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Abstract

We prove maximum principles for the problem of optimal control for
a jump diffusion with infinite horizon and partial information. The re-
sults are applied to partial information optimal consumption and portfolio
problems in infinite horizon.

1 Introduction

In this paper we consider a control problem for a performance functional

J(w) =B [ | #ex0.00.0).

where X (t) is a controlled jump diffusion and u(t) is the control process. We
allow for the case where the controller only has access to partial-information.
Thus, we have a infinite horizon problem with partial information. Infinite-
horizon optimal control problems arise in many fields of economics, in particu-
lar in models of economic growth. Note that because of the general nature of
the partial information filtration &;, we cannot use dynamic programming and
Hamilton-Jacobi-Bellman (HJB) equations to solve the optimization problem.
Thus our problem is different from partial observation control problems.
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In the deterministic case the maximum principle by Pontryagin (1962) has been
extended to infinite-horizon problems, but transversality conditions have not
been given in gerneral. The 'natural’ transversality condition in the infinite
case would be a zero limit condition, meaning in the economic sense that one
more unit of good at the limit gives no additional value. But this property is
not necessarily verified. In fact [4] provides a counterexample for a ‘natural’ ex-
tension of the finite-horizon transversality conditions. Thus some care is needed
in the infinite horizon case.

There have been a variety of articles on infinite-horizon problems. E.g. in
[6] it is stated a 'natural’ extension to infinite horizon discounted control prob-
lems.

We refer to [13] for more information about stochastic control in jump diffu-
sion markets, to [8] for a background on infinite-horizon backward stochastic
differential equations and [11] for a general introduction to infinite-horizon con-
trol problems in a deterministic environment.

In this paper we prove several maximum principles for an infinite horizon op-
timal control problem with partial information. The paper is structured as
follows: In Section 4 we prove a maximum principle version of sufficient type
(a verification theorem). In section 5 we give some examples, before we prove a
(weak) version of a necessary type of the maximum principle in section 6.

In a forthcomming paper [1], the case of infinite horizon for delay equations
is treated.

2 Preliminaries

Let B(t) = B(t,w) = (Bi(t,w),...,Bu(t,w)), t > 0, w € Q and N(dz,dt) =
N(dz,dt) —v(dz)dt = (Ny(dz,dt), ..., N,(dz,dt)) be a n-dimensional Brownian
motion and n independent compensated Poisson random measures, respectively,
on a filtered probability space (2, F,{F;}i>0, P). Let X(t) = X“(t) be a con-
trolled jump diffusion, described by the stochastic differential equation

AX () = b(t, X (£), u(t), w)dt + o (t, X (), u(t), w)dB(t)

+/ O(t, X (t),u(t), z,w)N(dz,dt); 0 < t < oo (1)
Ry

X(0) =z € R",

where b : [0,00] x R" x U x 2 — R"™ is adapted, o : [0,00] x R" x U x ) — R"*"
is adapted and 6 : [0,00] x R" x U x  — R™*" is predictable (see [9]). See e.g.
[2], [13] for notation and more information. Let

& C F,

be a given subfiltration, representing the information available to the controller
at time t;¢ > 0. The process u(t) is our control, assumed to be {&;};>0 predi-
catble and with values in a set U C R"™. Let Ag be our family of &-predicatble



controls. Let R denote the set of functions r : [0, 00] x R — R™*™ such that
/ 160:,;(t, z,u, 2)r; j(t, 2)|v;(dz) < oo for all 4, j, ¢, x.
R

Let f:[0,00] x R™ x U x 2 — R™ be adapted and assume that

E {/00 |f(t7X(t),u(t),w)|dt] < oo for all u € Ag.
0

Then we define
J(u)=F [/000 f(t,X(t),u(t),w)dt}

to be our performance functional. We study the problem to find @ € Ag such
that

J(1) = sup J(u). (2)
u€EAge

Let us define the Hamiltonian H : [0,7] x R” x U X R™ x R™*" x R — R, by

H(t,x,u,p,q,7) = f(t,z,u,w) + bT(t, x,u,w)p + tr(UT(t, x,u,w)q)

