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Abstract

Independent data are efficiently integrated by adding their respective log-likelihoods. Instead
of Bayesian updating of information, we propose to use the likelihood directly as a vehicle for
coherent learning. 1If past data are summarised in a likelihood, it might be termed a prior
likelihood component when integrated with new data. In the frequentist tradition, statistical
reporting is often done in the format of confidence intervals. The confidence distribution, with
quantiles specifying all possible confidence intervals provides a more complete report than a
95% interval, say. The concept of confidence distribution is discussed, and a new version of the
Neyman—Pearson lemma is provided. Confidence distributions based on prior data represent
frequentist analogues to Bayesian priors. These confidence distributions need to be converted
to likelihoods before they can be integrated with the new data likelihood. This can be done
if their probability bases are reported. Confidence distributions resulting from the integrated
analysis, along with their probability bases, represent the frequentist analogue to the Bayesian
posterior distributions.

KEY WORDS: confidence distributions and densities, frequentist posteriors and priors, inte-
grating information, likelihood, Neyman—Pearson lemma, pivots, whales

1 Introduction

Classical statistics of the Fisher-Neyman breed has a tendency to focus on the new data in isolation.
Other sources of information about the parameters of the model might enter the analysis in the
format of structural assumptions in the model, possibly as restrictions on certain parameters, or
as hypotheses to be tested, etc. Coherent learning in the Bayesian sense of updating distributional
knowledge of a parameter in the light of new data has no parallel in the non-Bayesian likelihood-
or frequentist tradition. However, the likelihood function is the pre-eminent tool for integrating
diverse data, and provided the distributional information concerning a parameter has a likelihood
representation, it could simply be integrated with the likelihood of the new independent data by
multiplication.

In the purist likelihood tradition of Edwards (1992) and Royall (1997), the likelihood function
itgelf is the primitive. In this tradition, the likelihood function of the interest parameter is reported
and interpreted without recourse to confidence intervals, p-values or the like. The parallel to
Bayesian updating is thus straightforward. This process of updating a likelihood we term likelthood
updating. When the current knowledge of a parameter is represented by a likelihood function, this
likelihood is updated when combined with the likelihood of new data. The ratio between the
updated and the previous likelihood represents the new information.

The majority of statisticians and econometricians are frequentists. Their favourite format of

statistical reporting is the confidence interval, the p-values for certain hypotheses of interest, or



point estimates accompanied with measures of uncertainty like the standard error. The likelihood
function is, of course, a central concept in the frequentist tradition, but is mainly used as a
tool to obtain efficient statistics with (asymptotic) frequentist interpretations. Unfortunately, the
statistics reported by frequentist statisticians are seldom sufficient as input to likelihood updating.
To achieve this, the reported statistics have to be converted to a likelihood function.

We will mainly be concerned with the reporting of frequentist statistics related to a scalar pa-
rameter, and their conversion to a likelihood component. This does not preclude us from discussing
integrative likelihood analysis in multi-parameter models. As in many Bayesian situations, prior
information is assumed to come in independent packages, one for each one-dimensional parameter.
As the Bayesian, we will also assume that the prior information comes in the format of a distri-
bution. Instead of regarding the prior distribution as a probability distribution, we will, however,
assume that the distribution represents confidence intervals by its quantiles. Such distributions
are called confidence distributions, and are studied in some detail in Section 2.

First we dwell on the distinction between confidence distributions and probability distribu-
tions. The well-known duality between hypothesis testing and confidence intervals emerges as a
relationship between the p-value for a sequence of tests and the cumulative confidence distribution
function. In Section 3 a version of the Neyman—Pearson lemma is provided, explaining the frequen-
tist optimality of the confidence distribution in one-parameter models with monotone likelihood
ratio. This also leads to optimal constructions of confidence distributions in parametric families
of the exponential kind, via conditioning on ancillary statistics. These confidence distributions
become uniformly most reliable in a sense made precise in Section 3.

We hold that for parameters of primary interest the complete confidence distribution should
be reported, not only a pair of quantiles like the endpoints of the 95% confidence interval. We
argue in particular that reporting the confidence density for interest parameters, the derivative
of the cumulative confidence distribution, is an effective way of summarising results from statis-
tical analyses of data, both presentationally and inferentially. This post-data parameter density
curve shares some of the features and appealing aspects of the Bayesian posterior, but is purely
frequentistic, and should also be non-controversial conceptually.

It is desirable to develop methods for obtaining approximate confidence distributions in sit-
uations where exact constructions either become too intricate or do not exist. In Section 4 we
discuss various approximations, the simplest of which being based on the traditional delta method
for asymptotic normality. Better versions emerge via corrections of various sorts. In particular we
develop an acceleration and bias corrected bootstrap percentile interval method for constructing
improved confidence densities. It has an appealing form and is seen to perform well in terms of
accuracy.

For large samples, the asymptotic normality of regular statistics allows the confidence distri-
bution to be turned into a likelihood function through its normal scores. This likelihood, called
the normal-based likelihood, agrees with the so-called implied likelihood of Efron (1993). However,
if the information content in the data is of small to moderate weight, the normal-based likelihood
might be misleading. An example is provided in Section 5 to show that a given confidence distri-
bution might relate to many different likelihood functions, dependent on the sampling situation
behind the confidence distribution. For this reason 1t is advisable to supplement the reported
confidence distribution with sufficient information concerning its probability basis to enable future
readers to recover an acceptable likelihood function related to the confidence distribution.

Section 6 develops theory for confidence and likelihoods in models with exact or approximate
pivots, while Section 7 considers ways of bootstrapping a given confidence distributions. An

illustration is given for the problem of assessing the stock of bowhead whales outside Alaska.



Finally supplementing remarks and discussion are found in Section 8.

There is considerable current interest in building principles for and evaluating applications
of combining different information sources in nontrivial situations. Application areas range from
economics to assessments of whale stocks. Schweder and Hjort (1997) introduced likelihood syn-
thesis to counter problems encountered with earlier attempts at Bayesian synthesis, and reviewed
part of the literature. Recent articles on this theme include Berger, Liseo and Wolpert (1998) on
eliminating nuisance parameters via integrated likelihoods as well as Poole and Raftery (1998) on
‘Bayesian melding’; see also comments in Sections 7 and 8 below. Some discussion of bootstrap
likelihoods and likelihoods based on confidence sets can be found in Davison and Hinkley (1997,
Ch. 10).

2 Confidence distributions

Before relating confidence distributions to likelihoods, it is worthwhile having a closer look at the

concept as a format of reporting statistical inference.

2.1 Confidence and statistical inference

Our context is a parametric model with an interest parameter ¢ for which inference is sought.
The interest parameter is assumed to be scalar, and to belong to a finite or infinite interval on the
real line. The space of the parameter is thus linearly ordered. With inference we shall understand
statements of the type ‘@b > g’, ‘1 < b < 1bs’, etc., where g, 1)1 etc. are values usually computed
from the data. To each statement, we would like to associate how much confidence the data allow
us to have in the statement.

As the name indicates, the confidence distribution is related to confidence intervals, which are
interval statements with the confidence fixed ex ante, and with endpoints calculated from the data.
A one-sided confidence interval with (degree of) confidence 1 —a has right endpoint the correspond-
ing quantile of the confidence distribution. If C'is the cumulative confidence distribution calculated
from the data, the left-sided confidence interval is (—oo, C~1(1 — a)). A right-sided confidence in-
terval (C~1(a), o0) has confidence 1 —«, and a two-sided confidence interval [C~!(a), C~1(3)] has
confidence [ — . Two-sided confidence intervals are usually equitailed in the sense that o = 1— .

Hypothesis testing and confidence intervals are closely related. Omitting the instructive proof,

this relation is stated in the following lemma.

Lemma 1 The confidence of the statement ‘@b < o’ is the cumulative confidence distribution

function value C'(1y), and is equal to the p-value of a test of Hy: ¢ < 1y versus the alternative
Hy: ’l/) > ’l/)o.

The opposite statement ‘@b > 1)y’ has confidence 1—C'(4g). Usually, the confidence distributions
are continuous, and ‘@) > 1y’ has the same confidence as ‘@b > y’.

