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ABSTRACT

Local primordial non-Gaussianity (PNG) is a promising observable of the underlying physics of inflation, characterized by fi°.
We present the methodology to measure f,5¢ from the Dark Energy Survey (DES) data using the two-point angular correlation
function (ACF) with scale-dependent bias. One of the focuses of the work is the integral constraint (IC). This condition appears
when estimating the mean number density of galaxies from the data and is key in obtaining unbiased f1}° constraints. The
methods are analysed for two types of simulations: ~246 GOLIAT-PNG N-body small area simulations with fyr, equal to —100
and 100, and 1952 Gaussian ICE-COLA mocks with fyr, = 0 that follow the DES angular and redshift distribution. We use the
ensemble of GOLIAT-PNG mocks to show the importance of the IC when measuring PNG, where we recover the fiducial values
of fxr within the 1o when including the IC. In contrast, we found a bias of Afyy ~ 100 when not including it. For a DES-like
scenario, we forecast a bias of Afnr, ~ 23, equivalent to 1.80, when not using the IC for a fiducial value of fxp. = 100. We use the
ICE-COLA mocks to validate our analysis in a realistic DES-like set-up finding it robust to different analysis choices: best-fitting

estimator, the effect of IC, BAO damping, covariance, and scale choices. We forecast a measurement of fy;. within o (fyp) = 31

when using the DES-Y3 BAO sample, with the ACF in the 1 deg < 6 < 20 deg range.

Key words: cosmology: observations —inflation —large-scale structure of Universe.

1 INTRODUCTION

Cosmic inflation predicts that the primordial seeds, encoded in
the initial gravitational potential of the Universe, are described
by close to Gaussian random fields, for which all the statistical
information is contained in the two-point correlation function. We
can parametrize deviations from Gaussianity by using a parameter
denoted by fyL, which represents the amount of primordial non-
Gaussianity encoded in the three-point correlation of the fields.
Primordial non-Gaussianity (PNG) is claimed to be a smoking gun
to differentiate among the vast collection of inflationary models. In
particular, primordial non-Gaussianity of the local type, parametrized
by £, can distinguish between canonical single-field and non-
vanilla scenarios, such as multifield inflation (Byrnes & Choi 2010;
Pajer, Schmidt & Zaldarriaga 2013).

The primordial seeds affect the formation of structures at different
epochs in cosmic history, implying that signals of PNG could appear
in different cosmological probes. An example is the constraints
of PNG coming from the cosmic microwave background (CMB)
temperature bispectrum. The latest Planck results present the tightest
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constraints for local PNG with £ = —0.9 4+ 5.1 (Planck Collabo-
ration IX 2020), but since Planck reached its cosmic variance limit,
another way to improve this constraint is desirable.

Similar to how PNG affects the temperature fluctuations in the
CMB, the non-Gaussian initial perturbations can also affect the
distribution of dark matter overdensities, which in turn affects the
distribution of biased tracers of dark matter (e.g. galaxies, quasars).
This implies that PNG could also be constrained using the bispectrum
of such tracers, as has been studied in Jeong & Komatsu (2009),
Tasinato et al. (2014), and Moradinezhad Dizgah et al. (2021).

Given the complexity of modelling the bispectrum, dominated by
late non-Gaussianities induced by non-linear evolution,' and other
difficulties such as non-linear bias, redshift space distortions, and the
window function of the survey (Gil-Marin et al. 2017; Sugiyama et al.
2019), a different method to look for primordial non-Gaussianity
using late-time objects is desired. Another effect of PNG is on
the halo formation mechanism. Local primordial non-Gaussianity
induces a scale dependence on the linear bias between galaxies and
the underlying dark matter overdensities. The scale dependence in

11t is worth mentioning that besides these difficulties, recent work using the
EFT of LSS for the bispectrum has proven to be helpful when constraining
local PNG from eBOSS data (Cabass et al. 2022).
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the bias creates a characteristic signal in the two-point correlation
at very large scales, which can be constrained using different large-
scale structure (LSS) biased tracers (Dalal et al. 2008; Matarrese &
Verde 2008; Slosar et al. 2008). Some studies show that PNG can
also be constrained using galaxies with zero linear bias in low-
density environments (Castorina et al. 2018), or even negatively
biased traces, such as voids (Chan, Hamaus & Biagetti 2019).

Measurements of cosmological parameters using two-point cor-
relation functions have been done multiple times because they are
easy to model and have a large signal-to-noise ratio. This makes the
scale-dependent bias in the two-point correlation the more robust
method to constrain PNG. Previous measurements of PNG using
the scale-dependent bias have been presented in Slosar et al. (2008),
Ross et al. (2013), Giannantonio et al. (2014), Leistedt, Peiris & Roth
(2014), Ho et al. (2015), Castorina et al. (2019), and Mueller et al.
(2021).

One noticeable trend is that most of the current constraints come
from spectroscopic surveys. It has been shown in de Putter & Doré
(2017) that imaging surveys with high volumes could overcome
redshift uncertainties and had the potential of breaking the o ( £i5) ~
1 barrier. Hence, upcoming photometric data from the Legacy Survey
of Space and Time (LSST) in the Vera Rubin Observatory? (LSST
Science Collaboration 2009) is a promising source to break current
bounds.

This work is a first step to measure PNG with existing data from
the Dark Energy Survey (DES?; DES Collaboration 2021), which
represents the state of the art in photometric surveys. Currently,
the DES has surveyed over ~388 million galaxies in ~5000 deg”
and presents an opportunity to put the tightest constraints from
photometric surveys (as will see in this work).

DES has successfully probed the nature of dark energy using
different cosmological probes (DES Collaboration 2018; DES Col-
laboration 2022a; Porredon et al. 2021; Rodriguez-Monroy et al.
2022). One of them is the study of clustering of galaxies for
the measurement of the Baryon Acoustic Oscillation (BAO) scale
(DES Collaboration 2019, DES Collaboration 2022b) using galaxy
data. The BAO scale measurement suggests that we could also use
clustering of galaxies at large scales for measuring PNG within DES.

This work presents the starting point in this direction by describing
the methods to constrain the f,9¢ parameter using DES simulations.
We use the angular correlation function (ACF) as a summary statistic
for the galaxy distribution and show the effect that primordial non-
Gaussianities have on the angular clustering of galaxies via the scale-
dependent bias.

One of the main focuses of the work is on the integral constraint
(IC; Groth & Peebles 1977; Peacock & Nicholson 1991; Ross et al.
2013; Beutler et al. 2014; de Mattia & Ruhlmann-Kleider 2019). The
IC corrects the modelled correlation function by adding a constant,
which comes from imposing that its integral over the whole survey
volume needs to vanish. This correction is found to be key to
obtaining unbiased PNG measurements.

The IC was not relevant in the previous DES non-PNG clustering
analysis for two main reasons: First, its effect becomes relevant at
very large scales. Secondly, for the case of BAO measurements, its
template includes marginalization over nuisance parameters, one of
them being a constant shift in the amplitude of the ACF. This shift
mimics the IC correction, implying that any effect from it has already
been marginalized.

Zhttps://www.lsst.org/
3https://www.darkenergysurvey.org/

MNRAS 523, 603-619 (2023)

In this paper, we use the ACF with PNG, and the IC, as a
theoretical template to measure the value of fi from simulated
galaxy catalogues. The measurement is based on Bayesian parameter
inference using MCMC (Markov chain Monte Carlo) sampling of a
Gaussian likelihood function. The methods are analysed for two
kinds of simulations. First, we introduce the GOLIAT-PNG mocks
(Avila & Adame 2023), a set of 246 N-Body simulations that have
non-Gaussian initial conditions. We use these simulations to remark
on the importance of the IC when measuring . Secondly, we use
1952 1CE-cOLA mocks (Ferrero et al. 2021) that follow the DES
angular and redshift distribution of the Y3 BAO galaxy sample
(Carnero Rosell et al. 2022) to validate the pipeline. We show that
it is robust against different analysis choices, such as covariance
modelling, fni. estimator, and scale cuts. Finally, we forecast a
measurement of the accuracy of fi% when using the DES Y3 BAO
sample data.

This paper is organized as follows. The steps to model ACF with
scale-dependent bias are presented in Section 2. In Section 3, we
derive the IC and show its importance when dealing with local PNG.
In Section 4, we describe the simulations that we will use to test
and optimize the methods. Section 5 presents the tools needed to
extract the fy;. parameter. In Section 6, we test the pipeline against
the GOLIAT-PNG simulations and show how the IC is needed to
obtain unbiased values of fyr.. Once the methods are tested over
non-Gaussian simulations, we validate the pipeline using ICE-COLA
simulations in Section 7.

2 THEORY

In this section, we describe the impact of PNG on the two-point
statistics of biased tracers. First, we describe how non-Gaussian
initial conditions modify the bias relation, introducing the scale-
dependent bias. After, we show the effect that it has on the power
spectrum. Finally, we focus on the ACF and show how it is affected
by local primordial non-Gaussianity.