+ Z /]R" 0;(t x,u,z,w)r; ;(t, z)vj(dz). (3)
0

ij=1

For notational convenience we will in the rest of the paper suppress any w from
the notation. The adjoint equation in the unknown F;-predictable processes
(p(t),q(t),r(t,2)) is the following

dp(t) = _va(tv X(t)7 ’ll(t),p(t), Q(t)> ’I“(t, ))dt + Q(t)dB(t)
- / r(t, z)N(dz, dt). (4)
R,

n
0

3 Existence and Uniqueness

In this section we prove a result about existence and uniqueness of the solution
(Y(t), Z(t), K(t,()) of infinite horizon BSDEs of the form;

AY (t) = —g(t,Y (), Z(t), K (t,))dt + Z(t)dB(t)
+ [ K(t,ON(dC,dt);0 <t <, (5)
Ry

lmY () = €(7) 10,00 (7), (6)

where 7 < oo is a given F;-stopping time, possibly infinite. Our result is an
extension to jumps of Theorem 4.1 in [7], Theorem 4 in [8] and Theorem 3.1 in
[15]. It is also an extension to infinite horizon of Theorem Lemma 2.1 in [5].
See also [14], [10], [3] and [12]. We assume the following:



1. The function g : Q x Ry x R*¥ x R¥*? x R — R* is such that there exist
real numbers u, A\, K1 and Ks, such that K7, K5 > 0 and

A>2u+ Ki+ K3 (7)
We assume that the function g satisfies the following requirements:

(a) g(-,y,2,k) is progessively measurable for all y, z, k, and

‘g(t’yazvk()) - g(tvyvzlvkl(')” < K1||Z - Z/”

+ Ko[k(-) = K ()R, (8)
where
KON = [ OO
and ||z|| = [Tr(z2)]2.
(b)
(=1, 9(t,y,2,k) = g(t, ', 2, k) < ply —y/'|? 9)
for all 4,9/, 2z, k a.s.
(c)
E/OT e*)g(t,0,0,0)2dt < oco. (10)

(d) Finaly we require that

y— gt y, 2 k), (11)
is continuous for all ¢, z, k a.s.
2. We have a final condition &, which is F.-measurable such that

E(e|¢]?) < 0o and

E / Mg(t, € me )Pt < oo, (12)
0

where & = E(¢|F;) and 7,1 are s.t.
=gt [ st [ [ woNacas).
0 0o Jrp

A solution of the BSDE (5)-(6), is a trippel (Yi, Zt, K¢) of progressively mea-
surable processes with values in R x R x R s.t. Z;, K; =0 when t > T,

L. Efsup eMY;|? + [ | Zs|2ds + [, fRS’ e K2(s,¢)v(d¢)ds] < oo,
>0

TAT 5

2. Vi = Yrar + finn Gods = [i02" ZodBy = [T [on K (s, QN(dC, ds) for all

tAr IS T Jinr
deterministic 7' < oo and

3. Y, = on the set {t > 7}.



Remark 3.1 (Infinite Horizon). This incorperates the case where 7(w) = 0o on
some set A with P(A) > 0, possibly P(A4) = 1.

Theorem 3.1 (Existence and uniqueness). Under the above conditions
there exists a unique solution (Y, Zy, K;) of the BSDE (5)-(6), which satisfies
the condition;

T

Bl swp MY+ [ (VP 2 Past [ [ K sOuidoas)
0 0

0<t<r Rp
< B[N + / ]g(s,0,0,0)[2ds], (14)
0

for some positive number c.

Proof. First, let us show uniqueness. Let (Y,Z, K) and (Y’,Z', K') be two
solutions satisfying (14) and let (Y, Z, K) = (Y -Y',Z - Z',K — K'). From
Ito’s Lemma we have that

6>\tAT‘Z/\T|2 + /

tAT

TAT

lemw Iz + e | K2<s,<>u<d<>] ds
Ry

TAT
< Ny +2/ N (UlVa[2 + K [Va| x || Z])

tAT

+ IOV [N ([ K2 (s, Qu(d())?

TANAT B B
-2 / e**(Ys, Z,dBy)
tAT

TAT
7/1t et [K2(s,¢) + 2K (5,{)Y (s)] N(d¢, ds).

AT Rg

Combining the above with the fact that 2ab < a? + b* we deduce since \ >
2u+ K? + K3, that for t <T

E[e)\t/\T|}7t/\7—‘2] S E[e/\T/\T|YT|2]
the same holds with A replaced by X', with A > X > 2u + K2 4+ K2
E[e,\tmmmﬂ < AT R eAT/\T|)7T|21{T<T}:|

Condition (14) implies that the second factor on the right hand side remains
bounded as T" — oo, while the first factor tends to 0. This proves uniqueness.

