04/29/2023).

[42] Gualtiero Piccinini. “The First Computational Theory of Cognition:
McCulloch and Pitts’s “A Logical Calculus of the Ideas Immanent
in Nervous Activity””. In: Neurocognitive Mechanisms: Explaining
Biological Cognition. Ed. by Gualtiero Piccinini. Oxford University
Press, Nov. 12, 2020. ISBN: 978-0-19-886628-2. DOI: 10 . 1093 / oso /
9780198866282 . 003 . 0006. URL: https : / / doi . org / 10 . 1093 / oso /
9780198866282.003.0006 (visited on 04/29/2023).

[43] Luciano Floridi. “AI and Its New Winter: From Myths to Realities”.
In: Philosophy & Technology 33.1 (Mar. 1, 2020), pp. 1–3. ISSN: 2210-
5441. DOI: 10.1007/s13347-020-00396-6. URL: https://doi.org/10.
1007/s13347-020-00396-6 (visited on 05/05/2023).

[44] John Haugeland. Artificial Intelligence: The Very Idea. MIT Press,
Jan. 6, 1989. 303 pp. ISBN: 978-0-262-58095-3. Google Books:
AL1NEAAAQBAJ.

[45] Marta Garnelo and Murray Shanahan. “Reconciling Deep Learning
with Symbolic Artificial Intelligence: Representing Objects and
Relations”. In: Current Opinion in Behavioral Sciences. Artificial
Intelligence 29 (Oct. 1, 2019), pp. 17–23. ISSN: 2352-1546. DOI: 10.
1016/ j .cobeha.2018.12.010. URL: https: / /www.sciencedirect .com/
science/article/pii/S2352154618301943 (visited on 04/29/2023).

[46] Leslie G Valiant. “Knowledge Infusion: In Pursuit of Robustness in
Artificial Intelligence”. In: IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (2008).

[47] Daniel Kahneman. Thinking, Fast and Slow. 1st edition. New York:
Farrar, Straus and Giroux, Apr. 2, 2013. 499 pp. ISBN: 978-0-374-
53355-7.

[48] Sebastian Raschka. Chapter 1: Introduction to Machine Learning and
Deep Learning. Sebastian Raschka, PhD. Apr. 5, 2020. URL: https :
//sebastianraschka.com/blog/2020/intro- to-dl-ch01.html (visited on
03/16/2023).

[49] Evelyn Fix and J. L. Hodges. “Discriminatory Analysis. Nonpara-
metric Discrimination: Consistency Properties”. In: International
Statistical Review / Revue Internationale de Statistique 57.3 (1989),
pp. 238–247. ISSN: 0306-7734. DOI: 10 . 2307 / 1403797. JSTOR:
1403797. URL: https : / / www. jstor . org / stable / 1403797 (visited on
10/28/2022).

129

https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1093/oso/9780198866282.003.0006
https://doi.org/10.1093/oso/9780198866282.003.0006
https://doi.org/10.1093/oso/9780198866282.003.0006
https://doi.org/10.1093/oso/9780198866282.003.0006
https://doi.org/10.1007/s13347-020-00396-6
https://doi.org/10.1007/s13347-020-00396-6
https://doi.org/10.1007/s13347-020-00396-6
http://books.google.com/books?id=AL1NEAAAQBAJ
https://doi.org/10.1016/j.cobeha.2018.12.010
https://doi.org/10.1016/j.cobeha.2018.12.010
https://www.sciencedirect.com/science/article/pii/S2352154618301943
https://www.sciencedirect.com/science/article/pii/S2352154618301943
https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html
https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html
https://doi.org/10.2307/1403797
http://www.jstor.org/stable/1403797
https://www.jstor.org/stable/1403797

[50] T. Cover and P. Hart. “Nearest Neighbor Pattern Classification”. In:
IEEE Transactions on Information Theory 13.1 (Jan. 1967), pp. 21–27.
ISSN: 1557-9654. DOI: 10.1109/TIT.1967.1053964.

[51] Mikhail Belkin et al. “Reconciling Modern Machine-Learning
Practice and the Classical Bias–Variance Trade-Off”. In: Proceedings
of the National Academy of Sciences 116.32 (Aug. 6, 2019), pp. 15849–
15854. DOI: 10.1073/pnas.1903070116. URL: https://www.pnas.org/
doi/abs/10.1073/pnas.1903070116 (visited on 05/05/2023).

[52] Preetum Nakkiran et al. “Deep Double Descent: Where Bigger
Models and More Data Hurt”. In: Journal of Statistical Mechanics:
Theory and Experiment 2021.12 (Dec. 2021), p. 124003. ISSN: 1742-
5468. DOI: 10.1088/1742-5468/ac3a74. URL: https://dx.doi.org/10.
1088/1742-5468/ac3a74 (visited on 05/05/2023).

[53] Mayu Sakurada and Takehisa Yairi. “Anomaly Detection Using
Autoencoders with Nonlinear Dimensionality Reduction”. In: Pro-
ceedings of the MLSDA 2014 2nd Workshop on Machine Learning for
Sensory Data Analysis. MLSDA’14. New York, NY, USA: Association
for Computing Machinery, Dec. 2, 2014, pp. 4–11. ISBN: 978-1-4503-
3159-3. DOI: 10.1145/2689746.2689747. URL: https://dl.acm.org/doi/
10.1145/2689746.2689747 (visited on 05/05/2023).

[54] Steven Flores. Variational Autoencoders Are Beautiful | Blogs. Apr. 15,
2019. URL: https://www.compthree.com/blog/autoencoder/ (visited on
04/30/2023).

[55] Y Reddy, Viswanath Pulabaigari, and Eswara B. “Semi-Supervised
Learning: A Brief Review”. In: International Journal of Engineering &
Technology 7 (Feb. 9, 2018), p. 81. DOI: 10.14419/ijet.v7i1.8.9977.

[56] David Berthelot et al. “MixMatch: A Holistic Approach to Semi-
Supervised Learning”. In: Advances in Neural Information Pro-
cessing Systems. Vol. 32. Curran Associates, Inc., 2019. URL:
https : / / proceedings . neurips . cc / paper / 2019 / hash /
1cd138d0499a68f4bb72bee04bbec2d7 - Abstract . html (visited on
05/27/2023).

[57] Amazon Mechanical Turk Documentation. URL: https : / / docs . aws .
amazon.com/mturk/index.html (visited on 05/05/2023).

[58] Raphael Hoffmann et al. “Knowledge-Based Weak Supervision for
Information Extraction of Overlapping Relations”. In: Proceedings
of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. ACL-HLT 2011. Portland,
Oregon, USA: Association for Computational Linguistics, June
2011, pp. 541–550. URL: https://aclanthology.org/P11-1055 (visited
on 05/05/2023).

130

https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1073/pnas.1903070116
https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
https://doi.org/10.1088/1742-5468/ac3a74
https://dx.doi.org/10.1088/1742-5468/ac3a74
https://dx.doi.org/10.1088/1742-5468/ac3a74
https://doi.org/10.1145/2689746.2689747
https://dl.acm.org/doi/10.1145/2689746.2689747
https://dl.acm.org/doi/10.1145/2689746.2689747
https://www.compthree.com/blog/autoencoder/
https://doi.org/10.14419/ijet.v7i1.8.9977
https://proceedings.neurips.cc/paper/2019/hash/1cd138d0499a68f4bb72bee04bbec2d7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1cd138d0499a68f4bb72bee04bbec2d7-Abstract.html
https://docs.aws.amazon.com/mturk/index.html
https://docs.aws.amazon.com/mturk/index.html
https://aclanthology.org/P11-1055

[59] Zirui Wang et al. SimVLM: Simple Visual Language Model Pretraining
with Weak Supervision. May 15, 2022. DOI: 10 . 48550 / arXiv. 2108 .
10904. arXiv: 2108.10904 [cs]. URL: http://arxiv.org/abs/2108.10904
(visited on 05/05/2023). preprint.

[60] Fuzhen Zhuang et al. “A Comprehensive Survey on Transfer
Learning”. In: Proceedings of the IEEE 109.1 (Jan. 2021), pp. 43–76.
ISSN: 1558-2256. DOI: 10.1109/JPROC.2020.3004555.

[61] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaud-
huri. “Activation Functions in Deep Learning: A Comprehensive
Survey and Benchmark”. In: Neurocomputing 503 (Sept. 7, 2022),
pp. 92–108. ISSN: 0925-2312. DOI: 10 . 1016 / j . neucom . 2022 . 06 .
111. URL: https : / / www . sciencedirect . com / science / article / pii /
S0925231222008426 (visited on 05/05/2023).

[62] Geoffrey Hinton. The Forward-Forward Algorithm: Some Preliminary
Investigations. Dec. 26, 2022. DOI: 10.48550/arXiv.2212.13345. arXiv:
2212.13345 [cs]. URL: http://arxiv.org/abs/2212.13345 (visited on
03/13/2023). preprint.

[63] Martin J. Willemink et al. “Preparing Medical Imaging Data for
Machine Learning”. In: Radiology 295.1 (Apr. 2020), pp. 4–15. ISSN:
0033-8419. DOI: 10.1148/radiol.2020192224. URL: https://pubs.rsna.
org/doi/full/10.1148/radiol.2020192224 (visited on 05/05/2023).

[64] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition
Challenge”. In: International Journal of Computer Vision 115.3 (Dec. 1,
2015), pp. 211–252. ISSN: 1573-1405. DOI: 10.1007/s11263-015-0816-
y. URL: https : / / doi . org / 10 . 1007 / s11263 - 015 - 0816 - y (visited on
03/13/2023).