2.1 Gaussian galaxy bias

The spatial distribution of matter is set by the initial conditions
coming from cosmic inflation, which predicts a nearly scale-invariant
power spectrum and a close to Gaussian distribution for the pri-
mordial gravitational fields. During the matter domination era, dark
matter collapsed due to these gravitational potentials generating
haloes which, as the Universe evolves, will serve as the backbones
for the creation of large-scale structures.

We will focus our analysis on angular separations of galaxies
larger than 1 deg. This choice is customary for the BAO analysis
because such scales are within the linear regime of perturbation
theory, simplifying the theoretical modelling (DES Collaboration
2022b). In this regime, galaxies follow the trace of the dark matter
overdensities by the linear relation,

8g(x) = b 8m(x), )

where b is a parameter called galaxy bias, which is found to be
constant at large scales under the standard Gaussian initial conditions.

In the non-linear regime, non-linear effects also generate a scale-
dependent bias, which affects only small scales. We will ignore such
effects throughout this work and refer the reader to Desjacques,
Jeong & Schmidt (2018) for an intensive review on the scale
dependence of the galaxy bias and other related effects.

The statistical distribution of dark matter overdensities is well
described by the matter power spectrum Py,(k), which depends on
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the primordial power spectrum, coming from inflation, and the
transfer function 7(k), which describes its evolution throughout
cosmic history. Due to equation (1), the biased relation between
galaxies and dark matter also appears in the galaxy power spectrum
as follows:

Py(k) = b Poy(K). (@3]

As we will see in the following section, the linear relation
between galaxies and dark matter will change when dealing with
non-Gaussian initial conditions.

2.2 PNG via scale-dependent bias

Deviations from Gaussianity in the initial conditions, coming from
inflation, is an active area of research due to the potential of unveiling
the nature of the primordial fields. In particular, we focus on PNG of
the local type (Komatsu & Spergel 2001),

DG (X) = d6(X) + f(9g(X) — (9g), 3)

where ®ng(x) is the non-Gaussian Newtonian potential and ¢g(x)
is the Gaussian potential. Under this approximation, fi% is a con-
stant that parametrizes deviations from Gaussian initial conditions.
Throughout this work, we will focus on local PNG; hence, from here
on, we will drop the superscript ‘loc’ for simplicity.

Dalal et al. (2008) and Slosar et al. (2008) showed that PNG,
parametrized as equation (3), would change the way dark matter
collapses into halos, subsequently affecting galaxy formation. In the
presence of local PNG, the long wavelength modes of the primordial
gravitational potential couple with the smaller modes, responsible for
the local amplitude of matter fluctuations, producing a modulation in
the local number density of haloes. The change in the local number
density will add an extra contribution to the galaxy bias, which
depends on the scale. We can write the scale-dependent bias due to
local PNG as follows:

Olnn
dlnog’
where b is the constant linear bias and 8, = 1.686 is the critical
value of collapse for halo formation in an Einstein-de Sitter universe
(Fillmore & Goldreich 1984). Also,
3Q, H} 80) 1
2D(z) ¢* g(zra) K2T (k)

b(k) = b+ fana(k, )

(C))

alz, k) = (%)
where H, is the Hubble factor today,* c is the light speed, and 2y,
is the matter density today. In addition, 7(k) is the linear transfer
function, and D(z) is the linear growth factor, both normalized to
1 at k = 0 and z = 0, respectively. The factor gfz(,(::)’ with g(z) =
(1 + z)D(z), arises because D(z) is normalized to unity and can be
omitted if normalized to the scale factor during the matter-dominated

era (Mueller, Percival & Ruggeri 2019). Its value is shown to be
30 135
8(zraa) T T

One particularity of this scale-dependent bias is its 1/k* de-
pendence, implying that primordial non-Gaussianity affects the

distribution of galaxies only at very large scales. Throughout this

4If one uses k in units of hMpc’l, then Hy = 100A [Mpc’1 km s~!] with
h=0.7.

SThis value is slightly cosmology dependent. When comparing against the
ICE-COLA mocks, we will consider it as 1.3 since we do not expect that it
affects the constraints if we plan to recover fn, = 0. On the other side, for
the non-Gaussian GOLIAT-PNG simulations, it was shown to be 1.316 for the
fiducial cosmology of the simulations.
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Figure 1. Theoretical linear galaxy power spectrum with scale-dependent
bias for fy\i = O (blue line), fxp = 100 (orange line), and fyp = —100
(green line). The power spectrum is computed using the fiducial cosmological
parameters of the GOLIAT-PNG simulations described in Table 1.

work, we will refer to scale-dependent bias as the one produced due
to primordial non-Gaussianity.
It has been shown in Slosar et al. (2008) that
Olnn
0 lnog

= 28.(b — p), (6)

where the parameter p was introduced to show deviations from the
original model of Dalal et al. (2008) to take into account different
tracers. We refer the reader to Barreira (2020) for an analysis of the
impact of the parameter p and other assumptions on the non-Gaussian
bias. For the case of ICE-COLA mocks, we will fix p = 1, which is
customary in many analyses and is considered the prediction for a
mass-selected galaxy/halo sample. Finally, the scale-dependent bias
we will use in this work can be written as follows:

b(k) = b+ 2(b — p) fara(k, 2).. N

As an example of the effect of the scale-dependent bias, in Fig. 1,
we compute the linear matter power spectrum from CAMB® (Lewis,
Challinor & Lasenby 2000; Howlett et al. 2012) and apply a scale-
dependent bias as given in equation (7) to show the galaxy power
spectrum for different values of f.. The power spectrum is computed
using the cosmological parameters from the ICE-COLA simulation
presented in Section 4.2.

Since the scale-dependent bias is squared in the galaxy power
spectrum, we will have contributions with different dependence on
/ni- This dependence can be seen as follows:

b(k)* o b> Laphe Jrl;fl2L
[2 K

where A and B are prefactors that do not depend on the scale
[since T(k) becomes constant at very large scales]. The previous
equation tells us that we have quadratic and linear terms in fy. and
a term that does not depend on fy.. Fig. 1 shows how the scale-
dependent bias generates an enhancement of the power spectrum at
large scales for fiyr, = 100. The situation is more interesting for fy. =
—100, where the linear term in fi;, generates a reduction in the power
spectrum until a given scale, then the quadratic term overcomes,
explaining the sharp feature around at k = 0.005 » Mpc~!.

(®)

Ohttps://camb.readthedocs.io
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2.3 BAO-damped galaxy power spectrum

We may need to use precise theoretical modelling to obtain an optimal
measurement of fy.. For this, we follow the methodology used in
DES Collaboration (2022b) for the DES Y3 BAO template, based
on extensions of the linear power spectrum using IR resummation
methods optimized for an accurate description of the damping in
the BAO peak (Blas et al. 2016; Ivanov & Sibiryakov 2018). The
particularity of this method relies on a derivation of the BAO damping
based on first principles, in contrast with other models where the
damping is obtained from fits over simulations. In Section 7.3,
we will compare the impact of using the BAO-damped galaxy
power spectrum versus linear theory without damping on the fyp
measurement.
The BAO-damped galaxy power spectrum is given by

Pk, pu,2) = (b(k) + F@Qu>)* [(Pin(k) — Paw(k))Dpao + Paw(K)1,
©)

where Pj,(k) is the linear matter power spectrum. P, (k) is the
smooth ‘no-wiggle’ power spectrum. We refer the reader to DES
Collaboration (2022b) for further details on how to compute it.
The function f(z) is the growth rate of structures, defined under
the following approximation (Linder 2005),

(@)~ Qu(2), (10)

with y = 0.55. The parameter p is defined as the cosine of the angle
between the line of sight and wave vector k.
In equation (9), Dpao(z) is a Gaussian damping defined by

Dpao(2) = exp{—k*(u? I} + (1 — 1) B3 + f@u*(u® — DT},
(11)

where ¥(z) = (1 + f(z)X ,). The parameters ¥, and §X can be
computed directly for a fixed cosmology. In the case of ICE-COLA
cosmology, at z =0, £, = 5.8 Mpc ~~! and §¥ = 3.18 Mpc h~!
and they are scaled by the growth factor to any other redshift (DES
Collaboration 2022b).

When comparing against the ICE-COLA simulations, we will
include the BAO damping in the power spectrum, as presented in
this subsection, since we will be using these simulations to validate
the methods and improve the accuracy for fyi, implying the need for a
more precise theory modelling. When comparing against GOLIAT-PNG
simulations, we will not consider BAO damping because we use those
simulations to recover higher fy. values, and we do not expect the
damping to be a determinant factor in their accuracy. We will come
back to this discussion on Section 7.3, where we will assess the
impact of the BAO damping on the fyi. measurement. Also, notice
that the scale-dependent bias described in the previous subsection
is already added in equation (9), adding extra contributions to the
galaxy power spectrum.

