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Deep in the human unconsciousness is a pervasive need for a logical universe
that makes sense. But the real universe is always one step beyond logic.
— from “The Sayings of Muad’Dib” by the Princess Irulan

Frank Herbert, Dune (1965)
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Abstract

The subject of heavy-element nucleosynthesis still holds many mysteries. Part is
due to the difficulty of simulating the astrophysical scenarios where it takes place,
and part is because the relevant properties of the involved nuclei are mostly
unknown for some of the main nucleosynthesis processes. Neutron-capture
rates are one of these properties, and while described by theoretical models,
these do not necessarily agree with each other or with experimental results.
Experimental data are therefore central to both the correct simulation of heavy-
element nucleosynthesis, and the development of more predictive models.
Experimental nuclear level densities and ~-ray strength functions are in this
regard interesting quantities in the context of nuclear structure and because they
provide the input for calculating neutron-capture rates for exotic, neutron-rich
nuclei. These two quantities can be obtained by analyzing data from particle-y
experiments using the Oslo method. In this work, I present the results from three
experiments carried out at the Oslo Cyclotron Laboratory: 24Sn(a;, py)127Sh,
163Dy (o, py) ' Ho and 94Dy (v, py)**"Ho, providing information on their nuclear
structure as well as the neutron-capture rates of 126Sb, '°Ho and '%6Ho. Finally,
a sensitivity study of the rapid neutron-capture process using a model-consistent
approach is presented.



Abstract

Sammendrag

Dannelsen av tunge grunnstoff er et tema som fremdeles skjuler mange
mysterier. Dette er delvis pa grunn av de utfordringene man mgter med &
simulere de astrofysiske scenarioene hvor dette finner sted, og delvis pa grunn
av at de egenskapene til de involverte kjernene for det meste er ukjente for noen
av hovedprosessene hvor tunge grunnstoff lages. Ngytroninnfangingsratene er en
av disse egenskapene, og selv om disse beskrives av diverse teoretiske modeller,
er ikke prediksjonene ngdvendigvis innbyrdes konsistente eller i overenstemmelse
med resultater fra eksperimenter. Eksperimentelle data er derfor sentrale for
den korrekte simuleringen av nukleosyntesen, og for utviklingen av modeller med
bedre evne til a forutsi disse egenskapene.

Eksperimentelle nivatettheter og v-styrkefunksjoner er i denne sammenhengen
interessante stgrrelser, bade nar det gjelder forstaelsen av kjernestruktur, og
for & regne ut ngytroninnfangingsraten for eksotiske, ngytronrike kjerner. Disse
to statistiske egenskapene kan bli malt ved & anvende Oslometoden til &
analysere data fra partikkel-y eksperimenter. I denne avhandlingen presenterer
jeg resultatene fra tre eksperimenter utfgrt ved Oslo Cyclotron Laboratory:
12480 (o, py)127Sb, 193Dy(a, py) 1% Ho og ' Dy(a, py)'%"Ho, som gir informasjon
om deres nuklesere struktur og i tillegg til ngytroninnfangningsratene til 126Sb,
165Ho og 156Ho. Til slutt presenteres en studie om effekten av & bruke en modell-
konsistent tilnserming i simuleringer for den raske ngytroninnfangningsprosessen.
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Chapter 1
Introduction

“How was stuff made?” is a very fascinating question. Together with “ What
is stuff, anyway?”, it probably lists among the first philosophical questions
humankind asked themselves when trying to explain the nature of everything.
Indeed, one of the first attempts at guessing what stuff is made of in ancient
Greek philosophy is due to Empedocles who, in the 5th century BCE, claimed
that fire, wind, earth and water laid the basis for all existing matter. A few
decades later Democritos would propose that everything was made of atoms:
small, indivisible, fundamental blocks of existence. While we now know that
atoms are indeed real (and divisible), the question on how these were made is
yet not completely answered.

A good start for answering this dilemma is looking at the proportions elements
present themselves. While planets (like Earth) may have different elemental
abundances due to their formation history, a good representative for the solar
system elemental proportions is the Sun. Our star consists of 99.87% of the
solar system’s total mass and its elemental composition was not altered in the
same way as for the planets. By looking at spectral lines of the solar atmosphere
we can infer its chemical composition, and this gives us a clue to the original
elemental abundances for the solar system before if was fully formed.

What we call elements are atoms whose nuclei have a specific number of
protons and, thus, a specific charge. For example, all carbon nuclei have 6
protons, and all tin nuclei have 50. This is also called their atomic number,
charge number, or Z. When looking at the solar elemental abundances in
Fig. 1.1, we notice different patterns. One is the high peak at Z =1 and Z = 2,
corresponding to H and He. The other feature is the iron peak at Z = 26,
and the marked drop in abundances after that, together with a smudged, small
double-peak at Z ~ 53 and a clearer double-peak at Z =~ 78, 82. These features
hold the key to understand what the mechanisms behind the creation of elements
in space are. They are the product of different astrophysical conditions and
molded by the properties of the nuclei involved.

The origin of elements is a fascinatingly complicated topic, encompassing
different fields of physics like astrophysics, thermodynamics, electrodynamics,
fluid mechanics, special and general relativity, quantum physics in all of its
shapes and forms (quantum chromodynamics, quantum electrodynamics, nuclear
physics...), plasma physics, and the list goes on.

Specifically we may say that in order to study the subject of nucleosynthesis,
we need to understand both the astrophysical phenomena where it takes place,
and the working of the nuclei involved. In this work I will focus on the latter,
and how experiments carried out at the Oslo Cyclotron Laboratory [2] may help
us in getting a clearer picture of what happens up there.
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Figure 1.1: The solar elemental abundances from Lodders et al. [1]. The y-axis is
logarithmic, and we see that hydrogen and helium at Z =1 and 2 are the most
abundant elements in the solar system. At Z = 26 we find the “iron peak”, and
at Z ~ 53 and Z ~ 78, 82 two small double-peaks in the heavy-element region.
The first double-peak at Z ~ 53 is a bit unclear, but becomes more visible when
the abundances are plotted against mass number, see Figure 2.1.

The thesis is structured in the following way: first, a short introduction to
nuclear physics is given in the rest of this chapter. This will be useful in order to
understand the following chapter on nucleosynthesis (Chapter 2), with a focus
on neutron-capture processes. An introduction to nuclear theory for statistical
nuclei is given in Chapter 3, and an overview of how experiments are done in
Oslo and their contribution to nucleosynthesis studies in Chapter 4. This will
lay the grounds to understand the four papers which make the second part of
this work.

1.1 Nuclear physics in a nutshell

Atomic nuclei are quantum mechanical, dense objects consisting of neutrons
and protons at the core of atoms. Although the existence of negatively charged
electrons was already known by scientists in the beginning of the 20th century,
the understanding of the structure of the atom was then still in its infancy.
From the Dalton hard, electrically neutral “ball”, the discovery of the electron
allowed for the formulation of the so-called “plum pudding model” in 1904 by
J. J. Thompson. In this model electrons are thought to be evenly embedded into a
positively charged volume, like plums in a pudding. The first evidence that these
charges were not evenly distributed is due to Ernest Rutherford, who between

2



Nuclear physics in a nutshell

1908 and 1913 carried out a series of experiments involving positively charged
a particles on a thin gold foil target. From the way these particles scattered
he was able to conclude that charge was not evenly distributed throughout the
atom as Thompson’s model suggested: the positive charge must be concentrated
in a very small space in the center (the nucleus) while the negatively charged
electrons were distributed on the outer part of the atom. Later, the picture of
the atomic nucleus would become more and more complete with the discovery of
the proton in 1920 again by Rutherford, and the discovery of the neutron by his
former student James Chadwick in 1932 providing all the main building blocks
of the nucleus.

As mentioned above, elements are characterized by their number of protons.
Nuclei with the same amount of protons but different number of neutrons are
called isotopes. By taking carbon as an example, we may have two different
stable isotopes: one with 6 neutrons, and one with 7. The amount of neutrons
is indicated by the letter N, while A = Z 4+ N indicates the sum of nucleons
(meaning, protons and neutrons) and is called the mass number. These can be
written using the éX notation, where X indicates the elemental symbol, as '2C
and '2C. Since the elemental symbol and Z convey the same information, the
latter is often not written, leaving '2C and 3C.

Isotopes may be stable, or unstable. Unstable ones are radioactive, meaning
that they will emit radiation in order to achieve stability. The main types of
radiations are «,  and 7, where for example an a-unstable nucleus may « decay
by emitting an « particle, and similarly for 8 and . In this context, the decaying
nucleus is called parent nucleus, and the result of the decay the daughter nucleus.
An o particle is the same as a *He nucleus, meaning a cluster of two protons and
two neutrons. The daughter nucleus from a decay is the same as the parent, but
with two protons and two neutrons less. What is collectively called g radiation
may actually refer to either 3~ or S radiation. The first is mediated by a
W~ boson which rapidly disintegrates into an electron (e) and an antineutrino
(Ve). Since the W~ particle decays almost immediately and the antineutrino is
rarely detected, the electron is for most purposes seen as the main g~ -decay
product. The effect on the S~ -decaying nucleus is that a neutron is converted
into a proton, and = decay is a common way for a neutron-rich nucleus to
convert excess neutrons to protons and approach in this way stability. Similarly,
BT decay happens when proton-rich nuclei convert a proton to a neutron by
emitting a W™ boson, which rapidly decays into a neutrino and a positron, the
latter being the antiparticle of the electron and is positively charged. Lastly,
~ decay corresponds to the emission of a v ray as a way for it to decay to its
ground state. While both v and 3 decays transform the nucleus into a different
nucleus, v decay leaves Z and N unchanged.

In order to understand why isotopes are stable or unstable, we need to
consider the nuclear potential. The nucleus holds together even though it is
constituted by neutral and positively charged particles, meaning that there
must be another attracting force winning over the electrostatic repulsion. We
call such a force the strong nuclear force, and it is responsible for trapping
protons and neutrons in the nuclear potential. This potential may qualitatively

3



1. Introduction

be approximated as a finite well. Even if its shape does not exactly correspond
to that, this model provides useful insights. Neutron and protons are fermions
with spin 1/2, meaning that only two of the same kind, but with opposite spin,
may occupy the same energy state without breaking Pauli’s exclusion principle.

In Figure 1.2 we see a sketch of the potential as seen by neutrons on the left,
and as seen by protons on the right. The nucleus is in its ground state, meaning
that all the lowest excited states are occupied. The energy difference called the
neutron separation energy (or S,,) is the energy needed to strip one neutron out
of the nucleus. Conversely, it would be the excitation energy of a nucleus if a
free neutron with no kinetic energy were to be captured by the A — 1 nucleus.
For protons the situation is different. They still feel the strong nuclear force, but
its attractive effect is diminished by their electrostatic repulsion, meaning that
the potential well for protons is slightly less deep than for neutrons. In addition,
the electrostatic repulsion has a much wider range than the strong nuclear force,
meaning that free protons are initially repelled by nuclei and they only have a
meaningful chance to be captured by (or “fall into”) the nucleus if they have
enough energy to overcome (or at least tunnel through) the electrostatic (or
Coulomb) barrier. Similarly, a positive electric charge inside a nucleus may have
a chance to tunnel through the Coulomb barrier and escape, as long as energy
conservation laws are respected. This is the case of a-decay, where the wave
function of the a particle inside the nucleus leaks outside the barrier and has
the chance of escaping.

Due to the Coulomb repulsion, the proton potential well is shallower, meaning
that if we were to have similar separation energies for protons and neutrons
(“wells filled up to about the same height”) we would end up with having less

Coulomb
barrier

neutron proton
nuclear |--- -1 nuclear
potential potential
I Coulomb
repulsion

Figure 1.2: A qualitative description of the nuclear potential seen by neutrons
and protons.



Nuclear physics in a nutshell

protons than neutrons. If we were to have more neutrons than this, it might be
energetically favorable for the nucleus to convert one of these into a proton by
B~ decay (see Figure 1.3). Correspondingly, S decay will happen when there
is a surplus of protons. If electrons are available, electron capture may also be a
decay mechanism where a proton and an electron convert to a neutron and an
electric neutrino.

In Figure 1.4 we see a nuclide chart, a way to organize and visualize all
different nuclei and their favorite mode of decay. On the z-axis we have the
number of neutrons, while on the y-axis we have the number of protons. The strip
of black squares in the middle is called the wvalley of B stability, and represents
the stable nuclei. To their right, neutron-rich nuclei will 3-decay diagonally back
to the black squares and thus stability, converting one neutron into a proton,
and the proton-rich nuclei to the left will decay towards the valley in a similar
way converting a proton to a neutron. The valley of stability bends slightly
“downwards”, favoring a higher number of neutrons than protons, in line with
the discussion above. For heavier nuclei, o decay and even spontaneous fission
become dominant, and beyond the valley of stability, separated by different
unstable elements, we find thorium and uranium as the only known (almost)
stable nuclei beyond lead.

When attempting to describe the structure of nuclei and the energy of their
states, it was natural to compare the nucleus to atomic electrons, whose quantum-
mechanical description was beginning to be well understood in the 1920’s [5-7].
As for atoms, one expected to encounter certain numbers of protons and neutrons
for which the nucleus was particularly strong bound, similarly as to noble gases
for electrons. These numbers were eventually found not to be the same as for
electrons, and they are called magic numbers. These are the same for protons and

Figure 1.3: A schematic representation of the 5~ decay.
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»

Figure 1.4: The nuclide chart. The black central squares represent the stable
nuclei in the valley of § stability, and the color of all other squares represent
their preferred way of decay, with yellow for o decay, red for 8 decay, blue
for 5~ decay and green for spontaneous fission. The proton and neutron magic
numbers are highlighted in black, solid lines. Two colors for the same square
indicate that the nuclide may decay in two ways, and the probability is given by
the area of the respective color. Drawn using the Chart of nuclides drawer [3],
based on the data from the 2016 atomic mass evaluation [4].

neutrons: 2, 8, 20, 28, 50, 82, 126, and are illustrated as vertical and horizontal
lines in the nuclide chart. Nuclei with this number of protons or neutrons are
more tightly bound and will “resist change” to a larger degree than neighboring
nuclei. With the introduction of the nuclear shell model by Maria Goeppert
Mayer and Johannes Hans Daniel Jensen [8-10] this difference from the behavior
of the electrons would be explained with the fundamental difference existing
between the Coulomb and the strong nuclear interaction, where the latter has a
much stronger dependence on spin and angular momentum than the former.

With this rudimentary introduction to nuclei and nuclear physics, we are
ready to explore the field of nuclear astrophysics and the mechanisms behind
the creation of elements in space in the next chapter.



Chapter 2
Nucleosynthesis

Nucleosynthesis is the term used to refer to the different processes responsible
for the formation of new elements in the universe. These processes are both
astrophysical and nuclear in nature, since they happen in specific locations in the
universe, and their accurate description requires the knowledge of the properties
of all the nuclei involved.

2.1 History

The history of nucleosynthesis is connected to another important question
physicists were trying to answer between the end of the 1800s and the first half
of the 1900s, and that is: What is the energy source of the Sun, and the other
stars?

One of the first attempts at answering this question was by Lord Kelvin in
1862 [11]. In his hypothesis, the heat of the Sun was generated by countless
meteorites falling on its surface, attracted by its strong gravitational pull.
According to him, this must have been the only possible explanation as the only
other conceivable alternative at the time was chemical reactions, and these are
too weak to explain the longevity of the Sun. There are numerous problems with
this theory, among others the fact that we should be able to see all these falling
meteorites, and that the Earth’s orbit should be influenced by the accretion of
the Sun’s mass.

It would go more than 50 years before someone would propose a different
explanation. William D. Harkins and Ernest D. Wilson in 1915 [12] and Jean
B. Perrin in 1919 [13] independently tried to explain why the measured mass of
helium was slightly less than four times the mass of hydrogen [14]. They
suggested that hydrogen could “condense” into helium and that the mass
difference could power the sun when converted to energy using Einstein’s famous
relation £ = mc?.

In 1919 Ernest Rutherford produced the first man-made nuclear reaction in a
laboratory, where a particles reacted with the nitrogen in the air creating oxygen
and hydrogen [15]. This can be written as a + N — 170 + p, or "N(a,p)!"0
using a more compact notation. These were productive years for nuclear physics
(and physics in general), as 1920 was also the year Rutherford announced the
results of his gold foil experiment, demonstrating the existence of the nucleus.
All of these threads would be collected by Hans Bethe in 1939, where using
measured cross sections he could theorize a way to create helium from hydrogen,
using carbon as a catalyst [16].

The creation of helium was a step in the right direction. After the discovery of
the neutron, George Gamow was quick to suggest in 1935 that neutrons could as

7



2. Nucleosynthesis

well play a role in nucleosynthesis, since they do not feel any Coulomb repulsion
and are more easily captured by nuclei. Not so long after, Ralph Alpher, Hans
Bethe and George Gamow! would suggest that the creation of heavier elements
would take place by consecutive neutron captures during the Big Bang [18] (and
thus proposing the Big Bang as a cosmogenesis theory for the first time). The
explanation of the origin of heavier elements by consecutive capture of protons
or neutrons met a problem in the lack of stable isotopes with mass 5 or 8, posing
a big challenge when trying to explain the creation of nuclei heavier than “He.

This would be solved by Fred Hoyle when in 1953 he suggested the existence
of a resonance at 7.7 MeV in 12C [19] (called later as the Hoyle state) able to
increase the rate of the 3a — '2C reaction dramatically. Just the year before, in
1952, technetium lines were observed in the spectra of evolved giant stars [20].
Technetium is an unstable element whose longest living isotope has a half-life
of about 4 million years, a time so short by astronomical standards that the
only way to explain its presence in these stars was to assume that it was created
there. When the Hoyle state was later observed in experiments in 1953 [21] the
idea that heavier elements were created in stars, where this triple-a reaction
could happen, started to gain traction.

In 1956 a review of elemental solar abundances was published by Suess and
Urey [22] showing double-peaks close to where nuclei were supposed to have a
magic number of neutrons, according to the nuclear shell model developed and
published in 1949 by Goeppert Mayer and Jensen [8-10]. The idea of neutron
capture as the main mechanism for the creation of heavy elements was put
forward, and just one year later the seminal B2FH paper by Margaret Burbidge,
Geoffrey Burbidge, William A. Fowler and Fred Hoyle [23] was published, together
with the work from Alastair Graham Walter Cameron [24], listing a total of eight
mechanisms for which elements could be created. Elements between '2C and
%6Fe would be created in charged reactions during different life stages of a star,
while heavy elements would be mainly created by neutron capture beyond iron.

2.2 Abundances

Figure 1.1 shows the elemental abundances in the sun. Another way to plot solar
abundances is to order nuclides by mass number A. This requires information on
the abundances of the different isotopes, something not possible to extract from
spectral lines in the solar atmosphere. Fortunately, meteoric CI1 carbonaceous
chondrites provide samples of primitive solar matter in its original composition

IThe inclusion of Hans Bethe in this work was an idea of George Gamow so that the authors’

names would read like the Greek letters afSvy. “It seemed unfair to the Greek alphabet to have
the article signed by Alpher and Gamow only”, wrote Gamow in his book The creation of the
universe [17]. This would have been a careless violation of the Vancouver recommendations
for co-authorship, had not the Vancouver group only convened thirty years later, in 1978.
Although Hans Bethe would later provide useful insights to the discussion, his inclusion did
not please the then-PhD student Ralph Alpher, who feared his merit would be drowned by the
fame of the two other well-established scientists. Alpher would then fight for recognition of his
research for much of his career.

8
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Figure 2.1: The solar abundances as a function of the mass number A from
Lodders et al. [1]. Hydrogen and helium are now between A =1 and 4, and the
iron peak at A = 56. The two double-peaks in the heavy elements region are
now more clearly distinguishable at A ~ 130,138 and A ~ 195, 208.

where isotopic information can be extracted. The isotopic abundance plot in
Figure 2.1 can be divided into three approximate regions, according to the nature
of the processes that lead to the formation of these nuclei. The first part is
taken by H and He (A =1 to 4), the two lightest elements, and the only ones
created during the Big Bang nucleosynthesis (along with some traces of Li).
Some hundreds of millions of years later stars formed, and this allowed more
helium to be synthesized by nuclear fusion in their cores. This reaction produces
an internal outward pressure keeping the star from collapsing under its own
gravity, but after enough hydrogen is depleted the reaction alone cannot support
the star’s gravitational pressure, which implodes. This implosion produces higher
temperatures and densities in the star’s core, allowing for other fusion reactions
to happen. The second region includes nuclei created by stellar nucleosynthesis,
it starts at He and stops at around A = 56 (the “iron peak”).

The most likely nuclear reaction capable to increase a nucleus’ mass in the
third and last region (A > 56) is neutron-capture. Neutrons are neutral, and can
just fall into the nuclear potential without having to tunnel through a Coulomb
barrier?. By separating the slow and the rapid neutron-capture processes, we
can explain the double-peaks in the abundance plot of Figure 2.1.

The two processes, shortened to s process and r process, are each responsible

2There might still be a “centrifugal” potential barrier for neutrons adding or subtracting
angular momentum to the nucleus, called p-wave neutrons. For this reason, s-wave neutrons,
with no angular momentum, are favored in neutron-capture reactions.
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for the creation of about 50% of the elements heavier than iron in our solar
system, and each yields a specific abundance pattern (see e.g. [23, 25]). Together
with the p process, responsible for the creation of some proton-rich nuclei not
achievable by neutron-capture [26], they can explain the origin of the elements
in the solar system.

Although our solar system is enriched almost in the same proportions by the s
and the r processes, this is not necessarily the case for other stars. Spectral lines
from a star’s atmosphere may help us to understand its elemental composition,
and the presence of certain elements or elemental ratios in it can tell us which
process was most responsible for its enrichment. For example, the r process
contributes to 80-100% of the Eu abundance in the solar system, and the s to
70-100% of the Ba abundances, and for this reason the relative abundance of
these elements to e.g. Fe can be used to trace the origin of chemical composition
of stars [25]. Some are enriched only by s or r process elements, some others,
like our sun, are enriched by both. By analyzing and mapping these stars we
can understand not only their origin, but also the history of our galaxy.

Several observations moreover indicate the presence of another, minor process,
called intermediate neutron-capture process (or ¢ process). Its introduction has
been deemed necessary to explain the abundances of a certain kind of stars
presenting patterns typical for both the s and the r processes, but old enough to
exclude the possibility of them being enriched by multiple sources. A description
of all of these processes will be given in this chapter.

Simulations of these nucleosynthesis processes are invaluable tools when
investigating their nature. Not only they provide an insight into how they work
in astrophysical environments, but they also give indications to experimentalists
about which nuclei or which mass regions are most important to extract nuclear
properties from. This kind of studies are called sensitivity studies, and in
Section 2.5.4 I will give a short overview about them as an introduction to
Paper IV [27].

2.3 Big Bang nucleosynthesis

When Alpher, Bethe and Gamow presented their Big Bang theory in the
1940s [18], what they actually proposed was an explanation to the origin of
elements. This would happen by successive neutron captures and [ decays until
all the elements were created. Although we now know that the Big Bang is only
responsible for the formation of H, He and Li (see e.g. Ref. [28] for a review) the
theory predicted a remaining background radiation from these nucleosynthesis
processes. When the Cosmic Microwave Background radiation was observed in
1965 [29], it further solidified the Big Bang theory as the leading cosmological
theory about the beginning of the universe.

The process behind the creation of primordial hydrogen, helium and lithium
in the universe is called Big Bang nucleosynthesis. Protons and neutrons could
form about t = 0.5 s after the Big Bang, when temperatures decreased to below
T ~ 15 GK. It was not until after ¢ ~ 200 s that temperatures became low
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enough to allow nuclei to form without being immediately destroyed. At this
time the neutron-to-proton ratio was about 1/7. As *He is the most tightly
bound light nucleus, most of the neutrons ended up forming helium, and because
of the 1/7 ratio the predicted mass fraction of helium compared to hydrogen is
0.25, very close to the one observed [30].

As the mean lifetime of free neutrons is 7 = 880.1 £+ 1.1 s [31], Big Bang
nucleosynthesis ended after about 1000 s, as the universe continued to expand.
In order to create heavier nuclei, we would have to wait until the creation of
stars.

2.4 Stellar nucleosynthesis

The period following Big Bang nucleosynthesis is called the Dark Ages of
the universe as stars did not form before some 100-400 Myr, or million years
(theoretically 75 Myr [32], while one of the oldest observed stars in our galaxy is
as old as 13.53 Gyr, forming some 400 Myr after the Big Bang [33]). Stars begin
as big clouds of hydrogen collapsing upon themselves because of gravity, and
can be understood as continuous explosions where the pressure from the nuclear
reactions in their core is balanced by the one from their own gravity. Because
of this, we say that these objects are in hydrostatic equilibrium as long as the
internal pressure can be regarded as constant.

In this section I will present a qualitative overview of stellar nucleosynthesis,
this being the process of element creation by nuclear fusion happening in the
star up until and during its last explosion. The material in this section is based
on Chapters 1 and 5 in Nuclear physics of stars by Christian Iliadis [34] (see
also e.g. Refs. [35-37] for stellar models with different initial masses).

The first stars consisted of just H and He. When pressure and temperature
are high enough in their core, four hydrogen nuclei may be converted into a He
nucleus, releasing energy in the process. This process consists of several steps,
and the collection of these is called the pp-chain. As long as the star has enough
hydrogen to burn?, the internal pressure is held practically constant and it may
continue undisturbed for millions or billions of years, depending on the initial
mass of the star (generally, the higher the initial mass, the shorter the lifetime).
When the fuel is not enough to balance gravity, the core contracts increasing
both its temperature and pressure. Depending on the initial mass of the star,
this may unlock different burning stages during the lifetime of the star. If the
star is larger than 0.4 Mg (where My represents the mass of the Sun), then
these higher temperatures and pressures may allow the star to use He as a fuel
for nuclear fusion in a new equilibrium stage. Helium will also exhaust after a
while, and the core will contract and start another equilibrium stage burning
now a different nucleus, when the mass is high enough and the conditions are
right. This series of phases will continue until a last contraction will trigger
an explosion which releases the envelope of the star into space, and leaves the

3By “burning” here and in the rest of the chapter we refer to nuclear fusion and not to the
chemical reaction.
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remaining core as either a white dwarf, a neutron star or a black hole. This is
the death of the star.

When it comes to stellar nucleosynthesis, the different phases of a star’s
lifetime create different elements.

The first and longest phase is called H-burning, where hydrogen is combined
into helium through the pp-chain, or if the star was formed from the remnants
of another star and has enough carbon and high enough mass, the CNO-
cycle where 2C nuclei act as catalysts for forming He from H. For this last
reaction cycle we have a bottleneck at the *N(p,v) reaction, meaning that
when hydrogen exhausts, the most abundant remaining nuclei will be “He and
MN. If high enough pressures and temperatures are reached after the core’s
contraction, a new phase of He-burning becomes possible in the core, where 12C
is produced through the triple-a reaction and ??Ne is produced by the reaction
chain 1N (a, v)¥F(57)180(a, v)*?Ne.

While He-burning happens in the inner part of the star, H-burning may still
happen in an outer layer where lower pressures and temperatures are found.
For each hydrostatic burning phase, we must imagine the star as some kind of
onion, where the nuclear burning needing the highest temperatures and pressures
happens in the center, while the previous burning process still happens, but in
an outer shell where the physical conditions and presence of reactants are just
right.

The H-burning and the He-burning phases are important both for low,
intermediate mass stars (M < 8—10M ) as well as massive stars (M 2 8—10M),
but whereas low and intermediate mass stars usually stop at He-burning, massive
stars will continue with different phases until their death. After He-burning we
have C-burning. Its main reaction is 2C(12C,a)?°Ne where neon, important for
the subsequent Ne-burning phase, is produced. Here temperatures are so high
that both nuclear fusion and photo-disintegration (a nuclear process where a
nucleus is split by an incoming high-energy photon, or v ray) happen, and oxygen
and silicon are created with the 2°Ne(v, a)160 and the 2°Ne(a, v)**Mg(a, v)28Si
reaction chains. The oxygen created during the Ne-burning phase is then used to
create more silicon in the O-burning phase via the reaction 1°0(1%0,a)?8Si. The
reactions listed so far are not the only ones happening during their respective
phases, but merely the most important ones, and by the start of the final
Si-burning phase we have a distribution light nuclei.

All of these burning stages last for less time the more advanced they are and
where the H-burning phase may last for millions of years even for very massive
stars, the Si-burning phase may last for a few days [38]. The duration of the
burning stages for two stars of masses 1 and 15 M, is given in Table 2.1.

During the Si-burning stage the densities and temperatures are high, but not
enough to fuse silicon with itself, given the very high Coulomb barrier. Instead,
the weakest bound nuclei are photo-disintegrated, and the fragments may fuse
with each other resulting in a chemical equilibrium of isotopes, meaning that
the rate they are produced is the same as the rate of their destruction. This
equilibrium is called nuclear statistical equilibrium, or NSE, and the abundance Y;
for any nucleus 7 is only determined by the temperature, the density, the binding
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Burning stage | 1 Mg star 15 Mg, star

H-burning 11 Gyr 11.1 Myr
He-burning 1.1 Gyr 1.97 Myr
C-burning - 2030 y
Ne-burning - 0.732 y
O-burning - 258y
Si-burning - 18.3 d

Table 2.1: Duration of the different burning stages for two stars of 1 and 15 Mg,
solar masses, respectively. Whereas a 1 M, massive star will only manage to
burn H and He, a more massive star will be able to go through all the burning
stages up until Si-burning. Data gathered from Ref. [38].

energy B; and charge conservation. The resulting products of the Si-burning
phase is an abundance distribution centered around iron. All of these new nuclei
are then spread in the subsequent supernova, ready to form new stars.

Elements heavier than He are called metals in astrophysics, and stars formed
from the remnants of a previous stellar nucleosynthesis will have a higher
metallicity. This will not only influence the life cycle of the star (by for example
possibly enhancing energy production during the H-burning phase with the
presence of 2C and the CNO-cycle), but the now abundant nuclei of the iron
peak will serve as seed nuclei for neutron-capture nucleosynthesis, responsible
for the formation of heavy elements.

2.5 Neutron-capture nucleosynthesis

We have seen that silicon fusion is not a viable mechanism to create heavier
elements even with the temperatures and densities of the Si-burning stage of
stellar evolution, and this is because of the increasingly higher Coulomb barrier
and of NSE becoming the main mechanism of nucleon reconfiguration. NSE
yields an abundance distribution centered about °Ni, the nucleus with the most
binding energy per nucleon, which eventually 5-decays to stable *’Fe forming
the so-called iron-peak. The existence of nuclei as heavy as lead and uranium
indicates that there must be another mechanism at play, and neutron-capture
has been an attractive candidate for heavy-element nucleosynthesis ever since
the discovery of the neutron. After the observation of double-peaks in the solar
abundance of heavy elements in the vicinity of neutron magic numbers where
the capture cross section is smaller, it became clear that at least two different
neutron-capture processes were involved in their creation, later baptized in
the B2FH paper [23] as s process and r process, standing for slow and rapid
neutron-capture process, respectively.

Neutron-capture nucleosynthesis happens when seed nuclei find themselves
in an environment with free neutrons. Neutrons are unstable particles with a
half-life of minutes, meaning that this kind of nucleosynthesis can only happen
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Figure 2.2: A schematic picture of neutron-capture nucleosynthesis for low
neutron densities, starting from 56Fe. Neutron-capture corresponds to a step
in the right direction, while 5~ decay occurs when the isotope obtained by
neutron capture is unstable, and is represented by an oblique step in the upper-
left direction. The background chart was drawn using the Chart of nuclides
drawer [3], based on the data from the 2016 atomic mass evaluation [4].

where these are created. As we will see in the next section, some reactions in the
He-burning shell may luckily just create neutrons as a byproduct, and together
with explosive environments such as supernovae and neutron star mergers they
are the astrophysical sites where such neutron-capture processes take place (see
e.g. [39] and references therein for a review). In these sites seed nuclei may
capture neutrons and become heavier isotopes of the same element (e.g. from
%6Fe we would obtain °"Fe, see Figure 2.2). If the isotope is stable this process
may repeat, but if it is 8 unstable and its S-decay rate is faster than its neutron-
capture rate or photo-disintegration rate, then it will 8 decay transforming a
neutron into a proton and thus creating a new element (in our case, Co from
Fe). Neutron-capture nucleosynthesis is then able to climb the nuclide chart
from lower Z nuclei up to Pb or even U. Here I will explain the main differences
between the s and the r process, together with a description of a minor, but still
important, process called the i process, standing for intermediate neutron-capture
process.
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2.5.1 The s process

The s process involves neutron densities of N,, < 10° em™2 [40] and may last
for many thousands of years, in 20 to 50 cycles of some 10 kyr each, and may
happen in low to intermediate mass stars during their asymptotic giant branch
(AGB) phase, and in massive stars during their core He-burning stage [41, 42].
During this process the stable seed nuclei capture free neutrons, but neutron
densities are low enough to allow for most S-unstable nuclei to decay to stability
before capturing another neutron. This means that the nucleosynthesis flow will
closely follow the valley of stability up to Pb and Bi (in a similar fashion as
Figure 2.2), but it will not be able to synthesize elements like Th or U. While
climbing up the nuclear chart, the neutron-capture flow will cross certain areas of
low neutron-capture rates at neutron shell closures. These will act as bottlenecks
for the s-process nucleosynthesis and lead to a pile-up of elements at A ~ 138
and 209, which correspond to the right peaks of the two double-peaked structures
in Figure 2.1.

