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A B S T R A C T 

Local primordial non-Gaussianity (PNG) is a promising observable of the underlying physics of inflation, characterized by f 

loc 
NL . 

We present the methodology to measure f 

loc 
NL from the Dark Energy Surv e y (DES) data using the two-point angular correlation 

function (ACF) with scale-dependent bias. One of the focuses of the work is the integral constraint (IC). This condition appears 
when estimating the mean number density of galaxies from the data and is key in obtaining unbiased f 

loc 
NL constraints. The 

methods are analysed for two types of simulations: ∼246 GOLIAT-PNG N-body small area simulations with f NL equal to −100 

and 100, and 1952 Gaussian ICE-COLA mocks with f NL = 0 that follow the DES angular and redshift distribution. We use the 
ensemble of GOLIAT-PNG mocks to show the importance of the IC when measuring PNG, where we reco v er the fiducial values 
of f NL within the 1 σ when including the IC. In contrast, we found a bias of � f NL ∼ 100 when not including it. For a DES-like 
scenario, we forecast a bias of � f NL ∼ 23, equi v alent to 1.8 σ , when not using the IC for a fiducial value of f NL = 100. We use the 
ICE-COLA mocks to validate our analysis in a realistic DES-like set-up finding it robust to different analysis choices: best-fitting 

estimator, the effect of IC, BAO damping, covariance, and scale choices. We forecast a measurement of f NL within σ ( f NL ) = 31 

when using the DES-Y3 BAO sample, with the ACF in the 1 deg < θ < 20 deg range. 

K ey words: cosmology: observ ations – inflation – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

osmic inflation predicts that the primordial seeds, encoded in 
he initial gravitational potential of the Universe, are described 
y close to Gaussian random fields, for which all the statistical
nformation is contained in the two-point correlation function. We 
an parametrize deviations from Gaussianity by using a parameter 
enoted by f NL , which represents the amount of primordial non- 
aussianity encoded in the three-point correlation of the fields. 
rimordial non-Gaussianity (PNG) is claimed to be a smoking gun 

o differentiate among the vast collection of inflationary models. In 
articular, primordial non-Gaussianity of the local type, parametrized 
y f loc 

NL , can distinguish between canonical single-field and non- 
anilla scenarios, such as multifield inflation (Byrnes & Choi 2010 ; 
ajer, Schmidt & Zaldarriaga 2013 ). 
The primordial seeds affect the formation of structures at different 

pochs in cosmic history, implying that signals of PNG could appear 
n different cosmological probes. An example is the constraints 
f PNG coming from the cosmic microwave background (CMB) 
emperature bispectrum. The latest Planck results present the tightest 
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onstraints for local PNG with f loc 
NL = −0 . 9 ± 5 . 1 (Planck Collabo-

ation IX 20 20 ), but since Planck reached its cosmic variance limit,
nother way to impro v e this constraint is desirable. 

Similar to how PNG affects the temperature fluctuations in the 
MB, the non-Gaussian initial perturbations can also affect the 
istribution of dark matter o v erdensities, which in turn affects the
istribution of biased tracers of dark matter (e.g. galaxies, quasars). 
his implies that PNG could also be constrained using the bispectrum
f such tracers, as has been studied in Jeong & Komatsu ( 2009 ),
asinato et al. ( 2014 ), and Moradinezhad Dizgah et al. ( 2021 ). 
Giv en the comple xity of modelling the bispectrum, dominated by

ate non-Gaussianities induced by non-linear evolution, 1 and other 
ifficulties such as non-linear bias, redshift space distortions, and the 
indow function of the surv e y (Gil-Mar ́ın et al. 2017 ; Sugiyama et al.
019 ), a different method to look for primordial non-Gaussianity 
sing late-time objects is desired. Another effect of PNG is on
he halo formation mechanism. Local primordial non-Gaussianity 
nduces a scale dependence on the linear bias between galaxies and
he underlying dark matter o v erdensities. The scale dependence in
 It is worth mentioning that besides these difficulties, recent work using the 
FT of LSS for the bispectrum has pro v en to be helpful when constraining 

ocal PNG from eBOSS data (Cabass et al. 2022 ). 
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he bias creates a characteristic signal in the two-point correlation
t very large scales, which can be constrained using different large-
cale structure (LSS) biased tracers (Dalal et al. 2008 ; Matarrese &
erde 2008 ; Slosar et al. 2008 ). Some studies show that PNG can
lso be constrained using galaxies with zero linear bias in low-
ensity environments (Castorina et al. 2018 ), or even negatively
iased traces, such as voids (Chan, Hamaus & Biagetti 2019 ). 
Measurements of cosmological parameters using two-point cor-

elation functions have been done multiple times because they are
asy to model and have a large signal-to-noise ratio. This makes the
cale-dependent bias in the two-point correlation the more robust
ethod to constrain PNG. Previous measurements of PNG using

he scale-dependent bias have been presented in Slosar et al. ( 2008 ),
oss et al. ( 2013 ), Giannantonio et al. ( 2014 ), Leistedt, Peiris & Roth
 2014 ), Ho et al. ( 2015 ), Castorina et al. ( 2019 ), and Mueller et al.
 2021 ). 

One noticeable trend is that most of the current constraints come
rom spectroscopic surv e ys. It has been shown in de Putter & Dor ́e
 2017 ) that imaging surv e ys with high volumes could o v ercome
edshift uncertainties and had the potential of breaking the σ ( f loc 

NL ) ∼
 barrier. Hence, upcoming photometric data from the Le gac y Surv e y
f Space and Time (LSST) in the Vera Rubin Observatory 2 (LSST
cience Collaboration 2009 ) is a promising source to break current
ounds. 
This work is a first step to measure PNG with existing data from

he Dark Energy Surv e y (DES 

3 ; DES Collaboration 2021 ), which
epresents the state of the art in photometric surv e ys. Currently,
he DES has surv e yed o v er ∼388 million galaxies in ∼5000 de g 2 

nd presents an opportunity to put the tightest constraints from
hotometric surv e ys (as will see in this work). 
DES has successfully probed the nature of dark energy using

ifferent cosmological probes (DES Collaboration 2018 ; DES Col-
aboration 2022a ; Porredon et al. 2021 ; Rodr ́ıguez-Monroy et al.
022 ). One of them is the study of clustering of galaxies for
he measurement of the Baryon Acoustic Oscillation (BAO) scale
DES Collaboration 2019 , DES Collaboration 2022b ) using galaxy
ata. The BAO scale measurement suggests that we could also use
lustering of galaxies at large scales for measuring PNG within DES.

This work presents the starting point in this direction by describing
he methods to constrain the f loc 

NL parameter using DES simulations.
e use the angular correlation function (ACF) as a summary statistic

or the galaxy distribution and show the effect that primordial non-
aussianities have on the angular clustering of galaxies via the scale-
ependent bias. 
One of the main focuses of the work is on the integral constraint

IC; Groth & Peebles 1977 ; Peacock & Nicholson 1991 ; Ross et al.
013 ; Beutler et al. 2014 ; de Mattia & Ruhlmann-Kleider 2019 ). The
C corrects the modelled correlation function by adding a constant,
hich comes from imposing that its integral over the whole survey
olume needs to vanish. This correction is found to be key to
btaining unbiased PNG measurements. 
The IC was not rele v ant in the previous DES non-PNG clustering

nalysis for two main reasons: First, its effect becomes relevant at
ery large scales. Secondly, for the case of BAO measurements, its
emplate includes marginalization o v er nuisance parameters, one of
hem being a constant shift in the amplitude of the ACF. This shift

imics the IC correction, implying that any effect from it has already
een marginalized. 
NRAS 523, 603–619 (2023) 
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In this paper, we use the ACF with PNG, and the IC, as a
heoretical template to measure the value of f loc 

NL from simulated
alaxy catalogues. The measurement is based on Bayesian parameter
nference using MCMC (Markov chain Monte Carlo) sampling of a
aussian likelihood function. The methods are analysed for two
inds of simulations. First, we introduce the GOLIAT-PNG mocks
Avila & Adame 2023 ), a set of 246 N -Body simulations that have
on-Gaussian initial conditions. We use these simulations to remark
n the importance of the IC when measuring f loc 

NL . Secondly, we use
952 ICE-COLA mocks (Ferrero et al. 2021 ) that follow the DES
ngular and redshift distribution of the Y3 BAO galaxy sample
Carnero Rosell et al. 2022 ) to validate the pipeline. We show that
t is robust against different analysis choices, such as covariance
odelling, f NL estimator, and scale cuts. Finally, we forecast a
easurement of the accuracy of f loc 

NL when using the DES Y3 BAO
ample data. 

This paper is organized as follows. The steps to model ACF with
cale-dependent bias are presented in Section 2 . In Section 3 , we
erive the IC and show its importance when dealing with local PNG.
n Section 4 , we describe the simulations that we will use to test
nd optimize the methods. Section 5 presents the tools needed to
xtract the f NL parameter. In Section 6 , we test the pipeline against
he GOLIAT-PNG simulations and show how the IC is needed to
btain unbiased values of f NL . Once the methods are tested o v er
on-Gaussian simulations, we validate the pipeline using ICE-COLA

imulations in Section 7 . 

 T H E O RY  

n this section, we describe the impact of PNG on the two-point
tatistics of biased tracers. First, we describe how non-Gaussian
nitial conditions modify the bias relation, introducing the scale-
ependent bias. After, we show the effect that it has on the power
pectrum. Finally, we focus on the ACF and show how it is affected
y local primordial non-Gaussianity. 

.1 Gaussian galaxy bias 

he spatial distribution of matter is set by the initial conditions
oming from cosmic inflation, which predicts a nearly scale-invariant
ower spectrum and a close to Gaussian distribution for the pri-
ordial gravitational fields. During the matter domination era, dark
atter collapsed due to these gravitational potentials generating

aloes which, as the Universe evolv es, will serv e as the backbones
or the creation of large-scale structures. 