[65] Jia Deng et al. “ImageNet: A Large-Scale Hierarchical Image
Database”. In: CVPR09 (2009), p. 8. DOI: 10 . 1109 / CVPR . 2009 .
5206848. URL: http://www.image-net.org/papers/imagenet_cvpr09.bib
(visited on 10/03/2022).

[66] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “Ima-
geNet Classification with Deep Convolutional Neural Networks”.
In: Communications of the ACM 60.6 (May 24, 2017), pp. 84–90. ISSN:
0001-0782. DOI: 10 .1145 /3065386. URL: https : / / doi . org /10 .1145 /
3065386 (visited on 10/03/2022).

[67] Kaiming He et al. Deep Residual Learning for Image Recognition.
Dec. 10, 2015. DOI: 10.48550/arXiv.1512.03385. arXiv: 1512.03385
[cs]. URL: http://arxiv.org/abs/1512.03385 (visited on 02/06/2023).
preprint.

131

https://doi.org/10.48550/arXiv.2108.10904
https://doi.org/10.48550/arXiv.2108.10904
https://arxiv.org/abs/2108.10904
http://arxiv.org/abs/2108.10904
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1016/j.neucom.2022.06.111
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://doi.org/10.48550/arXiv.2212.13345
https://arxiv.org/abs/2212.13345
http://arxiv.org/abs/2212.13345
https://doi.org/10.1148/radiol.2020192224
https://pubs.rsna.org/doi/full/10.1148/radiol.2020192224
https://pubs.rsna.org/doi/full/10.1148/radiol.2020192224
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://www.image-net.org/papers/imagenet_cvpr09.bib
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.48550/arXiv.1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

[68] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification”. In: Pro-
ceedings of the IEEE International Conference on Computer Vision.
2015, pp. 1026–1034. URL: https://openaccess.thecvf.com/content_
iccv_2015 /html /He_Delving_Deep_ into_ ICCV_2015_paper.html
(visited on 03/13/2023).

[69] Gordon Cooper. Software Framework Requirements For Embedded
Vision. Semiconductor Engineering. Nov. 9, 2017. URL: https : / /
semiengineering . com / software - framework - requirements - for -
embedded-vision/ (visited on 03/10/2023).

[70] Vincent Dumoulin and Francesco Visin. A Guide to Convolution
Arithmetic for Deep Learning. Jan. 11, 2018. DOI: 10.48550/arXiv.1603.
07285. arXiv: 1603 . 07285 [cs, stat]. URL: http : / / arxiv. org / abs /
1603.07285 (visited on 05/01/2023). preprint.

[71] Yann LeCun et al. “Handwritten Digit Recognition with a
Back-Propagation Network”. In: Advances in Neural Informa-
tion Processing Systems. Vol. 2. Morgan-Kaufmann, 1989. URL:
https : / / proceedings . neurips . cc / paper / 1989 / hash /
53c3bce66e43be4f209556518c2fcb54 - Abstract . html (visited on
10/04/2022).

[72] Understanding Convolutional Neural Networks: A Complete Guide.
Jan. 18, 2023. URL: https : / / learnopencv . com / understanding -
convolutional-neural-networks-cnn/ (visited on 05/01/2023).

[73] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
“Learning Representations by Back-Propagating Errors”. In: Nature
323.6088 (6088 Oct. 1986), pp. 533–536. ISSN: 1476-4687. DOI: 10 .
1038 / 323533a0. URL: https : / / www. nature . com / articles / 323533a0
(visited on 10/06/2022).

[74] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Mem-
ory”. In: Neural computation 9 (Dec. 1, 1997), pp. 1735–80. DOI: 10.
1162/neco.1997.9.8.1735.

[75] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
Machine Translation by Jointly Learning to Align and Translate. May 19,
2016. DOI: 10.48550/arXiv.1409.0473. arXiv: 1409.0473 [cs, stat].
URL: http : / / arxiv . org / abs / 1409 . 0473 (visited on 01/17/2023).
preprint.

[76] Guang Li et al. “Entangled Transformer for Image Captioning”.
In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019, pp. 8928–8937. URL: https : / / openaccess .
thecvf.com/content_ICCV_2019/html/Li_Entangled_Transformer_for_
Image_Captioning_ICCV_2019_paper.html (visited on 05/05/2023).

132

https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://semiengineering.com/software-framework-requirements-for-embedded-vision/
https://semiengineering.com/software-framework-requirements-for-embedded-vision/
https://semiengineering.com/software-framework-requirements-for-embedded-vision/
https://doi.org/10.48550/arXiv.1603.07285
https://doi.org/10.48550/arXiv.1603.07285
https://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1603.07285
https://proceedings.neurips.cc/paper/1989/hash/53c3bce66e43be4f209556518c2fcb54-Abstract.html
https://proceedings.neurips.cc/paper/1989/hash/53c3bce66e43be4f209556518c2fcb54-Abstract.html
https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/arXiv.1409.0473
https://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://openaccess.thecvf.com/content_ICCV_2019/html/Li_Entangled_Transformer_for_Image_Captioning_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Li_Entangled_Transformer_for_Image_Captioning_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Li_Entangled_Transformer_for_Image_Captioning_ICCV_2019_paper.html

[77] Yann LeCun. RNNs, GRUs, LSTMs, Attention, Seq2Seq, and Memory
Networks · Deep Learning. 2020. URL: https://atcold.github.io/pytorch-
Deep-Learning/en/week06/06-2/ (visited on 05/05/2023).

[78] Andrew Jaegle et al. Perceiver: General Perception with Iterative
Attention. June 22, 2021. DOI: 10 .48550 /arXiv.2103 .03206. arXiv:
2103 . 03206 [cs, eess]. URL: http : / / arxiv . org / abs / 2103 . 03206
(visited on 03/16/2023). preprint.

[79] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding. May 24, 2019. DOI: 10.48550/arXiv.
1810.04805. arXiv: 1810.04805 [cs]. URL: http://arxiv.org/abs/1810.
04805 (visited on 03/16/2023). preprint.

[80] Mike Lewis et al. BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Comprehension.
Oct. 29, 2019. DOI: 10.48550/arXiv.1910.13461. arXiv: 1910.13461
[cs, stat]. URL: http : / / arxiv . org / abs / 1910 . 13461 (visited on
03/16/2023). preprint.

[81] Alec Radford et al. “Improving Language Understanding by
Generative Pre-Training”. In: OpenAI (2018), p. 12. URL: https : / /
cdn.openai.com/research-covers/language-unsupervised/language_
understanding_paper.pdf (visited on 03/16/2023).

[82] Alec Radford et al. “Language Models Are Unsupervised Multitask
Learners”. In: OpenAI blog 1.8 (2019), p. 9. URL: https://cdn.openai.
com/better- language-models/language_models_are_unsupervised_
multitask_learners.pdf (visited on 03/16/2023).

[83] Tom Brown et al. “Language Models Are Few-Shot Learners”. In:
Advances in Neural Information Processing Systems. Vol. 33. Curran
Associates, Inc., 2020, pp. 1877–1901. URL: https : / / proceedings .
neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-
Abstract.html (visited on 03/16/2023).

[84] Jie Lei et al. Less Is More: ClipBERT for Video-and-Language Learning
via Sparse Sampling. Feb. 11, 2021. arXiv: 2102.06183 [cs]. URL: http:
//arxiv.org/abs/2102.06183 (visited on 01/03/2023). preprint.

[85] Liunian Harold Li et al. VisualBERT: A Simple and Performant
Baseline for Vision and Language. Aug. 9, 2019. DOI: 10.48550/arXiv.
1908.03557. arXiv: 1908.03557 [cs]. URL: http://arxiv.org/abs/1908.
03557 (visited on 03/16/2023). preprint.

[86] Weijie Su et al. VL-BERT: Pre-training of Generic Visual-Linguistic
Representations. Feb. 17, 2020. DOI: 10 . 48550 / arXiv . 1908 . 08530.
arXiv: 1908.08530 [cs]. URL: http://arxiv.org/abs/1908.08530 (visited
on 03/16/2023). preprint.

133

https://atcold.github.io/pytorch-Deep-Learning/en/week06/06-2/
https://atcold.github.io/pytorch-Deep-Learning/en/week06/06-2/
https://doi.org/10.48550/arXiv.2103.03206
https://arxiv.org/abs/2103.03206
http://arxiv.org/abs/2103.03206
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2102.06183
http://arxiv.org/abs/2102.06183
http://arxiv.org/abs/2102.06183
https://doi.org/10.48550/arXiv.1908.03557
https://doi.org/10.48550/arXiv.1908.03557
https://arxiv.org/abs/1908.03557
http://arxiv.org/abs/1908.03557
http://arxiv.org/abs/1908.03557
https://doi.org/10.48550/arXiv.1908.08530
https://arxiv.org/abs/1908.08530
http://arxiv.org/abs/1908.08530

[87] Confusion Matrix. scikit-learn. URL: https://scikit- learn/stable/auto_
examples /model_selection /plot_confusion_matrix .html (visited on
04/16/2023).

[88] Philip Gage. A New Algorithm for Data Compression. 1994. URL: http:
//www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.
HTM (visited on 05/27/2023).

[89] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural Ma-
chine Translation of Rare Words with Subword Units”. In: Proceed-
ings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). ACL 2016. Berlin, Germany: As-
sociation for Computational Linguistics, Aug. 2016, pp. 1715–1725.
DOI: 10.18653/v1/P16-1162. URL: https://aclanthology.org/P16-1162
(visited on 05/27/2023).