For certain nuclei the 5-decay rate is comparable to the neutron-capture rate,
and the path they take may influence the final abundances. These are called
branching points. The branching ratio tells us to which degree the s process
will follow one path or another and it is sensible to the correct measurement of
the neutron-capture cross section as well as the astrophysical conditions such as
temperature and neutron densities. Some of the most famous branching points
are ®5Kr and °1Sm [43], and one minor one is ®*Ho, which has an isomer with
a lifetime of 1200 years that may or may not decay to '°°Er before capturing a
neutron. These considerations are further discussed in Paper IIT [44].

The observation of Tc on the surface of AGB stars [20] confirms that the s
process indeed takes place in their interior. The nature of the s process changes
depending on the mass of the star. Generally, we may distinguish low-mass
stars (M < 3Mg) from massive stars (M 2 8 — 10My). In low-mass stars the
AGB phase of stellar evolution happens during its He-burning phase, where an
inert C and O core is covered by an intershell consisting mainly of He and '?C,
then a H-burning shell and finally a convective zone. These stars go through
a pulsing phase because of thermal instability: H-burning and He-burning do
not necessarily operate in a constant way or at the same time in their relative
shells [30, 43]. Generally H-burning provides most of the energy and adds mass
to the intershell below, increasing pressure and temperature until these are
high enough to ignite He-burning at the bottom of the intershell. The energy
produced here at a certain point becomes so high that it cannot be dissipated
by radiation alone, and a thermal pulse seeks to release it by convection, mixing
the above layers in the process. The H-burning shell is extinguished and protons
from the former convective zone are brought down to the intershell, allowing for
the creation of '3C via the reaction chain 2C(p,v)!3N(31)13C. After the pulse,
the star contracts again and the H-burning shell reignites, starting the cycle
again. A star may go through several thermal pulses before exiting the AGB
phase. When temperatures reach 7' = 0.09 GK in between pulses, 13C(«a, n)®0O
becomes possible in the intershell and releases neutrons ready to be captured by
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seed nuclei and fuel the s process. During a pulse, higher temperatures in the
H-shell also allow for the N(a,v)¥F(37)80(a, v)*2Ne reaction chain, where
for a few years a stronger, but shorter neutron source is generated from the
resulting 2?Ne via the 22Ne(a,n)?°Mg reaction, and this is able to overcome
certain branching points. All these new elements will later be brought to the
surface after the next thermal pulse. As the H-burning shell extinguishes and
the convective zone lowers, not only protons from this upper zone mix with the
intershell below, but the elements created during the nuclear fusion and the s
process are mixed and brought to the surface. This mixing is also referred as

third dredge-up for this reason®.

This is the mechanism behind the main s process, responsible for most of
the s-process abundances. The weak s process is another minor mechanism
present in massive stars, where N from the CNO cycle is transformed to ?2Ne
as described above. The latter is responsible for the creation of nuclei in the
A < 90 mass region [30, 42].

The s process is responsible for the creation of about 50% of the elements
heavier than iron in the solar system and explains the right peak in both double-
peaked regions in the isotopic abundance plot (Figure 2.1). In order to explain
the other half and the left peaks, a different neutron-capture process must be
invoked, called the r process.

2.5.2 The r process

The r process is more mysterious than the s process as it involves very exotic
nuclei and the astrophysical sites where it is thought to take place are difficult
to observe, study and simulate [23, 24]. The process involves neutron densities
above 1020 cm ™3 and lasts only for a few seconds (see e.g. Refs. [45, 46] for recent
reviews of the r process). The high neutron densities allow for a capture-rate
so high that the unstable, neutron-rich nuclei do not have time to § decay or
be photo-disintegrated before they capture a new neutron, and thus end up
very far in the neutron-rich side of the nuclear chart, where these reaction can
balance. When the neutron flux is extinguished the nuclei are allowed to decay
back to stability creating an abundance pattern different than that for the s
process. Since we have very neutron-rich nuclei we may end up with nuclei with
high Z such as Th and U when neutrons are converted into protons in the 3
decay, nuclei not otherwise reachable by the s process. Moreover, the bottlenecks
corresponding to the neutron magic numbers are met at a lower Z, and thus
lower A (See Figure 2.3). These bottlenecks allow for pileups in abundances
similar to the s process, but being at a lower A, the peaks will be slightly shifted
to the left. This explains the left peaks in the double-peaked structures in the

4The first dredge-up also happens at an earlier stage of the star, while the second dredge-up
may only happen in more massive stars. These are two different processes with the only
common feature of bringing the results of nuclear reactions from the interior to the surface
of the star. The names are somewhat confusing and do not imply that they should occur
subsequently to each other.

16



Neutron-capture nucleosynthesis
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Figure 2.3: The qualitative nucleosynthesis paths for the s, ¢ and r processes.
While the s process closely follows the valley of stability, the r process generally
involves very exotic, neutron-rich nuclei. The ¢ process will find itself somewhere
in the middle, about 5 neutrons away from stability. At the neutron magic
numbers 82 and 126 all processes will experience pile-ups and bottlenecks.

abundance plot in Figure 2.1. The decomposed solar system abundances can be
seen in Figure 2.4.

The huge amount of neutrons needed to drive the r process are thought to be
created in cataclysmic explosions in space. There are many proposed sites for the
r process, but the only one confirmed up to now are neutron star mergers (NSM).
The observation of the gravitational waves from the GW170817 merger [47] and
the associated electromagnetic signal showed nucleosynthesis activity matching
the one expected for the r process [48]. The r process from NSM is expected to
be strong enough to create all the heavy elements, reach the actinides and even
allow for fission recycling, where superheavy elements fission and provide new
seed nuclei for the r process from the fragments (see e.g. Refs. [46, 49, 50] and
references therein).

Another, actual site for the r process are core-collapse supernovae (CCSN)
with a mechanism called neutrino-driven wind. CCSNs may happen when a star
of initial mass of 2 10M goes through all the burning stages and ends up with
an iron core in NSE equilibrium [39, 41]. When the iron core collapses, matter
neutronizes and a proto-neutron star is formed. The infalling material outside
the core “bounces” on the hard proto-neutron star surface and explodes as a
CCSN. The neutronization of the core matter releases a huge amount of energy
in the form of neutrinos. These in turn will heat up the neutronized matter just
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outside the proto-neutron star and drive it into the slower shock front from the
bounce, fueling the supernova in the process [30]. This is the neutrino-driven
wind, and although at first considered a promising scenario for the r process to
happen, it later lost appeal when better simulations of supernovae could not
attain the desired conditions. It may still be the location of the weak r process,
creating nuclei up to A ~ 130 [51, 52].

2.5.3 The : process

Both the s and the r processes produce specific abundance patterns that can be
recognized in stars. The abundances of Eu, Ba and Fe on star surfaces can be
measured from their spectral lines, and their ratios can indicate whether a star
has been enriched by s or r elements, or both. Many young stars for example
show signs of enrichment from both, while old stars may present only one if any,
as matter from both had not yet had time to mix by the time of their formation.
This is the case of carbon-enhanced, metal poor stars (or CEMPs) in the galactic
halo. These may be further categorized into CEMP-s, CEMP-r and CEMP-no,
where the first category presents an enrichment of s elements, the second of r
elements and the third no particular enrichment. There is though a fourth kind
of CEMPs, called CEMP-s/r, that presents elements from both nucleosynthesis
processes. This is difficult to explain in terms of s and r process alone, as these
are thought to occur in completely different astrophysical sites, and matter from
them had not the time to mix before the formation of CEMP-s/r [53]. Moreover,
the ratio between s and r elements tends to be similar for all CEMP-s/r, pointing
to a singular origin for their heavy element enrichment [54].

The 7 process is a neutron-capture process involving neutron densities of
about 10'® cm™3, and was first proposed by Cowan and Rose in 1977 [55] due
to the 2C(p,y)13N(81)3C(a, n)10 reaction. It came recently to relevance
as a possible explanation to such observed s/r abundance patterns, and some
simulations seem to confirm this [53]. As for the s process, the i process requires
the ingestion of protons in a He-burning shell, but given its relatively high
neutron densities the ingestion has to be bigger, and the astrophysical conditions
different.

AGB stars are again expected to be candidates for such a process to occur
(see e.g. Refs. [53, 56] and references within), and although there are some
ideas on how it may happen, the ¢ process is still mysterious because it involves
neutron-rich, exotic nuclei. Low metallicity in stars may make the mixing of
H and He-burning shells easier, allowing for higher numbers of protons to mix
during convective episodes due to thermal pulses. There are many candidates
for the site where the 7 process is thought to occur. Among these are: low- to
zero-metallicity AGB stars during their early stage (see e.g. [57]); post-AGB stars
in the late thermal pulses (see e.g. [58]); low- to zero-metallicity massive stars
during their C-burning stage (see e.g. [59]); the core He-flash of low-metallicity,
low-mass stars (see e.g. [60]). Another possible scenario is in rapidly accreting
white dwarfs, where the white dwarf captures hydrogen from the envelope of a
companion star, H and He burning occur near the surface, and the ingestion of
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Figure 2.4: The solar isotopic abundances for trans-iron elements decomposed
between p, s and r-process elements. The total abundances are from Lodders
et al. [1], while the r-process abundances are from Goriely et al. [62] and the
p-process abundances from Arnould et al. [26]. The two double-peaks are
decomposed between the r-process peaks on the left, and the s-process peaks on
the right.

surface hydrogen into the He-burning shell may trigger the i process [61]. For
all these potential sites, see e.g. Ref. [56] and references therein.

2.5.4 Astrophysical modeling and sensitivity studies

In order to investigate all of these processes (s, r and i) we need a correct
description of the astrophysical sites where they occur, and the knowledge of
the properties of the nuclei involved. When it comes to the astrophysical site,
great uncertainty has long shrouded the r process, and in this section I will
present an overview of the models used in order to simulate its conditions. The
material here is largely based on the review papers from Arnould et al. [25] and
Mumpower et al. [63].

One of the first models started from the assumption that supernovae were
the main host for the r process, where temperatures are high enough (7' 2 2 GK)
to permit (n,7) = (7, n) equilibrium. For each element, isotopes are in thermal
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equilibrium between neutron-capture and photo-disintegration, while a certain
ratio is allowed to [-decay and create another element. Only a few nuclear
properties are relevant at this stage: neutron separation energies, § decay
rates and information about the energies and spins of ground and excited
states. This simple model is called canonical r process (CAR) with the waiting
point approximation. While the model was not able to reproduce the correct
abundances, it could qualitatively predict the expected features and provided a
good starting point for more sophisticated models. The CAR model includes a
series of simplifications, such as only having °Fe as a seed nucleus (a reasonable
assumption when talking about CCSN), a constant neutron flux and temperatures
high enough to sustain the (n,v) = (v,n) equilibrium for the timescale of the
process. In order to give a broader picture, the r process was modeled as the
superposition of different canonical events (CEV) models, meaning simulations
with different sets of initial astrophysical conditions (in this case the temperature,
the neutron density and the timescale). This is the multi-event r-process (MER)
model. When dealing with a cold r process, the waiting-point approximation
is not valid anymore and the astrophysical and nuclear parts become more
complicated, as neutron capture has to compete with g decay and both rates
are dependent on temperature. In addition, fission recycling may complicate
things for very high neutron-density environments.

An attempt to go beyond CAR models was the introduction of dynamical
models (DYR), where the 7 process is modeled as a “bubble” of nuclear material
in NSE (and thus providing different seed nuclei than just iron) with a certain
electron abundance Y, and entropy per nucleon s°, expanding at a certain rate,
cooling down and breaking the thermal equilibrium. Here, nucleosynthesis is
governed by a network of nuclear reactions influenced by a varying neutron
density and temperature. This bubble may be part of the ejecta of a neutron
star merger or a supernova, and different parts of these phenomena may have
different starting conditions, so the MER treatment is relevant for dynamical
models as well.

When it comes to s and ¢-process simulations, the situation is somewhat
similar. Both processes happen at temperatures of about 0.25 GK, well under
the (n,v) = (v,n) temperature threshold. A nuclear network calculation is
necessary, but a dynamical approach is no longer valid as both processes happen
in (relatively) stable environments. Nonetheless, a correct description of the
astrophysical site is still necessary, as the conditions for both the s and ¢ processes
are tightly connected to star dynamics such as the third dredge-up (for both
processes) and proton ingestion episodes (for the i process in particular), as well
as the metallicity of the star (see e.g. Ref. [64] for the s process, and Refs. [56,
65] for the 7 process). In this regard AGB-star simulations may be set up where
the radius is divided into shells where network calculations are allowed to run

5low Ye and high s together can be qualitatively understood as the quantity of free neutrons
available for capture, as electric neutrality impose that the more electrons we have, the more
protons we need to balance their charge up, and entropy tells us the amount of free neutrons
that are released by photodissociation. Thus, the smaller the Y., and the higher the entropy s,
the more strong and neutron rich the r process is.
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Neutron-capture nucleosynthesis

in each of them, and also allow for mixing between shells and convection where
convection conditions are met. These are called multi-zone simulations, and
they may be 1D (only radial direction), 2D or 3D, where more sophisticated
convection dynamics such as turbulence may be taken into account.

The nuclear network calculations behind the descriptions of the s, i and
r processes are all dependent on the correct estimation of nuclear properties
such as masses, $-decay rates and neutron-capture rates. Although important,
I will not discuss masses and [-decay uncertainties, and I will focus mostly on
neutron-capture rates. This quantity relates to the ability of a nucleus to capture
a free neutron, releasing one or more ~ rays. It may be measured directly for
stable nuclei, and this greatly helped s process simulations by having access
to most of the needed cross sections experimentally. This direct approach is
however often unfeasible for unstable nuclei, where indirect methods such as the
Oslo method (see Chapter 4) may help. For nuclei further away from stability
we are dependent on theoretical estimates of their neutron-capture rates, and
these may vary a lot from model to model making final abundance predictions
uncertain for the ¢ and r processes.

The experimental measurement of capture rates of every involved nucleus
would be extremely time consuming, even assuming it was possible. Sensitivity
studies are made in this regard in order to pinpoint the capture rate of which
nucleus or nuclear chart region has the most impact on the final abundances.
These sensitivity studies are carried out by using the abundance pattern from
some astrophysical scenario (say, a neutron star merger) as a baseline. Then
neutron-capture rates are varied, and the simulation is run again. The final
abundances from these new simulations are then compared to the baseline, and
conclusions are drawn from which neutron-capture rate variation produced the
biggest abundance change®. There are two schools of thought regarding how
these rates should be varied. One involves modifying the neutron-capture rates
one nucleus at a time, for example by a factor up to 100. By then comparing
every new simulation to the baseline, one may find out which single nucleus
has the most impact on the final abundances. This method is used among
others by Surman et al. [66], Mumpower et al. [63] and Vescovi et al. [67] for
the r process and McKay et al. [68] for the i process. It is a powerful method
as it is conservative in its estimation of uncertainties for the involved nuclear
properties, but it suffers from the problem that by changing them one nucleus at
a time it disregards the correlations we know exist between neighboring nuclei.
For example, a nucleus with an odd number of neutrons will usually have a
larger neutron-capture rate than a neighboring one with an even number. This
approach is computationally expensive since many simulations have to be run,
and simpler one-zone models that reproduce results from more sophisticated,
heavier multi-zone simulations are used (with a notable exception by Denissenkov
et al. [69]). This may also be a drawback since the importance of one specific
nucleus in a particular zone may be washed out by the output from the other

6Similar sensitivity studies are made for all uncertain nuclear properties, such as S-decay
rates or masses.
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2. Nucleosynthesis

present “zones” in the astrophysical scenario.

The second school tries to solve many of the problems from the first by
simulating the whole astrophysical site (may it be an AGB star or a neutron star
merger) and vary the input models for some of the nuclear properties at once
(see e.g. Kullmann et al. [70] for the r process and Goriely et al. [65] for the i
process). This method is more rigorous on the physics side, as the astrophysical
environment is well accounted for and nuclear correlations are included, but
conclusions may be more vague (although not necessarily incorrect for that
reason) pointing at important regions instead of single nuclei. Another problem
with this approach is that it may underestimate nuclear uncertainties as none of
these nuclear models provide confidence intervals. In Paper IV [27] these two
approaches are compared in the context of the r process.
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Chapter 3
Nuclear properties

The atomic nucleus is a quantum many-body system governed by the laws of
quantum mechanics. Its constituents interact with the weak and the strong
nuclear forces as well as the electromagnetic force. The peculiarity of atomic
nuclei is that its particles create the potential they themselves are influenced by.
This is in contrast to the nuclear Coulomb potential influencing the motion of
the surrounding electrons. In order to simplify this problem, one often models
the nuclear potential as a mean field. Here, the interaction felt by a nucleon
from the other A — 1 nucleons is modeled as an independent, common potential
that affects all particles in the nucleus. The shape of this potential resembles a
mix between the finite well and the harmonic oscillator potential, and it gives
rise to a behavior similar to that of electrons in an atom, with some interesting
twists. One obvious common trait is that both systems are quantum mechanical,
meaning that as long as particles are bound in a potential, their wave functions
will only be able to organize in certain quantum states, each with their own
characteristic quantum numbers. Nucleons are fermions, and this means that no
two identical particles may occupy the same quantum state at the same time.
Another common trait is that the nucleus interacts with the electromagnetic
force, and nucleons may excite or de-excite between energy levels by absorbing
or emitting photons. One difference is though that the energy difference between
levels is often in the order of MeV instead of €V as for electrons, so photons
emitted by a nucleus are often called 7 rays, and electromagnetic (EM) nuclear
decay called v radiation. EM decay may be understood both classically and
quantum-mechanically, and for a mesoscopic system such as the atomic nucleus
both approaches may be useful, depending on what kind of phenomenon we
want to describe.

3.1 Electromagnetic properties

As the nucleus consists of charges and currents, its electromagnetic field may
be described in terms of static multipole moments. The expansion in multipole
moments is a useful mathematical tool to decompose functions dependent on two
angles, such as the polar and azimuthal for spherical surfaces, and is analogous to
the decomposition of functions into Taylor or Fourier series. The static electric
monopole moment would be the first term in the expansion and corresponds to
the isotropic field from a point charge. The second term is the electric dipole
moment and corresponds to two charges ¢ and —q separated by a distance z.
While no magnetic monopole has been observed, the magnetic dipole is the
magnetic field formed by a current I encircling an area A. Monopole and dipole
are the first terms in the multipole expansion, and because these fields arise from

23



3. Nuclear properties

simple charge and current distributions, nuclear FM fields are conventionally
described in terms of these moments.

The time variation of these fields gives rise to EM radiation fields, and
~v decay can also be decomposed into its multipole moments. We may now
introduce some notation. While the radiation character X may be electric (E)
or magnetic (M), the multipolarity L may be monopole (0, only for electric
radiation) dipole (1), quadrupole (2) and so on. For example, we may call
a variation in the dipole electric field as E1 radiation. We exclude from this
discussion monopole transitions, as this would correspond to variations in the
electric charge, and this cannot be accomplished by electrically neutral photons.

EM fields may also have positive or negative parity, describing how their
operator transforms a quantum state when acting upon it. For example, the
electric dipole momentum operator for a charge ¢ moving a distance r is qr,
and when calculating the amplitude for the transition from 15 to 1, we would
write [ dxi1qris. Since the r term is odd, the two wavefunctions must have
opposite parity in order for the integral to be nonzero. Electric and magnetic
fields of the same multipolarity have always opposite parities, meaning that the
magnetic dipole radiation will have even parity. For quadrupole radiation the
situation is reversed: the electric dipole operator will have a term in r? keeping
the symmetry unvaried (even parity) while this will not be the case for the
magnetic quadrupole moment (odd parity).

A ~ decay corresponds to the transition from a state |i) of excitation energy
E; to a state |f) of excitation energy E;. These states are characterized by
their energy, angular momentum and parity. Radiation of multipolarity L
carries angular momentum L, and the transition between two states of angular
momentum I; and Iy will only allow radiation of multipolarity between |I; — I|
and I; 4 Iy in integer steps because of angular momentum conservation. Parity
may also change. If it does, only F1, M2, E3... transitions will be allowed (odd
electric, even magnetic), while if it remains unvaried only M1, E2, M3... are
allowed (odd magnetic, even electric). The collection of these instructions on
allowed and not allowed transitions are called selection rules for the E M nuclear
interaction (may it be v decay, or absorption).

Knowing this, we may express a transition of EM character X and
multipolarity L from a state |i) to another state |f) as

O5i(XL) = (fIO(XL)]i), (3.1)

where we call Of;(XL) the matriz element, and O(X L) the multipole operator.
The matrix element can be understood as the overlap between the |f) state and
the |i) state transformed by the multipole operator, meaning it tells us “how
much” of the initial state ends up in the final state when undergoing a XL
transition. Indeed, the squared matrix element can be used to find the rate for
a certain transition (meaning “probability per second”) by

\XLn — 8m(L +1) (Ev

2L+1
~ LA[2L + D2 %) [(fms|O(X Ly)|im,) |, (3.2)
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where (2L + 1)!I! = 1-3-..(2L + 1). A state with angular momentum L
may have different magnetic substates characterized by the quantum number
m, corresponding to the z component of L. This means that the outgoing
radiation will have an angular momentum L with a projection along the z axis
of f =myp —m;.

What we are often interested in is the probability of going from one energy
level to another, regardless of the substates m; and my. We may then introduce
the reduced transition probability B(X L; J; — Js), where we modify the matrix
element by taking an average of the m; possible substates and summing over
the final ms substates:

B(XLiJi =+ J) = 57— 3 1O L (33)
mi,m
The rate in Eq. (3.2) becomes
AN = hLTZ;(LL ill))“]Q (%)ml B(XL), (3.4)
or, alternatively,
rXL(E,) = L[EZELJI;!)!P (%)MH B(XL) (3.5)

using the relation I' = ), where I is the decay width. I'XL(E.) is called the
partial decay width and it tells us to which degree a level at excitation energy
F;, angular momentum J; and parity m; will decay by emitting X L radiation of
energy E.. The total decay width of a level, defined by I'; 1ot = > B, XL IXE(E,),
give us information on the lifetime of the excited level ¢. Conversely, we might
obtain the branching ratio of a decay by I'/T'iot, telling us the probability an
excited level has to decay by emitting energy E., compared to the other possible
decay modes.

Levels, matrix elements, transition probabilities, level widths and branching
ratios are all useful quantities when talking about levels that can be well
distinguished from each other. This is indeed the case for low excitation energies
and for light nuclei, but the higher we go in excitation energy, the more levels
we find and these will be closer and closer to each other. Generally, we may
separate between three different regions in the excitation energy: the discrete,
the quasi-continuum and the continuum regions. The discrete region is the
lowest one, it includes the ground state and the first excited levels, and the
energy levels are well separated and distinguishable from each other. When the
density of levels becomes higher than ~200 per MeV bin, we have reached the
quasi-continuum region. Although levels here are still separable in principle,
detector resolutions make the task either impractical or outright impossible.
For this reason the region is best described by statistical quantities such as the
nuclear level density and the v-ray strength function. The quasi-continuum ends
where the wave-functions begin to overlap, and levels are not separable from
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3. Nuclear properties

each other anymore. As much of the astrophysics involving neutron capture
happens in the quasi-continuum, the nuclear level density and the y-ray strength
function are a central topic of this thesis. In the rest of this chapter, the theory
behind these two quantities will be discussed, together with the optical model
potential and the role these have in describing neutron-capture rates through the
compound nucleus picture and the Wolfenstein-Hauser-Feshbach formalism [71,
72].

3.2 The nuclear level density

As we leave the discrete excitation energy region and we move into the quasi-
continuum, the best way to count quantized energy levels becomes using the
nuclear level density instead of treating them as discrete entities. As the name
suggests, the nuclear level density (NLD, p(E,)) is the number of accessible
levels within a certain excitation energy bin. In this work, we will mostly talk
about the number of levels per MeV bin, and the NLD will have units of MeV 1.

When considering the nucleus as a mean field potential where bound fermions
move freely within, it is tempting to describe the system as a Fermi gas. This was
the first approach used by Hans Bethe in 1936 [73], who found an exponential
increase in the NLD with respect to the square root of the excitation energy
E,. Experimentally, the NLD is indeed found to increase exponentially in a
qualitative sense, but the Fermi gas model does not consider effects such as pair
breaking, shell effects or any collective behavior. These are taken into account
in the Gilbert & Cameron formula [74] where, broadly speaking, the energy FE,
is replaced with U = E, — A, — A,,, the last two being the pairing energies
for protons and neutrons, respectively. Also, a dependency on the spin-cutoff
parameter o(E,) is introduced, telling us the expectation value for the angular
momenta for levels at at a certain F,. In the same paper Gilbert & Cameron
make use of the model by Ericson [75] and propose a different model for the NLD,
this being the constant temperature (CT) model. This uses a different approach
than the Fermi gas one, where instead of treating the system firstly as a quantum
system of fermions, it considers the nucleus as a thermodynamic system of paired
nucleons, where the transfer of energy breaks the pairs analogously as what heat
does to melting objects. During this phase transition, the temperature is held
constant, and the NLD increases exponentially with F,:

pon(By) = %T expl(E, — Fy)/Torl, (3.6)

where T and Ejy are both parameters to fit to experimental data, making the
CT model phenomenological.

A more phenomenological variant of the Gilbert & Cameron Fermi gas model
was also proposed by von Egidy in 1988 [76], called the back-shifted Fermi gas
model (BSFG). In 2005, von Egidy & Bucurescu [77, 78] compiled the different
parameters fitting the experimental data for a collection of nuclei between F
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and 2°1Cf for both the CT formula in Eq. (3.6) and the BSFG formula:

B exp[2y/a(E, — Ey)]
C12V20(E,)al/A(E, — Ey)3/4

PBSFG (Fz) (3.7)

where, again, o is the spin-cutoff parameter. We see that apart from the
dependence on the NLD parameter a and backshift E;, the BSFG formula
depends on the spin-cutoff parameter and its £, dependence.

The spin-cutoff parameter ¢! is a parameter identifiable with the expectation
value for the spin distribution (J) at a certain E, [79]. The NLD may be
decomposed into partial level densities, each describing the density of levels of a
certain spin J and parity :

o(E2) = 3 plEe. J.7). 33)
J,m

It is custom to assume a balanced distribution of parities, p(E,,J,m) =~
p(Ey,J)/2, while spins are distributed as g(E,J):

p(EfE?J) = g(EIE7‘])p(EIE)' (3'9)

The spin distribution g(E,,.J) is normalized, meaning ) ; g(E,,J) =1, and is
assumed to be distributed as [73, 75]:

9(Eq, J) = exp (#‘%) — exp (%) : (3.10)

which is governed by the choice of spin-cutoff parameter function. In the
articles included in this thesis, three different spin-cutoff parameter functions
are considered. The first one is the one proposed by Gilbert & Cameron [74]

o?(E,) = 0.08884%3a\/(E, — E1)/a, (3.11)

and the second the one proposed by von Egidy & Bucurescu [77, 78|

1+ +/1+4a(E, — Eq)
2a

0%(E,) = 0.01464%/3 (3.12)
where both include the same parameters a and F as for the BSFG NLD formula.
The second model is frequently called the rigid-body moment of inertia (RMI)
model, as it idealizes the nucleus as a rigid body, and for this reason frequently
yields higher spin-cutoff parameters than the Gilbert & Cameron formula, the
latter referred as the FG model for spin distribution. A third, simpler model
is the one used e.g. by Guttormsen et al. [80] which models the distribution
linearly in F,:
Em - Ed
Sn — FEg
ISometimes I will refer to o and other times to o2 as the spin-cutoff parameter. It should
be clear from the context which form I am referring to.

0?(E,) = o2 + [02(S,,) — 2], (3.13)
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where o2 is the spin-cutoff parameter at some discrete exitation energy F4, while
02(S,) at S, is used as the second point.

Both the CT and the BSFG models are phenomenological, meaning that
their free parameters must be found from a fit to experimental data. This
makes them good tools for describing existing data, but leads to poor predictive
power for nuclei far from the valley of stability, where experimental data are
scarce or non-existing. Microscopic models instead try to calculate the NLD
from the underlying quantum mechanical laws and are, in principle, expected
to have better prediction capabilities. Examples of microscopic models are the
Hartree-Fock calculations from Ref. [81], the Skyrme-Hartree-Fock model [82]
and the temperature-dependent Gogny-Hartree-Fock-Bogolyubov model [83],
all implemented in the reaction code TALYS [84]2. Their predictions will be
compared to the experimental data for '?”Sb and '6%:'6"Ho obtained with the
Oslo method in Paper I [85], Paper II [86] and Paper III [44] (more about the
Oslo method in Section 4.2).

3.3 The ~-ray strength function

Where the NLD is the statistical equivalent of counting discrete states, the
y-ray strength function (GSF?3) is the quasi-continuum version of the reduced
transition probabilities. It may be interpreted as the average electromagnetic
response of the nucleus, and it is defined as [87]

<F;,XL>(E’Y7 Ei) Ji) ﬂ-i)

X
f L(E'nyiyJiﬂTi) = 2L+
Y

where 'L is the partial decay width as defined in Eq. (3.5) and p the partial
level density as found in Eq. (3.8). (I')XL) indicates the average partial decay
width for initial energies in the vicinity of F; making a transition of an energy
close to E,. Although we may have strength functions for all multipolarities L,
dipole radiation is the one dominating [88]. For this reason, from now on we
will only consider dipole radiation. In particular, we may write

fE 7Ei7*]i77ri %fEl E 7Ei7*]i77ri +fM1 E 7E7:7Ji77ri . 3.15
Y Y Y

The GSF as it stands in Egs. (3.14) and (3.15) depends on four variables, these
being the initial excitation energy E;, the transition energy E., and the spin
and parity of the initial state, J; and m;. From here, we can do a series of
simplifications. The GSF is in principle defined differently for photo-excitation
(upward) and 7 decay (downward). However, using arguments of detailed
balance, we may say that these two are equal provided that the same states
are populated regardless of direction. In addition one may assume that the

2These are to be considered more as semi-microscopic rather than pure microscopic models,
as they also have free parameters to be fitted to experimental data.

3The GSF is also known as “photon strength function” or “radiative strength function”
and the shorthands vSF, PSF, RSF.
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GSF is independent of the initial excitation energy, angular momentum and
parity, so that f(FE, E;, J;,m;) = f(E,). This series of simplification is referred
to as the generalized Brink-Axis hypothesis [89, 90|, and it is central for the
application of the Oslo method. Although having been observed to hold for
many nuclei [91-94], this feature is not universal and care should be applied.

