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A B S T R A C T 

We present the deconvolved distribution estimator (DDE), an extension of the voxel intensity distribution (VID), in the context 
of future observations proposed as part of the CO Mapping Array Project (COMAP). The DDE exploits the fact that the observed 

VID is a convolution of correlated signal intensity distributions and uncorrelated noise or interloper intensity distributions. By 

deconvolving the individual VID of two observables away from their joint VID in a Fourier-space operation, the DDE suppresses 
sensitivity to interloper emission while maintaining sensitivity to correlated components. The DDE thus impro v es upon the 
VID by reducing the relative influence of uncorrelated noise and interloper biases, which is useful in the context of COMAP 

observations that observe different rotational transitions of CO from the same comoving volume in different observing frequency 

bands. Fisher forecasts suggest that the theoretical sensitivity in the DDE allows significant impro v ements in constraining power 
compared to either the cross power spectrum or the individual VID data, and matches the constraining power of the combination 

of all other one- and two-point summary statistics. Future work should further investigate the covariance and model-dependent 
behaviour of this no v el one-point cross-correlation statistic. 

Key words: methods: statistical – diffuse radiation – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

ine-intensity mapping (LIM; see re vie ws by Ko v etz et al. 2017 ,
019 ; Bernal & Ko v etz 2022 ) is a nascent paradigm for surv e ying the
osmic web at early cosmic epochs. Instead of tracing the large-scale 
tructure (LSS) of the Universe with individual resolved galaxies, 
IM proposes to use unresolved emission in atomic or molecular 
pectral lines across large cosmological volumes. The resulting 
easurements of clustering of and shot noise in the cosmological 

ine emission should allow statistical inferences of properties of the 
ntire population of line emitters, such as the luminosity function at 
oth faint and bright ends, the bias with which line emission traces
he underlying LSS, and so on. 

While LIM thus works around challenges that conventional 
urv e ys face in target resolution and selection bias, that does not
ender LIM an easier endea v our. Mitigation of systematics and 
 E-mail: dongwooc@cita.utoronto.ca 

P

t

2023 The Author(s) 
ublished by Oxford University Press on behalf of Royal Astronomical Society 
ontaminants is key to being able to leverage the rich statistical
romise of LIM. In this respect, a LIM measurement of one spectral
ine on its own gives at best an incomplete and tenuous picture
f cosmic evolution. Cross-correlations involving LIM experiments 
nd other tracers of LSS will strongly reject disjoint sources of error
hile enabling multitracer astrophysics on cosmological scales to 

ompletely probe the environmental and topological factors that 
ri ve e vents like cosmic reionization and galaxy assembly (see
.g. Sun et al. 2019 ). Indeed, some of the earliest halo models
sed to forecast prospects for higher-frequency LIM experiments 
ntended cross-correlation of carbon monoxide (CO) and ionized 
arbon ([C II ]) signals with 21 cm observations or other LSS tracers as
 central science case (Gong et al. 2011 ; Lidz et al. 2011 ; Gong et al.
012 ; Pullen et al. 2013 ). Naturally cross-correlations remain a key
onsideration in LIM surv e y forecasting, design, and analysis (see
.g.: Breysse & Alexandrof f 2019 ; K eenan, K eating & Marrone 2022 ;
ullen et al. 2022 ). 
The bulk of cross-correlation forecasts focus on two-point statis- 

ics, examining the possibility of detecting cross power spectra. 
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1 We expect the clustering of the emission to be largely decorrelated between 
the interloper and the signals, given the large interval between z ∼ 3 and z ∼
7. 
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ut two-point statistics only provide complete information about
he correlation of fields if the fields are Gaussian, whereas LIM
ignals end up being significantly non-Gaussian at small scales due
o the non-linear nature of the process of structure formation and the
esulting spatial distribution of line emitters. On the other hand, one-
oint statistics like the voxel intensity distribution (VID) – i.e. the
istogram of voxel intensities or temperatures across the LIM data
ube – will be sensitive to small-scale, non-Gaussian information.
s previous studies have shown, one-point statistics like the VID

hus critically complement two-point statistics like power spectra
y breaking degeneracies inherent to the latter and thus improving
he constraining power of LIM data, as shown explicitly in previous
tudies (Breysse et al. 2017 ; Ihle et al. 2019 ; Breysse 2022 ). 

An extension of the VID involves conditioning voxel intensities on
xternal data, e.g. obtaining the VID only across voxels in the LIM
ata cube that o v erlap with a galaxy detection in an external data set,
nd comparing this to the VID obtained across voxels in the LIM data
ube without an o v erlapping galaxy. Comparing different conditional
ID data rejects biases disjoint between the data sets just as cross-

orrelation two-point statistics do, but still retaining non-Gaussian
nformation. Breysse, Anderson & Berger ( 2019 ) confirmed this in
n explicit simulation study of the conditional VID between 21 cm
ata and counts-in-cells in simulations (or more precisely, of the
atio of Fourier-transformed conditional VID data, representing an
peration that deconvolves foreground biases uncorrelated with the
onditioning galaxy distribution). The EXperiment for Cryogenic
arge-Aperture Intensity Mapping (EXCLAIM) also recently pre-
ented conditional VID forecasts, with [C II ] intensities conditioned
n galaxy counts-in-cells (Pullen et al. 2022 ). 
Ho we v er, certain conte xts require an e xtension of the VID that

eals with the joint probability density function (PDF) of corre-
ated voxel intensity components, rather than discrete conditional
istributions. One such context is found in the CO Mapping Array
roject (COMAP; Cleary et al. 2022 ), a dedicated single-dish LIM
xperiment that targets rotational transitions of CO. A key aim of
OMAP in later phases is cross-correlation of z ∼ 7 CO(2–1)
mission observed in the Ka band (around 30 GHz) with z ∼ 7
O(1–0) emission observed in the Ku band (around 15 GHz). In

uch a study of molecular gas in the late Epoch of Reionization
EoR), we wish to leverage a robust joint-PDF extension of the VID
apable of dealing with two continuous line-intensity fields, which
ould strongly complement the cross power spectrum detections

orecast for future COMAP phases. 
In this paper, we describe the deconvolved distribution estimator

DDE; Breysse, Chung & Ihle 2022b ). Derived from the individual
nd joint PDF of correlated signal intensities, the DDE is designed
o be robust to independent noise or other disjoint sources of bias
n the individual VID or joint PDF, as its calculation deconvolves
ncorrelated biasing distributions away from the joint PDF. We
emonstrate the potential utility of the DDE in the context of the
OMAP, and specifically the COMAP Expanded Reionization Array

COMAP-ERA) concept proposed by Breysse et al. ( 2022a ). In doing
o, we will answer the following questions: 

(i) Is the DDE robust to contaminants like noise and interloper
mission, as is the analytic expectation? 

(ii) How much could the DDE fundamentally impro v e constraints
n z ∼ 7 CO emission in simulated COMAP-ERA observations? 

We structure the paper as follows. In Section 2 we moti v ate and
efine the DDE in more mathematical detail. Section 3 then defines
he COMAP-ERA simulations in which we propose to examine the
NRAS 520, 5305–5316 (2023) 
otential of the DDE. We consider the results of these simulations
n Section 4 before concluding in Section 5 . 