[90] Taku Kudo and John Richardson. SentencePiece: A Simple and
Language Independent Subword Tokenizer and Detokenizer for Neural
Text Processing. Aug. 19, 2018. DOI: 10 . 48550 / arXiv. 1808 . 06226.
arXiv: 1808.06226 [cs]. URL: http://arxiv.org/abs/1808.06226 (visited
on 05/27/2023). preprint.

[91] Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated
Experiments on Ad Privacy Settings: A Tale of Opacity, Choice, and
Discrimination. Mar. 16, 2015. DOI: 10.48550/arXiv.1408.6491. arXiv:
1408 .6491 [cs]. URL: http : / / arxiv.org /abs /1408 .6491 (visited on
05/28/2023). preprint.

[92] Eirini Ntoutsi et al. “Bias in Data-Driven Artificial Intelligence
Systems—An Introductory Survey”. In: WIREs Data Mining and
Knowledge Discovery 10.3 (2020), e1356. ISSN: 1942-4795. DOI: 10 .
1002 /widm.1356. URL: https : / /onlinelibrary.wiley.com/doi /abs /10 .
1002/widm.1356 (visited on 05/28/2023).

[93] Christoph Molnar. Interpretable Machine Learning. 2nd ed. 2022.
URL: https:/ /christophm.github.io/ interpretable-ml-book (visited on
11/29/2022).

[94] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why
Should I Trust You?": Explaining the Predictions of Any Classifier”.
Aug. 9, 2016. arXiv: 1602.04938 [cs, stat]. URL: http://arxiv.org/
abs/1602.04938 (visited on 02/02/2022).

[95] Scott Lundberg and Su-In Lee. “A Unified Approach to Interpret-
ing Model Predictions”. Nov. 24, 2017. arXiv: 1705 . 07874 [cs,
stat]. URL: http://arxiv.org/abs/1705.07874 (visited on 02/02/2022).

134

https://scikit-learn/stable/auto_examples/model_selection/plot_confusion_matrix.html
https://scikit-learn/stable/auto_examples/model_selection/plot_confusion_matrix.html
http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM
http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM
http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/P16-1162
https://doi.org/10.48550/arXiv.1808.06226
https://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
https://doi.org/10.48550/arXiv.1408.6491
https://arxiv.org/abs/1408.6491
http://arxiv.org/abs/1408.6491
https://doi.org/10.1002/widm.1356
https://doi.org/10.1002/widm.1356
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1356
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1356
https://christophm.github.io/interpretable-ml-book
https://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874
http://arxiv.org/abs/1705.07874

[96] Lloyd S. Shapley. “A Value for N-Person Games”. In: The Shapley
Value: Essays in Honor of Lloyd S. Shapley. Ed. by Alvin E. Roth.
Cambridge: Cambridge University Press, 1988, pp. 31–40. ISBN:
978-0-521-36177-4. DOI: 10 . 1017 / CBO9780511528446 . 003. URL:
https : / / www. cambridge . org / core / books / shapley - value / value - for -
nperson - games /1AA9D343DE7A87A97F69E999D329B57A (visited
on 05/27/2023).

[97] Ramprasaath R. Selvaraju et al. “Grad-CAM: Visual Explanations
from Deep Networks via Gradient-based Localization”. In: Inter-
national Journal of Computer Vision 128.2 (Feb. 2020), pp. 336–359.
ISSN: 0920-5691, 1573-1405. DOI: 10 . 1007 / s11263 - 019 - 01228 - 7.
arXiv: 1610.02391. URL: http://arxiv.org/abs/1610.02391 (visited on
02/02/2022).

[98] Bolei Zhou et al. “Learning Deep Features for Discriminative Lo-
calization”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016, pp. 2921–2929. URL: https :
//openaccess.thecvf.com/content_cvpr_2016/html/Zhou_Learning_
Deep_Features_CVPR_2016_paper.html (visited on 10/06/2022).

[99] Aishwarya Agrawal et al. VQA: Visual Question Answering. Oct. 26,
2016. arXiv: 1505.00468 [cs]. URL: http://arxiv.org/abs/1505.00468
(visited on 10/03/2022). preprint.

[100] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context.
Feb. 20, 2015. DOI: 10 . 48550 / arXiv. 1405 . 0312. arXiv: 1405 . 0312
[cs]. URL: http://arxiv.org/abs/1405.0312 (visited on 01/09/2023).
preprint.

[101] Donald Geman et al. “Visual Turing Test for Computer Vision
Systems”. In: Proceedings of the National Academy of Sciences 112.12
(Mar. 24, 2015), pp. 3618–3623. DOI: 10.1073/pnas.1422953112. URL:
https://www.pnas.org/doi/abs/10.1073/pnas.1422953112 (visited on
05/28/2023).

[102] Wilson L. Taylor. ““Cloze Procedure”: A New Tool for Measuring
Readability”. In: Journalism Quarterly 30.4 (Sept. 1, 1953), pp. 415–
433. ISSN: 0022-5533. DOI: 10 . 1177 / 107769905303000401. URL:
https : / / doi . org / 10 . 1177 / 107769905303000401 (visited on
05/27/2023).

[103] Jordan Hoffmann et al. Training Compute-Optimal Large Language
Models. Mar. 29, 2022. DOI: 10 . 48550 / arXiv . 2203 . 15556. arXiv:
2203 . 15556 [cs]. URL: http : / / arxiv. org / abs / 2203 . 15556 (visited
on 05/03/2023). preprint.

135

https://doi.org/10.1017/CBO9780511528446.003
https://www.cambridge.org/core/books/shapley-value/value-for-nperson-games/1AA9D343DE7A87A97F69E999D329B57A
https://www.cambridge.org/core/books/shapley-value/value-for-nperson-games/1AA9D343DE7A87A97F69E999D329B57A
https://doi.org/10.1007/s11263-019-01228-7
https://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391
https://openaccess.thecvf.com/content_cvpr_2016/html/Zhou_Learning_Deep_Features_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/Zhou_Learning_Deep_Features_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/Zhou_Learning_Deep_Features_CVPR_2016_paper.html
https://arxiv.org/abs/1505.00468
http://arxiv.org/abs/1505.00468
https://doi.org/10.48550/arXiv.1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://doi.org/10.1073/pnas.1422953112
https://www.pnas.org/doi/abs/10.1073/pnas.1422953112
https://doi.org/10.1177/107769905303000401
https://doi.org/10.1177/107769905303000401
https://doi.org/10.48550/arXiv.2203.15556
https://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556

[104] Aakanksha Chowdhery et al. PaLM: Scaling Language Modeling with
Pathways. Oct. 5, 2022. DOI: 10 . 48550 / arXiv . 2204 . 02311. arXiv:
2204 . 02311 [cs]. URL: http : / / arxiv. org / abs / 2204 . 02311 (visited
on 05/03/2023). preprint.

[105] Noam Shazeer. GLU Variants Improve Transformer. Feb. 12, 2020.
DOI: 10.48550/arXiv.2002.05202. arXiv: 2002.05202 [cs, stat].
URL: http : / / arxiv . org / abs / 2002 . 05202 (visited on 05/03/2023).
preprint.

[106] OpenAI API. URL: https : / / platform . openai . com (visited on
04/07/2023).

[107] Yizhong Wang et al. Self-Instruct: Aligning Language Model with Self
Generated Instructions. Dec. 20, 2022. DOI: 10 . 48550 / arXiv . 2212 .
10560. arXiv: 2212.10560 [cs]. URL: http://arxiv.org/abs/2212.10560
(visited on 04/07/2023). preprint.

[108] John Kirchenbauer et al. A Watermark for Large Language Models.
Jan. 27, 2023. DOI: 10.48550/arXiv.2301.10226. arXiv: 2301.10226
[cs]. URL: http://arxiv.org/abs/2301.10226 (visited on 04/07/2023).
preprint.

[109] Ross Girshick et al. “Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2014,
pp. 580–587. URL: https://openaccess.thecvf.com/content_cvpr_2014/
html /Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html
(visited on 10/24/2022).

[110] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks”. In: Advances in Neural
Information Processing Systems. Vol. 28. Curran Associates, Inc.,
2015. URL: https : / / proceedings . neurips . cc / paper / 2015 / hash /
14bfa6bb14875e45bba028a21ed38046 - Abstract . html (visited on
10/24/2022).

[111] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time
Object Detection”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016, pp. 779–788. URL:
https : / / www. cv - foundation . org / openaccess / content _ cvpr _ 2016 /
html/Redmon_You_Only_Look_CVPR_2016_paper.html (visited on
10/24/2022).

[112] Tsung-Yi Lin et al. “Focal Loss for Dense Object Detection”. In:
Proceedings of the IEEE International Conference on Computer
Vision. 2017, pp. 2980–2988. URL: https : / /openaccess. thecvf.com/
content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html
(visited on 10/24/2022).

136

https://doi.org/10.48550/arXiv.2204.02311
https://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://doi.org/10.48550/arXiv.2002.05202
https://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2002.05202
https://platform.openai.com
https://doi.org/10.48550/arXiv.2212.10560
https://doi.org/10.48550/arXiv.2212.10560
https://arxiv.org/abs/2212.10560
http://arxiv.org/abs/2212.10560
https://doi.org/10.48550/arXiv.2301.10226
https://arxiv.org/abs/2301.10226
https://arxiv.org/abs/2301.10226
http://arxiv.org/abs/2301.10226
https://openaccess.thecvf.com/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html

[113] Oriol Vinyals et al. “Show and Tell: A Neural Image Caption
Generator”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2015, pp. 3156–3164. URL: https://
www.cv-foundation.org/openaccess/content_cvpr_2015/html/Vinyals_
Show_and_Tell_2015_CVPR_paper.html (visited on 10/24/2022).