3.3.1 Structures in the GSF

The GSF may shed light onto nuclear collective behaviors. Its features can be
found in many nuclei, and a stylized drawing of known structures in the GSF is
shown in Figure 3.1. The most prominent and regular one is the giant electric
dipole resonance (GEDR). As the name suggests, it has E'1 character and is a
large, Lorentzian-shaped structure centered at about E, ~ 15 MeV, it is doubly-
peaked for deformed nuclei, and may be interpreted in a macroscopic picture as
protons and neutrons oscillating against each other [95, 96]. Although the GEDR
usually dominates the GSF, other structures may be observed on its lower tail.
The giant magnetic dipole resonance (also called the spin-flip M1 resonance, or
spin Gamow-Teller resonance) is a weaker structure usually observed around
E, ~ 6 — 8 MeV for deformed nuclei (around 10 MeV for spherical) and is
microscopically understood as transitions between single-particle levels with
j=1+1/2and j =1 — 1/2 spins and same parity [97] The pygmy dipole
resonance (PDR) is an E1 structure also centered at about E, ~ 6-8 MeV
and present in many neutron-rich nuclei [98, 99]. Although macroscopically
understood as a core of Z = N nucleons oscillating against the neutron excess,
this interpretation is in conflict with the fact that it is often quite fragmented and
difficult to fit with a Lorentzian function, and should probably be understood
microscopically (see e.g. [100, 85]). Similar is the situation for the scissors
resonance (SR, also called scissors mode). This is a small structure consisting of
M1 radiation and centered around E, ~ 3 MeV, observed in deformed nuclei
and originally interpreted as protons and neutrons oscillating against each other
in a motion similar to a pair of scissors opening and closing. This behavior is
now predicted to be at £, ~ 20 MeV, called the “true scissors resonance”. The
one at 3 MeV can be understood from the Nilsson model as coherent single-
particle transitions between split magnetic substates in deformed nuclei (Aj =1,
same parity) [97]. Finally, a structure at low E, called the upbend (or “low
energy enhancement”, LEE) was discovered in °%°6Fe [101] and has recently
been observed in several nuclei [102]. Although its electromagnetic character
still remains a mystery, shell model calculations suggest that it might have an
M1 nature (see e.g. Ref. [102]).

3.4 The compound nucleus picture

Knowledge about the NLD and GSF is useful because it may uncover unknown
properties of the nucleus and help us understand more of the behavior of
this complicated, mesoscopic quantum many-particle system. Another use is
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Figure 3.1: A qualitative depiction of the low end of the GSF (in unspecified
units), where we can see the structure described in Section 3.3.1: The dominating
giant dipole resonance centered at about E, ~ 15 MeV, the pygmy resonance at
E, = 7.5 MeV, the scissors resonance at ~ 3 MeV and the upbend at lower F.,.
The spin-flip resonance is usually hidden below the pygmy dipole resonance and
is not shown in the above drawing.

within the Wolfenstein-Hauser-Feshbach framework [71, 72]. By exploiting the
compound nucleus picture of Niels Bohr [103], we are able to describe compound
reactions taking place in astrophysical scenarios. Compound reactions are one of
three ways one may categorize how nuclei can interact with each other or with
other nucleons, the other two being direct and pre-equilibrium reactions. Direct
reactions have a very short timescale on the order of the time an incoming particle
would take to travel a distance comparable to the target nucleus’ diameter, about
1071810722 5 [75]. Only a few nucleons partake in this reaction and the scattering
is not isotropic, meaning that the angle between the incoming particle and the
outgoing ejectile will be related. On the other hand, compound reactions take
much longer times, about 107!° s, and work in a qualitatively different way. The
incoming particle will be absorbed by the target and the nucleus will have time
to thermalize, meaning that the energy will be evenly distributed among the
nucleons. When this happens, the nucleus will “forget” how it was made, its
decay will be isotropic (no angle correlations between incoming and outgoing
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particle) and its decay will only follow spin, parity and energy conservation laws.
Pre-equilibrium reactions do not quite reach thermal equilibrium and present
features of both kind of reactions.

Generally, we may describe a compound reaction as

Oap = 0P (3.16)

where the cross section o, for a reaction with incoming channel a and outgoing
channel b is given by the cross section for a- capture o multiplied by the
probability for decay via the b channel.

We will mostly talk about radiative neutron-capture in the context of
astrophysics. This involves thermalized neutrons as projectiles against heavier
nuclei with energies spread as a Maxwell-Boltzmann distribution with expectation
values in the order of tens of keV. In this regime, the compound nucleus picture
is applicable, and we may rewrite Eq. (3.16) as

Onn(Ex) = 0N By, J,7) Py (B, J,7), (3.17)
J

where the first term oSN(E,., J, 7) describes the possibility for a free neutron to
end up forming an ex01ted nucleus of excitation energy F., spin J and parity .
This may in turn be separated into

k%n(E:E) J7 ﬂ-)? (318)

n

CN(Emy J7 7T) -

where k,, and 7, are the incoming neutron’s wave number and transmission
coefficient, respectively. Qualitatively, we understand that the higher the wave
number, the faster the neutron is and thus the shorter the time it will be able
to interact with the nucleus, making the cross section smaller. The neutron-
transmission coefficient is calculated from the optical model potential of the
target nucleus. The second term of Eq. (3.17), P,, may be expressed as

Ty (Ey, J,T)

P E$7 ) :—7
WEe Jm) = T T

(3.19)

meaning that the probability for a nucleus to y-decay (and thus absorb the
neutron) is given by the ratio between the -transmission coefficient 7., and all
the ways the nucleus may decay. In astrophysical settings, neutron energies will
usually not go beyond 1 MeV (see Section 4.3), meaning that the excitation
energy of the compound nucleus will be maximum E, < S, + 1 MeV. Often,
the only two ways the nucleus will decay will be by v or n emission, so that
Teot = Ty + Tn. Joining Eqgs. (3.18) and (3.19) into Eq. (3.17) we obtain

On~(E (3.20)

Z Tn(Ex, J,m) Ty (Ey, J, )
k72 Em,Jﬂ)—i—T(Em,JW)
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For high energies, the neutron decay channel dominates, so that 7, ~ Tiot and
we may rewrite Eq. (3.20) as

s
O (E kQZ (B, J, ) = k%ﬂ(Ex), (3.21)

n g

where the choice of optical model potential (OMP) has no longer any influence
on the capture cross section. This is typically the case for energies associated
with the r process. The OMP has to be taken into account for s-process neutron
energies of ~ 30 keV though, as its impact to the capture cross section may still
be appreciable. For both cases the partial y-transmission coeflicient 75 (E,, J, )
is an important ingredient. This is given as

T(Ey, J, ) = Z/ TXL(E,)p(E, — E, J,n)dE, (3.22)

where TXL(E.,) is directly related to the GSF as
TXE(E,) = 2 B X (1) (32

and p(E, — E,, J,m) is the partial level density as seen in Eq. (3.8).

3.5 Nuclear physics in astrophysics

As explained in chapter 2, the s, ¢ and r processes all happen in astrophysical
scenarios where temperatures are high enough to allow for the mechanisms that
create the necessary neutrons. For the s and ¢ processes these temperatures are
at T~ 0.25 GK, while for the r process they may go up to the (n,vy) = (y,n)
equilibrium temperature threshold of 7'~ 1.5 — 2.0 GK and beyond. In these hot
environments, we have to consider two things. First, neutron incident energies
will follow a Maxwell-Boltzmann distribution

fe(T) = UlT \/E (k;T)B/Q /OOO Eexp ( kg) dE, (3.24)

where vp = \/2E/m is the thermal velocity, m is the reduced mass, kp is the
Boltzmann constant and 7' the temperature. Second, nuclei may very well be
excited themselves. In this case the cross section will be a sum of all the cross
sections ol built on the different excited states pt, each weighted down for
their relative population:

Ony = Y Puolt.. (3.25)
w

4Here again the Brink-Axel hypothesis, in its original formulation, may come to the rescue
and set these cross sections to be the same as the one on the ground state [89, 90].
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The population of each level will be thermalized, meaning that the probability
of finding the nucleus excited to the level p will be [30]

b _utDeBkn 1 (41 g,
F S Tt De BFe G (Jo+ 1)

(3.26)

where Jy and J, refer to the ground state and the u excited state spins, E, to
the p excited state energy, and we have defined the partition function as

G =Y %e—%’@. (3.27)

Putting all together, we may convolute the cross sections with the Maxwell-

Boltzmann distribution, obtaining the Maxwellian-averaged cross section
(MACS):
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Equivalent to the MACS, the neutron-capture rate N4{ov)r ° may be given in

the literature. These two quantities are closely related by
NA<O"U>T = NA’UT<O'>T, (3.29)

where N, is Avogadro’s number.

The equations for the MACS and the neutron-capture rate work as long as
the thermalization argument in Eq. (3.26) holds. This is the case for many nuclei,
but sometimes the process of thermalization may be too slow even considering
the timescales of the s process. This may happen when selection rules of spin
and parity make communication between low lying levels difficult, so that if a
nucleus becomes stuck in a high-spin isomeric level, for example, it will not be
able to decay to the ground state even in hot stellar environments. This is for
example the case of ®Ho for temperatures below kpT = 7 keV [104], where
the first excited state at E, ~ 6 keV is 7~ and cannot decay to the 0~ ground
state unless going through intermediate levels at higher excitations, something
unlikely at cold temperatures. This case is discussed in Paper III [44].

The MACS and the neutron-capture rate are temperature-dependent
quantities telling us the degree they will be able to capture a neutron. For
astrophysical simulations of the nucleosynthesis processes, libraries of these
rates may be found. JINA REACLIB [105] is a widely used one built on the
NONSMOKER formula [106], and BRUSLIB [107] is another.

5The notation here is a bit confusing, as this is not a rate in the meaning of e.g. Eq. (3.4),
but reactivity. This quantity is nevertheless often referred to as neutron-capture rate in the
literature.
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3. Nuclear properties

In this chapter we have seen how starting from the NLD and GSF we may
calculate the MACS and the neutron-capture rate using the compound nucleus
picture. How can one find the NLD and GSF of a nucleus, though? In the next
chapter I will go through the Oslo method, a set of analytical techniques able to
extract precisely these two quantities from particle-y coincidence experiments.
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Chapter 4
Experiments and the Oslo method

We have seen in the previous two chapters how the origin of the elements heavier
than iron depends on astrophysical neutron-capture processes, and how these
both rely on the proper simulation of these nucleosynthesis events and the correct
nuclear inputs. One of the most useful inputs in this regard is the neutron-
capture rate, telling us to which degree an (n,~) reaction on a specific nucleus
is likely to happen. This is in turn important because it will create heavier
isotopes of the same element, which will eventually 3 decay and climb up the
nuclide chart. As we saw in Section 3.5 the neutron-capture rate can be derived
from the nuclear level density and the y-ray strength function of the N + 1
nucleus, exploiting the compound nucleus picture [103] and the Wolfenstein-
Hauser-Feshbach formalism [71, 72]. The two average statistical quantities can
be extracted from particle-y coincidences using a data-analysis procedure called
the Oslo method. In this chapter I will describe the experimental setup at the
core of the experiments analyzed in Papers I, IT and III, how we can extract the
nuclear level density (NLD) and the v-ray strength function (GSF) from the
data, and finally connect all the steps that lead us from laboratories on Earth to
the nucleosynthesis in the cosmos.

4.1 The experiments

The three experimental papers included in this thesis are all based on the
data from the Oslo Cyclotron Laboratory (OCL, [2]). The three experiments
analyzed are 124Sn(a, py)'?"Sb (Paper 1), 1Dy(a, py)'%*Ho (Paper II) and
164Dy (a, py) " Ho (Paper I1I). All three experiments involved a-beams impinged
on self-supporting stable targets. In the first experiment a 24 MeV beam was
impinged on a 0.47 mg/cm? thick 124Sn target of 95.3% enrichment, in the second
a 26 MeV « beam on a 2.00 mg/cm? thick 93Dy target of 98.5% enrichment,
and in the third again a 26 MeV « beam, but now on a 1.73 mg/cm? thick 54Dy
target of 98.5% enrichment. For all of these the same beam was impinged on a
12C target for calibration purposes.

Figure 4.1 shows a sketch of the laboratory. Charged o particles are produced
by ionizing “*He gas and accelerated by the MC-35 Scanditronix cyclotron.
Different steering magnets are then used to focus the beam on the target inside
the Silicon Ring (SiRi, Figure 4.2) and the Oslo Scintillator Array (OSCAR,
Figure 4.3), where particle-y coincidences are measured and stored. Experiments
varied in duration between under a day as for '"Ho, or six days for '%Ho.

The beam reacts with the target in the center of the detectors, emitting a
particle first, followed by a v cascade!. SiRi [108] is a particle detector array in

'When excited well above the neutron separation energy, a nucleus will much rather decay
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Figure 4.1: A sketch of OCL. Beams of «, 3He, d or p particles are produced in
the MC-35 Scanditronix cyclotron by ionizing helium or hydrogen gas, and
accelerated to the desired energy. Steering magnets direct and focus the
beam on the target inside the OSCAR and SiRi detector arrays. From https:
//www.mn.uio.no/fysikk/english/research/about/infrastructure/ocl/index.html.

charge of telling us the type and the energy of the outgoing particles. This is
achieved by having a thin detector in front (130 nm, called AE) and a thicker
one in the back (1550 pm called E). Faster particles spend less time in the
thinner detector and deposit less energy there and more in the rear one. Slower
particles will deposit relatively more energy on the thin detector for the same
reasons. In addition, lighter particles (such as p) will be faster than heavier ones
(such as d, t etc.) for the same total kinetic energy, and will again leave less
energy in the front detector and more in the back compared to the heavy ones.
Charge influences the amount of energy deposited as well since ultimately it is
the Coulomb force that is responsible for the working of the particle detector.
All of these factors help us discriminate between the different types of emissions
and measure their energy. In a AE-F plot they will appear like bows (also
called “bananas”, see Figure4.4). In this way we are able to only select (to “gate
on”) the ejectiles for the reaction we are interested in. This is called the AE-F
technique.

SiRi consists of eight £ detectors in a ring covering 126°-140° in backward
angles, and in front of each of them there are eight strips of AFE detectors,
forming an array of 64 detectors altogether. It may be placed in forward or

with a neutron than a « ray. The “leftover” energy in the nucleus will then be released by EM
radiation.

36



The experiments

Figure 4.3: The OSCAR ~v-ray detector array.
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4. Experiments and the Oslo method

backward angles, and for our three experiments the latter was chosen to minimize
the impact of elastic scattering.

OSCAR [109] is the detector array responsible for recording ~ radiation. It
consists of 30 cylindrical LaBr3(Ce) detectors build on a icosahedron frame
around the target. Events recorded by OSCAR and SiRi are timestamped so
that they may be associated in particle-y coincidences. Knowing then the energy
of the beam, the Q value of the reaction and the energy of the ejectile (from SiRi)
we are able to calculate the energy FE, the product nucleus is left in before the
~ cascade. OSCAR provides information on the v de-excitation of the nucleus.
After calibrating the detectors with runs on well known targets (in our case *2C),
and subtracting background events, we obtain the F,-E, coincidence matrix,
also known as the raw matriz. This is the starting point for the Oslo method.

5000 o
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Figure 4.4: The AE-E “banana” plot for the 24Sn(q, py)!2”Sb experiment,
taken from Paper I [85]. The lower bow corresponds to protons, the middle
bow to deuterons and the upper to tritons. The o bow is also detected in the
experiment, but is outside the limits of the plot. Using this plotting technique,
we are able to gate on the p decay channel and only select the («, py) reaction
for our analysis.

4.2 The Oslo method

The Oslo method is an analysis technique that allows us to simultaneously
extract the NLD and the GSF from the F,-F, matrix. The raw matrix obtained
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The Oslo method

from the calibrated SiRi and OSCAR data need to be corrected for the detector
response in a process called unfolding, and in order to only select the first v rays
in the de-excitation cascade the first generation method is applied. The next step
is to select the region in the resulting first generation matriz corresponding to the
quasi-continuum, and extract the functional shape of the NLD and GSF. Finally,
a normalization procedure can be employed in order to anchor the functional
shapes of these two functions to external experimental data.
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Figure 4.5: The a) raw, b) unfolded and c) first-generation matrices for the
12481 (a, py)127Sb experiment taken from Paper I [85]. The diagonal, black,
dotted line in the three matrices indicates where F, = E., meaning the highest
energy the nucleus may decay with for a given excitation energy. The horizontal,
black dotted line indicates the neutron-separation energy S,,. In the c) panel the
selected region for the extraction of the NLD and GSF is shown inside the black,
solid line. See text for more explanation of the matrices and the Oslo method.

4.2.1 The unfolding

The matrix we obtain from the two detector arrays does not correspond to the
true signal from the experiment. This has to do with the fact that we have
to expect some “noise” and distortions from the detectors. Some high-energy
photons may interact with the detector crystals and produce an electron-positron
pair, which creates photons that may escape detection. If we are then to expect
a 7y ray with energy E,, what we would also see are two small peaks with
E, —mec®* ~ E, — 511 keV and E, — 2m.c* ~ E, — 1022 keV in the spectrum,
called single and double escape, respectively. Together with these, Compton
scattering may be responsible for the transfer of only some of the photon energy
to electrons, producing a low “ridge” at £ < E, and the rest of the energy
escaping detection. Finally, we would also expect a peak at 511 keV due to
photons from electron-positron annihilations. All of these spurious signals should
be filtered out, and this is done by using the response function of the OSCAR
detector to de-convolute (or unfold) the experimental data.
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4. Experiments and the Oslo method

Mathematically we may describe the problem as the true signal U(E,) being
folded by the response matrix P(E”, E) into the folded signal F'(EY):

p(ﬂg)::j/fxﬁg,ﬁg)y(ﬂg)dﬂg. (4.1)

Since we work with 2D histograms, we may describe the problem with matrices

as
f = Pu, (4.2)

where f and u are column vectors of length N representing a v spectrum at
E., and P being the N x N response matrix. Although it would be tempting
to just invert P into P~' and calculate u from f with it, this produces large
fluctuations in u and does not yield the desired result. To address this problem
the unfolding procedure developed by Guttormsen et al. [110] uses a different
approach and approximates the true signal iteratively. One starts with a trial
true spectrum wug, which is taken to be equal to the measured spectrum r. This
is folded into fy using Eq. (4.2). One then takes the difference between the
measured r and the folded fy, and add it to the trial matrix ug to obtain the
new trial spectrum wuq:

U1 = Ug + (7“ — f()) (4.3)
The newly obtained w; will then take the place of ug and repeat the above
procedure until the n-th folded trial matrix corresponds to the raw matrix within
the experimental fluctuations. In addition, the Compton subtraction is used
to avoid spurious fluctuations. Finally, the “true” signal is multiplied up so to
retain the original number of counts. In Figure 4.5 one can observe the raw and
the unfolded matrix for 27Sb as published in Paper I [85].

4.2.2 First-generation ~ rays

The matrix obtained from the unfolding procedure is the collection of v spectra
from each measured excitation energy. We are only interested in the first v rays
coming out from the nucleus at that specific excitation energy, but the decay is
generally too fast to detect which v ray comes first. This means that the spectra
include the whole v cascades from the excited level to the ground state. The
first-generation method is a subtraction technique developed at OCL with the
aim to extract only the first v rays from each cascade. It is described in detail
in Ref. [111], and I will explain the idea behind the method here.

Imagine that all excitation levels E, are populated with equal probability.
Then the full v spectrum a(E,)g, of a specific excitation energy E, can be
thought as its first-generation spectrum f(E-)g,, plus a weighted sum of all the
full spectra at £/, < E,:

a(Ey) = f(Ey)e, + Y w(E,)ea(E)e,, (4.4)
Bl <E,

where w(E.) g, are the weighing factors telling us “how much of the E’ -level full
spectrum we have in the E-level full spectrum”. In other words, w(E.)g, can
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The Oslo method

be considered the branching ratio from a level at E, to one at E.,. Unfortunately,
the assumption of equal population is not necessarily valid, and the sum has to
be adjusted by a normalization parameter n(E’)g, accounting for the different
level population cross sections:

a(E,) = e, + > n(EL)e,w(E,)E,a(Ey)m,. (4.5)
E! <E,

The good news is that we can calculate n(E”)g, . This normalization factor
is nothing more than the ratio between the cross sections of E’-level and the
E,-level. Since we usually have enough statistics, this ratio may be found by
dividing the number of times we populate the level at E! by the corresponding
number for E, or, equivalently, dividing the number of cascades originating
from E! by the number originating from E,. The number of cascades may be
calculated by summing the energy from all the photons coming out from an
excited level E/ and dividing by the number of photons N, obtaining the average
energy of each photon in the spectrum, (E,)g: . Knowing that each cascade leads
to the ground state, dividing E’, by this number we obtain the average number
of photons per cascade, this being the average multiplicity (M)g: . Thus, we may
divide the total number of photons by the average multiplicity, to obtain the
number of cascades. Repeating for E, and taking the ratio, we obtain n(E.)g,

_ Ney /(M) g,
* Ng, /(M)g,
As anticipated, w(E.)p, may be understood as the branching ratio for v decay

between E, and E!. This is nothing more than the normalized first-generation
spectrum for the level at F,.:

n(E;) e (4.6)

_ f(E:Jc — E:;)Ez

Pulling all the threads together, we may write Eq. (4.5) as

NE//<M>E’ f(E:Jc _E:;)Ez
E))g, =a(Ey)p, — - )
F(Ey)p, = a(Ey)m, EZ:EI N, /(M)p, 2 g <p, F(E))E,

This creates a system of equations that may be solved iteratively by picking
trial functions for f(FE,)g, like unity and run until convergence. The resulting
first-generation matrix for '?7Sb is shown in figure 4.5¢).

w(Ey)E (4.7)

4.2.3 Decomposition of the NLD and GSF functionals

Fermi’s golden rule [112, 113] states that the probability of a transition is
proportional to the density of states at the final energy level, times the squared
matrix element (and a constant):

A= TEFIH i) o), (1.9)
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4. Experiments and the Oslo method

for an initial state ¢, a final state f, a perturbation operator H' and a state
density p at final excitation energy F;. The same idea may be applied in our
case, where the v-transmission coefficient 7 (E,) can interpreted as the quasi-
continuum equivalent of what the matrix element is for discrete states, and the
NLD as the equivalent for the number of states at final excitation energy. 7,
here does not depend on initial or final energies, meaning that by doing this
substitution we are assuming the Brink-Axel hypothesis. From this idea we may
build the relation? [115]

P(E’Y7Em) X TY(E’Y)p(Em - E’Y)? (4'10)

where P(E,, E,) are the first-generation spectra for each excitation energy E,,
representing the probability of decay by E, energy from an excited state E,.
This is the first-generation matrix, when only statistical decay is selected. The
selection is done by picking a lower limit of E, ensuring that we do not include
leftover decay from discrete states, and a lower and upper limit on E, keeping
sure that we hold ourselves inside the quasi-continuum region and below S,,. A
theoretical normalized first-generation matrix can be formulated as

T(Eqy)p(Ee — Ey)
Zg::ngin Ty(E'y)P(Em - E’y)

P (Ey, Ey) = (4.11)

which can be used in a x? minimization with the experimental P(E,, E,) as

2 P(E’WEZE) B Pt(E'y>Em) 2
! “;§;w< SHE ) )

where AP(E.,, E,) are the uncertainties connected to the first-generation matrix.
From this minimization procedure we are only able to extract the functional

shapes of the NLD p(E, — E.) and the y-transmission coefficient 7, (E,). It can

be shown [115] that these are related by three free parameters A, B and « as:

By — E,) = Ae®P=—F) p(B, — E.), (4.13a)
T,(Ey) = Be*™ T, (E,). (4.13b)

Any choice of these three parameters reproduces the first-generation matrix, so
that we have infinite solutions for this minimization. These parameters may be
fixed by fitting them to known physical quantities through normalization.

4.2.4 Normalization

The values of two parameters (A and «) have to be found in order to fix the NLD.
Since we already know its functional shape, we only need two anchor points

21f this explanation seems hand-wavy, it is because it is. For a thorough derivation from
Fermi’s golden rule to this relation (and an interesting discussion on its validity) I refer to Dr.
Midtbg’s doctoral thesis [114].
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in order to find the physical p(E,), and preferably we would want these two
points to be known experimentally. The first point is actually a region of points,
and it is the NLD at low excitation energy. Data on the lowermost discrete
energy levels are usually available, and may be used to calculate the NLD and
fit our function to it. The second point corresponds to the NLD at the neutron
separation energy, p(S,). This may be found by [115]

B 202 1
Do (I + 1) exp[—(I; + 1)?/20%] + exp[—I} /20?]

p(S,) (4.14)

Here, s-wave (or p-wave) neutron resonance spacings Dy (D) are usually
available for stable targets [116, 117], o2 is the spin-cutoff parameter at S,
and I; is the spin of the target nucleus. The spin-cutoff parameter must be
chosen from either the RMI or the FG model as discussed in Section 3.2, and
the choice introduces the first model dependence in the normalization procedure.
When selecting the quasi-continuum region from the first-generation matrix, the
first or first couple of MeV in transition energy (E;nin) are left out since they
correspond to discrete transitions from the lowermost excited states. Assuming
then that the selected excitation energy region goes up to the neutron separation
energy S,, NLD data will only reach up to about F, =5, — E{Ynin. This means
that we will have to extrapolate our data up to S,, in order to normalize it. This
is done by using either the BSFG model or the CT model, both discussed in
Section 3.2. The choice of extrapolation model can impact the normalization
results in a considerable way if the gap in E, between S,, — Efynin and 5, is large.
This introduces the second model dependence in the normalization procedure.
In order to minimize this, one may pick the model that fits the existing data
best, as done in by Guttormsen et al. [118] and my two Ho papers (Paper II [86]
and Paper IIT [44]).

Once the NLD is normalized, the a parameter may be used for the ~-
transmission coefficient 75 (E,), and we are left with the last free parameter
B. This may be fixed with the help of the average total radiative width at the
neutron separation energy (I'y(Sy)). In the case of the target spin being 07 and
considering s-wave capture, we get the relation

S

D n
(Coo(Sws I+ 1/2,m)) = BL2 | dB, T ()
+1
XY p(Sn— Ey, I £1/2+ J,m), (4.15)
J=0

where I; = 0 is the target spin and m; = + is the target spin parity, and J is
the difference in angular momentum between the initial and final level. This
expression assumes equal parity distribution and dominance of dipole transitions
and is based on Equation (3.1) of Kopecky and Uhl [88].

When Dy or (I'y) are not provided (as it usually is the case for unstable nuclei
that cannot be reached by (n,7) experiments), these values can be extracted
by systematics, meaning comparing to known values for neighboring, measured
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nuclei. This is done for *7Sb in Paper I [85], where an example of this procedure
can be found.

4.2.5 Other experimental techniques

In this section we have covered the Oslo method, from the data collection during
the experiments, to the extraction of the NLD and GSF. The Oslo method
requires a stable, solid target to be employed. On one hand, this allows for the
easy collection of a lot of data (leading to small statistical errors) and usually
the possibility to use experimental data for the normalization procedure; on the
other hand it is limited to the study of nuclei that are reachable using p, d, *He
or a probes, meaning close to or at stability. Although the study of these nuclei
is important both from a nuclear structure perspective and an for the extraction
of neutron-capture rates and Maxwellian-averaged cross sections for the s and
partially the i process, (see Sections 3.5 and 4.3), many nuclei involved in the
latter and especially in the r process are unreachable by this kind of experiments.

In order to solve this problem, variations of the Oslo-method have been
developed to study more exotic nuclei far from stability. The Oslo method in
inverse kinematics [119] is one of these variations. It retains most of the elements
of the original Oslo method, but instead of light projectiles impinging on a heavy
target, radioactive heavy isotopes are produced by spallation are accelerated
towards a light target, this usually being a deuterated carbon compound, allowing
for (d,p) experiments. These radioactive isotopes are usually much further into
the neutron-rich side of the nuclear chart, and by recording particle-y coincidences
one may employ the Oslo method in order to extract the NLD and GSF of the
desired nucleus. A limitation to the Oslo method in inverse kinematics is that
the production of the desired isotope and its reaction cross section with the light
target may lead to limited data, increasing the statistical errors. Another is
usually the lack of experimental data to be used for the normalization procedure,
increasing the systematic errors. A different approach is the 8-Oslo method [120],
which instead of exciting a nucleus by a nuclear reaction, it does it by £ decay.
For many neutron-rich nuclei produced in radioactive beams, the S-decay Q-value
is in fact comparable to the neutron-separation energy S,,, and this allows for
the population of a wide range of energies in the daughter nucleus. The electron
from the (-decay is tagged, and the associated v rays from the de-excitation
cascade provide information on E., and E, when summed. This method allows
for a faster data collection than with the “inverse kinematics” method as it does
not deal with reaction cross sections, and more data leads to smaller statistical
errors. Nevertheless, the lack of experimental data in the exotic nuclear region
leads to difficulties for the normalization procedure just as for the Oslo method
in inverse kinematics. In addition, correcting for the narrow spin-population by
the B decay into the daughter nucleus can be difficult when there is little or no
information on the spin of its parent.
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4.3 Calculating the Maxwellian-avaraged cross section

Knowing the NLD and the GSF and assuming an optical model potential (OMP),
we are able to calculate what is the neutron-capture cross section exploiting
the Wolfenstein-Hauser-Feshbach formalism, as explained in Section 3.4. In a
sense, we are saying “since the excited compound nucleus forgets how it was
made, we can pretend it was formed by neutron capture instead of («,p). By
studying nucleus A’s v de-excitation, we can then calculate the chance that
nucleus A — 1 will radiatively capture a neutron”. Starting from the cross section,
the Maxwellian-averaged cross section (MACS) and the neutron-capture rate can
be calculated with the equations shown in Section 3.5. This is usually done using
the reaction code TALY'S [84]. Some more data have to be provided before such
a calculation can be undertaken. First, we have to think about neutron energies.
As temperatures will vary between about 0.25 in AGB stars to 1.5-2 GK in the
r process after a broken (n,~v) = (v, n) equilibrium, neutron energies will follow
a Maxwell-Boltzmann distribution centered somewhere between 30 and 200 keV,
meaning that the most energetic neutrons may have energies in the order of
~ 1 MeV. When a neutron with energy F,, is captured, the new compound
nucleus will have an excitation energy of F, = S, + F,. In our best case scenario,
the GSF data stop at E, = S,,, while for the NLD it actually falls short of S,, by
one or two MeV. NLD and GSF data are seldom available above S,, for unstable
nuclei, and this means that we depend on extrapolations in order to calculate
such cross sections of interest for astrophysics. For the GSF, this can usually be
done by fitting to known data from other neighboring nuclei, or by extrapolating
it with a model beyond E, = S,,. This is usually sufficient since the GEDR does
not peak before E, ~ 15 MeV, well above the typical neutron energy, but care
should be taken anyway. For the NLD the model used to extrapolate it up to
S, may be used to extrapolate further.

4.4 Error propagation

While obtaining experimental data for the NLD and the GSF, as well as when
calculating the MACS, we encounter different sources of errors. Some of them
are of statistical nature, such as the ones related to the finite experimental data.
The propagation of this kind of errors is challenging and its correct quantification
still has not been achieved. Nevertheless, major steps in that direction have
been taken by the treatment of uncertainties by ensembles as done by Midtbg et
al. with their software package OMpy [121]. Nevertheless, some challenges still
remain when it comes to error propagation through the unfolding procedure,
where work is currently underway. Other errors are connected to the choice of
model for the spin-cutoff parameter and the NLD extrapolation, and others are
connected to the physical quantities used in the normalization of the NLD and
GSF functionals. These are a combination of statistical and systematic errors
that influence the final uncertainties of the two quantities. Finally, we have the
choice of OMP model used to calculate the MACS and the neutron-capture rate,
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especially relevant for nuclei partaking in the s and 7 processes.

The error sources related to normalization have been a focus of mine during
my PhD period, and were first published in Paper I [85] and refined when
used for the data analysis in Papers II [86] and III [44]. In the following
subsections I will go through a procedure developed to quantify these errors and
propagate them in the most correct way in order to provide the best experimental
uncertainty constraints to the MACS. The analysis codes for each paper were
written in Python and can be found as distinct repositories on my Github

https://github.com/Cyangray.