With the previously computed power spectrum, we can use a
multipole expansion in Legendre polynomials of u,

(2¢

+1) [
Pk, z) = / duP(k, w, 2)Le(1), (12)
-1

2

to take into account the anisotropies caused by redshift space
distortions to the line of sight. Notice that the power spectrum is
computed at z = 0 and does not include the growth factor D(z) since
this will be added when calculating the ACF in the next section.

MNRAS 523, 603-619 (2023)

2.4 ACF with PNG

Using the previously described power spectrum, we can compute its
configuration space counterpart, the two-point correlation function
(2PCF), using the multipole expansion of equation (12),

Er Pl = Y &L D), (13)
0=0,2,4
4 00
5= 2 / dk &2 jo(kr) Pk, 2), (14)
27 0

where r is the separation distance between galaxies and j, is the
spherical Bessel function. Notice that the previously computed power
spectrum is evaluated at the mean redshift of the photo-z distribution,
Z. The correlation function is also a function of the angle between
the line of sight direction i and the direction of the separation vector
7, given by

X(Zz)—x(zl)cosg (15)

r 2

where yx (z) is the comoving distance, and 6 is the angular separation
between two galaxies.

It is important to remember that because of primordial non-
Gaussianity, we now have a scale-dependent bias b(k) that will be a
part of each P,(k, z) and needs to be considered for the computation
of the 2PCF.

We can compute the ACF (Crocce, Cabré & Gaztanaga 2011a;
Chan et al. 2018) as the two-dimensional projection of the 2PCF
following the galaxy photo-z distribution, N(z), normalized such that
its integral over redshift is equal to 1. With this, the ACF is given by

Fol=

w(9)=/dzl/de¢(Zl)¢(Zz)S(r(Z1,22,9),f~i), (16)

which is a function of the angular separation defined through the
relation,

r(z1,22.0) = (x(21)* + x(22)* — 2x(21)x(z2) cos 0)

where ¢(z) = N(z)D(z). The previously obtained power spectrum was
computed at z = 0, so ¢(z) incorporates its evolution to a different
redshift.

As mentioned before, the theoretical ACF with PNG shares simi-
larities with the BAO template, but adding extra terms proportional
to fai, to clarify this, we can consider that our PNG template is
composed of a BAO-part and a fy-part, as follows:

w(0) = wao(0) + w(0, fxr), (18)

where wgao(0) is the BAO template used in DES Collaboration
(2022b), schematically given by

weao(0) ~ b2wy(0) + bf w, (0) + 2w, (6), 19

where w, ;. ;(0) correspond to different ACF contributions arranged
by their pre-factors. On the other hand, the fyi-part involves the
extra terms proportional to fyi, in accordance with equation (8), as
follows:

w(®, fur) ~ bfsewa(®) + fg we(®) (20

where w,, (0) involve the scale-dependent contributions of the ACF.
As a reminder of this discussion, we will extend the notation of our
theoretical modelling to

w(0) = wn(®, fau), ey

highlighting its dependence on fy..
The behaviour of the angular correlation with PNG can be seen in
Fig. 2, where we compute the ACF using the BAO damped power

2 a7
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Figure 2. Theoretical ACF with the scale-dependent bias for fx;, = O (blue
line), i, = 100 (orange line), and fni, = —100 (green line) for the first redshift
bin using the ICE-COLA configuration as presented in Table 1. The solid lines
are without IC. The dashed lines are with the IC correction, as discussed in
Section 3, computed using equation (39) with the ICE-COLA angular footprint.

spectrum, with linear bias and N(z) from the first redshift bin of
the ICE-COLA mocks. As expected, we show that primordial non-
Gaussianity induces a large-scale enhancement of clustering in the
ACEF of galaxies due to the scale-dependent bias. It can be noticed that
the sharp feature in the power spectrum for fy. = —100, produced
due to the linear term in fy (equation 8), has now translated into a
small overall rising at scales around ~10 deg (solid green line in Fig.
2). This rising is due to the integration of the Fourier transform to
compute the 2PCF. As a preview of the upcoming section, we also
show the IC’s effect on the theoretical model. The main discussion
of the upcoming section will be on how to compute the IC correction
and the effect on the ACF.

3 IC AND fur

In this section, we comment on how the excess of clustering at
large scales, due to scale-dependent bias, on the theoretical angular
correlation is suppressed by imposing that its integral over the survey
volume needs to vanish. This condition is known as the IC.

We discuss how the IC arises from an observational point of view.
We also remark on its dependence on fxi. and show how to correct
the theoretical template to incorporate its effect.

3.1 Observational IC

3.1.1 IC from the observed 2PCF

Let us start with the statistical definition of the two-point correlation
function for galaxies & obs(7),

dP = 7i(1 + &ups(r))dV, (22)

where P is the probability of finding two objects within the volume
V separated by a distance r (Peebles 1980) and 7 is the mean number
density of galaxies in the Universe. If we integrate equation(22) over
the volume of a survey, we find out that

Ng=n / dvs +7 / Eobs(r)AV, (23)

where N, is the expected number of galaxies within the survey region
and V; is the total volume of the survey. Since the expected number
of galaxies within the survey volume is chosen to be obtained from
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the survey mean number density, we have the following:

N, = ﬁ/de. 24)

The previous equation implies a condition that needs to hold for the
observed two-point correlation function of galaxies within the survey
volume,

/ &obs(r)dVy = 0. (25)
This is the IC condition. We can re-write the IC condition as follows:
[anav.= [@r [@rweowe -nem =0, e

where W(r) is the selection function for a volume-limited survey and
r=ry —nr.

The previous expression can be computed directly for a given
survey selection function. The problem is that defining the volume
of a survey is a difficult task. Instead, it is most common to construct
a random catalogue of galaxies following the shape of the survey
mask to model the survey volume as pair counts between the random
catalogues.

As previously mentioned, the number count of galaxies within a
homogeneous region can be computed as a volume integral of the
selection function,

Ny=1 /d3rW(r). 27

Therefore, the number of random-random pair correlations, RR(r),
can be computed as the correlation of the number of random objects
within the limited region [see e.g. Breton & de la Torre (2021), and
references therein],

RR(r) = (N|N,) = ﬁ2/d3r1W(r1)W(r1 —r), (28)

with r = r; — r,. Using the previous equation, we can compute the
volume integral over a window function, and inserting equation (28)
into equation (26), we obtain the following:

1
/Sobs(r)st =2 Z RR(r)5(r), (29)

all pairs

where now we sum over all the possible separations between galaxies
within a limited survey size. This implies that the IC condition,
equation (25), can be written in terms of the RR(r) pairs, as follows:

Z RR(E(r) =0, (30)
all pairs

where, for simplicity, the random-random pair correlations can be
obtained from random catalogues that follow the survey mask instead
of using the analytic expression.

3.1.2 IC in the observed ACF

The previous procedure can be extended to the ACF. The starting
point is now the probability of finding two galaxies in a two-
dimensional projection of the sky separated by an angular separation
6, as follows:

dP = (1 4+ weps(6))d2, €)Y

where wps(0) is the observed ACF.
This implies that the IC can be extended to the ACF in the same
way as equation (29),

/ aQ, / QW ()W (F2)wenn(6) = 0, (32)
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where W(#) is the angular selection function, and 0 is the angle
subtended by r and r;.

The calculation of the volume integral in the previous subsection
can be extended to the sum of random-random angular pairs. This
implies that we can compute the IC for the angular correlation as
follows:

Z RR(O)weps(9) = 0, (33)
Q

where now the sum is over all the possible angular separations
allowed by the survey mask. Also, as before, the random-random
pairs correlation is obtained from the random catalogues. In practice,
since we have a w(@) for each redshift bin, this condition is applied
to each of them individually.

3.2 Theoretical IC

Up to this point, we have only presented a condition that the
correlation function needs to accomplish in limited surveys, and they
certainly do for the usual observed correlation functions. A problem
arises when we compare the theory with PNG to observational data.

3.2.1 Gaussian case

Let us start from a theoretical point of view without considering
PNG. The matter power spectrum at large scales exhibits behaviour
that goes as

P(k) o< k", (34)

where n; is close to 1. This implies that the matter power spectrum
vanishes when k — 0, and since the power spectrum is related to
the variance of the overdensities, this is an insight that the matter
fluctuations of our Universe reach homogeneity at very large scales.

The vanishing of the matter power spectrum at large scales implies
a condition to its configuration space counterpart, the 2PCF, which
can be seen as follows:

P,k =0) = /s(r)d3r =47 /OC E(r)ridr = 0. (35)
0

This is the IC condition presented in equation (26) but now coming
from a purely theoretical perspective.