Some care is needed when calculating and interpreting the confidence for statements deter-
mined ez ante. When 1 is fixed, the statement ‘¢ # ¢’ should, preferably, have confidence given
by one minus the p-value when testing Hy: v = ¢y. This can be calculated from the observed
confidence distribution, and is 1 — 2min{C(¢),1 — C(tg)}. Tt is, however, hard to see how g
could be calculated ez post making the statement ‘¢b # ¢’ have any non-trivial confidence fixed
in advance.

Confidence intervals are invariant w.r.t. monotone transformations. This is also the case for

confidence distributions.



Lemma 2 Confidence distributions based essentially on the same statistic are invariant with re-
spect to monotone continuous transformations of the parameter: If p = (1)), say, with r increasing,

and if C¥ is based on T while C* is based on S = s(T) where s is monotone, then
C?(p) = C¥(r~"(p)).

To a large extent statistical inference 1s being carried out as follows. From optimality or
structural considerations, an estimator of the parameter of interest, and possibly of the remaining
(nuisance) parameters in the model, is determined. Then, the sampling distribution of the esti-
mator 1s calculated, possibly by bootstrapping. Finally, statements of inference, e.g. confidence
intervals, are extracted from the sampling distribution and its dependence on the parameter.

A sharp distinction should be drawn between the (estimated) sampling distribution and the
confidence distribution. The sampling distribution of the estimator is the ex ante probability
distribution of the statistic under repeated sampling, while the confidence distribution is calculated
er post and distributes the confidence the observed data allow to be associated with different
statements concerning the parameter. Consider the estimated sampling distribution of the point
estimator 12, say as obtained from the parametric bootstrap. If ¥* is a random estimate of

obtained by the same method, the estimated sampling distribution is the familiar
S(w) = Pr{g* < | ¥} = Fy(w).

The confidence distribution is also obtained by (theoretically) drawing repeated samples, but
now from different distributions. The interest parameter is, for the confidence distribution, con-
sidered a control variable, and it is varied in a systematic way. When 1Z is a reasonable statistic
and the hypothesis Hy: ¢ < 1)y is suspect when 1Z is large, the p-value is Pr{¢* > 1Z | ¥0}. The

cumulative confidence distribution is then
C() = Pr{e” > ¢ | ¢} = 1= Fy(). (1)

The sampling distribution and the confidence distribution are fundamentally different entities.
The sampling distribution is a probability distribution, while the confidence distribution, ez post,
is not a distribution of probabilities but of confidence — obtained from the probability transform
of the statistic used in the analysis.

The confidence densities we deduce or approximate in the following would presumably be
equivalent to the infamous fiducial distributions in the sense of Fisher, at least in cases where Fisher
would have considered the mechanism behind the confidence limits to be inferentially correct; see
the discussion in Efron (1998, Section 8). In view of old and on-going controversies and confusion
surrounding this theme of Fisher, and the fact that such fiducial distributions sometimes have been
put forward in ad hoc fashions and with vague interpretation, we emphasise that our distributions
of confidence are actually derived from certain principles in a rigorous framework, and with a clear
interpretation. Our work can perhaps be seen as being in the spirit of Neyman (1941). We share
the view expressed in Lehmann (1993) that the distiction between the Fisherian and the Neyman—
Pearson tradition i1s unfortunate. The unity of the two traditions is illustrated by our version of
the Neyman—Pearson lemma as it applies to Fisher’s fiducial distribution (confidence distribution).
Note also that we in Section 3, in particular, work towards establishing confidence distributions
that are inferentially correct.

Example 1. Consider the exponentially distributed variate 7" with probability density
F)¥) = (1/¢)exp(—=t/v). The cumulative confidence distribution function for ¢ is C'(¢ |¢) =
exp(—t/1). The confidence density is thus ¢(¢ |t) = (d/dy)C(¢ | t) = ty=2 exp(—t/1), which not



only has a completely different interpretation from the sampling density of the maximum likelihood

estimator, T, but also has a different shape. m

Example 2. Suppose the ratio ¥y = 05/01 between standard deviation parameters from two
different data sets are of interest, where independent estimates of the familiar form 3? = 0']2» W;/v;
are available, where W; is a Xlz,j. The canonical intervals, from inverting the optimal tests for

single-point hypotheses ¥ = 1, take the form
[/ K1 =)' /K ()7,

where 1Z =09/01 and K = K, ,, is the distribution function for the F statistic (W5 /vs)/(W1/11).
Thus C~'(a) = /K~'(1 — a)'/2. This corresponds to the confidence distribution function
C(¢|data) = 1 — K (2 /4?), with confidence density

c(v | data) = k(4? /4?)20° 42,

expressed in terms of the F' density & = k,,,,. See also Section 3.2 for an optimality result
of the confidence density used here, and Section 4.3 for a very good approximation based on

bootstrapping. m

The calculation of the confidence distribution is easy when a pivot statistic for ¢ is available.
The random variable piv(X, ) is a pivot (Barndorff-Nielsen and Cox, 1994) in a model with
nuisance parameter x and data X if the probability distribution of piv(X, ) is the same for all
(¢, x), and, secondly, the function piv(z, ¢) is monotone and increasing in ¢ for almost all .

When the confidence distribution is based on a pivot, and F' is the cumulative distribution

function of the pivot, the confidence distribution 1is
C(¥) = F(piv(X, ¢)). (2)

This can also be turned around. Tf, in fact, C'(¢; X') is a cumulative confidence distribution based
on data X, then it is a pivot since at i it is uniformly distributed. Thus, a confidence distribution
based on a sufficient statistic exists if and only if there is a pivot based on the sufficient statistic.
And the cumulative confidence distribution function is simply the probability transform of the

pivot.

2.2 Linear regression

In the linear normal model, the n-dimensional data Y of the response is assumed N(X 3, 0?1).
With ssr being the residual sum of squares and with p = rank(X), S? = ssrR/(n — p) is the
traditional estimate of the residual variance. With S]Z being the mean-unbiased estimator of the

variance of the regression coefficient estimator (;,

o~

Vi = (8 — B;)/S;

is a pivot with a ¢-distribution of v = n — p degrees of freedom. Letting ¢, () be the quantiles of
this ¢-distribution, the confidence quantiles for 3; are the familiar 8; + ¢, («)S;. The cumulative

confidence distribution function for §; is seen from this to become
C(P; |data) = 1= Gu((8; — 85)/S;) = Gu((B; = B)/55),

where (G, is the cumulative ¢-distribution with v degrees of freedom. Note also that the confidence

density ¢(f; | data) is the t,-density centred at Bj and with the appropriate scale.



Now turn attention to the case where o, the residual standard deviation, is the parameter of
interest. Then the pivot ssR/o? = v5?/0? is a x2, and the cumulative confidence distribution is
found to be

C(o|data) = Pr{x2 > ssr/c?} = 1 =T, (vS?/o?),

where T', is the cumulative distribution function of the chi-square with density +,,. The confidence

density becomes

1/52) 2wS5? Sv

_ —(v+1 1 2 2
e T G

c(o | data) =4, (0_—2
which again is different from the likelihood. The likelihood, for the ssr part of the data, is the
density of ssrR = %2, which is proportional to

L(c) = 07" exp(—3v5%/0?).

Taking logarithms, the pivot is brought on an additive scale, log.S — log e, and in the parameter
7 = log o the confidence density is proportional to the likelihood. The log-likelihood also has a

nicer shape in 7 than in o, where it is less neatly peaked.

2.3 Ratio parameters and the Fieller solution

Ericsson, Jansen, Kerbesian and Nymoen (1998) discuss the empirical basis for the weights in
monetary conditions indices, Mc1. With R being the interest rate and e the exchange rate, Mc1 =
(R — Ro) + (e — €p). The relative weight of the interest rate, ¢, is estimated as the ratio of two
regression coefficients, 1Z = Bl /BZ in a linear regression. Both regression parameters are assumed
non-negative, and thus, 0 < ¢ < co. For Norway, Ericsson et al. (1998) found [0, oo] as the 95%
confidence interval for ¢, and for the United States [—co, c0], since the point estimate is negative.
It is an embarrassing conceptual problem to have a 95% confidence interval covering the whole
range of the parameter, which certainly should have had confidence 100% and not 95%. This is
known as the Fieller-Cressy problem, see e.g. Koschat (1987) and Dufour (1997).