4.4.1 NLD and GSF

The normalization of the NLD depends on the fitting to the known low excitation
energy levels and its value at .S,,. The match between the experimental data and
the low lying levels is usually not perfect, since the available level scheme may
not be complete and the experimental data includes statistical uncertainties.
For this reason only the region in E, that matches the experimental data the
most is selected for the fit. The value of p(S,) is calculated from Dy values and
the choice of spin-cutoff parameter model. Normally, then, the normalization
procedure for the NLD is done by choosing an E, interval for the low excitation
level fit, and by picking a model for the spin-cutoff parameter to use with Dy
in order to calculate the second anchor point at p(S,). From this point, a x?
minimization is done to find the best fit between the functional and the anchor
points, and a “correct” NLD is provided. The associated systematic uncertainties
from this method are only the ones related to the error in Dy, usually (but not
always) provided in the literature, and not the ones connected to the choice of E,
interval or spin-cutoff parameter. In order to address this problem I developed
a method to propagate also this kind of uncertainties. The procedure may be
simply described as doing something similar to a “grid search”: Several fitting
simulations as described above are run with slightly different parameters, such
as the choice of low-FE, region and spin-cutoff parameter. Then we evaluate
the x? score between every simulation and the “well fitting” low-lying E, level
region as well as the assumed p(S,,) calculated using Eq. (4.14). Then for every
simulation n we evaluate a x2 score as:

2 (pn(Ei) — p (El))Q 2
= + 4.1
XNLD,n EZ Apn(Es)? XS, ,n (4.16)

where the sum runs over a wide, low excitation energy region considered to have
a complete level scheme®, p,(E;) and Ap, (F;) are the n-th NLD simulation
evaluated at E; and its respective uncertainty, and py(E;) is the NLD from the
known level scheme. The value of X?S'n,n represents the y? score of the fit between
the n-th simulation’s p(S,,) and a chosen probability distribution for the p(.S,)
error. This last probability distribution may be chosen to be Gaussian centered

3The NLD is technically a histogram, so we are summing over bins instead of integrating
over an energy interval.
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around a value. This would be the case when we have strong arguments for
choosing a spin-cutoff parameter model above the another. In this case X?gmn
may be calculated as

o (pal(Sn) = p(Sn))? (4.17)

XSn,n - Ap(sn)2

where p(S,,) is calculated as in Eq. (4.14), and Ap(S,,) is calculated from the
given uncertainties in 02 and Dy as

s =ty (B2) + (B20) (1o =)

where
Vi (I + 1)?
_ 73 t 3 t
1 = It exp (ﬁ) + (It + 1) exp (T (4198,)
IZ (I; + 1)?
2o = It exXp (ﬁ) + (It + 1) exp (T y (419b)

and I; is as usual the target spin in the neutron-resonance experiment. Oftentimes
though we cannot make a strong argument for choosing the RMI model over
the FG one, or vice versa. In this case, we may decide to let the probability
distribution not prefer any of the two values by holding it flat between them.
Our x3 ,, will then be?

(pn(Sn)—prc)?®

Ap(S,) y if pn(sn) < PFG
X?S‘n,n =<0, if pra < pn(Sn) < prRMI ¢4-20)
(pn(inp)(;i?m) . if pn(Sn) > prw,

where ppg and pryi are the NLDs estimated with the FG and the RMI spin-cutoff
parameters respectively, and Ap(S,,) is calculated as in Eq. (4.18).

If all errors going in Eq. (4.16) are Gaussian distributed, then the x? scores
will draw a parabola for every i energy bin. The lowest x? (x2,,) will be our
middle value, while the points where the parabola crosses the x2. -+ 1 horizontal
line will decide the uncertainty for every evaluated point. This evaluation can
be done graphically (see Figure 4.6)

If we choose the flat distribution for X?gn, the parabola-shape will also have a
flat region in the middle, as can be seen in Figure 4.7. This does not stop us from
finding where the parabola-like shape crosses the 2, + 1 line and evaluating
the systematic errors this way.

When it comes to the GSF error propagation, we use a similar strategy.
Its normalization is carried out by using the a parameter from the NLD
normalization, and fixing B using (I'y). This last quantity usually has an
uncertainty A(I'y) associated, so that we may calculate the GSF x? score by

4Usually the FG model ends up giving a lower value for the spin-cutoff parameter at Sy,
and is thus chosen to be the lower bound.
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Figure 4.6: For each energy bin for the NLD and the GSF, the middle value
is chosen as the one with the least x?-score, and the uncertainty by checking
graphically where the parabola-like shape crosses the x2., + 1 line. Here is
shown an example for the bins at E, = 3.08 MeV and E, = 3.08 MeV for the
NLD and the GSF of 5"Ho, respectively.

35 ,
* anetons [ ] anm
. o e 42
304 | Ximin 1 score
S
25 4 . : 1
o) © >
3 ., . .
% 2.0 ¢ ™ 1 s
R EEE R e ®--——-- R G et ~—=CUEE EEEEEEEEE
1.5 1 . : -
1.0 4 -_— 1
a) b)
3500 4000 4500 5000 5500 6000 65003 1 5 6 7
NLD(E, = 3.08 MeV) [MeV~1] GSF(E, = 3.08 MeV) [MeV~?] x107%
Figure 4.7: Same x2-score plots as for Figure 4.6, but where a flat probability

distribution is chosen between the p(S,,) values calculated with the FG and
RMI spin-cutoff parameter formulas. In this way the parabola-shape is slightly
distorted and the errors less symmetric about the value at x2; , but we are less
bound to a specific spin-cutoff model.
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running different simulations varying (I'y),, around the suggested value, and
calculating an array of X%}SF,nm as

X?}SF,nm = XQNLD,TL + (<F’Y>A7n<1:’y><£’y>) : (421)

Again the uncertainty will be where the x2, + 1 line crosses the parabola (or
flat-parabola) shape for every E. bin.

4.4.2 The MACS

Maxwellian-averaged cross sections may be calculated from experimental NLDs
and GSFs as explained earlier. In order to propagate the experimental systematic
errors to the MACS, we calculate a MACS for every NLD and GSF pair, and
associate the same x? score as for the GSF employed in the calculation,

2 2
XMACS,sys,nm = XGSF,nm? (422)

and again evaluating where the 3, ACS.sys.nm Darabola (or flat-parabola) for
every energy bin E; crosses the x2. + 1 line (see Figure 4.8).

This only propagates the systematic errors from the normalization procedure,
though. When it comes to the statistical ones, they are propagated by calculating
four MACS with every combination of pmax(Ez) = py2  (Ez) £ Apy2 (E;) and
fmax(Ey) = fy2 (Ey) £ Af2 (E,), and selecting the maximum and minimum
MACS values for every bin. The lower error may then be calculated as

Alower <U>T — \/Asys, lower <O->%“ + Astat, lower<0->%1 (423)

and similarly for the upper error. This last part is not a rigorous uncertainty
propagation, and tends to overestimate the error band. Nevertheless, this is
probably the best choice as the OMP model used for the MACS calculation
usually does not provide uncertainties, and it is safer to stay on the conservative
side. The experimentally constrained uncertainties in the MACS are usually
smaller than the ones provided by combining all the available NLD and GSF
models in nuclear reaction software such as TALY'S (about one order of magnitude
difference for '26Sb and '®®Ho in Papers I and III, see tables in the Appendix. See
also Fig. 2 in Paper IV for an overview of the TALY'S theoretical neutron-capture
rate uncertainty span for all the neutron-rich nuclei), and certainly smaller than
the factor 10 or 100 used for different sensitivity studied for the ¢ and r processes
(see Section 2.5.4). This is true even when considering variations in the choice of
OMP model as seen for 16Ho(n,~) in Paper III [44] (Figure 6b in the paper,
see also Appendix A.3). Even with conservative error estimation, experimentally
constrained MACS using the Oslo method may still provide useful input for
nucleosynthesis network calculations.
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K&D OMP model ® \oin
JLM OMP model === 2. +1 score

Y 2-score
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(o) (E=34.47 keV) [mb]

Figure 4.8: From every NLD and GSF pair we may calculate the MACS, and
each MACS calculated inherits the y2-score of the used GSF. From these x2-
scores we can use the same procedure for the uncertainty evaluation as for
the NLD and GSF by finding graphically where the “flat-parabola” crosses the
X2, + 1 line for every energy bin. Here the MACS for (n,7)!%"Ho evaluated
at £ = 34.47 keV is shown. The two colors represent the MACS calculated
using the Koning & Delaroche (K&D) OMP model [122] and the Jeukenne-
Lejeune-Mahaux (JLM) OMP model [123]. The whole MACS may be observed
in Figure 6b in Paper III [44]. For data on all the calculated MACS for all the
papers included in this thesis, see Appendix.
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Chapter 5
Summary and outlook

In the first part of this thesis I presented an overview of nuclear physics in the
context of astrophysics. The overarching question of How elements are made in
the universe involves different disciplines, and I chose to give a short summary of
basic nuclear physics in Chapter 1 and then Chapter 2 begins from the very place
where nucleosynthesis takes place, namely the cosmos. Here we see how the Big
Bang first, then stars and finally their dying phase with explosions and mergers
stand behind the creation of elements from hydrogen, through carbon, iron, lead
and up to the heaviest isotope of uranium. Neutron-capture nucleosynthesis
was given the main focus, and can be divided into three processes: the slow,
the intermediate and the rapid neutron-capture process. Correct simulations
of the astrophysical phenomena where these processes happen is paramount to
their proper description, and this means having the correct nuclear inputs. In
chapter 3 I went through the theoretical foundation that lets us calculate the
neutron-capture rate from two average statistical quantities of the nucleus: the
nuclear level density and the y-ray strength function. These can be extracted
from experiments carried out at the Oslo Cyclotron Laboratory and analyzed
using the Oslo method. This was explained in Chapter 4 together with a novel
error propagation procedure developed by me.

This foundation allows us to get into the papers forming the second part of
this thesis. These touch all three neutron-capture processes, although in different
ways and with different focuses. Paper I [85] looks into the role that 27Sb plays
in the i process, and the following two (Paper II [86] and Paper III [44]) analyze
the scissors resonance in rare-earth nuclei '°*Ho and "Ho, and the role of the
166 o 1200-years isomeric state at 6 keV in the s process. Paper I was my first
published article where the above mentioned error propagation procedure (used
also in Papers II and III) is described. The constrained neutron-capture rate
of 126Sb represents the first step into the analysis of the '3°I region, relevant to
the i process, and tabulated data can be found in Appendix A.1. The paper
also provides information on the pygmy resonance and the upbend in the region,
features still not well understood and whose impact on the nucleosynthesis
should be further investigated. Similarly for Papers II and Paper I1I not only
the experimentally constrained neutron-capture rates are provided (tabulated
data again in Appendix A.2 and A.3), but also information on the evolution
of the scissors resonance, relevant to deformed, rare-earth nuclei. Again, data
on the behavior of these features of the y-ray strength function may prove very
useful to theoreticians aiming to develop more predictive nuclear models for
the exotic region of the nuclear chart, which is key to the correct simulation of
the ¢ and r processes. Finally, Paper IV [27] touches upon the problems with
simulating the r process, and how different strategies used to evaluate the errors
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5. Summary and outlook

in the nuclear input (the neutron-capture rate in our case) may give different
predictions. Whereas other groups choose to vary these quantities from nucleus
to nucleus independently from each other, it can be argued that this method
loses the correlations we know exist between neighboring nuclei, and that a
model-consistent approach should be used. Nevertheless, as also discussed earlier
in Section 2.5.4, both methods have their own strengths and weaknesses.

New insights on the behavior of the pygmy resonance in elements around
cadmium, tin, antimony and tellurium would give a better picture not only of
the nuclear physics surrounding this mysterious structure, but also useful data
to be used in nucleosynthesis network calculations. Secondly, a proper study of
the transition strengths and branching ratios of '¢Ho would give us a correct
picture of this nucleus and possibly answer if this indeed is thermalized or not
at s-process temperatures, and if not, whether the long-lived, 1200-years isomer
plays a role in shaping the final s-process abundances. Finally, new methods
to propagate nuclear uncertainties (especially for neutron-capture rates) in i-
process and r-process nucleosynthesis are needed. These new methods should
have the ability to consider both the uncertainty in the model predictions for
exotic nuclear properties, and to embed these in proper, multi-zone simulations
of the astrophysical environments. In this way we would obtain more precise
information on which nuclei are most important to study, and help uncovering
the mysteries in these two processes.

Heavy-element nucleosynthesis is a vast subject, and even after four years of
doctoral studies I feel like I only scraped its surface. However, I hope that the
results included in this work may help move the limits of knowledge towards a
better and more complete understanding of this field.
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Chapter 6
Summary of papers

6.1 Paper I: Indirect measurement of the (n,~)!2"Sb cross
section

In this paper I analyze the results of the 4Sn(a, py)'27"Sb experiment carried out
at the Oslo Cyclotron Laboratory. The motivation behind this experiment was
investigating the nuclide chart region near 13°I. According to Hampel et al. [53],
135T acts as a bottleneck for the astrophysical i process, and more knowledge
on the neutron-capture rates in the region could help in the correct modeling
of this nucleosynthesis event. From the '24Sn(a, py)!?"Sb experiment we are
able to extract the nuclear level density and the y-ray strength function, which
are then used to calculate the Maxwellian-averaged cross section (MACS) of
126Gh, which is easily translatable to the neutron-capture rate. The level density
follows a constant-temperature model, while the strength function presents an
upbend, together with a possibly split pygmy resonance and a small structure at
E, =~ 3 MeV. The calculated MACS is found to be in agreement with the libraries
commonly used for astrophysical calculations such as JINA REACLIB [105],
TENDL [124] and BRUSLIB [107], but less with other libraries such as ENDF /B-
VIIL.O0 [125] (see Fig. 6.1). In this paper the error propagation procedure described
in Section 4.4 is presented, and will lay the basis for the same procedure to be
used in Papers II and III.

10% 1 l TALYS unc. span —-+= ENDF/B-VIIL0O

I [ Oslo data, 20 === JINA REACLIB
Il Oslo data, 1o == TENDL

= Oslodata = sseem BRUSLIB

10° -

MACS [mb]

107 1

0 20 40 60 80 100
kp T [keV]

Figure 6.1: The experimental MACS for '26Sb obtained in Paper I, compared to
the rates from known libraries. See Fig. 8 in Paper I and discussion for references
and details. Appendix A.1 for tabulated data.
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6.2 Paper ll: Observation of a candidate for the M7 scissors
resonance in odd-odd “Ho

The focus of this article is on the scissors resonance (SR). This structure has
been presented in Section 3.3.1 and is a resonance-like “bump” in the ~y-ray
strength function at £, ~ 3 MeV present in deformed rare-earth nuclei (and
other nuclei as well). Here, '®Ho is obtained via the *%*Dy(a, py)'%Ho reaction,
and again the NLD and the GSF are extracted using the Oslo method. The
scissors resonance is an M1 feature, and experiments at OCL cannot distinguish
between E'1 and M1 radiation. We know however enough about the expected
structures in the GSF to be able to make an educated guess. Indeed, a “bump” at
E, =~ 3 MeV is found, strongly indicating the presence of the scissors resonance.
This is the first observation of the SR in an odd-odd nucleus such as '°°Ho
using the Oslo method analysis. Much of the paper goes through the different
methods one may use to separate the observed structure from the £'1 background
strength, and compares the results from these methods with each other and with
the results from other experiments for similar nuclei in the rare-earth region (see
Fig. 6.2).
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Figure 6.2: The Bgr(M1) strength for the scissors resonance plotted against the
mass number A and the deformation (2 for many nuclei in the rare-earth region,
included the values calculated with different methods for °®Ho. See Fig. 7 in
Paper II and its discussion for references and details about the data.
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Paper Ill: Experimentally constrained 16°:166Ho(n, +) rates and implications for
the s process

6.3 Paper lll: Experimentally constrained '%5:1¢¢Ho(n, )
rates and implications for the s process

This paper is a natural continuation of Paper II, where the 'Ho NLD and GSF
obtained from the 93Dy (a, py)'®*Ho reaction are used to find the corresponding
MACS for '%5Ho(n,v). Similarly, the data from the ®*Dy(a,pvy)%"Ho
experiment are analyzed and the '°Ho(n, ) MACS is calculated. The motivation
for this is the interesting nature of 'Ho, which has a 0~ ground state with
a half-life of 27-h and a longer lived 7~ isomer at F, =~ 6 keV with a half-life
of about 1200 years, which is comparable to the timescale of the s process.
Experimentally constrained (n,~y) rates for '®*Ho and 1%°Ho may first impact on
how much '%°Ho is made, and second on whether ' Ho manages to capture two
neutrons, to become ®"Ho and 3-decay to '®”Er impacting the %Er/167Er final
abundance ratio. Apart from constraining s-process abundance uncertainties for
165Ho, our results do not show a big impact on the Er final abundances because of
the short '66Ho lifetime in astrophysical environments due to its thermalization.
The question of the thermalization of 1%6Ho is still open though, as many of the
transition probabilities and branching ratios used to find out about this are only
estimates [104]. T collaborated with the Brussels group (S. Goriely and L. Siess)
on the astrophysical part of this work.
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Figure 6.3: The MACS obtained with the 166:16"Ho NLD and GSF extracted from
the 193Dy (a, pv) %9 Ho experiment from Paper II, and the *4Dy(c, py)'%"Ho from
Paper I1I. Here again the MACS is compared to existing reaction rate libraries.

See Fig. 6 in Paper III and discussion for references and details. Appendix A.2
and A.3 for tabulated data.
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6.4 Paper IV: Model-consistent study of level densities and
~-strength functions for r-process simulations

In this paper we describe the two main approaches employed in r-process
sensitivity studies to propagate nuclear uncertainties to the final abundances. The
first, dubbed the “statistical approach”, attempts to estimate these uncertainties
by assuming a confidence interval in the predictions of a model, and running many
one-zone, r-process simulations in order to show the impact these have on the final
abundances. The second approach, dubbed “model-consistent approach”, instead
uses different nuclear models as inputs. Both of these methods have strengths
and weaknesses. The study only focuses on neutron-capture rates, and uses
five different trajectories (a trajectory being the density and temperature time
evolutions for a “bubble” of expanding stellar ejecta where the r process takes
place) and 49 different neutron-capture rate models. The r-process simulations
were run on the nuclear reaction network SkyNet [126] and the rates are those
of JINA REACLIB [105] plus 48 models obtained by combining the six level
density with the eight ~-strength function models available in TALYS 1.95 [124,
127]. One of the main takeaways of the study is that shell effects and pairing
correlations between neighboring N-even and N-odd nuclei are not correctly
taken into account in the statistical approach, and that their inclusion produces
a staggering effect in the rare-earth peak final abundances that is not reproduced
in the statistical approach, see Fig. 6.4.
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Figure 6.4: The final abundances from the five trajectories used in the sensitivity
study in Paper IV. The blue band represents the prediction span from using
the 48 neutron-capture rate models, and the black dashed line the abundances
obtained by using the rates from JINA REACLIB [105]. See Fig. 7 in Paper IV

for more details.
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Nuclei in the '3°] region have been identified as being a possible bottleneck for the i process. Here we present
an indirect measurement for the Maxwellian-averaged cross section of 126Sb(n, ). The nuclear level density and
the y-ray strength function of '*’Sb have been extracted from '**Sn(c, py) '*’Sb data using the Oslo method.
The level density in the low-excitation-energy region agrees well with known discrete levels, and the higher-
excitation-energy region follows an exponential curve compatible with the constant-temperature model. The
strength function between E, ~ 1.5-8.0 MeV presents several features, such as an upbend and a possibly double-
peaked pygmy-like structure. None of the theoretical models included in the nuclear reaction code TALYS seem
to reproduce the experimental data. The Maxwellian-averaged cross section for the '2°Sb(n, ) '?’Sb reaction
has been experimentally constrained by using our level-density and strength-function data as input to TALYS. We
observe a good agreement with the JINA REACLIB, TENDL, and BRUSLIB libraries, while the ENDF/B-VIILO library

predicts a significantly higher rate than our results.

DOLI: 10.1103/PhysRevC.106.015804

I. INTRODUCTION

The origin of elements heavier than iron in our universe
is a hot topic of research among nuclear and astrophysicists,
and is regarded as being one of the Eleven Science Questions
for the New Century [1]. Since the seminal paper of Burbidge
et al. [2], neutron-capture reactions have been identified as the
main mechanism for which heavy-element nucleosynthesis
take place in stars. Now we know that two processes are
mainly responsible for the abundances of heavier-than-iron
elements in the universe: the s process and the r process,
standing for the slow and rapid neutron-capture processes,
respectively. These two processes produce different abun-
dance patterns, and the relative abundances of Ba, La, and
Eu on a star’s surface may indicate whether the elemental
abundance of the star follows an s or » process distribution
(see, e.g., [3]).

One particularly interesting case is the one of carbon-
enhanced metal-poor stars (CEMPs). These are old stars in
the galactic halo and may be enriched in either r process
elements [4], s process elements, or both [5]. CEMPs enriched
in both s and r process elements present a huge challenge.
Since the two processes are thought to happen in very differ-
ent astrophysical sites, the mixing of the interstellar medium
prior to the formation of the star cannot be the reason behind
this peculiar abundance pattern. A possible explanation is
the presence of an intermediate neutron-capture process (the
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fa.c.larsen@fys.uio.no
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i process) with neutron densities between that of the s and r
processes [6]. By assuming that the i process is taking place,
both one-zone models and more complex star simulations are
able to reasonably reproduce the observed abundances in these
stars (see, e.g., [6-8]). However, all these studies conclude that
more accurate estimates of fundamental nuclear properties
are needed for a better understanding of the i process. In
particular, neutron-capture rates are of great importance.

Experimental studies of nuclei in the '3°] region are inter-
esting for two reasons. First, this region is thought to act as
a bottleneck for the i process in CEMP-r/s stars according to
Hampel et al. [6]. However, to say how significant this bottle-
neck might be, one needs information on the neutron-capture
rates for the involved nuclei. Second, experimental data on
fundamental properties of neutron-rich nuclei will help us to
develop better and more predictive theoretical models, which
both i and r process simulations heavily rely on.

As neutron-capture rates are extremely hard to measure
directly on unstable nuclei, one relies on indirect techniques
to constrain these rates. At the Oslo Cyclotron Laboratory
(OCL), an experimental method has been developed to mea-
sure nuclear statistical properties, namely, the y-ray strength
function (GSF) and the nuclear level density (NLD). These
two quantities can in turn be used to calculate an experimen-
tally constrained (7, y) cross section (see [9] and references
therein). In this work, we present new data on '2’Sb, produced
by the *Sn(, py) 1?’Sb reaction. This is the first experiment
of a new experimental campaign where neutron-rich nuclei are
made by bombarding the most neutron-rich, stable nucleus in
an isotopic chain with « particles. The '>’Sb nucleus is part
of the '] region, and using our measured GSF and NLD

©2022 Amerim Physical Society
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of '?7Sb we can provide a data-constrained '*°Sb(n, y) '*’Sb
reaction rate for the first time.

The article is structured as follows: The experimental setup
will be described in Sec. II, and the Oslo method will be pre-
sented in Sec. III. The uncertainty analysis and quantification
will be discussed in Sec. IV and a discussion on the resulting
calculation of the neutron-capture rate in Sec. V. Finally, a
summary and an outlook are given in Sec. VI.

II. EXPERIMENTAL SETUP

The experiment was carried out in November 2020 at the
OCL, using an o beam of 24 MeV and ~6 nA intensity
produced by the MC-35 Scanditronix cyclotron. The beam
impinged on a '?*Sn self-supporting target of 0.47 mg/cm?
thickness and 95.3% enrichment for a period of six days. A
short run with a 1-mg/cm?-thick '>C target was performed
for calibration purposes.

As we were interested in the particle-y coincidences from
the («, py) reaction, the Oslo SCintillator ARray (OSCAR)
and the Silicon Ring (SiRi) detector arrays were used. The
targets were placed inside OSCAR [10], an array of 30 cylin-
drical (3.5” x 8.0”) LaBr3(Ce) y-ray detectors mounted on a
truncated icosahedron frame. The distance between the front
of the detectors and the center of the target was 16 cm. OS-
CAR has an energy resolution of 2.7% at E,, = 662 keV, and
fast timing properties with a typical resolution of the prompt
timing peak of ~1-5ns. SiRi [11] is a AE-E particle tele-
scope consisting of a ring of eight silicon-telescope modules
covering 126°-140° in backward angles (corresponding to 6%
of 477). Each module consists of a thick (1550 m) E back de-
tector, with a thin (130 um) AE detector in the front. The AE
detector is divided into eight strips covering about 2° each,
all together forming a system of 64 detectors. To separate the
various reaction channels and select only the («, p) data, we
used the AE-E technique, plotting the deposited energy in
the back detector versus the deposited energy in the front strip
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FIG. 1. The AE-E plot, or “banana” plot, where the energy
deposited on the front strip of SiRi (AFE) is plotted against the
one deposited on the back detector (E). From bottom to top, we
see three bands where the lowest one shows the energies deposited
by ejected protons in the '*Sn(e, p) '?’Sb reaction, the second
deuterons from the '**Sn(«, d) '2°Sb reaction, and the third tritons
from the **Sn(er, 1) '2>Sb reaction.

(“banana” plots; see Fig. 1). The recently installed XiA digital
electronics were applied for the data acquisition.

For the energy calibration of OSCAR, we used the
4.439 MeV y transition from the first-excited state of '*C,
together with the 511 keV annihilation peak. To calibrate SiRi,
we used the ground-state peak of '2’Sb in the proton “banana”
and the ground-state peak of '°Sb in the triton “banana.”

Using the reaction kinematics, we mapped the measured
ejectile’s energy to excitation energy of the recoiled nucleus,
thus providing an excitation energy vs y-ray energy 2D spec-
trum called the “raw” coincidence matrix. Both the excitation
energy and y-ray energy calibration were then fine-tuned us-
ing the known low-lying excited states of '>’Sb, their decay
energy, and the nucleus’s neutron-separation energy.

III. THE OSLO METHOD

The Oslo method is a set of techniques developed at the
OCL to extract the GSF and the NLD from the first-generation
y-ray matrix [12-14]. To obtain the first-generation
matrix, we start from the calibrated raw matrix shown in
Fig. 2(a), which must first be unfolded. By unfolding, we
mean the process of deconvolution; i.e., we estimate the
“true” signal that was distorted due to the detector response.
The algorithm is explained in detail in Ref. [12]. In brief, it is
an iterative technique exploiting the fact that folding is a very
fast procedure. Starting out with a trial function for the “true”
spectrum, the trial function is folded with the known detector
response matrix and compared to the observed spectrum. The
trial function is then updated accordingly and the process is
repeated until good agreement with the observed spectrum
is found. The unfolding procedure is regularized in two
ways: First, the Compton subtraction method is used to
preserve the experimental fluctuations bin-by-bin. Second,
the “goodness-of-fit” is weighted with the experimental
fluctuations in addition to the usual x? result. Here we use the
OSCAR response function [10,15], and the unfolded matrix
is presented in Fig. 2(b).

An excited nucleus may decay directly to the ground state
or go through a y-ray cascade, involving one or more lower-
lying excited levels, before reaching the ground state. To
extract the NLD and GSF, we need the first-generation (or pri-
mary) y rays, meaning the first y rays from a cascade. These
can be extracted by the iterative subtraction method described
in Ref. [13]. The main assumption behind this method is that
the y spectra are the same whether an excitation-energy bin
was populated directly through the reaction, or by y decay
from above-lying E, bins. The resulting first-generation ma-
trix is shown in Fig. 2(c).

The NLD and GSF are average, statistical quantities de-
scribing the nucleus in the quasicontinuum, and are the
equivalent of levels and reduced transition probabilities in
the discrete region. In the quasicontinuum region, the en-
ergy levels are still separable, in principle, as the mean level
spacing, D, is bigger than the level width, I". However, in
practice, it is very hard to measure each level and its decay
properties, and so it is more useful to describe the nu-
cleus using the NLD and GSF in the quasicontinuum region.
This excitation-energy region is chosen in the first-generation
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FIG. 2. The (a) raw, (b) unfolded, and (c) first-generation matrices used in the Oslo method analysis. On all matrices, the x axis indicates
the y-ray energy, E,, and the y axis the excitation energy E,. Displayed on all three panels are the E, = E,, lines and the neutron-separation

energy S, = 8.383 MeV.

matrix to extract the NLD and the GSF [14], as shown in
Fig. 2(c).
The GSF is defined as [16]
()" (B Ey . J, )
D(E,, E,, J, 7T)E§Lle '

FXEGE, J )= (1)

where XL is the GSF for electromagnetic character X and
multipolarity L for a transition energy E,, ('}*) is the aver-
age partial y decay width, and D is the mean level spacing.
In principle, the GSF may depend on excitation energy Ej,
spin J, and parity . The GSF is directly related to the y
transmission coefficient by

T*LE,E,.J, )
27TE§L+1

fHEGE, J 1) = ()
The generalized Brink-Axel hypothesis [17,18] states that we
can average out the dependence on E,, J, and m, allowing
us to simplify this expression. This hypothesis, central to the
Oslo method, is shown to hold for neighboring nuclei of tin
[19], and we assume this is the case also for '2’Sb. Using this
hypothesis, and considering the dipole radiation (L = 1) to be
dominant, we obtain

T(E))

FEy) = 27 E3 ’

3)

From Fermi’s golden rule [20,21], we know that the decay
probability is proportional to both the square of the matrix
element between the initial and final state, and the number
of states available in the final excitation-energy bin. This is
applied in the following ansatz [14]:

P(Ey7 Ex) X T(Ey)p(Ex - Ey); (4)

i.e., the first-generation matrix P(E,, E,) is proportional to
the product of the two vectors of 7(E,) and p(E, — E,),
where the latter is the NLD at excitation energy E, — E, . This
holds as long as we deal with statistical decay: the decay is
independent of the way the compound nucleus was originally

created. Therefore, we must make cuts in the first-generation
matrix to ensure that this is fulfilled.

For '*’Sb, we choose the following limits: E™" =
6.3 MeV, E"™* = 8.5 MeV, and E}‘,nin = 1.3 MeV. These limits
ensure that the excitation energy 1s high enough for statistical
decay to be dominant. The upper E, limit is just above the
neutron-separation energy, so that the spectra are not con-
taminated with neutron signals. The limit on E,, is necessary
to prevent the possible inclusion of transitions originating
from higher-generation y rays with low transition energies,
in particular the strong 1095 keV transition originating from
the (11/2%) level at E, = 1095 keV [see Fig. 2(a)]. Applying
these limits on P(E,, E,), we estimate the experimental first-
generation matrix by [14]

T(Ey )p(Ex - Ey)
35 e T(E )P (Ex — Ey)
The simultaneous extraction of 7(E,) [and thus f(E,) by
Eq. 3)] and p(E, — E,) happens by normalizing the first-

generation matrix, P(E,, Ey), at each excitation energy E,
i.e.,

P(E,, E;) =

&)

Ey

Y P(E,E)=1, 6)

E,=Emin

and running a~x2 minimization of Eq. (5) [14] to extract two
solutions for f(E, ) and p(Ey). If one solution is found, it can
be shown [14] that any solution of the form

P(E; — Ey) = Ae* B p(E, — E,), (7a)
T(E,) = Be"5T(E,) (7b)

also satisfies Eq. (5) for any three parameters A, B, and «.
These are to be determined from experimental data. Nor-
mally, the number of levels at low excitation energies, the
s-wave level spacing at the neutron-separation energy, Dy,
and the average total radiative width, (I',), would be used.
However, such data are typically not available for nuclei far
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FIG. 3. Normalization of the NLD (see text) together with the
theoretical level density models n1d (shorthand for 1dmodel 1 to 6)
used in TALYS [31,32]. The uncertainties in the data points include
statistical uncertainties and systematic uncertainties from unfolding
and the first-generation method. The total uncertainty band includes
also systematic errors from the normalization.

from stability and '*’Sb is no exception. We will discuss
the normalization of the functions p and 7 in the following
section.

IV. NORMALIZATION AND UNCERTAINTY
PROPAGATION

A. Normalization of the NLD

The parameters A and o from Eq. (7a) are needed for the
normalization of the NLD. To constrain these would require
two anchor points at low and high excitation energy. We
normalize our data points in the low-energy region by a fit
to known, discrete levels taken from Ref. [22]. By comparing
our data points to the known levels smoothed with our ex-
perimental resolution, we observe that the experimental NLD
fits very well in the E, region between ~0.2 and 0.8 MeV,
as well as between ~1.4 and 2.1 MeV (shaded regions in
Fig. 3). The apparent “bump” in between these intervals could
be due to levels in the database that we do not observe in
our experiment. We also normalize our experimental p(E),)
to the level density at the neutron-separation energy. This can
be calculated from the measured level spacing Dy of s-wave
neutron resonances at separation energy with [14]

2
20;

Dol (I, + Ve W +D/20F 4 [ e=1/207 )

p(Sn) = (®)

where I, is the spin of the target nucleus and oy is the spin-
cutoff parameter. The use of this formula introduces a model
dependence by requiring the estimation of o; for the spin
distribution at the separation energy. This is done by assuming
a rigid-body moment of inertia:

1 1 4 Un
o et (Sn) = 0.00146A5/3+2ﬂ’ o)
a

where U, =S, — E|, E; = —0.45 MeV is the excitation-
energy shift and a = 12.35 MeV~! is the level-density
parameter, calculated according to the formalism of Ref. [23].
The observed experimental values of p(E,) do not reach the
separation energy due to the lower limit E;,“i“, which means
the highest E, is given by Ef™* — EI™". To perform a fit to
the p(S,) value, the data must be extrapolated up to E, = S,.
This extrapolation introduces another model dependence as
one has to assume some model for p(E,) in the gap be-
tween our data points and p(S,). A commonly used model
is the constant-temperature (CT) model, given by the formula
[24,25]

E) = — (E _E°) (10)
p y) = — €X N
cr Tcr P Ter

where the energy shift, £y, and the nuclear temperature, Tcr,
are parameters to be found from fitting to data. Using another
model, such as the back-shifted Fermi gas model, gives essen-
tially the same results in the case where the gap between our
data and p(S,) is not too large (see Ref. [26]).