Without the effect of fyr, this same condition is expected to hold
for the linear galaxy power spectrum since a linear bias relates both
power spectra, and there is no change in the shape of the power
spectrum. Hence, in the case of an ideal homogeneous infinite survey,
the theoretical model already satisfies the observational IC. When
the effect of the window function becomes more pronounced (due
to either strong inhomogeneities in the randoms or small explored
volumes), we will need to adjust the theory to fulfil the IC condition
(see Section 3.3).

3.2.2 IC in the presence of PNG

The situation now changes in the presence of PNG. The scale-
dependent bias between the galaxies and matter overdensities will
modify the shape of the galaxy power spectrum introducing a 1/k
correction to the matter power spectrum that depends on fyi, as
described in equation (5). The scale-dependent bias will generate an
enhancement of the galaxy power spectrum at large scales (k < keq)
with the following divergent behaviour:

b

2
Py(k — 0, far) ~ <fNL ) k" — 00 (36)

k2
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where P, (k) is the galaxy power spectrum. This divergence that the
volume integral over the 2PCF (equation 35) will diverge for this case.
As a side note, since for our modelling, we integrate numerically,
the previously mentioned divergence will turn into a large (but finite)
number that could depend on the integration method or resolution.
Since the ACF is an integral of the 3D 2PCF (equation 16), w(6) will
have a divergence proportional to f2 .

The discussion of this section tells us that, even if we have an
infinite homogeneous survey with a negligible window function
effect, the IC condition will not be fulfilled for the case of fyi, # 0.
Additionally, the theoretical model will contain an arbitrary additive
constant that depends on £2 . This dependence will bias any results
when using this model to constrain fy . This remarks the importance
of the IC condition when dealing with PNG, implying that we need
correct our modelling to consider this issue.

As a verification of the issue, in appendix A, we show an analytical
example that illustrates how the IC condition looks for a simplified
theoretical two-point correlation function in the presence of PNG. We
show explicitly that the integral of the 2PCF diverges at large scales
and is proportional to f;%; , implying that imposing the observational
IC condition is very important when dealing with PNG analysis.

3.3 IC correction

To surpass the problem described in the previous subsection, we
define an IC-corrected theoretical ACF,

w' @, fu) = wa@, i) — I(fa). 37

where I(fy1) parametrize deviations from the observed IC condition
(equation 33) as follows:

> RROW'®, fu) =0. (38)
Q

This implies that the IC correction, I(fyL), is given by

" RRO)wa(6, far)

S RRO)
where 0y, is the maximum limit angular separation allowed for the
angular survey window. The effect of the IC in the context of PNG
has been previously addressed in Ross et al. (2013) and Mueller
et al. (2021) for the power spectrum and in Ross et al. (2013) for the
2PCF. The novelty of this work is to present a detailed analysis of its
effect on the ACF and show its importance when dealing with PNG
simulations, as we show in Section 6.

I(fnL) = (39)

4 SIMULATIONS

In this section, we present the simulations that we used for testing the
theoretical modelling and the validation of the fy; measurements.

4.1 GOLIAT-PNG

In order to test our analysis pipeline, we first consider the use of sim-
ulations with Primordial non-Gaussianity included. Whereas many
tests can be done with Gaussian initial conditions (see Section 7),
there are validation steps that require PNG mocks to show the validity
of the pipeline. In particular, in this work, only when fitting PNG
mocks can we realize the paramount importance of including the IC.

The GOLIAT-PNG suite (Avila & Adame 2023) consists of a series
of N-body simulations with ACDM + local PNG cosmology with
Qn = 027, Q, = 0.044, h = 0.7, ny = 0.96, 03 = 0.8, and
three values for PNG: fyp. = —100, 0, +100. A summary of the
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Table 1. Summary of the fixed cosmological parameters and the free
measured parameters with the priors considered. The squared brackets
represent flat priors.

GOLIAT-PNG
Parameter Fiducial Prior
Qm 0.27 -
QA 0.73 -
Qp 0.044 -
ng 0.96 -
og 0.8 -
h 0.7 -
/NL —100, 100 [ =700, 700]
Linear bias b 2.35 [1, 3]
Integral constraint /; - [—0.1,0.1]
Footprint area (deg?) 396.06
Zmean 1 -

ICE-COLA

Parameter Fiducial Prior
Qmn 0.25 -
QA 0.75 -
Qp 0.044 -
ng 0.95 -
og 0.8 -
h 0.7 -
INL 0 [ =500, 500]
Linear bias b; 1.60, 1.60, 1.68, 1.82,2.02 [1,3]
Integral constraint /; - [ -0.1,0.1]
Footprint area (deg?) 4108.47
Zmean 0.65,0.74, 0.84, 0.94, 1.02 -

cosmological parameters and fiducial values used is presented in
the first part of Table 1. The simulations have a box size of L =
1 Gpc h~'. The initial conditions are set at z = 32 with second-
order Lagrangian perturbation theory (2LPT) using the public code
2LPTic” and evolved to z = 1 with GADGET2.® Subsequently, the z =
1 dark matter snapshots are run through the Amiga Halo Finder® to
construct the halo catalogues with a minimum of 10 particles, which
yield Mj, ~ 5 x 10'2 Mg, as the halo mass resolution.

Also, for the GOLIAT-PNG simulations, it was found that p = 0.90
for fyr. = 100 (Avila & Adame 2023), and p = 0.92 for fy, = —100,
when measuring their real space power spectra, and we will consider
this when measuring fn;. from these mocks.

Another particularity of these simulations is that the initial condi-
tions are run with the fixed and paired initial conditions (Angulo &
Pontzen 2016) aimed at reducing the sample variance of the ensemble
average of the two-point functions measured from these simulations.
In the context of PNG, this technique is validated in Avila & Adame
(2023), and we refer the reader there for further details of the GOLIAT-
PNG suite. We use 41 pairs of simulations for each value of fy.

Finally, we transform those mocks from the cubic box into observ-
able coordinates {RA, Dec., z} by setting an observer 1556 Mpc h~!
away from the centre of one of the faces of the box. This transforma-
tion allows us to have a mock survey with a circular semi-aperture
of 11.2 deg, covering an area of roughly 396 deg?, and a redshift
range of 0.6 < z < 1.1, the shape and size of the mask can be seen

7cosm(xnyu.cdu/mmzm/ZLPT (Crocce, Pueblas & Scoccimarro 2006; Scoc-

cimarro et al. 2012).
8https://wwwmpa.mpa- garching. mpg.de/gadget/ (Springel 2005).
http://popia.ft.uam.es/ AHF/ (Knollmann & Knebe 2009).
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Figure 3. N(z) distribution as a function of redshift for each redshift bin
for the ICE-COLA mocks (top) and for the GOLIAT-PNG mocks (bottom). We
remark that the GOLIAT-PNG simulations do not have photo-z errors included,
implying that they do not represent a realistic N(z) distribution, in contrast to
the ICE-COLA mocks.

in Fig. 4. We further split the mocks into five redshift bins between
0.6 and 1.1 with Az = 0.1. This, together with a constant number
density of haloes, gives the redshift distribution N(z) shown in Fig.
3. However, we note that we do not introduce any redshift space
distortions, redshift error, HOD model, or even temporal evolution.
‘We built everything from the halo catalogue at the comoving output
at a redshift of z = 1 and a fixed halo mass threshold. This implies
that we fix D(z = 1) in equation (16) when using the GOLIAT-PNG
mocks. We also consider three different rotations (one per Cartesian
axis) for constructing the mocks, eventually resulting in a total of
246 mocks for each value of fy .

4.2 ICE-COLA

The ICE-COLA mocks (Ferrero et al. 2021) are the second set of
simulations we count on for analysing and validating our methods.
This set of 1952 mock galaxy catalogues is designed to mimic the
DES Year 3 BAO sample (Carnero Rosell et al. 2022) over its full
photometric redshift range 0.6 < z < 1.1, which we split again into
five redshift bins. We refer the interested reader to Ferrero et al.
(2021) for further details and highlight here only the basic features
of the ICE-COLA mocks.
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Figure 4. Comparison of the footprint of the used simulations. In purple, we
show the mask for one map of the ICE-COLA simulations. In green, we show
the mask for the GOLIAT-PNG simulation.

A total number of 488 fast N-body simulations of full-sky light
cones generated by following the ICE-COLA code Izard, Crocce &
Fosalba (2016) are used. This code is based on the COmoving
Lagrangian Acceleration (COLA) method, which solves for the
evolution of the matter density field using 2LPT combined with
a Particle-Mesh (PM). The simulations use 20483 particles in a box
of the size of 1536 Mpc h™! and assume a cosmology consistent
with the best-fitting of the Wilkinson Microwave Anisotropy Probe
(WMAP) 5-yr data (Komatsu et al. 2009). This means compatible
with a flat ACDM model with Q,, = 0.25, @, = 0.75, Q, = 0.044,
ng = 095, 0g = 0.8, h = 0.7, and fy, = 0. A summary of the
cosmological parameters and fiducial values used is presented in the
second part of Table 1.

