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Abstract
In this paper, we study the effective field theory (EFT) of dark energy (DE)
for the k-essence model beyond linear order. Using particle-mesh N-body sim-
ulations that consistently solve the DE evolution on a grid, we find that the
next-to-leading order in the EFT expansion, which comprises the terms of the
equations of motion that are quadratic in the field variables, gives rise to a
generic instability in the regime of low speed of sound (high Mach number).
We rule out the possibility of a numerical artefact by considering simplified
cases in spherically and plane symmetric situations analytically. If the speed of
sound vanishes exactly, the non-linear instability makes the evolution singular
in finite time, signalling a breakdown of the EFT framework. The case of finite
(but small) speed of sound is subtle, and the local singularity could be replaced
by some other type of behaviour with strong non-linearities. While an ultra-
violet completion may cure the problem in principle, there is no reason why
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this should be the case in general. As a result, for a large range of the effective
speed of sound cs, a linear treatment is not adequate.

Keywords: clustering dark energy, instability,
large-scale structure of Universe, N-body simulations,
dark energy and modified gravity, effective field theory of dark energy

(Some figures may appear in colour only in the online journal)

1. Introduction

In the near future, cosmology will benefit from numerous high precision observations [1–3],
probing the Universe at different epochs, from the very early times when cosmic microwave
background radiation photons started to propagate and the Universe was around 400 000 years
old to today, when the Universe is 13.8 billion years old and has entered a phase of accelerating
expansion. One of the main goals of ongoing and future cosmological surveys is to elucidate
the physical mechanism behind the late-time accelerated expansion of the Universe that has
now been established by several independent observations [4–6].

Over the past years, a wide range of theories has been developed by cosmologists and
particle physicists with the aim to address the question of the accelerated expansion of the
Universe, either by modifying the theory of gravity or by considering an additional fluid com-
ponent with a negative pressure usually called dark energy (DE) [7–9]. Among these theories,
the effective field theory (EFT) of DE [10–12] has become quite popular since it allows to
describe the DE phenomenology occurring at low energies with a reasonable number of free
parameters in a generic way. In principle, the free parameters in the effective theory are con-
nected to (i.e. determined by) a fundamental theory at high energy and respect the low-energy
symmetries [13]. In practice however, they can be considered as parameters to be measured in
low-energy experiments, similar to the moduli describing an elastic material in the context of
material science.

In this paper, we focus on the subset of EFT of DE models with only two free parameters,
αK (or equivalently c2s = δp/δρ) at the perturbation level and w= p/ρ at the background level,
which is equivalent to the well-known theory of k-essence. The k-essence theory was first pro-
posed in 2000 [14–16] to naturally, without any fine-tuning, explain the accelerated expansion
of the Universe. At linear level k-essence has been explored well and is considered a viable the-
ory for the late-time accelerated expansion. Like the cosmological constant, which is reached
in the limit w→−1, this theory can explain all cosmological observations to date. However,
by increasing the precision of the observations, we can hope to place much more stringent con-
straints on the space of theories. In the near future this will require a good understanding of the
behaviour at non-linear scales which requires developing proper N-body simulations [17–22].
To capture the non-linear behaviour of k-essence we developed the code k-evolution based on
the relativistic N-body code gevolution [23–25]. In previous studies [26–29] we maintained
linearity of the k-essence field equations and studied the evolution when coupled to a non-
linear N-body system. Here, we use the equations derived in [30] for the non-linear evolution
of k-essence as an EFT, parametrised with the equation of state w and the speed of sound cs.
The free parameters appearing in the field picture, e.g. αK , can be interpreted when writing the
theory in the fluid picture. In appendix of [30], we showed that the fluid description and the field
picture are equivalent and one can easily change the picture by well-defined transformations.
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In this paper, we show that the EFT of DE for k-essence, in the limit of low speed of sound,
suffers from a new instability triggered by one of the non-linear terms in the EFT expan-
sion. In section 2 we discuss the equations that describe the model. In section 3 we present
the numerical results for 3+1 D in the cosmological context where we solve the full 3+1 D
partial differential equation (PDE) for the k-essence scalar field numerically, using the EFT
framework. We show that for low speed of sound, the numerical solution to this PDE blows up
at some time before the current age of the Universe. In section 4 we study a simplified PDE,
using either planar or spherical symmetry to reduce the dimensionality to 1+1 D. We show
analytically that the instability is present and therefore expected to appear in the full 3+1 D
case. We also comment on how the solution becomes singular and when the solution ceases to
exist, and we show how increasing the speed of sound could stabilise the system. In the final
section, we conclude with a short discussion of the results.

2. Field equations

In this section we write down the equations for the k-essence scalar field parametrised with w
and c2s , expanded around the background employing the weak-field expansion. The equations
of motion as well as the stress energy tensor for clustering DE are obtained and discussed in
detail in [30]. There we showed the results for clustering DE where we only keep linear terms
in the DE scalar field equations. In order to study the evolution of perturbations we use the
Friedmann-Lemâıtre-Robertson-Walker metric in the conformal Poisson gauge,

ds2 = a2(τ)
[
− e2Ψdτ 2 − 2Bi dx

i dτ +
(
e−2Φδij+ hij

)
dxi dxj

]
, (1)

where Ψ and Φ are the temporal and spatial scalar perturbations of the metric and correspond
to the Bardeen potentials, Bi is the transverse gravitomagnetic vector perturbation with two
degrees of freedom, and hij is the traceless transverse tensor perturbation with two degrees of
freedom. In this gauge the PDE for the k-essence scalar field, including the non-linear correc-
tions in the weak-field regime, reads

∂τπ = ζ −Hπ +Ψ , (2)

∂τζ = 3wHζ − 3c2s
(
H2π −HΨ −H ′π − ∂τΦ

)
+ c2s∇2π

−
(
∇⃗
[
2(c2s − 1)ζ + c2sΦ−Ψ

])
· ∇⃗π −

[
(c2s − 1)ζ + c2sΦ − c2sΨ

]
∇2π

− H
2

[
(2+ 3w+ c2s )(∇⃗π)2 + 6c2s (1+w)π∇2π

]
+
c2s − 1

2
∇⃗·

(
(∇⃗π)2∇⃗π

)
. (3)

In this equation π is the DE scalar field and ζ is an auxiliary field written in terms of the
scalar field π, its time derivative ∂τπ with respect to conformal time and the gravitational
potential Ψ. Moreover, (∇⃗π)2 ≡ ∇⃗π · ∇⃗π, ∇⃗ is the spatial gradient using partial derivatives
and ∇2 is the corresponding Laplace operator. As is typical for a weak-field expansion inside
the horizon we keep any higher-order terms only if they contain at least two spatial derivatives
for each power of a perturbation variable beyond the first order. A simple heuristic argument
comes from observing that (∇⃗Ψ)2/H2 ∼ v2 ∼Ψ and ∇2Φ/H2 ∼ δ ∼ 1, which implies that
each spatial derivative effectively counts as −1/2 order. More details can be found in [30].