[114] Andrej Karpathy and Li Fei-Fei. “Deep Visual-Semantic Align-
ments for Generating Image Descriptions”. In: CVPR, June 2015,
p. 17.

[115] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. “DenseCap: Fully
Convolutional Localization Networks for Dense Captioning”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). Las Vegas, NV, USA: IEEE, June 2016,
pp. 4565–4574. ISBN: 978-1-4673-8851-1. DOI: 10.1109/CVPR.2016.
494. URL: http://ieeexplore.ieee.org/document/7780863/ (visited on
09/19/2022).

[116] Kenneth Tran et al. “Rich Image Captioning in the Wild”. In:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. 2016, pp. 49–56. URL: https://www.
cv- foundation.org/openaccess/content_cvpr_2016_workshops/w12/
html/Tran_Rich_Image_Captioning_CVPR_2016_paper.html (visited
on 10/25/2022).

[117] Derek Koehler. “Explanation, Imagination, and Confidence in
Judgment”. In: Psychological bulletin 110 (Dec. 1, 1991), pp. 499–519.
DOI: 10.1037//0033-2909.110.3.499.

[118] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. “Ex-
plaining Collaborative Filtering Recommendations | Proceedings
of the 2000 ACM Conference on Computer Supported Coopera-
tive Work”. In: CSCW ’00: Proceedings of the 2000 ACM conference on
Computer supported cooperative work (Dec. 2, 2000), pp. 241–250. DOI:
10.1145/358916.358995. URL: https://dl.acm.org/doi/abs/10.1145/
358916.358995 (visited on 10/26/2022).

[119] Mary T. Dzindolet et al. “The Role of Trust in Automation
Reliance”. In: International Journal of Human-Computer Studies. Trust
and Technology 58.6 (June 1, 2003), pp. 697–718. ISSN: 1071-5819.
DOI: 10 . 1016 / S1071 - 5819(03) 00038 - 7. URL: https : / / www .
sciencedirect . com/science /article /pii /S1071581903000387 (visited
on 10/26/2022).

[120] Fei Jiang et al. “Artificial Intelligence in Healthcare: Past, Present
and Future”. In: Stroke and Vascular Neurology 2.4 (Dec. 1, 2017).
ISSN: 2059-8688, 2059-8696. DOI: 10.1136/svn-2017-000101. pmid:
29507784. URL: https : / / svn .bmj . com/content /2 /4 /230 (visited on
10/31/2022).

137

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Vinyals_Show_and_Tell_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Vinyals_Show_and_Tell_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Vinyals_Show_and_Tell_2015_CVPR_paper.html
https://doi.org/10.1109/CVPR.2016.494
https://doi.org/10.1109/CVPR.2016.494
http://ieeexplore.ieee.org/document/7780863/
https://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w12/html/Tran_Rich_Image_Captioning_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w12/html/Tran_Rich_Image_Captioning_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w12/html/Tran_Rich_Image_Captioning_CVPR_2016_paper.html
https://doi.org/10.1037//0033-2909.110.3.499
https://doi.org/10.1145/358916.358995
https://dl.acm.org/doi/abs/10.1145/358916.358995
https://dl.acm.org/doi/abs/10.1145/358916.358995
https://doi.org/10.1016/S1071-5819(03)00038-7
https://www.sciencedirect.com/science/article/pii/S1071581903000387
https://www.sciencedirect.com/science/article/pii/S1071581903000387
https://doi.org/10.1136/svn-2017-000101
29507784
https://svn.bmj.com/content/2/4/230

[121] Sana Tonekaboni et al. “What Clinicians Want: Contextualizing Ex-
plainable Machine Learning for Clinical End Use”. In: Proceedings
of the 4th Machine Learning for Healthcare Conference. Machine Learn-
ing for Healthcare Conference. PMLR, Oct. 28, 2019, pp. 359–380.
URL: https://proceedings.mlr.press/v106/tonekaboni19a.html (visited
on 10/31/2022).

[122] Andreas Holzinger et al. “Causability and Explainability of Arti-
ficial Intelligence in Medicine”. In: WIREs Data Mining and Knowl-
edge Discovery 9.4 (2019), e1312. ISSN: 1942-4795. DOI: 10.1002/widm.
1312. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1312
(visited on 10/31/2022).

[123] Abhishek Gupta et al. “Deep Learning for Object Detection and
Scene Perception in Self-Driving Cars: Survey, Challenges, and
Open Issues”. In: Array 10 (July 1, 2021), p. 100057. ISSN: 2590-
0056. DOI: 10 . 1016 / j . array . 2021 . 100057. URL: https : / / www .
sciencedirect . com/science /article /pii /S2590005621000059 (visited
on 10/31/2022).

[124] Erico Tjoa and Cuntai Guan. “A Survey on Explainable Artificial
Intelligence (XAI): Toward Medical XAI”. In: IEEE Transactions on
Neural Networks and Learning Systems 32.11 (Nov. 2021), pp. 4793–
4813. ISSN: 2162-2388. DOI: 10.1109/TNNLS.2020.3027314.

[125] Seref Sagiroglu and Duygu Sinanc. “Big Data: A Review”. In:
2013 International Conference on Collaboration Technologies and Sys-
tems (CTS). 2013 International Conference on Collaboration Tech-
nologies and Systems (CTS). May 2013, pp. 42–47. DOI: 10.1109/
CTS.2013.6567202.

[126] Rich Caruana et al. “Intelligible Models for HealthCare: Predicting
Pneumonia Risk and Hospital 30-Day Readmission”. In: Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’15. New York, NY, USA: Asso-
ciation for Computing Machinery, Aug. 10, 2015, pp. 1721–1730.
ISBN: 978-1-4503-3664-2. DOI: 10.1145/2783258.2788613. URL: https:
//doi.org/10.1145/2783258.2788613 (visited on 10/25/2022).

[127] Gregory F. Cooper et al. “Predicting Dire Outcomes of Patients
with Community Acquired Pneumonia”. In: Journal of Biomedical
Informatics. Clinical Machine Learning 38.5 (Oct. 1, 2005), pp. 347–
366. ISSN: 1532-0464. DOI: 10.1016/ j . jbi .2005.02.005. URL: https :
/ / www. sciencedirect . com / science / article / pii / S1532046405000225
(visited on 10/25/2022).

[128] Gregory F. Cooper et al. “An Evaluation of Machine-Learning
Methods for Predicting Pneumonia Mortality”. In: Artificial Intel-
ligence in Medicine 9.2 (Feb. 1, 1997), pp. 107–138. ISSN: 0933-3657.

138

https://proceedings.mlr.press/v106/tonekaboni19a.html
https://doi.org/10.1002/widm.1312
https://doi.org/10.1002/widm.1312
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1312
https://doi.org/10.1016/j.array.2021.100057
https://www.sciencedirect.com/science/article/pii/S2590005621000059
https://www.sciencedirect.com/science/article/pii/S2590005621000059
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1109/CTS.2013.6567202
https://doi.org/10.1109/CTS.2013.6567202
https://doi.org/10.1145/2783258.2788613
https://doi.org/10.1145/2783258.2788613
https://doi.org/10.1145/2783258.2788613
https://doi.org/10.1016/j.jbi.2005.02.005
https://www.sciencedirect.com/science/article/pii/S1532046405000225
https://www.sciencedirect.com/science/article/pii/S1532046405000225

DOI: 10 . 1016 / S0933 - 3657(96) 00367 - 3. URL: https : / / www .
sciencedirect . com/science /article /pii /S0933365796003673 (visited
on 10/25/2022).

[129] Monica Bianchini and Franco Scarselli. “On the Complexity of
Neural Network Classifiers: A Comparison Between Shallow and
Deep Architectures”. In: IEEE Transactions on Neural Networks and
Learning Systems 25.8 (Aug. 2014), pp. 1553–1565. ISSN: 2162-2388.
DOI: 10.1109/TNNLS.2013.2293637.

[130] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence
(XAI): Concepts, Taxonomies, Opportunities and Challenges to-
ward Responsible AI”. In: Information Fusion 58 (June 1, 2020),
pp. 82–115. ISSN: 1566-2535. DOI: 10 . 1016 / j . inffus . 2019 . 12 .
012. URL: https : / / www . sciencedirect . com / science / article / pii /
S1566253519308103 (visited on 10/25/2022).

[131] Raul Vicente Garcia et al. “The Harms of Demographic Bias in
Deep Face Recognition Research”. In: 2019 International Conference
on Biometrics (ICB). 2019 International Conference on Biometrics
(ICB). June 2019, pp. 1–6. DOI: 10.1109/ICB45273.2019.8987334.

[132] Murray Campbell, A. Joseph Hoane, and Feng-hsiung Hsu. “Deep
Blue”. In: Artificial Intelligence 134.1 (Jan. 1, 2002), pp. 57–83. ISSN:
0004-3702. DOI: 10.1016/S0004-3702(01)00129-1. URL: https://www.
sciencedirect.com/science/article/pii/S0004370201001291 (visited on
11/08/2022).

[133] David Silver et al. “A General Reinforcement Learning Algorithm
That Masters Chess, Shogi, and Go through Self-Play”. In: Science
362.6419 (Dec. 7, 2018), pp. 1140–1144. DOI: 10 . 1126 / science .
aar6404. URL: https : / /www.science.org /doi / full / 10 .1126 /science.
aar6404 (visited on 10/07/2022).