Proof of existence. For each n € N we construct a solution (Y}, Z;", K}") of
the BSDE

nAT
ey / o(s, Y7, 20 KT ds — /
t

AT tAT

T

Z"dB, — / K™(s, Q)N (dC, ds)
tAT ]Rg

by letting {(Y;", Z", K]');0 < t < n} be defined as a solution of the following
BSDE:

n
Y7 = E[¢|Fal+ / Loy (8)9(s, Y, 20, K™)ds— /
t t

n

2dB— / " [ K (s, QR ds)
t Jrp



for 0 <t <mnand {(Y", Z], K]');t > n} defined by

Y/ =&,

Ztn =Tk,
and

KZL = wh

for t > n. Next, we find some a priori estimates for the sequence (Y™, Z™, K™).
For any € > 0, p < 1 and a we have for all t > 0,y € R¥, z € RF¥¢ L € R with

_1
C_E’

2y, 9t y,2,k)) = 2(y,9(t,y, 2, k) — g(t, 0, 2, k))
+ 2<y7 g(tv 07 2, k) - g(ta O, 0> 0)> =+ 2<y,g(t, 07 07 O)>

1 1
<Gt oK+ K+ Al 4ol 2 P o [ ROu)
R
+ clg(t,0,0,0)[*.

From Ito’s Lemma we have

AT tAT

ATV 2 4 / leAs(/_\K”FJrﬁZ?IIz)Jr@ / e / (K">2<s,c>u<d<>]ds
t 0

< Mt e / [g(s,0,0,0)2ds

tAT

— 2/ e <YM Z"dB, >
t

AT

[ [ .0+ 2K OV (6] W),

with A =A—2u— 1K}~ 2K —¢>0,p=1-p>0and & =1—a. From this
and the matingale inequality it follows that

E

sup SN [ [z 1B e [ <>u<d<>}dr]

t>s AT 0

T

<ap | e + [ Mlgtr0,0.0)Pdr]
SAT

Let m > n and define AY; :=Y"-Y*, AZ, .= Z]" - Z} and AK, := K]"— K},
so that for n <t < m,
MAT MAT

MAT
AYt:/ g(s,Y;m,Z;”,K;”)ds—/ AZ,dB,— AK (s,¢)N(dC, ds).
t

AT tAT tAT RE



It then follows that

mMAT
IAYin P [ {PNAY P | AZ 17+ e [ (AR (s 0udc) s
R

tAT n

MAT
= / e’\s(AY.S,g(s,Y;m,Z;”7K;”)>dS
¢

AT

mAT
—2/ e (AY,, AZ,dB,)
t

AT

mAT
—/ eAS/ [(AK)Q(S,C) +2AK(5,C)AY(5)} N(d(,ds)
tAT Ry
mAT mAT
2< 6)‘5|77|20/ e**1g(s,0,0,0)ds — 2/ e (AY,, AZ,dB,)
t

AT tAT

—/tm TeAS/R [(AK)?(s,¢) +2AK(s,()AY (s)] N(d¢, ds).

n
AT 0

From the same arguments as above

E sup eAtAT‘AY%/\TP

n<t<m

+ /nmAT {eAS(\AYSm I AZ %) + e /Rn(AKF(S’OV(dO}dS]

AT 0

g { [ e“g<s,§,n,w>|2ds} -

WAT

The last term in the above equation goes to zero as n — co. Now, for t < n

nAT nAT

{otsym 2z )~ g v 20 K fas = [ Azuab,

tAT

AYt:AYn+/

tAT

nAT

[ [ AKEON @),
tAT Ry

Using the same argument as in the case of uniqueness, we have that

T

E[e)\t/\T|A}/t/\T|2] < E[e)‘t/\T|AYn|2] < cE |:/ 6AS|9(8,€S7ns>¢s)|2dS} .