We will focus our analysis on angular separations of galaxies
arger than 1 deg. This choice is customary for the BAO analysis
ecause such scales are within the linear regime of perturbation
heory, simplifying the theoretical modelling (DES Collaboration
022b ). In this regime, galaxies follow the trace of the dark matter
 v erdensities by the linear relation, 

g ( x ) = b δm 

( x ) , (1) 

here b is a parameter called galaxy bias, which is found to be
onstant at large scales under the standard Gaussian initial conditions.

In the non-linear regime, non-linear effects also generate a scale-
ependent bias, which affects only small scales. We will ignore such
ffects throughout this work and refer the reader to Desjacques,
eong & Schmidt ( 2018 ) for an intensive review on the scale
ependence of the galaxy bias and other related effects. 
The statistical distribution of dark matter o v erdensities is well

escribed by the matter power spectrum P m 

( k ), which depends on

https://www.lsst.org/
https://www.darkenergysurvey.org/
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Figure 1. Theoretical linear galaxy power spectrum with scale-dependent 
bias for f NL = 0 (blue line), f NL = 100 (orange line), and f NL = −100 
(green line). The power spectrum is computed using the fiducial cosmological 
parameters of the GOLIAT-PNG simulations described in Table 1 . 
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he primordial power spectrum, coming from inflation, and the 
ransfer function T ( k ), which describes its evolution throughout 
osmic history. Due to equation ( 1 ), the biased relation between
alaxies and dark matter also appears in the galaxy power spectrum 

s follows: 

 g ( k) = b 2 P m 

( k) . (2) 

As we will see in the following section, the linear relation 
etween galaxies and dark matter will change when dealing with 
on-Gaussian initial conditions. 

.2 PNG via scale-dependent bias 

eviations from Gaussianity in the initial conditions, coming from 

nflation, is an active area of research due to the potential of unveiling
he nature of the primordial fields. In particular, we focus on PNG of
he local type (Komatsu & Spergel 2001 ), 

 NG ( x ) = φG ( x ) + f loc 
NL ( φ

2 
G ( x ) − 〈 φ2 

G 〉 ) , (3) 

here � NG ( x ) is the non-Gaussian Newtonian potential and φG ( x )
s the Gaussian potential. Under this approximation, f loc 

NL is a con- 
tant that parametrizes deviations from Gaussian initial conditions. 
hroughout this work, we will focus on local PNG; hence, from here
n, we will drop the superscript ‘loc’ for simplicity. 
Dalal et al. ( 2008 ) and Slosar et al. ( 2008 ) showed that PNG,

arametrized as equation ( 3 ), would change the way dark matter
ollapses into halos, subsequently affecting galaxy formation. In the 
resence of local PNG, the long wavelength modes of the primordial 
ravitational potential couple with the smaller modes, responsible for 
he local amplitude of matter fluctuations, producing a modulation in 
he local number density of haloes. The change in the local number
ensity will add an extra contribution to the galaxy bias, which 
epends on the scale. We can write the scale-dependent bias due to
ocal PNG as follows: 

( k) = b + f NL α( k, z) 
∂ ln n 

∂ ln σ8 
, (4) 

here b is the constant linear bias and δc = 1.686 is the critical
alue of collapse for halo formation in an Einstein-de Sitter universe 
Fillmore & Goldreich 1984 ). Also, 

( z, k ) = 

3 
m 

2 D ( z) 

H 

2 
0 

c 2 

g (0) 

g ( z rad ) 

1 

k 2 T ( k ) 
, (5) 

here H 0 is the Hubble factor today, 4 c is the light speed, and 
m 

s the matter density today. In addition, T ( k ) is the linear transfer
unction, and D ( z) is the linear growth factor, both normalized to
 at k = 0 and z = 0, respectively. The factor g(0) 

g( z rad ) 
, with g ( z) =

1 + z ) D ( z ), arises because D ( z ) is normalized to unity and can be
mitted if normalized to the scale factor during the matter-dominated 
ra (Mueller, Perci v al & Ruggeri 2019 ). Its v alue is sho wn to be
g(0) 

g( z rad ) 
� 1 . 3. 5 

One particularity of this scale-dependent bias is its 1/ k 2 de- 
endence, implying that primordial non-Gaussianity affects the 
istribution of galaxies only at very large scales. Throughout this 
 If one uses k in units of h Mpc −1 , then H 0 = 100 h [Mpc −1 km s −1 ] with 
 = 0.7. 
 This value is slightly cosmology dependent. When comparing against the 
CE-COLA mocks, we will consider it as 1.3 since we do not expect that it 
ffects the constraints if we plan to reco v er f NL = 0. On the other side, for 
he non-Gaussian GOLIAT-PNG simulations, it was shown to be 1.316 for the 
ducial cosmology of the simulations. 

d
l  

−  

s
e

6

ork, we will refer to scale-dependent bias as the one produced due
o primordial non-Gaussianity. 

It has been shown in Slosar et al. ( 2008 ) that 

∂ ln n 

∂ ln σ8 
= 2 δc ( b − p) , (6) 

here the parameter p was introduced to show deviations from the
riginal model of Dalal et al. ( 2008 ) to take into account different
racers. We refer the reader to Barreira ( 2020 ) for an analysis of the
mpact of the parameter p and other assumptions on the non-Gaussian
ias. For the case of ICE-COLA mocks, we will fix p = 1, which is
ustomary in many analyses and is considered the prediction for a
ass-selected galaxy/halo sample. Finally, the scale-dependent bias 
e will use in this work can be written as follows: 

( k) = b + 2( b − p) f NL α( k , z) δc . (7) 

As an example of the effect of the scale-dependent bias, in Fig. 1 ,
e compute the linear matter power spectrum from CAMB 

6 (Lewis, 
hallinor & Lasenby 2000 ; Howlett et al. 2012 ) and apply a scale-
ependent bias as given in equation ( 7 ) to show the galaxy power
pectrum for dif ferent v alues of f NL . The power spectrum is computed
sing the cosmological parameters from the ICE-COLA simulation 
resented in Section 4.2 . 
Since the scale-dependent bias is squared in the galaxy power 

pectrum, we will have contributions with different dependence on 
 NL . This dependence can be seen as follows: 

 ( k) 2 ∝ b 2 + A b 
f NL 

k 2 
+ B 

f 2 NL 

k 4 
, (8) 

here A and B are prefactors that do not depend on the scale
since T ( k ) becomes constant at very large scales]. The previous
quation tells us that we have quadratic and linear terms in f NL and
 term that does not depend on f NL . Fig. 1 shows how the scale-
ependent bias generates an enhancement of the power spectrum at 
arge scales for f NL = 100. The situation is more interesting for f NL =

100, where the linear term in f NL generates a reduction in the power
pectrum until a given scale, then the quadratic term overcomes, 
xplaining the sharp feature around at k = 0.005 h Mpc −1 . 
MNRAS 523, 603–619 (2023) 
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.3 BAO-damped galaxy power spectrum 

e may need to use precise theoretical modelling to obtain an optimal
easurement of f NL . For this, we follow the methodology used in
ES Collaboration ( 2022b ) for the DES Y3 BAO template, based
n extensions of the linear power spectrum using IR resummation
ethods optimized for an accurate description of the damping in

he BAO peak (Blas et al. 2016 ; Ivanov & Sibiryakov 2018 ). The
articularity of this method relies on a deri v ation of the BAO damping
ased on first principles, in contrast with other models where the
amping is obtained from fits o v er simulations. In Section 7.3 ,
e will compare the impact of using the BAO-damped galaxy
ower spectrum versus linear theory without damping on the f NL 

easurement. 
The BAO-damped galaxy power spectrum is given by 

 ( k, μ, z) = ( b( k) + f ( z) μ2 ) 2 [ ( P lin ( k) − P nw ( k)) D BAO + P nw ( k) ] , 

(9) 

here P lin ( k ) is the linear matter power spectrum. P nw ( k ) is the
mooth ‘no-wiggle’ power spectrum. We refer the reader to DES
ollaboration ( 2022b ) for further details on how to compute it.
he function f ( z) is the growth rate of structures, defined under

he following approximation (Linder 2005 ), 

 ( z) ≈ 
m 

( z) γ , (10) 

ith γ = 0.55. The parameter μ is defined as the cosine of the angle
etween the line of sight and wave vector k . 

In equation ( 9 ), D BAO ( z) is a Gaussian damping defined by 

 BAO ( z) = exp {−k 2 ( μ2 � 

2 
‖ + (1 − μ2 ) � 

2 
⊥ + f ( z) μ2 ( μ2 − 1) δ� 

2 ) } , 
(11) 

here � � ( z) = (1 + f ( z) � ⊥ 

). The parameters � ⊥ 

and δ� can be
omputed directly for a fixed cosmology. In the case of ICE-COLA

osmology, at z = 0, � ⊥ 

= 5.8 Mpc h −1 and δ� = 3.18 Mpc h −1 

nd they are scaled by the growth factor to any other redshift (DES
ollaboration 2022b ). 
When comparing against the ICE-COLA simulations, we will

nclude the BAO damping in the power spectrum, as presented in
his subsection, since we will be using these simulations to validate
he methods and impro v e the accurac y for f NL , implying the need for a

ore precise theory modelling. When comparing against GOLIAT-PNG

imulations, we will not consider BAO damping because we use those
imulations to reco v er higher f NL values, and we do not expect the
amping to be a determinant factor in their accuracy. We will come
ack to this discussion on Section 7.3 , where we will assess the
mpact of the BAO damping on the f NL measurement. Also, notice
hat the scale-dependent bias described in the previous subsection
s already added in equation ( 9 ), adding extra contributions to the
alaxy power spectrum. 