A hybrid halo occupation distribution — halo abundance matching
model is used to populate haloes with galaxies. Also, automatic
calibration is run to match the basic characteristics of the DES Y3
BAO sample: the observed abundance of galaxies as a function of
photometric redshift (Fig. 3), the distribution of photometric redshift
errors, and the clustering amplitude on scales smaller than those used
for BAO measurements.

Finally, four footprint masks corresponding to the DES Y3 BAO
sample are placed on each full-sky light cone simulation to reach the
final set of 1952 ICE-COLA mocks. In Fig. 4, we can see the shape of
the mask followed by one footprint.

5 ANALYSIS TOOLS

This section presents the statistical tools used to measure the fyr
parameter using the theoretical template presented in Section 2.

5.1 ACF measurements

The angular correlations are measured using CUTE (Alonso 2012),
which computes the ACF following the Landay—Szalay estimator
(Landy & Szalay 1993),

Wope(6) = DD()—2DR(O) + RR(Q)’ 40)

RR(0)

where DD(09), DR(0), and RR(0) are the number counts of pairs
of galaxies for the data—data, data-random, and random-random
catalogues, respectively. To obtain the random-random pairs, we
create random catalogues with 20 times more objects than the
simulation sample that follow the angular mask of the simulations
for GOLIAT-PNG and ICE-COLA mocks. The random-random pairs are
obtained as an output from CUTE.
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As mentioned in Section 3.3, one of the key elements in the IC
correction is the random-random pairs that account for the survey
volume. Because of this, we need to compute at least one RR(6)
correlation for both GOLIAT-PNG and ICE-COLA going up to the
maximum angular separation allowed for each survey mask. That
is 22 deg for the GOLIAT-PNG simulations and 88 degrees for ICE-
COLA simulations.

5.2 Covariance

Our default set-up for the covariance matrix uses the COSMOLIKE code
(Krause & FEifler 2017; Fang, Eifler & Krause 2020a; Fang et al.
2020b) to estimate the covariance analytically. Following Crocce,
Cabré & Gaztafiaga (2011b), the real space covariance of the ACF
w(6) at angles 6; and 6; is related to the covariance of the angular
power spectrum C(Cy, Cy) by

20+ D20 +1)— —
c@.op=3" %&(@)%@)C(Ce, Co. @D
N4

where P,(0) are the Legendre polynomials averaged over each
angular bin and C(Cy, Cy), under the Gaussian approximation, is
given by (Crocce et al. 2011b; Krause & Eifler 2017)

280 1\?
T (Cw + —) : 42)
fsky(ze +1) ng

where § is the Kronecker delta function, n, is the number density of
galaxies per steradian, and fy, is the observed sky fraction used to
account for partial-sky surveys. We include redshift space distortions
through the C,’s of the expression above (42), except when analysing
the GOLIAT-PNG mocks, as they do not include that. In addition,
following Troxel et al. (2018), we correct the shot-noise contribution
to the covariance (the term o< 1/n,) by considering the effect of
the survey geometry on the number of galaxies in each angular
bin. We ignore non-Gaussian terms in the covariance estimation
for simplicity, following DES Collaboration (2022b), where it was
tested that including those terms did not impact the results. See DES
Collaboration (2022b) and Ferrero et al. (2021) for the validation of
this analytical covariance matrix (with 6,,x = 5 deg) against two
sets of simulations: ICE-COLA and FLASK lognormal mocks (Xavier,
Abdalla & Joachimi 2016).

Notice that we do not include fyp. in our covariance since it is
customary in this kind of analysis to fix the cosmology and then
look for deviations. In the case of detection, we should modify the
covariance and include the fy;. parameter.

‘We also consider using the ICE-COLA covariance constructed from
the mocks, given by

C(Cy, Cy) =

1
O 0) = 7 2 (w6 = 00) (w"®) — 0(6))  (43)

n=1

where Ny, is the number of mocks, w"(6) is the ACF for the n-mock,
and w(0) is the mean ACF from the mocks. However, it was shown
in Ferrero et al. (2021) that, due to a large number of simulated boxes
used to equal the volume of the DES Y3 BAO sample, a replication
of halos were produced, introducing a spurious correlation among
the measured ACF. This induced a high degree of correlation of
non-adjacent redshift bins in the covariance. For this reason, the
default set-up of using COSMOLIKE covariance was preferred (DES
Collaboration 2022b). As a double check, in Section 7.4, we compare
the impact of changing the covariance when measuring fr..

€20z 1snBny 60 uo Jasn Aieiqi ABojoig Aq 694091 2/£09/L/€ZS/3101B/SBIUW/WOo dNo"olWapeoe//:sdny WwoJl papeojumoq


art/stad1429_f4.eps

5.3 Parameter inference

In order to measure the parameters, we perform a Bayesian parameter
inference based on the log-likelihood analysis assuming a Gaussian
likelihood, as follows:

2
log(L(p)) o —@ (44)
where the x? is given by
x*(p) = (M(p) — D)'C"'(M(p) — D), (45)

where p represents the free parameters from our theory we want to
estimate, C~! is the inverse of the covariance matrix presented in
Section 5.2, and M and D are the theoretical model and the data
vector, respectively.

Since the galaxy sample for the simulations is divided into five
redshift bins, we perform a joint sampling of the likelihood to
consider covariance between bins. The joint data vector D is given
by

D = [wg,(6). i (0), we,(0). Wi (6), w3 (O)], (46)

where the superscript represents the redshift bin from which the ACF
is obtained. We repeat the same procedure for the theoretical model,
where M (p) is the theory vector as a function of the free parameters
for each redshift bin, as follows:

M(p) = [wy, (6, p), wi, (0, p), w0, p), w0, p), wi (6, p)l. (47)

We perform an MCMC sampling of the likelihood function
using COBAYA (Torrado & Lewis 2021) to estimate the posterior
distributions of the free parameters in our pipeline.

Table 1 presents the free parameters considered for our analysis
and their respective fiducial values and priors. Depending on the
analysis, the IC could be considered as a free parameter (IC-MARG)
or fixed to its theoretical value (IC-FIXED) given by equation (39).
This will be stated for each test considered. Notice that we are
not including other free cosmological parameters in the likelihood,
which is customary for this kind of analysis, since adding other
cosmological parameters will lose the constraints on fyy .

6 TESTS WITH NON-GAUSSIAN MOCKS

This section tests the pipeline over the GOLIAT-PNG simulations
with non-Gaussian initial conditions. For these simulations, the
theoretical template is obtained from a linear power spectrum without
considering BAO damping and without RSD modelling, since the
simulations do not include RSD. The goal of this section is twofold:
First, we want to recover the fiducial value of fy;. for the non-Gaussian
simulations. Secondly, we want to highlight the importance of the
IC.

6.1 Effect of the IC on GOLIAT-PNG mocks

In Section 3, we presented the IC as one of the key elements that
need to be included in the theory. In this section, we show its effect
in the simulations with non-Gaussian initial conditions.

In Fig. 5, we compute the IC, as presented in equation (39), for the
GOLIAT-PNG simulations but changing the limit angular separation,
O1im» truncating the sum. We use this to test the need to consider the
full volume of the survey when computing the IC. As described in
Section 4.1, the maximum circular semi-aperture of the GOLIAT-PNG
simulation mask is about 11.2 deg, implying that the maximum
allowed angular separation is about 6y, ~ 22 deg (vertical grey
dotted line in Fig. 5).
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Figure 5. IC as a function of the upper limit angular separation, 61, for the
GOLIAT-PNG simulations. The blue line is the IC using the theoretical ACF
with fr. = 0. The same is repeated for the orange and green lines but for the
cases of fxr. = 100 and fxr, = —100, respectively. The grey dotted line is the
limit angular aperture of the angular mask of the simulations.

As expected, given the discussion in Section 3, the IC reaches
its value when it is summed up to the maximum angular separation
allowed for the simulation mask to consider the whole survey volume.
In other words, even though we can compare the theory and the data
up to some maximum angular separation 6., we still need the
random-random correlation up to the limit scale of the simulation
(B1im ~ 22 deg). We see that the IC’s value does not converge earlier
than that. We repeat this conclusion for the ICE-COLA simulations,
where the measurements are made up to 6,,x = 20 deg, but the IC
is obtained from random-random pairs measured up to 0y, ~ 88
deg.

From the previous figure, we can also notice the explicit de-
pendence of the IC on fy.. For fyo = 0, it has a smaller value
in comparison with fy. = 100 or fxr. = —100. This supports the
previous discussion from Section 3.2 about the importance of the IC
when looking for fy .

The previously computed IC can be included in the theory as
in equation (37). This is shown in Fig. 6, where we compare the
theoretical ACF with and without the IC against the mean of the
GOLIAT-PNG mocks. The ACF is shown for the first redshift bin with
the errors obtained from the standard deviations of the mocks.