Assume (Bl, Bz)tr to be N((B1, 42)", ¥), with ¥ = 0?3 estimated at df degrees of freedom.
A confidence distribution for the quotient ¥ = B; /32 is found from inverting the normal test of
Hy: o = ipg versus Hy: 1) > 9. The hypothesis is first reformulated to Hg: 81 — 1082 = 0, and the
resulting p-value and cumulative confidence distribution function is that of Fieller (1940, 1953);
%) - oR) = (L)1)

Again, Ggr is the cumulative ¢-distribution function with df degrees of freedom.

C() = Gar (

Now, the Fieller test statistic 1s Bl — 1/)032 and orders data differently from the more natural
test statistic |1Z— ¥g|. One might therefore suspect that something is lost by the Fieller solution.
However, Koschat (1987) found that no reasonable method other than the Fieller solution provides
confidence intervals with exact coverage probabilities when ¥y = 7. This was shown for the angle
related to the ratio. Consequently, if something is to be gained in power by another ordering of
data sets, it must be at the price of only obtaining approximate null behavior.

In polar coordinates, the angle is 6 = tan—!(¢/) and the radial distance § = (3} 4+ 43)/?, with

empirical counterparts 6 and 3. The Fieller confidence quantile function is

00+ 71'/2. L ?f(i<ft’ 3)
arcsin(at/§) if & > o,



where ¢ is the appropriate quantile from the ¢-distribution with df degrees of freedom. When o
is known, df = oo, which 1s the case we look at first. This formulation of the Fieller confidence
distribution is given by Koschat (1987).

With support on (0, 7/2) the confidence distribution for # could be transformed to a confidence
distribution for ¢ = tan(f) since the tan function is monotonously increasing over the first quarter
sector. However, the confidence distribution for § will have support outside (0,7/2), and the
discontinuity of the tan function at § = 7/2 is an obstacle for the confidence distribution for .
Invoking the restriction 0 < ¢ < oo, the confidence distribution for 1) based on the Fieller solution

has mass less than 1 on the interior of its range, (0, 00) and point-mass at the boundary points.

3 Confidence level and confidence reliability

Let C(%) be the cumulative confidence distribution. The intended interpretation of C' is that
its quantiles are endpoints of confidence intervals. For these intervals to have correct coverage
probabilities, the cumulative confidence at the true value of the parameter must have a uniformly
probability distribution. This is an ez ante statement. Before the data have been gathered, the

confidence distribution is a stochastic element and C'(¢true) is a random variable. Tf
Pry{C(¥) <e}=c¢ for0<e<1, (4)

assuming the probability distribution to be continuous, the coverage probability of (—co, C~1(a)]

Pry{y <C7N(a)} = o,

which conventionally is called the confidence level of the interval. The confidence distribution is
exact if (4) holds exactly, and thus the coverage probability of a confidence interval obtained from
C equals the nominal confidence level.

Confidence distributions provide point estimates, the most natural being the confidence me-
dian, 1Z = C71(0.5). When the confidence distribution is exact, this point estimator is median-
unbiased. This property is kept under monotone transformations of the parameter.

The choice of statistic on which to base the confidence distribution is unambiguous only in
simple cases. Barndorff-Nielsen and Cox (1994) are in agreement with Fisher when emphasising
the structure of the model and the data as a basis for choosing the statistic. They are primarily
interested in the logic of statistical inference. In the tradition of Neyman and Wald, emphasis
have been on inductive behaviour, and the goal has been to find methods with optimal frequentist
properties. In nice models like exponential familiesit turns out that methods favoured on structural
and logical grounds also are favoured on grounds of optimality. This agreement between the
Fisherian and Neyman—Wald schools is encouraging and helps to reduce the distinction between
the two schools. This core of statistical theory needs to be reformulated in terms of confidence

distributions.

3.1 Reliability and power

A method is reliable when it leads to similar conclusions for repeated samples. The more reliable,
the less variability in results. A method that is both exact and reliable gives results that vary
little, and which are centred at the truth. A cumulative confidence distribution is monotone: at

¥ > Yirue, one should have C(¢) > C(¢true), etc. When C'is exact, C'(¢true) ~ U (uniform on
the unit interval), and above the true value, C'(¢) must be stochastically larger than U (have



cumulative distribution function less than that of U). Since 1 > C(4), the more the ex ante
probability distribution of C(4) is shifted towards its upper limit, the less variability it has in
repeated samples. For ¢ < tirue, it is desirable to have the probability distribution of C'(v)
concentrated as much as possible towards low values.

The tighter the confidence intervals are, the better, provided they have the claimed confidence.
FEz post, it 1s thus desirable to have as little spread in the confidence distribution as possible.
Standard deviation, inter-quantile difference or other measures of spread could be used to rank
methods with respect to their discriminatory power. The properties of a method must be assessed
er ante, and it is thus the probability distribution of a chosen measure of spread that would be
relevant. The assessment of the information content in a given body of data is, however, another
matter, and must clearly be discussed ez post.

In the standard Neyman—Pearson theory, the focus is on spread-measures of the indicator
type, T'(t) = T(t > ta1) etc. When testing Hg: ¢ = g versus Hi: ¢ > g, one rejects at level
a if C(o) < a. The power of the test is Pr{C(¢g) < o} evaluated at a point 41 > 1b5. Cast in
terms of p-values, the power distribution is the distribution at ¢ of the p-value C'(¢g). The basis

for test-optimality is monotonicity in the likelihood ratio based on a sufficient statistic, .,
LR(¢1,19;S) = L(w2;S)/L(¢1; S) is increasing in S for ¢a > 1. (5)
From Schweder (1988) we have the following.

Lemma 3 (Neyman—Pearson for p-values) Let S be a one-dimensional sufficient statistic with
increasing likelihood ratio whenever 1, < 5. Let the cumulative confidence distribution based on
S be C° and that based on another statistic T be C'T. In this situation, the cumulative confidence
distributions are stochastically ordered:
ST () ST (¥)
C¥(wo) > CT(wo) at ¥ >do and  C%(wo) < CT (o) at ¥ < do.

Now, every natural measure of spread in C' around the true value of the parameter, 1, can
be expressed as a functional v(C') = ffooo T (¢ — ¢o) C(de), where T(0) = 0, T' is non-increasing to
the left of zero, and non-decreasing to the right. Here T'(¢) = fot y(du) is the integral of a signed
measure 7.

Agree to say that a confidence distribution C*° is uniformly more reliable in expectation than

cT if
By, v(CF) < By, y(CT)

holds for all spread-functionals v and at all parameter values 1. With this definition, the Neyman—

Pearson lemma yields the following.

Proposition 4 (Neyman—Pearson for mean-reliability) If S is a sufficient one-dimensional
statistic and the likelihood ratio (5) is increasing in S whenever i1 < 2, then the confidence

distribution based on S is uniformly most reliable in expectation.

Proof. By partial integration,

)= [ Ctw ) (= + T = O + o)) 1(dv). (6)

By the Neyman—Pearson lemma, EC*® (¢ +0) < ECT (¥ +0) for ¢ < 0 while E(1—C* (v +1)0)) <
E(1 — CT () 4 )g)) for ¢ > 0. Consequently, since both (—v)(d+) and ~(d) > 0,

Ey,v(C*) < Ey,y(CT).



This relation holds for all such spread measures that have finite integral, and for all reference values

g. Hence C*° is uniformly more reliable than any other confidence distribution. m

The Neyman—Pearson argument for confidence distributions can be strengthened. Say that a
confidence distribution C'¥ is uniformly most reliable if, ez ante, v(C®) is stochastically less than
or equal to v(CT) for all other statistics, T', for all spread-functionals v, and with respect to the

probability distribution at all values of the true parameter .

Proposition 5 (Neyman—Pearson for confidence distributions) If S is a sufficient one-di-
mensional statistic and the likelihood ratio (5) is increasing in S whenever ; < 1, then the

confidence distribution based on S is uniformly most reliable.