With the previously computed power spectrum, we can use a
ultipole expansion in Legendre polynomials of μ, 

  ( k , z) ≡ (2  + 1) 

2 

∫ 1 

−1 
d μP ( k , μ, z) L  ( μ) , (12) 

o take into account the anisotropies caused by redshift space
istortions to the line of sight. Notice that the power spectrum is
omputed at z = 0 and does not include the growth factor D ( z) since
his will be added when calculating the ACF in the next section. 
NRAS 523, 603–619 (2023) 
.4 ACF with PNG 

sing the previously described power spectrum, we can compute its
onfiguration space counterpart, the two-point correlation function
2PCF), using the multipole expansion of equation ( 12 ), 

( r, ̂  r · ˆ l ) = 

∑ 

 = 0 , 2 , 4 

ξ ( r) L  ( ̂ r · ˆ l ) , (13) 

 ( r) = 

i  

2 π2 

∫ ∞ 

0 
d k k 2 j  ( kr) P  ( k, ̄z ) , (14) 

here r is the separation distance between galaxies and j  is the
pherical Bessel function. Notice that the previously computed power
pectrum is e v aluated at the mean redshift of the photo- z distribution,

¯ . The correlation function is also a function of the angle between
he line of sight direction ̂  l and the direction of the separation vector
ˆ r , given by 

ˆ r · ˆ l = 

χ ( z 2 ) − χ ( z 1 ) 

r 
cos 

θ

2 
, (15) 

here χ ( z) is the comoving distance, and θ is the angular separation
etween two galaxies. 

It is important to remember that because of primordial non-
aussianity, we now have a scale-dependent bias b ( k ) that will be a
art of each P  ( k , z) and needs to be considered for the computation
f the 2PCF. 
We can compute the ACF (Crocce, Cabr ́e & Gazta ̃ naga 2011a ;

han et al. 2018 ) as the two-dimensional projection of the 2PCF
ollowing the galaxy photo- z distribution, N ( z), normalized such that
ts integral over redshift is equal to 1. With this, the ACF is given by 

( θ ) = 

∫ 
d z 1 

∫ 
d z 2 φ( z 1 ) φ( z 2 ) ξ ( r( z 1 , z 2 , θ ) , ̂  r · ˆ l ) , (16) 

hich is a function of the angular separation defined through the
elation, 

( z 1 , z 2 , θ ) = 

(
χ ( z 1 ) 

2 + χ ( z 2 ) 
2 − 2 χ ( z 1 ) χ ( z 2 ) cos θ

)1 / 2 
. (17) 

here φ( z) = N ( z) D ( z). The previously obtained power spectrum was
omputed at z = 0, so φ( z) incorporates its evolution to a different
edshift. 

As mentioned before, the theoretical ACF with PNG shares simi-
arities with the BAO template, but adding extra terms proportional
o f NL , to clarify this, we can consider that our PNG template is
omposed of a BAO-part and a f NL -part, as follows: 

( θ ) = w BAO ( θ ) + w( θ, f NL ) , (18) 

here w BAO ( θ ) is the BAO template used in DES Collaboration
 2022b ), schematically given by 

 BAO ( θ ) ∼ b 2 w b ( θ ) + bf w bf ( θ ) + f 2 w f ( θ ) , (19) 

here w b, bf ,f ( θ ) correspond to different ACF contributions arranged
y their pre-factors. On the other hand, the f NL -part involves the
xtra terms proportional to f NL , in accordance with equation ( 8 ), as
ollows: 

( θ, f NL ) ∼ bf NL w A ( θ ) + f 2 NL w B ( θ ) (20) 

here w A, B ( θ ) involve the scale-dependent contributions of the ACF.
s a reminder of this discussion, we will extend the notation of our

heoretical modelling to 

( θ ) → w th ( θ, f NL ) , (21) 

ighlighting its dependence on f NL . 
The behaviour of the angular correlation with PNG can be seen in

ig. 2 , where we compute the ACF using the BAO damped power
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Figure 2. Theoretical ACF with the scale-dependent bias for f NL = 0 (blue 
line), f NL = 100 (orange line), and f NL = −100 (green line) for the first redshift 
bin using the ICE-COLA configuration as presented in Table 1 . The solid lines 
are without IC. The dashed lines are with the IC correction, as discussed in 
Section 3 , computed using equation ( 39 ) with the ICE-COLA angular footprint. 

s  

t
G
A
t  

d  

s  

2  

c  

s  

o  

a

3

I  

l
c  

v
 

W  

t

3

3

L
f

d

w  

V  

d  

t

N

w  

a  

o  

t

N

T  

o
v

T  

w  

r

s  

o  

a  

m  

c

h  

s

N

T  

c  

w  

r

R

w  

v  

i

w  

w  

e  

w
o  

o

3

T  

p  

d
θ

d

w
 

w

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/523/1/603/7160469 by Biology Library user on 09 August 2023
pectrum, with linear bias and N ( z) from the first redshift bin of
he ICE-COLA mocks. As expected, we show that primordial non- 
aussianity induces a large-scale enhancement of clustering in the 
CF of galaxies due to the scale-dependent bias. It can be noticed that 

he sharp feature in the power spectrum for f NL = −100, produced
ue to the linear term in f NL (equation 8 ), has now translated into a
mall o v erall rising at scales around ∼10 deg (solid green line in Fig.
 ). This rising is due to the integration of the Fourier transform to
ompute the 2PCF. As a pre vie w of the upcoming section, we also
how the IC’s effect on the theoretical model. The main discussion
f the upcoming section will be on how to compute the IC correction
nd the effect on the ACF. 

 IC  A N D  f N L 

n this section, we comment on how the excess of clustering at
arge scales, due to scale-dependent bias, on the theoretical angular 
orrelation is suppressed by imposing that its inte gral o v er the surv e y
olume needs to vanish. This condition is known as the IC. 

We discuss how the IC arises from an observational point of view.
e also remark on its dependence on f NL and show how to correct

he theoretical template to incorporate its effect. 

.1 Obser v ational IC 

.1.1 IC from the observed 2PCF 

et us start with the statistical definition of the two-point correlation 
unction for galaxies ξ obs ( r ), 

 P = n̄ (1 + ξobs ( r)) d V , (22) 

here P is the probability of finding two objects within the volume
 separated by a distance r (Peebles 1980 ) and n̄ is the mean number
ensity of galaxies in the Universe. If we integrate equation( 22 ) over
he volume of a surv e y, we find out that 

 g = n̄ 

∫ 
d V s + n̄ 

∫ 
ξobs ( r) d V s , (23) 

here N g is the expected number of galaxies within the surv e y re gion
nd V s is the total volume of the surv e y. Since the e xpected number
f galaxies within the surv e y volume is chosen to be obtained from
he surv e y mean number density, we hav e the following: 

 g = n̄ 

∫ 
d V s . (24) 

he previous equation implies a condition that needs to hold for the
bserved two-point correlation function of galaxies within the survey 
olume, ∫ 

ξobs ( r) d V s = 0 . (25) 

his is the IC condition. We can re-write the IC condition as follows:∫ 
ξobs ( r ) d V s = 

∫ 
d 3 r 

∫ 
d 3 r 1 W ( r 1 ) W ( r 1 − r ) ξ ( r ) = 0 , (26) 

here W ( r ) is the selection function for a volume-limited surv e y and
 = r 1 − r 2 . 

The previous expression can be computed directly for a given 
urv e y selection function. The problem is that defining the volume
f a surv e y is a difficult task. Instead, it is most common to construct
 random catalogue of galaxies following the shape of the surv e y
ask to model the surv e y volume as pair counts between the random

atalogues. 
As previously mentioned, the number count of galaxies within a 

omogeneous region can be computed as a volume integral of the
election function, 

 g = n̄ 

∫ 
d 3 r W ( r ) . (27) 

herefore, the number of random-random pair correlations, RR ( r ),
an be computed as the correlation of the number of random objects
ithin the limited region [see e.g. Breton & de la Torre ( 2021 ), and

eferences therein], 

 R ( r ) = 〈 N 1 N 2 〉 = n̄ 2 
∫ 

d 3 r 1 W ( r 1 ) W ( r 1 − r ) , (28) 

ith r = r 1 − r 2 . Using the previous equation, we can compute the
olume integral over a window function, and inserting equation ( 28 )
nto equation ( 26 ), we obtain the following: ∫ 

ξobs ( r ) d V s = 

1 

n̄ 2 

∑ 

all pairs 

R R ( r ) ξ ( r ) , (29) 

here now we sum o v er all the possible separations between galaxies
ithin a limited surv e y size. This implies that the IC condition,

quation ( 25 ), can be written in terms of the RR ( r ) pairs, as follows:∑ 

all pairs 

R R ( r ) ξ ( r ) = 0 , (30) 

here, for simplicity, the random–random pair correlations can be 
btained from random catalogues that follow the surv e y mask instead
f using the analytic expression. 

.1.2 IC in the observed ACF 

he previous procedure can be extended to the ACF. The starting
oint is now the probability of finding two galaxies in a two-
imensional projection of the sky separated by an angular separation 
, as follows: 

 P = n̄ (1 + w obs ( θ )) d 
, (31) 

here w obs ( θ ) is the observed ACF. 
This implies that the IC can be extended to the ACF in the same

ay as equation ( 29 ), ∫ 
d 
1 

∫ 
d 
2 W ( ̂ r 1 ) W ( ̂ r 2 ) w obs ( θ ) = 0 , (32) 
MNRAS 523, 603–619 (2023) 
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here W ( ̂ r ) is the angular selection function, and θ is the angle
ubtended by r 1 and r 2 . 

The calculation of the volume integral in the previous subsection
an be extended to the sum of random-random angular pairs. This
mplies that we can compute the IC for the angular correlation as
ollows: ∑ 




R R ( θ ) w obs ( θ ) = 0 , (33) 

here now the sum is o v er all the possible angular separations
llowed by the surv e y mask. Also, as before, the random-random
airs correlation is obtained from the random catalogues. In practice,
ince we have a w( θ ) for each redshift bin, this condition is applied
o each of them individually. 

.2 Theoretical IC 

p to this point, we have only presented a condition that the
orrelation function needs to accomplish in limited surv e ys, and the y
ertainly do for the usual observed correlation functions. A problem
rises when we compare the theory with PNG to observational data.