[134] Lee R. Dice. “Measures of the Amount of Ecologic Association
Between Species”. In: Ecology 26.3 (1945), pp. 297–302. ISSN: 0012-
9658. DOI: 10.2307/1932409. JSTOR: 1932409. URL: https://www.jstor.
org/stable/1932409 (visited on 04/03/2023).

[135] Thorvald Sørensen. “A Method of Establishing Groups of Equal
Amplitude in Plant Sociology Based on Similarity of Species and Its
Application to Analyses of the Vegetation on Danish Commons”.
In: Kongelige Danske Videnskabernes Selskab 5.4 (1948), pp. 1–34. URL:
https : / / www . royalacademy. dk / Publications / High / 295 _ S % C3 %
B8rensen,%20Thorvald.pdf (visited on 04/04/2023).

[136] Jiasen Lu et al. “Neural Baby Talk”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018,
pp. 7219–7228. URL: https:/ /openaccess.thecvf.com/content_cvpr_

139

https://doi.org/10.1016/S0933-3657(96)00367-3
https://www.sciencedirect.com/science/article/pii/S0933365796003673
https://www.sciencedirect.com/science/article/pii/S0933365796003673
https://doi.org/10.1109/TNNLS.2013.2293637
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://doi.org/10.1109/ICB45273.2019.8987334
https://doi.org/10.1016/S0004-3702(01)00129-1
https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404
https://www.science.org/doi/full/10.1126/science.aar6404
https://www.science.org/doi/full/10.1126/science.aar6404
https://doi.org/10.2307/1932409
http://www.jstor.org/stable/1932409
https://www.jstor.org/stable/1932409
https://www.jstor.org/stable/1932409
https://www.royalacademy.dk/Publications/High/295_S%C3%B8rensen,%20Thorvald.pdf
https://www.royalacademy.dk/Publications/High/295_S%C3%B8rensen,%20Thorvald.pdf
https://openaccess.thecvf.com/content_cvpr_2018/html/Lu_Neural_Baby_Talk_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Lu_Neural_Baby_Talk_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Lu_Neural_Baby_Talk_CVPR_2018_paper.html

2018/html/Lu_Neural_Baby_Talk_CVPR_2018_paper.html (visited
on 09/19/2022).

[137] Yash Goyal et al. Making the V in VQA Matter: Elevating the Role
of Image Understanding in Visual Question Answering. May 15, 2017.
arXiv: 1612.00837 [cs]. URL: http://arxiv.org/abs/1612.00837 (visited
on 10/03/2022). preprint.

[138] Perona Lab - CUB-200-2011. URL: https : / /www.vision . caltech .edu /
datasets/cub_200_2011/ (visited on 04/17/2023).

[139] Caffe Installation. URL: http://caffe.berkeleyvision.org/installation.html#
prerequisites (visited on 04/17/2023).

[140] Caffe Deep Learning Framework and NVIDIA GPU Acceleration.
NVIDIA. URL: https : / / www. nvidia . com / en - au / data - center / gpu -
accelerated-applications/caffe/ (visited on 04/17/2023).

[141] ML nodes - Universitetet i Oslo. URL: https://www.uio.no/tjenester/it/
forskning/kompetansehuber/uio-ai-hub-node-project/it-resources/ml-
nodes/index.html (visited on 04/17/2023).

[142] Podman. URL: https://podman.io/ (visited on 04/17/2023).

[143] Migrate to TensorFlow 2 | TensorFlow Core. TensorFlow. URL: https:
//www.tensorflow.org/guide/migrate (visited on 04/17/2023).

[144] Edward J. Hu et al. LoRA: Low-Rank Adaptation of Large Language
Models. Oct. 16, 2021. DOI: 10 . 48550 / arXiv . 2106 . 09685. arXiv:
2106 . 09685 [cs]. URL: http : / / arxiv. org / abs / 2106 . 09685 (visited
on 03/28/2023). preprint.

[145] Michael McCloskey and Neal J. Cohen. “Catastrophic Interference
in Connectionist Networks: The Sequential Learning Problem”. In:
Psychology of Learning and Motivation. Ed. by Gordon H. Bower.
Vol. 24. Academic Press, Jan. 1, 1989, pp. 109–165. DOI: 10 .1016 /
S0079 - 7421(08) 60536 - 8. URL: https : / / www. sciencedirect . com /
science/article/pii/S0079742108605368 (visited on 05/10/2023).

[146] Artem Andreenko [@miolini]. I’ve Sucefully Runned LLaMA 7B
Model on My 4GB RAM Raspberry Pi 4. It’s Super Slow about
10sec/Token. But It Looks We Can Run Powerful Cognitive Pipelines on
a Cheap Hardware. Twitter. Mar. 12, 2023. URL: https: / / twitter.com/
miolini/status/1634982361757790209 (visited on 04/08/2023).

[147] Eric J. Wang. Alpaca-LoRA. Apr. 8, 2023. URL: https : / / github.com/
tloen/alpaca-lora (visited on 04/08/2023).

[148] Hanna Borgli et al. “HyperKvasir, a Comprehensive Multi-Class
Image and Video Dataset for Gastrointestinal Endoscopy”. In:
Scientific Data 7.1 (1 Aug. 28, 2020), p. 283. ISSN: 2052-4463. DOI:
10.1038/s41597-020-00622-y. URL: https://www.nature.com/articles/
s41597-020-00622-y (visited on 03/17/2023).

140

https://openaccess.thecvf.com/content_cvpr_2018/html/Lu_Neural_Baby_Talk_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Lu_Neural_Baby_Talk_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Lu_Neural_Baby_Talk_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Lu_Neural_Baby_Talk_CVPR_2018_paper.html
https://arxiv.org/abs/1612.00837
http://arxiv.org/abs/1612.00837
https://www.vision.caltech.edu/datasets/cub_200_2011/
https://www.vision.caltech.edu/datasets/cub_200_2011/
http://caffe.berkeleyvision.org/installation.html#prerequisites
http://caffe.berkeleyvision.org/installation.html#prerequisites
https://www.nvidia.com/en-au/data-center/gpu-accelerated-applications/caffe/
https://www.nvidia.com/en-au/data-center/gpu-accelerated-applications/caffe/
https://www.uio.no/tjenester/it/forskning/kompetansehuber/uio-ai-hub-node-project/it-resources/ml-nodes/index.html
https://www.uio.no/tjenester/it/forskning/kompetansehuber/uio-ai-hub-node-project/it-resources/ml-nodes/index.html
https://www.uio.no/tjenester/it/forskning/kompetansehuber/uio-ai-hub-node-project/it-resources/ml-nodes/index.html
https://podman.io/
https://www.tensorflow.org/guide/migrate
https://www.tensorflow.org/guide/migrate
https://doi.org/10.48550/arXiv.2106.09685
https://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://twitter.com/miolini/status/1634982361757790209
https://twitter.com/miolini/status/1634982361757790209
https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora
https://doi.org/10.1038/s41597-020-00622-y
https://www.nature.com/articles/s41597-020-00622-y
https://www.nature.com/articles/s41597-020-00622-y

[149] Vgg16 — Torchvision Main Documentation. URL: https://pytorch.org/
vision/main/models/generated/torchvision.models.vgg16.html (visited
on 05/11/2023).

[150] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger.
Dec. 25, 2016. DOI: 10.48550/arXiv.1612.08242. arXiv: 1612.08242
[cs]. URL: http://arxiv.org/abs/1612.08242 (visited on 04/09/2023).
preprint.

[151] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improve-
ment. Apr. 8, 2018. DOI: 10.48550/arXiv.1804.02767. arXiv: 1804.
02767 [cs]. URL: http : / / arxiv . org / abs / 1804 . 02767 (visited on
04/09/2023). preprint.

[152] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
YOLOv4: Optimal Speed and Accuracy of Object Detection. Apr. 22,
2020. DOI: 10 . 48550 / arXiv. 2004 . 10934. arXiv: 2004 . 10934 [cs,
eess]. URL: http://arxiv.org/abs/2004.10934 (visited on 04/09/2023).
preprint.

[153] Glenn Jocher. Yolov5. URL: https : / / github . com / ultralytics / yolov5
(visited on 04/09/2023).

[154] Chuyi Li et al. YOLOv6: A Single-Stage Object Detection Framework
for Industrial Applications. Sept. 7, 2022. DOI: 10.48550/arXiv.2209.
02976. arXiv: 2209.02976 [cs]. URL: http://arxiv.org/abs/2209.02976
(visited on 04/09/2023). preprint.

[155] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.
YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-
Time Object Detectors. July 6, 2022. DOI: 10.48550/arXiv.2207.02696.
arXiv: 2207.02696 [cs]. URL: http://arxiv.org/abs/2207.02696 (visited
on 04/09/2023). preprint.

[156] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. YOLO by Ultralytics.
Version 8.0.0. Jan. 2023. URL: https://github.com/ultralytics/ultralytics
(visited on 04/09/2023).

[157] Zhengyuan Yang et al. MM-REACT: Prompting ChatGPT for Multi-
modal Reasoning and Action. Mar. 20, 2023. DOI: 10.48550/arXiv.2303.
11381. arXiv: 2303.11381 [cs]. URL: http://arxiv.org/abs/2303.11381
(visited on 03/28/2023). preprint.

