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Abstract

Models fail to reproduce observations of the coldest parts of the Sun’s atmosphere, where interactions between
multiple ionized and neutral species prevent an accurate MHD representation. This paper argues that a meter-scale
electrostatic plasma instability develops in these regions and causes heating. We refer to this instability as the
Thermal Farley–Buneman Instability (TFBI). Using parameters from a 2.5D radiative MHD Bifrost simulation, we
show that the TFBI develops in many of the colder regions in the chromosphere. This paper also presents the first
multifluid simulation of the TFBI and validates this new result by demonstrating close agreement with theory
during the linear regime. The simulation eventually develops turbulence, and we characterize the resulting wave-
driven heating, plasma transport, and turbulent motions. These results all contend that the effects of the TFBI
contribute to the discrepancies between solar observations and radiative MHD models.

Unified Astronomy Thesaurus concepts: Solar chromosphere (1479); Solar chromospheric heating (1987); Plasma
physics (2089); Astronomical simulations (1857)

Supporting material: animation

1. Introduction

The chromosphere is the complex interface region between
the photosphere and the million-degree corona. For solar
modeling, it is crucial to understand the chromosphere, since all
energy transfer from the surface of the Sun to the corona must
pass through this intermediary region. The chromosphere
presents a modeling challenge, as it spans many parameter
regimes, microphysics may play an important role, and the
assumptions of MHD break down. Over the last few decades,
large improvements have been made with radiative (M)HD
models, which capture a large variety of chromospheric
dynamics such as magnetoacoustic shocks (see, e.g., Carlsson
& Stein 1992, 1995, 2002; Wedemeyer et al. 2004;
Carlsson 2007), spicules (Hansteen et al. 2007; Martínez-
Sykora et al. 2017), and flux emergence (Cheung &
Isobe 2014). Some models have been further improved to
include the effects of ion–neutral interactions (Leake et al.
2014; Martínez-Sykora et al. 2015; Ballester et al. 2018, and
references therein) and nonequilibrium ionization (Leenaarts
et al. 2007; Golding et al. 2014; Przybylski et al. 2022).

However, comparisons between chromospheric observables
and synthesis from those models reveal large discrepancies in
some areas. The observed profiles, such as Mg II h and k from
IRIS (De Pontieu et al. 2014), are typically wider than the
corresponding profiles synthesized from simulations (Carlsson
et al. 2019). Also, radiative MHD (rMHD) models predict
excessively cold chromospheres; simulation temperatures reach
down to 2000 K, even though recent inversions of observations
suggest temperatures of at least 3000 K (da Silva Santos et al.

2020). Semiempirical models suggest a temperature minimum
closer to 4000 K (Fontenla et al. 2009), although they do not
include dynamics or associated thermal properties. Comparing
observations fromIRIS and the Atacama Large Millimeter/
submillimeter Array to recent single-fluid rMHD models,
which include ion–neutral interactions and nonequilibrium
effects, also indicates that the spicules are up to a few thousand
degrees colder in the models from simulations (Chintzoglou
et al. 2021). These issues might be alleviated by including the
heating and turbulent effects of small-scale plasma instabilities,
which are missing from such models.
Fontenla (2005) and Fontenla et al. (2008) originally

suggested that the Farley–Buneman (FB) instability can lead
to heating in the chromosphere. They argued that convective
motions of neutral gas drag the mostly collisionally demagne-
tized ions across the solar magnetic field while the electron
motion remains primarily tied to the magnetic field lines. This
causes the development of currents and electrostatic waves that
lead to instability, as described in Dimant & Sudan (1995). The
work by Fontenla (2005) and Fontenla et al. (2008) treats the
FB instability appropriately for the ionosphere, where it was
originally discovered, but neglects crucial terms that become
relevant in the chromosphere. Madsen et al. (2014) include
some such terms by treating the instability with a multifluid
model yet neglects proton magnetization; Fletcher et al. (2018)
shows that ion magnetization effects reduce the prevalence of
the instability in the chromosphere.
By simulating the instability using a kinetic particle-in-cell

(PIC) code, Oppenheim et al. (2020) discovered that temper-
ature perturbations significantly affect instability properties
under chromospheric parameters. They improved the theory to
include these thermal effects, predicting the new instability that
we refer to as the Thermal Farley–Buneman Instability (TFBI).
Oppenheim et al. (2020) also applied a simplified form of the
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theory to solar atmospheric simulator output to predict that the
instability occurs throughout the chromosphere; we validate
this result by pairing the full linear theory with output from an
improved simulation that incorporates more physics. Dimant
et al. (2022) further studied the linear theory of this instability
in different limiting cases and determined that a multifluid
model may be sufficient to reproduce the TFBI for chromo-
spheric parameters.

The TFBI may occur in regions other than the solar
chromosphere as well. It could appear in other stellar
atmospheres and likely appears in various planetary iono-
spheres, including Earth’s ionosphere, where thermal and FB
instabilities have been studied in the past (see, e.g., Dimant &
Sudan 1995; Dimant & Oppenheim 2004; Kagan & St.-
Maurice 2004). It may affect the dynamics in molecular clouds
and heat transfer in accretion disks. Any partially ionized
plasma having sufficiently strong flows across magnetic field
lines, along with the appropriate fluid densities and tempera-
tures, would produce the TFBI.

To study the TFBI in the Sun’s chromosphere, we utilize the
new multifluid code, Ebysus (Martínez-Sykora et al. 2020).
Ebysus treats each ionized level of each atomic species as a
separate fluid, with the ability to handle any number of fluids in
the same simulation. Using Ebysus, we simulate the multifluid
TFBI in a fluid-model code for the first time. We demonstrate a
close agreement between this simulation and linear theory and
show that the nonlinear effects from this simulation produce
heating, transport, and turbulent motions. Such effects might be
responsible for heating, altering conductivities, and broadening
spectral lines in the chromosphere while also being absent from
state-of-the-art models of this region. The ability to produce
this instability in a fluid-model code enables studies at larger
scales and across more chromospheric parameter regimes than
what is possible with kinetic codes alone.

The remainder of this paper is structured as follows.
Section 2 discusses the instability theory and simulation setup.
Section 3.1 details our prediction that the multifluid TFBI
occurs throughout the Sun’s chromosphere, especially in colder
regions. Section 3.2 shows our multifluid Ebysus simulation
output and demonstrates close agreement with TFBI theory.
Section 3.3 discusses the nonlinear stage of the simulation and
investigates the resulting heating, transport, and turbulent
motions. Such effects may be responsible for the discrepancy
between modern models and observations of the chromosphere.
The paper concludes with a summary and discussion of the
results in Section 4.