We can also rewrite equation (3) as a second-order PDE which is more appropriate for
analytical studies,

3
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∂2
τπ +H(1− 3w)∂τπ +

(
∂τH− 3wH2 + 3c2s (H2 − ∂τH)

)
π − ∂τΨ + 3H(w− c2s )Ψ

− 3c2s∂τΦ− c2s∇2π =N (π,∂τπ,∇⃗π,∂τ ∇⃗π,∇i∇jπ) , (4)

where N (π,∂τπ,∇⃗π,∂τ ∇⃗π,∇i∇jπ) includes all the non-linear terms,

N (π,∂τπ,∇⃗π,∂τ ∇⃗π,∇i∇jπ) =−H
2

(
5c2s + 3w− 2

)
(∇⃗π)2 + 2(1− c2s )∇⃗π · ∇⃗∂τπ

−
[
(c2s − 1)

(
∂τπ +Hπ −Ψ

)
+ c2s (Φ −Ψ)

+ 3Hc2s (1+w)π
]
∇2π

+(2c2s − 1)∇⃗Ψ · ∇⃗π − c2s ∇⃗Φ · ∇⃗π

+
c2s − 1

2
∇⃗ ·

(
(∇⃗π)2∇⃗π

)
. (5)

Furthermore, as discussed in appendix of [30], equation (3) is equivalent to the continuity
and the Euler equations,

∂τδ =−(1+w)
(
θ− 3∂τΦ

)
− 3H

(
δp
δρ

−w

)
δ+ 3∂τΦ

(
1+

δp
δρ

)
δ

+
1+w
ρ

vi∇i
(
3Φ −Ψ

)
, (6)

∂τθ+(3w− 1)Hθ+∇2(Ψ +σ)+
∇2δP

ρ(1+w)
− (5∂τΦ + ∂τΨ)θ+

∇2Ψ

1+w

(
1+

δP
δρ

)
δ

− ∇iΣ
i j

ρ(1+w)
∇j(3Φ −Ψ) = 0 , (7)

where Σij = T ij− δijTkk/3 is the anisotropic stress tensor, δij is the Kronecker delta, ∇i ≡ ∂i
denotes the partial derivative and we have used the following definitions,

δ
.
=

δρ

ρ
, θ

.
= e−2(Φ+Ψ)∇i v

i , σ
.
=

∇−2∇i∇jΣ
i j

ρ+ p
, (8)

and where∇−2 is the inverse Laplace operator. The effective fluid variables read as follows in
terms of the field variables,

δρ=−ρ+ p
c2s

[
3c2sHπ − ζ − 2c2s − 1

2
(∇⃗π)2

]
,

δp=−(ρ+ p)

[
3wHπ − ζ +

1
6
(∇⃗π)2

]
,

vi =−e2(Φ+Ψ)

[
1− 1

c2s

(
3c2s (1+w)Hπ − ζ + c2sΨ

)
+
c2s − 1
2c2s

(∇⃗π)2
]
δij∇jπ ,

Σi j = (ρ+ p)

[
δjkδil∇kπ∇lπ − 1

3
(∇⃗π)2δi j

]
. (9)
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However, in the implementation chosen for k-evolution, we solve the equations written in the
field language and we solve a second-order PDE to update the scalar field πand ζ. Numerical
results from k-evolution for the full non-linear PDE show that there exists a critical speed of
sound c∗s , such that for speed of sound cs smaller than c∗s the solution of the PDE becomes
singular in finite time. In the following section we show numerical results for examples of
small and large speeds of sound where the solution is, respectively, singular and regular, and
afterwards we justify the numerical results by studying the equations in simpler setups with
spatial symmetries that allow a corresponding reduction of the dimensionality of the problem.

3. Results from cosmological simulations

In this section we show the numerical results from a first set of cosmological simulations with
k-evolution that include non-linear terms in the k-essence field equations. For simplicity we
start with standard linear perturbations in matter that are derived from the ΛCDM model and
set the two additional fields π and ζ to zero initially. At very high redshift their contribution to
the energy density is negligible and hence the matter solution is indeed the one of ΛCDM. The
solution of π and ζ will contain a decaying mode due to the way we set the initial conditions,
but this will have no relevant effect on the final evolution if our initial redshift was chosen high
enough.

Starting the simulation at some initial time and solving the full equations of motion in the
weak-field approximation for low speed of sound, one finds numerically that the scalar field π
diverges and as a result the simulation breaks down in finite time. In figure 1 on the right we
show the absolute value of the scalar field in the x− z plane taken at the y-position of the point
with themaximal second derivative of π. On the left side we render the same 2D section as a 3D
plot, where the height shows the value of the field for better illustration. In these images we see
how, over a short period of time in the simulation, an instability is formed around the minimum
with largest second derivative and blows up. Since other quantities are coupled to the scalar
field, like for example the gravitational potential, they will also diverge and eventually the
simulation breaks down. The instability is local and thus if we look at regions far away from
the point with maximal second derivative of the scalar field, at the same redshift we see no
hint of instability until the simulation itself fails. The reason why the instability is first formed
around the minimum with highest curvature will become clear when we study the system in
a simplified symmetric setup analytically in section 4. The worked example shown in figure 1
is for illustrative purposes and is obtained from a simulation with c2s = 10−7 and w=−0.9.