Unless otherwise stated, we assume base-10 logarithms, and a
 CDM cosmology with parameters �m = 0.286, �� 

= 0 . 714, �b =
.047, H 0 = 100 h km s −1 Mpc −1 with h = 0.7, σ 8 = 0.82, and n s =
.96, to maintain consistency with previous simulations used by Ihle
t al. ( 2019 ). Distances carry an implicit h −1 dependence throughout,
hich propagates through masses (all based on virial halo masses,
roportional to h −1 ) and volume densities ( ∝ h 3 ). 

 D D E  MOTI VATI ON  

n this section, we discuss the fundamentals of the DDE but refer the
eader to Breysse et al. ( 2022b ) for further theoretical grounding. 

While the LIM signal traces large-scale structure and therefore has
wo-point correlations in comoving space as described by the power
pectrum (or higher point correlations – see e.g. Beane & Lidz 2018 ),
e may model the one-point statistics of the signal approximately

s a random v ariable follo wing some probability distribution P S ( T ).
he variance of this signal is entirely independent of the variance
f the noise in the LIM surv e y, which follows its own probability
istribution P N ( T ). The noise is Gaussian for an ideal spectroscopic
ube from a radiometer surv e y; the signal is strongly non-Gaussian
nd asymmetric. 

In the case of COMAP reionization observations, the Ka-band
nd Ku-band measurements of temperatures T Ka and T Ku will contain
orrelated signals due to CO(2–1) and CO(1–0) emission from z ∼ 7,
especti vely. Ho we ver, the Ka-band will also contain a lower redshift
nterloper component in the form of CO(1–0) emission from z ∼ 3.
his component follows its own probability distribution P I ( T Ka ),
hich is independent of the signals 1 and of the radiometer noise. 
The probability distribution of the sum of independent random

ariables is the convolution of the probability distributions of the
ndi vidual v ariables. Therefore the observed brightness temperature,
eing the sum of signal and noise, will follow a distribution obtained
y convolving the signal and noise distributions: 

( T ) = P S ∗ P N ( T ) . (1) 

n cases like Ka-band COMAP observations, the interloper distribu-
ion also enters the convolution: 

( T Ka ) = P S ∗ P N, Ka ∗ P I ( T Ka ) . (2) 

We provide a graphical representation in Fig. 1 . Note that in the
atter case, we can treat the interloper as an additional non-Gaussian
omponent of ‘noise’, meaning we treat P N, Ka ∗ P I as a total noise
istribution P N . 
Now consider the joint probability distribution between indepen-

ent observations of temperatures T 1 and T 2 ( T Ka and T Ku in the
ase of reionization-epoch COMAP). If the noise is independent
etween observations and follows distributions P N1 ( T 1 ) and P N2 ( T 2 ),
ommon knowledge holds that 

 N ( T 1 , T 2 ) = P N1 ( T 1 ) P N2 ( T 2 ) . (3) 

n the other hand, if the signals in each observation are perfectly
orrelated (which is close to what simulations suggest for the low- J
O lines – see Yang et al. 2022 ), and follo w ef fecti vely the same
robability distribution P S for both T 1 and T 2 (up to any difference
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Figure 1. Illustration for Ka- and Ku-band observations (upper and lower 
ro ws, respecti vely) of 1D distributions of noise, (mean-subtracted) signal, 
and (for Ka-band only) interloper voxel intensities being convolved into the 
observed probability distribution. 

Figure 2. Bi v ariate probability distributions for voxel intensity given perfect 
white noise in both Ka- and Ku-bands (left-hand panel), white noise plus 
correlated signals (middle), and with the additional component of a Ka-band 
interloper line (right-hand panel). We also draw ∼3.5 σ contours (dashed) to 
aid visualization of how signal and interloper intensity distributions convolve 
with the noise-only distribution. 
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n normalization, which can be remo v ed with rescaling), then the
oint distribution would be the product of the signal distribution and 
 delta function: 

 S ( T 1 , T 2 ) = P S ( T 1 ) δ( T 2 − T 1 ) . (4) 

s with the uni v ariate distributions, the joint distribution of the total
bserved T 1 and T 2 follows the convolution of the signal and noise
istributions: 

( T 1 , T 2 ) = P S ∗ P N ( T 1 , T 2 ) . (5) 

Without working explicitly through the maths, we can illustrate 
raphically in Fig. 2 that the joint distribution of the total signal-plus-
oise T 1 and T 2 in this case has a clear correlation between higher T 1 

nd higher T 2 , a result of the signal distribution that modifies the noise
istribution (which we also show) through convolution. In the case 
f the reionization-epoch COMAP observation, the interloper line 
lso modifies the distribution through convolution, but purely in the 
 Ka dimension and introducing no correlation with T Ku . This makes 
ense because the interloper joint distribution would be entirely 
 function of T Ka and thus completely separable (and absorbable 
nto P N, Ka ( T Ka ) as before). Ho we ver, it remains the case that this
nterloper convolution interferes with our main correlated signal. So 
e want to devise a statistic that is based on the joint P( T 1 , T 2 ) but

ensitive only to P S . 
Now consider the Fourier transforms ˜ P of each of the uni v ariate
nd joint distributions considered here, and in particular the descrip- 
ion of the Fourier transform of the joint distributions in terms of the
ourier transforms of the uni v ariate distributions. We use ˜ T 1 and ˜ T 2 

o denote the Fourier duals of the temperature variables T 1 and T 2 . 
The Fourier transform of a convolution of functions is the product

f the Fourier transforms of the individual functions, univariate or 
therwise: 

˜ 

 

(˜ T 1 

)
= 

˜ P S 

(˜ T 1 

) ˜ P N1 

(˜ T 1 

)
(6) 

˜ 

 

(˜ T 2 

)
= 

˜ P S 

(˜ T 2 

) ˜ P N2 

(˜ T 2 

)
(7) 

˜ 

 

(˜ T 1 , ̃  T 2 

)
= 

˜ P S 

(˜ T 1 , ̃  T 2 

) ˜ P N 

(˜ T 1 , ̃  T 2 

)
(8) 

For separable joint distributions like the noise distribution de- 
cribed in equation ( 3 ), the Fourier transform is simply the product
f the Fourier transforms of the separated distributions: 

˜ 

 N 

(˜ T 1 , ̃  T 2 

)
= 

˜ P N1 

(˜ T 1 

) ˜ P N2 

(˜ T 2 

)
. (9) 

n the specific case of the perfectly correlated joint signal described
n equation ( 4 ), working through the Fourier transform results in 

˜ 

 S 

(˜ T 1 , ̃  T 2 

)
= 

˜ P S 

(˜ T 1 + 

˜ T 2 

)
. (10) 

In analogue to normalized time-series cross-correlation or covari- 
nce (e.g. Pearson’s bi v ariate correlation coef ficient), we define the
DE here as a normalized measure of correlation between variables 
 1 and T 2 via their Fourier duals ˜ T 1 and ˜ T 2 : 

 ≡
˜ P 

(˜ T 1 , ̃  T 2 

)
˜ P 

(˜ T 1 

) ˜ P 

(˜ T 2 

) − 1 . (11) 