.2.1 Gaussian case 

et us start from a theoretical point of view without considering
NG. The matter power spectrum at large scales exhibits behaviour

hat goes as 

 m 

( k) ∝ k n s , (34) 

here n s is close to 1. This implies that the matter power spectrum
anishes when k → 0, and since the power spectrum is related to
he variance of the o v erdensities, this is an insight that the matter
uctuations of our Universe reach homogeneity at very large scales.
The vanishing of the matter power spectrum at large scales implies

 condition to its configuration space counterpart, the 2PCF, which
an be seen as follows: 

 m 

( k = 0) = 

∫ 
ξ ( r ) d 3 r = 4 π

∫ ∞ 

0 
ξ ( r ) r 2 d r = 0 . (35) 

his is the IC condition presented in equation ( 26 ) but now coming
rom a purely theoretical perspective. 

Without the effect of f NL , this same condition is expected to hold
or the linear galaxy power spectrum since a linear bias relates both
ower spectra, and there is no change in the shape of the power
pectrum. Hence, in the case of an ideal homogeneous infinite surv e y,
he theoretical model already satisfies the observational IC. When
he effect of the window function becomes more pronounced (due
o either strong inhomogeneities in the randoms or small explored
olumes), we will need to adjust the theory to fulfil the IC condition
see Section 3.3 ). 

.2.2 IC in the presence of PNG 

he situation now changes in the presence of PNG. The scale-
ependent bias between the galaxies and matter o v erdensities will
odify the shape of the galaxy power spectrum introducing a 1/ k 2 

orrection to the matter power spectrum that depends on f NL , as
escribed in equation ( 5 ). The scale-dependent bias will generate an
nhancement of the galaxy power spectrum at large scales ( k  k eq )
ith the following divergent behaviour: 

 g ( k → 0 , f NL ) ∼
(

f NL 
b − 1 

k 2 

)2 

· k n s → ∞ (36) 
NRAS 523, 603–619 (2023) 
here P g ( k ) is the galaxy power spectrum. This divergence that the
olume integral over the 2PCF (equation 35 ) will diverge for this case.
s a side note, since for our modelling, we integrate numerically,

he previously mentioned divergence will turn into a large (but finite)
umber that could depend on the integration method or resolution.
ince the ACF is an integral of the 3D 2PCF (equation 16 ), w( θ ) will
ave a divergence proportional to f 2 NL . 
The discussion of this section tells us that, even if we have an

nfinite homogeneous surv e y with a ne gligible window function
ffect, the IC condition will not be fulfilled for the case of f NL �= 0.
dditionally, the theoretical model will contain an arbitrary additive

onstant that depends on f 2 NL . This dependence will bias any results
hen using this model to constrain f NL . This remarks the importance
f the IC condition when dealing with PNG, implying that we need
orrect our modelling to consider this issue. 

As a verification of the issue, in appendix A , we show an analytical
xample that illustrates how the IC condition looks for a simplified
heoretical two-point correlation function in the presence of PNG. We
how explicitly that the integral of the 2PCF diverges at large scales
nd is proportional to f 2 NL , implying that imposing the observational
C condition is very important when dealing with PNG analysis. 

.3 IC correction 

o surpass the problem described in the previous subsection, we
efine an IC-corrected theoretical ACF, 

 

IC ( θ, f NL ) = w th ( θ, f NL ) − I ( f NL ) , (37) 

here I ( f NL ) parametrize deviations from the observed IC condition
equation 33 ) as follows: ∑ 




R R ( θ ) w 

IC ( θ, f NL ) = 0 . (38) 

his implies that the IC correction, I ( f NL ), is given by 

 ( f NL ) = 

∑ θlim R R ( θ ) w th ( θ, f NL ) ∑ θlim R R ( θ ) 
. (39) 

here θ lim 

is the maximum limit angular separation allowed for the
ngular surv e y windo w. The ef fect of the IC in the context of PNG
as been previously addressed in Ross et al. ( 2013 ) and Mueller
t al. ( 2021 ) for the power spectrum and in Ross et al. ( 2013 ) for the
PCF. The no v elty of this work is to present a detailed analysis of its
ffect on the ACF and show its importance when dealing with PNG
imulations, as we show in Section 6 . 

 SI MULATI ONS  

n this section, we present the simulations that we used for testing the
heoretical modelling and the validation of the f NL measurements. 

.1 GOLIAT-PNG 

n order to test our analysis pipeline, we first consider the use of sim-
lations with Primordial non-Gaussianity included. Whereas many
ests can be done with Gaussian initial conditions (see Section 7 ),
here are validation steps that require PNG mocks to show the validity
f the pipeline. In particular, in this work, only when fitting PNG
ocks can we realize the paramount importance of including the IC.
The GOLIAT-PNG suite (Avila & Adame 2023 ) consists of a series

f N -body simulations with � CDM + local PNG cosmology with
m 

= 0.27, 
b = 0.044, h = 0.7, n s = 0.96, σ 8 = 0.8, and
hree values for PNG: f NL = −100, 0, + 100. A summary of the



PNG with ACF 609 

Table 1. Summary of the fixed cosmological parameters and the free 
measured parameters with the priors considered. The squared brackets 
represent flat priors. 

GOLIAT-PNG 

Parameter Fiducial Prior 


m 

0.27 –

� 

0.73 –

b 0.044 –
n s 0.96 –
σ 8 0.8 –
h 0.7 –
f NL −100, 100 [ −700, 700] 
Linear bias b 2.35 [1, 3] 
Integral constraint I i – [ − 0.1, 0.1] 
Footprint area (deg 2 ) 396.06 
z mean 1 –

ICE-COLA 

Parameter Fiducial Prior 


m 

0.25 –

� 

0.75 –

b 0.044 –
n s 0.95 –
σ 8 0.8 –
h 0.7 –
f NL 0 [ −500, 500] 
Linear bias b i 1.60, 1.60, 1.68, 1.82, 2.02 [1, 3] 
Integral constraint I i – [ −0.1, 0.1] 
Footprint area (deg 2 ) 4108.47 
z mean 0.65, 0.74, 0.84, 0.94, 1.02 –
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Figure 3. N ( z) distribution as a function of redshift for each redshift bin 
for the ICE-COLA mocks (top) and for the GOLIAT-PNG mocks (bottom). We 
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the ICE-COLA mocks. 
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osmological parameters and fiducial values used is presented in 
he first part of Table 1 . The simulations have a box size of L =
 Gpc h −1 . The initial conditions are set at z = 32 with second-
rder Lagrangian perturbation theory (2LPT) using the public code 
LPTIC 

7 and evolved to z = 1 with GADGET2. 8 Subsequently, the z =
 dark matter snapshots are run through the Amiga Halo Finder 9 to
onstruct the halo catalogues with a minimum of 10 particles, which 
ield M h ∼ 5 × 10 12 M � as the halo mass resolution. 
Also, for the GOLIAT-PNG simulations, it was found that p = 0.90

or f NL = 100 (Avila & Adame 2023 ), and p = 0.92 for f NL = −100,
hen measuring their real space power spectra, and we will consider 

his when measuring f NL from these mocks. 
Another particularity of these simulations is that the initial condi- 

ions are run with the fixed and paired initial conditions (Angulo &
ontzen 2016 ) aimed at reducing the sample variance of the ensemble
verage of the two-point functions measured from these simulations. 
n the context of PNG, this technique is validated in Avila & Adame
 2023 ), and we refer the reader there for further details of the GOLIAT-
NG suite. We use 41 pairs of simulations for each value of f NL . 

Finally, we transform those mocks from the cubic box into observ-
ble coordinates { RA, Dec., z} by setting an observer 1556 Mpc h −1 

way from the centre of one of the faces of the box. This transforma-
ion allows us to have a mock survey with a circular semi-aperture
f 11.2 de g, co v ering an area of roughly 396 deg 2 , and a redshift
ange of 0.6 < z < 1.1, the shape and size of the mask can be seen
 cosmo.nyu.edu/ roman/ 2LPT (Crocce, Pueblas & Scoccimarro 2006 ; Scoc- 
imarro et al. 2012 ). 
 https:// wwwmpa.mpa-garching.mpg.de/gadget/ (Springel 2005 ). 
 ht tp://popia.ft .uam.es/AHF/ (Knollmann & Knebe 2009 ). 

T  

D  

p  

fi  

(  

o

n Fig. 4 . We further split the mocks into five redshift bins between
.6 and 1.1 with �z = 0.1. This, together with a constant number
ensity of haloes, gives the redshift distribution N ( z) shown in Fig.
 . Ho we ver, we note that we do not introduce any redshift space
istortions, redshift error, HOD model, or e ven temporal e volution.
e built everything from the halo catalogue at the comoving output

t a redshift of z = 1 and a fixed halo mass threshold. This implies
hat we fix D ( z = 1) in equation ( 16 ) when using the GOLIAT-PNG

ocks. We also consider three different rotations (one per Cartesian 
xis) for constructing the mocks, eventually resulting in a total of
46 mocks for each value of f NL . 

.2 ICE-COLA 

he ICE-COLA mocks (Ferrero et al. 2021 ) are the second set of
imulations we count on for analysing and validating our methods. 
his set of 1952 mock galaxy catalogues is designed to mimic the
ES Year 3 BAO sample (Carnero Rosell et al. 2022 ) o v er its full
hotometric redshift range 0.6 < z < 1.1, which we split again into
ve redshift bins. We refer the interested reader to Ferrero et al.
 2021 ) for further details and highlight here only the basic features
f the ICE-COLA mocks. 
MNRAS 523, 603–619 (2023) 
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M

Figure 4. Comparison of the footprint of the used simulations. In purple, we 
show the mask for one map of the ICE-COLA simulations. In green, we show 

the mask for the GOLIAT-PNG simulation. 
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A total number of 488 fast N -body simulations of full-sky light
ones generated by following the ICE-COLA code Izard, Crocce &
osalba ( 2016 ) are used. This code is based on the COmoving
agrangian Acceleration (COLA) method, which solves for the
volution of the matter density field using 2LPT combined with
 Particle-Mesh (PM). The simulations use 2048 3 particles in a box
f the size of 1536 Mpc h −1 and assume a cosmology consistent
ith the best-fitting of the Wilkinson Microwave Anisotropy Probe

WMAP) 5-yr data (Komatsu et al. 2009 ). This means compatible
ith a flat � CDM model with 
m 

= 0.25, 
� 

= 0.75, 
b = 0.044,
 s = 0.95, σ 8 = 0.8, h = 0.7, and f NL = 0. A summary of the
osmological parameters and fiducial values used is presented in the
econd part of Table 1 . 