AT

It now follows that the sequence (Y™, Z", K™) is Cauchy in the norm

(Y, Z, K)|| := B[ sup e|v;[* +/ (Y24 || Zs |*)ds
0

o<t<rt
+ / ’ e [ K2(s,Q)v(dC)ds].
0 Ry

So, we have that there is an unique solution to the BSDE (5)-(6), which satisfies
for all A > 2u + K7 + K3, the condition

T

sup M| + / (Va2 4 || Zo |P)ds + / & K2<s,<>u<d<>ds]
0 0

0<t<r Ry

<cE [ew -/ e“g(s,o7o,o>|2ds] .
0

E




O

4 Optimal control with partial information and
infinite horizon

Now, let us get back to the problem of maximizing the performance functional

Ju) = E UOOO P X (), u(t))dt | |

where X () is of the form (1). Our aim is to find a & € Ag such that

J(i) = sup J(u),
u€Ag

where u(t) is our previsible control adapted to a subfiltration
& CF,

with values in a set U C R™. Let H be the Hamiltonian defined by (3) and p
the solution to the adjoint equation (4). Then we have the following maximum
principle;

Theorem 4.1 (Sufficient Infinite Horizon Maximum Principle). Let
@€ Ag and let (p(t),q4(t),7(t, z)) be an associated solution to the equation (4).
Assume that for all u € Ag the following terminal condition holds:

0<E [lim BT (X (t) — X(t))]} < . (15)

t—o0

Moreover, assume that H(t,x,u,p(t),q(t),7(t,)) is concave in x and u and

= max B [H(t, X (1), u,p(8), (1), /(1. )| (16)

In addition we assume that

E /OO(X(t) — X)) [aq" +/ T (t, 2)v(d2)](X (1) — XU(t))dt| < oo,
0 R

n
0

(17)
E /Oooﬁ(t)T[ooT(t,X(t),u(t))—|— . 007 (t, X (t), u(t))v(dz)]p(t)dt| < oo,
i ’ i (18)
B [[VuH (X (0, (t), 5(2). 4(0). (1, )] < oo, (19)
and that
E [ s X)), 60 5 >>] < oo (20)
for all u.

Then we have that 4(t) is optimal.



Remark 4.1. Note that, since p(t) has the economic interpretation as the marginal
value of the resource (alternativly the shadow price if representing an outside
resource), the requirement

0 < B | T [p(t)" (X (1) - X(1))]] < o0,

has the economic interpretation that if the marginal value is positive at infinity
we want to have as little resources left as possible.

Remark 4.2. The requirement in the finite horizon case that p(T") = 0 does not

translate into limp(7") = 0 as was shown in the deterministic case in [4].
T—o0

Proof. Let I := E[[>(f(t, X (t),u(t)) — f(t, X(t),a(t)dt] = J(u) — J(@).
Then I = I3 — I5° — I5° — I3°, where

I :=F

and

We have from concavity that

H(t, X (t), u(t), pt), 4(t), 7 (¢, -
< Vo H(t, X (1), a(t), 5(t), (t

q(),7(t,))" ®))
+ VG H (X (8),a(t), 5(¢), 4(t), #(t, )T (ult) — a(t)). (22)
Then we have from (16),(19) and that u(t) is adapted to &,

02 VB [H(t X (00500, 40,70 )IE] | (ult) = i)

= B[V, HE (0.0 00,40, 7(0) ((t) — at)lE] . (29)
Combining (4), (17), (21), (22) and (23)

I <E [/OOO Vo H(t, X () als),5(s), d(s), 7 (s, )T (X (s) X(S))dS]
J



Now, using (15) and Ito’s formula
0.< B [Jm [p(t)" (X(1) - X(1))]
m{fﬂ#@@ﬂawm—mX@m@Ws
0

=F

t—o0

+fm$<wxm u(s)) — (s, X(5),(s)))dB(s)
// ), u(s),2) — O(s, X (s), i(s), 2)) N (dz, ds)

10



From (17), (18), we have that

0<FE

T [ [ ()" bl X (5)(s) = b5, X(0). )l
[ X06) = )T (T, (60,060, 005), 005075, )

[ e[ o X 51 060) — 505, X5, 5] s

+/t2/ (0, X (s), u(s), 2) —é(sj((s),a(s),z))Tfi,j(s,z)uj(dz)ds”

E/ B(s)" (b(s, X (s), u(s)) — b(s, X (), u(s)))ds

/ VL H (s, X (s),u(s), p(s), a(s), (s, ) )ds
+ / tr [qu (05, X (s), u(s)) — 6(s, X (s), i(s))) | ds

—|—/ Z/ (0(s, X (5),u(s), z) — 0(s, X (5),a(s), 2)) 7.4 (s, z)yj(dz)ds]
0 4 /Re
=09+ J7° + IT5 + 175
Finally, combining the above we get

J(u) = J(a) < IT° 12 13 = Iy
< —J° - —I° —Iy°
<0.