We can then ask what D is for T 1 and T 2 when including both signal
nd noise (with any separable interlopers presumed as fully described 
y one of the uni v ariate Fourier-transformed noise distributions) as
escribed abo v e. Substituting equations ( 6 )–( 10 ) into equation ( 11 ),
e find 

 = 

˜ P S 

(˜ T 1 , ̃  T 2 

) ˜ P N 

(˜ T 1 , ̃  T 2 

)
˜ P S 

(˜ T 1 

) ˜ P N1 

(˜ T 1 

) ˜ P S 

(˜ T 2 

) ˜ P N2 

(˜ T 2 

) − 1 (12) 

= 

˜ P S 

(˜ T 1 + ̃

 T 2 

) ˜ P N1 

(˜ T 1 

) ˜ P N2 

(˜ T 2 

)
˜ P S 

(˜ T 1 

) ˜ P N1 

(˜ T 1 

) ˜ P S 

(˜ T 2 

) ˜ P N2 

(˜ T 2 

) − 1 (13) 

= 

˜ P S 

(˜ T 1 + ̃

 T 2 

)
˜ P S 

(˜ T 1 

) ˜ P S 

(˜ T 2 

) − 1 . (14) 

he upshot is that at least in this idealized case, D depends solely
n the one-point statistics of the signal common to both observa-
ions, provided that any noise (including interlopers) is independent 
etween the observations. Had there been no common signal – i.e. 
ad we had entirely unrelated signal distributions P S ( T 1 ) and P S ( T 2 )
n the two measurements – we would have obtained D = 0, so any
eviation from D = 0 indicates the presence of a correlated signal in
oth distributions. (An anticorrelated signal would similarly result in 
eviation from D = 0, as we could have defined the joint distribution
n equation ( 4 ) with δ( T 1 + T 2 ) and ended up with ˜ P S ( ̃  T 1 − ˜ T 2 ) as
he joint signal distribution in equation ( 10 ).) 

In practice, we must deal with discrete histograms, and discrete 
ast Fourier transforms rather than continuous Fourier transforms 
with corresponding normalization factors necessary as part of the 
omputational implementation depending on convention). Ho we ver, 
he basic idea is sound and we proceed to apply it to simulated
OMAP observations. 
MNRAS 520, 5305–5316 (2023) 
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Table 1. Key parameters for COMAP-ERA observations either taken 
from Breysse et al. ( 2022a ) or newly assumed for this work. 

Parameter Values for: 
Ku band Ka band 

Frequenc y co v erage (GHz) 13–17 26–34 
Nominal system temperature T sys (K) 20 44 
Spectrometer count per dish N spd 38 19 
Science channelization δν (MHz) 7.8125 15.625 
Dish-hours per field N dish t obs (h) 57 000 110 000 
Noise per voxel σN ( μK) 2.55 3.85 
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2 Breysse et al. ( 2022a ) use the term ‘feeds’; we attempt to disambiguate 
further. Each Ka-band dish will host 19 single-polarization feeds and thus 19 
spectrometers; each Ku-band dish will host 19 dual-polarization feeds and 
thus 38 spectrometers. 
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 D E M O N S T R AT I O N :  C O M A P  SIMULATION  

e need to define three key ingredients in order to simulate COMAP
urv e y volumes: a model for line emission (Section 3.1 ), parameters
or the COMAP-ERA surv e y (Section 3.2 ), and large numbers of
pproximate cosmological simulations (Section 3.3 ) to which we
an apply the first two ingredients. 

.1 Fiducial CO model 

f the CO models considered by Breysse et al. ( 2022a ), we use the
daptation of the model of Li et al. ( 2016 ) by Keating et al. ( 2020 )
t all redshifts. The basic idea behind the model of Li et al. ( 2016 ) is
o connect halo mass M h and redshift z to an average star-formation
ate based on the empirical model of Behroozi, Wechsler & Conroy
 2013a , b ), which is assumed to be related linearly to IR luminosity
y a conversion factor of 10 10 L � (M � yr −1 ) −1 . Empirical power-law
ts to data then relate IR luminosity to CO( J → J − 1) luminosity: 

log 
L IR 

L �
= αJ 

(
log 

L CO ,J 

L �
+ 4 . 31 

)
+ βJ . (15) 

t this step, Keating et al. ( 2020 ) diverge from the fiducial model
f Li et al. ( 2016 ) out of a need (which we share) to model multiple
otational transitions of CO. The Li et al. ( 2016 )–Keating et al.
 2020 ) model uses the work of Kamenetzky et al. ( 2016 ), which
btains α1 = 1.27, β1 = −1.0, α2 = 1.11, and β2 = −0.6 based
n a local sample of galaxies. The model also includes random log-
ormal scatter to mimic variations in galaxy properties, both around
he a verage star -formation rate for fixed halo mass and redshift,
nd around the average CO luminosity for fixed star-formation rate.
or each property there is an independent scatter introduced with a
tandard deviation of 0.3 in units of dex, but we calculate the star-
ormation rate for each halo only once and use it to inform both
O line luminosities. This results in imperfectly but non-negligibly
orrelated CO(1–0) and CO(2–1) line luminosities, although perhaps
ess correlated than semi-analytic models of CO emission suggest
see e.g. Yang et al. 2022 ). 

We will want to constrain α1 , β1 , α2 , and β2 at z ∼ 7. In
ddition, most summary statistics end up being chiefly sensitive to
he luminosity-weighted average CO temperature–bias product 〈 Tb 〉 J 
or each CO line, defined as 

〈 T b 〉 J = 

c 3 (1 + z) 

8 πk B ν
3 
rest ,J H ( z) 

∫ 

d M h 

d n 

d M h 

L CO ,J ( M h , z) b( M h ) . (16) 

his calculation requires: a model relation b ( M h ) for the linear halo
ias, the scaling with which the number density contrast of haloes of
irial mass M h traces the underlying matter density contrast; a halo
ass function d n /d M h to describe halo number densities; the rest

requency of the CO( J → J − 1) line νrest, J ≈ 115.27 · J GHz; the
ubble parameter H ( z); and standard physical constants, namely the

peed of light c and the Boltzmann constant k B . In this context, we
ill use the b ( M h ) model of Tinker et al. ( 2010 ), and a corrected form
f the Tinker et al. ( 2008 ) halo mass function given by Behroozi et al.
 2013a ) (which we will also use below in Section 3.3 ). Given this,
he fiducial model results in 〈 Tb 〉 1 = 3.37 μK and 〈 Tb 〉 2 = 2.51 μK. 