2. Theory and Simulation Structure

Both the instability theory (Dimant et al. 2022; see also
Appendix A) and the Ebysus (Martínez-Sykora et al. 2020)
simulations in this work use multifluid models to study the
chromosphere. In these models, the continuity, momentum, and
energy equations govern the number density, ns; velocity, us;
and temperature (in energy units), Ts, for each fluid (s):
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where dsf/dt= ∂f/∂t+ us ·∇f, and sums are taken over all
fluids including electrons. The atomic mass and charge of the
fluid species s are ms and qs, while E and B are the electric and
magnetic fields, respectively. The collision frequency for
momentum transfer to fluid s from fluid j is νsj for s≠ j, and
the models assume elastic collisions. Note that these models
treat each species as an ideal gas and neglect the effects of
ionization and recombination, thermal conduction, and gravity.
The models also assume quasi-neutrality,

( )å =n q 0, 1d
s

s s

and use it, instead of the electron continuity equation, to solve
for ne.
The theory closes the system via the electrostatic assump-

tion, ∂B/∂t= 0. The mean electric field can be determined
from the electron momentum equation, while perturbations of
E are handled by the linear theory.
Meanwhile, the Ebysus code allows B to vary. Ebysus

includes Equation (1), as well as Faraday’s and Ampere’s laws
without displacement current:

( )¶
¶

= - ´
B

E
t

, 2a

( )m =  ´J B, 2b0

where μ0≈ 4π× 10−7N/A2 is the vacuum permeability
constant, and J=∑snsqsus is the current density.
Ebysus determines B by updating it every time step using

Faraday’s law (Equation (2a)). To calculate the electric field,
Ebysus solves the electron momentum equation (Equation (1b))
for E, assuming negligible electron inertia:
(me/qe)deue/dt→ 0. To determine the electron velocity,
Ebysus solves for ue using Ampere’s law (Equation (2b)) and
the definition of current density. Finally, at each time step,
Ebysus updates the electron temperature and the other fluids’
number densities, velocities, and temperatures using the
corresponding equation from Equation (1). This fully closes
the system of equations in the Ebysus model.
In the next sections, we discuss the instability theory, the

initial conditions of the multifluid Ebysus simulation presented
in this work, and the numerical methods utilized by Ebysus.

2.1. Linear Theory of the TFBI

Linear instability theory makes predictions about small
perturbations in a static background. This theory considers
plane waves with a real wavevector k and complex frequency
ω, where all perturbations are proportional to

[ ( · )]w-k xi texp . Solutions with ( )w >Im 0 are unstable
with an exponential growth rate ( )wIm .
This paper applies the linear theory described in Oppenheim

et al. (2020) and Dimant et al. (2022). In addition to the effects
present in the FB instability, this theory includes physical
effects relevant in the chromosphere: thermal perturbations,
arbitrary ion and electron magnetization, and accounting for
arbitrarily many ion fluids.
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Beyond Equation (1), we make some additional assumptions
to simplify the algebra. In particular, we assume the plasma is
weakly ionized and contains only one neutral fluid, n, which
does not respond to any perturbations, and we neglect Coulomb
collisions while assuming all other collision frequencies are
constant. The weak ionization assumption is reasonable in
extended regions of the lower-to-mid-chromosphere below
10,000 K, and in those regions, the Coulomb collisions are
orders of magnitude smaller than collisions with neutrals
(Wargnier et al. 2022, and references therein). We also assume
the perturbation is electrostatic; i.e., any magnetic field
response to the perturbation is negligible. Additionally, since
two dimensions perpendicular to B are sufficient to reproduce
the TFBI, we consider only such solutions here, enforcing
k ·B= 0. Finally, we assume that the unperturbed values are
constant in space and time. This assumption of vanishing
gradients may need revisiting in the future, as gradients might
provide important contributions to the instability in some
parameter regimes. The equations and assumptions above lead
to the dispersion relation for this model, summarized in
Appendix A.

Figure 1 shows the predicted linear instability growth rate for
the set of parameters in Table 1, representing a cold region
from a simulated chromosphere (see Section 3.1). At each
wavevector k, the growth rate is the largest imaginary part of
all of the solutions ω to the dispersion relation
(Equation (A1a)). This prediction is calculated numerically
by converting the dispersion relation to a polynomial in ω and
applying a polynomial root-finding algorithm; see Appendix A
for more details. The maximum growth rate of roughly

( )w =Im 2440peak s−1 occurs at ( ˆ ˆ)= -k x y6.83 0.94peak
m−1, where the coordinate system is defined such that the
current flows toward ˆ+x, the magnetic field points toward ˆ+z ,
and ˆ ˆ ˆ´ =x y z . This wavevector corresponds to plane waves
with a wavelength of 0.91 m at an angle of roughly 8° below
the +x-axis. This angle is 65° counterclockwise from the E
direction, and the magnitude of the electric field is
|E|= 8.9 V m−1.

The direction of k gives insight into the physical mechan-
isms causing the instability. The thermal effects in the

instability cause the largest growth rates for wavevectors
parallel (or antiparallel) to the bisector of −E and E× B.
Meanwhile, the pure FB instability has maximum growth for
wavevectors parallel (or antiparallel) to the E×B direction
(Dimant & Oppenheim 2004; Dimant et al. 2022). The
wavevector at peak growth rate kpeak according to theory is
20° counterclockwise from the bisector of E and −E× B and
25° clockwise from the −E× B direction. This implies that for
the chosen parameters, the thermal and FB effects both play an
important role.
The length and timescales also help contextualize this

instability. The wavelength at peak growth rate, 0.91 m, is
much larger than the Debye lengths (λD,s= 90, 200, and
100 μm for H+, C+, and e−, respectively) and larger than the
collisional mean free paths (( ) n =T ms s s,H 0.02, 0.1, and
0.009 m for H+, C+, and e−, respectively). Meanwhile, the
peak growth rate, ( )w = ´Im 2.4 10peak

3 s−1, and the wave
frequency at that peak, ( )w = ´Re 2.0 10peak

4 s−1, corre-
spond to timescales much smaller than those relevant to the
macro-scale dynamics in the chromosphere (see, e.g., Wede-
meyer et al. 2004; Pereira et al. 2013; Carlsson et al. 2019).
Note that changing the current and charged fluids’ densities

by the same factor while holding all else fixed does not affect
the governing equations of the theory (see Equations (1)
through (2), together with the assumption of negligible
Coulomb collisions). If the current and charged fluids’ densities
decreased by a factor of 10, for example, the results of linear
theory would remain exactly the same. This means that the
theoretical growth rate prediction here may apply in multiple
chromospheric plasma parameter regimes.
Finally, we gain further insight into this instability by

considering the role of each ion species individually.
Recalculating the theory using similar densities and tempera-
tures but using H+ as the only ion species leads to smaller
growth rate predictions with a peak closer to k= 0. Repeating
the calculation once more but this time using C+ as the only
ion species leads to larger predicted growth rates that peak at
larger k. We conclude that both ions are important to the
instability, with C+ driving the instability and H+ suppres-
sing it.