Proof. Let S be probability transformed to be uniformly distributed at the true value of the
parameter, set at o = 0 for simplicity. Write LR(t0,%;S) = LR(¢;S). By conditioning, and
using the sufficiency of S, CT () = 1 =Ey Fo(T | S) = 1 = Eq [Fo(T | S)LR(%;.5)]. Thus, from (6),

0

() =B 1= Rl 5) [

— 00

LR(6; ) (—7)(d1/))] L F, [F0<T 5[ LR 8) v(dy)

provided these integrals exist. Now, from the sign of 4 and from the monotonicity of the likelihood
ratio, h-(S) = [°_ LR(¥;S)(—v)(de) is decreasing in S while hy(S) = [°_ TR(¢;S)y(de) is

increasing in S. The functions ¢_ and ¢4 of S that stochastically minimise

Eo{o-(S5)h-(S5) + ¢4 (S)h+ (5)}

under the constraint that both ¢_(S) and ¢4 (S) are uniformly distributed at g = 0, are ¢_(S) =
1 =S and ¢4 (S) = S. This choice corresponds to the confidence distribution based on .S, and we
conclude that v(C*) is stochastically no greater than y(C7). m

3.2 Uniformly most powerful reliability for exponential families

Conditional tests often have good power properties in situations with nuisance parameters. In
the exponential class of models it turns out that valid confidence distributions must be based on
the conditional distribution of the statistic which is sufficient for the interest parameter, given
the remaining statistics informative for the nuisance parameters. That conditional tests are most
powerful among power-unbiased tests is well known, see e.g. Lehmann (1959). There are also other
broad lines of arguments leading to constructions of conditional tests, see e.g. Barndorff-Nielsen
and Cox (1994). Presently we indicate how and why also the most reliable confidence distributions

are of such conditional nature.

Proposition 6 Let ¢ be the scalar parameter and x the nuisance parameter vector in an expo-

nential model, with density of the form

p(x) = exp{¥S(x) + x1A1(2) + -+ xpAp(x) = k(¥ x1, - xp) }

with respect to a fixed measure, for data vector x in a sample space region not dependent upon the
parameters. Assume (¢, x) is contained in an open (p + 1)-dimensional parameter set. Then, for
1 and hence for all monotone transforms of v, there exist exactly valid confidence distributions,

and the uniformly most reliable of these takes the conditional form

CS|A(1/)) = Prlﬂ,X{S > Sobs |A = Aobs}~

Here Syps and Aqps denote the observed values of S and A.



Strictly speaking the above formula holds in the case of continuous distributions; a minor
discontinuity correction amendment is called for in case of a discrete distribution.

The proof of this proposition, along with extensions and applications, as well as considerations
of equivariance optimality, will appear elsewhere. One key ingredient here is that A is a sufficient
and complete statistic for xy when 1 = 1 is fixed. Note that the distribution of .S given A = Ay
depends on ¢ but not on x1,..., xp.

Example 3. Consider pairs (X;,Y;) of independent Poisson variables, where X; and Y; have
parameters A; and A;1), for j = 1,...,m. The likelihood is proportional to

eXp{Z yjlog v + ) (zj +y;)log Aj}
Jj=1 Jj=1

Write S = Z;n:l Y; and A; = X; +Y;. Then Ay,..., A, become sufficient and complete for the
nuisance parameters when ¢ is fixed. Also, Y; | A; is a binomial (A4;, /(1 + ¢)). It follows from
the proposition above that the uniformly most reliable confidence distribution, used here with a

half-correction for discreteness, takes the simple form

CS|A(1/)) = PI'¢{S > Sobs |A1,obsa s aAm,obs} + %Pw{S = Sobs |A1,obSa s aAm,obs}
= Y 1y = Y

A'o Sy 7 5b obs A'o sy 7,
2 e Tg) + b (s 2 e )

where Bin(-|n,p) and bin(-|n,p) are the cumulative and pointwise distribution functions for the

—1— Bin (Sobs

binomial. m

4 Approximate confidence distributions

Uniformly most reliable exact inference is only possible in nice models. In a wider class of models,
exact confidence distributions are available. The estimate of location based on the Wilcoxon
statistic 1s for example exact in the location model where only symmetry is assumed. In more
complex models, the statistic upon which to base the confidence distribution might be chosen
on various grounds: the structure of the likelihood function, perceived robustness, asymptotic
properties, computational feasibility, perspective and tradition of the study. In the given model,
with finite data, it might be difficult to obtain an exact confidence distribution based on the chosen
statistic. There are, however, various techniques available to obtain approximate confidence.
Bootstrapping, simulation and asymptotics are useful tools in calculating approximate con-
fidence distributions and in characterising their power properties. When an estimator, often the
maximum likelihood estimator of the interest parameter, is used as the statistic on which the con-
fidence distribution is based, bootstrapping provides an estimate of the sampling distribution of
the statistic. This empirical sampling distribution can be turned into an approximate confidence
distribution in several ways. The simplest and most widely used method of obtaining approxi-
mate confidence intervals is the delta method. This will lead to first order accuracy properties in
smooth models. A more refined method to obtain confidence distributions is via acceleration and
bias corrections on bootstrap distributions, as developed below. This method, along with several

other venues for refinement, will usually provide second order accuracy properties.

4.1 The delta method

In a sample of size n, let the estimator HAn have an approximate multinormal distribution centred
at @ and with covariance matrix of the form S, /n, so that \/ﬁSﬁl/z(ﬁn —0) =4 N(0,7). By the
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delta method, the confidence distribution for a parameter ¥ = p(f) is based on linearising p at a,

and yields

Caetta () = B(( — ©) /) (7)

in terms of the cumulative standard normal. The variance estimate is 72 = §'*S,§/n where g

is the gradient of p evaluated at 0. Again, this estimate of the confidence distribution is to be
displayed post data with 1 equal to its observed value ¥ops.
This confidence distribution is known to be first order unbiased under weak conditions. That

Clelta(t0) is first order unbiased means that the coverage probabilities converge at the rate n_l/z,

1/2 pate. Note

or that Cyerta(tirue) converges in distribution to the uniform distribution at the n
also that the confidence density as estimated via the delta method, say cgeita(?), is simply the

normal density N(@, c2).

4.2 The t-bootstrap method

For a suitable monotone transformation of ¢ and 12 toy = h(y) and § = h(@)’ suppose
t=(§ —%)/7 is an approximate pivot, (8)

where T is proportional to an estimate of the standard deviation of 4. Let R be the distribution
function of ¢, by assumption approximately independent of underlying parameters (¢, x). The
canonical confidence intervals for 4 then take the form 5 — R=}(1 — )7 < v < 7+ R~ (a)7, which

backtransform to intervals for 1, with

C™Ha)=h"' (37— R7'(1 — a)7).

o~

Solving for a leads to the confidence distribution C'(¢) = 1—R((h(v)—h(1))/7T), with appropriate
confidence density e(¢) = C’(¢). Now R would often be unknown, but the situation is saved
via bootstrapping. Let 3* = h(a*) and 7* be the result of parametric bootstrapping from the
estimated model. Then the R distribution can be estimated arbitrarily well as E, say, obtained
via bootstrapped values of t* = (¥* —%)/7*. The confidence distribution reported is then as above
but with R replacing R:

Civoot () = 1 = R((A(%) — h(1))/7). 9)

This t-bootstrap method applies even when f is not a perfect pivot, but is especially successful
when it is, since t* then has exactly the same distribution R as ¢. Note that the method auto-
matically takes care of bias and asymmetry in R, and that it therefore aims at being more precise
than the delta method above, which corresponds to zero bias and a normal R. The problem is
that an educated guess is required for a successful pivotal transformation h, and that the interval
is not invariant under monotone transformations. The following method is not hampered by these

shortcomings.