Studying the behaviour for different values of the speed of sound systematically, using k-
evolution with the full implementation of clustering DE according to equations (2) and (3),
we find that the solutions are unstable and diverge in finite time for low speed of sound only.
Indeed, for otherwise fixed cosmological parameters and w0 =−0.9, our numerical studies
indicate that the system only blows up when c2s ≲ 10−4.7. In figure 2 we show the ‘blow-up
redshift’ zb for different speeds of sound for a fixed resolution of 0.58 Mpc h−1. As the figure
suggests, when increasing c2s there is a critical value for c2s where the system becomes stable.

In appendix we discuss the effect of precision parameters (temporal and spatial resolution)
on our results. We show in appendix ‘Precision of the time integration’ that increasing the time
resolution of the solver does not change the blow-up time significantly. The dependence of our
results on the spatial resolution is interesting and can be traced back to the fact that increasing
the resolution also enhances the maximum amplitude of perturbations in the initial conditions,
discussed further below. This dependence can be understood quantitatively using the extreme
value theorem, as we discuss in appendix ‘Spatial resolution’.

5
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Figure 1. The evolution of the scalar field π in time, increasing from top to bottom (note
that left and right correspond to different time scales). Left: 3D plot of the scalar field
in a x− z cross-section of the simulation, where its y value corresponds to the point
with highest curvature of the potential. Right: A colour map of the absolute value of the
scalar field |H0π| at different redshifts, for the same cross-section. Around the blow-up
time the instability is formed locally in the point with the maximum curvature which
physically corresponds to the centre of the dark matter halo with highest density.

6
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Figure 2. The speed of sound squared as a function of blow-up redshift. There are two
limits, namely high speed of sound for which the system does not blow-up, and very
low speed of sound when the system blows up at a redshift close to the blow-up redshift
for c2s → 0. It is worth mentioning that the blow up redshift depends on the resolution
of simulation (see figure A2), which also affects somewhat the minimal speed of sound
for which the system is stable.

We study the robustness of the critical c2s on the chosen cosmology in appendix ‘Cosmology
dependence of c∗s ’ where we show results from simulations that remain matter dominated
forever. We find that the limit for the stability of the equation is not changed significantly even
if we let the simulations run far into the future. This rules out the possibility that high speed
of sound simulations are only stable due to the limited time available until the gravitational
potential starts to decay when matter domination ends and DE takes over.

In figure 3 we present the dependence of blow-up redshift on the initial conditions of the
simulation. As we are going to explain in detail in appendix ‘Spatial resolution’, for a fixed
box size increasing the resolution of the grid and number of particles would result in increasing
the initial density of the perturbations as we are probing smaller scales. But since the blow-
up happens first at the point with the highest curvature of the potential, corresponding to the
point with the highest density, this in turn affects the blow-up redshift. Our results show that
in matter domination there is a linear relation between the blow-up redshift and the initial
density. In the next section we will validate this proportionality using a simplified spherically
symmetric setup. In appendix ‘Spatial resolution’ we discuss the relation between ⟨max(δ)⟩
and the resolution of a simulation.

Interestingly we also know that the limit of low speed of sound is the limit where important
linear terms in the dynamics of the scalar field are suppressed and we end up with a highly
non-linear evolution of the field. The critical value c2s ∼ 10−4.7 in figure 2 can be understood
by comparing the two most important terms in the dynamics of the scalar field. As we are
going to show, stability of this system is ensured when the term c2s∇2π dominates over the
non-linear term −1/2H

(
5c2s + 3w− 2

)
(∇⃗π)2 in equation (4). Other terms in equation (4)

7
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Figure 3. The blow-up redshift as a function of maximum initial density. The data cor-
respond to cosmological N-body simulations for Ngrid = Npcls = 643, 1283, 2563, 5123,
10243, 20483, 36003, where we compute max(δini) on the lattice for each simulation.
The dashed line represents the expected scaling in matter domination which shows a
linear relation between 1+ zb and max(δini).

quadratic in gradients are equally dangerous in principle, but we find that the respective coef-
ficients are such that they only play a minor role in the range of parameters we consider.
Following the spirit of the weak-field expansion mentioned earlier, we can use a dimensional
analysis and write∇2π ∼ L−2π and (∇⃗π)2 ∼ L−2π2, where L is a characteristic length scale.
Furthermore, in matter domination we haveH= 2/τ , and the first-order perturbative solution
for π ≈ 1/3Ψτ calculated in equation (D.6) in [30]. The two terms will therefore be of similar
size if the speed of sound fulfils the relation

c2s ≈
(
2
3
−w− 5

3
c2s

)
Ψ . (10)

With w< 0 this relation is satisfied when c2s ∼Ψ, and in cosmology we typically have Ψ ∼
10−5 which gives a critical value of c2s commensurate with our numerical measurement.

Given the fact that the two relevant terms of the equations of motion are independent of
the gravitational coupling, the instability is not a result of scalar field self-gravity. This can
be checked numerically by turning off the scalar field’s contribution to the gravitational field
equations (the stars in figures A1 and A2 as well as the discussion in appendix ‘Spatial resol-
ution’), effectively turning it into a spectator field. Even in this case we find that the perturb-
ations in the scalar field, sourced by the gravitational potentials of dark matter alone, become
unstable at almost the same time as in the case with full gravitational coupling. Motivated by
these numerical results in the cosmological context we study a simplified version of the full
equations analytically in a symmetric setup.

8
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4. Analytical results

In this section we discuss the most important terms in the PDE governing the scalar field
dynamics. In particular, we discuss the non-linear dynamics in 1+1 dimensions if we consider
either spherically symmetric or plane-symmetric solutions. We show that the non-linear PDE
is suffering from an instability with similar behavior of what we found in the realistic 3+1
dimensional case. Studying the full dynamics even in 1+1 D remains a difficult task and is
beyond the scope of this paper. However, the specific term in the equation of motion which
we have recognized as the root cause of the instability of the system, namely (∇⃗π)2 [31], is
studied thoroughly in [32, 33] in a mathematical context. Here, we study this term with a more
physical approach.