Figure 1. Predicted growth rate ( ( )wIm ) as a function of wavevector (k) using
kz=0, ∣ ∣ ˆ=B B z for the parameters shown in Table 1. The black arrows in the
lower right corner indicate the directions of E and −E × B for these
conditions. The red annotations highlight the point with the maximum growth
rate, indicating its value and location.

Table 1
Initial Mean Values of Simulation Parameters, Representing a Relatively Cold

Region in the Chromosphere

n (m−3) ux (m s−1) uy (m s−1) T (K) νs,H (s−1)

e− 3.6 × 1015 −8690 −1790 7160 1.6 × 107

C+ 6.0 × 1014 −1090 −4410 4830 1.4 × 104

H+ 3.0 × 1015 +190 −1260 4060 6.7 × 105

H 8.0 × 1019 0 0 4000 L

( ) ˆ=B z10 Gsim
( ) =J 5x
imposed A m–2

Δx = Δy = 2.5 cm (Nx, Ny, Nz) = (512, 512, 1)

Note. The table shows the means of number density (n), x- and y-components
of velocity (ux and uy), temperature (T), and momentum transfer collision
frequency with neutrals (νs,H) for each fluid. The table also indicates the mean
magnetic field in the simulation plane (Bsim), the imposed current ( ( )Jx

imposed ) as
described by Equation (3), the grid cell width in x and y (Δx and Δy), and the
number of cells in the x, y, and z dimensions (Nx, Ny, and Nz).
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2.2. Simulation Structure and Initial Conditions

To study a simplified case of this instability, we restrict
ourselves to a 2.5D simulation, where vector quantities have
three components but the simulation grid extends in two
dimensions, using periodic boundary conditions including only
electrons (e−), hydrogen neutrals (H), hydrogen ions (H+),
and singly ionized carbon (C+). We choose parameters,
summarized in Table 1, inspired by a cold region in the
chromosphere where linear theory predicts the TFBI will grow.
We include singly ionized carbon in particular because initial
studies of the TFBI using PIC simulations and theory indicate
that it is among the most important ionized species in
determining the instability properties under chromospheric
conditions (Oppenheim et al. 2020). Excluding other fluids
simplifies the simulation and linear theory while reducing
computational costs.

In Table 1, the mean values for the ion densities and
magnetic field, and neutral density, velocity, and temperature,
were chosen to represent a relatively cold region from a 2.5D
radiative single-fluid MHD simulation of the chromosphere
(see Section 3.1). The mean electron density satisfies quasi-
neutrality (Equation (1d)). The other initial mean velocities and
temperatures are selected numerically such that the mean
accelerations (∂us/∂t) and temperature variations (∂Ts/∂t) of
all other fluids are as close to zero as possible. These velocity
and temperature selections bring the simulation conditions
closer to the physics described by the theory, which assumes
constant mean values. The electric field is determined by the
electron momentum equation assuming negligible electron
inertia; initially, ( ) ( ˆ– ˆ)= =E t x y0 2.58 8.53 Vm−1, although
later, E changes as shown in Appendix C.

The momentum transfer collision frequencies are calculated
self-consistently following the formalism of Wargnier et al.
(2022, and references therein). In particular, the (H+, H)
collisions take into account the charge exchange resonance and
are treated as non-Maxwellian. The (C+, H) collisions are
treated assuming Maxwell molecules. The (e−, H) collision
frequency is calculated by performing the collision integral
over experimentally determined differential cross sections.
Coulomb collision frequencies would be orders of magnitude
smaller than the other collision frequencies due to the small
ionization fraction; however, Coulomb collisions were instead
turned off to simplify comparison between this simulation and
the linear theory.

The TFBI must be driven by some energy source in order to
grow. Given the chromospheric conditions selected in Table 1,
for a 2.5D multifluid simulation, a sufficient source of energy
can come from a current flowing across the box. Such a current
can be caused by magnetic field lines bending out of the plane,

ˆ ( )( )m= -B B z J y , 3axsim 0
imposed

where the simulation box is in the xy-plane, z= 0;
( )= =B B z 0sim is the magnetic field in the simulation; and

( )Jx
imposed is some arbitrary value that determines the magnetic

field line curvature. Bending the field lines affects the
simulation only through spatial derivatives in B, which only
appear in the Ebysus model through Ampere’s law
(Equation (2b)). Plugging Equation (3a) into Ampere’s law

yields

ˆ ( )( )m m=  ´ +J B J x. 3bx0 sim 0
imposed

Currents and magnetic field curvature in the chromosphere
arise due to many different physical processes, including bulk
neutral flows dragging electrons and ions across magnetic field
lines, Poynting flux from flux emergence, colliding flows,
shocks, jets, waves, and reconnection (see, e.g., Abbett 2007).
To focus on resolving the TFBI, rather than any of these
processes, we impose a current in the simulation, as modeled
by Equation (3). One might conceptualize this current as the
simulation box being placed perpendicular to the curving
magnetic field formed from a shock, reconnection, or some
other process.
In our simulation, Bsim is constant except for a small spatial

perturbation, with perturbation strength (the ratio between
standard deviation and mean) peaking at 2.2× 10−3 and
always remaining less than 1.1% of the electron density
perturbation strength. Because the mean of Bsim is constant in
time, the imposed current term provides the mean value for the
current density throughout the simulation.
We chose an imposed current density of 5 A m–2 for the

multifluid simulation to reduce computational costs. This
current is roughly 10 times larger than any currents found in
the macro-scale simulated chromosphere discussed in
Section 3.1. However, changing the current does not affect
the linear theory of the TFBI if all of the charged fluids’
densities also change by the same factor, as discussed in
Section 2.1. Ion and electron densities vary across many orders
of magnitude in the simulated chromosphere, in some regions
reaching at least 10 times smaller than those in Table 1. Thus,
while the simulation current density may be larger than typical
in the chromosphere, the linear regime of the multifluid TFBI
simulation here should still accurately model some regions of
the chromosphere, particularly those with current and charged
fluids’ densities decreased by the same factor with all else
held fixed.
While the imposed current is sufficient to drive the TFBI for

our simulation, the instability does not directly require it.
Rather, the instability requires sufficiently large sustained drifts
relative to neutrals, perpendicular to the magnetic field.
However, we also note that removing the imposed current
from our simulation causes the necessary velocity differences
to vanish significantly faster than the instability growth rate.
This behavior is consistent with Dimant et al. (2016), which
detailed the criterion for generating currents from neutral flows
in a weakly ionized collisional plasma.