A hybrid halo occupation distribution – halo abundance matching
odel is used to populate haloes with galaxies. Also, automatic

alibration is run to match the basic characteristics of the DES Y3
AO sample: the observed abundance of galaxies as a function of
hotometric redshift (Fig. 3 ), the distribution of photometric redshift
rrors, and the clustering amplitude on scales smaller than those used
or BAO measurements. 

Finally, four footprint masks corresponding to the DES Y3 BAO
ample are placed on each full-sky light cone simulation to reach the
nal set of 1952 ICE-COLA mocks. In Fig. 4 , we can see the shape of

he mask followed by one footprint. 

 ANALYSIS  TO O L S  

his section presents the statistical tools used to measure the f NL 

arameter using the theoretical template presented in Section 2 . 

.1 ACF measurements 

he angular correlations are measured using CUTE (Alonso 2012 ),
hich computes the ACF following the Landay–Szalay estimator

Landy & Szalay 1993 ), 

 obs ( θ ) = 

D D ( θ ) − 2 D R ( θ ) + R R ( θ ) 

R R ( θ ) 
, (40) 

here DD ( θ ), DR ( θ ), and RR ( θ ) are the number counts of pairs
f galaxies for the data–data, data–random, and random–random
atalogues, respectively. To obtain the random–random pairs, we
reate random catalogues with 20 times more objects than the
imulation sample that follow the angular mask of the simulations
or GOLIAT-PNG and ICE-COLA mocks. The random–random pairs are
btained as an output from CUTE. 
NRAS 523, 603–619 (2023) 
As mentioned in Section 3.3 , one of the key elements in the IC
orrection is the random-random pairs that account for the surv e y
olume. Because of this, we need to compute at least one RR ( θ )
orrelation for both GOLIAT-PNG and ICE-COLA going up to the
aximum angular separation allowed for each surv e y mask. That

s 22 deg for the GOLIAT-PNG simulations and 88 degrees for ICE-
OLA simulations. 

.2 Co v ariance 

ur default set-up for the covariance matrix uses the COSMOLIKE code
Krause & Eifler 2017 ; Fang, Eifler & Krause 2020a ; Fang et al.
020b ) to estimate the co variance analytically. F ollowing Crocce,
abr ́e & Gazta ̃ naga ( 2011b ), the real space covariance of the ACF
( θ ) at angles θ i and θ j is related to the covariance of the angular

ower spectrum C( C  , C  ′ ) by 

( θi , θj ) = 

∑ 

,  ′ 

(2  + 1)(2  ′ + 1) 

(4 π ) 2 
P  ( θi ) P  ′ ( θj ) C( C  , C  ′ ) , (41) 

here P  ( θ ) are the Legendre polynomials averaged over each
ngular bin and C( C  , C  ′ ), under the Gaussian approximation, is
iven by (Crocce et al. 2011b ; Krause & Eifler 2017 ) 

( C  , C  ′ ) = 

2 δ ′ 

f sky (2  + 1) 

(
C  ′ + 

1 

n g 

)2 

, (42) 

here δ is the Kronecker delta function, n g is the number density of
alaxies per steradian, and f sky is the observed sky fraction used to
ccount for partial-sky surveys. We include redshift space distortions
hrough the C  ’s of the e xpression abo v e ( 42 ), e xcept when analysing
he GOLIAT-PNG mocks, as they do not include that. In addition,
ollowing Troxel et al. ( 2018 ), we correct the shot-noise contribution
o the covariance (the term ∝ 1/ n g ) by considering the effect of
he surv e y geometry on the number of galaxies in each angular
in. We ignore non-Gaussian terms in the covariance estimation
or simplicity, following DES Collaboration ( 2022b ), where it was
ested that including those terms did not impact the results. See DES
ollaboration ( 2022b ) and Ferrero et al. ( 2021 ) for the validation of

his analytical covariance matrix (with θmax = 5 deg) against two
ets of simulations: ICE-COLA and FLASK lognormal mocks (Xavier,
bdalla & Joachimi 2016 ). 
Notice that we do not include f NL in our covariance since it is

ustomary in this kind of analysis to fix the cosmology and then
ook for deviations. In the case of detection, we should modify the
ovariance and include the f NL parameter. 

We also consider using the ICE-COLA covariance constructed from
he mocks, given by 

( θi , θj ) = 

1 

N m 

− 1 

N m ∑ 

n = 1 

(
w 

n ( θi ) − w̄ ( θi ) 
) (

w 

n ( θj ) − w̄ ( θj ) 
)

(43) 

here N m 

is the number of mocks, w 

n ( θ ) is the ACF for the n-mock,
nd w̄ ( θ ) is the mean ACF from the mocks. Ho we ver, it was shown
n Ferrero et al. ( 2021 ) that, due to a large number of simulated boxes
sed to equal the volume of the DES Y3 BAO sample, a replication
f halos were produced, introducing a spurious correlation among
he measured ACF. This induced a high degree of correlation of
on-adjacent redshift bins in the co variance. F or this reason, the
efault set-up of using COSMOLIKE covariance was preferred (DES
ollaboration 2022b ). As a double check, in Section 7.4 , we compare

he impact of changing the covariance when measuring f NL . 
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Figure 5. IC as a function of the upper limit angular separation, θ lim 

, for the 
GOLIAT-PNG simulations. The blue line is the IC using the theoretical ACF 
with f NL = 0. The same is repeated for the orange and green lines but for the 
cases of f NL = 100 and f NL = −100, respectiv ely. The gre y dotted line is the 
limit angular aperture of the angular mask of the simulations. 
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.3 Parameter inference 

n order to measure the parameters, we perform a Bayesian parameter 
nference based on the log-likelihood analysis assuming a Gaussian 
ikelihood, as follows: 

log ( L ( p )) ∝ −χ2 ( p ) 
2 

(44) 

here the χ2 is given by 

2 ( p ) = ( M( p ) − D) T C 

−1 ( M( p ) − D) , (45) 

here p represents the free parameters from our theory we want to
stimate, C 

−1 is the inverse of the covariance matrix presented in 
ection 5.2 , and M and D are the theoretical model and the data
 ector, respectiv ely. 
Since the galaxy sample for the simulations is divided into five 

edshift bins, we perform a joint sampling of the likelihood to 
onsider covariance between bins. The joint data vector D is given 
y 

D = [ w 

1 
obs ( θ ) , w 

2 
obs ( θ ) , w 

3 
obs ( θ ) , w 

4 
obs ( θ ) , w 

5 
obs ( θ )] , (46) 

here the superscript represents the redshift bin from which the ACF
s obtained. We repeat the same procedure for the theoretical model, 
here M ( p ) is the theory vector as a function of the free parameters

or each redshift bin, as follows: 

M ( p ) = [ w 

1 
th ( θ, p ) , w 

2 
th ( θ, p ) , w 

3 
th ( θ, p ) , w 

4 
th ( θ, p ) , w 

5 
th ( θ, p )] . (47) 

We perform an MCMC sampling of the likelihood function 
sing COBAYA (Torrado & Lewis 2021 ) to estimate the posterior
istributions of the free parameters in our pipeline. 
Table 1 presents the free parameters considered for our analysis 

nd their respective fiducial values and priors. Depending on the 
nalysis, the IC could be considered as a free parameter (IC-MARG)
r fixed to its theoretical value (IC-FIXED) given by equation ( 39 ).
his will be stated for each test considered. Notice that we are
ot including other free cosmological parameters in the likelihood, 
hich is customary for this kind of analysis, since adding other 

osmological parameters will lose the constraints on f NL . 

 TESTS  WITH  N O N - G AU S S I A N  M O C K S  

his section tests the pipeline o v er the GOLIAT-PNG simulations
ith non-Gaussian initial conditions. For these simulations, the 

heoretical template is obtained from a linear power spectrum without 
onsidering BAO damping and without RSD modelling, since the 
imulations do not include RSD. The goal of this section is twofold:
irst, we want to reco v er the fiducial value of f NL for the non-Gaussian
imulations. Secondly, we want to highlight the importance of the 
C. 

.1 Effect of the IC on GOLIAT-PNG mocks 

n Section 3 , we presented the IC as one of the key elements that
eed to be included in the theory. In this section, we show its effect
n the simulations with non-Gaussian initial conditions. 

In Fig. 5 , we compute the IC, as presented in equation ( 39 ), for the
OLIAT-PNG simulations but changing the limit angular separation, 
lim 

, truncating the sum. We use this to test the need to consider the
ull volume of the surv e y when computing the IC. As described in
ection 4.1 , the maximum circular semi-aperture of the GOLIAT-PNG 

imulation mask is about 11.2 deg, implying that the maximum 

llowed angular separation is about θ lim 

∼ 22 de g (v ertical gre y
otted line in Fig. 5 ). 
As e xpected, giv en the discussion in Section 3 , the IC reaches
ts value when it is summed up to the maximum angular separation
llowed for the simulation mask to consider the whole surv e y volume. 
n other words, even though we can compare the theory and the data
p to some maximum angular separation θmax , we still need the
andom–random correlation up to the limit scale of the simulation 
 θ lim 

∼ 22 deg). We see that the IC’s value does not converge earlier
han that. We repeat this conclusion for the ICE-COLA simulations, 
here the measurements are made up to θmax = 20 deg, but the IC

s obtained from random–random pairs measured up to θ lim 

∼ 88 
eg. 
From the previous figure, we can also notice the explicit de-

endence of the IC on f NL . For f NL = 0, it has a smaller value
n comparison with f NL = 100 or f NL = −100. This supports the
revious discussion from Section 3.2 about the importance of the IC
hen looking for f NL . 
The previously computed IC can be included in the theory as

n equation ( 37 ). This is shown in Fig. 6 , where we compare the
heoretical ACF with and without the IC against the mean of the
OLIAT-PNG mocks. The ACF is shown for the first redshift bin with

he errors obtained from the standard deviations of the mocks. 
Fig. 6 serves as a visual guide of the IC’s effect in the theoretical
odelling. The IC correction appears to have an effect that could

elp a v oid biased values for f NL . The actual impact of this on the
easurement of f NL is the main topic of the following subsection. 