The PDE (4) is called a ‘non-linear damped wave equation’ [34] in the mathematics literat-
ure. It has been studied by mathematicians in 1+1 D for some types of non-linearities, mainly
of the formN (π,∂τπ) [34–36] but not in the general form appearing in the EFT of DE which
is N (π,∂τπ,∇⃗π,∇i∇jπ). In fact, the important remark is that for large speeds of sound and
using the fact that π, ∂τπ and ∇⃗π are small, the dominant term in the dynamics would be the
linear part of the PDE, whereas in the limit c2s → 0 the term c2s∇2π, which is the restoring force
in the linear wave equation, vanishes and therefore the non-linear terms become relevant.

In this limit, i.e. c2s → 0, the equation also has a new symmetry whenever the scale factor is
a power law in τ and therefore H∝ τ−1: it becomes invariant under the rescaling Ψ → λ2Ψ,
π → λπ, τ → λ−1τ . The scale invariance also approximately holds at finite c2s using cs → λcs
as long as c2s remains sufficiently small under the rescaling, i.e. for scales much larger than the
sound horizon. Scale invariance is indeed expected if the physical problem lacks a character-
istic scale such as a sound horizon or a break in the power law in τ . This immediately leads to an
interesting conclusion if we consider π as a spectator field in matter domination where it would
be sourced by the gravitational potential Ψ produced by non-relativistic matter. If we assume
that Ψ is independent of time (a good approximation when matter is in the linear regime) and
have a solution π(τ ;Ψ), we can generate new solutions π(τ ;λ2Ψ) = λ−1π(λτ ;Ψ). Evidently,
if for a given gravitational source field Ψ the spectator field π diverges at a certain value
zb+ 1∝ τ−2

b , that value is directly proportional to the overall amplitude ofΨ, i.e. zb+ 1∝Ψ.
Here we use the fact that z+ 1∝ τ−2 in matter domination. As we will see shortly, the diver-
gence is actually sensitive to the maximum curvature of Ψ which is of course proportional to
Ψ itself in these scaling solutions with constant λ.

4.1. Spherical symmetry

In this subsection we study the PDE (4) in the regime c2s ≪ 1 assuming spherical symmetry.
We start from equation (4) and assume a spherically symmetric scenario, i.e. all fields are
functions of τ and r only. Furthermore, we choose N= lna as the new time coordinate, and
also rescale π = π̃/H. The equation reads

∂2
Nπ̃+(1− 3w− ∂N lnH)∂Nπ̃+

[
3w(∂N lnH− 1)− ∂2

N lnH
]
π̃− c2s

H2

(
2
r
∂rπ̃+ ∂2

r π̃

)
+ 3wΨ − ∂NΨ =

2−3w−4∂N lnH
2H2

(∂rπ̃)
2−∂rΨ − 2∂r∂Nπ̃

H2
∂rπ̃

+
(1− ∂N lnH) π̃+ ∂Nπ̃−Ψ

H2r

(
2∂rπ̃+ r∂2

r π̃
)
−

(∂rπ̃)
2 (2∂rπ̃+ 3r∂2

r π̃
)

2H4r
, (11)

9
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where we neglect c2s against coefficients of order unity (including w) and assume Ψ ∼ Φ in
that context. In other words, the only term for which the value of c2s is important (once it is
assumed that c2s ≪ 1) is the linear restoring force. Note that if we neglect radiation in the late
Universe, the Hubble function is

H2 = H2
0

[
Ωme

−N+(1−Ωm)e
−(1+3w)N

]
, (12)

such that

∂N lnH=
∂N

(
H2

)
2H2

=−Ωm+(1+ 3w)(1−Ωm)e−3wN

2Ωm+ 2(1−Ωm)e−3wN
. (13)

Moreover, if we neglect gravitational backreaction from the scalar field π and assume that Ψ
is generated by a linear matter perturbation, we can also write the time evolution equation
for Ψ,

∂2
NΨ +(3+ ∂N lnH)∂NΨ +

(
2− 3Ωm

2Ωm+ 2(1−Ωm)e−3wN
+ ∂N lnH

)
Ψ = 0 . (14)

This equation can be solved analytically in terms of hypergeometric functions. However, in
order to gain more analytic insight it is instructive to consider the case of matter domination,
i.e. Ωm = 1. In this limit we find H2 = H2

0e
−N, ∂N lnH=−1/2, and the linear gravitational

potential Ψ is constant in time. Equation (11) simplifies to

∂2
Nπ̃+

3
2
(1− 2w)∂Nπ̃− 9

2
wπ̃− c2s

H2
0

(
2
r
∂rπ̃+ ∂2

r π̃

)
eN+ 3wΨ

=
4− 3w
2H2

0

(∂rπ̃)
2 eN− ∂rΨ−2∂r∂Nπ̃

H2
0

∂rπ̃e
N+

3π̃+2∂Nπ̃−2Ψ
2H2

0r

(
2∂rπ̃+r∂

2
r π̃

)
eN

−
(∂rπ̃)

2 (2∂rπ̃+3r∂2
r π̃

)
2H4

0r
e2N. (15)

We can easily infer that the nonlinear right-hand side is exponentially suppressed at early times
as N→−∞ and therefore the initial solution should approach its linear expression π̃ → 2/3Ψ
for scales larger than the sound horizon. Note in particular that the linear solution (for w< 0)
would be stable at all times if the non-linear self-coupling of π̃ is neglected, as was the case
for previous numerical studies mentioned in section 1.

Further insight can be found if we consider the solution close to an extremum of the poten-
tial. Let us write

Ψ(r) = Ψ0 +
1
2
r2H2

0Ψ2 , (16)

where the factor H2
0 is introduced to render the coefficientΨ2 dimensionless. We can write the

solution for π̃ as the asymptotic one plus a correction, i.e.