Experimental Dy values are typically available for stable
nuclei, from which p(S,) can be derived using Eq. (8). For
unstable nuclei, the value of p(S,) must be obtained by other
means. In this work, we compare theoretical values to the
semiexperimental values for nuclei in the same mass region
as '2’Sb. Thus, we apply a similar strategy to the one in
Kullmann et al. [27], where D, values for the neighboring
isotopes of Sn, Sb, and Te (corresponding to Z = 50, 51, and
52, respectively) from both the Atlas of Neutron Resonances
[28] and the Reference Input Parameter Library [29] were
used to calculate p(S,). These values are then compared to
the theoretical p(S,) estimates using the global parametriza-
tion of Ref. [23] to evaluate how well they agree. From this,
PeB(S,) = 376 x 103 MeV~! is obtained for '?’Sb.

A conservative estimate of the uncertainty of p(S,) for
127Sb from this evaluation would be a flat probability distri-
bution between 0.53pgp and 1.28 pgg, where the edges of the
distribution are smoothed with a Gaussian with a standard de-
viation of §p = 90 x 10°* MeV~!. The probability distribution
was chosen to be flat between the two values 0.53pgg and
1.28ps, as there is no clear reason to prefer one value over
another within this range. The value of §p is not straightfor-
ward to obtain. However, we believe that we have chosen a
reasonable estimate, as it corresponds to what is obtained by
translating the uncertainty in the value of Dy for neighboring
nuclei to p(S,) using Eq. (8).

Many different NLD normalizations were generated with
the counting. c code from the Oslo method software [30] by
varying the input parameters to the code. The code normalizes
the experimental NLD by running a x> minimization of the
(unnormalized) experimental data fitting it to the known levels
at low E,, and to the CT model that goes through p(S,) at
high E,. The input parameters that are changed are the lower-
and upper-energy bins constraining the fitting interval (L1 and
L2) for the x? minimization in the low-E, region. Further,
the pcr formula in Eq. (10) is used to interpolate the level
density between our data points and p(S,). The parameters
Ey and Tcr from Eq. (10) are determined in counting.c by
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TABLE 1. Values used for the normalization of the NLD. The parameters E; and a are the excitation-energy shift and the level-density
parameter, respectively, used in the rigid-body moment of inertia formula in Eq. (9). Ey and Tcr refer to the parameters used in the constant-
temperature model in Eq. (10), while p¢(S,) and § o(S, ) represent the limits for which the level density at neutron-separation energy is flat, and
the width of the tapering outside these limits, respectively. Finally, oy is the spin-cutoff parameter calculated by Eq. (9) and Dy is the range of
level spacings of s-wave neutron resonances related to p/(S,) by Eq. (8).

E, a Ey Ter PeB(SH) ,Of(Sn) 3p(S,) o Dy
MeV) MeV™h MeV) (MeV) (10° MeV™) (10° MeV™) (10° MeV™h) (eV)
—0.45 12.35 (—1.2, —1.9)® 0.8 376 199481 90 6.45 58.8-24.3

*Varying according to the choice of p¢(S,).

providing a fitting interval to the data at high E, and to the
value of p(S,).

Above a given Ey, the level density becomes more smooth
and the information about the known levels starts to become
incomplete (in this case, where E, 2 3 MeV). As the CT
model is essentially an exponential function, and our data
points display a very smooth trend where E, ~ 3-6.5 MeV,
the Tcr parameter was found to vary very little when choosing
different data points for the fit. Therefore, these fitting points
were kept fixed, using a temperature parameter of Ter =
0.8 MeV. The Ej parameter in the CT formula is the shift
parameter, and for a fixed Tcr, this will change according to
the choice of p(S,,). The Ey parameter was found to have val-
ues between Ey = —1.2 MeV (for 0.53pgg) and Ey = —1.9
MeV (for 1.28pgp). See Table I for an overview of all the
parameters used in the NLD normalization.

The counting. c code was run with every L1 and L2 com-
bination so that L1 < L2 < 22 (where bin 22 corresponds to
E, = 2.68 MeV), and a range of 50 values for p(S,,) between
0.4 ogp and 1.4pgg, incorporating the smoothing of the edges
as mentioned above. This range corresponds to 11 500 differ-
ent parameter combinations, and thus differently normalized
NLDs. For each of these combinations, we calculate a XI%LD
score through

e e E) = pEDP L,
XNLD = Z INUAE + x5, (11)
where the sum runs over the energy bins =

{6,7,8,9,10, 14,15, 16, 17, 18}, where the results seem
to agree the most with the known levels and are shown in the
shaded regions of Fig. 3. p,(E;) is the value at the ith energy
bin of the normalized NLDs, Ap, (E;) its associated statistical
uncertainty from the experiment, and p(E;) the level density
calculated from the smoothed known levels. Finally, Xi
keeps track of the uncertainty for the normalization tied to the
choice of p(S,) and is calculated as

Lon(S1)—0.53pEB]*
s K

if 0,(S,)/peB < 0.53,
if 0.53 < p,(S,)/ s < 1.28,

x5 =10
[ if p,(S,)/pes > 1.28,

b
0u(S)—1.28ppp 12
02 ’

12)

mimicking what a x2 score would look like for a flat distri-
bution inside a range, and otherwise behaving as a normal
distribution. With 11 500 different NLDs [and thus 11 500
p(E,) values for each energy bin], each with its own 2 p,

we are able to find the mean value of each bin by choosing
the value with the smallest XI%LD. Then, for each E; bin, the
uncertainty was graphically determined by checking where
the parabola-like XI%]LD(,O(E[)) plot crossed the Xéin + 1 line
[see Fig. 4(a)].

We note that the NLD normalization is rather strongly
constrained by the fit to the known levels in the two shaded
regions shown in Fig. 3. Therefore, despite the large uncer-
tainty in the normalization point pgp(S,), the slope of the
NLD data points (and thus the slope of the GSF) is quite well
determined.

In Fig. 3, together with the experimental results, we show
the six NLD models included in TALYS 1.95 [31,32]. Here
ldmodel 1 combines a constant-temperature model with the
Fermi gas model [25], 1dmodel 2 is the back-shifted Fermi
gas model [25], 1dmodel 3 the generalized superfluid model
[33,34], and 1dmodel 4-6 are Hartree-Fock-based calcula-
tions. From Fig. 3 we can observe that most of the models
fail at reproducing the experimental results, and do not even
meet the conservative error estimate for p(S,), with the ex-
ception of ldmodel 4 that comes the closest to the Oslo
data.

180 200 220 0.75 1.00 1.25 1.50
NLD [MeV~1] GSF [1078 MeV~3]

FIG. 4. The x? scores of each calculated NLD (a) and GSF
(b) for E, = 2.68 MeV and E, = 2.68 MeV. Each E, and E,, bin has
a similar, parabola-shaped distribution of x? scores. From these we
estimate the uncertainty of every bin by checking graphically where
the parabola crosses the 2 + 1 line (red points). The mean value is
where x2 = x2.. (black triangles).
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FIG. 5. Values of (I',,) from Mughabghab [28] and RIPL [29] for
the neighboring nuclei of '>’Sb. The black dashed line indicates the
linear regression for the (I",) values of the odd-even nuclei.

B. GSF

The last free parameter in Eq. (7b) is B, responsible for
the absolute normalization of the GSF. Since the average total
radiative width, (I",,), for 1278b is not known, it is again nec-
essary to use systematics from neighboring nuclei to assess its
value. In Fig. 5 we show the (I'},) values for different nuclei in
this mass region, gathered from Ref. [28]. Two patterns are ob-
served, one for the even-even and one for the odd-even nuclei,
respectively. As '2’Sb is odd-even, we use the data from the
other odd-A nuclei to estimate (I') ). Either an average or an
extrapolation from linear regression could be used to predict
the (I, ) value for 1278b, and fortunately, both yield about the
same values, rounded to (I',), = 105meV. The uncertainty
is taken to be normally distributed and is kept conservatively
to be (I'y ) = 25meV (see Fig. 5).

To get the absolute normalization of the GSF, we use
the script normalization.c [30], that takes as input the
(I'y) value, the estimated Dy value which (with the given
spin distribution) reproduces p(S,) used for the NLD data
points, the normalized NLD, and the y -ray transmission coef-
ficient normalized in slope with the parameter «. By choosing
13 different (I",) values between (I',) = 65.5-142.5meV,
we run normalization.c for each NLD obtained from
counting.c. This gives us 149 500 different GSFs, 13 for
each NLD. Each GSF inherits the XI%LD score from the as-
sociated NLD, and to assess the “goodness-of-fit” we add a
term accounting for the deviation of the chosen (I",), from
the mean value (I',),, = 105 meV:

(Tyla — Tedp)®
(T,)2 '

a

XGsr = Xaup + (13)
Similarly to the NLD calculations, the GSF evaluated at each
E,, energy bin will have a mean value corresponding to where
X(z}SF = Xim, and an uncertainty where the Xrﬁin( fE)) +1
line crosses the parabola. This is shown for one specific bin
(i =22, where E; = 2.68 MeV) in Fig. 4(b). The resulting
GSF with the corresponding errors is displayed in Fig. 6.
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str2  ceees str 8
str 3 Sn ]
str 4 20 conf. ’ pht /*
— str5 10 conf. Aty ; y{ 1
10774 --- str6 ¢ Oslodata o ,// f
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FIG. 6. The normalized GSF, together with the theoretical mod-
els str (shorthand for strength 1 to 8) used in TALYS [31,32].
The uncertainties in the data points include statistical uncertainties
and systematic uncertainties from unfolding and the first-generation
method. The total uncertainty band includes also systematic errors
from the normalization.

C. Comparison with GSF models

We observe that the GSF shows similar features to the
ones found in the neighboring nuclei—most prominently, a
resonance-like peak at about £, ~ 7 MeV and a low-energy
enhancement below E, ~ 3 MeV. These structures can be
interpreted as the pygmy dipole resonance (PDR) and the
upbend on top of the tail of the giant dipole resonance
(GDR). Along with the experimental results, Fig. 6 shows
the eight theoretical GSF models available from the reaction
code TALYS 1.95 [31,32]. None of these seem to fit well,
as none predict such a strong pygmy-like structure as ob-
served in the data. Although the upbend is included in four
of them (strength 1, 5, 6, and 7), none seem to give a fully
correct behavior. The GFSs modeled by strength 1 and 2
are the generalized Lorentzian model [35] and the standard
Lorentzian (Brink-Axel) model [18,36], respectively. These
are phenomenological models, and are not expected to give
good predictions for nuclei far from stability. All other models
are microscopic, mostly based on the quasiparticle random-
phase approximation. These models attempt to describe nuclei
from the underlying physics rather than by phenomenology.
However, none of them manage to predict the PDR for '2’Sb
in a satisfying way; they all systematically underestimate the
strength in the E,, = 5-7 MeV region. This underestimate of
the PDR may consequently lead to systematic underestimates
of (n, y) rates used in astrophysical applications.

The main feature of the GSF for transition energies below
S, s the tail of the GDR, and also the PDR. The GDR tail can
be modeled by a generalized Lorentzian (GLO) [35],

ko
y

(14)

E, Tk

oolg
e\ (5 Y + B
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TABLE II. Fitting parameters for the GLO of '?Sn, '?’Sb, and
128Te (see text).

Tf E(] F() (e}
Nucleus MeV) MeV) (MeV) (mb)
12681 0.30(10) 15.3(3) 4.6(6) 265(22)
1278p 0.30(30) 15.4(4) 5.4(10) 283(28)
128Te 0.30(30)* 15.4(1) 6.1(4) 301(5)

2Estimated from tin isotopes.

where
Lo

FK(Ej/an) = Eg

(E; +47°T7) (15)
and 'k o = I'k (0, Ty). 00, Ep, ', and Ty are considered free
parameters, representing the peak cross section, the energy
centroid, the width, and the temperature of the final levels,
respectively. As there are no experimental photonuclear data
of '27Sb, we infer the GLO parameters by again comparing to
data from neighboring nuclei. We choose the GLO parameters
by averaging over the values of fitting the GDRs for '2°Sn
and '2Te, these being the nuclei directly below and above
1278b in the nuclear chart, respectively. As a proxy for the
GDR of '*Te, we sum over the '!Te(y, n) and '*®Te(y, 2n)
cross sections from Lepretre er al. [37], while the GLO
parameter values of '2°Sn are found by extrapolation from
the lighter isotopes of tin [19,38,39]. These two approaches
give GLOs quite similar in magnitude and shape, and we
estimate the GLO parameters of oy, Ey, and Ty, for '*’Sb
to be the mean of the corresponding values found for '2°Sn
and '?Te. However, in order to find an appropriate value for
Ty, we need information on the low-energy tail (well below
S,.), which is not available from photonuclear data as the data
from Lepretre et al. [37] only probes the GSF from S, and
higher E,. We choose to use the same Ty as applied for the
tin isotopes, with a large uncertainty. All parameters can be
found in Table II.

Figure 7 shows two different attempts to decompose the
GSF into its constituent structures. The GDR, the upbend
and a pygmy-like structure at ~7 MeV, and the spin-flip M1
resonances are included in both. The GDR was modeled with
a GLO using the parameters in Table II, the upbend by an
exponential function of the form

SUP(Ey) = Cype ™", (16)
and the spin-flip M1 resonances by a standard Lorentzian
1 JSF‘YZEV
3mhPc? (B2 — E2) 4 E2T2

OE,) = (17)

where oy, [, and E; are free parameters and correspond to the
same quantities as for the GLO in Eq. (14). These parameters
were determined by extrapolation of the fittings of the M1
strengths measured in lighter tin isotopes [39] similarly as
what done with the GDR. In Fig. 7(a), a single Gaussian is
employed to describe the pygmy structure, while in Fig. 7(b)
two Gaussians are employed. The choice of employing Gaus-
sians to model resonances is unorthodox, but gives a better fit

—-- Gaussian Gaussian 1
1054 —-—- GDR 4 —-- Gaussian 2
Upbend —-- Gaussian 3
...... M]_
1064 Total fit |
¢ Oslodata

GSF [MeV~3]

=
o
|
~
L

1078 AR 4

ol i @. AT ‘l (b).
0 5 10 15 0 5 10 15
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FIG. 7. Two possible decompositions of the GSF with one
(a) and two (b) Gaussians for the PDR region (see discussion in
text). The uncertainties in the data points correspond to the statistical
uncertainty and systematic uncertainties from unfolding and the first-
generation method.

than using a more conventional Lorentzian when applied to
the PDR. This is as also observed for other nuclei (e.g., tin
isotopes in Ref. [40]) and the reason for this is unknown. The
Gaussian function is given by

fGauSS(E )= 1 Cexp _M (18)
v V2ro, 207 ’

where o, is the standard deviation, C is a normalization
constant, and E, is the centroid (expected value). A satis-
fying fit of the PDR is obtained with only one Gaussian
function, although the data points at the highest E, are not
fully reproduced. This fit gives an integrated, energy-weighted
cross section of 0.7% of the Thomas-Reiche-Kuhn energy-
weighted sum rule (EWSR) [41-43]; see Table III. Three
Gaussians are needed to reproduce all the visible structures
as shown in Fig. 7(b), yielding ~0.9% of the sum rule; see
Table IV. While the use of two Gaussians has been done in
Ref. [40] to describe the PDR in tin isotopes, an additional,
smaller structure is observed for '?’Sb at E, ~4 MeV. A
similar feature is present in the ''Sn GSF at E, ~ 2.5 MeV
[38,44] and they might have the same origin. Although the
energy region could coincide with that of the scissors mode,
both tin and antimony with their respective proton numbers of
50 and 51 are known to be almost spherical nuclei, while the
scissors mode is observed only in deformed nuclei.

Although it was found that the integrated, energy-weighted
cross section of the pygmy-like structure is *0.8% of the
EWSR, it should be emphasized that this is a conservative esti-
mate. In this work a fitted GLO “background” with a maximal

TABLE III. Parameters used for the Gaussian in Fig. 7(a).

E, o, C EWSR
Function (MeV) (MeV) (107 MeV2) (%)
Gauss 6.52(5) 0.70(3) 164(9) 0.72(5)
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TABLE IV. Parameters used for the three Gaussians in Fig. 7(b).
The EWSR is calculated only for the second and third Gaussian,
fitting the pygmy-like peak.

E, o, C EWSR
Function (MeV) MeV) (107 MeV~2) (%)
Gaussl 3.88(2) 0.19(3) 2.2(4) -
Gauss2 6.41(7) 0.69(4) 157(15) -
Gauss3 7.52(8) 0.28(9) 46(15) -
Sum - - = 0.9(2)*

Calculated only for the last two Gaussians.

E'1 strength is employed. Considering that theoretical models
(e.g., those in TALYS) give a rather low GDR tail (see Fig. 6),
the fraction could be considerably larger.

V. NEUTRON-CAPTURE CROSS SECTION

The radiative neutron-capture rate [or (n,y)-rate] and
the Maxwellian-averaged cross section (or MACS) are of
particular interest for astrophysical applications such as nucle-
osynthesis network calculations. These quantities are closely
related by [45]

Nalo) = 2422 (19)

ur
where Ny (o v) is the (n, y) rate, Ny (o) the MACS, N, is Avo-
gadro’s number, and vy = /2kpT /1 is the thermal speed.
Further, kg, T, and /i are the Boltzmann constant, the tem-
perature, and the reduced mass of the neutron plus the target
nucleus, respectively. The (n, y) rate can then be calculated

by (see, e.g., [3])
8 \'? Ny © 20" 41

E + E*
x o, (E)E exp |:— I;;Tx i|dE, (20)

where J? and J}* are the spin for the ground state and the uth
excited state, respectively, E/* the energy of the uth excited
state, E the relative energy between the neutron and the target
nucleus, a,fy the (n, ) cross section for the target nucleus
excited to the uth state, and G,(T") is the partition function
given by

M 41 En
G,(T)= ! x . 21
(@) ;2],0+16Xp[kBT} &l

The radiative neutron-capture cross section (a,ﬁ/) in
Eq. (20) can be calculated from either theoretical or experi-
mental values of the NLD and GSF for the compound nucleus
in the Hauser-Feschbach framework [46]. Recommended the-
oretical values for either the (n, y) rate, the MACS, or both
can be found in libraries such as the JINA REACLIB rates [47],
TENDL-19 [32], BRUSLIB [48], and ENDF/B-VIIL.0 [49].

From the experimentally constrained NLD and GSF of
1278b, we calculate the (n, y) rate and the MACS for 126,
the latter shown in Fig. 8. This was done using TALYS [31,32].

104 4 i —— Oslodata - BRUSLIB
i —-= ENDF/B-VIII.O TALYS unc. span
R === JINA REACLIB Oslo data, 20
—-= TENDL Oslo data, 1o
o)
E 1034
%)
Q
=
=
102 -
0 20 40 60 80 100
kg T [keV]

FIG. 8. The calculated experimentally constrained MACS for
the 126Sb(n, y) reaction, together with theoretical values from JINA
REACLIB [47], TENDL [32], BRUSLIB [48], and ENDF/B-VIIL.0 [49].

By using each NLD-GSF pair as input, we propagate both
the statistical and systematic uncertainties of the NLD and the
GSF by letting the resulting MACS inherit the x2 score of the
pair. From this, the uncertainty was found for each energy bin
by graphically checking where the x2 + 1 line would cross
the parabola, similarly to what done before with the NLD and
the GSF.

The experimentally constrained MACS is compared to
different libraries such as JINA REACLIB, TENDL-19, ENDF/B-
viIL.O, and BRUSLIB, together with the span of all TALYS
predictions available from each theoretical NLD and GSF
model combination, including both microscopic and macro-
scopic models (light yellow band in Fig. 8). We see that the
MACS of both TENDL-19 and JINA REACLIB are inside the
lo confidence band and the same is true for the BRUSLIB
library. All of those libraries are compatible with our esti-
mated MACS. However, the ENDF/B-VIILO library predicts a
much higher rate (outside the experimental 20 confidence),
although it is still within the TALYS uncertainty band. It is not
clear why ENDF/B-VIIIL.0 predicts a much higher MACS than
the others, but probably it is due to significant differences in
the input NLD and GSF used for the evaluation of the MACS.

The large variations in the NLD and GSF models are
demonstrated in Figs. 3 and 6. The actual input models used
in the libraries are not necessarily transparent, except for the
BRUSLIB library which consequently uses the 1dmodel 5 and
strength 4 [48]. Therefore, it is hard to explain why some
of the library MACS are within the 1o band of the present
work and some are not. To be able to conclude whether the
i process can explain abundance observations, one needs to
know the uncertainty in the (n, y) rates of the nuclei involved
in the i process. Moreover, the abundance sensitivity to nu-
clear input is often evaluated by varying the (n, y ) rates within
some range. Unless known experimentally, the range might be
determined from the variation in theoretical predictions using
different NLD and GSF models (see, e.g., Refs. [7,50,51]),
or by varying the rates of a library (such as JINA REACLIB)
by a fixed factor (see, e.g., Ref. [52]). Both these methods
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suffer from the problem that the models themselves usually
do not provide parameter uncertainties. For a given rate, the
uncertainty range might be too large, but also skewed, as
the theoretical predictions are not necessarily normally dis-
tributed about the “true” value. Therefore, it is of utmost
importance to (i) obtain as much experimental information as
possible for nuclei relevant to the i process, and (ii) develop
models of the NLD and GSF that are able to grasp the underly-
ing physics, and at the same time provide reasonable estimates
of existing experimental data.

VI. SUMMARY AND OUTLOOK

This work presents the measurement of the
124Sn(a, py) '2’Sb  reaction. We have experimentally
extracted the NLD and GSF of !'?Sb. These quantities
have allowed us to estimate the Maxwellian-averaged cross
section for the '2°Sb(n, y) '?’Sb reaction, which is of interest
for i process network calculations. The resulting MACS is in
agreement with the estimates from the JINA REACLIB, BRUSLIB,
and TENDL libraries. In contrast, a significant discrepancy was
found with the ENDF/B-VII1.0 library.

It has been found that the GSF of '?’Sb displays an up-
bend and a pygmy-like resonance at about E, =7 MeV.
By fitting models to the data, we have estimated that the
strength in the PDR region corresponds to about 0.7%-0.9%
of the Thomas-Reiche-Kuhn energy-weighted sum rule. A

small peaklike structure was observed at about E,, = 4 MeV,
which is difficult to explain with theoretical models. More
precise measurements in this area, together with data of the
GSF below 3 MeV and above the neutron-separation energy,
would be desirable to better understand the behavior of these
structures.

It is our hope that our data might inspire future develop-
ments of better theoretical models for the GSF. The impact
of the data-constrained (n, y)'>’Sb MACS on final i (and
possibly r) process abundances will be addressed in a future
work.
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The y-strength function and the nuclear level density for the odd-odd, rare-earth nucleus '®*Ho have been
extracted from ' Dy(e, py) '%*Ho data using the Oslo method. A structure at &3 MeV in the y-strength function

is interpreted as the M1 scissors resonance. By employing three different methods we find that its strength
depends rather strongly on the modeling of the E1 strength, while its centroid does not. The '*Ho scissors

resonance parameters are consistent with previous results on other rare-earth nuclei.

DOLI: 10.1103/PhysRevC.107.034605

I. INTRODUCTION

Our understanding of the response of rare-earth elements
to electromagnetic radiation is far from complete. This region
of the nuclear chart is interesting because of the variety in
deformation (from close-to-spherical to well-deformed pro-
late shapes [1]), and it is an ideal region for studying nuclear
statistical properties (see, e.g., Refs. [2-6]).

The scissors resonance (SR), also called the scissors mode,
has received much attention over the years. The SR was orig-
inally predicted to be originating from neutrons and protons
oscillating against each other like scissor blades in deformed,
rotational nuclei [7], but is now understood as a coherent
contribution from single-particle couplings between orbitals
of the same angular momentum ¢ and j centered at around
E, =3 MeV [8]. While the SR has been observed in many
even-even and odd-even nuclei (see, e.g., Refs. [6,8]), it has
not yet been studied thoroughly in odd-odd ones, with the no-
table exception of the two-step cascade experiment on '“Tb
by Kroll et al. [9].

While many studies have been carried out using the nuclear
resonance fluorescence (NRF) technique (see Ref. [8] and
references within), this technique has usually been applied in
the low excitation-energy region. Counting individual states
and transitions becomes increasingly difficult when the den-
sity of energy levels increases. To account for the apparent

*francesco.pogliano@fys.uio.no
fa.c.larsen@fys.uio.no

2469-9985/2023/107(3)/034605(11)

034605-1

missing strength in odd-A nuclei, Huxel et al. [10] applied
a statistical analysis in the case of '*Ho and '*Tm. With
such an approach, they were able to obtain an integrated
upwards B(M1) 4 strength of &3 u32,, in good agreement with
previous NRF results on well-deformed even-even nuclei in
the rare-earth region [11,12]. Also, Nord et al. [13] performed
experiments with even better resolution on the same nuclei
and thus an improved sensitivity for several odd-A rare-earth
nuclei. When the number of energy levels per excitation
energy bin p(E,) (or nuclear level density, NLD) becomes
larger than ~50-100 levels per MeV, it is often more useful
to consider the statistical properties of the nucleus instead
of singular levels and decays. The nuclear excitation energy
region between E, for which p(E,) > 50 MeV~! and where
particles are still bound is called the quasicontinuum, and
two useful quantities here are the NLD and y -strength func-
tion f(E,), or GSF. The GSF is the statistical counterpart
of transition probabilities for the discrete region; it gives us
information on which y energies the nucleus prefers to de-
cay with, and thus an insight into its internal structure and
collective modes. A puzzle that is still not fully solved is the
seemingly conflicting results on the integrated strength of the
SR obtained from different types of experiments. As already
mentioned, NFR experiments have revealed a total strength
of &3 u3, for well-deformed rare-earth nuclei. In contrast,
experiments utilizing the two-step cascade method following
neutron capture [14—16] have found about twice the integrated
strength, which is also the case for data analyzed with the
Oslo method [3,4,6,17-22]. One possible explanation for this
discrepancy is related to the different moments of inertia the

©2023 Americ75Physical Society
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FIG. 1. The (a) raw, (b) unfolded, and (c) first-generation matrices used in the Oslo method analysis. The x axis indicates the y-ray energy
E,, while the y axis indicates the excitation energy E,. The stapled lines indicate the E, = E,, diagonal and the neutron-separation energy

S, = 6.244 MeV.

nucleus attains for ground-state excitations and quasicontin-
uum decay (for which in the latter case, many quasiparticles
are involved; see, e.g., Uhrenholt ef al. [23]). If this is the case,
it would mean that the Brink-Axel hypothesis [24,25] is not
valid for the SR; i.e., its properties in the ground state are not
the same as those for excited levels. However, as discussed
in Ref. [6], there are many possible sources of uncertainties
when extracting the integrated SR strength, and they are per-
haps so significant that one should be careful making strong
conclusions as of now.

This work aims to further investigate the SR in rare-earth,
odd-odd nuclei through the data from the '**Dy(a, py) 'Ho
experiment performed at the Oslo Cyclotron Laboratory
(OCL). Using the Oslo method, it is possible to simul-
taneously extract the NLD and the GSF from particle-y
coincidences in charged reaction experiments. In this article,
the experimental setup and data analysis are described in
Secs. II and III, discussion on implications for scissors mode
is given in Sec. IV and a summary is given in Sec. V.

II. EXPERIMENTAL METHOD

The experiment was carried out at the OCL in April 2018
for a period of 6 days, where an @ beam of 26 MeV and
A3-nA intensity was impinged on a '®Dy self-supporting
target of 2 mg/cm? thickness and 98.5% enrichment. The
Oslo Scintillator Array (OSCAR) and the silicon ring (SiRi)
detector arrays were used in order to detect the particle-y
coincidences from the («, py) reaction. The y rays were
detected by placing the targets inside OSCAR [26], an array
of 30 cylindrical (3.5”x8.5”) LaBr3;(Ce) scintillator detectors
mounted on a truncated icosahedron frame, where 28 were
operational at the time of the experiment. OSCAR has an
energy resolution of 2.7% at E,, = 662 keV and a typical time
resolution of the prompt timing peak of ~1-5 ns. Particles
were detected using SiRi [27], a AE-E particle telescope
consisting of a ring of 8 silicon-telescope modules covering
126°-140° in backwards angles (corresponding to 6% of 41).
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Each of these modules consists of a thick (1550 um) E back
detector, and a thin (130 um) AFE strip detector segmented in
8 parts in the front covering about 2° each, together forming
a system of 64 detectors. Using the AE-E technique, we
collect particle energy and timing information and represent
the event by plotting the deposited energy in the back detec-
tor versus the deposited energy in the front strip. This was
used in order to separate the various reaction channels and
select only the («, p) data. Given the projectile and ejectile
energies, together with the known Q values of the reaction,
we are able to calculate the excitation energy of the residual
nucleus using the reaction kinematics. With this, an excitation
energy vs y-ray energy matrix called the raw coincidence
matrix is obtained [see Fig. 1(a)]. From the raw coincidence
matrix, the primary y-ray spectra for each excitation energy
can be obtained using the established methodology of the
Oslo method [28-30]. This is done by first deconvoluting [28]
the raw matrix using the response function of Refs. [26,31]
[see Fig. 1(b)] and then extracting the first-emitted y rays in
the decay cascades through a subtraction technique (Fig. 1(c),
see Ref. [29]).

Assuming the validity of the generalized Brink-Axel hy-
pothesis [24,25], stating that the GSF is independent of initial
and final excitation energy, spin, and parity, we can extract the
NLD and GSF from the primary y-ray matrix, also known as
the first-generation y-ray matrix. The Brink-Axel hypothesis
has been tested for neighboring nuclei of dysprosium [6,32]
and is therefore expected to be applicable in this mass region.
Fermi’s Golden rule [33,34] allows us to apply the ansatz [30]

P(Ey’ Ex) &8 T(Ey)p(Ex - Ey)7 (1)

where P is the probability for the excited nucleus to decay
from excitation energy E, by emitting a y ray with energy E,,,
p(E, — E,) is the level density in the final energy level, and
T(E,) is the y-transmission coefficient, from which one can
derive the GSF, denoted by f*£, through the relation

TXNE,) =27 E)" fYH(E,), 2)
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for y transitions of electromagnetic character X, multipolarity
L, and y energy E, . The GSF is defined as [35]

¥N(E E, . J, 7))

XL < Y X Vs bl

Ex’E 7J7 = 9 3
P B = e R, T B 3

where (I'X*) is the average partial y-decay width and D is
the mean level spacing. The average partial y-decay width
is also directly connected to the transmission coefficient
by [36]

D(E)C7 E ¥ J7 7[)
<F))/(L(EX7 E}/a J7 7T)> = TXL(EX3 E]/7 J7 n)#'
4)
By then combining Egs. (3) and (4), we obtain
TXL(E,, E,,J, 7
B By dymy = L 1) (5)

2 E2L+1
Y

By applying the generalized Brink-Axel hypothesis [24,25],
the dependencies on E,, J, and 7 are averaged out; i.e., the
experimental y -transmission coefficient represents an average
transmission coefficient for all the spins accessible in the
experiment, as well as for the excitation-energy range used
in the extraction procedure. At high excitation energies, the y
transitions are dominantly of the dipole type (L = 1, see, e.g.,
Ref. [37]), and our experimental y-transmission coefficient
can be approximated by

T(E,) ~ TH(E,) + TY(E,), 6)
and thus we obtain the simplified expression
T(E))
E)=—— 7
f(Ey) 2mED’ (N

where f(E,) and T(E,) now represent the average total
dipole GSF and y-transmission coefficient, respectively. Us-
ing a x2-minimization technique [30], it is possible to extract
simultaneously the NLD and GSF from the quasicontinuum
region in the first-generation matrix. For '°*Ho, the region be-
tween E;ni“ = 1200 keV, E™* = 6000 keV, and E)‘/nin = 1350
keV was selected. This minimization technique is able to
determine the functional, un-normalized form of the NLD and
the GSF,

P(E. — Ey) = Ae* "5 p(E, — E,), (8a)
T(E,) = BB T(E,), (8b)

meaning that any value combination for the parameters A,
B, and « would give a NLD and GSF pair compatible with
the experimental results [30]. In order to fix the values of
these three parameters, we have to normalize the two physical
quantities by using known experimental data.