.2 Results for GOLIAT-PNG mocks 

e use the parameter inference method, described in Section 5.3 ,
o put constraints on both the linear bias and f NL . We construct the
ata vector for each mock by combining the ACF of each redshift
in for the f NL = −100 and f NL = 100 simulations. We use the scale
onfiguration given in the first section of Table 4 . The scale choice
ill be justified in the next section when we test the robustness of

he pipeline. 
Since each mock is independent of the other, we can compute a

oint posterior distribution by multiplying the posteriors of f NL and 
 of each GOLIAT-PNG mock. The advantage of this method is that
he joint posterior gives us a good estimate of how biased the best-
tting values of f NL are with respect to the fiducial. We compare
xing the IC, as computed using equation ( 39 ), against not using
MNRAS 523, 603–619 (2023) 
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Figure 6. Comparison of the theoretical ACF against the mean GOLIAT-PNG 

mocks for the first redshift bin (0.6 < z < 0.7) and dif ferent f NL v alues. The 
blue line is the mean of the mocks, and the shaded area is given by its standard 
deviation. The orange line is the theoretical ACF with the IC. The green line 
is the theoretical ACF without the IC. 
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t and against leaving it as a nuisance parameter. The priors for
he parameters used in the measurement are in Table 1 . For the
ase of f NL = 100 simulations, four mocks were discarded due to
ncompatibilities in the measurements of f NL , giving highly biased
alues and complicating the computation of the joint posterior. 

We present one of the main results of this work in Fig. 7 , showing
he contours obtained from the joint posterior of all GOLIAT-PNG

imulation with f NL = 100 and f NL = −100. We show that by fixing
he IC to the value given by equation ( 39 ), we can recover the fiducial
alues of f NL within 1 σ . We also notice that for the case of not using
he IC, we obtain very biased values for f NL , closer to f NL = 0.
he figure also shows that when considering the IC as a nuisance
arameter and marginalizing it, we also reco v er the correct values
or f NL . With the previous results, we pro v e the importance of the IC.

The summary of contours is presented in Table 2 , where we
how the measured values of f NL for the two kinds of GOLIAT-
NG simulations. The best-fitting values of f NL are obtained from
he maximum of the joint posterior distribution of all mocks, with
NRAS 523, 603–619 (2023) 
he errors obtained from the 68 per cent confidence region. We
larify that the uncertainty presented in Table 2 corresponds to the
ombination of all mocks. This implies that the uncertainty would be
16 times larger for a surv e y with the properties of the GOLIAT-PNG

ocks, making the uncertainty and the offset very similar � f NL ∼ σ

100. We also note that the relatively small footprint of GOLIAT-PNG

 ∼ 400 deg 2 ) makes the effect of the IC stronger. We will reexamine
his for a DES-like scenario in Section 7.1 . 

A natural question appears when we see the results for the case
f IC-MARG. Can the marginalized IC case reco v er the theoretical
 alues gi ven by equation ( 39 )? In Table 3 , we compare the IC v alues
or both theoretical and marginalized, along with the 1 σ errors for
he marginalized case measured o v er the mean of the mocks. From
hese results, we can notice two things. First, we found reasonable
ompatible values for the IC within ∼2 σ . Secondly, we show that
he methods can detect the IC at high significance. 

In Fig. 8 , we compare the mean of the GOLIAT-PNG f NL = 100
ocks versus the theoretical ACF (for IC-FIXED) using the best-fit

esults with and without the IC for each redshift bin. The figure shows
ow the IC impro v es the agreement of the theoretical template and
he observed ACF for each redshift bin. Nevertheless, we found no
onsiderable difference in χ2 of the measurement o v er the individual
ocks when considering or not the IC in the theoretical template.
he showed errors, in this case, are obtained from the COSMOLIKE

ovariance, described in Section 5.2 , but divided by the number of
ocks, in contrast with the errors presented in Fig. 6 . 
For the case of NO-IC, we notice that for both simulations, we

btain biased small ne gativ e values of f NL . As mentioned by the end
f Section 2.4 , for large ne gativ e values of f NL (without considering
C), there is a positive correlation function at large scales (see e.g.
iddle panel of Fig. 6 ). Since the measured ACF shows a ne gativ e

orrelation at large scales (due to the observational IC), the model
refers small ne gativ e f NL values to compensate for the lack of IC in
he theoretical model (see e.g. Fig. 8 ) 

As mentioned in Section 3.2 , the effect of the IC is stronger for
on-Gaussian simulations due to its dependence on f NL . Nevertheless,
n the next section, we will show that it can also help a v oid slightly
iased values of f NL even for simulations with f NL = 0, such as the

CE-COLA mocks. 

 D E S  VA LI DATI ON  USING  I C E-COLA M O C K S  

s mentioned in Section 4 , the ICE-COLA mocks are designed
o match the DES Y3 BAO sample angular mask and redshift
istribution N ( z). In this section, we present tests made o v er the

CE-COLA mocks, assessing their impact on the measurement of the
 NL parameter. 

We perform four different tests o v er the ICE-COLA simulations that
e briefly summarize as follows: 

(i) Effect of the IC: Similarly to Section 6 , this test double-check
he importance of the IC. 

(ii) Best-fitting estimator comparison: This test will tell us how
he value of f NL changes when we consider a different definition for
he estimator of the best fit from the posterior distribution. 

(iii) BAO damping versus linear theory: We will show the
mpact of considering BAO damping in the theoretical modelling
y comparing it with the linear power spectrum. 
(iv) Co v ariance comparison: For robustness, we consider dif-

erent covariances and study their impact on the measurement of
 NL . 
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Figur e 7. Mar ginalized one and 2 σ contours for f NL and the linear bias b obtained from the joint posterior of the 246 GOLIAT-PNG simulations (of ∼ 400 deg 2 

each). Note that the error is expected to be ∼16 times larger for a single realization. The left-hand panel is for the f NL = −100 simulation, and the right-hand 
panel is for the f NL = 100 simulation. The purple contours are with the IC fixed to its theoretical value given by equation ( 39 ). The green contours are without 
considering any IC correction. The orange contours consider the IC as a nuisance parameter and marginalizing it. The vertical dashed line represents the fiducial 
value of f NL for each set of simulations. 

Table 2. Summary of the results of measuring f NL from both GOLIAT-PNG 

simulations (of ∼ 400 deg 2 each). The best-fitting values are obtained from 

the maximum of the joint posterior of the 246 mocks, and the errors are at 1 σ . 
Note that the error is expected to be ∼16 times larger for a single realization. 

GOLIAT-PNG 

Joint posterior 

f NL = 100 

NO-IC −2.8 ± 1.0 
IC-FIXED 97.4 ± 3.5 
IC-MARG 92.2 ± 4.6 

f NL = −100 

NO-IC −10.3 ± 1.5 
IC-FIXED −95.2 ± 5.4 
IC-MARG −101.5 ± 6.5 

Table 3. Comparison between theoretical IC versus marginalized values for 
GOLIAT-PNG simulations. IC theory is computed using the theoretical value 
given by equation ( 39 ). IC marginalized are obtained as the mean of the 
marginalized posterior. The errors are at 1 σ on the ensemble average of 246 
mocks. 

GOLIAT-PNG 

Redshift bin IC theory IC marginalized 

0.6 < z < 0.7 0.00220 0.00247 ± 0.00013 
0.7 < z < 0.8 0.00202 0.00208 ± 0.00012 
0.8 < z < 0.9 0.00188 0.00212 ± 0.00012 
0.9 < z < 1.0 0.00178 0.00203 ± 0.00011 
1.0 < z < 1.1 0.00171 0.00184 ± 0.00011 
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(v) Scale configuration: We compare the effect that different 
cale cuts and theta binning have when estimating f NL . 

The fiducial scale configuration for the tests and forecast, along 
ith the optimal f NL best-fitting estimator, are summarized in Table 4 .
he parameters to analyse are presented in detail in the second 
ection of Table 1 . In summary, we consider the linear bias for
ach redshift bin, the IC as a possible nuisance parameter, and the
on-Gaussianity parameter f NL . 
For the analysis, we compare two cases: We perform the MCMC
ampling for each mock separately and the mean of the mocks. A
ummary of the results of this section is presented in Table 5 . The
rst column presents the mean of the best-fitting value of f NL , 〈 ˆ f NL 〉 ,
or the ICE-COLA mocks, obtained from the mean of the best-fitting
stimator of each mock, ˆ f NL . The second column presents the o v erall
tandard deviation in f NL , obtained from the standard deviation of
ˆ 
 NL coming from each mock. The third column is the mean of the
 σ error obtained from the f NL posterior of each mock. The fourth
olumn is the value of f NL obtained from fitting the theory o v er the
ean of the mocks. The errors o v er the mean mocks are from the 68

er cent confidence level of the marginalized posterior distribution. 
t is worth remembering that the ICE-COLA mocks have f NL = 0 as an
nitial condition. 

The results from this section are presented in Fig. 9 , where for
ach test, we show the histogram of the best-fitting values, ˆ f NL , from
ach mock. We also show the mean of the histogram, 〈 ˆ f NL 〉 , for each
est. 

After the tests, we forecast the accuracy in the measurement of
he local primordial non-Gaussianity parameter f NL using the ACF 

ith IC o v er DES Y3 data. We would be able to obtain an error of
( f NL ) = 31 if the measurement is performed o v er the DES Y3 BAO

ample, as we will see by the end of the section. 