2.3. Numerical Scheme

Ebysus (Martínez-Sykora et al. 2020) is a multifluid radiative
electromagnetic simulator designed to model the Sun’s
chromosphere. Here we describe only the parts of the code
used in our study of the TFBI. For example, the Ebysus
simulations here only utilize explicit methods, so we do not
discuss the operator splitting option for semi-implicit time
evolution. Some of the architecture and methodology in Ebysus
are inherited from Bifrost (Gudiksen et al. 2011).
Ebysus utilizes a third-order predictor–corrector Hyman

explicit time-step method (Hyman 1979) to calculate deriva-
tives with respect to time. The numerical domain is defined in a
staggered mesh with scalars at grid cell centers and vector
components centered on cell edges or faces. As necessary,
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interpolation is performed using a fifth-order scheme. Mean-
while, spatial derivatives are computed using a sixth-order
scheme. The details of the staggered mesh, interpolation, and
derivative calculations match those of Bifrost.

Ebysus also includes artificial hyperdiffusion terms for
stability that primarily diffuse sharp fluctuations at small scales
(five grid cells or less). These terms are similar to those in
Bifrost but have been adapted to the multifluid model. Their
exact forms are detailed in Appendix B.

3. Results

Section 3.1 discusses the predicted growth rate for the TFBI
throughout the chromosphere. This result comes from applying
the linear theory to a single-fluid macro-scale simulation and
predicts that the instability occurs throughout many of the
relatively cold regions in the chromosphere. Section 3.2
presents the main multifluid simulation in this work and
analyzes the simulation growth rates to confirm they match
closely with theory. Section 3.3 demonstrates that this
instability leads to increased temperatures and fluctuations in
speed, as well as varied mean velocities, for all fluids in the
simulation. Taken together, these results indicate that the
effects of the TFBI may significantly affect heating, transport,
and turbulent motions throughout the colder regions in the
chromosphere.

3.1. Predicting Regions of Instability in the Chromosphere

To predict where the TFBI occurs throughout the chromo-
sphere, we combine the linear instability theory with output
from a single-fluid macro-scale simulation run using the rMHD
code, Bifrost (Gudiksen et al. 2011). This single-fluid
simulation treats hydrogen and helium ionization and recombi-
nation in nonequilibrium (Leenaarts et al. 2007; Golding et al.
2016) and incorporates some of the effects of interactions
between ions and neutrals by including ambipolar diffusion
(Nóbrega-Siverio et al. 2020). Our prediction improves upon
the related prediction in Oppenheim et al. (2020) by solving the
full multifluid linear theory including thermal perturbations and
utilizing output from a Bifrost simulation that included
nonequilibrium ionization modeling.

For this work, we convert the single-fluid Bifrost simulation
output into a set of multifluid parameters including only H, H
+, C+, and electrons. The magnetic field, along with the H and
H+ density, comes directly from the Bifrost simulation output,
as the densities were tracked via the nonequilibrium ionization
modeling. The temperatures of all fluids are set equal to the
simulated single-fluid temperature for simplicity. The neutral
velocity is set to zero, while the velocities of charged fluids
come from the ambipolar velocity (Pederson drift), as detailed
in Martínez-Sykora et al. (2012). Finally, the C+ density is set
to the appropriate fraction of the single-fluid density, assuming
photospheric abundances to find the density of carbon
(Asplund et al. 2009) and statistical equilibrium to determine
its ionization fraction.

Figure 2 shows the resulting growth rate prediction for the
TFBI throughout the simulated chromosphere. At each point in
space, the growth rate is determined by taking the largest
imaginary part of all of the solutions for ω across a variety of k.
We tested all values of k with magnitude 0.1, 0.3, 1, 3, 10, 30,
100, or 300 [m−1] and each of 18 directions separated by 1°
increments in the plane perpendicular to the local magnetic

field. Points with a negative growth rate are shown in gray.
Note in particular that the predicted instability growth is
correlated with the colder temperatures in the chromosphere.
At every location with predicted growth, the single-fluid

MHD model may be inaccurate, as it fails to incorporate the
effects of the TFBI. Combined with the prediction of heating
due to the TFBI (see Figure 6 in the next section), this supports
the possibility of the TFBI being responsible for the missing
heating in chromospheric models.
White regions in Figure 2 indicate where the assumptions of

the TFBI theory break down, and the growth rate was not
calculated. In the upper chromosphere and above, white regions
indicate areas where the plasma does not satisfy the weakly
ionized assumption, defined here as nion/nneutral< 0.01. In the
lower chromosphere and below, white regions indicate areas
where the electrons are not strongly magnetized, having
|qe||B|/(meνe,H)< 2. In regions of weakly magnetized or
demagnetized electrons, we discovered that the TFBI theory
sometimes predicts instability growth (not shown on the plot);
however, it is only for large wavelengths (|k| 0.01 m−1) and
long timescales ( ( ) wIm 0.001 s−1). We mask these results
because the lower solar atmosphere may be dynamic on such
timescales (see, e.g., Wedemeyer et al. 2004; Pereira et al.
2013; Carlsson et al. 2019), which invalidates the assumption
of constant background as required by the linear theory.
Furthermore, any physical mechanisms responsible for instabil-
ity involving demagnetized electrons may be different than
those responsible for the TFBI.
While Figure 2 suggests that the TFBI occurs ubiquitously

throughout the colder regions in the simulated chromosphere,
there are a few causes for concern about whether the predicted
growth rates are similar to those in the actual chromosphere.
First, the underlying Bifrost simulation does not correctly
represent the physics of TFBI, and incorporating such effects
may produce different results. In particular, large electric fields
develop in Bifrost that indicate hypersonic drifts. These
probably would be mitigated by the TFBI. The instability
would also cause heating and changes in velocity. Second, the
assumptions that we applied to convert the single-fluid Bifrost
simulation output into a set of multifluid values for the TFBI
theory could make these predictions inaccurate. Third,
gradients (e.g., in number density or temperature) are not
included in the theory presented here, which assumes a
constant background, but such gradients may affect the wave
properties and growth rates.
To investigate a few possible issues with the assumptions of