π̃(N,r) =
2
3
Ψ0 +

1
3
r2H2

0Ψ2+
4c2s

5− 15w
Ψ2e

N+ ϵ0(N)+
1
2
r2H2

0ϵ2(N) . (17)

Inserting these ansätze into equation (15) we find that it neatly separates into two independent
parts, one that has no r-dependence,

∂2
Nϵ0 +

3
2
(1−2w)∂Nϵ0 −

9
2
wϵ0 =

1
2
(2Ψ2+3ϵ2)

(
3ϵ0 + 2∂Nϵ0 +

4c2s
1−3w

Ψ2e
N

)
eN

+ 3c2s ϵ2e
N, (18)
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Figure 4. Fully non-linear solution of ϵ2 for Ψ2 = 1 (case 1, red) and Ψ2 =−1 (case
2, blue). The divergence occurs only in case 1, at approximately N= 0.9 (dashed green
line). The equation of state is chosen as w=−0.9.

and one that scales as r2 and reads

∂2
Nϵ2 +

3
2
(1− 2w)∂Nϵ2 −

9
2
wϵ2

=

(
2
3
Ψ2 + ϵ2

)[
1
3
(2− 6w)Ψ2 +

1
2
(17− 6w)ϵ2 + 7∂Nϵ2

]
eN− 5

(
2
3
Ψ2 + ϵ2

)3

e2N . (19)

The second equation is independent of the value of c2s . The asymptotic solution for ϵ2 at
N→−∞ can be inferred by recognising that ϵ2 is of higher perturbative order than Ψ2 and
therefore becomes subdominant in the nonlinear contribution. One finds that ϵ2 → 8/45 eNΨ2

2
as N→−∞. At this point it is also worth noting that this asymptotic solution is entirely gov-
erned by the first two non-linear terms on the right-hand side of equation (15), i.e. the terms
quadratic in gradients. The other two terms are asymptotically subdominant, and hence do not
efficiently trigger the non-linear evolution of π̃. This justifies our claim that the terms quad-
ratic in gradients, and in particular the term (∇⃗π)2 are the most relevant non-linear terms when
discussing the instability. The other terms do, however, have a small effect on the precise time
when the divergence of ϵ2 occurs.

In figure 4 we show the fully non-linear solution for ϵ2 in the two cases where Ψ2 =±1.
A divergence only occurs in the case where Ψ2 is positive (around minima of the potential
wells). For Ψ2 < 0 the solution as N→+∞ approaches the exact solution ϵ2 =−2/3Ψ2 −√
−Ψ2 e−N/2 + 1/2 e−N such that the curvature of π̃ vanishes asymptotically. However, it

decays exactly as fast as H so that the curvature of π = π̃/H becomes constant.
The scale invariance manifests itself in the fact that equation (19) is invariant under the

transformation Ψ2 → λ2Ψ2, ϵ2 → λ2ϵ2, N→ N− 2lnλ. Since Ψ0 does not appear in the non-
linear equations for ϵ0, ϵ2, it is clear that the nonlinear instability is indeed governed by the
curvature of the potential Ψ, i.e. the amplitude of the coefficient Ψ2 which is also directly

11
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proportional to the matter density contrast. The scaling symmetry implies that the redshift at
which the divergence occurs is proportional to this coefficient.

The linear relation between the blow-up redshift and the maximal initial density in matter
domination agrees with the results from the three-dimensional simulations of section 3, as
shown in figure 3, indicating that the analytically tractable spherically symmetric case is able
to capture the most important features of the divergence dynamics.

While it might appear that the blow-up occurs independent of the value of c2s since the
solution of ϵ2 does not depend on it, in a more realistic setting the evolution of the lin-
ear solution does matter. The correction due to c2s acts to increase/decrease the value at the
minimum/maximum of π̃, which under more realistic boundary conditions tends to decrease
all derivatives. As a crude estimate we could say that this effect becomes important when
the time-dependent term of the linear solution becomes ∼ |Ψ0|, which occurs roughly at
N∼−2lncs− lnΨ2 + ln |Ψ0|+ 1.6. The numerical constant is not very important and was
computed assuming w≃−1. We may then argue that the critical speed of sound is given by
the estimateNb ∼−2lncs− lnΨ2 + ln |Ψ0|+ 1.6, whereNb is the value ofN at which ϵ2 blows
up. From figure 4 and using the approximate scale invariance we infer that Nb+ lnΨ2 ∼ 0.9
independent of the value of Ψ2. This results in an estimate for the critical speed of sound that
is very much in agreement with our previous estimate given in section 3. This argument of
course only holds as long as the initial assumption that c2s ≪ 1 is valid.

With the asymptotic solution of ϵ2 the corresponding asymptotic solution of ϵ0 from
equation (18) as N→−∞ reads

ϵ0 →
8

105
c2s

17− 6w
2− 9w(1−w)

e2NΨ2
2 . (20)

This solution reaches a value similar to the time-dependent term of the linear solution when
N+ lnΨ2 ∼ 0.8, which always happens close to N= Nb in the case where a blow-up occurs.
This means that considering ϵ0 will not change our estimate of the critical speed of sound in a
significant way. On the other hand, due to its coupling to ϵ2, ϵ0 grows without bounds towards
Nb. This raises the question whether under more realistic boundary conditions, following the
thinking of the previous paragraph, the instability could actually be halted.

Related to this question it is interesting to note that the PDE (4) has a particular exact
solution for c2s > 0 if we drop the last two terms on the right-hand side (which are often very
subdominant). This can be seen by making the ansatz π̃ = CeN+ 2/3Ψ, for which the corres-
ponding equation becomes

15H2
0

4
(1− 3w)C− c2s

(
2
r
∂rΨ + ∂2

rΨ

)
=

(
1
3
−w

)
(∂rΨ)

2
. (21)

A valid solution for Ψ can be obtained with the Hopf-Cole transformation Ψ = 3c2s lnv/(1−
3w), for which we get

5H2
0

4c4s
(1− 3w)2Cv− 2

r
∂rv− ∂2

r v= 0 . (22)

A regular solution for which the Hopf-Cole transformation remains defined globally is
v(r) = Dsinh(kr)/(kr), with k2 = 5/4H2

0(1− 3w)2C/c4s and C> 0,D> 0. While this is of
course a highly fine-tuned solution, it is interesting to note that the radial profile of π̃ does
not evolve in this potential. Since we can fix C and D in a way to give any desired second-
order Taylor expansion around the minimum of Ψ, this shows that for any c2s > 0 there exists
a local solution where the gradients of π̃ do not evolve and therefore do not lead to a blow-up.

12



Class. Quantum Grav. 40 (2023) 155009 F Hassani et al

Under general initial conditions it remains an open question whether the singularity can be
avoided in this way.