This holds for all u € Ag, so the proof is complete.

5 Examples

Example 5.1 (Optimal Consumption Rate Part I). Let

J(u) =FE UOOC e In (u(t)X (t))dt|,
where

dX(t) = X (1) (u(t) - u(t))dt + X (t)o (1)dB(1),
X(O) = Zo,

and p > 0. We have that

X(t) = Xpexp [ / ((s) = u(s)) — 20(s)ds + / t o(s)dB<s>] .

11



Then we deal with the problem of mazimizing J(u) over all u(t) > 0. We have
the Hamiliton function takes the form

H(t,z,u,p,q) = e " In(uz) + 2(pn — u)p + z0q,

so that we get the partial derivatives

e Pt
va(t,.ﬁ,U,p, q) = 7 + (,U/ - u)p+ aq,

and
e Pt
qu(ta z,u,p, q) = —— —Ip,
u

This gives us that

—dplt) = | S + () = u(®)p0) + o) dt — a(t)dB ()
so that .
0= Xwan
Let us try the infinite horizon BSDE with terminal condition tlirgop(t) =0,
—an(0) = | g + 0 — w0 + 000 @t~ a(aBo). (21)
tli}rgop(t) =0. (25)

Lemma 5.1 (Solution of infinite horizon linear BSDE with jumps). Let
A(t), B(t) and a(t, () be Fy-predictable processes such that

B[ 1awl+ 0+ [ e ovana] <.

and define I'y s as the solution of the linear SDE

AUy =Ty (A(t)dt + B(t)dB(t) +/ alt, <)N(d<,dt)) s> 1> 0,

RE
Ft,t =1.

Let C(t) be a predictable process such that

B [/OOO FO7S|C(5)|ds] < 0.

Then a solution (Y (t), Z(t), K(t,¢)) of the linear BSDE

—dY (t) = [A)Y (t) + Z(t)B(t) + C(t) + /

R

Oé(tC)K(t,C)dV(C)] dt

n
0

— Z(t)dB(t) — | K(t,C)N(dC,dt),
R

limY(t) =0,t — oo,

12



is given by

V() = B Utm Ft,sC’(s)dsL?-}} >0

If in additon

I [/m e’\t|Y(t)|2dt} < 0,

0
where X as in (7), then Y (t) is the unique solution.

Proof. By Ito’s Lemma we have that
d(Lo,tY:) = —Lo,:Crdt + Lo (Zs + Yi3)d By
+ / [V (Dalt, OO0 + K (1,00 + K (1, Oa(t, To. | N(dC, at).
.

So
Lo Vi + / To.,Cids = / To.s(Zs + Y.f,)dB(s)
t t

+ /too /3 [Y(s)a(s, OTo.s + K(s5,0)Tos + K(s,()a(s, C)Fo7s}1\~f(d<, ds).

By taking expectation we get the desired result. The uniqueness follows from
Theorem 3.1. O

From the above lemma we see that the solution of the linear, infinite horizon

BSDE (24) - (25) is
® P, e rs
p(t) = F =< = ds f 5
(0 [l BXS|4

where )
B = i) —u(s)~3o% ()dst [ o(s)aB(s) _ X (1)
To
Hence ) )
() = Lo
p X(t)

and A

lim p(t)(X(t) — X(¢)) > lim p(t) X (¢) >0

t—o0 t—o0
So

is an optimal control.

Example 5.2 (Optimal Consumption Rate - part IT). Let

J(u)=F UOOO e "In (u(t)X(t))dt] ,

13



where

dX (1) = X(Ou(t)(1 — u(t))dt + X (o (t)(1 - u(t))dB(2),
X(O) = Zo,

and p > 0. We have that
X(1) = Xoexp [ [ 10 = ) = 32 6) 1~ (o)l

—|—/O a(s)(1 —u(s))dB(s)

Then we deal with the problem of mazimizing J(u) over all u(t) > 0. We have
the Hamiliton function takes the form

H(t7 Z,u,p, Q) = eipt IH(UI) + SC‘[L(I - ’U,)p + I‘O’(l - U)q,

so that we get the partial derivatives

e Pt

V. H(t,z,u,p,q) = + p(1 —u)p+o(1 —u)g,

xT

and
e Pt
VUH(t7 x? u’ p7 q) =

— xup — xoq.
This gives us that

—pt

X(t)

—dp(t) = + ()1 —u@®)p(t) +o(t)(1 —uls))q(t) | dt —q(t)dB(t).