III. NORMALIZATION AND UNCERTAINTY
PROPAGATION

A. Level density

The unnormalized NLD has two free parameters, A and
a, so we need at least two external data points in order
for these to be determined. Experimental values for the low

TABLE 1. Parameters used for the NLD normalization. o} is
calculated using either the RMI model of Eq. (10) or the FG model
of Eq. (11), combined with the temperature expressions of either the
CFG formula of Eq. (12) or the AFG formula of Eq. (13). For both,
the values of a = 18.277 MeV~! and E;, = —0.949 MeV for '®*Ho
from the global parametrization of Refs. [40,41] were used. Finally,
p(S,) was calculated for each o using the expression given in Eq. (9)
where I, = 7/2 and Dy = 4.35(15) eV [39].

p(Sn)
Model o} (x10° MeV™)
RMI + AFG 6.93 3.28
FG + CFG 5.55 2.32

excitation-energy region in '°*Ho can be obtained by using the
known discrete excitation-energy levels from Ref. [38]. In our
case we observe a good fit for the region between E, = 0.26
and 0.74 MeV, which we use for our normalization. At high
excitation energies, we can calculate the total NLD value at
the neutron separation energy S, by using the measured level
spacing Dy of s-wave neutron resonances from, e.g., Atlas of
Neutron Resonances [39]. We calculate the total NLD at S,
by [30]

2
20

IO(Sn) = D()[(It + l)e*(lle)z/ZU]Z + ]teiltz/zalz] ’

©)

where I, is the spin of the target nucleus and oy is the spin
cutoff parameter. The o; parameter must be estimated, which
means we must assume a model for the spin distribution.
Some well-known models include using the rigid-body mo-
ment of inertia (RMI) [40,41]

of = 0.0146A°°T (10)
and the Fermi gas (FG) model from Gilbert and Cameron [42],
of = 0.08884%3aT, (11

where A here is the nucleon number, a is the level density
parameter, and T represents the nuclear temperature. The T
parameter can be expressed by either the Gilbert and Cameron
approach (CFG) [42],

T =./UJa, (12)

or the formalism developed by von Egidy and Bucurescu
(AFG) [40,41],

;o Lt V1 +4aU ’ 13)

2a

where in both cases U = E, — E|, where E; is a shift pa-
rameter. The parameters a and E; for '®Ho are calculated
using the prescription of Refs. [40,41]: a = 18.277 MeV ™!
and £, = —0.949 MeV for both models of the 7 parameter.
As we have no reason to prefer one model above the other,
we allow o7 to vary between 5.55 and 6.93. These values are
listed in Table I. The chosen o uncertainty limits are reason-
able when compared to the results of Uhrenholt ef al. [23],
where a study on '®*Dy shows that the ratio between the spin
cutoff parameter at S, from their combinatorial method and
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the one calculated using the RMI model is 0.9, compared to
0.8 and 1.0 corresponding to the lower and upper limits we
have chosen for '%°Ho.

Since any value between the two limits for o7 is, in princi-
ple, equally possible, we assume that the p(S,) error is flatly
distributed between the values obtained by using the two o}
values in Eq. (9), as shown in Table 1. The edges of the flat dis-
tribution are then smoothed with a Gaussian with a standard
deviation calculated by propagating the uncertainties in the Dy
parameter. We obtain thus a flatly distributed p(S,) between
2.32 x 10° and 3.28 x 10° MeV~!, with a lower error of
0.08 x 10° MeV~! and an upper error of 0.12 x 10 MeV~!.

Further, we need to extrapolate the experimental p(E, ) data
to S,.. In order to do this, we have considered two models. The
first one is the constant-temperature (CT) model [42,43]:

1 Ex - EO
pcr(Ex) = —exp | —— ), (14)
T Ict

where Ey and Tctr are parameters representing the energy shift
and the nuclear temperature, respectively. The second is the
back-shifted Fermi gas (BSFG) model [42,44]:

exp(2val)
12424\ 4U5 0,

where o7 is the spin cutoff parameter, a is the level-density
parameter, and U = E, — E|, where E| is the back-shift pa-
rameter. For convenience, we introduce an additional scaling
parameter n in order to make the model reproduce the ex-
perimentally derived p(S,). For the best fit, n was found to
be 0.507. While the NLD normalization parameters A and
a are determined through the normalization procedure, the
choice between the CT or the BSFG model comes down to
the functional form of the experimental NLD data. While
the CT model has a simple, exponential shape, the BSFG
model is somewhat more curved due to the ~+/E, depen-
dence. In order to decide which NLD model describes the
experimental data best, we use an approach similar to that
used in Guttormsen et al. [45] for '%*Dy. Here we run a x>
test for each model, where the model parameters are allowed
to vary in order to minimize the x> score. While the parameter
values and the magnitudes of the x? scores depend on the
choice of A and «, the relationship between the x> scores
for the two models should not change, as this only depends
on the functional shape of the NLD. The test gives a better
x2 for the BSFG model by a factor of 1.5; therefore, this
model is chosen for the extrapolation in the normalization
procedure. Using a technique similar to the one presented in
Ref. [46], we can propagate the normalization uncertainties to
the whole NLD. By generating different NLDs with different
combinations of the A and « parameters, we evaluate their
goodness-of-fit to the selected region at low excitation energy
and the calculated p(S,) by estimating a x> score. For each
E, bin, we have many different p(E,) values, each with an
associated x? score. By plotting the x? scores against p(Ey)
for each E, bin, we can observe a parabolalike shape, from
which we can graphically estimate the mean value of p(E,)
to be the one for which x> = Xr%lin’ and the associated un-
certainty where the x2 = Xriin + 1 line crosses the parabola

107 g
E (a’) ;E/,,,
106 4 -
E Rl
'
. 10° 4 /ﬂf
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>
%’ 4 | /"
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FIG. 2. The normalized NLD data points (see text). The un-
certainties in the data points show the statistical and systematic
uncertainties from the Oslo method analysis. In the total uncertainty
band the systematic errors from the normalization are included. In
panel (a), the normalized 'Ho NLD is shown together with the
fitting interval, the known levels, and the Fermi gas extrapolation to
p(S,), while in panel (b) the same NLD is compared to the theoretical
models from TALYS 1.95 [47,48]. The values are given as number of
energy levels per MeV bin, where, e.g., the value at E, =2 MeV
indicates the number of energy levels in the 1-MeV E, interval
between 1.5 and 2.5 MeV. This means that nonzero values for the
NLD are expected down to E, = —0.5 MeV, the last one including
the ground-state level at E, = 0 MeV.

(see Ref. [46] for details). The normalized NLD is shown in
Fig. 2.

B. Gamma strength function

For the GSF, the parameter B in Eq. (8b) is found
by normalizing it to the average total radiative width
(I'y) [32,49]. Experimental values for this quantity are avail-
able in Ref. [39], where for '*Ho we find 84 +5 meV.
The average total radiative width of s-wave neutron capture
resonances with spins I, + 1/2 expressed in terms of the
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FIG. 3. The normalized GSF data points (see text). Here we
include a comparison to the theoretical models (strength 1 to strength
8) used in TALYS 1.95 [47,48]. Uncertainties are displayed as in
Fig. 2.

experimental 7 is given by
Ly (Sp Iy £1/2, 7))

B S
C Amp(Su i £1/2,7) Jg,—0

1
X Zg(sn_

J=-1

dE, T(E,)p(S, — Ey)

E, I, £1/2+J), (16)

where I, and 7, are the spin and parity of the target nucleus
in the (n, y) reaction, and p(S, — E, ) is the experimental
level density. Here it is assumed that there are equally many
accessible levels with positive and negative parity for any ex-
citation energy and spin, and again that dipole radiation is the
dominant decay mechanism. Note that the factor 1/po(S,, I, =
1/2, 7;) equals the neutron resonance spacing Dy. By assum-
ing the uncertainty in (I, ) to be normally distributed such that
the given number represents one standard deviation from the
mean, we can again use the same procedure as for the NLD
used in Ref. [46] to propagate these uncertainties to the GSF.
The results are shown in Fig. 3.

IV. RESULTS AND DISCUSSION

As anticipated from the NLD normalization discussed in
Sec. III, the experimental '**Ho NLD was found to be better
described by the BSFG model than by the CT model. In
Fig. 2 we present the normalized experimental NLD data
together with the six theoretical models provided in TALYS
1.95 [47,48], where 1ldmodel 1, ldmodel 2, and ldmodel 3
are phenomenological models, and ldmodel 4, ldmodel 5,
and ldmodel 6 are microscopical. For the three microscopi-
cal models the default values for ¢ and § were used, these
being the two parameters for which the models can be ad-
justed to data. Although none of the models fits perfectly,
we observe that the experimental data fall somewhat in the
middle of the different suggested models. Overall, our data

points behave rather smoothly, as can be expected for an
odd-odd nucleus with many available levels. In general, the
GSF shows various features with different electromagnetic
characters. Most notably for the energy region of this work
(E, ~1 to 6 MeV), we expect the tail of the giant elec-
tric dipole resonance (GEDR, [50,51]), possibly the pygmy
dipole resonance (PDR), (both of E'1 character [52,53]), the
spin-flip resonance, and the SR (both of M1 character [8]) to
be present. As the Oslo method does not separate between
E1 and M1 transitions, the GSF must be decomposed using
models and/or auxiliary data. Figure 3 shows the GSF plot-
ted together with the different theoretical models available
in TALYS. Our data points are not well reproduced by any
of the TALYS models, although an agreement when it comes
to magnitude can be observed with the microscopic Gogny-
HBF+QRPA model strength 8 [54]. Most of the models fail in
predicting enough strength to match the experimental results,
and none of them are able to describe properly the broad bump
centered around E,, ~ 3 MeV. The GSF in the E,, < S, region
is expected to be dominated by the tails of the GEDR and the
PDR, as observed in the neighboring dysprosium isotopes [6].
Another interesting feature is the broad, resonancelike struc-
ture centered around E, ~ 3 MeV, which is a good candidate
for the M1 scissors mode. This is the first observation of the
mode in an odd-odd rare-earth nucleus with the Oslo method.
In order to quantify the observed structures, the experimental
GSF was decomposed into its constituent features. As for Dy
isotopes and other deformed, rare-earth nuclei, we expect the
GEDR of '%Ho to be double-peaked [50,51]. Experimental
GSF data for E, > S, for 160 are not available, so data on
165Ho have been used. There are data in the literature for this
energy region from Berman ez al. [55] and Bergere et al. [56],
but their measured cross sections differ considerably. In order
to resolve this conflict, a reanalysis of the two experiments has
been carried out by Varlamov et al. [57], and the data from this
re-evaluation have been used to model the E'1 strength due to
the GEDR. In order to fit the GEDR, a generalized Lorentzian
(GLO) [37] is used:

fGLO(E ) = ooly EyFK ko
v, 282 0 2 : 3 ’
S GRS
(17)
where
Lo
Tk(E,, Ty) = E(E§ +47°T7) (18)

0
and I'g o = I'k (0, Ty). Eo, I'o, 00, and Ty are fit parameters
representing the energy centroid, the width, the peak cross
section, and the temperature of the final levels, respectively.
The PDR and the scissors mode are fitted using a standard
Lorentzian (SLO),

o,I'’E,

OE,) = ,
’ E2)’ + E2T?

5 (19)
3nhc (E}% —
where Ej, [, and oy are again free parameters corresponding
to the same quantities as for Eq. (17). In some other studies
of the rare-earth region (see, e.g., Ref. [6]), a second E1 PDR
was included in the fit, as well as the spin-flip M1 resonance.
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The GLO already gives us a good fit of the GEDR without
having to include these two structures, whose contribution is
only noticeable in the E, ~ 10 MeV energy region, well be-
yond the range of this experiment. Our choice of fit functions
reduces considerably the number of free parameters used in
the fit.

Another interesting quantity to calculate is the experimen-
tal, integrated upward SR strength Bgg, defined as

3hc)?
(1 6;) / For(E,)dE, , (20)

where fsg is expressed by the fitted SLO in Eq. (19) to the
broad structure at £, ~ 3 MeV. The result of the integration
depends on the chosen limits, which should vary according
to which work or experimental technique the result is to
be compared with. Many NRF experiments have limited E|,
range and thus a smaller summed Bsg. When it comes to
Oslo-method-like analyses, the decomposition of the GSF into
two GEDR peaks (henceforth GEDR1 and GEDR?2), a PDR
and an SR, involves a series of challenges not only due to
the high number of parameters involved but also because of
the fact that OCL data cannot directly distinguish between
E1 and M1 radiation. This is a particular problem for the
SR, as its fit result is sensitive to the fitting parameters of the
underlying E1 strength. In this work we show how we can
attempt to solve these problems using three different methods.
This provides us with a comparison of the different methods,
as well as a tool in order to evaluate the uncertainties for the
resulting Bsr. The first method (the “simultaneous fit”) is to
fit all of the structures (the two peaks of the GEDR, the PDR
and the SR) simultaneously. This gives the least x? score,
but also potentially underestimates the E'1 strength yielding
a potentially too big Bsg. The second method (the “two-step
fit”) involves a fit of the GEDR first and a subsequent fit of
the PDR and the SR by holding the newly found GEDR pa-
rameters fixed. This gives a higher x? score, but a Bgg closer
to previously determined values in this mass region. One of
the most sensible parameters in the fit is the temperature 7p.
In both methods, the fit was run by holding the tempera-
ture fixed to either 7 = 0.59MeV or T = 0.66 MeV, these
corresponding to the calculated values from von Egidy and
Bucurescu [40] for the CT and BSFG models, respectively.
The resulting parameters from the first two fitting methods
are shown in Table II, where method 1 corresponds to the
simultaneous fit, method 2 corresponds to the two-steps fit,
and (A) and (B) both indicate whether the CT value or the
BSFG value for the temperature parameter was used. Figure 4
shows the obtained decomposition using method 2(A) as an
example.

The third method (the “exponential background fit”), used
among others by Nyhus et al. [4], Malatji et al. [60], and Ag-
vaanluvsan et al. [19] involves approximating the E'1 strength
“background” as an exponential function of the form Ae“r,
where A and ¢ are parameters to be tuned to make the function
go through the two points estimated to be the end points of the
SR. When the background is subtracted, the excess strength
can be integrated numerically to find Bsg (see Fig. 5). This
last method does not involve a fit to the SR and thus gives
no Ey, I'y, and o, parameters to compare to other works, but it

Bsg =

TABLE II. The parameters for the functions fitting the '*Ho
GSF (see text) Method 1 refers to the “simultaneous fit,” while
Method 2 refers to the “two-step fit.” The labels (A) and (B) refer
to the different choices in temperature.

To Eo s Cos 00,5

Method  Function (MeV) MeV) (MeV) (mb)
1(A) GEDRI1 0.59 12.359(1)  3.35(3) 324(1)
GEDR2 0.59 14.78(1) 1.89(3) 189(2)
PDR 5.92(8) 1.96(12) 4.4(3)
SR 3.14(7) 0.98(9) 0.43(3)
1(B) GEDRI1 0.66 12.341(1)  3.22(3) 330(1)
GEDR2 0.66 14.78(1) 1.89(3) 195(2)
PDR 5.58(40)  1.40(10) 3.8(3)
SR 3.18(7) 0.80(4) 0.44(3)
2(A) GEDRI1 0.59 12.40(12)  3.50(4) 323(3)
GEDR2 0.59 14.80(15)  1.82(2) 183(2)
PDR 6.07(11)  1.89(3) 5.02)
SR 3.20(12)  1.0030)  0.40(8)
2(B) GEDRI1 0.66 12.38(12)  3.37(3) 330(3)
GEDR2 0.66 14.79(15)  1.82(2) 188(2)
PDR 5.48(17)  1.06(2) 4.109)
SR 3.29(12) 0.98(26) 0.43(8)

gives perhaps the most reasonable estimate for the lowest limit
of Bsg. An argument in support of this third approach is that
the £1 modeling is not dependent on the description of the
GEDR peaks and the PDR, and also because an SLO fit may
not always be the best tool to describe a structure that is often
fragmented and not necessarily resonance-shaped. However,
the resulting integrated SR strength is indeed dependent on
the choice of the two points enclosing the SR structure used

GEDRI fit Total fit
10-5 - === GEDR?2 fit 165H0, Varlamov
SR fit ARC M1 (n,7)'%%Ho
—= PDRfit ARC E1 (n,~)'®Ho
Gogny M1

¢ 16Ho, this work

GSF [MeV 73]

FIG. 4. Decomposition of the GSF into its underlying structures,
using method 2(A), where the '*Ho data for E, > 6 MeV from
Varlamov et al. [57] were used to fit the double-peaked GEDR.
The dotted line is the theoretical prediction from the deformed-basis
QRPA calculations for M1 excitations on the ground state [58] and
is compared to the average resonance capture (ARC) data from
Ref. [59] for both E1 and M1 transitions.
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FIG. 5. The SR integrated strength evaluated by selecting the
energy range of the SR and modeling the E'1 background as an
exponential going through the two outermost GSF points (see text).
Shown in black are the data from the present work, in red (dark gray)
the modeled E'1 background as an exponential, and in blue (lighter
gray) the residual strength obtained by subtracting the £ 1 component
from the GSF data. This plot corresponds to the E'1 fitting for method
3(B).

to fit the exponential background. Although the choice for the
upper limit might fall naturally in the “kink” of the GSF
at about E, ~ 4 MeV, the lower limit is more difficult to
determine unambiguously. In order to reflect this uncertainty,
we have calculated Bsg using two different exponential “back-
ground” fits, one choosing the first fitting point to be at E,, =
1.6 MeV and the other at E,, = 2.0 MeV. We denote these two
variants of the third method as method 3(A) and method 3(B),
respectively.

In Table III the fitting parameters for the different fits of the
SR are shown, together with the calculated summed strengths
Bgg for both the integration range E, = 2.0-4.0MeV (com-
parable to the one used in NRF experiments) and the
integration range E, = 0.0-10.0 MeV (for a more complete
Bgr integration).

These results can be compared to those for neighboring
isotopes. As many other nuclei have been analyzed using the
Oslo method, we have the possibility to systematically study
the different centroids, widths, and peak cross sections of the
SR fitted by SLOs for the rare-earth region. In Fig. 6 are
collected the results for Nd [63], Sm [18,60-62,64], Dy [6],

TABLE III. The integrated SR strengths for both the E, = 2.0-
4.0 MeV range and the E,, = 0.0-10.0 MeV range (see text).
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Er [17], and YD [19], where the results from Ziegler et al. [64]
are results from a NRF experiment and only provide the en-
ergy centroid information. Together with these, the results for
166Ho from the present work are included. There is no very
clear pattern emerging from the plots in Fig. 6, as the results
generally seem to be scattered. Nevertheless, in Fig. 6(a) we
observe that the values for Esg increase until A &~ 150, then
remain constant, and finally increase again from about Esg ~
2.7 MeV for 160Dy to Esg ~ 3.4 MeV for '7>Yb. The results
from this work fit nicely between those for dysprosium by
Renstrgm et al. [6], erbium by Melby et al. [17], and ytterbium
by Agvaanluvsan et al. [19]. This pattern does not correspond
to what we would expect from the study by Enders et al. [12],
which describes a constant or slowly decreasing value for Esg
between 3 and 3.5 MeV. Theoretical predictions for Esg can
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be obtained using the sum-rule approach [65], following the
procedure in Ref. [12] replacing the ground-state moment of
inertia with the rigid-body moment of inertia (following the
same steps as in Guttormsen et al. [21]). From this approach
a value of Esg = 2.89 MeV is found by using 8, = 0.342 as
a value for the deformation, the average of those listed for
164Dy and '®8Er in Ref. [66]. This is close but lower than the
evaluated errors for all four values listed in Table II. Using the
value from the FRDM evaluation by Moller et al. [67], B, =
0.296, we obtain an even lower value of Esg = 2.55 MeV. The
width ['sg and the peak cross section ogg are also plotted in
Figs. 6(b) and 6(c), respectively. Here results are more scat-
tered, although a possibly decreasing trend could be noticed
for I'sg, and a possibly increasing one could be noticed for
OSR-
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In Fig. 7 are shown the SR strengths for two different
integration intervals: E, =2.0-4.0 MeV and E, = 0.0-
10.0 MeV) calculated by means of Eq. (20). These are in turn
plotted against the mass number A and the deformation pa-
rameter B, retrieved from the evaluations in the Atomic Data
and Nuclear Data Tables of Ref. [66]. The data for odd nuclei
were obtained by averaging between neighboring even-even
nuclei. These values were preferred to the FRDM evaluation
by Moller et al. [67] as the latter tends to systematically
undervalue the values calculated from B(E2) experimental
values. In Fig. 7 the calculated data from '®Ho are plotted
in five solid or empty circles, where the value for method 3
is the average of (A) and (B) (see Table III). Again we can
compare to the plots in Enders et al. [12], where in Fig. 4 we
notice how Bgg increases sharply at A =~ 150 from 1 to 3.5 ;LIZ\,,
remains somewhat constant until A & 170 when it starts to
slowly diminish. The data collected in Enders et al. [12] have
a limited integration range (2.5 to 4.0 MeV), so it is best
compared to Fig. 7(a). Although one might argue that the data
may show an increase at around A = 150, these go all the way
up to 6 %, for Nd and Sm isotopes, and no flat or diminishing
pattern is observed afterwards. Figure 7(c) shows the whole
integrated SR strength, and again, although the pattern may
seem similar to Fig. 4 in Enders et al. [12], the values are much
larger. A different pattern appears when Bgpy is plotted against
deformation in Figs. 7(b) and 7(d). In both, and more clearly
in Fig. 7(d), we notice how the strength increases gradually
with deformation and reaches an apparent top at 8, =~ 0.28,
before decreasing. Many of the collected data sets agree in
the value of Bsg at B, ~ 0.34. The experimental Bsg for
166Ho can be again compared to the theoretical one obtained
with the sum-rule approach, from which we obtain a value of
Bsgr = 7.9;1,12\, using B, = 0.342 from Ref. [66], a value above
the upper error limit for all methods. The same conclusion is

reached by using the possibly undervalued evaluated deforma-
tion B, = 0.296 from Ref. [67], where the value Bsg = 6-9M12v
is obtained.

V. SUMMARY

In this work the data from the '®Dy(«, py) '®*Ho experi-
ment were analyzed using the Oslo method, and the NLD and
GSF for '®Ho were extracted. The resulting GSF presents
typical features of a rare-earth, deformed, neutron-rich nu-
cleus, such as a pygmy resonance at £, ~ 6 MeV and a peak
compatible to the M1 scissors resonance at 3 MeV. This is the
first time such a structure has been observed in an odd-odd nu-
cleus with the Oslo method, confirming previous observations
in '°Tb where the two-step cascade method was used [9]. The
SR strength has been extracted using three different methods,
and while there is a spread in the measured values, they all
yield results compatible to nuclei of similar mass number, and
even more so to nuclei of similar deformation.
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The y-ray strength function and the nuclear level density of '”Ho have been extracted using the Oslo method
from a '“Dy(a, py) '”Ho experiment carried out at the Oslo Cyclotron Laboratory. The level density displays
a shape that is compatible with the constant temperature model in the quasicontinuum, while the strength
function shows structures indicating the presence of both a scissors resonance and a pygmy dipole resonance.
Using our present results as well as data from a previous '*Dy(«, py) '*Ho experiment, the 'Ho(n, ) and
6Ho(n, y) eellian-averaged cross section (MACS) uncertainties have been constrained. The possible influence
of the low-lying, long-lived 6 keV isomer 'Ho in the s process is investigated in the context of a 2Mg,
[Fe/H] = —0.5 asymptotic giant branch star. We show that the newly obtained '*Ho(n, ) MACS affects the
final '*Ho abundance, while the "**Ho(n, ) MACS only impacts the enrichment of '®'*Er to a limited degree
due to the relatively rapid 8 decay of the thermalized '®Ho at typical s-process temperatures.

DOLI: 10.1103/PhysRevC.107.064614

I. INTRODUCTION AND MOTIVATION

The two main mechanisms responsible for the creation of
elements heavier than iron in the universe are the s and the
r processes, standing for slow and rapid neutron-capture pro-
cess, respectively [1,2]. The r process lasts for a few seconds
and involves neutron densities of N, > 102 cm—3 (see, e.g.,
Ref. [3]). Such extremely high neutron densities will create
very exotic, neutron-rich nuclei close to the neutron drip line,
and will eventually B decay to stability when the neutron flux
is exhausted.

In contrast, the s process involves neutron densities of
N, < 10" cm~2 and may last for thousands of years during
the asymptotic giant branch (AGB) phase of low-mass stars
[4]. At these low neutron densities, neutron captures usually
take place on stable or very long-lived nuclei, as the neutron-
capture timescale is longer than the one for the S decay
for most of the unstable nuclei. This means that s-process
nucleosynthesis follows a relatively narrow path along the
valley of B stability up to Pb and Bi. However, some -
unstable neutron-rich nuclei have longer lifetimes than others,
and if their lifetimes are comparable to the average timescale
for neutron capture, they become so-called branching points
along the s-process path. In these cases, astrophysical condi-
tions such as neutron density and temperature may influence
the specific path the s process takes, and a precise knowledge
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of the nuclear properties of the involved nuclei is paramount
for the correct description of the nucleosynthesis flow [4].
Examples of s-process branching points include 3Kr and
151Sm, where their location in the nuclear chart in between
two stable nuclei gives separable branches that the reaction
flow may follow (see Ref. [4] and references therein).

One case of interest is the odd-odd '®Ho. As '*Ho is the
only stable isotope of this element, '**Ho is made during the
s process. Although its ground state 8 decays to '°Er rather
fast (T12 ~ 26 h), 1Ho has a very low-lying (E; ~ 6 keV)
7~ isomeric state that also 8 decays to '%°Er, but with a much
longer half-life of about 1200 years [5]. This half-life is on
the same timescale as the s process, which means that this
branching could affect the final abundance of 'Ho as well as
the isotopic abundance ratio of '°Er / 1Er.

Assuming '%Ho to be thermalized under typical s-process
conditions (which should be a valid assumption according
to Misch er al. [6]), the correct estimate of its impact re-
quires knowledge of various nuclear properties, such as the
15Ho(n, y) reaction rate, the '*Ho(n, y) reaction rate, and
the 'Ho B-decay rate. While the latter has been estimated
by Takahashi and Yokoi [7], the '®Ho(n, y) cross section has
been measured directly [8]. In addition, both neutron-capture
rates can be indirectly derived from experimentally extracted
nuclear level densities and y-strength functions for '**Ho and
167Ho using the Hauser-Feshbach formalism [9—11].

In this work, we aim at clarifying the impact of '®*Ho on
the s process by using experimentally constrained '*Ho(n, y)
and '®Ho(n, y) rates in s-process simulations. In Sec. II
we present the results of the '**Dy(«, py) '’ Ho experiment

©2023 AmericsgPhysical Society
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carried out at the Oslo Cyclotron Laboratory. Using the Oslo
method, we are able to extract the level density and y strength
function, which are used as input to calculate the '**Ho(n, y)
Maxwellian-averaged cross sections as described in Sec. III.
In Sec. IV, s-process calculations in AGB stars are performed,
and the impact of the newly derived neutron-capture rates on
the final abundances is discussed.

II. EXTRACTION OF THE NUCLEAR LEVEL DENSITY
AND THE y-RAY STRENGTH FUNCTION

While nuclear energy levels and reduced transition prob-
abilities can be measured within the discrete region using
spectroscopy methods, this task becomes increasingly diffi-
cult when going higher up in excitation energy. Here, levels
become so close to each other that it is very difficult to
distinguish them experimentally. When the mean level spac-
ing D becomes so small that D~ > 50-200 MeV !, the
nuclear properties are better described in terms of average
statistical quantities: the nuclear level density (NLD) and the
y-ray strength function (GSF). These two quantities, apart
from being essential ingredients to calculate neutron-capture
rates within the Hauser-Feschbach framework [9], may also
reveal collective effects in the nucleus of interest for nuclear
structure. The total NLD for all spins and both parities is
usually written as p(E,) and gives information on the number
of energy levels per excitation-energy bin. The GSF, written
as fXL, gives information on the electromagnetic response of
the nucleus and the probabilities for y decay of electric or
magnetic character X and multipolarity L. The GSF is defined
as [12]

(CSH(Ex Ey . J, )

XL
ELE, J, )= ,
f ( X 14 ) D(Ex, Ey,J,T[)EJ%L+1

ey

where E, is the initial excitation energy, E, is the transition
energy, J is the angular momentum, 7 is the parity, (F;‘L) is
the average partial y-decay width, and D is the mean level
spacing for the specific class of quantum levels considered
in the average. The partial width (I'}*) can be related to the

transmission coefficient 7% by [13]
D(Ex7 Ey7 J7 7[)

<F))/(L(EX7 Ey7J77-[)> = TXL(E’C7E]/7J77[) 27_[

@)

By joining Egs. (1) and (2), the transmission coefficient 77X
and the GSF f*L can be related through

TXL(E.X’ E)/7 J7 7[)
2w E2LH

fXL(Eh E}/7J77[) = (3)

Here, E,, J, and = may be averaged out using the generalized
Brink-Axel hypothesis [14,15], shown to hold for Dy nuclei
[16], and it is usually sufficient to consider dipole radiations
E1 and M1 that dominate in the quasicontinuum region (see,
e.g., Ref. [17]). These two assumptions simplify Eq. (3) to

T(E,)
271E)§ ’

f(Ey) = “)

The NLD and the GSF can be extracted from experimental
data using the Oslo method. In the following we go through
the experimental setup, the experiment itself and a brief de-
scription of the data analysis method.

A. Experimental setup

The experiment was carried out at the Oslo Cyclotron
Laboratory in October 2022 and aimed at measuring p-y
coincidences from the '**Dy(«, py) '’ Ho reaction. A beam
of o particles with 1.3 nA intensity was accelerated to
26 MeV by the MC-35 Scanditronix cyclotron, and the beam
impinged on a Dy self-supporting target, 1.73 mg/cm?
thick and with 98.5% enrichment. The target was placed in
the center of the Oslo SCintillator ARray (OSCAR) and the
Silicon Ring (SiRi) detector arrays, which recorded particle-y
coincidences. OSCAR [18,19] is an array of 30 cylindrical
(3.5 in. x 8.0 in.) LaBr3(Ce) scintillator detectors mounted
on a truncated icosahedron frame, with an energy resolution
of 2.7% full-width half maximum at E, = 662 keV and a
prompt timing peak with time resolution of ~1.8 ns (standard
deviation) for this experiment. SiRi [20] is a AE-E parti-
cle telescope array, which consists of eight silicon-telescope
modules in a ring configuration covering 126°-140° (cor-
responding to about 6% of 4m) in backward angles. Each
module consists of a thick (1550 um) E back detector and
a thin (130 wm) AE front detector. Each front detector is
segmented in eight strips covering about 2° each, while the
back detector is not segmented. The different energies de-
posited in the £ and AE detectors allow us to discriminate
between different ejectiles, so that the data from the («, p)
channel could be selected. The specific reaction kinematics
allows us to calculate the excitation energy E, the residual
nucleus is left in, and associate this to its corresponding y
spectrum. By plotting the detected y rays against £, we obtain
a matrix called the coincidence matrix, which is the starting
point for extracting the NLD and the GSF using the Oslo
method.

B. The Oslo method and normalization details

The y rays measured with OSCAR will inevitably be
convoluted with the detector response [19]. The unfold-
ing procedure [25] helps us correct for this convolution,
and obtain a y-ray spectrum for the full-energy peaks
only. From the unfolded spectra we can obtain the first-
generation y rays using the weighted subtraction technique by
Guttormsen ef al. [26].