4.3 The acceleration and bias corrected bootstrap method

Efron (1987) introduced acceleration and bias corrected bootstrap percentile intervals, and showed
that these have several desirable aspects regarding accuracy and parameter invariance. Here we
will exploit some of these ideas, but ‘turn them around’ to construct accurate bootstrap-based

approximations to confidence distributions.
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Suppose that on some transformed scale, from ¢ and 1Z to vy = h(¢) and ¥ = h(@), one has

(Y =)/(1 +ay) ~N(=b, 1) (10)

to a very good approximation, for suitable constants a (for acceleration) and b (for bias). Both
population parameters a and b tend to be small, as further commented upon below. Assumption
(10) can be written ¥ — v = (1 + av)(Z — b), where 7 is standard normal. This leads to

1+ ad = (14 ay)(1 +a(Z - b))

and a canonically correct interval for v, and hence v, as explained in a minute. The essentials of
the arguments below are that (10) describes a pivotal model on a transformed scale and that the
apparatus already established for deriving confidence distributions from pivots becomes applicable
via the transformation lemma of Section 2 in conjunction with bootstrapping. We include a little
more detail, however, to pinpoint the roles of various ingredients.

Start with 2(®) < 7 < 2(1=%) the symmetric interval including Z with probability 1 — 2a,
writing z(¢) for ®=1(¢). This leads after some algebra to

RN Cil) (A= )
h (1+a(z(1—0<)—b))§1/)§h (1+a(z(0<)—b))'

Writing this interval as [C~!(a),C~1(1 — )] and solving C~1(«) = 3 for o gives the confidence

distribution

_(D(h(w)—h(@) ).

cw) = o (S (1)

This constitutes a good approximation to the real confidence distribution, say Cexact(%), under
assumption (10). But it requires h to be known, as well as values of a and b.

To come around this, look at bootstrapped versions ¥* = h(¢*) from the estimated parametric

model. Tf assumption (10) holds uniformly in a neighbourhood of the true parameters, then also
(7" =7)/(1 + a7) | data ~ N(=b, 1)

with good precision. Hence the bootstrap distribution may be expressed as

Gy = Profd” <0} = Prf” < b)) = o (H0 =0 ).

It follows, again after some algebra, that the lower endpoint in the interval for ¢ above satisfies

Z1=a) )

G (tow) = <I>(b 1+ a(z0-9) —b)

and similarly for é(d)up). This gives firstly the so-called BC, intervals of Efron (1987), say
[é_l(a), 6"1(1 — «)], applying the G~ transformation here. Secondly it gives us an acceleration
and bias corrected approximation to the confidence distribution found in (11), through solving
é_l(a) = 4 for a. The result is the abce formula

o _ >N AW)—b
Core¥) = ¥ @iy =5 ) "

Note that an approximation cape(®) to the confidence density emerges too, by evaluating the

derivative of éabc. This may sometimes be done analytically, in cases where 6(1/)) can be found in

a closed form, or may be carried out numerically.
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It remains to specify @ and b. The bias parameter b is found from é(@) = ®(b). The
acceleration parameter a 1s found as a = %skew, where there are several ways in which to calculate
or approximate the skewness parameter in question. Extensive discussions may be found in Efron
(1987), Efron and Tibshirani (1993, Chs. 14 and 22) and in Davison and Hinkley (1997, Ch. 5).
One option is via the jackknife method, which gives parameter estimates 12(2') computed by leaving

out data point ¢, and use
a= (6\/5)_1skew{1z(.) — 12(1), R ,15(.) — 12(”)}

Here HA(.) is the mean of the n jackknife estimates. Another option for parametric families is
to compute the skewness of the logarithmic derivative of the likelihood, at the parameter point
estimate, inside the least favourable parametric subfamily; see again Efron (1987) for more details.

Note that when a and b are close to zero, the abc confidence distribution becomes identical to
the bootstrap distribution itself. In typical setups, both a and b will in fact go to zero with speed
of order 1/4/n in terms of sample size n. Thus (12) provides a second order non-linear correction

of shift and scale to the immediate bootstrap distribution.

Example 4. Consider again the parameter iy = o5/0y of Example 2. The exact confidence
distribution was derived there, and is equal to C'(¢) = 1 — [((122/1/)2)’ with K = K,, ,,,. We shall
see how successful the abc apparatus is for approximating the C'(¢) and its confidence density
e(y). R

In this situation, bootstrapping from the estimated parametric model leads to ¢* = 7% /57
of the form @Fl/z, where F' has degrees of freedom v and v;. Hence the bootstrap distribution
is é(t) = K(tz/iz), and é(@) = K(1) = ®(b) determines b. The acceleration constant can be
computed exactly by looking at the log-derivative of the density 1?, which from 1Z = F1/? is equal
to p(r,¥) = k(r?/¢?)2r /3. With a little work the log-derivative can be expressed as

1 (o /)02 /02 i+ V2
E{_Vz + (V1 +12) 1+ (1/2/1/1)122/1/)2} B {Beta(%yz’ 1) = v+ 12 }

Calculating the three first moments of the Beta gives a formula for its skewness and hence for a.

(Using the jackknife formula above, or relatives directly based on simulated bootstrap estimates,
obviates the need for algebraic derivations, but would give a good approximation only to the a
parameter for which we here found the exact value.)

Trying out the abc machinery shows that éabc(1/)) is amazingly close to C(¢), even when the
degrees of freedom numbers are low and imbalanced; the agreement is even more perfect when v
and vy are more balanced or when they become larger. The same holds for the densities Cape (1))

and ¢(¢); see Figure 1. m

4.4 Discussion

The delta method and the abc method remove bias by transforming the quantile function of the
otherwise biased normal confidence distribution, ®(¢ — 1?) The delta method simply corrects the
scale of the quantile function, while the abc method applies a shift and a non-linear scale change to
remove bias both due to the non-linearity in v as a function of the basic parameter ¢ as well as the
effect on the asymptotic variance when the basic parameter 1s changed. The t-bootstrap method
would have good theoretical properties in cases where the 12 estimator is a smooth function of
sample averages, but has a couple of drawbacks compared to the abc method. It is for example not
invariant under monotone transformations. Theorems delineating suitable second-order correctness

aspects of both the abc and the t-bootstrap methods above can be formulated and proved, with
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FIGURE 1: True confidence density along with abc-estimated version of it, for parameter ¢ = o5/
with 4 and 9 degrees of freedom. The parameter estimate in this illustration is ¥y = 2.00. The
agreement 1s even better when vy and v5 are closer or when they are larger.

necessary assumptions having to do with the quality of approximations involved in (8) and (10).
Methods of proof would for example involve Edgeworth or Cornish—Fisher expansion arguments.
Such could also be used to add corrections to the delta method (7).

Some asymptotic methods of debiasing an approximate confidence distribution involves a
transformation of the confidence itself and not its quantile function. From a strict mathematical
point of view there is of course no difference between acting on the quantiles or the confidence.
But methods like the abc method above are most naturally viewed as a transformation of the
confidence for each given value of the parameter.

There are still other methods of theoretical and practical interest for computing approximate
confidence distributions, cf. the broad literature on constructing accurate confidence intervals.
One approach would be via analytic approximations to the endpoints of the abc interval, under
suitable assumptions; the arguments would be akin to those found in DiCiccio and Efron (1996)
and Davison and Hinkley (1997, Ch. 5) regarding ‘approximate bootstrap confidence intervals’.
Another approach would be via modified profile likelihoods, following work by Barndorff-Nielsen
and others; see Barndorff-Nielsen and Cox (1994, Chs. 6 and 7) and Barndorff-Nielsen and Wood
(1998). Clearly more work and further illustrations are needed to better sort out which methods
have the best potential for accuracy and transparency in different situations. At any rate the abc

method (12) appears quite generally useful and precise.

5 Likelihood related to confidence distributions

To combine past reported data with new data, and also for other purposes, it is advantageous to
recover a likelihood function or an approximation thereof from the available statistics summarising

the past data. The question we ask is whether an acceptable likelihood function can be recovered
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from a published confidence distribution, and if this is answered in the negative, how much addi-
tional information is needed to obtain a usable likelihood. An example will show that a confidence
distribution is in itself not sufficient to determine the likelihood of the reduced data, T, summarised
by C'. A given confidence distribution could, in fact, result from many different probability models,
each with a specific likelihood.