We will refer to inferences both of { αJ , βJ } and of 〈 Tb 〉 J , with the
atter calculable from the former by obtaining credibility intervals for
 Tb 〉 J implied by the L CO, J ( M h ) relations found from the credibility
ntervals for αJ and βJ . In addition, we will not assume that the
R–CO relation is the same at z ∼ 3 as it is at z ∼ 7, and will allow
1, z ∼ 3 and β1, z ∼ 3 to be inferred separately from α1 and β1 (with

he latter pair taken to be referring to z ∼ 7 parameters). 
NRAS 520, 5305–5316 (2023) 
.2 COMAP parameters 

e base our CO surv e y parameters on the COMAP-ERA parameters
onsidered by Breysse et al. ( 2022a ). The survey is assumed to span
hree fields of 2 ◦ × 2 ◦ each, co v ering frequencies of 13–17 GHz
n the Ku band and 26–34 GHz in the Ka band. These volumes are
iscretized as a grid of N pix × N ch = (30 × 30) × 512 voxels, each
panning four arcminutes in both angular dimensions to match the
eam size (assumed to be 4.5 arcmin across the Ka band, and 3.9
rcmin across the Ku band), and 7.8125 or 15.625 MHz respectively
n the Ku or Ka band. 

Based on the nominal system temperature T sys of each receiver,
he spectrometer count 2 per dish N spd , the science channel bandwidth
ν, the pixel count N pix per field, and the number of dish-hours per
eld N dish t obs , we can calculate the radiometer noise per voxel as 

N = 

T sys √ 

δνN spd N dish t obs /N pix 
. (17) 

e show the resulting values for both Ku- and Ka-band observations
n Table 1 alongside a summary of other key parameters. 

.3 Peak-patch simulations 

s was the case for the VID at the time of writing of Ihle et al.
 2019 ), the covariance matrix of our observables has aspects not
ell-understood in a purely analytic formalism, and we will use
 large number of simulations to estimate the covariance matrix
umerically. We use the peak-patch method (Stein, Alvarez & Bond
019 ) to obtain large numbers of dark matter simulations and halo
atalogues from independent sets of initial conditions. 

Ihle et al. ( 2019 ) used 161 independent peak-patch light-cone
imulations spanning a comoving volume of L 

3 
box = (1140 Mpc) 3 

ith a resolution of N cells = 4096 3 . As the light cone extent was
qui v alent to 9.6 ◦ × 9.6 ◦ in transverse dimensions and 26–34 GHz
n CO(1–0) observing frequency, Ihle et al. ( 2019 ) were able to
plit each light cone into many subfields to simulate thousands of
emi-independent COMAP observations at z ∼ 3. We will still
e able to use these same simulations to generate realizations of
he z ∼ 3 CO(1–0) interloper emission in the Ka-band mock data
ube. Ho we ver, we require additional peak-patch simulations at high
edshift, and with slightly better mass resolution. Given the filtering
cales used in the peak-patch method to find matched density peaks,
he minimum resolvable halo mass is given by 
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Figure 3. Illustration of the DDE real and imaginary parts (upper and lower 
sub-panels, respectively) when all signal, noise, and interloper cubes are 
accounted for, using the median across all realizations. The dashed ellipse 
indicates the lo w-v ariance cut in both ˜ T dimensions described in the main 
text as a function of the noise distribution. 
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 h,min-res = 

4 
3 π�m 

ρc 

(
2 L box 

N 
1 / 3 
cells 

)3 

(18) 

= 9 . 3 × 10 12 �m 

h 

2 ( L box / Mpc ) 3 

N cells 
M � (19) 

= 1 . 3 × 10 12 ( L box / Mpc ) 3 

N cells 
M �. (20) 

or the peak-patch simulations used by Ihle et al. ( 2019 ) this is
 . 8 × 10 10 M �, which is within 10 per cent of the minimum halo
ass quoted by Ihle et al. ( 2019 ) of 2 . 5 × 10 10 M � (noting that Ihle

t al. ( 2019 ) correct the halo masses obtained from the peak-patch
ethod via abundance matching to the Tinker et al. ( 2008 ) HMF).
hile this is sufficient for the z ∼ 3 CO signal, the z ∼ 7 CO signal
ill have greater contribution from the lower mass halo population 

nd we want to make sure the statistics for that population are as
orrect as possible down to at least several times lower mass. At the
ame time, we still want to obtain sufficiently large volumes to be
ivisible into many semi-independent z ∼ 7 COMAP observations. 
e therefore choose a box size of L box = 960 Mpc and N cells = 5640 3 ,

o that M h,min-res = 6 . 4 × 10 9 M �. 
The original z ∼ 3 simulations used the SciNet General Purpose 

luster (GPC; Loken et al. 2010 ), before its decommissioning in 
018 April. Each run used 900 s of compute time on 2048 Intel Xeon
5540 cores (or 256 nodes), using � 2.4 TB of RAM (roughly half

he available RAM, as most GPC nodes had 16 GB RAM). Our
ew z ∼ 7 simulations use the successor to the GPC, the Niagara
luster (Ponce et al. 2019 ), whose nodes use a mix of Intel Xeon 6148
nd 6248 CPU cores at the time of this work. These simulations also
se ≈900 s runtime per realization with 1880 cores (or 47 nodes),
ut with a peak memory footprint of � 7.5 TB (around 90 per cent of
he av ailable RAM) o wing to the higher resolution. Just as the 161
 ∼ 3 realizations from Ihle et al. ( 2019 ) took only ∼82 000 CPU
ours, we are able to generate 270 realizations after only ≈127 000
ore-hours. We estimate (as did Ihle et al. 2019 ; Stein et al. 2019 ) that
his is three orders of magnitude faster than an equi v alent N -body
imulation. 

The resulting halo catalogues span z = 5.8–7.9 and 6 ◦ × 6 ◦. As
ith the z ∼ 3 halo catalogues, we correct peak-patch halo masses

hrough abundance matching to the HMF of Tinker et al. ( 2008 ),
ut in this case with high-redshift corrections from Appendix G 

f Behroozi, Wechsler & Conroy ( 2013b ). We use these corrections
nly in mass-correcting our new simulations as they principally apply 
t z > 3. 

By dividing the z ∼ 3 simulations into 16 sub-patches each 
panning 2 ◦ × 2 ◦, and the z ∼ 7 simulations into 9 sub-patches each
panning the same, we obtain 2430 semi-independent 2 ◦ × 2 ◦ sky 
ealizations, which we believe should be sufficient for a reasonably 
igh-quality estimation of the covariance in the context of this early 
nvestigatory work. 

We use limlam mocker 3 to assign halo luminosities and create 
imulated brightness temperature cubes for Ku-band CO(1–0) and 
a-band CO(2–1), as well as the Ka-band CO(1–0) interloper. We 

lso include the line broadening model described by Chung et al. 
 2021 ). We also apply a high-pass transfer function to mimic the
ffect of the COMAP pipeline filtering out large-scale angular and 
requency modes as described by Foss et al. ( 2022 ) and Ihle et al.
 2022 ). Ho we ver, while we adapt the form suggested by Chung et al.
 2022 ), we adjust the exponents slightly to reflect that we project the
ata cube onto comoving space at z ∼ 7, rather than at z ∼ 3 as for
 https://github.com/georgestein/limlam mocker

0  

o  

0  
OMAP Pathfinder analyses: 

 hp ( k ⊥ 

, k ‖ ) = 

1 (
1 + e 5 −138 Mpc ·k ⊥ 

)
(1 + e 5 −144 Mpc ·k ‖ ) 

, (21) 

here k � is the line-of-sight component of the wav ev ector k , and k ⊥ 

s the magnitude of the transverse part of k (so k 2 ⊥ 

+ k 2 ‖ = k 2 ). 
We calculate the following summary statistics for each data cube: 

(i) the Ku-band auto power spectrum, with 101 k -bins of width
 k = 0.02, centred at values ranging from 0.01 to 2.09 Mpc −1 ; 
(ii) the Ka-band auto power spectrum, with the same k -bins used

or the Ku-band; 
(iii) the cross power spectrum between the Ku- and Ka-band data 

ubes, again using the same k -bins; 
(iv) the Ku-band ‘auto’ VID, using a histogram across 0.5 μK- 

ide bins spanning T Ka ∈ ( − 36, 36) μK; 
(v) the Ka-band ‘auto’ VID, using a histogram across 0.5 μK-wide 

ins spanning T Ka ∈ ( − 48, 48) μK; 
(vi) and the DDE, based on fast Fourier transforms of the individ-

al and joint VID with the same binning of T Ku and T Ka as used for
he individual VID calculations. 