4.2. Planar symmetry

In this subsection we study the blow-up dynamics inmore detail, using an evenmore simplified
version of equation (4) assuming planar symmetry in a non-cosmological setup,

∂2
τπ(τ,x) = c2s∇2π(τ,x)+α

[
∇π(τ,x)

]2
. (23)

Here, by non-cosmological setup we mean that this equation should not be understood as a
limit of our original system, but rather a simpler system which hopefully will exhibit some
analogous behaviour. The equation is written following our previous study [31] and the math-
ematical studies [32, 33] where in addition to the non-linear term we consider the linear term
c2s∇2π. We therefore consider the two important terms in the dynamics of the scalar field,
i.e. the instability part (∇π)2 and the pressure term which stabilises the system.

In the limit c2s → 0 and rescaling π → π/α the equation reads [31]

∂2
τπ = (∇π)

2
, (24)

and we consider the initial conditions

π(0,x) = 0, (25)

∂τπ(τ,x)|τ=0 = αΨ(x).

First we show that in this case the minima and maxima of the scalar field π do not move in
space, a property that we also validate numerically, see figure 5. We then derive a PDE for the
curvature of the scalar field, which at the extrema satisfies an ordinary differential equation
(ODE). We explicitly compute the (finite) time at which the curvature of minima becomes
infinite5.

Let us defineD≡∇π. Taking the spatial derivative of the PDE (24) results in a new equation
for D(τ,x),

∂2
τD= 2D∇D . (26)

AsD(0,x) = 0 according to equation (25), it also implies that ∂2
τD(τ,x)|τ=0 = 0. On the other

hand we have

∂τD(τ,x)|τ=0 = α∇Ψ(x) . (27)

It is then evident that for any points xs that are locations of extrema of Ψ, D(τ,xs) = 0 at all
times, i.e. these points are also extrema of π (which remain fixed in position).

Taking a further spatial derivative of equation (26), we obtain a PDE for the curvature of
the scalar field,

∂2
τκ= 2κ2 + 2D∇κ, (28)

where κ(τ,x)≡∇D(τ,x) is the curvature. In general this equation is not closed, as we need
∇κ(τ,x) to solve the equation and this term is obtained through a higher-order derivative PDE
(by taking another spatial derivative of the equation). However, for the extremal points xs where
D(τ,xs) = 0 we can close the equation as the second term vanishes,

∂2
τκ(τ,xs) = 2κ(τ,xs)

2. (29)

5 In [31] we write the spatial dependence of π near an extremum as a quadratic function of x, which provides a
particular solution of the PDE.
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Figure 5. Top: The scalar field and its time derivatives on the 1+1 D lattice at dif-
ferent times are shown, using the potential Ψ = cos(4π x/L) as an initial condition.
Analytically the curvature of the scalar field at the minimum blows up at time τb ≈ 76.
Bottom: The same scalar field and its spatial derivative on the lattice for different times
are shown. Due to the numerical noises appearing in the derivatives of the field we only
show the results for the derivatives up to τ = 64. It is also interesting to see that ∂xπ
behaves similar to a gradient catastrophe that one would see in some situations in fluid
dynamics.

This is an ODE for the evolution of the scalar field curvature at the extrema. The initial con-
ditions for κ(τ,xs) are obtained using the initial profile of π and ∂τπ in equation (25),

π(0,x) = 0 −→ κ(0,xs) = 0 , (30)

∇2∂τπ(τ,x)|τ=0 = α∇2Ψ(x) −→ ∂τκ(τ,xs)|τ=0 = α∇2Ψ(xs) .

With these initial conditions a first integral of equation (29) yields

(∂τκ)
2
=
(
α∇2Ψ

)2
+

4
3
κ3 , (31)
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where we have dropped the argument xs for brevity. Considering the point xs being a minimum,
i.e. ∂τκ > 0 and integrating the previous equation from τ = 0 to the blow-up time τ b such that
at this time the curvature goes to infinity, we obtainˆ ∞

0

dκ√
(α∇2Ψ)

2
+ 4

3κ
3
=

ˆ τb

0
dτ = τb (32)

Changing the integration variable from κ to s where s3 = 4/3κ
3/

(
α∇2Ψ

)2
we find

τb =

(
3

4α∇2Ψ

) 1
3
ˆ ∞

0

ds√
1+ s3

=
2Γ

(
1
3

)
Γ
(
7
6

)
√
π

( 3
4α∇2Ψ

) 1
3
, (33)

or

τb = 2.5479. . .
(
α∇2Ψ(xs)

)− 1
3 . (34)

To sum up, the minima blow up in a finite time given by equation (34) which depends on
the initial curvature of the potential Ψ at the minimum. It is worth mentioning that if xs is
a maximum, it can also become unstable depending on the initial value of ∂τκ. Based on
the ODE (29), ∂2

τκ is always positive as it is sourced by κ2. So we roughly expect that the
curvature of maxima starts to increase and eventually becomes flat and switches sign after
which it blows up in finite time given by equation (33). In [33] the dynamics of maxima and
minima, especially when c2s ̸= 0 is studied in more detail.

In figure 5 we show the numerical results for the scalar field π(τ,x) profile and its first and
second time derivative in the top panel and its spatial derivatives in the bottom panel. The
scalar field π(τ,x) and its derivatives are obtained by solving the PDE (23) numerically on
a lattice in 1+1 D assuming c2s = 0, periodic boundary conditions and Ψ(x) = cos(4π x/L).6

Here Ngrid = 2048 is the number of points and we choose the units such that α= 1 and dx= 1
is the distance between the points on the 1D lattice. Hence L= Ngrid = 2048 and as a result
∇2Ψ(xs) = 3.765× 10−5 which based on equation (34) blows up at τb = 76.02. The curvature
of the maxima and minima increases with time so that the maxima become flatter while
the minima become sharper and eventually blow up at a finite time given by equation (33).
Moreover, paying attention to ∇π in the middle part of the bottom panel of the figure, one
realises that this function shares similar behaviour with caustic singularities [37–39] which
comes from the fact that to leading order according to equation (9) the velocity vx is ∇π in
1+1 D and the maxima andminima (of the velocity) travel towards each other to form a caustic
in finite time. Notably, some k-essence theories, such as the pure Galileon, DBI, and cuscuton
model [40, 41] have been shown to be caustic-free [42]. Crucially however, these theories res-
ult in peculiar values of the EFT parameters, where phenomena such as superluminal speeds
of sound or deviations of w from the typical value of −1 become relevant—parameter val-
ues that have not been explored in this study. In particular, the cuscuton models exhibit the
interesting property of c2s =±∞. To investigate the cuscuton models, revisiting our numerical
implementation is imperative to avoid infinities arising from the c2s -terms.