Frequentist statisticians have discussed at length how to obtain confidence distributions for
one-dimensional interest parameters from the likelihood of the data in view of its probability basis.
Barndorff-Nielsen and Cox (1994) discuss adjusted likelihoods and other modified likelihoods based
on saddle-point approximations, like the *. Efron and Tibshirani (1993) and Davison and Hinkley
(1997) present methods based on bootstrapping and quadratic approximations. These methods
are very useful, and in our context they are needed when inference based on all the available data
combined in the integrated likelihood is done. To obtain the integrated likelihood, the likelihood
components representing the (unavailable) data behind the confidence distributions are needed,
however. To recover a likelihood from a confidence distribution is a problem that has not been
addressed in the literature, as far as we know.

By definition, a likelihood is a probability density regarded as a function of the parameters,
keeping the data at the observed value. A confidence distribution can not be interpreted as a
probability distribution. It distributes confidence and not probability. The confidence density
is therefore not usually a candidate for the likelihood function we seek. It is the probability
distribution of the confidence distribution, regarded as the data, which matters. We will now
demonstrate by means of a simple example that a given confidence distribution can relate to many
different likelihoods, according to its different probability bases.

Consider the uniform confidence distribution over [0.4,0.8]. The cumulative confidence distri-

bution function is
C(¢) = (v —0.4)/04 for 0.4 < <0.8. (13)

This confidence distribution could have come about in many different ways, and the likelihood
associated with the confidence distribution depends on the underlying probability models.
Shift model. In this model, the confidence distribution is based on a statistic with the
sampling property
T=vyv-02404U,
where U is uniform (0, 1). The observed value is Tops = 0.6, which indeed results in (13). The

density of T is f(t;¢) = 2.5 on —0.2 < t < ¥ + 0.2, and the log-likelihood becomes zero on
(Tobs — 0.2, Tops + 0.2) and —oo outside this interval.

Scale model. The confidence distribution is now based on
T =04+ (3¢ —0.2)/U.

The observed value Tops = 0.6 leads to the uniform confidence distribution over [0.4,0.8]. In this

scale model the density of T is

$1 — 0.2

ft4) = oo for £ > 0.2+ v,

and the log-likelihood is log(v — 0.4) for 0.4 < ¢ < 2T5ps — 0.4.
Transformed normal model. Let now the confidence distribution be based on the statistic
0.4

T= 0.4{1 n <I>(Z—|—<I>‘1(L

0.4 ))} foroa<y<os,
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F1GURE 2: Three log-likelihoods consistent with a uniform confidence distribution over [0.4, 0.8].
‘Many likelihoods informed me of this before, which hung so tottering in the balance that I could
neither believe nor misdoubt.” — SHAKESPEARE.

where 7 ~ N(0,1). Again, with Tops = 0.6, the confidence distribution is the uniform over the

interval [0.4,0.8]. The likelihood is invariant under a transformation of the data, say
V=0"YT/04—1)=Z 43 (¢ — 0.4)/0.4).
Since then Vips = 0, the log-likelihood is
() = —3{® (¢ — 0.4)/0.4)}> for 0.4 < ¢ < 0.8.

Three possible log-likelihoods consistent with the uniform confidence distribution are shown

in Figure 2. Other log-likelihoods are also possible.

6 Confidence and likelihoods based on pivots

Assume that the confidence distribution C'(¢) is based on a pivot piv with cumulative distribution
function F' and density f. Since 1 1s one-dimensional, the pivot is typically a function of a one-
dimensional statistic 7" in the data X. The probability density of 7" is then

dpiv(t; ) ‘

fT(t§1/)) = f(piv(¢;¢)) ‘ dt

Since piv(T;¢) = F~Y(C(v)) we have the following.

Proposition 7 When the probability basis for the confidence distribution is a pivot piv(T; ) in

a one-dimensional statistic T, increasing in v, the likelihood is

DT )

L T) = F(FH(C) |57
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The confidence density is also related to the distribution of the pivot. Since one has C'(¢) =
F(piv(T; ),

dpiv(T'; ) ‘
g I

Thus, the likelihood 1s in this simple case related to the confidence density by

dpiv(T; ¥) (‘ dpiv(T’; ) D -
dT dy '

There are important special cases. If the pivot is additive in T (at some measurement scale),

() = Fiv(T; ) |

L(Y;T) = e(¥)

say
piv(T;¢) =T — p(¥) (14)

for a smooth monotone function g, the likelihood is L(¢;T) = f(F_l(C(w))) When further-
more the pivot distribution is normal, we will say that the confidence distribution has a normal

probability basis.

Proposition 8 (Normal-based likelihood) When the probability basis for the confidence dis-
tribution is an additive and normally distributed pivot, the log-likelihood related to the confidence

distribution is

The normal-based likelihood might often provide a good approximate likelihood. Note that
classical first order asymptotics leads to normal-based likelihoods. The conventional method of

constructing confidence intervals with confidence 1 — «,

{v:20(¢) — 1(¥)) < ®~Y(1 — La)}

where 1Z is the maximum likelihood estimate, is equivalent to assuming the likelihood to be normal-
based. The so-called ABC confidence distributions of Efron (1993), concerned partly with exponen-
tial families, have asymptotic normal probability basis, as have confidence distributions obtained
from Barndorff-Nielsen’s r* (Barndorff-Nielsen and Wood, 1998).

A normal-based likelihood equals the related confidence density if and only if the confidence
distribution is normal. This generalises as follows: For a given continuous confidence distribution,
there 1s a probability basis making the corresponding likelihood equal to the confidence density.

In many applications, the confidence distribution i1s found by simulation. One might start
with a statistic 7" which, together with an (approximate) ancillary statistic A, is simulated for a
number of values of the interest parameter ¢ and the nuisance parameter y. The hope is that the
conditional distribution of T" given A is independent of the nuisance parameter. This question can
be addressed by applying regression methods to the simulated data. The regression might have

the format

T =p() + )V (15)

where V is a scaled residual. Then piv(T;¢) = (T — u(¥))/7(¢), and the likelihood is

L) = fF(FH(C () /m(¥).

The scaling function 7 and the regression function g might depend on the ancillary statistic.
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Example 5. Let X be Poisson with mean . The half-corrected cumulative confidence

distribution function 1s

S X
Cl)=1- Ze‘wg + %6_¢—6_¢.

r=0
Here Y = 2(v& — /X)) is approximately N(0,1) and is accordingly approximately a pivot for
moderate to large 1. From a simulation experiment, one finds that the distribution of Y is slightly
skewed, and has a bit longer tails than the normal. By a little trial and error, one finds that
exp(Y/1000) is closely Student distributed with df = 30. With Qsq being the upper quantile
function of this distribution and t3q the density, the log-likelihood is approximately

L5 (1) = logtsn(Q30(C(1)) — logtso(0).

Examples are easily made to illustrate that the [5 (1) log-likelihood quite closely approximates the
real Poisson log-likelihood I(¢)) = 2 — ¢ + zlog(¢/z). m

Usually, the likelihood associated with a confidence distribution is different from the confi-
dence density. The confidence density depends on the parametrisation. By reparametrisation, the
likelihood can be brought to be proportional to the confidence density. This parametrisation might
have additional advantages.

Let L(¢) be the likelihood and ¢(¥) the confidence density for the chosen parametrisation,

both assumed positive over the support of the confidence distribution. The quotient

J() = L(¥)/e(¥)

has an increasing integral u(vy), with (d/d¢)u = J, and the confidence density of p = p(v) is
L(p(¥)). There is thus always a parametrisation that makes the likelihood proportional to the
confidence density.

When the likelihood is based upon a pivot of the form u(¢) — T, the likelihood in g = u(v)

is proportional to the confidence density of u.

Example 6. Let 12/1/) be standard exponentially distributed. Taking the logarithm, the pivot
is brought on translation form, and p(1) = log . The likelihood and the confidence density is thus
e(p) o< L(p) = exp(fi—p—exp(fi—p)). Bootstrapping this confidence distribution and likelihood is
achieved by adding the bootstrap residuals log V* to i above, where V* is standard exponentially
distributed. The log-likelihood has a more normal-like shape in the p parametrisation than in the
canonical parameter ¢. Also, being a translation family in u, the likelihood and the confidence

density are easily interpreted. m

When the likelihood equals the confidence density, the pivot is in broad generality of the
translation type. The cumulative confidence distribution function is then of translation type,
C' = F(p — 1) and so is the likelihood, . = ¢ = f(¢ — f). In this case, bootstrapping amounts
to drawing bootstrap values from the confidence distribution, and substituting these for the point

estimate i.