 RESULTS  

.1 Visual inspection 

e show the typical DDE for our simulated observations in Fig. 3 ,
nd show slices of the DDE with different components of the
imulation included or excluded in Fig. 4 . Since the noise distribution
s the most visible component, we suggest that the most usable modes
f the DDE (i.e. those least affected by noise) will be larger scale
odes than the Fourier scale set by the instrumental noise. We set

he cutoff to correspond to when the half-wavelength of the mode
quals the full-width at half-maximum of the noise distribution: 

˜ 

 Ka < 

π
2 . 355 σN, Ka 

; (22) 

˜ 

 Ku < 

π
2 . 355 σN, Ku 

. (23) 

he values at ˜ T = 0 are also unusable as they are al w ays equal to
 + 0 i , and we only choose the modes with ˜ T Ku > 0 as the other half
f the Fourier modes in the DDE are completely dependent. For our
.5 μK-wide bins spanning T Ka ∈ ( − 48, 48) μK and T Ku ∈ ( − 36,
MNRAS 520, 5305–5316 (2023) 
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Figure 4. Slices of the DDE and lo w-v ariance cut (no w sho wn as dotted vertical lines), again showing real and imaginary parts separately (upper and lower 
sub-panels, respectively, within each panel). Across the left-hand and right-hand panels, we show how the DDE changes if certain simulation components are 
omitted, in particular whether the Ka-band observation contains the CO(2–1) signal correlated with the Ku-band CO(1–0) signal (left-hand panel) or whether 
the Ka-band observation contains no such correlated signal (right-hand panel). Dark (light) shaded areas around each curve indicate 68 per cent (95 per cent) 
sample intervals, with the presence of noise significantly increasing interval widths. 
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6) μK, this in principle leaves 32 usable DDE bins, 4 each with a
eal and imaginary part. 

Looking at the increase in DDE variance introduced by noise
n Fig. 5 , it is qualitatively true that the noise variance is much
ower inside the ˜ T cutoff than outside it. It is possible that the cut is
ome what conserv ati ve and DDE data at slightly larger v alues of T̃ 
ould be usable, but considering only the bins within the cutoff will
e sufficient for the exploratory purposes of this work. 
Of interest is whether what we expect based on the continuous

istribution formalism of Section 2 holds in these numerical sim-
lations. With our fiducial binning the outcome is as good as can
e expected, at least by eye. But overall outlook here is mixed
ue to some numerical instability. In a preliminary version of this
nalysis that used coarser 2 μK bins, introducing noise did in fact
ffect the DDE by dampening its deviation from 0 + 0 i , contrary
o our expectation. On the other hand, once noise was introduced in
ddition to the correlated signals, introducing the Ka-band interloper
mission did not appear to further affect the DDE even in this case.
urthermore, in that case also, when there was no correlated signal

n the Ku-band simulated observation, taking the DDE between the
a- and Ku-band cubes resulted in a value of 0 + 0 i throughout, as

xpected. 
All this suggests some robustness of the DDE (or rather the

act of its deviation from 0 + 0 i ) modulo choice of binning,
nd with sufficiently fine histogramming 5 the robustness matches
NRAS 520, 5305–5316 (2023) 

 By contrast, using the present binning scheme, only two DDE bins would 
e usable with data from the COMAP-EoR experiment preceding COMAP- 
RA, also conceptualized by Breysse et al. ( 2022a ). Ho we ver, an actual 
OMAP-EoR analysis would tailor the VID binning appropriately to the 
ider noise distribution, so would have more than just two DDE bins 

vailable. 
 Note in particular that both the noise per voxel σN and the CO 〈 Tb 〉 J are 
round 3 μK, so the histogramming likely needs to o v ersample this typical 
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c  

s  

i

fl
b

heoretical expectations much better. Furthermore, even before we
onsider astrophysical interpretation, the level of variance in Fig. 4
uggests a very high-significance detection of correlated distributions
s achie v able with COMAP-ERA. 
uctuation magnitude by a factor of several, which is the case with 0.5 μK 

ins but not 2 μK bins. 
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The important aspect for parameter inference, ho we ver, is the 
ovariance (which we will estimate numerically) and the interplay of 
he covariance with the partial derivatives of the DDE with respect 
o each of the high-redshift CO parameters αJ and βJ as well as
he nuisance low-redshift CO parameters α1, z ∼ 3 and β1, z ∼ 3 . We 
stimate this numerically from a smaller set of 96 simulations, for
hich we repeat calculations of all summary statistics while shifting 
ne parameter away from its fiducial value. αJ and α1, z ∼ 3 are allowed 
o shift ±0.02 away from their fiducial values; βJ and β1, z ∼ 3 shift 
 larger ±0.2 away as the signals are not as sensitive to the same
bsolute change in those parameters. 

We show the resulting central difference quotient estimates 
n Fig. 6 . We note with interest that the imaginary part of the
DE reacts in a visibly qualitatively different way to shifts in α2 

ompared to shifts in α1 ; the same applies to βJ . That is, changing
O(2–1) parameters alters the shapes of the individual and joint 
ID in a different way to changing CO(1–0) parameters. Different 

emperature-space offsets introduced in the distribution shapes would 
orrespond to different phases introduced in the DDE and thus the 
if ferent partial deri v ati ves for the real and imaginary parts of the
DE that we see in Fig. 6 against α2 and β2 versus against α1 

nd β1 . This will become important in a moment in considering 
he astrophysical constraints possible with this measure, as we will 
iscuss in Section 4.2 . 
Note also that we find non-zero partial deri v ati ves of the DDE

gainst nuisance parameters. As the range of values indicated in Fig. 6 
emonstrates, the DDE is still significantly less sensitive to α1, z ∼ 3 

nd β1, z ∼ 3 compared to αJ and βJ , and it is likely that some if not
uch of what we find is numerical noise. None the less, given the

onsistency of some qualitative trends between the partial deri v ati ves
ith respect to α1, z ∼ 3 and β1, z ∼ 3 , some real trends may well exist. 
he effect of discrete VID binning cannot be discounted here, given 
ur earlier observation that coarser binning reduced robustness of 
he DDE against noise. It is similarly possible that even finer binning
han considered here would reduce any of these apparently real trends
elated to interloper parameters, which we leave for future, more 
 xtensiv e work to examine in greater detail. Either way, in this work
e will end up forecasting non-zero constraining power on these z 
3 CO parameters, although the DDE should constrain αJ and βJ 

omewhat more tightly. 