So that
e Pt

a(t) = = - —.
X (@) (up(t) + oq(t))
Let us try the infinite horizon BSDE with terminal condition
tlim p(t) =0, so that

—dp(1) = | gy + HO(E = u(O)p(0) + o)1~ u(s)a(t)|
~ a()dB(@), (26)
lim p(t) = 0. (27)

t—o0

From the above lemma we see that the solution of the linear, infinite horizon

BSDE (26) - (27) is

14



where

_X(¥)
==
Hence 1 1
0= %0
and .
Hm p(6) (X (8) — X(#) = Tim p(#) X (£) = 0
Since
—pt —pt 1 ot 1
e ) = " g Ot — g lt) — (D)
*Ptioﬂ e Pt 1 o
+e @ (t)dt + X{0) (t)dB(t),
we must have that ) 1
q(t) = ;e*” 0 o(t).
So 0
i) = L

is an optimal control.

Example 5.3 (Optimal consumption rate - part III). As above, let

Ju)=FE {/000 e "l (u(t)X(t))dt} .

But add a jump part

AX () = X(1)(u(t) — u(t))dt + X (t)o(t)dB(t) + X () /IR 0(t)2N (dz, dt)

X(O) = 2o,

and we also add the assumption that we only know a subset of the information
given by the market available at time t, represented by & C F;. Let p > 0, be
a random variable adapted to F;. Then we deal with the problem of maximizing

J(u) over all u(t) > 0. We have

H(t,z,u,p,q,7) = e " In(ux) + z(p — u)p + rogq + :17/ 0(t)zr(t, z)v(dz)
Ro

e Pt

V. H(t, ,u,p,q,7) = +(p—up+og+ [ 0(t)zr(t,z)v(dz),

Ro

15



e Pt

V. H(t z,u,p,q,r) = —xp
and
~a0(0) = [+ () — u(0)pl0) + o (0a(0) + [ 0(0)zr (e 2)vla=)a
—q(t)dB(t) — [ 6(t)zN(dz,dt),
Ro
lim p(¢) = 0.

t—o0

If we maximice

we get that

So that

The solution of the linear, infinite horizon BSDE (24) - (25) is (see [10])

oo f\s —ps
/ Aie = dSlft y
t Ft Xs

pt)=E

by = X () (u(t) — u(t))dt + X (t)o(t)dB(t) + X (t7) / 0(t)=N (dz, dt),

Ro
X(0)=1.
So .
A X (t
(0
Zo
Hence
h(t) = 1A le—Pt le—Pt Al
zol'y P P X(t)

Therefore we have that

Tim p(t) (X (t) — X (t)) = Tim p(t) X (t) > 0.

t—o0 t—o00

So
a(t) = Elp, |&]

s an optimal control.

Example 5.4 (Optimal Portfolio Selection With Consumption). For
this example let us look at a market with two investment possibilities:

16



1. A bond or bank account
dZo(t) = pZo(t)dt.
2. A stock
dZ,(t) = pZ1(t)dt + o Z,(t)dB(t).

Let (Yy, Y1) denote the amount the agent has invested in the bonds and stocks
repectively at time t. Consider then u(t,w) = u(t), the fraction of the wealth
invested in the stocks, e.g.

Z1(t)

= Z0+ 240

Further let A(t,w) = A(t) be the consumption rate relative to the wealth so that
the investor controls

Then let -
J)\,u(s Z) — E57 |:/ e—6(s+t) ()‘(t)X(t))’y]
0

be a performance functional, where
dX(t) = X(t) [(p+ u(t) (1 — p) = M(t))dt + ou(t)dB(t)]

and p > 0. We have that

X(t) = 20 exp Uot[p +u(s)(— p) — As) — %g%ﬂ]ds + /Ot Ju(s)dB(s)} .