Fig. 6 serves as a visual guide of the IC’s effect in the theoretical
modelling. The IC correction appears to have an effect that could
help avoid biased values for fy.. The actual impact of this on the
measurement of fyi is the main topic of the following subsection.

6.2 Results for GOLIAT-PNG mocks

We use the parameter inference method, described in Section 5.3,
to put constraints on both the linear bias and fy.. We construct the
data vector for each mock by combining the ACF of each redshift
bin for the fyp. = —100 and fyp. = 100 simulations. We use the scale
configuration given in the first section of Table 4. The scale choice
will be justified in the next section when we test the robustness of
the pipeline.

Since each mock is independent of the other, we can compute a
joint posterior distribution by multiplying the posteriors of fy. and
b of each GOLIAT-PNG mock. The advantage of this method is that
the joint posterior gives us a good estimate of how biased the best-
fitting values of fy;. are with respect to the fiducial. We compare
fixing the IC, as computed using equation (39), against not using
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Figure 6. Comparison of the theoretical ACF against the mean GOLIAT-PNG
mocks for the first redshift bin (0.6 < z < 0.7) and different fyy, values. The
blue line is the mean of the mocks, and the shaded area is given by its standard
deviation. The orange line is the theoretical ACF with the IC. The green line
is the theoretical ACF without the IC.

it and against leaving it as a nuisance parameter. The priors for
the parameters used in the measurement are in Table 1. For the
case of fyr = 100 simulations, four mocks were discarded due to
incompatibilities in the measurements of fyr, giving highly biased
values and complicating the computation of the joint posterior.

We present one of the main results of this work in Fig. 7, showing
the contours obtained from the joint posterior of all GOLIAT-PNG
simulation with fy;. = 100 and fyy. = —100. We show that by fixing
the IC to the value given by equation (39), we can recover the fiducial
values of fyr. within 1o. We also notice that for the case of not using
the IC, we obtain very biased values for fyr, closer to fy. = 0.
The figure also shows that when considering the IC as a nuisance
parameter and marginalizing it, we also recover the correct values
for fyL. With the previous results, we prove the importance of the IC.

The summary of contours is presented in Table 2, where we
show the measured values of fyi for the two kinds of GOLIAT-
PNG simulations. The best-fitting values of fy; are obtained from
the maximum of the joint posterior distribution of all mocks, with
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the errors obtained from the 68 percent confidence region. We
clarify that the uncertainty presented in Table 2 corresponds to the
combination of all mocks. This implies that the uncertainty would be
~16 times larger for a survey with the properties of the GOLIAT-PNG
mocks, making the uncertainty and the offset very similar Afy;, ~ o
~ 100. We also note that the relatively small footprint of GOLIAT-PNG
(~ 400deg?) makes the effect of the IC stronger. We will reexamine
this for a DES-like scenario in Section 7.1.

A natural question appears when we see the results for the case
of IC-MARG. Can the marginalized IC case recover the theoretical
values given by equation (39)? In Table 3, we compare the IC values
for both theoretical and marginalized, along with the 1o errors for
the marginalized case measured over the mean of the mocks. From
these results, we can notice two things. First, we found reasonable
compatible values for the IC within ~20. Secondly, we show that
the methods can detect the IC at high significance.

In Fig. 8, we compare the mean of the GOLIAT-PNG fyi. = 100
mocks versus the theoretical ACF (for IC-FIXED) using the best-fit
results with and without the IC for each redshift bin. The figure shows
how the IC improves the agreement of the theoretical template and
the observed ACF for each redshift bin. Nevertheless, we found no
considerable difference in x 2 of the measurement over the individual
mocks when considering or not the IC in the theoretical template.
The showed errors, in this case, are obtained from the COSMOLIKE
covariance, described in Section 5.2, but divided by the number of
mocks, in contrast with the errors presented in Fig. 6.

For the case of NO-IC, we notice that for both simulations, we
obtain biased small negative values of fy;.. As mentioned by the end
of Section 2.4, for large negative values of fy. (without considering
IC), there is a positive correlation function at large scales (see e.g.
middle panel of Fig. 6). Since the measured ACF shows a negative
correlation at large scales (due to the observational IC), the model
prefers small negative fi;, values to compensate for the lack of IC in
the theoretical model (see e.g. Fig. 8)

As mentioned in Section 3.2, the effect of the IC is stronger for
non-Gaussian simulations due to its dependence on fy . Nevertheless,
in the next section, we will show that it can also help avoid slightly
biased values of fi., even for simulations with fyr = 0, such as the
ICE-COLA mocks.

7 DES VALIDATION USING ICE-cOLA MOCKS

As mentioned in Section 4, the ICE-COLA mocks are designed
to match the DES Y3 BAO sample angular mask and redshift
distribution N(z). In this section, we present tests made over the
ICE-COLA mocks, assessing their impact on the measurement of the
fNL parameter.

‘We perform four different tests over the ICE-COLA simulations that
we briefly summarize as follows:

(i) Effect of the IC: Similarly to Section 6, this test double-check
the importance of the IC.

(ii) Best-fitting estimator comparison: This test will tell us how
the value of fxi. changes when we consider a different definition for
the estimator of the best fit from the posterior distribution.

(iii) BAO damping versus linear theory: We will show the
impact of considering BAO damping in the theoretical modelling
by comparing it with the linear power spectrum.

(iv) Covariance comparison: For robustness, we consider dif-
ferent covariances and study their impact on the measurement of

SN
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Figure 7. Marginalized one and 2¢ contours for fyr and the linear bias b obtained from the joint posterior of the 246 GOLIAT-PNG simulations (of ~ 400 deg?
each). Note that the error is expected to be ~16 times larger for a single realization. The left-hand panel is for the fn;. = —100 simulation, and the right-hand
panel is for the fni. = 100 simulation. The purple contours are with the IC fixed to its theoretical value given by equation (39). The green contours are without
considering any IC correction. The orange contours consider the IC as a nuisance parameter and marginalizing it. The vertical dashed line represents the fiducial

value of fyi. for each set of simulations.

Table 2. Summary of the results of measuring fn;, from both GOLIAT-PNG
simulations (of ~ 400 deg? each). The best-fitting values are obtained from
the maximum of the joint posterior of the 246 mocks, and the errors are at lo.
Note that the error is expected to be ~16 times larger for a single realization.

GOLIAT-PNG

Joint posterior
L =100
NO-IC —2.8+1.0
IC-FIXED 97.4+35
IC-MARG 922+ 4.6
ML =—100
NO-IC —103+1.5
IC-FIXED —952+54
IC-MARG —101.5+6.5

Table 3. Comparison between theoretical IC versus marginalized values for
GOLIAT-PNG simulations. IC theory is computed using the theoretical value
given by equation (39). IC marginalized are obtained as the mean of the
marginalized posterior. The errors are at 1o on the ensemble average of 246
mocks.

GOLIAT-PNG
Redshift bin IC theory IC marginalized
06 <z<0.7 0.00220 0.00247 4 0.00013
07<z2<0.8 0.00202 0.00208 £ 0.00012
08<z<09 0.00188 0.00212 4 0.00012
09<z<10 0.00178 0.00203 £ 0.00011
1.0<z<11 0.00171 0.00184 4 0.00011

(v) Scale configuration: We compare the effect that different
scale cuts and theta binning have when estimating fyy. .

The fiducial scale configuration for the tests and forecast, along
with the optimal f; best-fitting estimator, are summarized in Table 4.
The parameters to analyse are presented in detail in the second
section of Table 1. In summary, we consider the linear bias for
each redshift bin, the IC as a possible nuisance parameter, and the
non-Gaussianity parameter fi.

For the analysis, we compare two cases: We perform the MCMC
sampling for each mock separately and the mean of the mocks. A
summary of the results of this section is presented in Table 5. The
first column presents the mean of the best-fitting value of fxr, ( fNL),
for the ICE-COLA mocks, obtained from the mean of the best-fitting
estimator of each mock, fNL. The second column presents the overall
standard deviation in fyr, obtained from the standard deviation of
fxL coming from each mock. The third column is the mean of the
1o error obtained from the fyi. posterior of each mock. The fourth
column is the value of fy. obtained from fitting the theory over the
mean of the mocks. The errors over the mean mocks are from the 68
per cent confidence level of the marginalized posterior distribution.
It is worth remembering that the ICE-COLA mocks have fy. = 0 as an
initial condition.

The results from this section are presented in Fig. 9, where for
each test, we show the histogram of the best-fitting values, fy., from
each mock. We also show the mean of the histogram, ( fx.), for each
test.

After the tests, we forecast the accuracy in the measurement of
the local primordial non-Gaussianity parameter fy;, using the ACF
with IC over DES Y3 data. We would be able to obtain an error of
o (fxL) = 31 if the measurement is performed over the DES Y3 BAO
sample, as we will see by the end of the section.