By inspection of the first-generation matrix, we may select
the region coinciding with the quasicontinuum, in this case
between E, = 4.5 and 7.0 MeV, and limiting the y rays to
E, > 1.2 MeV. From Fermi’s golden rule [27,28], we may
express the y-decay probability P(E,, E,) for a nucleus at
excitation energy E, to emit a y ray of energy E,, as [29]

P(Ey’ Ex) & T(E)/)p(Ex - Ey) (5)

Using a global x> minimization technique described in
Ref. [29], we are then able to extract the functional shape
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TABLE I. Parameters used for the '”Ho NLD and GSF normalizations. The parameters E, and Tcr are determined from a fit to our data
points at high E, together with the calculated p(S,) value. The Dy and (', ) values are taken from Ref. [21], but with an uncertainty estimation
as described in the text. The two values for the spin-cutoff parameter 0,2 (8,) are from the FG formula [22] and from the RMI formula [23] (see

text and Ref. [24]).

Ey (MeV) Ter (MeV) Do (eV) I

012 (FG) 012 (RMI) 0‘5 (I'y) (meV)

—1.836 0.620 2.32(77) 7

5.68 7.10 2.96 89(9)

of the NLD and the GSF from the selected region in the
first-generation matrix. Thus we obtain the solutions

P(E. — Ey) = Ae* "5 p(E, — E,), (6a)
T(E,) = BB T(E,), (6b)

where A, B, and « are free parameters, and any choice of them
gives an equally good fit to the first-generation matrix. To
determine these parameters, we must make use of the known
discrete energy levels at low E, and the level density at the
neutron separation energy S, for the level density, and the
average total radiative width (I',) for the strength function
[30].

The discrete energy levels are readily available at NUDAT
[31], while the value of p(S,) can be calculated from the
measured level spacing Dy of s-wave neutron resonances and
the spin-cutoff parameter o/ at S, by [29]

?)
20;

p(S,) = D()[(It T e Gt1D?/207 4 1,e*1,2/2012]’

(N

where /; is the spin of the A — 1 isotope that is the target in the
neutron-resonance experiment.

As our level-density data points do not reach p(S,) due
to the lower limit on E,,, the data has to be extrapolated up
to S,. The choice of extrapolation function is usually not
important given that the lower E,, is not too large. Typically
the extrapolation is done with either the back-shifted Fermi
gas (BSFG) model [22,32],

exp(2m)

prG(Ex) = N ¢))
or the constant-temperature (CT) model [22,33],
pcr(Ey) = L exp (M), )]
Ter Ter

where U = E, — E;. Here a, E, E,, and Tct are fitting pa-
rameters. For '”Ho, the CT model was observed to fit the
data at higher E, better than the BSFG one, and the values for
Ey and Ter were found to be —1.836 MeV and 0.620 MeV,
respectively.

The value of Dy can be retrieved from the Atlas of Neutron
Resonances [21], where a calculated value of Dy = 2.32 eV is
provided using the long-lived 7~ isomer as target for thermal
neutron capture. The only unknown left to calculate the level
density at S, using Eq. (7) is the spin-cutoff parameter at S,,.
For this reason the normalization procedure used for '*’Ho
closely resembles the one used for '®Ho in Ref. [24] except
for the fact that the CT model was used instead of the BSFG.

The choice of o7 is model dependent, as there is no exper-
imental data on the spin distribution for all accessible spins at

S, for these nuclei. Two widely used models are the rigid body
of inertia formula as applied by von Egidy and Bucurescu [23]
(here labeled RMI), or the Gilbert and Cameron approach [22]
(here labeled FG). We have no reason to prefer one against the
other, so we let 012 vary between the FG value of o; = 5.68
and the RMI value of o; = 7.10. We assume that the error in
p(S,) is evenly distributed between the two 012 values, and
otherwise decided by the uncertainty associated to the Dy
value. Unfortunately, the Atlas of Neutron Resonances [21]
does not provide an uncertainty to its recommended value.
Considering that there are three measured neutron resonances,
N, = 3, the uncertainty was estimated to be 33% using the
ADy/Dy = 1/N, formula from RIPL3 [34]. For the 012 de-
pendence on excitation energy, we follow Refs. [34,35] and
assume o 2(E,) to be linearly dependent with respect to the
excitation energy:

oE) = 0} + =——[o? — 03], (10)
where adz is the spin-cutoff parameter at a low excita-
tion energy E,;. In our case, adz was found to be 2.96
at E; = 0.220 MeV. The fit of the NLD to the discrete levels

is done in a similar way as in Refs. [24,36], where we chose
the E, interval with the most complete level scheme.

107 5 o
10° -
10° +
1 4
% 10% 4
=] BSFG
A 10° 4 GSM
g 1 &S e HFB-+stat
102 4 = HFB-+comb
Fitting intv. === THFB+comb
1] = Known lvs. === (T extrap.
10
1o conf. X ratsn
10° 4 ; CTM $  This work
0 1 2 3 4 5 6 7 8
E, (MeV)

FIG. 1. The normalized NLD compared to the theoretical models
used in TALYS 1.96 [10]. For an overview of the models and refer-
ences, see text. The error bars indicate the statistical and systematic
uncertainties from the Oslo method, and the uncertainty band shows
the systematic errors from the normalization procedure. The vertical,
pink-shaded band (light grey) indicates the region used for fitting the
extracted NLD to the known levels of '’Ho from Ref. [31].
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107
1o conf. —=—=- BSk7T+QRPA
GLO —-- RMF+cQRPA
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1078 o
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FIG. 2. The normalized GSF compared to the theoretical models
used in TALYS 1.96 [10]. For all the E1 models listed in the plot,
the M1 SMLO [37] was added, except for the DIM+QRPA-Olim E 1
model, where the corresponding DIM+QRPA-0Olim M1 was used
[38]. See text for an overview of the models and their references.
Uncertainties are as in Fig. 1.

For the normalization of the GSF we use the average, total
radiative width (I",,) [30], also available in the Atlas of Neutron
Resonances, where it is given as 88.5 meV [21]. Again, the
uncertainty in this quantity is not provided, but the value of
(I'y ) is quite similar for neighboring rare-earth nuclei; from
systematics of these (I',) values we estimate the uncertainty
to be 10%, therefore we have used (I'y) = 89(9) meV. We
use the same method as in Refs. [24,36] in order to propagate
the systematic and statistical uncertainties from the fitting
parameters to the normalized GSF. An overview of all the
values used for the NLD and GSF normalizations can be found
in Table I, and the normalized NLD and GSF are displayed in
Figs. 1 and 2 respectively.

C. Level density and strength function

The normalized level density is compared with TALYS [10]
models in Fig. 1. The models used in the comparison are

(1) The constant-temperature plus Fermi gas model
(CTM) [22].

(2) The back-shifted Fermi gas model (BSFG) [22,32].

(3) The generalised superfluid model (GSM) [39,40].

(4) The Skyrme-Hartree-Fock-Bogolyubov plus statistical
model (HFB+Stat), tables from Ref. [41].

(5) The Hartree-Fock-Bogoluybov plus combinatorial
model (HFB+comb), tables from Ref. [42].

(6) The temperature-dependent Gogny-Hartree-Fock-
Bogolyubov model (THFB-+comb) [43].

In general, the models do not agree very well with the
data at low excitation energies, but the agreement improves
somewhat for E, > 5 MeV.

The comparison between the extracted GSF and the TALYS
models can be seen in Fig. 2. The models here include both
E'1 and M1 radiation. The E'1 models used are

(1) The Kopecky-Uhl generalized Lorentzian (GLO) [17].

(2) The Brink-Axel standard Lorentzian (SLO) [15,44].

(3) The Hartree-Fock-BCS plus QRPA (quasiparticle
random-phase approximation) tables based on the
SLy4 interaction (SLy4+QRPA) [45].

(4) The HFB plus QRPA calculation based on the BSk7
interaction (BSk7+QRPA) [46].

(5) The hybrid model (Hybrid) [47].

(6) The BSk74+QRPA model with T-dependent width
(BSk7T+QRPA) [46].

(7) The relativistic mean field plus continuum QRPA
calculation with T-dependent width (RMF+cQRPA)
[48].

(8) The Gogny-HFB plus QRPA calculation com-
plemented by low-energy enhancement (DIM+
QRPA+0lim) [38].

(9) The simplified modified Lorentzian (SMLO) [37].

For the M1 strength component, the default M1 SMLO
model [37] with upbend was used, except for DIM+QRPA
where the corresponding M1 strength was used [38].

We note that most models predict a structure centered at
~3 MeV on the tail of the giant electric dipole resonance
(GEDR) compatible with an M1 scissors resonance (SR) [49],
although our experimental results do not match their predicted
magnitude. The structure at ~6 MeV can be interpreted as
the E1 pygmy dipole resonance [50,51] (PDR), but here we
should be careful as the poor statistics from the experiment
leads to rather big statistical uncertainties. The D1IM+QRPA
model [38] and the simplified modified Lorentzian [37] do
the best job at predicting the GSF as they have the correct
magnitude, although none of them reproduce the two observed
resonancelike structures.

The Oslo method does not allow to distinguish between E 1
and M 1 radiation. Therefore, to extract, e.g., the SR integrated
strength, the GSF is modeled using empirical functions and
data from neighboring nuclei. The giant dipole resonance
(GEDR) is known to be of E'1 character and expected to be
double-peaked for a deformed nucleus [52,53]. We therefore
model the GEDR with two Lorentzian-type functions using
the generalized Lorentzian (GLO) function by Kopecky and
Uhl [17]:

fGLO (E)/ )

_Z UOtFOt E)/FK(E)/’ Tf) 7FK(0’Tf)
372K 2 Egl.)2 + E}%FIZ( . Eg,i ’
(11)
where
_ Doipa o yo2po
Tk(E,, Ty) = 72 (E; +47°T7) (12)

0,i

and I'g o = 'k (0, Ty). Here Ey ;, I'g i, 00,; and Ty are param-
eters representing the energy centroid, the width, the peak
cross section of each peak (i = 1, 2), and the temperature of
the final levels, respectively. The functions are fitted to the
neighboring '>Ho GEDR data, as this is the closest nucleus
with experimental GEDR data available, measured by Berman
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TABLE II. The parameters used in the fit functions shown in Fig. 3.

Tf Ey Lo 00,5 Bsgr
Function MeV) (MeV) MeV) (mb) (u?)
GEDRI1 0.72(1) 12.34(1) 3.17(3) 337(1) -
GEDR2 - 14.78(1) 1.85(3) 196(2) -
PDR - 6.11(5) 1.20(3) 8.0(6) -
SRsLo - 3.19(5) 0.87(11)  0.72(7)  6.3(10)
SRexp - - - - 4.0(7)

et al. [54] and Bergere et al. [55]. However, we chose to
apply the more recent reanalysis and evaluation of the two
experiments from Varlamov et al. [56].

The PDR and the SR are fitted by a standard Lorentzian
(SLO), defined as

JSF‘YZEV

SLO
E == ’
S = s (E2 — E2)* + E2T2

13)

where E;, T'y, and oy are the resonance parameters repre-
senting the energy centroid, the width, and the peak cross
section. We see that the data are modeled relatively well,
considering the above-mentioned big uncertainties concerning
the pygmylike structure at £, ~ 6 MeV. The fit to the data
allows for a clear separation between the contributions from
the scissors and the pygmylike structures from the GEDR Htail,
and determining their respective strengths. The spin-flip M1
resonance is also probably present, but its expected contribu-
tion centered around 8 MeV has likely a magnitude far below
the E1 contribution, so that we did not include it in the fit. All
the fitting parameters are listed in Table II.

Of certain interest is the integrated upward SR strength Bsg
that can be expressed as

3
= O8O / for(E))E,, (14)
167
GEDRI fit Gogny M1
1074 ——- GEDR2 fit Total fit
SR fit 165Ho, Varlamov
—-- PDRfit ¢ 57Ho, this work

GSF (MeV~?)

E, (MeV)

FIG. 3. The normalized GSF and the fit to the data using the
empirical functions described in the text. The ' Ho GEDR data from
Varlamov et al. [56] are used fit the GEDR. The dotted line shows the
theoretical QRPA predictions for the M 1 GSF from Ref. [57].

Int. strength

-7 ]
077 — m background

] —— "Ho GSF, this work
1 - sr

GSF (MeV~3)

1078 1

E, (MeV)

FIG. 4. Estimation of the E'1 strength using a simple exponential
passing through two points of the GSF (see text). Data points from
this work are shown as black points, while the red line is the modeled
E1 strength, and the blue area shows the residual strength.

where fsr is the function describing the SR. This function
could, for example, be the SLO function fitting the broad
structure at £, ~ 3 MeV. To obtain a lower bound for the
integrated strength, the E'1 tail can be modeled as a simple
exponential function going through two data points that are
considered to be the E, limits of the SR. Such an approach
has been used by Agvaanluvsan et al. [58], Nyhus et al.
[59], Malatji er al. [60], and referred to as Method 3 in
Pogliano et al. [24]. By choosing E,, = 1.804 and 4.236 MeV
as the limiting points, we calculate an integrated strength
Bsgr = 4.0(7);1,12\,, see Fig. 4. This is to be compared to the Bsg
calculated by integrating the SLO fit of the SR using the pa-
rameters in Table II between 0 and 10 MeV, giving a value of
6.3(10);1,12\,. The latter value assumes the E'1 contribution stem-
ming from the GEDR tail to be smaller than for the former
value, and is comparable to values obtained for 934Dy by
Renstrgm et al. [16].

III. NEUTRON-CAPTURE RATES

With our experimental data on the NLD and the GSF,
and by using a neutron optical-model potential (OMP), we
can employ the Hauser-Feshbach formalism [9,11] in order
to calculate the (n, y) cross section for the N — 1 isotope.
Here, we use the 'Ho data from Ref. [24] and the present
NLD and GSF of !®’Ho from this work to calculate the
15Ho(n, y) and '%®Ho(n, y) cross sections, respectively. The
cross sections are calculated using the nuclear reaction code
TALYS 1.96 [10]. Information on the OMP cannot be ex-
tracted using the Oslo method, and we here rely on the OMP
models implemented in TALYS. We use the phenomenological
model by Koning and Delaroche [61] for both nuclei, where
OMP parameters from experimental data are given for '**Ho,
as well as the semimicroscopic Jeukenne-Lejeune-Mahaux
(JLM) model by Bauge et al. [62].

Our calculated '®*Ho(n, y) cross section is compared with
directly measured neutron-capture data from the literature in
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FIG. 5. The 'Ho(n, y) cross section calculated with the exper-
imentally extracted NLD and GSF for '*Ho compared to data from
Czirr et al. [63], Poenitz et al. [66], Gibbons et al. [67], McDaniels
et al. [65], Asghar et al. [64], Voignier et al. [68], and Lepine et al.
[69].

Fig. 5. We observe that our experimentally-constrained cross
section calculation agrees rather well with the data sets of
Czirr et al. [63], Asghar et al. [64], Lepine et al. [69], and
McDaniels et al. [65]. On the other hand, the other neutron-
capture measurements seem to be significantly higher. The
reason for this discrepancy in the directly measured cross
sections as well as our result is not clear, and it would be
desirable to perform new (n, y) measurements on 15Ho to
understand and resolve this issue.

The radiative neutron-capture cross section is a crucial
ingredient to the neutron-capture rate Ny (o v)(T') as seen from
the reactivity equation (see, e.g., Ref. [3])

8 \'? Ny =2+
Np(ov)(T) = — R it S
oD (nm) (kBT)3/2G,<T)/o XM:ZJ,O+1
E 4+ E!
xa,f;,(E)Eepr:— il :|dE, (15)

where N4 is Avogadro’s number, 77 the reduced target mass, kg
is Boltzmann’s constant, 7' the temperature in the astrophys-
ical environment, and J? and J/* are the ground state and the
wth excited energy level spins respectively, E/* the excitation
energy of the uth energy level, E the relative kinetic energy
between the neutron and the target nucleus, a,ﬁ/ the (n, y)
cross section for the target nucleus excited to the uth state,
and G, (T') the partition function given by

Wh 41 [—EF
T) = x| 1
(1) ZZJ,O+16XP[I<BT} (16)

"

From the radiative neutron-capture rate we can calculate the
Maxwellian-averaged cross section N4 (o) (MACS):
Na(ov)

Nalo)r = vy a7

where vr = /2kpT /i is the thermal velocity.
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FIG. 6. The Maxwellian-averaged cross  sections for

(a) 'Ho(n,y) and (b) 'Ho(n,y) using our data as input
compared to the TALYS uncertainty range as well as JINA REACLIB
[70] and BRUSLIB [71] (see text).

The '®*Ho and '®Ho calculated MACS values are shown
in Fig. 6(a) and 6(b), respectively. The error propagation from
the systematic and statistical errors of the NLD and GSF
is done with the same procedure as in Ref. [36]. For both
cases we compare our results with the range covered by the
TALYS models and two selected libraries used for astrophysical
network calculations: JINA REACLIB [70], and BRUSLIB
[71]. For 'Ho, we also compare our derived data with the
ones provided in the KADoN:IS database [72]. In the KADo-
NiS database, it is specified that the MACS measurements
for this nucleus fall in two groups, one where the MACS
at 30 keV is 1380 mb [73] and one providing cross sec-
tions ~15% lower at ~1200 mb [63,74,75]. The KADoNiS
value of 12374183 mb is calculated as an average of the
two groups, which falls slightly below (but still close to) the
previous value from the compilation by Bao et al. [8] of
1280 % 100 mb. Our derived MACS agrees quite well with
the JINA REACLIB rates and the recommended KaDoNiS
values, both of which fall within the MACS confidence inter-
val, although this cannot be said for the BRUSLIB values. At

94 064614-6



EXPERIMENTALLY CONSTRAINED ...

PHYSICAL REVIEW C 107, 064614 (2023)

30 keV we obtained a MACS of 14941193 mb, slightly above
the KaDoNiS recommended value, but still compatible with
our findings.

For 'Ho we show both the rates calculated using the
global phenomenological OMP model from Koning and De-
laroche [61] and the JLM model by Bauge et al. [62] as these
give considerably different predictions for the temperature
ranges relevant to the s process due to different signifi-
cant contributions of the inelastic channel. In particular, the
30 keV MACS is estimated to be 2505ﬂég7 mb using the

Koning and Delaroche OMP, and 155032; mb using the JLM
model.

IV. APPLICATION TO THE s PROCESS IN AGB STARS

The newly derived 'Ho(n, y ) MACS may directly impact
the s-process production of Ho. Assuming a local equilib-
rium [4], the A = 165 isotopic abundance N( 165Ho) can
be approximated by NY(MSHO) = (0164) /{O165) X NS(164Dy),
where (o1¢4) is the 164Dy MACS and NS(164Dy) its s-process
abundance. Therefore, a change of the '“*Ho(n, y) MACS
directly affects the s-process abundance of Ho. Such an impact
is illustrated for the s process in AGB stars, as detailed below.

AGB nucleosynthesis predictions have been computed
using the STAREVOL code [76] with an extended reaction
network of 414 species linked by 637 nuclear reactions. De-
tails on the nuclear network and input physics can be found
in Goriely and Siess [77]. The solar abundances are taken
from Asplund et al. [78], and correspond to a metallicity of
Z = 0.0134. The Reimers [79] mass loss rate with ng = 0.4
is used from the main sequence up to the end of core helium
burning and the Vassiliadis and Wood [80] prescription during
the AGB phase. Dedicated models with an initial mass of 2M,
and a metallicity of [Fe/H] = —0.5' have been computed as
explained below.

In the present calculations, a diffusion equation is used to
model the partial mixing of protons in the C-rich layers at
the time of the third dredge-up. We follow Eq. (9) of Goriely
and Siess [77] and use the corresponding diffusive mixing
parameters, i.e., feny = 0.10, Dyin = 10° cm?s~! and p=>5,
where f.,, controls the extent of the mixing, Dy, the value
of the diffusion coefficient at the base of the envelope, and
p is a free parameter describing the shape of the diffusion
profile.

The elemental surface overabundances [X/Fe] at the end
of the AGB phase after the occurrence of 11 thermal pulses
are shown in Fig. 7 for the elements ranging between Sm
(Z =62) and Re (Z=75). On the basis of the initial
large TALYS uncertainties corresponding to a variation of the
165Ho(n, ) MACS by a factor of 3.5 [see Fig. 6(a)], an uncer-
tainty of +0.20 dex is obtained on the surface overabundance
of Ho. With the newly constrained MACS, this uncertainty is
reduced to +0.07 dex.

'"The abundance of element X is defined as [X/Y]=
log,o(nx/ny). —log,o(nx/ny)o where n; is the number density
of element i, and Y is a normalizing element, generally Fe.

16 L """"I(’SHO(n,y) TALYS min |
L e 1H06(n,y) TALYS max
I "'_165H0(n,y) Oslo min
12 L —™ 165Ho(n,y) Oslo max
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=
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FIG. 7. Elemental surface overabundances [X/Fe] at the end of
the AGB evolution of our 2M, [Fe/H] = —0.5 model star as a func-
tion of the charge number Z for different values of the 1Ho(n, v)
MACS, namely the upper and lower limits spanned by TALYS sys-
tematics and those constrained by the present Oslo experiment. The
Oslo-constrained '®*Ho(n, ¥ ) MACS obtained with the JLM OMP is
adopted in all cases.

While the ' Ho(n, y) reaction directly affects the neutron
capture along the radiative s-process path, the '®Ho(n, y)
reaction comes into play only if a non-negligible amount of
neutrons is produced. For the conditions considered here, i.e.
an s process during the interpulse phase at a temperature of
about 108 K, '®Ho can be regarded as thermalized [6], i.e.,
its ground state and excited states are in thermal equilibrium,
diminishing the potential impact of the 1200 yr isomer. The
thermalized '®*Ho half-life of T} p=98dat T = 108 K
[7] is fast enough for this branching not to be affected by
the '®Ho(n, y) reaction for interpulse neutron densities of
N, ~ 10"-10% cm™3. Neutron densities larger than typically
3 x 10° cm™ would be required for this channel to become
relevant. Interestingly, during the convective thermal pulse,
a large neutron burst may be produced by **Ne(a, n) and,
despite a low neutron-to-seed ratio, may impact some rela-
tive isotopic abundances at the branching points. During the
convective pulse, temperatures of 7 = (3-3.5) x 10® K and
neutron densities of 10'°-10"" ¢cm™3 are found. These latter
neutron densities are high enough to activate the '**Ho(n, y)
channel, despite the relatively fast 8 decay of '®*Ho (T o
1.4 dat T =3.5x 10® K). The final isotopic surface over-
abundances are shown in Fig. 8 for different 'Ho(n, y ) rates
(adopting the ' Ho(n, y) rate from Bao et al. [8]). A lower
value of '®*Ho MACS is seen to give rise to an increase of
the '°Er and '®’Er abundances, hence of the Er elemental
overabundance by 0.04 dex, if we consider the large uncer-
tainties spanned by TALYS calculations [see Fig. 6(b)]. This
uncertainty is significantly reduced to below 0.01 dex, when
using the Oslo-constrained rates, despite the remaining uncer-
tainty stemming from the OMP. We aslo remark that if the
neutron density is large enough to branch the '*Ho neutron
channel, the '*”Ho branching may also be slightly activated
although its S-decay half-life is shorter than 3.1 h. This result
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FIG. 8. Isotopic surface overabundances [X/Fe] at the end of the
AGB evolution of our 2M, [Fe/H] = —0.5 model star as a function
of the atomic mass A for different values of the '“*Ho(n, y ) MACS,
namely the upper and lower limits spanned by TALYS systematics
and those constrained by the present Oslo experiment using the JLM
OMP.

clearly depends on the adopted TALYS rate for the '*’Ho(n, y)
reaction.

In summary, while the 'Ho(n, y ) reaction directly affects
the production of Ho, the '®*Ho(n, y) reaction only plays a
non-negligible role if the neutron density is high enough to
activate the temperature-dependent branching at '°*Ho. In this
case, the relative enrichment of the '°'9’Er isotopes may
be affected. Through the newly derived rates, the uncertainty
affecting the s-process abundances of Ho and Er can be sig-
nificantly reduced. These remain much smaller than those
stemming from stellar evolution modeling.

V. SUMMARY

In this work, we have presented the newly obtained
NLD and GSF for rare-earth, odd-even '©’Ho from the
14Dy («, py) '”Ho experimental data analyzed with the Oslo

method. The NLD is shown to behave consistently to the
constant-temperature model, and the GSF shows typical fea-
tures for a rare-earth, neutron-rich, deformed nucleus showing
structures compatible with the M1 scissors mode and the
PDR. The '%1’Ho NLDs and GSFs were used to constrain
the '95:1Ho(n, ) MACS uncertainties. The MACS results
were further applied to investigate the role of these two nuclei
in the s process. Of particular interest is the behavior of '**Ho,
whose ground state has a half-life of about 26 h, while its
6 keV first excited state has instead a half-life of 1200 yr
against B decay. This was studied in the context of a 2M,
[Fe/H] = —0.5 AGB star.

The obtained '*Ho(n, y) MACS was shown to be lower
than several of the previous experimental results, which led to
a higher production of '%Ho in the s-process final abundances.
With the assumption of thermalization of '*Ho in typical
s-process interpulse conditions, the impact on the relative
16Er and '$”Er enrichments is small. Only during convective
thermal pulses were the neutron densities high enough to
activate the '9’Ho branch, and consequently influence the Er
abundances.
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Studies attempting to quantify the sensitivity of the r-process abundances to nuclear input have
to cope with the fact that the theoretical models they rely on, rarely come with confidence intervals.
This problem has been dealt with by either estimating these intervals and propagating them statis-
tically to the final abundances using reaction networks within simplified astrophysical models, or by
running more realistic astrophysical simulations using different nuclear-physics models consistently
for all the involved nuclei. Both of these approaches have their strengths and weaknesses. In this
work, we use the reaction network code SkyNet [1] to run r-process calculations for five trajectories
using 49 different neutron-capture rate models. Our results shed light on the importance of taking
into account shell effects and pairing correlations in the network calculations.

I. INTRODUCTION

The origin of elements heavier than iron in the solar
system can be attributed to three main production mech-
anisms, the p, the s and the r processes [2, 3]. While the
first one is only responsible for the creation of some few,
proton-rich nuclei, the latter two are each responsible for
about 50% of the final solar abundances. The r process
stands for rapid neutron-capture process, involves very
high neutron densities (> 10%° ecm~2) and the neutron
flux lasts for less than a second. Within the timescale of
the r process, the neutron-capture rate is usually higher
than the -decay rate, making it possible to reach very
exotic and neutron-rich nuclei up to the neutron drip line.
During the r process, material will pile up at A ~ 80, 130
and 195 due to the high neutron flux as well as the neu-
tron closed shells at N = 50, 82,126.

The r-process sites have been a mystery for many
years. The recent observation of the GW170817 grav-
itational waves event [4] from a neutron star merger
(NSM) followed by its electromagnetic counterpart (e.g.,
Ref. [5]) provided observational evidence that heavy el-
ements indeed are produced in these cataclysmic astro-
physical events. Many other sites have been proposed
over the years, such as prompt core-collapse supernovae,
collapsars and the reheating of supernova ejecta by neu-
trinos (neutrino-driven wind, NDW), see e.g. Ref. [6] for
a review.

The r process may happen under different astrophys-
ical conditions and can be categorized as either hot or
cold. The hot r process happens in environments with
temperatures above a few GK. When temperatures ex-
ceed = 2.0 GK the photo-disintegration rate wins over
the S-decay rate and one reaches an (n,7) = (v, n) equi-
librium, where only temperature, neutron abundance and
irradiation time, the neutron separation energy S, of the
involved nuclei, their 5-delayed neutron emissions and
decay rates are important for the final abundances [7].

* francesco.pogliano@fys.uio.no
T a.c.larsen@fys.uio.no

If the r process instead happens mostly at colder tem-
peratures, then other nuclear properties such as fission
properties and neutron-capture reaction rates will also
be crucial for the nucleosynthesis flow.

In order to model the r process in a realistic way, we
need both the correct astrophysical conditions and the
right nuclear input [8]. Radioactive-beam facilities and
new experimental techniques may allow us to study the
properties of some of the involved, exotic nuclei such as
masses, (-decay rates and (n,7)-rates (see e.g. the re-
views in Refs. [9, 10] and references therein). Neverthe-
less, simulations are still heavily reliant on the predictions
of theoretical models.

Sensitivity studies are a tool that can help us figure
out the properties of which nuclei or nuclear regions have
the biggest impact on the final abundances, and are thus
of vital importance for planning and conducting experi-
ments. These studies usually focus on one specific quan-
tity (such as S-decay rates, masses or neutron-capture
rates) by varying this quantity within some confidence
interval or range of uncertainty, and then analyze the
impact this variation has on the final abundances [7, 9].
Although all of these quantities are important, in this
work we will focus on the neutron-capture rates.

The lack of confidence intervals in theoretical neutron-
capture rates predictions poses a great problem when try-
ing to estimate the uncertainties in the final abundances
stemming from the uncertainties in the nuclear models.
In addition to the need for realistic simulations of the
astrophysical environment(s), this lack is posing a signif-
icant challenge for sensitivity studies in the attempt to
nail down which nuclei or regions in the nuclear chart
that influence the r-process abundances the most.

Several sensitivity studies for neutron-capture rates
can be found in the literature. These studies may be
divided into two categories, depending on the approach
used to address these astrophysical and nuclear aspects
of the uncertainties. We label the first category the “sta-
tistical approach”. Here, a particular set of initial condi-
tions for the 7 process is chosen so that the network simu-
lation reproduces some known abundances (e.g. the solar
r-process abundances, or the ones from a more sophisti-
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cated astrophysical simulation). The abundance yields
from this simulation are referred as the “baseline”. The
neutron-capture rates of a set of the involved nuclei are
then modified individually, and for every rate variation
the r-process simulation is run again with the same ini-
tial conditions, and every new output is compared to
the baseline. The nuclei whose variation will lead to
the biggest change in abundances with respect to the
baseline, are identified as the most interesting to study
experimentally. The capture rates are varied either by
multiplying and dividing the baseline rates by a constant
factor [11-14], by assuming the rate uncertainty to have
a log-normal distribution about the baseline value [9] or
by assuming the distribution to be flat within the pre-
dictions of a set of theoretical models, and log-normal
outside [15]. In the last two cases, the probability dis-
tributions are used to pick the variations using a Monte
Carlo technique, and the results are then analyzed sta-
tistically [9, 16, 17].

The statistical approach is a powerful tool when try-
ing to estimate model prediction uncertainties, and it
allows to study the impact of individual nuclear proper-
ties. However, it has two drawbacks. Firstly, by varying
rates individually, one does not properly account for well-
known nuclear properties such as pairing effects. It is
well known that in general, neutron-odd nuclei will have
a higher neutron-capture rate than neighboring neutron-
even nuclei, as long as they are not close to a neutron
magic number. In Fig. 1, using the Sb isotopic chain as
an example, we see how the rates and Q-values gradually
decrease the more neutrons are present in the nucleus.
We also observe how odd-even effects (neutron pairing)
lead to a higher capture rate and @-value for isotopes
with an odd number of neutrons, compared to their even
neighbors. Such correlations might get lost if the multi-
plicative factor is bigger than the typical difference be-
tween neighboring isotopes.

Secondly, the statistical-approach simulations of the
r process are relying on one-zone models for the astro-
physical conditions, meaning that the final abundances
are reproduced by only one set of initial conditions. This
is usually not the case in a real astrophysical scenario,
where many zones with different initial conditions con-
tribute to the final abundances. This means that while
the variation of the neutron-capture rate in a nucleus in
the statistical approach may lead to a significant change
in the final abundances, this change might become in-
significant when mixed together with the resulting abun-
dances from the other “zones”. In short, by disregard-
ing the correlations between neighboring nuclei one may
overestimate uncertainties in the final abundances, and
the one-zone approach may point to single nuclei being
important, while this importance could be averaged out
when doing multi-zone calculations.

We label the second category of sensitivity studies the
“model-consistent approach”. Here, the problems with
the statistical approach are addressed by simulating the
full astrophysical event where the r process takes place
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FIG. 1. The evolution of the neutron-capture rate Na(ov)
evaluated at 7' = 1.0 GK and the (n,~y) Q-value along the Sb
isotopic chain for all 48 theoretical TALY'S models explained
in Section III, calculated with the HFB-17 [18] mass model
(see text).