[158] Xueyan Zou et al. Generalized Decoding for Pixel, Image, and Lan-
guage. Dec. 21, 2022. DOI: 10 . 48550 / arXiv . 2212 . 11270. arXiv:
2212 . 11270 [cs]. URL: http : / / arxiv. org / abs / 2212 . 11270 (visited
on 04/10/2023). preprint.

[159] Hugging Face – The AI Community Building the Future. URL: https :
//huggingface.co/ (visited on 05/11/2023).

141

https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html
https://doi.org/10.48550/arXiv.1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
https://doi.org/10.48550/arXiv.1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://doi.org/10.48550/arXiv.2004.10934
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
http://arxiv.org/abs/2004.10934
https://github.com/ultralytics/yolov5
https://doi.org/10.48550/arXiv.2209.02976
https://doi.org/10.48550/arXiv.2209.02976
https://arxiv.org/abs/2209.02976
http://arxiv.org/abs/2209.02976
https://doi.org/10.48550/arXiv.2207.02696
https://arxiv.org/abs/2207.02696
http://arxiv.org/abs/2207.02696
https://github.com/ultralytics/ultralytics
https://doi.org/10.48550/arXiv.2303.11381
https://doi.org/10.48550/arXiv.2303.11381
https://arxiv.org/abs/2303.11381
http://arxiv.org/abs/2303.11381
https://doi.org/10.48550/arXiv.2212.11270
https://arxiv.org/abs/2212.11270
http://arxiv.org/abs/2212.11270
https://huggingface.co/
https://huggingface.co/

[160] LLaMA_tokenizer. URL: https : / / huggingface . co / docs / transformers /
main/model_doc/llama (visited on 04/10/2023).

[161] Sentencepiece. GitHub. URL: https://github.com/google/sentencepiece
(visited on 04/10/2023).

[162] Hila Chefer, Shir Gur, and Lior Wolf. “Generic Attention-Model
Explainability for Interpreting Bi-Modal and Encoder-Decoder
Transformers”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021, pp. 397–406. URL: https : / /
openaccess . thecvf . com/content / ICCV2021 /html /Chefer_Generic_
Attention - Model _ Explainability _ for _ Interpreting _ Bi - Modal _ and _
Encoder - Decoder _ Transformers _ ICCV _ 2021 _ paper. html (visited
on 05/12/2023).

[163] Hila Chefer, Shir Gur, and Lior Wolf. “Transformer Interpretability
Beyond Attention Visualization”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021,
pp. 782–791. URL: https://openaccess.thecvf.com/content/CVPR2021/
html / Chefer _ Transformer _ Interpretability _ Beyond _ Attention _
Visualization_CVPR_2021_paper.html (visited on 05/12/2023).

[164] Oren Barkan et al. “Grad-SAM: Explaining Transformers via
Gradient Self-Attention Maps”. In: Proceedings of the 30th ACM
International Conference on Information & Knowledge Management.
CIKM ’21. New York, NY, USA: Association for Computing
Machinery, Oct. 30, 2021, pp. 2882–2887. ISBN: 978-1-4503-8446-9.
DOI: 10.1145/3459637.3482126. URL: https://dl.acm.org/doi/10.1145/
3459637.3482126 (visited on 05/12/2023).

[165] Moritz Böhle, Mario Fritz, and Bernt Schiele. Holistically Explainable
Vision Transformers. Jan. 20, 2023. DOI: 10.48550/arXiv.2301.08669.
arXiv: 2301.08669 [cs, stat]. URL: http://arxiv.org/abs/2301.08669
(visited on 05/12/2023). preprint.

[166] Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to
Generate Reviews and Discovering Sentiment. Apr. 6, 2017. DOI: 10 .
48550/arXiv.1704.01444. arXiv: 1704.01444 [cs]. URL: http://arxiv.
org/abs/1704.01444 (visited on 05/12/2023). preprint.

[167] Sofia Serrano and Noah A. Smith. Is Attention Interpretable? June 9,
2019. DOI: 10.48550/arXiv.1906.03731. arXiv: 1906.03731 [cs]. URL:
http://arxiv.org/abs/1906.03731 (visited on 05/12/2023). preprint.

[168] Sarthak Jain and Byron C. Wallace. Attention Is Not Explanation.
May 8, 2019. DOI: 10.48550/arXiv.1902.10186. arXiv: 1902.10186
[cs]. URL: http://arxiv.org/abs/1902.10186 (visited on 05/12/2023).
preprint.

142

https://huggingface.co/docs/transformers/main/model_doc/llama
https://huggingface.co/docs/transformers/main/model_doc/llama
https://github.com/google/sentencepiece
https://openaccess.thecvf.com/content/ICCV2021/html/Chefer_Generic_Attention-Model_Explainability_for_Interpreting_Bi-Modal_and_Encoder-Decoder_Transformers_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Chefer_Generic_Attention-Model_Explainability_for_Interpreting_Bi-Modal_and_Encoder-Decoder_Transformers_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Chefer_Generic_Attention-Model_Explainability_for_Interpreting_Bi-Modal_and_Encoder-Decoder_Transformers_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Chefer_Generic_Attention-Model_Explainability_for_Interpreting_Bi-Modal_and_Encoder-Decoder_Transformers_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chefer_Transformer_Interpretability_Beyond_Attention_Visualization_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chefer_Transformer_Interpretability_Beyond_Attention_Visualization_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chefer_Transformer_Interpretability_Beyond_Attention_Visualization_CVPR_2021_paper.html
https://doi.org/10.1145/3459637.3482126
https://dl.acm.org/doi/10.1145/3459637.3482126
https://dl.acm.org/doi/10.1145/3459637.3482126
https://doi.org/10.48550/arXiv.2301.08669
https://arxiv.org/abs/2301.08669
http://arxiv.org/abs/2301.08669
https://doi.org/10.48550/arXiv.1704.01444
https://doi.org/10.48550/arXiv.1704.01444
https://arxiv.org/abs/1704.01444
http://arxiv.org/abs/1704.01444
http://arxiv.org/abs/1704.01444
https://doi.org/10.48550/arXiv.1906.03731
https://arxiv.org/abs/1906.03731
http://arxiv.org/abs/1906.03731
https://doi.org/10.48550/arXiv.1902.10186
https://arxiv.org/abs/1902.10186
https://arxiv.org/abs/1902.10186
http://arxiv.org/abs/1902.10186

[169] Samira Abnar and Willem Zuidema. Quantifying Attention Flow in
Transformers. May 31, 2020. DOI: 10.48550/arXiv.2005.00928. arXiv:
2005.00928 [cs]. URL: http://arxiv.org/abs/2005.00928 (visited on
05/12/2023). preprint.

[170] Steven Hicks et al. ImageCLEFmed-MEDVQA-GI-2023. Simula,
May 8, 2023. URL: https : / / github . com / simula / ImageCLEFmed -
MEDVQA-GI-2023 (visited on 05/12/2023).

[171] Steven Hicks et al. ImageCLEFmed MEDVQA-GI - ImageCLEF /
LifeCLEF - Multimedia Retrieval in CLEF. URL: https://www.imageclef.
org/2023/medical/vqa (visited on 05/12/2023).

[172] Sequence/Context Length of This Model? · Issue #16 · Facebookre-
search/Llama. URL: https://github.com/facebookresearch/llama/issues/
16 (visited on 04/11/2023).

[173] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Gen-
erating Structured Queries from Natural Language Using Reinforcement
Learning. Nov. 9, 2017. DOI: 10 . 48550 / arXiv . 1709 . 00103. arXiv:
1709 . 00103 [cs]. URL: http : / / arxiv. org / abs / 1709 . 00103 (visited
on 05/14/2023). preprint.

[174] Adina Williams, Nikita Nangia, and Samuel Bowman. “A Broad-
Coverage Challenge Corpus for Sentence Understanding through
Inference”. In: vol. 1. New Orleans, Louisiana: Association for
Computational Linguistics, 2018, pp. 1112–1122. URL: http://aclweb.
org/anthology/N18-1101 (visited on 05/14/2023).

[175] Sklearn.Linear_model.SGDClassifier — Scikit-Learn 1.2.2 Documenta-
tion. URL: https://scikit- learn.org/stable/modules/generated/sklearn.
linear_model.SGDClassifier.html (visited on 05/16/2023).

[176] Lime Package — Lime 0.1 Documentation. URL: https : / / lime - ml .
readthedocs. io/en/ latest / lime.html#module- lime. lime_text (visited
on 05/16/2023).

143

https://doi.org/10.48550/arXiv.2005.00928
https://arxiv.org/abs/2005.00928
http://arxiv.org/abs/2005.00928
https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2023
https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2023
https://www.imageclef.org/2023/medical/vqa
https://www.imageclef.org/2023/medical/vqa
https://github.com/facebookresearch/llama/issues/16
https://github.com/facebookresearch/llama/issues/16
https://doi.org/10.48550/arXiv.1709.00103
https://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://lime-ml.readthedocs.io/en/latest/lime.html#module-lime.lime_text
https://lime-ml.readthedocs.io/en/latest/lime.html#module-lime.lime_text

Appendix A

Additional Proxy Model
Explanations

This chapter adds some additional examples of the proxy model explained
by LIME. The trend of these examples is discussed in subsection 4.5.3.