.1 Effect of the IC on ICE-COLA mocks 

ere we show the effect of the IC o v er the ICE-COLA simulations. We
ompare the effect of the IC for three different cases: 

(i) Without using any IC correction (no IC). 
(ii) Fixing the IC to the value obtained using equation( 39 ),

ollowing the discussion from Section 6.1 (fixed IC). 
(iii) Considering the IC as a nuisance parameter and marginalizing 

 v er it (marg IC). 

The results are presented in the top panel of Fig. 9 and summarized
n the first part of Table 5 . From the first column of the table, we notice
hat not using the IC gives a biased value of f NL , with a deviation of
 f NL ∼ 7 from the fiducial value of the simulation. We also notice

hat leaving the IC as a free nuisance parameter gives slightly larger
rrors for f NL . Finally, we show that fixing the IC to the value given
MNRAS 523, 603–619 (2023) 
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Figure 8. Comparison between the theoretical angular correlation versus the mean ACF of the GOLIAT-PNG mocks with f NL = 100, for each redshift bin. The 
solid-coloured lines are the mean of the ACF from the mocks. The shaded areas are obtained from the diagonal of the reduced theoretical covariance. The solid 
black lines are theoretical ACF with IC, where f NL and b g are obtained from the mean of the joint posterior distribution presented in purple in Fig. 7 . The dashed 
black lines are the theoretical ACF without IC and f NL and b g obtained from the mean of the joint posterior distribution presented in the green lines of Fig. 7 . 

Table 4. Fiducial configuration of the ACF for both the GOLIAT-PNG and 
ICE-COLA mocks. 

θmin θmax �θ f NL estimator 

GOLIAT-PNG 1.0 deg 20 deg 0.15 deg Max of marg. posterior 

ICE-COLA 1.0 deg 20 deg 0.4 deg Max of marg. posterior 
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Table 5. Summary of measuring f NL from the ICE-COLA mocks. The first 
column is the o v erall best fit of f NL obtained as the mean of f NL from each 
mock. The second column is the error in f NL from the standard deviation 
of every histogram. The third column is the mean of 1 σ error from the f NL 

posterior of each mock. The fourth column is the value of f NL when fitting o v er 
the mean of the mocks. The errors are obtained at the 68 per cent confidence 
level of the posterior. In bold, we highlight the fiducial configuration that will 
be used for the forecast. 

ICE-COLA 

〈 ˆ f NL 〉 std( ˆ f NL ) 〈 σ ( ˆ f NL ) 〉 mean of mocks 

NO-IC − 7 .4 26 .6 22 .1 −12 ± 22 
IC-FIXED 0 .1 31 24 .8 −4.5 ± 24 
IC-MARG 4 .2 35 29 −3 ± 27 

Mean posterior − 6 .6 30 .9 – –
Max posterior 0 .1 31 – –
Min χ2 0 .06 31 .1 – –

Damping 0 .1 31 24 .8 −4.5 ± 24 
Linear 2 .4 30 .5 24 .6 −2.2 ± 23 

COSMOLIKE cov. 0 .1 31 24 .8 −4.5 ± 24 
ICE-COLA cov. − 0 .3 29 .6 25 .4 −9 ± 28 

w( θ )[ �θ = 0.1] − 2 .2 32 .2 25 .4 −7.5 ± 24 
w( θ )[ �θ = 0.2] − 1 .7 32 .4 25 .5 −6.5 ± 24 
w( θ )[ �θ = 0.3] − 0 .9 31 .8 25 .1 −5.5 ± 24 
w( θ )[ �θ = 0 . 4] 0 .1 31 24 .8 −4.5 ± 24 

w( θ )[ θmax = 5] 3 .6 35 .1 30 −1.7 ± 27 
w( θ )[ θmax = 10] 0 .6 33 .4 26 .7 −3.7 ± 26 
w( θ )[ θmax = 15] − 0 .08 32 .4 25 .4 −6.2 ± 24 
w( θ )[ θmax = 20] 0 .1 31 24 .8 −4.5 ± 24 
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y equation ( 39 ) gives almost no bias in f NL , reco v ering the fiducial
alue of f NL = 0 with high accuracy. Similar to the conclusion from
ection 6 , the IC helps us to a v oid biased values of f NL . Although this
ffect was stronger for non-Gaussian mocks, for the case of f NL = 0,
e can still notice a difference when measuring f NL . 
The mild deviation on f NL due to not including the IC on ICE-COLA

ocks ( � f NL ∼ 7) opposes the significant bias coming from non-
aussian mocks ( � f NL ∼ 100). Part of this difference is expected to

ome from a stronger IC effect on smaller mocks ( GOLIAT-PNG ), but
nother important effect comes from the IC being stronger mocks
ith PNG, as we discussed in much detail in Section 3 . In order to

eparate those effects, we now run our fit on a theory-data vector
enerated for f NL = 100 in a DES-like scenario, including the IC and
ased on the ICE-COLA cosmology. 
From the posterior distribution of Fig. 10 , we found, as expected,

hat we reco v er the fiducial value, f NL = 99 ± 16, for the case of
xed-IC. Whereas for the case of ignoring the IC, we found f NL =
6 ± 13. The deviation of � f NL ∼ 23 corresponds to a 1.8 σ bias
n the value of f NL in a non-Gaussian (DES-Y3-like) scenario. The
ias also translates into a mild deviation of �χ2 ∼ 2 in fa v our of
sing the IC in the theoretical model. Even though the bias on f NL is
ot as strong as for the GOLIAT-PNG simulations, we still see a more
iased value than the case of f NL = 0 simulations. We also observed
 higher error in f NL when using f NL = 0 compared to f NL = 100
s fiducial values, with a difference of approximately �σ ( f NL ) ∼
5. This difference appears because the increment in the correlation
unction is stronger as f NL increases. 
NRAS 523, 603–619 (2023) 
The previous test can be repeated for a theory-data vector with
 NL = −100, where we found f NL = −95 ± 28 for the fixed-IC case
nd f NL = −80 ± 23 for the no-IC case. In this case, the bias is
ess significant: � f NL ∼ 20, approximately 1 σ . Hence, even for a
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Figure 9. Histograms of the f NL measurement o v er the 1952 ICE-COLA mocks 
comparing the different tests. The vertical dotted lines represent the mean of 
the histograms. Top panel : Effect of the IC. The blue is with fixing the IC as 
in equation ( 37 ) (fixed IC), the yellow is without using the IC (no IC), and the 
green is the IC as a nuisance parameter (marg IC). The vertical dotted lines 
represent the mean of the histograms. Middle panel: Best-fitting estimator 
comparison. The blue is the mean of the posterior as the best fit, the yellow 

uses the maximum of the posterior (MAP), and the green uses the minimum of 
the χ2 . Bottom panel: Raw linear theory versus BAO damping comparison. 
The blue includes BAO damping in the template, and the orange uses the 
linear theory. 

Figur e 10. Mar ginalized f NL posteriors resulting from fitting our model to 
a theory-data vector with f NL = 100 with IC and a DES-like set-up ( ∼
4100 deg 2 , see Table 1 ). We use both a model with IC (black line) and without 
IC (red line), finding consistency for the former and a 1.8 σ bias for the latter. 
The shaded areas represent the f NL marginalized errors at 68 per cent C.L. 
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arge DES-like area, the bias on f NL when ignoring the IC becomes
ignificant if the data we are fitting contains PNG. Similar to the
onclusion from Section 6 , the results highlight the importance of
he IC when dealing with primordial non-Gaussianity. 

.2 Best-fitting estimator comparison 

e compare different ways to extract the best-fitting estimator ˆ f NL 

rom the marginalized f NL posterior distribution, that is, using dif- 
erent central tendency estimators. We show the differences between 
sing the mean of the marginalized posterior, the maximum of the
arginalized posterior (MP), or the minimum of the χ2 . 
The comparison of the histograms is presented in the second panel

f Fig. 9 . The summary of the results from this test is also presented
n Table 5 . From the table, we can see that we found no considerable
ifferences in using the maximum of the posterior distribution and 
he minimum of the χ2 . Furthermore, we notice an impro v ement
hen we use the maximum of the posterior, against the mean of

he posterior, as an estimator of the central value for f NL , where we
ound almost no bias. In the end, the maximum of the posterior was
referred. 

.3 Linear theory versus BAO damping 

s mentioned in the theoretical modelling, we focused on the 
amping model because of its impro v ement when fitting the BAO
eak. One open question is whether we need to consider such
recision in the template when measuring f NL . 
To address the previous question, we compare the f NL measurement 

rom an ACF with a BAO damping model against using the ACF from
 linear power spectrum. Both ACFs are computed using the fiducial
onfiguration. 

We summarize the results in Table 5 . We found that using a linear
ower spectrum introduces a small bias compared to including the 
AO damping in the power spectrum. 
MNRAS 523, 603–619 (2023) 
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Figure 11. Comparison between the theoretical ACF versus the mean ACF of the ICE-COLA mocks for each redshift bin. The solid black lines are theoretical 
ACF computed for 〈 ˆ f NL 〉 and b g obtained using the optimal fiducial configuration and fixing the IC. The black dashed lines are the theoretical ACF without IC. 
The solid-coloured lines are the mean of the ACF from the mocks. The shaded areas are errors obtained from the COSMOLIKE covariance. 
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.4 Co v ariance comparison 

n Section 5.2 , we mentioned that the default covariance matrix used
s COSMOLIKE since the ICE-COLA presented a spurious correlation
etween non-adjacent redshift bins. In this section, we compare the
f fect of dif ferent cov ariance in the f NL measurements. We compare
he COSMOLIKE covariance versus the covariance obtained from the
CE-COLA mocks. 

The results are presented in Table 5 , where we show that the
easurement of f NL is robust against changes in the covariance. 

.5 Scale configuration 

n this section, we discuss the impact of different scale configurations
n the measurement of f NL . We compute the theory and the data
ector from each ICE-COLA mock considering a combination of the
ollowing scales: 

(i) θmax = [5, 10, 15, 20] deg. 
(ii) �θ = [0.1, 0.2, 0.3, 0.4] deg. 