7 Bootstrapping a confidence distribution
and a related likelihood

7.1 From confidence to bootstraps

Bootstrapping has emerged as an indispensable tool in statistical inference. When working with

normal-based implied likelihoods, it is often desirable to mimic the result of bootstrapping the
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original data used when calculating the confidence distribution. A bootstrap replicate would then
result in a perturbed confidence distribution, and thus in a perturbed likelihood. As with confidence
distribution, its related likelihood, as determined by its probability basis, can be perturbed by
conditional bootstrapping. In the location and scale model (15), bootstrapping of the confidence
distribution and the likelihood amounts to drawing observations V* from the pivot distribution.

This leads to the bootstrap cumulative confidence distribution function

)y =r (T

When the probability basis is normal and the scale 7 is constant (and then chosen as unity), the

Few).

bootstrapped confidence distribution is
C* () = ®(@~HC (W) + T = Tops),

where T™ is a bootstrap replicate of the normal score of the original statistic, 7. On the normal
score scale, T* — Typs is then normally distributed, and since bias has been removed through the
confidence estimation, we may take 7% — Tops = Z* ~ N(0,1). In this case, the bootstrapped
log-likelihood is

F(W) = - Cw) + 27} (16)

The bootstrapped confidence distribution and the likelihood obtained from (15) has the de-
sirable property of having identical support to the original confidence distribution. From (16), the

maximum bootstrap likelihood estimate is in the normal case
Y* = C7H®(0)) = median(C*),

and its bootstrap distribution is precisely the confidence distribution.

Example 7. Let the confidence distribution be uniform over [0.4, 0.8], and assume that it has

a normal probability basis. The bootstrapped confidence distribution is then

() = = (¢ — 0.4)/0.4) + 77},

with Z7* from a standard normal. m

Example 8. The population dynamics model used in the assessment of bowhead whales
is age-structured (Schweder and Tanelli, 1998). The yearly natural survival probability, ¢, was
assumed independent of age for adult whales. The prior distribution chosen for this parameter,

which we for illustration will interpret as a confidence distribution, has cumulative distribution

C)=2a (M) /(I) (M) for ¢ < 0.995.

function

0.02 0.02

The normal-based log-likelihood implied by this confidence distribution is shown in Figure 3,

together with accompanying bootstrap replicates. m

7.2 A simple population dynamics model for Bowhead whales

The management of fisheries and whaling rests on the quality of stock assessments. Within the

International Whaling Commission, the assessment of the stock of bowhead whales subject to
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F1GURE 3: Normal-based log-likelihood for a truncated normal confidence distribution (line) and
five replicated bootstrap log-likelihoods (dotted).

exploitation by Native Americans in Alaska has been discussed repeatedly. The most recent as-
sessment was done by Bayesian methodology, see International Whaling Commission (1999) and
Poole and Raftery (1998).

Raftery and his co-workers have developed the Bayesian synthesis approach, and in Poole and
Raftery (1998) the most recent version of this approach is presented. In addition to using their
method on the more complex age-specific population dynamics model used by the International
Whaling Commission, they also illustrate their method on a simplified version of the model. To
illustrate our approach, and to compare it to the Bayesian synthesis approach with ‘Bayesian
melding’ to harmonise conflicting prior distributions, 1t is applied to the simplified population
dynamics model with the same data as used by Poole and Raftery (1998, Section 3.6).

Poole and Raftery (1998) understand their prior distributions as prior probability distributions
to be used in a Bayesian integration. We re-interpret this prior distributions as prior confidence
distributions. Instead of a Bayesian integration, this confidence distributions will be integrated
with the likelihood of P;g93 and ROI, after having been converted to likelihoods. To do this, their
probability basis needs to be determined. As Bayesians, Poole and Raftery are not concerned with
this issue, and no information is thus available. For simplicity, we chose to assume a normal prob-
ability basis for each of the three prior confidence distributions. This determines their likelihoods
as follows.

At the beginning of year ¢, there are P, bowhead whales. With C} being the catch in year ,

the dynamical model is
Piy1 = P, — Cy 4 P 1.5MSYR{1 — (P;/ Pigag)?},

where Pigys is taken as the carrying capacity of the stock, and MSYR (maximum sustainable yield
rate) is the productivity parameter. Yankee whaling started in 1848. From that year on, the catch

history {C}} is available, and is assumed to be exactly known. There are two free parameters in
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this model. We choose these to be MSYR and Pyg45. Stock sizes for other years are also parameters,
but are determined by MsYR and Pigss. Poole and Raftery (1998) list the following independent

priors:

Pigag ~ 6400 + Gamma(2.81,0.000289),
MSYR ~ Gamma(8.2, 372.7),
Pigo3 ~ N(7800, 1300?),

where Gamma(a, b) denotes the gamma distribution with mean a/b and standard deviation /a/b.
In addition to prior information, there are two log-likelihood components based on recent

survey data. One component concerns Pjgg3, and is the Gaufliian
14(Progs) = —1{(Pioos — 8293)/626}°.

The source of this information is different from that of the prior distribution for Pygg3 above. The
other component concerns the recent rate of increase in stock size ROI, which is defined through
P1993 = (1 + ROI)15P1978. It has likelihood

2
I5(ROT) = gbg {1 L <log(1 + ROI) — 0.0302) } Jog(ror 4 1)

8 0.0069

obtained from the t-distribution with 8 degrees of freedom, and an exponential transformation
(Poole and Raftery, 1998).
The combined log-likelihood

I =11 (Pigag) + l2(MSYR) 4 I3(P1g93) + l4(Pioo3) + I5(ROT)

is an extremely narrow curved ridge. See the bootstrap sample of maximum likelihood estimate in
Figure 4. The maximum likelihood estimate is presented in the table together with quantiles of the
confidence distributions for the various parameters obtained by the abc method, having employed
1000 bootstrap replicates.

The bootstrapping is determined by the probability bases of the likelihood components as

follows:
7 (Pisgag) = —% {q)_l(G2.81,0.000289(P1848 — 6400)) + Z*}Z ;
I5(MsYR) = — 5 {®7 ' (G50 372.7(MSYR)) + Z* }2 ,
I5(Piogs) = — +{(Proes — 7800) /1300 + Z*}7,
I3 (Pross) = —${(P1o9s — 8200) /564 + Z*},

i 9 1 [log(1 4 ro1) — 0.0302 .\~
15(ROI):§log{l—|—g< ( 0.00)69 —|—T8) }—log(ROI—I—l).

Here the four Z*s are independently drawn from the standard normal distribution and inde-
pendently from 7§ which is drawn from the tg-distribution. For each draw of these five ‘boot-
strap residuals’, the perturbed likelihood is maximised, leaving us with the bootstrap estimate
0* = (P4, MSYR).

Each bootstrap replicate 8* induces bootstrap replicates of Pjg93 and ROT through the deter-
ministic population dynamics model. The bootstrap distributions are nearly normal for both the
two induced parameters, Pjyq3 ~ N(8117,5562) and rRo1* ~ N(0.0249,0.0059%). By simple bias

correction relative to the maximum likelihood estimates, we obtain the quantiles in the table. For
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Parameter MLE Quantile  Prior Posterior  Bayesian
Pigag 0.025 8263 10932 12057
13152 0.5 14997 13017 14346
0.975 30348  1608h 17980

MSYR 0.025 0.0096 0.0157 0.0113
0.0267 0.5 0.0211  0.0275 0.0213
0.975 0.0394 0.0425 0.0333

Pigos 0.025 7027 7072
8117 0.5 8117 8196
0.975 9207 9322
ROT 0.025 0.0145 0.0105
0.0255 0.5 0.0261 0.0204
0.975 0.0377 0.0318

Table 1: Maximum likelihood estimates and quantiles for prior and posterior of frequentist and
Bayesian distributions, for the parameters of interest.

the primary parameters, transformation is necessary to obtain normality for the bootstrap sample.
This is achieved by a Box-Cox transformation of exponent —1: 10000/ Pjg,5 ~ N(0.7525,0.0748%),

while a square root transform normalises the bootstrap distribution of MSYR:
(MsYR*)Y/2 ~ N(0.1611,0.02067). (17)

Kolmogorov—Smirnov tests yielded p-values around 0.5 in both cases. A simple bias correction on
these scales leaves us with the confidence quantiles in the table.