Then we want to mazimize J“*(s,t) over all | = (u(t),A(t)), A > 0. We have
that

) = =S+ AOX )T
y

H(t,z,l,p,q +z(p + u(s)(n — p) — \)p + zoug,

so that
V. H(t,x,1,p,q) = e 0 N1 4 (p+ulp—p)—N)p+ oug.
Further, we also have

—dp(t) = [e *CTONT ) X7 () + (p+ult) (u— p) — A(t))p+ ou(t)qldt — qdB(t).

and
qu(tv x, l7pa Q) = (.u“ - p)xp + xroq,
VaH(t,2,1,p,q) = e *CTIA(®) XY — ap.
So that ( )
a(t) = —L=p(e),
o
and

Q 1 1 S(s+t)
>\ = 7p'y—1 e -1 |
xz

17



s+t 1 o 1 1 (st

dp(t) = —e7=T 5 p7=r (t)dt — [p+u(t)(p — p) — 5 (W)p7TTe =T |p(t)dt

= —pp(t)dt — @p(t)dB(t).

So to ensure that the requirement

B[ lim p(t)(X(t) — X(#))] = 0,

t—o00

is satisfied we need that

E[lim — p(t)X(t)] > 0.

t—o0

Since
p(t) = (A X (1))~ e,

we see that A . R
—p) X (t) = N0V (1) XV ()21,

So, by considering
1 1 s6+n

A= —pr-te vl
x

we try to let
1
P (t) = X (t)Ke™,

for some constants K and B.It is now clear that

d(p (1)) = pﬁu)ﬁ(—pdt 0

+p7—1§7_17_1 o2 dt.
On the other hand we have that
d(X(1)KePt) = BX (t)KePtdt + X (1)K ePp + u(t)(u — p) — KePte =1 |dt
+ X (t)KePlou(t)dB(t).
Consider ( )
A p=p
t) = —
(t) 2= 1)’
and

(i) oo 1 (- p)?
K=e¢Pe 51 [B - = :
o [ IEES 2702(7—1)2]

For K to be independent of t, we must have B = — which gives us

5
y—1’
5 w1 (p—p)?

K=|- = .
—1 -1 2 — 1y

18



With this K and

we can conclude that we have
P (t) = X (1) KePt

It is now clear that

which gives us that

— X ()N,
so that
~ ~S(s+t) ~ t _ (n=p? 5 _(u=p)? _ t (n—p)
—pO)X () = —e T Mgl o eI AT G Rl o s 4B ()
s N2 N N2 _
_28(stt) | n=p) t—y A t—ry (n—p) t—ny (n=p) B(t)

=)
= —¢, ~—1 )\'ye"/Pt T2 (=12 o2(v—1)2 c(v—1)

5(s4t) ~ 2 (w=p)?  (u—p)
> _e*%)ﬂmge T 2aenT Ve B

If 8,7, p deterministic, then

— A 2 _(u=p)? —p
E[Tm pt) (X (1) — X ()] > — lime 0+ 527e ™7 6207 Ble 761 BO)]

t—o00

=0.

So we have that E[tm ) (X (t) — X (t))] = 0, which gives us that (X, @), where

< 5 v 1 (p—p)?
Al e Ry T v
and ( |
s \kTp)
IOy

is an optimal control.

6 Necessary Maximum Principle
To answer the question: if @ is optimal does it satisfy

= max B [H(t, X (t),u, p(0), (1), 7(t, )€1 (28)

we assume the following two requirements:
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A1l Forallt,hsuchthat 0 <t <t+h <T,alli=1,...,k and for all bounded
E-measurable o = a(w), the control B(s) := (0,...,5i(s),0,...,0) € U C
R* with

B(8) == il qn)(8),
belongs to Ag.

A2 For all u, 3 € Ag with 8 bounded, there exists § > 0 such that t+¢ef € Ag
for all € € (—9,9).

Given u, 8 € Ag with 3 bounded, define the process Y (t) = Y (“A)(t) by

Y(#) = S XD = (Va(t), o Vi)

Notice that Y (0) = 0 and
dYi(t) = Ni(t)dt + Y & (t)dB;(t) + ) / Cij(t, 2)N;(dz, dt),
j=1 j=1"%g

where

Xi(t) = Vabi(t, X (8), u(®)TY (8) + Vaubi(t, X (), u()) T B(t),
&ij (1) = Vaoi;(t, X (), u(t)) Y (t) + Vaoi; (t, X (1), u(t)) " 5(2),
Gij(t,2) = Vb (1, X (8), u())TY (8) + Vb (t, X (), u() T B(t).
We can then give a answer to the question.