Prediction probabilities

0.21Center-left

0.20Center-right

0.19Upper-right

0.16Polypus

0.23Other

NOT Center-left Center-left
the

0.05
Where

0.05
in
0.02

265
0.02

33
0.02
image
0.02

306
0.01

NOT Center-right Center-right
Where

0.06
the

0.05
461
0.02

228
0.02
image
0.02
pillow
0.02
in
0.02

Text with highlighted words

instruction: Where in the image is the abnormality?, input: [['ocarina', 18.294], ["jack-o'-lantern", 17.719], ['piggy bank', 8.768], ['mask', 4.141], ['pretzel',
2.228], ['stingray', 1.781], ['bagel', 1.596], ['potpie', 1.545], ['saltshaker', 1.543], ['Band Aid', 1.261], ['chiton', 1.214], ['pick', 1.186], ['chocolate sauce', 0.949],
['bakery', 0.942], ['electric ray', 0.908], ['triceratops', 0.877], ['pitcher', 0.875], ['bathing cap', 0.805], ['teapot', 0.756], ['spatula', 0.683], ['sunscreen', 0.672],
['toilet seat', 0.636], ['plunger', 0.61], ['dough', 0.577], ['mushroom', 0.573], ['crash helmet', 0.531], ['bathtub', 0.516], ['maraca', 0.461], ['shield', 0.444],
['bolete', 0.432], ['vase', 0.431], ['chambered nautilus', 0.425], ['jigsaw puzzle', 0.401], ['agaric', 0.383], ['football helmet', 0.378], ['sea slug', 0.376], ['cowboy
hat', 0.37], ['electric guitar', 0.368], ['spindle', 0.364], ['baseball', 0.343], ['buckle', 0.33], ['goblet', 0.311], ['clog', 0.306], ['gyromitra', 0.3], ['ice cream', 0.299],
['padlock', 0.296], ['sea cucumber', 0.285], ['soap dispenser', 0.279], ['puck', 0.274], ['pomegranate', 0.273], ['breastplate', 0.267], ['tub', 0.266], ['slug', 0.265],
['anemone fish', 0.265], ['spotted salamander', 0.236], ['cuirass', 0.23], ['water jug', 0.228], ['bell pepper', 0.219], ['wooden spoon', 0.218], ['whiskey jug',
0.217], ['French loaf', 0.217], ['nematode', 0.215], ['nipple', 0.212], ['soup bowl', 0.212], ['coffee mug', 0.21], ['tray', 0.207], ['candle', 0.206], ["potter's wheel",
0.202], ['sea anemone', 0.201], ['butternut squash', 0.196], ['flatworm', 0.194], ['swimming trunks', 0.194], ['bib', 0.183], ['mixing bowl', 0.181], ['trilobite',
0.18], ['ice lolly', 0.176], ['teddy', 0.168], ['ladle', 0.162], ['pillow', 0.161], ['safety pin', 0.154], ['acorn', 0.152], ['cheeseburger', 0.15], ['conch', 0.147], ['pot',
0.147], ['wig', 0.145], ['dugong', 0.142], ['rain barrel', 0.135], ['isopod', 0.134], ['shower cap', 0.133], ['flamingo', 0.13], ['lotion', 0.129], ['eft', 0.124], ['golf
ball', 0.124], ['sweatshirt', 0.123], ['Petri dish', 0.122], ['bubble', 0.12], ['sandal', 0.119], ['ballplayer', 0.115], ['jersey', 0.113], ['acorn squash', 0.113]]

Figure A.1: The proxy model explained by LIME. The correct answer is
Upper-right, Alpaca-VQA predicted Center-left, and this is the explanation
of the prediction.

144

Prediction probabilities

0.680

0.221

0.04Laparoscopy

0.03Red

0.02Other

NOT 0 0
instrumnets

0.18
many

0.14
How

0.14
are

0.07
sea
0.03

in
0.03

624
0.02

NOT 1 1
How

0.08
many

0.07
instrumnets

0.07
are
0.04

227
0.02
674
0.02
753
0.02

Text with highlighted words

instruction: How many instrumnets are in the image?, input: [['bathtub', 16.132], ['tub', 11.73], ['ice lolly', 6.817], ['dough', 6.386], ['ice cream', 4.68],
['bathing cap', 4.605], ['sunscreen', 4.135], ['frying pan', 3.87], ['spatula', 2.753], ['shower cap', 2.378], ['plunger', 2.103], ['fig', 1.956], ['electric ray', 1.811],
['tick', 1.733], ['wooden spoon', 1.686], ['chiton', 1.588], ['sea cucumber', 1.51], ['stingray', 1.449], ['Crock Pot', 1.261], ['jellyfish', 1.139], ['mixing bowl',
1.122], ['chocolate sauce', 0.916], ['conch', 0.781], ["potter's wheel", 0.674], ['hog', 0.624], ['bubble', 0.624], ['lipstick', 0.598], ['wok', 0.52], ['lotion', 0.496],
['washbasin', 0.461], ['strawberry', 0.452], ['Dungeness crab', 0.436], ['bucket', 0.421], ['face powder', 0.42], ['bagel', 0.365], ['chambered nautilus', 0.343],
['cleaver', 0.342], ['piggy bank', 0.311], ['isopod', 0.309], ['bakery', 0.309], ['axolotl', 0.273], ['puck', 0.264], ['pomegranate', 0.229], ['starfish', 0.227], ['plate',
0.227], ['Dutch oven', 0.226], ['slug', 0.212], ['bell pepper', 0.205], ['hamster', 0.198], ['mashed potato', 0.171], ['brain coral', 0.17], ['soup bowl', 0.17],
['consomme', 0.17], ['nematode', 0.166], ['sea anemone', 0.151], ['ladle', 0.15], ['hermit crab', 0.145], ['meat loaf', 0.14], ['nipple', 0.137], ['Band Aid', 0.135],
['wig', 0.129], ['snail', 0.125], ['swimming trunks', 0.119], ['orange', 0.111], ['caldron', 0.108], ['flatworm', 0.105], ['safety pin', 0.097], ['cheeseburger', 0.097],
['butcher shop', 0.095], ['sea urchin', 0.094], ['plastic bag', 0.091], ['sandbar', 0.091], ['mortar', 0.09], ['paintbrush', 0.088], ['bottlecap', 0.086], ['hotdog',
0.084], ['bikini', 0.081], ['pick', 0.081], ['candle', 0.08], ['thunder snake', 0.076], ['brassiere', 0.071], ['Petri dish', 0.068], ['Granny Smith', 0.063], ['butternut
squash', 0.061], ['hip', 0.061], ['cucumber', 0.057], ['paper towel', 0.056], ['goldfish', 0.055], ['snorkel', 0.055], ['eggnog', 0.054], ['cockroach', 0.053], ['pretzel',
0.053], ['trilobite', 0.052], ['syringe', 0.051], ['hot pot', 0.051], ['crayfish', 0.05], ['nail', 0.049], ['sea slug', 0.046], ['dugong', 0.046], ['gyromitra', 0.046]]

Figure A.2: The proxy model explained by LIME. The correct answer is 0,
Alpaca-VQA predicted 0, and this is the explanation of the prediction.

Prediction probabilities

0.56Yes

0.15Center-right

0.09No

0.09Polyp

0.11Other

NOT Yes Yes
text

0.21
there

0.08
Is

0.05
219
0.03
cap
0.03
bottle
0.00
151
0.00

NOT Center-right Center-right
there

0.04
bottle
0.02
Is
0.02
151
0.02
228
0.02
813
0.02

text
0.02

Text with highlighted words

instruction: Is there text?, input: [['sunscreen', 20.371], ['swimming trunks', 9.902], ['bathing cap', 9.789], ['Band Aid', 4.735], ['lotion', 3.591], ['dugong', 3.104],
['pop bottle', 2.345], ['ice lolly', 1.656], ['book jacket', 1.465], ['snorkel', 1.369], ['iPod', 1.338], ['hog', 1.184], ['plunger', 0.954], ['pick', 0.922], ['sea cucumber',
0.897], ['sunglass', 0.859], ['bell pepper', 0.853], ['hair spray', 0.83], ['punching bag', 0.813], ['lighter', 0.808], ['great white shark', 0.793], ['bathtub', 0.723],
['tub', 0.711], ['conch', 0.708], ['comic book', 0.679], ['beer glass', 0.561], ['packet', 0.537], ['cellular telephone', 0.534], ['water bottle', 0.529], ['harmonica',
0.476], ['butcher shop', 0.455], ['ocarina', 0.451], ['pill bottle', 0.442], ['dough', 0.441], ['cash machine', 0.424], ['beer bottle', 0.412], ['oil filter', 0.398],
['sunglasses', 0.376], ['bikini', 0.355], ['hotdog', 0.347], ['jellyfish', 0.342], ['chiton', 0.318], ['Granny Smith', 0.312], ['pomegranate', 0.306], ['whistle', 0.303],
['barbershop', 0.29], ['scuba diver', 0.286], ['stingray', 0.284], ['pretzel', 0.283], ['bagel', 0.28], ['ice cream', 0.273], ['scale', 0.264], ['axolotl', 0.246], ['Crock Pot',
0.235], ['wig', 0.235], ['remote control', 0.232], ['piggy bank', 0.229], ['lipstick', 0.228], ['shower cap', 0.228], ['bubble', 0.227], ['vending machine', 0.226],
['syringe', 0.221], ['tiger shark', 0.219], ['butternut squash', 0.219], ['neck brace', 0.211], ['beaker', 0.195], ['microphone', 0.194], ['gyromitra', 0.184], ['chocolate
sauce', 0.179], ['football helmet', 0.178], ["jack-o'-lantern", 0.176], ['red wine', 0.176], ['can opener', 0.171], ['oxygen mask', 0.157], ['cheeseburger', 0.154],
['scorpion', 0.151], ['cleaver', 0.151], ['coffee mug', 0.151], ['mask', 0.15], ['flamingo', 0.147], ['stopwatch', 0.147], ['fig', 0.142], ['television', 0.141], ['maillot',
0.137], ['tick', 0.136], ['perfume', 0.13], ['laptop', 0.127], ['maraca', 0.124], ['soap dispenser', 0.124], ['wine bottle', 0.123], ['wok', 0.123], ['isopod', 0.12], ['gas
pump', 0.118], ['American lobster', 0.114], ['electric ray', 0.111], ['hamster', 0.11], ["potter's wheel", 0.11], ['stage', 0.11], ['bottlecap', 0.108], ['cup', 0.105]]

Figure A.3: The proxy model explained by LIME. The correct answer
is Yes, Alpaca-VQA predicted Yes, and this is the explanation of the
prediction.