In order to verify our analytical results, we compare the blow-up time obtained from the
solution of the ODE (29) with the numerical solution from the PDE at the minimum point
in figure 6. According to the figure our theoretical solution and the numerical results agree
very well. Solving the PDE (23) for large c2s/α changes the behaviour of the system from a

6 The reason for considering a periodic function like the cosine instead of x2 is that periodic boundary conditions are
easy to implement and do not require additional assumptions.
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Figure 6. We show the time evolution of the curvature at the minimum. The solution
of the ODE (29), the analytical solution in equation (33) and the curvature evolution
obtained from the solution of the PDE (24) are consistent and all blow up at the expected
time.

divergent to a stable one. For example for the limit α→ 0 and c2s ̸= 0 we have a stable wave
solution.

Similar to the case of spherical symmetry, for c2s > 0 one can use a Hopf-Cole transforma-
tion7 to obtain a particular exact solution of equation (23),

π(τ,x) =
c2s
α

(
lncosh

Cx
cs

+
1
2
C2τ 2

)
, (35)

where C is an arbitrary constant. In this solution the spatial profile is again constant, as in the
spherically symmetric case. However, we find numerically that the spatial profile evolves for
more generic initial conditions. But the existence of non-singular solutions for c2s > 0 indic-
ates that the limit of small speed of sound needs to be taken with great care, and that further
investigations into the physical behaviour in this limit may be warranted8.

5. Conclusions and discussion

Our results show that the EFT description of k-essence DE breaks down for part of the para-
meter space due to a non-linear instability triggered by a term ∝(∇⃗π)2 in the equations of
motion. Based on our numerical analysis using realistic cosmological simulations we see that
this instability happens only when the speed of sound cs is small such that the stabilizing lin-
ear term c2s∇2π is suppressed. To gain some analytical insight we investigated the PDE in
simplified setups. First, we considered a spherically symmetric scenario and showed that the

7 We are particularly grateful to Cornelius Rampf for pointing out the utility of the Hopf-Cole transformation in this
context.
8 In a detailed study in [33] this limit will be discussed for non-zero initial conditions with compact support.
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non-linear term (∇⃗π)2 does indeed lead to a blow-up and a similar behaviour to what we
saw in the three-dimensional simulations. We specifically showed that the relation between
the blow-up redshift and the initial density of the potential well is similar to what we find in
cosmological simulations which implies that the instability is found correctly. We further, in
connection with a mathematical discussion, studied a simplified PDE considering only the two
important terms. We showed that the system, similar to our simulation results, is unstable for
vanishing speed of sound. Moreover, we find numerically that the stability is gained for large
values of speed of sound. We derived an ODE for the curvature of the minima and showed that
the curvature goes to infinity in a finite time. We compare the numerical 1+1 D solution of the
PDE at the minimum point, with the ODE and the blow-up time prediction and find consistent
results.

The non-linear instability we found does not appear in the linearized theory, where the
evolution is stable for all values of the speed of sound. The presence of such an instability
shrinks the w− c2s parameter space for the healthy k-essence type theories when treated within
the EFT framework. Moreover, similar terms appear in non-linear parametrisations of the EFT
framework in the context of more general theories which can therefore suffer from related
instabilities. As a result these theories have to be considered more carefully, particularly when
(∇⃗π)2 appears in the scalar field equation of motion.

The breakdown of the EFT approach can be either due to the EFT truncation order where
higher-order corrections can remove the instability, or it can be a hint of the full theory break-
down. In the case of the latter, it also leads to the breakdown of the weak-field approximation
and requires a more careful analysis to decide whether coupling the scalar field to gravity could
hide the singularities behind (black hole) horizons without a complete, global breakdown of
the evolution. It is difficult to assess whether a tiny but non-vanishing c2s is able to prevent a
singularity, but even if this is the case the solutions will strongly depend on non-linearities and
the truncation of the EFT is still rendered inconsistent.
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Figure A1. The blow-up redshift for different time resolution (in units of the Hubble
time) is plotted. The stars and circles represent the case when DE perturbations, respect-
ively, source and do not source other components. As we increase the time precision,
i.e. decrease dτ in the simulation, the blow-up time converges. Even for the lowest time
precision there is no significant change in the blow-up redshift.

Appendix. Convergence tests

In this appendix we discuss the tests performed to validate the results presented in section 3 for
the realistic cosmological simulations. One important question we discuss here is the impact
of precision parameters as well as the assumed cosmology on the blow-up phenomena. In par-
ticular, we first check the robustness of the time integration of the N-body code, and then dis-
cuss extensively how the blow-up redshift depends on the spatial resolution of the simulation.
The latter is relevant because increasing the resolution results in higher probability for deeper
potential wells and changes the initial conditions for the scalar field accordingly. Finally we
discuss how much the critical value of the speed of sound c2s ∼ 10−4.7 depends on our cosmo-
logical assumptions and validate that the stability of the system is obtained for large values of
c2s even if we consider matter domination and go far beyond the present epoch. These tests,
in addition to our simplified scenarios (spherical and planar symmetries) in section 4, rule out
the possibility of the instability being an artefact.