7.1 Effect of the IC on ICE-COLA mocks

Here we show the effect of the IC over the ICE-COLA simulations. We
compare the effect of the IC for three different cases:

(i) Without using any IC correction (no IC).

(i1) Fixing the IC to the value obtained using equation(39),
following the discussion from Section 6.1 (fixed IC).

(iii) Considering the IC as a nuisance parameter and marginalizing
over it (marg IC).

The results are presented in the top panel of Fig. 9 and summarized
in the first part of Table 5. From the first column of the table, we notice
that not using the IC gives a biased value of fy., with a deviation of
Afne ~ 7 from the fiducial value of the simulation. We also notice
that leaving the IC as a free nuisance parameter gives slightly larger
errors for fxi. Finally, we show that fixing the IC to the value given
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Figure 8. Comparison between the theoretical angular correlation versus the mean ACF of the GOLIAT-PNG mocks with fx;, = 100, for each redshift bin. The
solid-coloured lines are the mean of the ACF from the mocks. The shaded areas are obtained from the diagonal of the reduced theoretical covariance. The solid
black lines are theoretical ACF with IC, where fNL and b, are obtained from the mean of the joint posterior distribution presented in purple in Fig. 7. The dashed
black lines are the theoretical ACF without IC and fni. and b, obtained from the mean of the joint posterior distribution presented in the green lines of Fig. 7.

Table 4. Fiducial configuration of the ACF for both the GOLIAT-PNG and
ICE-COLA mocks.

O min emax AO fNL estimator
GOLIAT-PNG 1.0deg 20deg 0.15deg Max of marg. posterior
ICE-COLA 1.0deg 20deg 04deg Max of marg. posterior

by equation (39) gives almost no bias in fyi, recovering the fiducial
value of fy;, = 0 with high accuracy. Similar to the conclusion from
Section 6, the IC helps us to avoid biased values of fyr. Although this
effect was stronger for non-Gaussian mocks, for the case of fxi. =0,
we can still notice a difference when measuring fyy .

The mild deviation on fy. due to not including the IC on ICE-COLA
mocks (AfnL ~ 7) opposes the significant bias coming from non-
Gaussian mocks (Afny ~ 100). Part of this difference is expected to
come from a stronger IC effect on smaller mocks (GOLIAT-PNG), but
another important effect comes from the IC being stronger mocks
with PNG, as we discussed in much detail in Section 3. In order to
separate those effects, we now run our fit on a theory-data vector
generated for fyr, = 100 in a DES-like scenario, including the IC and
based on the ICE-COLA cosmology.

From the posterior distribution of Fig. 10, we found, as expected,
that we recover the fiducial value, fyp = 99 £ 16, for the case of
fixed-IC. Whereas for the case of ignoring the IC, we found fy. =
76 £ 13. The deviation of Afy. ~ 23 corresponds to a 1.80 bias
in the value of fyi. in a non-Gaussian (DES-Y3-like) scenario. The
bias also translates into a mild deviation of Ay? ~ 2 in favour of
using the IC in the theoretical model. Even though the bias on fxy, is
not as strong as for the GOLIAT-PNG simulations, we still see a more
biased value than the case of fy;, = 0 simulations. We also observed
a higher error in fy. when using fyp = 0 compared to fxp. = 100
as fiducial values, with a difference of approximately Ao (fnr) ~
15. This difference appears because the increment in the correlation
function is stronger as fyi. increases.

MNRAS 523, 603-619 (2023)

Table 5. Summary of measuring fyi, from the ICE-COLA mocks. The first
column is the overall best fit of fi, obtained as the mean of fi, from each
mock. The second column is the error in fyi, from the standard deviation
of every histogram. The third column is the mean of 1o error from the fni,
posterior of each mock. The fourth column is the value of fn1, when fitting over
the mean of the mocks. The errors are obtained at the 68 per cent confidence
level of the posterior. In bold, we highlight the fiducial configuration that will
be used for the forecast.

ICE-COLA

(fNL) std(fnL)  {o(/nL))  mean of mocks
NO-IC —-74 26.6 22.1 —12+£22
IC-FIXED 0.1 31 24.8 —45+24
IC-MARG 42 35 29 —3+27
Mean posterior —6.6 30.9 - -
Max posterior 0.1 31 - -
Min x?2 0.06 31.1 - -
Damping 0.1 31 24.8 —4.5+24
Linear 2.4 30.5 24.6 —22+23
COSMOLIKE cov. 0.1 31 24.8 —45+24
ICE-COLA cov. -03 29.6 254 —9+28
w(@)[A0 =0.1] —-22 322 254 —75+24
w(@)[AO =0.2] —-1.7 324 25.5 —6.5+24
w(0)[A0 =0.3] -0.9 31.8 25.1 —55+24
w(0)[A6 = 0.4] 0.1 31 24.8 —45+24
w(0)[Omax = 51 3.6 35.1 30 —1.7+27
w(0)[Omax = 10] 0.6 334 26.7 —3.7+26
w(0)[Omax = 15] —0.08 324 25.4 —6.2+24
w(0)[Omax = 20] 0.1 31 24.8 —45+24

The previous test can be repeated for a theory-data vector with
JSnL = —100, where we found fyi, = —95 = 28 for the fixed-IC case
and fyr = —80 =+ 23 for the no-IC case. In this case, the bias is
less significant: Afy. ~ 20, approximately lo. Hence, even for a
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Figure 9. Histograms of the fi, measurement over the 1952 ICE-COLA mocks
comparing the different tests. The vertical dotted lines represent the mean of
the histograms. Top panel: Effect of the IC. The blue is with fixing the IC as
in equation (37) (fixed IC), the yellow is without using the IC (no IC), and the
green is the IC as a nuisance parameter (marg IC). The vertical dotted lines
represent the mean of the histograms. Middle panel: Best-fitting estimator
comparison. The blue is the mean of the posterior as the best fit, the yellow
uses the maximum of the posterior (MAP), and the green uses the minimum of
the x2. Bottom panel: Raw linear theory versus BAO damping comparison.
The blue includes BAO damping in the template, and the orange uses the
linear theory.
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Figure 10. Marginalized fyi, posteriors resulting from fitting our model to
a theory-data vector with fyi, = 100 with IC and a DES-like set-up (~
4100deg2, see Table 1). We use both a model with IC (black line) and without
IC (red line), finding consistency for the former and a 1.8¢ bias for the latter.
The shaded areas represent the fni. marginalized errors at 68 per cent C.L.

large DES-like area, the bias on fxi when ignoring the IC becomes
significant if the data we are fitting contains PNG. Similar to the
conclusion from Section 6, the results highlight the importance of
the IC when dealing with primordial non-Gaussianity.

7.2 Best-fitting estimator comparison

We compare different ways to extract the best-fitting estimator fx.
from the marginalized fy;. posterior distribution, that is, using dif-
ferent central tendency estimators. We show the differences between
using the mean of the marginalized posterior, the maximum of the
marginalized posterior (MP), or the minimum of the 2.

The comparison of the histograms is presented in the second panel
of Fig. 9. The summary of the results from this test is also presented
in Table 5. From the table, we can see that we found no considerable
differences in using the maximum of the posterior distribution and
the minimum of the x2. Furthermore, we notice an improvement
when we use the maximum of the posterior, against the mean of
the posterior, as an estimator of the central value for fy., where we
found almost no bias. In the end, the maximum of the posterior was
preferred.

7.3 Linear theory versus BAO damping

As mentioned in the theoretical modelling, we focused on the
damping model because of its improvement when fitting the BAO
peak. One open question is whether we need to consider such
precision in the template when measuring fyy .

To address the previous question, we compare the fyy;, measurement
from an ACF with a BAO damping model against using the ACF from
a linear power spectrum. Both ACFs are computed using the fiducial
configuration.

We summarize the results in Table 5. We found that using a linear
power spectrum introduces a small bias compared to including the
BAO damping in the power spectrum.
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Figure 11. Comparison between the theoretical ACF versus the mean ACF of the ICE-COLA mocks for each redshift bin. The solid black lines are theoretical
ACF computed for (/i) and bg obtained using the optimal fiducial configuration and fixing the IC. The black dashed lines are the theoretical ACF without IC.
The solid-coloured lines are the mean of the ACF from the mocks. The shaded areas are errors obtained from the COSMOLIKE covariance.

7.4 Covariance comparison

In Section 5.2, we mentioned that the default covariance matrix used
is COSMOLIKE since the ICE-COLA presented a spurious correlation
between non-adjacent redshift bins. In this section, we compare the
effect of different covariance in the fy. measurements. We compare
the COSMOLIKE covariance versus the covariance obtained from the
ICE-COLA mocks.

The results are presented in Table 5, where we show that the
measurement of fyr is robust against changes in the covariance.

7.5 Scale configuration

In this section, we discuss the impact of different scale configurations
on the measurement of fy.. We compute the theory and the data
vector from each ICE-COLA mock considering a combination of the
following scales:

(1) Omax = [5, 10, 15, 20] deg.
(i) A6 =10.1,0.2,0.3, 0.4] deg.