the prediction in Figure 2, we consider in particular the
temperatures and the mixture of fluids used for the calculation.
We predicted TFBI growth predominantly in Bifrost regions
with temperatures significantly less than the minimum
suggested by observations (da Silva Santos et al. 2020). To
test the extent of our prediction’s dependence on these
unphysically low temperatures, we repeat the linear theory
calculation but artificially set temperatures less than 4000 K to
this minimum value. This change has minimal impact, yielding
a positive growth rate prediction in over 95% of the same
regions and altering the average positive growth rate by only a
factor of 2. We argue that single-fluid rMHD codes exhibit
unphysically low temperatures as a result of their over-
simplifications of chromospheric physics, such as the exclusion
of TFBI effects.
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To make the prediction in Figure 2, we assumed a mixture of
only electrons, neutral H, H+, and C+ fluids, which is an
oversimplification of the chromospheric composition. This
assumption simplifies computations and allows comparison
with the multifluid TFBI simulations, which become signifi-
cantly more expensive if run using all major ions in the
chromosphere. To test that we still capture the dominant
physics with this reduced set of ions, we calculate the TFBI
growth rates for a system that adds Fe+ to the mixture above.
This somewhat alters the results but still predicts TFBI growth
throughout the chromosphere. We argue that assuming an even
more realistic mixture including more fluids may further alter
the details of the results but would leave the key point

unchanged; based on this Bifrost simulation, the TFBI could
occur throughout the chromosphere.
Due to the limitations of this analysis and the Bifrost model,

we further explore these predictions in Figure 3. This figure
shows various parameters in one particular area where there are
two distinct regions of predicted instability growth. First, we
check that the previous prediction was not missing any
significant regions of instability by sweeping across more
possible values of k. The first panel of Figure 3 shows the
predicted growth rates after checking values of k with each of
the 24 mag between 0.1 and 681 [m−1] (inclusive) with even
logarithmic spacing and each of the 60 directions separated by
3° increments in the plane perpendicular to the local magnetic

Figure 2. (Top) Growth rate of the multifluid TFBI throughout the chromosphere from a Bifrost simulation snapshot. The gray regions represent tested points with
negative growth rates. The white regions show untested points where the assumptions of the TFBI theory are not satisfied. Note that x spans 50 Mm, while the z
direction ranges from zero at the photosphere up to 1.1 Mm. (Bottom) Temperatures from the same Bifrost simulation snapshot. Many of the colder regions overlap
with locations of predicted growth of the TFBI.

Figure 3. Various parameters plotted in the region 25.5 Mm < x < 27.5 Mm, 0 Mm < z < 0.5 Mm using the same Bifrost snapshot as in Figure 2. From left to right,
these panels show the predicted growth rates when testing more values of k than used in Figure 2; the phase speed, ( ) ∣ ∣w=f kv Re ; the flow angle, i.e., the angle from
E × B to k or −k, whichever is closer; the electron magnetization, |κe| = |qe||B|/(meνe,H); the ionization fraction, ne/nH; the magnetic field magnitude, |B|; and the
electric field magnitude, |E|. In the first three panels, gray indicates negative growth rate predictions, while white corresponds with untested points where the TFBI
assumptions break down.
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field. This more accurate search predicts that the instability will
occur in the same regions as in Figure 2, though with slightly
larger growth rates.

The second and third panels of Figure 3 further characterize
the predicted wave properties in this region. The second panel
shows the phase speed, ( ) ∣ ∣w=f kv Re . The third panel shows
the flow angle, the angle from E×B to k or −k, whichever is
closer. This angle gives insight into which effects contribute to
the instability. In the single-species ion case with strongly
magnetized electrons and weakly magnetized ions, pure FB
waves have a flow angle near 0°, while waves dominated by
thermal effects have a flow angle close to −45°, the bisector of
−E and E×B (Dimant & Oppenheim 2004; Dimant et al.
2022). For example, around the edges of the lower left region
of predicted instability (within x< 26.3, z< 0.3Mm), the flow
angle suggests that thermal effects dominate. Meanwhile, in the
middle (furthest from any edges) parts of this region, the flow
angle suggests significant contributions from both thermal and
FB effects, requiring the TFBI theory for an accurate
description.

The remaining panels in Figure 3 provide some other
physical parameters for reference. The fourth panel provides
the electron magnetization, |κe|= |qe||B|/(meνe,H), which is
larger than 2.0 for all nonwhite points in the first three panels.
The fifth panel shows the ionization fraction, ne/nH, which is
smaller than 0.01 for all nonwhite points in the first three
panels. The sixth panel plots the magnitude of the magnetic
field, |B|, with values of up to a few hundred gauss consistent
with observations (see, e.g., Trujillo Bueno et al. 2006;
Ishikawa et al. 2021). While the magnetic field in this area is
greater than 10 G everywhere with predicted TFBI growth, the
larger area from Figure 2 contains some regions of predicted
instability that coincide with magnetic fields of 10 G or less.
Despite the relatively small magnetic field, we chose
parameters for our TFBI simulation (see Table 1) inspired by
these regions because they seemed most likely to produce the
instability using the least amount of computational time. The
final panel shows the magnitude of the electric field, |E|, which
reaches more than 1000 Vm−1 in some regions; such large
electric fields could be mitigated by the presence of the TFBI,
which is not incorporated into the Bifrost simulation.

3.2. Simulation of the Instability

We use Ebysus to run a multifluid simulation of a relatively
cold region in the chromosphere with magnetic field lines bent
out of the plane using the parameters in Table 1. This
simulation shows a clear wave pattern similar to that found in
kinetic simulations (Oppenheim et al. 2020). The growth rate
agrees with linear theory during the linear regime, indicating an
accurate reproduction of the TFBI. This success demonstrates
that multifluid simulators are capable of producing the TFBI.