Precision of the time integration

In this part we discuss the effect of the precision of the time integration on our results. In
figure A1, for a specific case where Npcl = Ngrid = 2563, L= 300Mpc h−1 and c2s = 10−7, we
show the sensitivity of the blow-up redshift to the time resolution of the simulation. For each
precision setting we consider two simulations, one where DE perturbations source other com-
ponents (stars), and one where this is not the case, i.e. DE is a spectator field (circles). Based
on these results, even for the largest dτ (the lowest precision considered) the blow-up redshift
does not change significantly. This also shows that the blow-up redshift (for high enough time
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Figure A2. The blow-up redshift for a fixed box size and different numbers of grid points
is shown. The fit over the data where the blow-up happens inmatter domination results in
the relation 1+ zb ∼ N0.22

grid . The circles/stars represent the case where the DE component
does/does not source gravity.

resolution) does not depend on gravity being sourced by the DE component. In summary, our
test indicates that the time precision considered in our cosmological simulations is sufficient
to resolve the blow-up phenomenon.

Spatial resolution

In this subsection we discuss the dependence of the blow-up redshift on the spatial resolution
of our simulations. Contrary to the time precision, the spatial resolution is not only a precision
parameter of the equation, but also a parameter which changes the initial conditions. Higher-
resolution simulations probe smaller scales where the amplitude of perturbations is larger, and
as a result the scalar field evolution is sourced by deeper potential wells. In figure 3 we show
the blow-up redshift for different maximum values of the initial density, max(δini), where we
obtain a linear relation between the two, i.e. 1+ zb ∝max(δini) in the matter-dominated era. In
figure A2 we show the measurement of the blow-up redshift for different spatial resolutions.
Our fit over the data in matter domination shows 1+ zb ∝ N0.22

grid where Ngrid is the total number
of grid points in 3D. Our results in figures 3 and A2, considering only the data in matter
domination then suggest

max(δini)∼ N0.22
grid . (A.1)

In cosmological N-body simulations one can estimate the maximum of the initial matter dens-
ity contrast, max(δini(x)), without measuring it directly through the snapshots by invoking the
Fisher-Tippett-Gnedenko extreme value theorem [44]. The extreme value theorem describes
the distribution of extrema in a similar fashion to how the central limit theorem concerns the
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behaviour of averages. It states that for a large number N draws from a normal distribution9

with average µ and standard deviation σ, the maximum of the sample follows a Gumbel dis-
tribution with a mean approximated as

⟨max⟩ ∝ µ+σ
√
2lnN . (A.2)

In a cosmological simulation wemay assume that at early times the density contrast follows
a normal distribution N (µ,σ) with vanishing mean, µ= 0, and a standard deviation σR that
depends on the resolution of the simulation, corresponding to a smoothing scale R, and is given
by

σ2
R =

1
2π2

ˆ ∞

0
P(k)W(k,R)2k2dk . (A.3)

Here W(k,R) is the Fourier transform of a window function with radius R, and P(k) is
the power spectrum. We assume a top-hat window function with radius R, with Fourier
transform,

W(k,R) =
3[sin(kR)− kRcos(kR)]

(kR)3
. (A.4)

As the standard deviation of the density contrast depends on the resolution of a simulation
through R∼ dx∝ N−1/3

grid , we see that, for fixed physical size of the simulation cube, larger
Ngrid will lead to smaller R and thus to higher wavenumbers contributing in the integral, res-
ulting in a larger variance. Based on our numerical measurements, for the choice R=

√
3dx

the result of the integral (A.3) agrees with our numerical measurements of the variance. In
figure A3 we show the numerical results for max(δini) computed in three different ways. The
orange stars represent the direct measurement of max(δini) in the initial snapshot of the N-
body simulation for a given Ngrid, the green and blue circles represent the results when we use
the Gumbel distribution (A.2) to compute ⟨max(δini)⟩ where in the latter case we use σR=

√
3dx

computed through the integral (A.3) whereas for the former case we use σ as measured dir-
ectly from the snapshot of the N-body simulation. In both cases we assume N= Ngrid, even
though the draws are not entirely independent. The figure shows excellent agreement between
different approaches for computing max(δini). As a result, we can estimate the maximum of the
initial density in an N-body simulation using equation (A.2) where the variance is computed
by equation (A.3).

Cosmology dependence of c∗s

In section 2 we showed that there is a critical speed of sound c∗s such that the system remains
stable for cs > c∗s . As the blow-up redshift generally decreases with increasing cs, there is
the possibility that the critical value is connected to the onset of DE domination where the

9 The extreme value theorem is far more general and can be applied to large samples drawn from quite general distri-
butions, as is the case for the central limit theorem.
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Figure A3. The maximum of the initial density contrast at z= 100 as a function of the
number of grid points is shown. The orange stars correspond to the direct measure-
ment of max(δini) on the initial snapshot of the simulation. The green and blue circles
represent max(δini) computed using the formula (A.2) for the mean of the Gumbel dis-
tribution. The standard deviation used for the green circles is measured directly from the
snapshots while for the blue circles we use equation (A.3) and using the linear power
spectrum from linear Boltzmann code CLASS [43].

stability of the system is guaranteed due to decay of potential wells. In this subsection we
rule out this possibility by considering simulations in Einstein–de Sitter cosmology, i.e. where
matter always dominates. In order to simulate a Universe with Ωm = 1 while being close to
the ΛCDM Universe at early times (including the radiation era) we choose a different Hubble
parameter h= 0.3775 such that ωm/h2 = 1. In figure A4 we show the results for c2s when we
have matter domination compared to the ΛCDM scenario. In the ΛCDM case, due to the late-
time DE domination, the PDE does not blow up in the future as the potential wells decay and
we obtain the critical value of c2s ≈ 10−4.7. On the other hand, in Einstein–de Sitter the system
could still blow up in the future. However, there is still a critical value for the speed of sound
c2s ≈ 10−4.35 where for larger values of the speed of sound the system remains stable and does
not blow up even in the far future. This observation is in agreement with the claim that for
large cs the stability of the system is restored due to the pressure term in the equation, and is
not an effect of late-time DE domination.
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Figure A4. The blow-up redshift for different speeds of sound is shown. The blue circles
represent the ΛCDM scenario, while the red stars show the matter domination case i.e.
Ωm = 1where we choose h= 0.3775 such thatwm/h2 = 1. In theΛCDMcase letting the
simulation run to the future (negative redshifts) does not decrease the blow-up threshold
for the speed of sound. This happens because in the DE dominated era the potential wells
decay and help to stabilise the system. However, in the Einstein–de Sitter scenario, going
to negative redshifts can increase the threshold to c2s ≈ 10−4.35.
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