(many trajectories with different physical parameters)
and by employing the same nuclear models consistently
for the whole nuclear chart. The nuclear uncertainties are
propagated to the final abundances by repeating the sim-
ulation with different theoretical models of the quantity
under consideration. This means that the final abun-
dances represent the weighted sum of the abundances
from different “zones”. Furthermore, when it comes to
neutron-capture rates, correlations between neighboring
isotopes are accounted for as these are changed model-
consistently. Although there are no studies for the r pro-
cess neutron-capture rates to date, one may find mass
and [-decay sensitivity studies in the context of neu-
tron star mergers by Kullmann et al. [19] or for neutron-
capture rates in the intermediate neutron-capture process
by Goriely et al. [20]. However, also this approach comes
with some drawbacks. First, potential errors and uncer-
tainties in the theoretical models themselves are not ac-
counted for (such as the choice of the interaction and its
parameter uncertainties in a mean-field calculation), and
this may lead to a significant underestimation of the ac-
tual uncertainties in the final abundances. Second, mod-
els may give reliable predictions of nuclei in a certain
mass region, but not so in another, and this may lead to
apparently confident but wrong abundance predictions.
In this work, we will investigate the impact of varying
neutron-capture rates for the r process using a model-
consistent approach for five different trajectories. A tra-
jectory represents the time evolution of density and tem-
perature in the expanding “bubble” simulating material
from e.g. a supernova or NSM. A single trajectory is
equivalent to a one-zone simulation, and is therefore not
necessarily representative for the actual nucleosynthesis
outcome in the specific astrophysical sites. Nevertheless,



the results can be compared to the predicted abundance
uncertainties from the sensitivity studies using the sta-
tistical approach, and hopefully cast light on systematic
and methodical sources of biases and errors in both meth-
ods. The details on the astrophysical simulations are de-
scribed in Section II, while the choice of nuclear inputs
is discussed in Section III. In Section IV the results are
shown and discussed, and a summary of the main find-
ings is given in V.

II. NETWORK CALCULATIONS

In this work we make use of the five trajectories con-
sidered in Mumpower et al. [9]. When not given directly
by the multizone simulation, the initial entropy S, the
electron fraction Y, and the dynamical timescale 7 for
the trajectories are provided below:

a) A “hot” r process with low entropy: S = 30 kg,
Y. = 0.20, 7 = 70 ms.

b) A “hot” r process with high entropy: S = 100 kp,
Y. = 0.25, 7 = 80 ms.

c) A “cold” r process from a neutrino-driven wind
(NDW) scenario modeled after Arcones et al. [21],
with artificially reduced Y, to 0.31.

d) A neutron-rich NSM trajectory modeled after
Goriely et al. [22].

e) A “hot” r process with very high entropy: S = 200
kg, Y. = 0.30, 7 = 80 ms.

Here, we have labeled the trajectory “hot” when the
(n,7) < (v,n) equilibrium is the dominant mechanism
(T 2 1 GK until freezeout), and “cold” when the trajec-
tories fall out of the (n,7v) < (vy,n) equilibrium before
the neutron flux is exhausted (see Fig. 1 in Mumpower
et al. [9] for a plot of the temperature time evolution of
the a) and c) trajectories). These trajectories are used to
run one-zone r-process simulations using SkyNet [1] for
a time of 1 Gy. The reaction network includes electron
screening and uses the JINA REACLIB library rates [23]
for all nuclear reactions except for neutron capture, as
discussed in the following section. Spontaneous and
neutron-induced fission was modeled with the rates of
Panov et al. [24], with zero outgoing neutrons. Although
we expect neutrons to be emitted during fission, results
with two and four emitted neutrons per fission event did
not yield appreciable differences in the final abundances
for the region considered.

III. NUCLEAR INPUT

We calculate neutron-capture rates for every unsta-
ble neutron-rich nucleus using the nuclear reaction code

TALYS 1.95 [25, 26]. The code exploits the com-
pound nucleus picture and uses the Wolfenstein-Hauser-
Feshbach [27, 28] (WHB) formalism to calculate the
neutron-capture rate. The main nuclear ingredients to
the rate calculations are three nuclear statistical quan-
tities: the optical-model potential (OMP), the nuclear
level density (NLD) and the ~-ray strength function
(GSF).

The neutron-capture rate Na{ov)(T) is calculated
from the (n,7) cross section o, as [7]

Na{ov)(T) = NA( 8 >1/2(le

Tm
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where N4 is Avogadro’s number, m the reduced mass
of the target nucleus, kg Boltzmann’s constant, T' the
temperature, J; the target’s spin, E the relative energy
between target and neutron, and G(T') is the partition
function defined as:

G =Y Me_E“kB. 2)

The suffixes 1 and 0 represent the p-excited states and
the ground state, respectively, and o/, represent thus the
neutron-capture cross section when the nucleus is excited
at a certain energy level p. In the WHF formalism, the
neutron-capture cross section is calculated as

Onn(Ea) =Y oSN (Ey, J,m)Py(Ey, Jo7),  (3)
J,m
where oSN (E,, J, ) is the probability that a free neutron

ends up formlng an excited compound nucleus of excita-
tion energy E,, spin J and parity «, and P,(E,,J,7)
the probability of the compound nucleus to y-decay, ef-
fectively capturing the neutron. The first factor is de-
scribed by the OMP, while the second can be expressed
as

Ty (B, J, )

P’Y(Ef’ J’ 7T) B ﬂot(Ewa J77T)’

(4)
where 7, (E,, J,m) is the y-transmission coefficient, and
Tiot = T~ T, is the total transmission coefficient (where
~v-decay and neutron emission usually are the only two
allowed decay channels). Here, T,(E;, J,7) may be ex-
pressed as

E,
To(Eadim) =20y [ B2 UE,)
x,.70

p(Ey — E., J,m)dE,, (5)

where X and L represent the electromagnetic mode (elec-
tric E or magnetic M), L the multipolarity, E., the tran-
sition energy, and f and p the GSF and the NLD, respec-
tively.



TALYS 1.95 provides six different NLD models and
eight GSF models. The NLD models with their respec-
tive TALY'S keyword in parenthesis are:

e The constant-temperature 4+ Fermi gas model
(CTM, keyword ldmodel 1) [29]

e The Back-shifted Fermi gas model (BSFG, keyword
ldmodel 2) [29, 30]

e The Generalised Superfluid model (GSM, keyword
ldmodel 3) [31, 32]

e The Hartree-Fock plus Bardeen-Cooper-
Schrieffer statistical model (HFB+Stat, keyword
ldmodel 4), tables from Ref. [33]

e The Hartree-Fock-Bogoliubov + combinatorial
model (HFB4comb, keyword ldmodel 5), tables
from Ref. [34]

e The temperature-dependent  Gogny-Hartree-

Fock-Bogoliubov model (THFB+comb, keyword
ldmodel 6) [35]

where the first three are phenomenological models where
fitting parameters are adjusted to reproduce known
experimental data. The last three models are semi-
microscopic, meaning that their predictions are based on
a more fundamental treatment of the nuclear many-body
problem. However, we note that even these models are
subject to adjustments through fit parameters in order
for them to reproduce measured data such as known,
discrete levels and s-wave neutron-resonance spacings.

Correspondingly, the TALYS GSF models are:

e The Kopecky-Uhl generalized Lorentzian (GLO,
keyword strength 1) [37]

e The Brink-Axel standard Lorentzian (SLO, key-
word strength 2) [38, 39]

e The Hartree-Fock-BCS + QRPA tables based
on the SLy4 interaction (SLy4+QRPA, keyword
strength 3) [40]

e The HFB + QRPA calculation based on
the BSk7 interaction (BSk74+QRPA, keyword
strength 4) [41]

e The hybrid
strength 5) [42]

model (Hybrid, keyword

e The BSk7 + QRPA model with T-dependent width
(BSk7T+QRPA, keyword strength 6) [41]

e The relativistic mean field + continuum QRPA cal-
culation with T-dependent width (RMF+cQRPA,
keyword strength 7) [43]

e The Gogny-HFB + QRPA  calculation
complemented by low-energy  enhancement
(DIM+QRPA+0lim, keyword strength 8) [44]

where the first two again are phenomenological mod-
els, and the last six are semi-microscopic models. From
TALYS 1.96 [45], a ninth GSF model was introduced,
namely the simplified modified Lorentzian (SMLO) [46].
Although not included in the present study, this has now
become the default choice of GSF model in TALYS. This
exclusion is not expected to influence the results of the
study, as the neutron-capture rate predictions using this
model usually fall within the extremes of the other model
combinations.

While TALYS provides different OMP models, the
choice of one model over another becomes gradually less
significant when the temperature increases; for typical
r-process temperatures the OMP is considered to be of
minor importance!. For this reason we only apply the
Koning & Delaroche OMP model [48].

Not part of the compound nucleus picture is the direct
capture (DC) mechanism for neutron capture (see, e.g.,
Refs. [49, 50] and references therein). This mechanism
is expected to contribute with a small cross section, so
that for many cases compound capture cross section com-
pletely dominates the total cross section. However, near
the neutron drip line, close to and at neutron shell clo-
sures, the compound capture cross section becomes small
enough so that the DC contribution may become appre-
ciable and even the dominant part. We have chosen to
not include DC this study, as its model predictions are
rather uncertain, and we want to focus on the rates cal-
culated via the compound nucleus picture, as these can
be constrained with experimental data from Oslo-type
experiments.

For the mass model, we use the FRDM-2012 model
by Moller et al. [36] (TALYS keyword massmodel 1) and
the Skyrme-Hartree-Fock-Bogoliubov model [18] (HFB-
17), corresponding to the TALYS keyword massmodel 2.
Apart from being readily available in TALYS, these two
mass models (or similar, updated versions of them) have
been shown to produce comparable abundances in mass
sensitivity studies, see e.g. [19, 51].

By combining the six NLD models and the eight GSF
models we obtain 48 different neutron-capture rate mod-
els for each chosen mass model. These were calculated for
all elements from Fe (Z = 26) up to Sg (Z = 106), from
the first neutron-rich unstable isotope up to the drip line.
Although the @-value for neutron capture on N-even nu-
clei may already become negative before the drip line (see
e.g. Fig. 1), the neutron-capture rates were nevertheless
included for completeness, as they can become relevant
for trajectories with high neutron densities.

We note that TALYS provides different settings to
modify and customize the input; nevertheless, we de-
cided to keep these to the default ones, as the scope
of the study is not necessarily to give an accurate de-
scription of the r process, but to analyze the qualitative

1 This is not true if the isovector part of the potential is strongly
enhanced, see Ref. [47].



1001 (a) (b) . ‘ 4
90 !
80 - 3
70 A

N
60 - 2
50 e
40 - u ] ] 1
"r- -.._ "r- I
30 _u'“.—--rt:n—i'u = . i r.|"l-—-|-r|.-rrrr 95 | | |
40 60 80 100 120 140 160 N 40 60 80 100 120 140 160
FIG. 2. (Color online) Differences (in orders of magnitude) between the highest and lowest predicted neutron-capture rate

at T = 1.0 GK for all the 48 models using (a) the FRDM-2012 [36] mass model (an updated version of what the JINA
REACLIB rates [23] are based on) and (b) the HFB-17 [18] mass model. The plotted differences A(Z, N) have been calculated

as A(Z,N) = log,o(Na{0V)max)

— logo(NA{0V)min), where N (0V)max,min represent the maximum and minimum predicted

rates, respectively. The different mass models predict different neutron drip lines, and this is the reason for the different shapes.
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FIG. 3. (Color online) Neutron-capture rate predictions for

different choices of GSF while varying the NLD models, using
182X e as an exemplary case (see text).

change in the predicted abundances when using the same
neutron-capture rate model consistently throughout the
nuclear chart. Starting from TALYS 1.96 [45], new de-
fault NLD and GSF models were introduced, where a
new strength 9 (the SMLO model introduced above)
replaced the GLO as default GSF, and where M1 compo-
nents such as a parametrized upbend and scissors mode
were added to all GSFs. Although these structures in
the GSF are observed experimentally for some nuclei,
there are still significant challenges in our understanding
of these structures that make it highly questionable to
add them to all nuclei on a general basis. For example,
the scissors resonance is difficult to reproduce correctly,
as models still overestimate or underestimate its strength
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FIG. 4. (Color online) Difference between Figs. 2(b) and
2(a), showing which mass model generates the biggest spread
in predicted neutron capture rates, for all the 48 combina-
tions of NLD and GSF models. The negative differences (i.e.
where the FDRM-2012 model predicts larger uncertainties)
are shown in the top panel, while the positive ones (where
the HFB-17 predicts the larger uncertainties) in the bottom
panel.
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(Color online) The biggest difference for each of the 48 models for the neutron-capture rate at T = 1.0 GK of an

N-odd nucleus (Z, N) and its N-even neighbors (Z, N — 1) and (Z, N + 1). The difference (in orders of magnitude) is plotted
against (Z, N) for (a) the FRDM-2012 [36] mass model and (b) the HFB-17 [18] mass model. The differences were calculated

in a similar fashion as for those in Fig. 2.
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FIG. 6. (Color online) Difference between Figs. 5(b) and 5(a),
showing which mass model generates the highest staggering
(see text). The negative differences are plotted in the top
panel, while the positive ones in the bottom panel.

when compared to experimental data (see e.g. Ref. [52]).
For the upbend, we still do not have reliable systemat-
ics or even confirmed its presence throughout the nuclear
chart even for stable nuclei, let alone exotic neutron-rich
ones. It has so far mainly been observed in lighter nuclei
(see e.g. Ref. [53]), and it is still not clear whether this

feature is actually due to M1 transitions, or F1 tran-
sitions, or a mix of both [54]. Nevertheless, there is no
doubt that its presence could indeed impact the neutron-
capture rates [55]. We deem that a thorough study of
the M1 scissors mode and the upbend would be highly
important, but would also be outside the scope of the
present study. Considering also that the SMLO model
usually yields neutron-capture rates within the extremes
produced by other model combinations, we decided that
the use of TALYS 1.95 instead of 1.96 was both satisfac-
tory with respect to the objective of the study, and gave
us better control on the different models, parameters and
features included.

All other nuclear reactions rates are described using
the JINA REACLIB library [23]. This library is based
on the NON-SMOKER theoretical rates [56]. For ev-
ery neutron-capture rate model we substitute the default
JINA REACLIB neutron-capture rates (and those for
their inverse reaction) with the TALYS-calculated ones.
These, together with the default JINA REACLIB rates,
are the 49 neutron-capture models used in the reaction
network calculations in this work.

In Fig. 2, we show the differences between the highest
and the lowest predicted neutron-capture rate out of the
48 TALYS calculations taken at temperature 1.0 GK in
the astrophysical environment for the two mass models.?
We calculate this difference as

A(Z,N) =logio(Na{ov)max) —10810(Na(ov)min) (6)
where N4 (0V)max,min represent the maximum and min-
imum predicted rates, respectively. As can be seen, the
deviations can be very large, in particular in the regions

2 Because of a bug in TALYS, the rates using strength 6 were
not used for the isotopes of Tm (Z = 69) between A = 215 and
248. For these few affected nuclei, the JINA REACLIB rates
were used instead.



close to the neutron drip line and in the regions near the
neutron magic numbers N = 82, 126.

It is unfortunately difficult to investigate if such large
uncertainties are due to the deviations in NLD or GSF
model predictions, since, as seen in Eq. (5), the two quan-
tities are convoluted with each other in such a way that
it is difficult to isolate the contribution of one of the
two quantities. This means that, e.g., we could hold a
GSF model constant, vary the six NLD models and ob-
tain a large variation in the calculated neutron-capture
rate predictions. This would lead us to believe that
the choice of NLD model is responsible for such large
uncertainties, until we try again by holding a different
GSF model constant while varying the NLD models, and
obtain more similar predictions for all employed GSF
models. This effect is shown in Fig. 3. Even if some
choices for the GSF model will yield a large variation in
the predicted neutron-capture rates when changing the
NLD model, others may instead yield rather similar pre-
dictions, here exemplified in the context of ¥2Xe(n,~)
by using the GLO (strength 1, [37]) and the SMLO
(strength 9, [46]) models for the GSF, respectively.

Another consideration when using NLD and GSF mod-
els to calculate neutron-capture rates in the context of
the r process, is the fact that for very exotic nuclei
with low (or even negative) (n,~y) Q-values, the neutron-
capture cross section becomes very sensitive to levels (or
rather, resonances) at very low excitation energies and
their decay properties. However, the low-lying levels are
experimentally unknown for the very neutron-rich region
of the r process. Moreover, the choice of bin size may also
play a significant role for the neutron-capture rate calcu-
lation. When also considering that the NLD models are
typically tested against neutron-resonance data at high
excitation energies, it suggests that the level density at
low E, in the exotic, neutron-rich mass region is partic-
ularly poorly constrained and, thus, the neutron-capture
rate may be even more uncertain than what models pre-
dict.

We note that there is a large difference in the rate pre-
dictions for very heavy nuclei around Z = 100 for both
mass models. This might not be surprising as there is
no or very little data in this region, due to the fusion-
evaporation reactions used to produce very heavy and
super-heavy nuclei that favor production channels with
(multiple) neutron emission(s). We also remark that the
general trends of the two mass models applied here are
very similar. Fig. 2 shows that, for both mass models, the
48 predicted neutron capture rates tend to agree more
when close to the valley of stability, than close to the
drip line, as expected. In Fig. 4, we show the difference
between Figs. 2(b) and 2(a) as a way to quantify the dif-
ference in the predicted spread for the two mass models.
Fig. 4(a) shows for example that the FRDM-2012 overall
generates larger uncertainties, especially for neutron-rich,
N > 126 nuclei, and right after neutron shell closures for
Z = 35,55 close to the drip line. Fig. 4(b) shows that
the HFB-17 model has larger uncertainties for light nu-

clei (50 < N < 82) and again near the drip line right
before the N = 126 isotone.

As a way to quantify the odd-even effects in each
model, we would also like to investigate how the predicted
neutron-capture rate changes when going from an N-odd
nucleus (Z, N) and its N-even neighbors (Z, N — 1) and
(Z,N + 1). This is shown in Fig. 5, where the biggest
difference between the neutron-capture rate of an N-odd
nucleus and each of its neighbors is chosen and plotted.
The differences are calculated in the same way as for
Fig. 2, where a difference value of e.g. 6 means a 6-orders-
of-magnitude difference in neutron-capture rate between
an N-odd nucleus and one of its IN-even neighbors, within
the same model. Unsurprisingly, the biggest staggering
is shown to be around N-shell closures, and near the drip
line.

In order to investigate how the two mass models com-
pare, we show in Fig. 6 the difference between 5(b) and
5(a), again in orders of magnitude. The lower plot indi-
cates where the HFB-17 mass model [18] generates the
higher staggering in neutron-capture rates, and the up-
per plot for the FRDM mass model [36], correspondingly.
We observe how the FRDM-2012 model (blue squares in
Fig. 6(a)) predicts a larger staggering for neutron-rich
nuclei around the N = 82 isotone, and for the N > 160
region, while the HFB-17 model (red squares in Fig. 6(b))
instead predicts larger staggering close to the N = 126
isotone and generally for the 82 < N < 126 region, again
for neutron rich nuclei.

IV. RESULTS

The abundance yields obtained from the five trajecto-
ries using SkyNet can be seen in Fig. 7. We observe
a marked staggering effect especially in the rare-earth
peak. This may be mostly due to the choice of mass
model, as the HFB-17 predicts strong odd-even effects in
the nuclide chart region that would eventually [S-decay
to the rare-earth elements, see Fig. 6. This stagger-
ing in fact disappears for trajectories (¢) and (d) when
the JINA REACLIB rates are used, which are calculated
with the NON-SMOKER formula [56], using the FRDM
mass model [36]. Interestingly, the effect is preserved
in all simulations for trajectory (e), including the one
using JINA REACLIB. This is to be compared to the
final abundances uncertainty band plotted in Fig. 11b
from Mumpower et al. [9], where the same trajectory
was employed with the same mass model (HFB-17), but
by varying the neutron-capture rates using the statisti-
cal approach. Here the staggering is almost non-present,
showing how the impact of shell effects and pairing corre-
lations may indeed be washed out, if the assumed model
uncertainties are large enough to hide them.

3 The data used for the figure can be found in Ref. [57].



Another noticeable result is the relatively small uncer-
tainties we obtain from using different neutron-capture
models as compared to Fig. 11b in Mumpower et al. [9].
The same can be concluded when comparing to the un-
certainty bands of Fig. 13 in Nikas et al. [15] for differ-
ent trajectories. The uncertainties we obtain here are
of course underestimated, because we have not consid-
ered parameter uncertainties in the input models used
to calculate the neutron-capture reaction rates. Even so,
we find that the difference between the neutron-capture
rate models used in this work may be of several orders of
magnitude as shown in Fig. 2, similar to what the typical
magnitude of the assumed rate errors are in the statis-
tical approach. This suggests that the inclusion of shell
effects and pairing correlations does play an important
and non-negligible role in reducing prediction uncertain-
ties in the calculated abundances.

Finally, in all the five different abundance yields in
Fig. 7, one can see how the A ~ 186 region has a bigger
relative uncertainty compared to the rest. This is because
it originates from the most neutron-rich region close to
the N = 126 isotone, above the (possibly) doubly-magic
17680 and around the “dark blue” regions in Fig. 2(b).
This region is extremely neutron-rich and exotic, with
very large uncertainties in the predicted neutron-capture
rates, which are again reflected in the final abundance
predictions.

Unfortunately, the region around the N = 126 iso-
tones, is very difficult to study experimentally. How-
ever, although not reaching '7®Sn, new and upcoming
experimental facilities like FRIB [59], FAIR [60] and the
N = 126 factory [61], might provide data in the region
Z =T70-80, N =~ 126, which would help constrain the
theoretical mass models. Moreover, methods for measur-
ing neutron-capture cross sections in inverse kinematics
as suggested by e.g. Reifarth et al. [62] and Dillmann
et al. [63] would be extremely valuable to get experi-
mental information on neutron-capture rates of neutron-
rich nuclei. Moreover, methods for measuring neutron-
capture cross sections in inverse kinematics as suggested
by e.g. Reifarth et al. [62] would be extremely valuable
to get experimental information on neutron-capture rates
of neutron-rich nuclei. Also indirect techniques like the
Oslo method (Ref. [10] and references therein), the sur-
rogate method (see Ref. [64] and references therein), the
B-Oslo method [65], the shape method [66, 67] and the
inverse-kinematics Oslo method [68] would provide useful
information to constrain the neutron-capture rates.

V. SUMMARY

The lack of confidence intervals in theoretical neutron-
capture rates predictions poses a great problem for the
correct quantification of final abundances errors of the
r process. This in turn makes the task of perform-
ing sensitivity studies difficult, and the conclusions on
which nuclear properties have the biggest impact po-
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FIG. 7. The abundances from the five trajectories after 1 Gy
evolution. In blue is the span of the final abundance pre-
dictions calculated from the 48 neutron-capture rate models.
The black dashed line represents the abundances obtained us-
ing JINA REACLIB rates [23], while the black dots are the
r solar abundances [58] scaled down to fit the third peak at
A=~ 195.



tentially questionable. In this work we have discussed
the strengths and weaknesses of two different approaches
found in the literature, dubbed here as the “statistical”
and the “model-consistent” approach. While the former
tries to quantify the statistical errors in model predic-
tions and attempts to propagate these using one-zone as-
trophysical models and interpret the results statistically,
the latter sticks to one or few models and use them con-
sistently for all the involved nuclei in more sophisticated,
multi-zone simulations.

We have presented the results of network calculations
using five different r-process trajectories, each having dif-
ferent inputs and representing different astrophysical sce-
narios. For each of these, 48 different neutron-capture
rate models (plus the JINA REACLIB rates) were em-
ployed in order to estimate the sensitivity of the final
abundances to these reaction rates. Although these are
not meant to be interpreted as realistic representations
of the r process in these sites, this study provides some
insights on the different strengths and weaknesses of the
two approaches mentioned above.

A staggering effect was observed especially for the rare-
earth region in all trajectories, a feature that cannot be
explained solely by the choice of mass model. The fact
that this does not appear in similar studies using the sta-
tistical approach [9, 15], even using the same mass model,
suggests that the assumption of uncorrelated statistical
errors in these studies may indeed mask the shell effects
and pairing correlations, and probably overestimate the

uncertainties. This is also corroborated by the fact that
our uncertainties are markedly smaller than those ob-
tained in the above mentioned studies, even though the
rate uncertainties are of similar magnitude.

We do remark that the obtained uncertainties in this
study are probably underestimated with regard to the
real uncertainties, as uncertainties in the model parame-
ters are not taken into account. A detailed investigation
including these uncertainties is beyond the scope of this
work, but would be highly desirable to pursue in the fu-
ture. We also note that experimental information for
neutron-rich nuclei, especially near the N = 126 closed
shell, would be extremely valuable to better constrain the
models in this mass region.
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Appendix A

Data tables: Experimental
Maxwellian-averaged cross

sections

Listed here are the tabulated Maxwellian-averaged cross section (MACS) data
calculated from the three experiments described in Papers I, IT and III, as plotted
in Figs. 6.1 and 6.3, complete with errors and TALYS uncertainties.

A.1 '2°Sb MACS
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Figure A.1: MACS of ?6Sh, normalized to the new recommended values. Similar

plot as for Fig. 6.1.

115



A. Data tables: Experimental Maxwellian-averaged cross sections
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T kgT | MACS Lower Upper TALYS TALYS
error  error unc. low unc. high
(GK) (keV) | (mb) (mb)  (mb)  (mb) (mb)
0.01  0.862 | 3842 3295 4464 1274 8478
0.06 431 1278 1087 1502 402 3175
0.10  8.62 858 725 1015 268 2238
0.15 12.9 696 584 829 218 1889
0.20 17.2 602 503 722 189 1699
0.25  21.5 538 446 648 169 1571
0.30  25.9 488 403 591 154 1471
0.40  34.5 412 338 504 130 1313
0.50  43.1 357 291 439 112 1189
0.60  51.7 315 256 390 98.5 1088
0.70  60.3 282 229 351 88.0 1004
0.80  68.9 256 207 319 79.6 933
0.90 T77.6 235 189 294 72.7 873
1.0 86.2 217 174 272 67.0 821
1.5 129 158 126 201 48.4 619
2.0 172 124 98.3 158 37.8 427
2.5 215 97.8 77.6 126 30.3 345
3.0 259 75.8 60.0 97.9 21.1 271
3.5 302 56.2 44.4 72.9 10.3 204
4.0 345 39.2 30.8 51.2 5.61 143
5.0 431 16.6 13.0 22.0 2.25 61.3
6.0 517 6.95 5.42 9.33 1.19 27.8
7.0 603 3.26 2.54 4.44 0.755 13.4
8.0 689 1.74 1.36 241 0.503 6.11
9.0 776 1.03 0.809  1.45 0.350 3.09
10.0 862 0.648 0.515  0.919  0.258 1.78

Table A.1: Calculated data for the 126Sb MACS as in Fig. 6.1.



165Ho MACS
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Figure A.2: MACS of '®°Ho, normalized to the new recommended values. Similar
plot as for Fig.
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A. Data tables: Experimental Maxwellian-averaged cross sections

T kgT | MACS Lower Upper TALYS TALYS
error  error unc. low unc. high

(GK) (keV) | (mb) (mb)  (mb)  (mb) (mb)
0.01  0.862 | 17244 14249 19149 8429 27746
0.06 4.31 5113 4201 5745 2567 9018
0.10  8.62 3160 2598 3556 1625 5668
0.15 12.9 2433 1999 2739 1267 4386
0.20 17.2 2044 1677 2302 1071 3697
0.25  21.5 1794 1471 2022 942 3321
0.30 259 1615 1322 1822 846 3053
0.40  34.5 1363 1113 1542 708 2659
0.50  43.1 1191 969 1350 612 2374
0.60  51.7 1063 864 1210 542 2156
0.70  60.3 965 783 1101 488 1989
0.80  68.9 887 717 1015 445 1857
0.90 T77.6 821 663 943 410 1747
1.0 86.2 765 617 882 380 1651
1.5 129 556 445 653 276 1288
2.0 172 390 308 468 208 1008
2.5 215 253 197 313 160 T
3.0 259 156 119 198 109 589
3.5 302 93.9 70.3 125 63.7 438
4.0 345 57.0 41.7 79.2 37.8 315
5.0 431 22.1 15.5 34.0 14.1 141
6.0 517 8.88 6.00 15.0 5.54 49.2
7.0 603 2.58 1.71 4.74 1.61 14.8
8.0 689 0.337 0.220 0.669  0.214 4.89
9.0 776 0.037 0.024  0.078  0.024 2.36
10.0 862 0.005 0.003  0.012  0.003 1.23

Table A.2: Calculated data for the 95Ho MACS as in Fig. 6.3(a).
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166Ho MACS
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Figure A.3: MACS of '°¢Ho, normalized to the new recommended values. Similar
plot as for Fig. 6.3(b). In the upper panel the values are normalized to the values
calculated with the K&D OMP model [122], while in the lower panel to the ones
calculated with the JLM OMP model [123].
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A. Data tables: Experimental Maxwellian-averaged cross sections

T kT MACS Lower Upper TALYS TALYS
error  error unc. low unc. high

(GK) (keV) | (mb) (mb)  (mb)  (mb) (mb)
0.01 743 22826 15290 27878 2161 35048
0.06 371 10406 7157 15359 1484 17718
0.10 743 6267 4267 9493 1151 10960
0.15 1114 | 4585 3122 6987 962 8085
0.20 1485 | 3690 2522 5617 838 6510
0.25 1856 | 3134 2153 4751 747 5512
0.30 2228 | 2750 1899 4147 675 4815
0.40 2970 | 2240 1560 3346 565 3889
0.50 3713 | 1906 1333 2826 481 3288
0.60 4456 | 1661 1163 2452 414 2856
0.70 5198 | 1467 1026 2163 358 2523
0.80 5941 1307 911 1926 312 2252
0.90 6683 | 1170 812 1727 273 2024
1.0 7426 | 1050 725 1555 239 1827
1.5 11139 | 632 425 955 126 1141
2.0 14852 | 396 260 613 69.7 753
2.5 18565 | 255 164 405 39.7 548
3.0 22278 | 167 104 272 23.3 412
3.5 25990 | 110 67.1 184 14.0 315
4.0 29703 | 72.6 43.3 125 8.79 238
5.0 37129 | 32.3 18.3 59.7 3.88 121
6.0 44555 | 13.4 7.18 26.4 1.77 49.4
7.0 51981 | 2.97 1.52 6.26 0.456 16.9
8.0 59407 | 0.312 0.153  0.701  0.056 5.36
9.0 66833 | 0.035 0.017  0.085  0.007 1.66
10.0 74258 | 0.005 0.002 0.014  0.001 0.703

Table A.3: Calculated data for the '**Ho MACS as in Fig. 6.3(b), using the
K&D OMP model [122].
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166Ho MACS

T kT MACS Lower Upper TALYS TALYS
error  error unc. low unc. high

(GK) (keV) | (mb) (mb)  (mb)  (mb) (mb)
0.01 743 3734 3327 3932 2161 35048
0.06 371 2439 2231 2610 1484 17718
0.10 743 2120 1887 2333 1151 10960
0.15 1114 | 1943 1689 2189 962 8085
0.20 1485 | 1817 1551 2087 838 6510
0.25 1856 | 1717 1443 2002 47 5512
0.30 2228 | 1627 1351 1921 675 4815
0.40 2970 | 1466 1193 1767 565 3889
0.50 3713 | 1324 1059 1621 481 3288
0.60 4456 | 1197 944 1487 414 2856
0.70 5198 | 1082 843 1362 358 2523
0.80 5941 | 978 753 1246 312 2252
0.90 6683 | 884 672 1137 273 2024
1.0 7426 | 797 600 1036 239 1827
1.5 11139 | 469 340 633 126 1141
2.0 14852 | 276 195 382 69.7 753
2.5 18565 | 164 114 232 39.7 548
3.0 22278 | 99.5 67.5 145 23.3 412
3.5 25990 | 61.8 40.8 93.1 14.0 315
4.0 29703 | 39.7 25.2 62.8 8.79 238
5.0 37129 | 18.1 10.5 32.3 3.88 121
6.0 44555 | 8.33 4.43 16.7 1.77 49.4
7.0 51981 | 2.11 1.04 4.74 0.456 16.9
8.0 59407 | 0.253 0.117  0.631  0.056 5.36
9.0 66833 | 0.032 0.014  0.091  0.007 1.66
10.0 74258 | 0.006 0.002 0.019  0.001 0.703

Table A.4: Calculated data for the '**Ho MACS as in Fig. 6.3(b), using the
JLM OMP model [123].
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