We summarize the extracted information in the last two sections of
able 5 . For this study, we limited ourselves to a maximum angular
eparation of 20 deg because we consider that controlling the LSS
ystematics up to these scales will already be very challenging. Note
hat the fiducial maximum angular scale for the BAO measurement
as 5 deg (DES Collaboration 2022b ). 
From the results, we can notice two effects. First, the measure-
ents of f NL seem to be robust against the change in �θ , introducing

mall changes in both the mean and its error. The second effect
ppears when we go to larger values of θmax , where there is an

11 per cent impro v ement in the constraints when going up to
max = 20. This impro v ement is expected since most of the f NL effect
omes from large scales. 

From the results of this section, we have three main conclusions:
irst, we can impro v e the accuracy of f NL by using the IC. Not in-
luding it is the main source of bias in our measurement, introducing
eviations of � f NL ∼ 7 to the fiducial value. In the second place,
e can impro v e the precision on f NL constraints by ∼ 11 per cent
NRAS 523, 603–619 (2023) 
hen going to angular scales of θmax = 20. Thirdly, our analysis
s robust against changes in the type of covariance, the inclusion of
AO damping, and changes in the scale binning, where we found
lmost no deviations in the precision and accuracy of f NL . These
onclusions allow us to define the fiducial configuration highlighted
n Table 4 . 

Using the fiducial configuration, in Fig. 11 , we show the ACF for
he best-fitting values compared against the mean of the ICE-COLA

ocks for each redshift bin with and without the IC, fixed to the value
iven by equation ( 39 ). From Fig. 11 , we can notice the importance
f the IC when comparing the model with the simulations improving
ts matching, especially at large scales, and therefore, improving the
ccuracy of f NL . 

After the tests from this section, we conclude that a reliable fore-
ast is σ ( f NL ) = 31 for the DES Y3 BAO sample after marginalizing
he linear bias and fixing the other cosmological parameters. The
orecast is also done using the fiducial configuration from Table 4 . 

 C O N C L U S I O N S  

e have presented a methodology to constrain f NL using the two-
oint ACF with scale-dependent bias. Primordial non-Gaussianity
odifies the linear bias relation between dark matter o v erdensities

nd galaxies by including a scale dependence that depends on the
 NL parameter. The scale dependency is later introduced in the power
pectrum and transferred to the ACF. It is worth noticing that there are
ifferences in the effect of the scale-dependent bias; for the power
pectrum, the effect is more localized, whereas for the (angular)
orrelation function, it is more extended over a range of scales. 

We remarked on the importance of the IC condition, an obser-
ational constraint that appears due to the limited volume observed
y surv e ys and the fact that we estimated the mean number density
rom them. This condition is essential because of the f NL effect in
he two-point correlation at large scales and the divergent behaviour
f the power spectrum at k → 0 (see equation 8 ). We impose the IC
ondition on our theoretical model and show that it can be corrected
y a constant. 
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We tested the model with the IC correction against the GOLIAT- 
NG simulations with non-Gaussian initial conditions. We showed 
ow the IC is a crucial element in a v oiding biased f NL values. We
howed that ignoring the IC gives very biased PNG constraints, f NL =
2.8 ± 1.0 ( f NL = −10.3 ± 1.5), whereas we reco v er the fiducial

alue f NL = 100 ( f NL = −100), within 1 σ , when correcting for the IC:
 NL = 97.4 ± 3.5 ( f NL = −95.2 ± 5.4). We confirmed the importance
f the IC for simulations with f NL = 100 and f NL = −100. 
We used the ICE-COLA mocks to validate and test the robustness of

he pipeline against different analysis choices when measuring f NL . 
e showed that fixing the IC (equation 39 ) impro v es the accurac y in

he value of f NL , correcting for a � f NL ∼ 7 deviation with respect to
he fiducial value when not including it. Furthermore, we showed that 
oing to large angular scales of θmax = 20 impro v es the f NL precision
y ∼ 11 per cent . In addition, we showed that not including the 
AO damping can introduce a slight bias of � f NL ∼ 2. Also, our

esults pro v e to be robust against changes in the choice of covariance
atrices and the choice of angular binning. Using a theory-data 

ector with f NL = 100 ( f NL = −100) with IC based on ICE-COLA

osmology, area, and n(z), we also checked the importance of the IC
hen having the realistic case of a DES-Y3-like surv e y. We found
 � f NL ∼ 23 ( � f NL ∼ 15) deviation when not using the IC in our
heoretical modelling. 

One of the main conclusions of this paper is that when ignoring
he IC in a PNG analysis, we al w ays find a bias on the reco v ered
 NL . This bias is strongest for a small surv e y and a true universe with
NG ( GOLIAT-PNG : � f NL ∼ 100 ∼ σ ). For a large surv e y like DES,
e still find a significant bias on f NL for a true universe with PNG

 � f NL ∼ 20 ∼ 1 − 2 σ , for f true 
NL = 100). Whereas the bias on f NL is

ild for a large surv e y ( ∼4100 de g 2 ) and a Gaussian true universe
 � f NL ∼ 7 ∼ 0.3 σ ). 

We expect our analysis to be the first step into constraining f NL 

ith the Dark Energy Surv e y photometric data, where we forecast a
easurement of f NL within σ ( f NL ) = 31 when measured against the
ES Y3 BAO sample. This prospect is comparable with the current 

onstraints coming from spectroscopic surv e ys, being σ ( f NL ) ∼ 21
Mueller et al. 2021 ) the latest one to date. 

Future plans include mitigation of LSS systematics following up 
n Carnero Rosell et al. ( 2022 ) and Rodr ́ıguez-Monroy et al. ( 2022 )
ith a particular focus on very large scales (see e.g. Rezaie et al.
021 ), which is crucial as systematic errors due to surv e y properties
an lead to spurious PNG signal (Ross et al. 2013 ; Mueller et al.
021 ). Given this, we plan to conduct a full battery of robustness
ests while blinded to the f NL v alue, follo wing the standard DES
olicy (DES Collaboration 2022b ). Additionally, performing PNG 

nalysis can also be understood as a strong validation e x ercise of
he galaxy clustering systematics, given the sensitivity of this probe 
o them. Note also that future photometric surv e ys are e xpected to
reak the barrier of σ ( f NL ) = 1 (de Putter & Dor ́e 2017 ), key to the
nflationary models, and this work is a necessary step towards that 
oal. 
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PPENDI X:  T H E  A NA LY T I C  C O R R E L AT I O N  

U N C T I O N ,  T H E  IC  A N D  f N L 

n order to gain some insight about the divergent behaviour men-
ioned in Section 3.2 due to the theoretical IC with f NL , in this
ppendix, we compute the explicit dependence on the large scales of
he IC condition for the two-point correlation function. 

Let us start by considering the primordial power spectrum P � 

( k) =
 k n s , which can be used to define the linear matter power spectrum
y considering a simplified transfer function (Peacock 1999 ), 

 m 

( k) = P � 

( k) T 2 ( k) = 

A k n s 

(1 + k 2 /k 2 eq ) 
2 
, (A1) 

here k eq is the wavenumber at matter-radiation equality. As pre-
iously seen in Section 2 , from the matter power spectrum, we
an compute the multipole expansion of the two-point correlation
unction using equation( 13 ). 

For simplicity, we focus on the monopole. It is possible to compute
he 2PCF for n = 1 and k eq = 1 as 

0 ( r ) = 

1 

4 π2 r 

(
g( r ) + r g ′ ( r) 

)
, (A2) 

( r) = cosh r shi r − sinh r chi r, (A3) 

here shi() and chi() are the Sinh- and Cosh-Integral functions. This
hows that the 2PCF can be computed analytically for this power
pectrum. 

The next step is to show analytically how the 2PCF changes if
e include a scale-dependent bias and use the simplified matter
ower spectrum. Let us start by recalling the expression of the power
pectrum with scale-dependent bias, 

 g ( k) = b( k) 2 P m 

( k) , (A4) 

( k) = b g + �b( k, z) . (A5) 

e find terms that are independent, linear, and quadratic in f NL . This
mplies that the computation of the 2PCF involves three integrals over
he wavenumbers. The term independent of f NL just gives something
roportional to b 2 g ξ0 ( r). 
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The linear term in f NL is more interesting. This component of
PCF is proportional to, ∫ ∞ 

0 
d k k 2 

P m 

( k ) 

k 2 T ( k ) 
j 0 ( k r) = 

g ( r) 

r 
, (A6) 

hich is finite for large values of r . 
The quadratic term in f NL logarithmically diverges as k min → 0, 

his can be seen as follows: 
 ∞ 

k min 

k 2 
P m 

( k) 

k 4 T ( k) 2 
j 0 ( k r) d k = j 0 ( k min r) − ci ( k min r) (A7) 

 1 − γ − ln ( k min r) + 

1 

12 
k 2 min r 

2 , (A8) 

here ci is the Cosine Integral function. 
Now that we have computed the 2PCF for the simplified power 

pectrum with scale-dependent bias, we can analyse how the theo- 
etical IC condition, given by equation( 35 ), behaves at large scales. 

From the previous computation can be seen that the IC condition 
xplicitly vanishes for the term independent of f NL , ∫ ∞ 

0 
d r r 2 ξ0 ( r ) = 0 . (A9) 

The linear term, given by equation ( A6 ), is linearly divergent for
 given large scale r max . This can be seen as follows: ∫ r max 

0 
d r r 2 

g( r ) 

r 
= r max (1 + g ′ ( r max )) − g( r max ) → r max , (A10) 

his implies that there will be a linear term in f NL proportional to
 NL r max . 

Now if we compute the IC for the quadratic term in f NL , given by
quation ( A7 ), we find that it is proportional to f 2 NL k 

3 
eq /k 

3 
min . 

Therefore, from this calculation, we conclude that the IC has a 
erm linear in f NL , which diverges with r max , and a quadratic term in
 

2 
NL which is proportional to k −3 

min . This implies that, even for infinite
olume surv e ys, we need to correct the two-point correlation function 
ith PNG with the IC because it can bias the f NL results. 
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