We summarize the extracted information in the last two sections of
Table 5. For this study, we limited ourselves to a maximum angular
separation of 20 deg because we consider that controlling the LSS
systematics up to these scales will already be very challenging. Note
that the fiducial maximum angular scale for the BAO measurement
was 5 deg (DES Collaboration 2022b).

From the results, we can notice two effects. First, the measure-
ments of fyi seem to be robust against the change in A8, introducing
small changes in both the mean and its error. The second effect
appears when we go to larger values of 6., where there is an
~ 11 per cent improvement in the constraints when going up to
O max = 20. This improvement is expected since most of the fxi. effect
comes from large scales.

From the results of this section, we have three main conclusions:
First, we can improve the accuracy of fxi. by using the IC. Not in-
cluding it is the main source of bias in our measurement, introducing
deviations of Afy. ~ 7 to the fiducial value. In the second place,
we can improve the precision on fy. constraints by ~ 11 per cent
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when going to angular scales of 6,,x = 20. Thirdly, our analysis
is robust against changes in the type of covariance, the inclusion of
BAO damping, and changes in the scale binning, where we found
almost no deviations in the precision and accuracy of fyr. These
conclusions allow us to define the fiducial configuration highlighted
in Table 4.

Using the fiducial configuration, in Fig. 11, we show the ACF for
the best-fitting values compared against the mean of the ICE-COLA
mocks for each redshift bin with and without the IC, fixed to the value
given by equation (39). From Fig. 11, we can notice the importance
of the IC when comparing the model with the simulations improving
its matching, especially at large scales, and therefore, improving the
accuracy of fyi.

After the tests from this section, we conclude that a reliable fore-
castis o (fyr.) = 31 for the DES Y3 BAO sample after marginalizing
the linear bias and fixing the other cosmological parameters. The
forecast is also done using the fiducial configuration from Table 4.

8 CONCLUSIONS

We have presented a methodology to constrain fy. using the two-
point ACF with scale-dependent bias. Primordial non-Gaussianity
modifies the linear bias relation between dark matter overdensities
and galaxies by including a scale dependence that depends on the
/o parameter. The scale dependency is later introduced in the power
spectrum and transferred to the ACF. It is worth noticing that there are
differences in the effect of the scale-dependent bias; for the power
spectrum, the effect is more localized, whereas for the (angular)
correlation function, it is more extended over a range of scales.

We remarked on the importance of the IC condition, an obser-
vational constraint that appears due to the limited volume observed
by surveys and the fact that we estimated the mean number density
from them. This condition is essential because of the fyi effect in
the two-point correlation at large scales and the divergent behaviour
of the power spectrum at k — 0 (see equation 8). We impose the IC
condition on our theoretical model and show that it can be corrected
by a constant.
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We tested the model with the IC correction against the GOLIAT-
PNG simulations with non-Gaussian initial conditions. We showed
how the IC is a crucial element in avoiding biased fyi. values. We
showed that ignoring the IC gives very biased PNG constraints, fy;, =
—2.8 £ 1.0 (far = —10.3 £ 1.5), whereas we recover the fiducial
value fyr. = 100 (fyr. = —100), within 1o, when correcting for the IC:
L =974 +3.5 (faL = —95.2 & 5.4). We confirmed the importance
of the IC for simulations with fy;, = 100 and fi, = —100.

We used the ICE-COLA mocks to validate and test the robustness of
the pipeline against different analysis choices when measuring fyi.
We showed that fixing the IC (equation 39) improves the accuracy in
the value of fni, correcting for a Afny. ~ 7 deviation with respect to
the fiducial value when not including it. Furthermore, we showed that
going to large angular scales of 0,,x = 20 improves the fyi. precision
by ~ 11 per cent. In addition, we showed that not including the
BAO damping can introduce a slight bias of Afyy ~ 2. Also, our
results prove to be robust against changes in the choice of covariance
matrices and the choice of angular binning. Using a theory-data
vector with fy. = 100 (fxp = —100) with IC based on ICE-COLA
cosmology, area, and n(z), we also checked the importance of the IC
when having the realistic case of a DES-Y3-like survey. We found
a Afne ~ 23 (Afne ~ 15) deviation when not using the IC in our
theoretical modelling.

One of the main conclusions of this paper is that when ignoring
the IC in a PNG analysis, we always find a bias on the recovered
/L. This bias is strongest for a small survey and a true universe with
PNG (GOLIAT-PNG : Afy. ~ 100 ~ o). For a large survey like DES,
we still find a significant bias on fy. for a true universe with PNG
(Afse ~ 20 ~ 1 — 20, for fi*® = 100). Whereas the bias on fyr. is
mild for a large survey (~4100 deg?) and a Gaussian true universe
(AN ~ 7~ 0.30).

We expect our analysis to be the first step into constraining fni.
with the Dark Energy Survey photometric data, where we forecast a
measurement of fy. within o (fy1.) = 31 when measured against the
DES Y3 BAO sample. This prospect is comparable with the current
constraints coming from spectroscopic surveys, being o (fxr) ~ 21
(Mueller et al. 2021) the latest one to date.

Future plans include mitigation of LSS systematics following up
on Carnero Rosell et al. (2022) and Rodriguez-Monroy et al. (2022)
with a particular focus on very large scales (see e.g. Rezaie et al.
2021), which is crucial as systematic errors due to survey properties
can lead to spurious PNG signal (Ross et al. 2013; Mueller et al.
2021). Given this, we plan to conduct a full battery of robustness
tests while blinded to the fxi value, following the standard DES
policy (DES Collaboration 2022b). Additionally, performing PNG
analysis can also be understood as a strong validation exercise of
the galaxy clustering systematics, given the sensitivity of this probe
to them. Note also that future photometric surveys are expected to
break the barrier of o(fy) = 1 (de Putter & Doré 2017), key to the
inflationary models, and this work is a necessary step towards that
goal.
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APPENDIX: THE ANALYTIC CORRELATION
FUNCTION, THE IC AND fn

In order to gain some insight about the divergent behaviour men-
tioned in Section 3.2 due to the theoretical IC with fyr, in this
appendix, we compute the explicit dependence on the large scales of
the IC condition for the two-point correlation function.

Let us start by considering the primordial power spectrum Pg (k) =
A ks, which can be used to define the linear matter power spectrum
by considering a simplified transfer function (Peacock 1999),

Ak

p— 2 = =

(AD)
where k., is the wavenumber at matter-radiation equality. As pre-
viously seen in Section 2, from the matter power spectrum, we
can compute the multipole expansion of the two-point correlation
function using equation(13).

For simplicity, we focus on the monopole. It is possible to compute
the 2PCF for n = 1 and k,q = 1 as

Eo(r) = (gr)+rgm). (A2)

1
47
g(r) = cosh r shir — sinh r chir, (A3)

where shi() and chi() are the Sinh- and Cosh-Integral functions. This
shows that the 2PCF can be computed analytically for this power
spectrum.

The next step is to show analytically how the 2PCF changes if
we include a scale-dependent bias and use the simplified matter
power spectrum. Let us start by recalling the expression of the power
spectrum with scale-dependent bias,

Py (k) = b(k)* P,y (k), (A4)

b(k) = by + Ab(k, ). (AS)

We find terms that are independent, linear, and quadratic in fy. This
implies that the computation of the 2PCF involves three integrals over
the wavenumbers. The term independent of fu. just gives something
proportional to b} £(r).
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The linear term in fy. is more interesting. This component of
2PCF is proportional to,

i Pu(k) . 8(r)
dkk® kr) ==, A6
/0 otk =" (A6)
which is finite for large values of r.

The quadratic term in fy. logarithmically diverges as kyi, — O,
this can be seen as follows:

00 Pn(k) . . .
2 = N
/km-n e otk Ik = folkniar) = cilkninr) (A7)
1
> Ly = Inllwnr) & K (A8)

where ci is the Cosine Integral function.

Now that we have computed the 2PCF for the simplified power
spectrum with scale-dependent bias, we can analyse how the theo-
retical IC condition, given by equation(35), behaves at large scales.

From the previous computation can be seen that the IC condition
explicitly vanishes for the term independent of fyi.,

/ () = 0. (A9)

0

The linear term, given by equation (A6), is linearly divergent for
a given large scale rp,. This can be seen as follows:

[ @ 14 ) = ) > s (L)
0

This implies that there will be a linear term in fy;, proportional to
f NL/max -

Now if we compute the IC for the quadratic term in fy, given by
equation (A7), we find that it is proportional to fg; ko /Knin-

Therefore, from this calculation, we conclude that the IC has a
term linear in fy, which diverges with r,,,x, and a quadratic term in
f%. which is proportional to k3. This implies that, even for infinite
volume surveys, we need to correct the two-point correlation function
with PNG with the IC because it can bias the fyi results.
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