The probability basis of the input confidence distributions leading to the log-likelihoods Iy, 15
and I3 provides a basis for the bootstrap, as explained above. For rROI, we assume the likelihood
given by Poole and Raftery to be based on the estimate of ROI, appropriately transformed, being
a Tg distance from the transformed parameter, where Ty is drawn from a t-distribution with 8
degrees of freedom.

The prior and the posterior confidence densities of MSYR are shown in Figure 5. The main
reason for the posterior being shifted to the right of the prior confidence distribution is the influence
of the data on RO1. The bootstrap density for MSYR is also shown. Note that the bias correction
pushed the posterior confidence distribution towards higher values of MsSYR. The bias correction
is roughly +6% in this parameter.

The probability basis for the posterior confidence distribution for MsYR is normal. It is, in fact,
based on (17) and an assumption of the posterior confidence distribution on this scale only being
shifted by a constant amount relative to the bootstrap distribution, MSYR!/? ~ (MSYR*)l/2 + b.

The bias correction b 1s estimated as
2[(MsYR)'Y? — mean{(Msyr*)*/?}] = 0.0046,

where MSYR is the maximum likelihood estimate of MsYR. With the probability basis being normal,
the posterior log-likelihood of MSYR is

Lpost (MSYR) = —L(MsyRY/2 — 0.166)2/0.02062.

1
2
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FiGURE 4: One thousand bootstrap estimates of Pigqg and MSYR.
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FIGURE 5: Prior confidence density (broken line), bootstrap density (dotted) and posterior confi-
dence densities for MSYR.
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8 Discussion

The confidence distribution is an attractive format for reporting statistical inference for parameters
of primary interest. To allow future good use of the results it is desirable to allow a likelihood to be
constructed from the confidence distribution. An alternative is to make the original data available,
or to present the full likelihood. However, the work invested in reducing the original data to a
confidence distribution for the parameter of interest would then be lost. To convert the posterior
confidence distribution to a likelihood the probability basis for the confidence distribution must be
reported.

Our suggestion 1s accordingly to extend current frequentist reporting practice from only re-
porting a point estimate, a standard error and a (95%) confidence interval for the parameters
of primary interest. To help future readers, one should report the confidence distribution fully,
and supplement it with information on its probability basis. This latter information will often be

qualitative.

8.1 Advantages with our approach

The advantages of representing the information contained in a confidence distribution in the format
of (an approximate) likelihood function are many and substantial.

By adding the log-likelihoods of independent confidence distributions for the same parameter,
an integrated likelihood, and thus a combined confidence distribution is obtained. The merging
of independent confidence intervals has attracted considerable attention, and the use of implied
likelihoods presents a solution to the problem. One might, for example, wish to merge independent
confidence intervals for the same parameter to one interval based on all the data. When the proba-
bility basis and the confidence distribution are known for each data set, the related log-likelihoods
can be added, and an integrated confidence distribution (accompanied with its probability basis)
is obtained.

A related problem is that of so-called meta-analyses. If independent confidence distributions
are obtained for the same parameter, the information is combined by adding the implied log-
likelihoods. A frequent problem in meta-analysisis, however, that the interest parameter might not
have exactly the same value across the studies. This calls for a model that reflects this variation,
possibly by including a random component. In any event, the availability of implied likelihood
functions from the various studies facilitates the meta-analysis, whether a random component is
needed or not.

Studies in fields like ecology, economics, geophysics etc. often utilise complex models with
many parameters. To the extent results are available for some of these parameters, it might be
desirable to include this information in the study. If these previous results appear in the format
of confidence distributions accompanied by explicit probability bases, their related likelihoods
are perfectly suited to carry this information into the combined likelihood of the new and the
previous data. If a confidence distribution is used that is not based on (previous) data, but
on subjective judgement, its related likelihood can still be calculated and combined with other
likelihood components, provided assumptions regarding its probability basis can be made. This
subjective component of the likelihood should then, perhaps, be regarded as a penalising term
rather than a likelihood term.

Finally, being able to obtain the implied likelihood from confidence distributions, and being
able to calculate confidence distributions from data summarised by a likelihood within a statisti-

cal model, a methodology parallel to and competing with Bayesian methodology emerges. This
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methodology is frequentist in its foundation. As the Bayesian methodology, it provides a frame-
work for coherent learning and its inferential product is a distribution: a confidence distribution

instead of a Bayesian posterior probability distribution.

8.2 Differences from the Bayesian paradigm

It is pertinent to compare our frequentist approach with the Bayesian approach to coherent learn-
ing. Most importantly, the two approaches have the same aim: to update distributional knowledge
in the view of new data within the frame of a statistical model. The updated distribution could then
be subject to further updating at a later stage, etc. In this sense, our approach could be termed
‘frequentist Bayesian’ (a term both frequentists and Bayesians probably would dislike). There are,
however, substantial differences between the two approaches. Compared to the Bayesian approach,
we would like to emphasise the following.

Distributions for parameters are understood as confidence distributions and not probability
distributions. The concept of probability is reserved for (hypothetically) repeated sampling, and
is interpreted frequentistically. To update a confidence distribution it must be related to its prob-
ability basis, as the likelihood related to the confidence distribution. To update a distribution the
frequentist needs more information than the Bayesian, namely its probability basis. On the other
hand, the distinction between probability and confidence is basic in the frequentist tradition.

Tt is possible to start at scratch, without any (unfounded) subjective probability distribution.
In complex models, there might be distributional information available for some of the parameters,
but not for all. The Bayesian is then stuck, or she has to construct priors. The frequentist will,
however, not have principle problems in such situations. The concept of non-informativity is,
in fact, simple for likelihoods. The non-informative likelihoods are simply flat. Non-informative
Bayesian priors are, on the other hand, a thorny matter. In general, the frequentist approach is
less dependent on subjective input to the analysis than the Bayesian approach. But if subjective
input is needed, it can readily be incorporated (as a penalising term in the likelihood).

In the bowhead example, there were three priors but only two free parameters. Without
modifications of the Bayesian synthesis approach like the melding of Poole and Raftery (1998), the
Bayesian gets into trouble. Due to the Borel paradox (Schweder and Hjort, 1997), the Bayesian
synthesis will, in fact, be completely determined by the particular parametrisation. With more
prior distributions than there are free parameters, Poole and Raftery (1998) propose to meld
the priors to a joint prior distribution of the same dimensionality as the free parameter. This
melding is essentially a (geometric) averaging operation. If, however, there are independent prior
distributional information on a parameter, it seems wasteful to average the priors. If, say, all the
prior distributions happen to be identical, their Bayesian melding will give the same distribution.
The Bayesian will thus not gain anything from &k independent pieces of information, while the
frequentist will end up with a less dispersed distribution; the standard deviation will, in fact, be
the familiar 0'/\/%.

Non-linearity, non-normality and nuisance parameters can produce bias in results, even when
the model is correct. This 1s well known, and has been emphasised repeatedly in the frequentist
literature. Such bias should, as far as possible, be corrected in the reported results. The confidence
distribution aims at being unbiased: when it 1s exact, the related confidence intervals have exactly
the nominal coverage probabilities. Bias correction has traditionally not been a concern in the
Bayesian tradition. There has, however, been some recent interest in the matter. To obtain
frequentist unbiasedness, the Bayesian will have to choose her prior with unbiasedness in mind.

Is she then a Bayesian? Her prior distribution will then not represent prior knowledge of the
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parameter in case, but an understanding of the model. Our ‘frequentist Bayesianism’ solves this

problem in principle. Tt takes as input (unbiased) prior confidence distributions and delivers

(unbiased) posterior confidence distributions.
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