Figure 4 and the corresponding animation show the electron
number density throughout the simulation. We initialize the
number density at t = 0 (top left panel) with a random
perturbation having a standard deviation approximately 4.6
orders of magnitude smaller than the background density,
smoothed by a Gaussian kernel to mitigate numerical artifacts
at the grid scale. A clear wave pattern develops by t = 1.0 ms
(top middle panel), and the perturbation grows according to
linear theory. By t = 3.0 ms (top right panel), the perturbation
has grown by roughly 2 orders of magnitude. At around
t≈ 5.2 ms (bottom left panel), nonlinear effects start to develop

as the perturbation becomes comparable in magnitude to the
mean density, 3.6× 1015 m−3.
Around t≈ 5.3 ms, the rms perturbation reaches its max-

imum of roughly 27% of the background value, though it
eventually settles down to roughly 17% by the end of the
simulation. The bottom middle panel of Figure 4 shows that by
t = 5.6 ms, secondary waves have developed and spread
throughout the simulation box. From this time onward, the
linear-stage TFBI is no longer the dominant effect in the
simulation. Finally, the bottom right panel shows the density
when the simulation ends at t = 7.9 ms. By the end of the
simulation, the perturbations reach a quasi-steady state where
the amplitude and scale size of features settle to roughly
constant values.
To confirm that this simulation really does reproduce the

TFBI, Figure 5 compares growth rates from the simulation to
linear theory. To determine the growth rates, we compute a
Fourier transform in space at each snapshot in time, ( ) kt , of
the electron number density perturbation from t = 0.6 to
1.9 ms. According to linear theory, the magnitude at each k
should scale as [ ( ) ]w texp Im . Thus, for each k, the slope of the
best-fit line through the natural log of the magnitude of the
Fourier transforms provides the simulation growth rate,

( )g w= Im , as follows:

∣ ( )∣ ( )g + = kt offset ln . 4t

The left panel of Figure 5 plots the results of this fitting
process. The right panel of the figure compares the simulation
and theory directly by overlaying contours of γ as determined
here for the simulation and in Section 2.1 for the theory.
Figure 5 shows remarkably close agreement between

simulation and linear theory. Qualitatively, the simulation and
linear theory contours are almost aligned and have similar but
slightly different shapes. The difference in shapes is not too
concerning, as the morphology varies with the parameters in
linear theory (Dimant et al. 2022 contains some examples).
Meanwhile, comparing quantitatively at the peak growth rates,
the simulation growth rate ( )wpeak

sim is 6.6% less than ωpeak in the
theory. The magnitude of the wavevector at the simulation peak
∣ ∣( )kpeak

sim is 9.6% smaller than in the theory, and its direction
( )kpeak
sim differs from the theory peak by 10°.8. From this close

agreement, we conclude that this simulation does indeed
reproduce the TFBI described by linear theory.
A small discrepancy still remains between the simulated and

predicted growth rate versus wavevector distributions. One
possible source of error is the changing background quantities.
In particular, the linear theory neglects any zeroth-order
acceleration (dsus/dt) and temperature variations (dsTs/dt).
Meanwhile, some background acceleration and heating in the
simulation is an unavoidable consequence of the imposed
current (see Equation (3)), although the amount depends on the
simulation parameters.
To check whether the zeroth-order effects of the imposed

current are the main source of the discrepancy, we repeated the
simulation but used imposed current and ion number densities
10 times larger (not shown here). This change of parameters
has almost no effect on the theoretical prediction while
increasing the zeroth-order acceleration and heating of all
electrons and ions by a factor of 10. The discrepancy between
simulation and theory also increases significantly. Quantita-
tively, at the peak for this test simulation, the growth rate is
11.6% less than in the theory (compared with 6.6% from the
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main simulation), |k| is 7.4% smaller than in the theory
(compared with 9.6%), and the direction of k differs from the
theory peak by 14°.7 (compared with 10°.8). We conclude that
the zeroth-order acceleration and heating terms are the most
likely main source of error in the original simulation.

Other possible sources of error include electromagnetic
effects, which are included in the simulation but not the theory,
and any artifacts of the numerical method used for the
simulation. The small magnetic field fluctuations, with a
relative size less than 1% compared to the relative size of the
density fluctuations, suggest that the electromagnetic assump-
tion does not introduce a sizable error. Meanwhile, we found
the numerical diffusion effects to be small, especially during
the linear growth stages of the simulation, implying at most
minor error contributions from numerical artifacts.

The linear stage of the main TFBI simulation confirms that
the instability occurs for the chromospheric parameters in
Table 1, as well as for any similar plasma with the same ratios
of current and charged fluids’ densities. In particular, the
simulation also reproduces the linear stage of the TFBI for such
plasma because the linear theory is unaffected by changing
current and charged fluids’ densities by the same factor.
Additionally, the trend from the test simulation (10 times larger
J, ne, nH+, and nC+ than in Table 1) to the main simulation
(values directly from Table 1) suggests that similar simulations
with even smaller current and charged fluids’ densities would

have even better agreement between the linear regime of the
simulation and the linear theory.
In the next section, we analyze the effects of turbulence

throughout this simulation. While we are confident that this
simulation accurately represents the linear regime for any
similar plasma with the same ratios of current and charged
fluids’ densities, it is not yet clear how the nonlinear behavior
would be altered by using different parameters.

3.3. Effects of Turbulence: Heating, Transport, and Turbulent
Motion

While the linear theory fully breaks down at around t =
5.2 ms in our simulation of the TFBI, turbulence affects the
temperatures and velocities of fluids as soon as t = 4.0 ms,
when the rms electron density perturbation reaches approxi-
mately 3% of the mean electron density. These nonlinear
effects do not arise physically in macro-scale models that fail to
resolve the small scales (a few meters and a few milliseconds)
and to include the multifluid physics relevant to the TFBI.
Therefore, the effects of the TFBI might cause disagreements
when comparing such models to solar observations. In this
section, we use our simulation to investigate the turbulence-
driven heating, transport, and turbulent motions due to
the TFBI.
Figure 6 illustrates the turbulence-driven heating in the

simulation. The plots show the evolution of fluid temperatures

Figure 4. Perturbation of electron number density at selected snapshots throughout the simulation. The associated movie available online (duration: 18 s) shows the
evolution throughout the entire simulation. The simulation runs from t = 0.0 to 7.90 ms. Note that the color scale varies between panels in this figure and in time in the
animation. Panels (or frames in the animation) show snapshots of the simulation at different stages, including the initial conditions, linear growth phase, and nonlinear
regime.