145

Prediction probabilities

0.32Polypus

0.17Polyp

0.153-5mm

0.15Laparoscopic

0.21Other

NOT Polypus Polypus
polyp

0.09
present

0.09
type

0.06
of
0.03

308
0.02

263
0.01
is
0.01

NOT Polyp Polyp
polyp
0.04

present
0.03

type
0.03

What
0.01

118
0.01

of
0.00

is
0.00

Text with highlighted words

instruction: What type of polyp is present?, input: [['pretzel', 29.072], ['hotdog', 10.585], ['bagel', 5.857], ['French loaf', 4.457], ['chiton', 3.11], ['chocolate
sauce', 2.724], ['cheeseburger', 1.858], ['wok', 1.721], ['dough', 1.603], ['buckeye', 1.589], ["jack-o'-lantern", 1.443], ['butternut squash', 1.319], ['mushroom',
1.25], ['bell pepper', 1.184], ['wooden spoon', 1.176], ['bolete', 1.09], ['ice lolly', 0.997], ['frying pan', 0.943], ['caldron', 0.94], ['ladle', 0.826], ['consomme',
0.725], ['hot pot', 0.679], ['soup bowl', 0.661], ['American lobster', 0.635], ['Dutch oven', 0.634], ['sea cucumber', 0.595], ['acorn squash', 0.588], ['potpie',
0.542], ['gyromitra', 0.507], ['bakery', 0.499], ['nematode', 0.49], ['Crock Pot', 0.485], ['plunger', 0.478], ['burrito', 0.468], ['mashed potato', 0.448], ['fig',
0.433], ['cucumber', 0.42], ['mortar', 0.414], ['beer glass', 0.345], ['maraca', 0.343], ['ice cream', 0.32], ['mixing bowl', 0.317], ['slug', 0.308], ['orange', 0.308],
['meat loaf', 0.303], ['agaric', 0.295], ['earthstar', 0.294], ['espresso', 0.275], ['Granny Smith', 0.269], ['rotisserie', 0.268], ['pitcher', 0.265], ['spatula', 0.263],
['ocarina', 0.261], ['candle', 0.257], ['tub', 0.251], ['pomegranate', 0.217], ['bathtub', 0.213], ['flatworm', 0.21], ['spotted salamander', 0.174], ['tray', 0.169],
['acorn', 0.156], ['conch', 0.154], ['lemon', 0.152], ['stinkhorn', 0.152], ['plate', 0.151], ["potter's wheel", 0.145], ['whiskey jug', 0.141], ['piggy bank', 0.14],
['goblet', 0.136], ['Dungeness crab', 0.133], ['packet', 0.128], ['spaghetti squash', 0.126], ['bucket', 0.124], ['cup', 0.123], ['tench', 0.121], ['steel drum', 0.118],
['guacamole', 0.118], ['banana', 0.114], ['Band Aid', 0.108], ['gong', 0.105], ['eft', 0.104], ['isopod', 0.102], ['coffee mug', 0.101], ['bubble', 0.098], ['nipple',
0.092], ['pot', 0.092], ['hen-of-the-woods', 0.09], ['teapot', 0.086], ['stingray', 0.084], ['electric ray', 0.083], ['chain', 0.079], ['hog', 0.078], ['butcher shop',
0.076], ['grocery store', 0.074], ['corn', 0.074], ['eel', 0.073], ['beer bottle', 0.073], ['common newt', 0.072], ['rock crab', 0.071], ['crayfish', 0.07]]

Figure A.4: The proxy model explained by LIME. The correct answer is
Paris iia, Alpaca-VQA predicted Polypus, and this is the explanation of the
prediction.

Prediction probabilities

0.30Endoscopy

0.21Laparoscopic

0.13Colonoscopy

0.12Laparoscopy

0.24Other

NOT Endoscopy Endoscopy
procedure

0.04
from

0.04
taken

0.04
type
0.02
poodle
0.02
28
0.02
What
0.00

NOT Laparoscopic Laparoscopic
procedure
0.04

from
0.04

taken
0.04

type
0.02
338
0.01

poodle
0.01

987
0.00

Text with highlighted words

instruction: What type of procedure is the image taken from?, input: [['hog', 12.643], ['dough', 5.328], ['flamingo', 4.063], ['dugong', 3.987], ["potter's wheel", 2.317],
['Mexican hairless', 2.312], ['cauliflower', 2.166], ['pomegranate', 1.714], ['ice cream', 1.678], ['Band Aid', 1.671], ['axolotl', 1.637], ['wig', 1.582], ['hippopotamus',
1.531], ['sunscreen', 1.204], ['butcher shop', 1.157], ['tub', 0.993], ['Granny Smith', 0.97], ['teddy', 0.922], ['mask', 0.895], ['swimming trunks', 0.846], ['brain coral',
0.837], ['Crock Pot', 0.777], ['eel', 0.773], ['wombat', 0.712], ['shower cap', 0.697], ['bathtub', 0.681], ['tick', 0.667], ['triceratops', 0.653], ['bagel', 0.633], ['hamster',
0.584], ['wool', 0.544], ['bell pepper', 0.526], ['nematode', 0.524], ['thunder snake', 0.499], ['butternut squash', 0.491], ['Chesapeake Bay retriever', 0.487], ['piggy
bank', 0.486], ['paper towel', 0.484], ['scorpion', 0.457], ['miniature poodle', 0.454], ['ocarina', 0.452], ['caldron', 0.446], ['microphone', 0.401], ['tusker', 0.4], ['potpie',
0.385], ['curly-coated retriever', 0.382], ['consomme', 0.379], ['candle', 0.378], ['toy poodle', 0.37], ["jack-o'-lantern", 0.366], ['sea cucumber', 0.358], ['chiton', 0.339],
['wooden spoon', 0.338], ['lotion', 0.335], ['plunger', 0.333], ['harmonica', 0.311], ['Indian elephant', 0.302], ['orange', 0.301], ['cleaver', 0.299], ['strawberry', 0.298],
['face powder', 0.297], ['head cabbage', 0.293], ['Weimaraner', 0.29], ['platypus', 0.288], ['fig', 0.285], ['Gila monster', 0.281], ['electric ray', 0.28], ['African elephant',
0.28], ['sombrero', 0.279], ['gong', 0.277], ['stingray', 0.276], ['ski mask', 0.276], ['bucket', 0.259], ['bubble', 0.259], ['bathing cap', 0.257], ['stinkhorn', 0.255],
['sleeping bag', 0.25], ['pick', 0.236], ['sunglass', 0.235], ['toilet tissue', 0.233], ['conch', 0.226], ['red wine', 0.222], ['wok', 0.22], ['standard poodle', 0.219], ['burrito',
0.215], ['ice lolly', 0.213], ['chocolate sauce', 0.213], ['neck brace', 0.211], ['stethoscope', 0.208], ['bath towel', 0.207], ['starfish', 0.206], ['scale', 0.204], ['Dutch oven',
0.202], ['mortar', 0.2], ['mongoose', 0.197], ['isopod', 0.194], ['buckle', 0.192], ['mashed potato', 0.191], ['bolete', 0.185], ['crayfish', 0.183]]

Figure A.5: The proxy model explained by LIME. The correct answer is
Colonoscopy, Alpaca-VQA predicted Endoscopy, and this is the explanation
of the prediction.

146

	List of Acronyms
	Introduction
	Background and Motivation
	Problem Statement
	Scope and Limitations
	Research Methods
	Ethical Considerations
	Main Contributions
	Thesis Outline

	Background
	Artificial Intelligence
	A Short History of AI
	Machine Learning
	Deep Learning and Neural Networks
	Convolutional Neural Networks

	Image Captioning
	Attention Mechanisms
	Model evaluation
	Precision and Recall
	Accuracy
	F1 Score
	Perplexity

	Frameworks
	TensorFlow
	Text Tokenization

	Related Work
	Explainable AI (XAI)
	Large Language Models (LLMs)

	Problem and Application
	Problem
	Application

	Summary

	Methodology
	FLEX-VQA
	Overview
	The motivation for this method
	Original FLEX in more detail
	Implementation
	Why this method has no results
	Summary of FLEX-VQA

	Alpaca-VQA
	Overview
	Implementation
	Explaining the output
	Dataset
	Context Window, Cuttoff, and Evaluation Metrics

	Summary

	Experiments, Results, and Discussion
	Intro
	Hyperparameters
	Investigatory Experiment
	Results
	Analysis

	Main Experiment
	Results
	Classification Report
	Visualizing Transition Scores
	Proxy model and LIME
	Language-only Alpaca-VQA model

	Discussion
	Summary

	Conclusions
	Summary
	Main Contributions
	Limitations and Future Work
	FLEX-VQA
	Alpaca-VQA
	Explainable Methods

	Appendices
	Additional Proxy Model Explanations