.2 Fisher analysis 

ur simulations allow us to numerically estimate the covariance 
atrix given the fiducial parameters and the full suite of 2430 sim-

lations described in Section 3.3 . The previously discussed smaller 
et of 96 simulations at various points in the local neighbourhood is
ufficient to then estimate derivatives of observables with respect to 
he z ∼ 7 αJ and βJ as well as α1, z ∼ 3 and β1, z ∼ 3 . This in turn allows
s to run a Fisher analysis to estimate the constraining power on the
 ∼ 7 αJ and βJ , with α1, z ∼ 3 and β1, z ∼ 3 still allowed to vary as
uisance parameters to allow for the possibility of redshift evolution 
although the fiducial values are the same as α1 and β1 at z ∼ 7). 

Note that of the 64 real variables associated with the usable DDE
ins (32 real parts and 32 imaginary parts), only 29 are usable
fter masking variables until no pair of variables has a correlation 
oefficient abo v e 0.98. The masked DDE then has an acceptably
table numerically estimated covariance matrix. 6 We graphically 
 Despite high correlations between the remaining DDE bins, the masked 
DE covariance matrix has a condition number of ∼10 7 , which is acceptable 

f
v
o
b

how the correlation coefficient matrix (which has the same structure 
s the covariance matrix, except with variances for each observable 
ormalized away) in Appendix A . 
The numerically estimated covariance matrix is calculated relative 

o one simulated 2 ◦ × 2 ◦ patch, so we divide it by three to reflect the
act that the full COMAP-ERA surv e y is of three independent fields.
nce we have the full COMAP-ERA covariance matrix C ab for a 
ector of combined or individual observables O a , the Fisher matrix 
n the basis of parameters { λi } = { α1 , α2 , β1 , β2 , α1, z ∼ 3 , β1, z ∼ 3 }
s 

 ij = 

∑ 

a,b 

∂ O a 

∂λi 

C 

−1 
ab 

∂ O b 

∂λj 

. (24) 

nverting this will yield the parameter covariance matrix, allowing 
s to calculate expected parameter constraints under the assumption 
f Gaussian covariances throughout. As some non-Gaussianity is 
resent in our signals and variances, and as we numerically estimate
ll covariances and derivatives informing the Fisher forecast, we 
nly trust the resulting parameter constraints on a qualitative level. In
ther words, the exact shapes and widths of the posterior distributions
hould not be considered robust predictions, but relative strengths of 
onstraints between different sets of observables should be credible. 

.2.1 Cross-statistics only 

e show expected resulting constraints on αJ and βJ , as well as
n the nuisance parameters α1, z ∼ 3 and β1, z ∼ 3 , from the Ka–Ku 
ross-spectrum P ×( k ) and the DDE in the upper panels of Fig. 7 . The
xpected achie v able constraining po wer of the DDE is extremely
igh, far beyond that expected for the cross power spectrum. The
undamental sensitivity of the DDE appears to allow for very strong
arameter constraints by itself, without use of individual VID data 
r power spectra. This may be a peculiar aspect of the reionization-
poch CO signal or even our model of it, and may not necessarily
old in other LIM contexts. 
We also note that the DDE does actually appear sensitive to α1, z ∼ 3 

nd β1, z ∼ 3 . Ho we ver, the sensiti vity to those parameters is two
o three times poorer than to any of the corresponding z ∼ 7 αJ 

nd βJ parameters. We tabulate the Fisher forecast errors for these 
arameters in Appendix B , not only for P ×( k ) and/or the DDE but
or all statistics considered in this work. 

Using random draws from the parameter confidence ellipses 
f Fig. 7 , we can translate expected constraints on αJ and βJ into
onstraints on 〈 Tb 〉 J , shown in the lower panels of Fig. 7 . With
he Ka–Ku cross-spectrum alone, the degeneracy between αJ or 
etween βJ represents an inability to constrain 〈 Tb 〉 J independently, 
s the cross-spectrum is proportional to their product 〈 Tb 〉 1 〈 Tb 〉 2 . The
ross-spectrum constraint on this product is 〈 T b 〉 1 〈 T b 〉 2 = 8 . 6 + 1 . 1 

−0 . 6 

68 per cent interval). 
Ho we ver, as pre viously noted the DDE is someho w sensiti ve

o CO(1–0) and CO(2–1) in different ways to the cross-spectrum, 
hus allowing for constraints of 〈 Tb 〉 1 and 〈 Tb 〉 2 separately. This is
f extreme interest as it would allow us to simultaneously probe
xcitation through line ratios and molecular gas content at high 
edshift. The DDE constraint on the product of the two temperature–
MNRAS 520, 5305–5316 (2023) 

or 64-bit float arithmetic. When combining the masked DDE with other 
ariables, we rescale all DDE values by a factor of 10 6 to decrease the range 
f variances and impro v e the condition of the covariance matrix to be well 
eyond what is required given 64-bit float precision. 



5312 D. T. Chung et al. 

MNRAS 520, 5305–5316 (2023) 

Figure 6. Partial deri v ati ves of the real and imaginary parts of the DDE with respect to model parameters, as indicated by the label next to the colour bars. 
Compare in particular the partial deri v ati ves of the imaginary part of the DDE for negative ˜ T Ka against α1 or β1 versus those against α2 or β2 . 
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Figure 7. Corner plots of CO model parameter constraints (upper portion of 
plot) and constraints on 〈 Tb 〉 J (lower portion of plot) based on the cross power 
spectrum alone (cyan), the masked DDE alone (yellow), and the combination 
of the two (magenta). (Here, the last is ef fecti vely the same as the DDE-only 
case, obscuring the DDE-only contours as a result. Figs 8 and 9 show the 
DDE-derived constraints in greater detail.) The filled (unfilled) ellipses or 
inner (outer) contours in each triangle plot indicate 68 per cent (95 per cent) 
credibility intervals. The dashed lines in the 〈 Tb 〉 1 –〈 Tb 〉 2 contour plot mark 
out 〈 Tb 〉 1 〈 Tb 〉 2 = 8.5 μK 

2 , which is consistent with constraints from all 
summary statistics. 
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Figure 8. Same as Fig. 7 , but now comparing the DDE against the 
combination of the individual Ku- and Ka-band VID data (possibly also 
combined with the DDE) instead of the cross power spectrum. 
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ias products is also still tighter than with the cross spectrum, at
 Tb 〉 1 〈 Tb 〉 2 = 8.5 ± 0.2 (68 per cent interval). 

.2.2 One-point statistics only 

e repeat the e x ercise but replace the cross-spectrum with the VID
rom both bands (excising the first 50 and last 30 bins so that we
nly consider bins with significant variance). The constraints shown 
n Fig. 8 suggest that the DDE significantly collapses the parameter 
pace volume surrounding the z ∼ 7 CO(2–1) parameters α2 and 
2 (as well as their nuisance z ∼ 3 CO(1–0) counterparts). This is
ensible as the Ka-band VID has significant interloper emission and 
s thus less sensitive to the z ∼ 7 signal than either the Ku-band VID
which has no such interloper to contend with) or the DDE (which
argely rejects the interloper emission by design). 