(An animation of this figure is available.)
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throughout the simulation, as well as the temperature evolution
predictions for a no-instability model with the same physical
parameters as in the simulation (shown in Table 1) but that
lacks the spatial resolution to reproduce the TFBI. These no-

instability temperature predictions are constructed by plugging
mean values of quantities into the energy Equation (1c) to
calculate ∂Ts/∂t from t = 0 to 0.5 ms—when the instability
effects become relevant—then extrapolating linearly until the
end of the simulation. The no-instability model shows constant
nonzero heating due to the imposed current (see Equation (3)).
There is significant heating due to the TFBI. In the

simulation, the electron temperature overshoots up to 3000 K
more than its original value of 7000 K before settling down to
about 8300 K, 1300 K above the original temperature. The ion
temperatures look qualitatively similar; C+ peaks at an
increase of 1200 K before settling to 400 K above the no-
instability model temperature, while H+ peaks at an increase of
100 K and settles to an increase of 30 K. The neutral
temperature does not overshoot but ends up approximately
10 K larger by the end of the simulation due to thermal energy
transfer from collisions with the charged fluids heated by the
TFBI. This heating may contribute toward heating the actual
chromosphere and help explain why macro-scale models such
as Bifrost predict temperatures thousands of kelvins smaller
than those implied by observations.
The heating comes from collisional effects. Collisions

convert the kinetic energy into thermal energy and allow
thermal energy transfer between fluids. The dissipation of
velocity drifts heats the ions and electrons, though a majority of
that thermal energy transfers into the neutrals. Still, the neutral
temperature changes less than the other fluids’ temperatures
during the simulation because the neutrals are multiple orders
of magnitude denser. By the end of the simulation, the charged
fluids’ temperatures reach a constant difference with their no-
instability counterparts, but the neutral temperature keeps
increasing. If the simulation were to run longer, we predict this
quasi-steady state would continue, as all of the turbulence-
driven heating of charged fluids transfers energy into the
neutrals. As long as the TFBI turbulence continues, electron
and ion temperatures will remain elevated. Eventually,
conditions would change significantly enough to dampen the
TFBI, possibly after heating the neutrals by hundreds or
thousands of kelvins.

Figure 5. (Left) Growth rate as a function of wavevector, calculated using simulation outputs during the linear growth stage. (Right) Contours of the growth rate vs. k
map from the simulation (red solid lines) and the theoretical prediction from Figure 1 (blue dashed lines), labeled with values in units of s−1. The close agreement
supports the claim that this simulation reproduces the TFBI. The remaining discrepancy between theory and simulation is addressed further in the main text.

Figure 6. Temperature evolution of each fluid throughout the simulation of the
TFBI. Solid lines show mean temperatures throughout the simulation. Dashed
lines show temperature predictions using the same physical parameters but
without accounting for the instability. Linear theory alone predicts no change in
mean temperatures due to the instability; around t = 4.0 ms, nonlinear effects
start to become important and cause heating.
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Figure 7 illustrates the turbulence-driven transport in the
simulation. The plots show the evolution of the fluids’
velocities throughout the simulation, broken up into compo-
nents parallel and perpendicular to the mean electric field.
Similarly to Figure 6, these plots also compare to a no-
instability model, constructed here by plugging mean values
into the momentum Equation (1b) to calculate the accelerations
until t = 0.5 ms, then extrapolating linearly after that time. The
no-instability model has a nonzero slope due to the imposed
current (see Equation (3)).

There is moderate transport due to the TFBI in this
simulation. For each velocity component of each fluid, the
nonlinear effects are not apparent until roughly t = 4.0 ms, at
which point the behavior changes, leading to an overshoot and
then settling toward some particular deviation from the no-
instability model. Parallel to E, the electrons end up with a
velocity of roughly –920 m s−1, 120 m s−1 less than the no-
instability model predicts. The ion and neutral velocities in this
direction all differ from the no-instability model by less than
5%. Perpendicular to E, the electrons end up with a simulation
mean velocity that is roughly 450 m s−1 (5%) larger due to the
instability. The ion velocities in this direction increase by
roughly 5% due to the instability, while the neutral velocity
decreases by roughly 5%.

Altering the mean velocities affects the electric field strength
and direction. Electrons traveling parallel to E work to short
out the field, while those traveling perpendicular to E increase

the field. For our simulation, the impact of increased
perpendicular transport is stronger than the change in transport
parallel to E, leading to an increased electric field magnitude,
as shown in Appendix C. To incorporate these effects into a
macro-scale model, more work is required to determine the
behavior of instability-driven transport and electric field
changes across a range of parameters. Eventually, these effects
could be modeled by parametrically adjusting electron and ion
collision frequencies with neutrals, altering the effective cross-
field conductivities.
Figure 8 shows the turbulent motions of each fluid

throughout the main multifluid simulation. These motions are
computed by taking the standard deviation of the speed (i.e.,
magnitude of velocity) for each fluid at each simulation
snapshot. Similarly to the turbulence-driven heating, the
turbulent motion speeds of all of the charged fluids overshoot,
then settle down to some value above a baseline. The relevant
baseline in this case is zero; a model lacking the resolution to
consider fluctuations would see zero deviation from the mean
caused by effects at this scale.
There are notable turbulent motions due to the TFBI. The

standard deviation of the electron speed overshoots to
5200 m s−1 before settling to roughly 2500 m s−1. For C+,
the peak is around 1150 m s−1 before settling to roughly
750 m s−1. For H+, the peak is at 900 m s−1, and the turbulent
motion speed decreases to 400 m s−1 by the end of the
simulation. The neutral speed does not overshoot but ends up at

Figure 7. Velocity evolution throughout the TFBI simulation for each fluid (electrons, C+, H+, and H, from top to bottom). Solid lines show mean velocities
throughout the simulation. Dashed lines show velocity predictions using the same physical parameters but not accounting for any instability. The left panels show the
velocity component in the electric field direction, · ˆu E , while the right panels show the component perpendicular to the electric field, ∣ ( · ˆ ) ˆ∣-u u E E , where
ˆ ∣ ∣= E EE . Linear theory alone predicts no change in mean velocities due to the instability; around t = 4.0 ms, nonlinear effects start to become important and cause
acceleration.
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approximately 4 m s−1 due to collisions with the other fluids in
the simulation. Turbulent motions due to small-scale effects
such as the TFBI could contribute to broadening chromo-
spheric spectral lines in observations.

4. Conclusions

Combining the linear instability theory of a multifluid model
and the output of a single-fluid simulation, this work predicts
that the TFBI occurs throughout many of the colder regions in
the chromosphere. This prediction improves upon the related
prediction in Oppenheim et al. (2020) by solving the full
multifluid linear theory, including thermal perturbations, and
utilizing output from a Bifrost simulation that included
nonequilibrium ionization modeling. Our estimates reveal that
the single-fluid rMHD model has extended regions that may be
inaccurate, since the model does not incorporate the effects of
the TFBI.

Focusing on the parameters found in one of these colder
regions in the chromosphere, we produce the first multifluid
simulation of the TFBI. We validate this by showing close
agreement between the simulation and linear theory. For
computational reasons, we used a current density that is too
large by roughly an order of magnitude compared to those in
the single-fluid simulated chromosphere. This adjustment does
not affect the linear theory but likely contributes to the small
error between simulation and theory during the linear regime.
The ability to produce this instability with a multifluid code
enables further study of the instability across chromospheric
parameter ranges that are computationally challenging for
kinetic models.