Theorem 6.1 (Partial Information Necessary Maximum Principle).
Suppose 4 € Ag is a local maximum for J(u), meaning that for all bounded
B € Ag there exists a 6 > 0 such that 4+ €8 € Ag for all € € (—9,9) and

h(e) := J(a+€pB),e € (—4,9)

is mazimal at ¢ = 0. Suppose there exists a solution (p(t),§(t),7(t, z)) to the
adjoint equation

- / #(z,t)N(dz, dt),

and
0< B [m b7 (X(t) - X®)]] < o0,

t—o0

for all u € Ag and p(t)Y (t,€) converges as t — oo, uniformly in e, where
Y(te) := %Xﬂ“ﬁ. Moreover assume that if Y (t) = Y @P)(t), with corre-
sponding coefficients ;\i, §;j, dj’ we have

FE < 00,

V()" (44" (t) + / ) PR (8, 2)v(da)]Y (t)dt

n

20



and

E /OooﬁT(t)[SAéT(th(t),ﬂ(t))+ ECT(t,X(t),ﬂ(t),Z)V(dZ)]ﬁ(t)dt]<OO-

Ry

Then 4 is a stationary point for E[H|E] in the sense that for allt >0,
E[V H(t, X (1), a(t), p(t), 4(1), 7(t, )| &] = 0.

Proof. Since

0<FE [lim )T (X (t) — X(t))]} :

t—o0

we have that

B [Jm ()" X0 0)]] > B [Tm [0 X )]

t—o0 t—o0
for all 8 € A¢ for some €. Define
9(e) = T [p(t)" X+ (1)],
so that
Eg(e) > Eg(0),
for all 8 € A¢. This means that

By =0,

So

(B [T [5()" X (1)]] ) emo

t—oo

0:

o

&

5 ()7 X 0]

L [nmtﬁ;ﬂ

t—o0 €

<Xﬁ+65<t>>|s-o1} |

the interchanging of the limit w.r.t. the derivative operator holds for uniform
limits with uniform convergence of the derivative. Interchanging derivative and
integration is justified if

9 T [p(t) X8 (¢, 0)]) o

€ t—oo

< Fw),

for some integrable function F'. Now let
h(e) = J (i + €B),
so that we have

0= 1'(0)

=F
de

| {00 0" X @)+ T, X 0,070 Y

+ H[ﬁ(t)T%(XMGB () |e—0]] .
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Using Ito’s Lemma we get

E [ T Lﬁ(t)Tj;X“eﬁ(t))u_o]}

t—o0

T
=F

| {0 [7.0. K@), 07 S X E O+ Vbl X0, 0007 500)]

+ iXﬁ“ﬁ(t)lezo(*VxH(t,X(t),ﬁ(t)’ﬁ(f),é(t),f’(t’ )

de
+q(t) (Vo (t, X (1), ﬂ(t))T%X’”Eﬁ(t)le:O + Vo, X (t),a(t)T B(t)

+ (L, 2)(V0(t, X (1), a(t))T%XWﬁ (t)]e=o0 + Vu0(t, X (1), ﬁ(t))TB(t)u(dz)}dt] .

Since

+ Vu0(t, z,u, z)r(t, z)v(dz),
RE

and

+ | Vot @, u, 2)r(t, 2)v(dz),
Ry

we have

0=F

/ooo {Vuf@, X(t),a(t) + Vub(t, X (), a(t))p” + Vuo(t, X (8), a(t))§"
+PV,0(t, X (1), ﬁ(t))ﬂ(t))}dt]

= U TVLH(E X (1), 40, 5(0), (1), (. '))Tﬂ(t)dt} .
0

Define
ﬁ(S) = al[t’t+h] (S)
Then

E

/Hh Vo H(t, X (t),a(t), p(t), 4(t), #(t, -))Ta(t)dtl =0.
t
Differentiating with respect to h at h = 0 gives

E [qu(t, X @), a(t), p(t), a(t), 7 (t, .))Ta} —0.
Since this holds for all £ measurable «, we have that
B [V, H(t X(0), 0(t), (), 4(0), 7(t, ) al€] = 0,

which proves the theorem. O
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