The 〈 Tb 〉 1 –〈 Tb 〉 2 constraints shown in Fig. 8 reflect this, as both
he VID and the DDE constrain 〈 Tb 〉 1 and 〈 Tb 〉 2 with little de generac y
ut the DDE significantly narrows the plausible range of 〈 Tb 〉 2 . This
n turn also happens to significantly narrow the plausible range of
 Tb 〉 1 〈 Tb 〉 2 , from 〈 Tb 〉 1 〈 Tb 〉 2 = 8.5 ± 0.5 (68 per cent interval) for
he auto VID data alone to the previously mentioned 〈 Tb 〉 1 〈 Tb 〉 2 =
.5 ± 0.2 with the DDE. 
Thus, in principle, the fundamental sensitivity of COMAP-ERA 

ould allow strong constraints on reionization-epoch CO from one- 
oint statistics alone. This does assume the data cubes are sufficiently
lean and free of systematics and foregrounds, but again this would
MNRAS 520, 5305–5316 (2023) 
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Figure 9. Same as Fig. 7 or Fig. 8 , but now comparing the DDE against 
not just the cross power spectrum or just one-point statistics, but the ‘all-but- 
DDE’ combination of all summary statistics from COMAP-ERA data other 
than the DDE (possibly also combined with the DDE in a ‘kitchen sink’ 
scenario). 
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ffect the ‘auto’ VID far more than the DDE, which should again be
ignificantly more robust (even if not perfectly insensitive) to such
actors by design. 

.2.3 The kitchen sink 

e now consider throwing everything we have at the problem – all
uto- and cross-spectra as well as both VIDs – and examine in Fig.
 how the DDE might still impro v e constraints. 
The combination of e very observ able other than the DDE finally
atches the DDE-based constraint of 〈 Tb 〉 1 〈 Tb 〉 2 = 8.5 ± 0.2

68 per cent interval). With the DDE and all-but-DDE constraints on
imilar levels, the DDE contributes non-negligibly to the ‘kitchen-
ink’ constraint using all observables, which is 〈 Tb 〉 1 〈 Tb 〉 2 =
.5 ± 0.1 (68 per cent interval). 
NRAS 520, 5305–5316 (2023) 
Neither { αJ , βJ } nor 〈 Tb 〉 J necessarily provide an intuitive picture
f physical conditions at reionization, so we may also consider how
he parameter posteriors translate to other quantities. The example
e will consider briefly here is the ratio of the average CO(2–1) and
O(1–0) line brightness temperatures: 

〈 T 〉 2 
〈 T 〉 1 

= 

ν3 
rest , 1 

ν3 
rest , 2 

∫ 
d M h (d n/ d M h ) L CO , 2 ( M h , z) ∫ 
d M h (d n/ d M h ) L CO , 1 ( M h , z) 

, (25) 

ith z = 6.68 at the midpoints of the COMAP observing frequency
ands. The ratio of these temperatures is an approximate global
easure of excitation of the CO rotational transitions overall and

hus characterizes the temperatures and densities of the interstellar
edium hosting the CO gas. 
The value of this ratio reco v ered with the DDE is 0.712 ± 0.010,

nd while the ‘kitchen-sink’ constraint of 0.712 ± 0.004 is signifi-
antly better, the addition of the DDE does very marginally narrow
t from the all-but-DDE constraint of 0.712 ± 0.005. Of course,
mpro v ements from the DDE would be more significant if some
ubset of auto power spectra or individual VID data were considered
nreliable. 

 C O N C L U S I O N S  

e have now answered the questions set out by the Introduction of
his paper: 

(i) Is the DDE robust to contaminants like noise and interloper
mission, as is the analytic expectation? For appropriately fine
hoices of binning, we are able to define a region of Fourier-
ual temperature space unaffected by noise where the DDE is
n unbiased measurement of the correlation between the shapes
f the distributions of two correlated variables. While we do not
emonstrate perfect insensitivity to interloper emission, our analysis
oes sho w relati ve insensiti vity of the DDE to interloper CO(1–0)
arameters compared to the equi v alent z ∼ 7 CO parameters. 
(ii) How much could the DDE fundamentally improve constraints

n z ∼ 7 CO emission in simulated COMAP-ERA observations? The
DE potentially significantly impro v es constraints on the z ∼ 7 CO

ine model, with (for example) constraints on 〈 Tb 〉 1 〈 Tb 〉 2 becoming
–5 times tighter than either the cross power spectrum alone or ‘auto’
ne-point statistics alone. Unlike the cross power spectrum, the DDE
ctually appears able to separately constrain 〈 Tb 〉 1 and 〈 Tb 〉 2 . Even
n comparison to the combination of all other available summary
tatistics, the DDE contributes additional constraining power to z ∼
 CO model parameters. 

Our numerical investigations, while preliminary, make it apparent
hat the non-Gaussianity of the signals imprint themselves in the
DE just as much as in the VID. Just as the the VID breaks the
e generac y inherent in the auto power spectrum between the mean
O temperature and luminosity-averaged tracer bias (Breysse 2022 ),

he DDE breaks the de generac y inherent in the cross power spectrum
etween the intensities of the two lines as we have demonstrated nu-
erically. Future work should provide a non-numerical explanation

or this de generac y breaking. 
The present investigation also suggests the DDE can poten-

ially enhance science output from cross-correlations, particularly
n scenarios where auto spectra and/or VID data are untrusted.
eal-world application of the DDE will still need better under-

tanding of covariance, dependence on signal and noise mod-
lling, and so on. Ho we ver, at minimum, the clearly different
egeneracies from the cross power spectrum and other observ-
bles show that the DDE merits further investigation on these 
ronts. 
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Figure A1. The correlation coefficient matrix between all observables across 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/4/5305/7024863 by Biology Library user on 09 August 2023
C K N OW L E D G E M E N T S  

hanks to Kieran Cleary, Tim Pearson, and other members of the 
OMAP collaboration that offered discussion and suggestions. Many 

hanks also to George Stein for running and making available the 
riginal peak-patch simulations for Ihle et al. ( 2019 ). Thanks also go
o an anonymous referee for clear and actionable feedback. 