Our multifluid simulation exhibits turbulence-driven heating,
transport, and enhanced turbulent motions of all fluids in the
simulation. The significant heating supports the possibility that
the TFBI may contribute toward chromospheric heating. The
transport will modify cross-field conductivities and electric
fields. The turbulent motions, having speeds consistent with the
microturbulence inferred from inversions of observations (da
Silva Santos et al. 2020), may help to explain why observations
show broader Mg II h and k lines than synthetic spectra from
highly successful numerical models of the lower solar
atmosphere (Hansteen et al. 2023; Martínez-Sykora et al.

2023). However, nonlinear effects may differ for different sets
of parameters throughout the chromosphere. Additionally,
these turbulent behaviors could change significantly for a 3D
simulation, where the possibility for a turbulent electric field
component parallel to B could greatly increase electron heating.
Quantitatively determining the impacts of the TFBI throughout
the chromosphere may require a suite of small-scale multifluid
simulations, some in 3D, spanning a wide range of parameters.
The nonlinear effects caused by the TFBI occur on scales of

meters and milliseconds—far smaller than what has been
resolved by macro-scale simulations of the Sun’s atmosphere—
yet they may play an important role in explaining observations
of chromospheric heating and line broadening due to turbulent
motion. These effects motivate further study of the TFBI and
its impact throughout the chromosphere.
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Appendix A
Linear Multifluid Instability Theory

Starting with fluid Equation (1), one may derive a theoretical
prediction for the properties of linear waves. This is done by
linearizing the equations and assuming that the original
equations hold for the unperturbed values of each quantity.
The resulting system of differential equations can be solved by
plugging in the ansatz that, for some real k and complex ω, all
perturbations are proportional to [ ( · )]w-k xi texp . This
yields a linear system of equations in the perturbed quantities.
Eliminating the perturbed quantities provides a relationship
between k, ω, and the unperturbed background.
In this work, we allow for an arbitrary number of ion fluids

with arbitrary magnetization, and we include thermal terms.
However, we still make some further assumptions to simplify
the algebra. In particular, we assume there is only one neutral
fluid, n, which does not respond to any perturbations; neglect
collisional effects between nonneutral fluids (“Coulomb
collisions”); and assume all other collision frequencies are
constant. We also assume the perturbation is electrostatic; i.e.,
the magnetic field’s response to the perturbation is negligible.
Finally, we consider only those solutions where the wavevector
k is perpendicular to the magnetic field B. After considerable
algebra, we find that the dispersion relation is
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Figure 8. Turbulent motions of each fluid throughout the simulation of the
TFBI. The y-axis shows the standard deviation of the fluid speed and is split
into top and bottom plots with different scaling so that the changes for neutral
hydrogen are visible.
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and the Debye length and magnetization parameter are defined
in the usual way:
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0 , and ( )Ts
0 are the background number density,

velocity, and temperature (in energy units) of a nonneutral fluid
s. By our assumptions, the neutral fluid does not respond to the
perturbation, so the neutral velocity un is constant. Note that
these expressions adopt the convention qe< 0.

Through further manipulation, the dispersion relation may be
rewritten into a ratio of polynomials in ω. We use the author’s
algebraic manipulation package, SymSolver,6 to accomplish
this task, rather than do it by hand. Considering only two ion
species, as was done in this work, the resulting polynomials are
18th order in ω. Such a system is too complicated to solve
analytically. However, there are many existing routines for
finding the roots of polynomials numerically. In this work, we
use the roots method from the numpy.polynomial
package to find the roots of polynomials numerically for a
given set of physical parameters and each value of k.

A more detailed derivation and analysis for the TFBI theory
can be found in Dimant et al. (2022). Note that there are a
couple differences between the dispersion relation here and in
that work. Here we account for the contribution from a
potentially nonzero neutral velocity, even though all dispersion
relation calculations discussed in this work occur at un= 0. We
include this contribution for future reference to allow for
dispersion relation calculations outside the neutral frame. The
other difference is an additional term that appears on the right-
hand side of the generic dispersion relation in Dimant et al.
(2022); this term comes from using the Poisson equation
instead of quasi-neutrality. For the parameters of the simulation
in our work, we confirmed numerically that this additional term
has a negligible effect on growth rate predictions.

Appendix B
Numerical Scheme: Artificial Diffusion

The artificial hyperdiffusion terms in Ebysus primarily
diffuse sharp fluctuations at small scales (five grid cells or
less). These terms are similar to those in Bifrost (Gudiksen
et al. 2011) but have been adapted to the multifluid simulations
discussed in this work. In particular, these terms are added to
the continuity, momentum (each component treated

separately), and energy Equations (1a), (1b), and (1c) for
every fluid. Each of these equations, which can be expressed
as∂fs/∂t= (original RHS), where fs= ns, ux,s, uy,s, uz,s, or Ts
becomes, after incorporating the hyperdiffusive terms,
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Here ν1= 0.01 and q = 1.0 are constants that control the
strength of the hyperdiffusion,

( ) ( )( ) g m= +C T m B m ns s s s s
fast 2 2

0 is the speed of the fast
magnetosonic wave for fluid s, γ= 5/3 is the adiabatic index,
and ¢x and ¢y are the spatial coordinates x and y normalized
such that the grid cells each have a length of 1.

Appendix C
Simulation Electric Field

The electric field varies throughout the Ebysus simulations
discussed in this work. Figure 9 plots the mean electric field for
the main simulation of the TFBI presented in this work; see, for
example, Section 3.2 and Figure 4. This figure shows the
magnitude and direction of the mean electric field throughout
the simulation, calculated by solving the electron momentum
equation for E assuming no electron inertia. The magnitude
increases roughly linearly from 8.91 to 8.97 Vm−1 during the
first 4.0 ms of the simulation, increases to its peak of
10.33 Vm−1 at t = 5.30 ms, decreases, and then fluctuates

Figure 9. Mean electric field throughout the simulation of the TFBI. The top
plot indicates the magnitude, while the bottom plot indicates the angle with
respect to the positive x-axis.

6 https://gitlab.com/Sevans7/symsolver
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before reaching its final value of 9.35 Vm−1 at the end of the
simulation. The angle increases roughly linearly from −73°.2 to
−72°.1 during the first 4.0 ms, increases to its peak of −60°.4 at
t = 5.32 ms, decreases, and then fluctuates before reaching its
final value of −67°.3.
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