Research in Canada is supported by NSERC and CIFAR. Parts 
f these calculations were performed on the GPC and Niagara 
upercomputers at the SciNet HPC Consortium. SciNet is funded 
y: the Canada Foundation for Innovation under the auspices of 
ompute Canada; the Go v ernment of Ontario; Ontario Research 
und – Research Excellence; and the University of Toronto. 
DTC is supported by a CITA/Dunlap Institute postdoctoral fel- 

owship. The Dunlap Institute is funded through an endowment 
stablished by the David Dunlap family and the University of 
oronto. The University of Toronto operates on the traditional land of

he Huron-Wendat, the Seneca, and most recently, the Mississaugas 
f the Credit River; DTC and others at the University of Toronto
re grateful to have the opportunity to work on this land. DTC also
cknowledges support through the Vincent and Beatrice Tremaine 
ostdoctoral Fellowship at CITA. PCB is supported by the James 
rthur Postdoctoral Fellowship at New York University. 
IB carried out parts of this work through the Summer Undergrad- 

ate Research Program (SURP) in astronomy and astrophysics at the 
niversity of T oronto. W ork at the University of Oslo is supported by

he Research Council of Norway through grants 251328 and 274990, 
nd from the European Research Council (ERC) under the Horizon 
020 Research and Innovation Program (Grant agreement No. 
19478, COSMOGLOBE ). Work on COMAP at Caltech is supported 
y the US National Science Foundation (NSF), including through 
SF awards 1910999 and 2206834. The work of HP is supported 
y the Swiss National Science Foundation via Ambizione Grant 
Z00P2 179934. Work at Jodrell Bank is supported by an STFC
onsolidated Grant (ST/T000414/1). 
This research made use of ASTROPY , 7 a community-developed core 

ython package for astronomy (Astropy Collaboration 2013 , 2018 ). 
his research also made use of NASA’s Astrophysics Data System 

ibliographic Services. 

ATA  AVA ILA BILITY  

he simulated data underlying this article will be shared on reason- 
ble request to the corresponding author. 

EFER ENCES  

stropy Collaboration 2013, A&A , 558, A33 
stropy Collaboration 2018, AJ , 156, 123 
eane A., Lidz A., 2018, ApJ , 867, 26 
ehroozi P. S., Wechsler R. H., Conroy C., 2013a, ApJ , 762, L31 
ehroozi P. S., Wechsler R. H., Conroy C., 2013b, ApJ , 770, 57 
ernal J. L., Ko v etz E. D., 2022, A&AR, 30, 5 
reysse P. C., 2022, preprint ( arXiv:2209.01223 ) 
reysse P. C., Alexandroff R. M., 2019, MNRAS , 490, 260 
reysse P. C., Kovetz E. D., Behroozi P. S., Dai L., Kamionkowski M., 2017,

MNRAS , 467, 2996 
reysse P. C., Anderson C. J., Berger P., 2019, Phys. Rev. Lett., 123, 231105
reysse P. C. et al., 2022a, ApJ , 933, 188 
reysse P. C., Chung D. T., Ihle H. T., 2022b, preprint ( arXiv:2210.14902 ) 
hung D. T. et al., 2021, ApJ , 923, 188 
 http://www .astropy .org 

t
a
D

hung D. T. et al., 2022, ApJ , 933, 186 
leary K. A. et al., 2022, ApJ , 933, 182 
oss M. K. et al., 2022, ApJ , 933, 184 
ong Y., Cooray A., Silva M. B., Santos M. G., Lubin P., 2011, ApJ , 728,

L46 
ong Y., Cooray A., Silva M., Santos M. G., Bock J., Bradford C. M., Zemcov

M., 2012, ApJ , 745, 49 
hle H. T. et al., 2019, ApJ , 871, 75 
hle H. T. et al., 2022, ApJ , 933, 185 
amenetzky J., Rangwala N., Glenn J., Maloney P. R., Conley A., 2016, ApJ ,

829, 93 
eating G. K., Marrone D. P., Bower G. C., Keenan R. P., 2020, ApJ , 901,

141 
eenan R. P., Keating G. K., Marrone D. P., 2022, ApJ , 927, 161 
o v etz E. D. et al., 2017, preprint ( arXiv:1709.09066 ) 
o v etz E. et al., 2019, Bull. Am. Astron. Soc., 51, 101 
i T. Y., Wechsler R. H., De v araj K., Church S. E., 2016, ApJ , 817, 169 
idz A., Furlanetto S. R., Oh S. P., Aguirre J., Chang T.-C., Dor ́e O., Pritchard

J. R., 2011, ApJ , 741, 70 
oken C. et al., 2010, J. Phys. Conf. Ser. , 256, 012026 
once M. et al., 2019, Proceedings of the Practice and Experience in Advanced

Research Computing on Rise of the Machines (Learning), PEARC ’19. 
Association for Computing Machinery, New York, NY, USA. Available 
at: https://doi.org/10.1145/3332186.3332195 

ullen A. R., Chang T.-C., Dor ́e O., Lidz A., 2013, ApJ , 768, 15 
ullen A. R. et al., 2022, preprint ( arXiv:2209.02497 ) 
tein G., Alvarez M. A., Bond J. R., 2019, MNRAS , 483, 2236 
un G., Hensley B. S., Chang T.-C., Dor ́e O., Serra P., 2019, ApJ , 887, 142 
inker J., Kravtsov A. V., Klypin A., Abazajian K., Warren M., Yepes G.,

Gottl ̈ober S., Holz D. E., 2008, ApJ , 688, 709 
inker J. L., Robertson B. E., Kravtsov A. V., Klypin A., Warren M. S., Yepes

G., Gottl ̈ober S., 2010, ApJ , 724, 878 
ang S., Popping G., Somerville R. S., Pullen A. R., Breysse P. C., Maniyar

A. S., 2022, ApJ , 929, 140 

PPENDI X  A :  C O R R E L AT I O N  COEFFI CIENT  

ATRI X  BETWEEN  A L L  OBSERVABLES  

Fig. A1 shows the correlation coefficient matrix between all 
bservables calculated in this work, across all 2430 simulations of 
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f the Fisher forecasts as explained in Section 4.2 ), we also find
orrelations between the individual VID bins and the DDE. Ho we ver,
orrelations between the Ka-band VID and the DDE are weaker,
resumably due to the interloper signal present in the Ka-band data.
Similar points apply for the low- k power spectrum bins, which

ave correlations with VID bins likely introduced by the high-pass
ransfer function applied to the simulated data cubes. 
NRAS 520, 5305–5316 (2023) 

Table B1. Marginalized Fisher forecast parameter errors 
in Section 4.2 . 

Statistics Marginalized
α1 β1 α

DDE 0.0033 0.0313 0.0
P ×( k ) 0.16 1.46 0.
P ×( k ) + DDE 0.0030 0.0282 0.0
VID + VID 0.0032 0.0350 0.0
VID + VID + DDE 0.0018 0.0203 0.0
all-but-DDE 0.0019 0.0215 0.0
kitchen-sink 0.0012 0.0135 0.0

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
PPENDI X  B:  TA BU LAT ED  FISHER  FORECAS T  

A RAMETER  E R RO R S  

e tabulate the marginalized Fisher forecast errors for each z ∼ 7
O–IR power-law parameter in Table B1 , based on different sets of

ummary statistics. For the CO(2–1) parameters α2 and β2 , the DDE
as constraining power equivalent to the combination of every other
imulated observable combined. 
for each summary statistic combination considered 

 Fisher forecast 1 σ error for: 

2 β2 α1, z ∼ 3 β1, z ∼ 3 

024 0.0225 0.0066 0.0545 
13 1.19 0.02 0.47 
022 0.0204 0.0056 0.0467 
095 0.0669 0.0113 0.1184 
018 0.0163 0.0041 0.0396 
028 0.0206 0.0022 0.0224 
013 0.0098 0.0017 0.0174 
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